@NTNU

Norwegian University of
Science and Technology

Security and Key Establishment in [EEE
802.15.4

Eirik Klevstad

Master of Science in Communication Technology
Submission date: June 2016

Supervisor: Colin Alexander Boyd, ITEM
Co-supervisor: Britta Hale, ITEM

Norwegian University of Science and Technology
Department of Telematics

Title: Security and Key Establishment in IEEE 802.15.4
Student: Eirik Klevstad

Problem description:

Internet of Things (IoT) is a network where devices, sensors, vehicles, buildings,
and humans communicate and collaborate, along with collecting and exchanging
information. IEEE 802.15.4 specifies the lower layers for low-rate wireless networks,
which are widely seen as the foundation for current IoT communications. One of the
potential weaknesses of the IEEE 802.15.4 standard is the lack of specification for
key establishment and management.

This thesis will focus on key management for device-to-device security in IoT. It will
review and compare the proposed protocols, and include both formal and informal
security analysis, as well as analysis of both key management requirements and key
agreement protocol design for IoT security. Another goal of the thesis will be to
suggest improvements and alternatives to the proposed protocols.

Responsible professor: Colin Boyd, ITEM
Supervisor: Britta Hale, ITEM

Abstract

IPv6 over Low power Wireless Personal Area Network (6LoWPAN) is a
concept that enables an Internet Protocol (IP) connection over networks
that use the Institute of Electrical and Electronics Engineers (IEEE)
802.15.4 standard and has a focus on low-power devices with limited
computational power. This has made 6LoWPAN an exciting technology
for future device-to-device communications and the Internet of Things.

This thesis presents, to the author’s knowledge, the first formal security
analysis of APKES, AKES, and SAKES, which are proposed protocols for
establishing keys in IEEE 802.15.4 networks that utilize the 6LoWPAN.
APKES and AKES were proven to have none or few issues that were
discovered by the formal security analysis, and may, therefore, be possible
schemes for future key establishment in 6LoWPAN. Multiple weaknesses
were discovered in SAKES, where this thesis has aimed to improve
the protocol by implementing necessary measures and validate these
improvements using Scyther.

Sammendrag

6LoWPAN, av det engelske begrepet “IPv6 over Low-power Wireless
Personal Area Network”, betegner et personlig tradlgst nettverk som
bygger pa IEEE 802.15.4 standarden. Nyvinningen ved dette nettverket
er at det tillater enheter & kommunisere med hverandre og omverdenen
gjennom bruk av protokollen Internet Protocol, bedre kjent som bare
IP. 6LoWPAN har et spesielt fokus pa & minimalisere energibruken i
nettverket. Dette gjor at mindre, billigere og enklere enheter kan kobles
med hverandre og omverdenen, noe som har gjort 6LoWPAN til en
spennende teknologi for fremtidens enhet-til-enhet-kommunikasjon og
“tingenes internett”.

Denne masteroppgaven presenterer, til forfatterens kjennskap, de forste
formelle sikkerhetsanalysene av tre protokoller for etablering av krypte-
ringsngkler i 6LoOWPAN: APKES, AKES og SAKES. APKES og AKES
blir bevist til & inneholde ingen eller fa alvorlige feil, noe som gjgr dem
til aktuelle protokoller for etablering av krypteringsngkler i 6LoWPAN.
Det ble oppdaget flere svakheter ved SAKES. Derfor blir flere mulige
forbedringer til protokollen presentert, implementert og verifisert ved
hjelp av Scyther.

Preface

This thesis has been submitted in the fulfilment of Masters of Science in
Communication Technology, with a specialization in information security
at the Norwegian University of Science and Technology (NTNU) in
Trondheim. The thesis is original, unpublished, and independent work
by the author E. Klevstad.

I would like to thank my supervisor, Britta Hale, for her endeavours in
the tweaking process of Scyther models, as well as valuable feedback and
insight in the modelling of security protocols. I would also thank my
responsible professor, Colin Boyd, for his exceptional guidance, feedback,
and support over the past six months. You have both been an incredible
resource.

Another round of “thank yous” goes to Google for developing Google
Translate, and Britta and Colin for correcting Google Translate when it
was wrong. A special shout-out to the people at my office for providing
me with a fair amount of procrastination activities. I will treasure our
time spent watching Norwegian slow TV and browsing the dark side of
YouTube. Writing this thesis has been challenging from time to time.
Therefore, I am forever grateful for the inspiration provided by you,
Doppio Passo. I could not have done this without you.

Finally, T would like to thank you as a reader. By completing these last
sentences, you have at least read one page of my thesis.

Cheers.

Eirik Klevstad

Trondheim, 10th June 2016

Contents

List of Figures

List of Tables

Listings

List of Acronyms

1 Introduction

1.1
1.2

1.3
1.4
1.5

Motivation
Scope and Objectiveso
1.2.1 Objectives
Methodology
Contribution e
Outline e

2 Background and Related Work

2.1
2.2
2.3
2.4

2.5
2.6

Internet of Things,
The IEEE 802.15.4 Standard
6LoWPAN: Putting IP on Top of 802.154
Key Establishment and Key Management
2.4.1 Cryptographic Keys
2.4.2 Security Attributes in Key Establishment Schemes
2.4.3 Key Establishment Architectures
2.4.4 Key Establishment Schemes
2.4.5 Key Establishment Schemes in Wireless Sensor Networks and

the Internet of Things
Formal Security Analysis. L.
Related Work o

3 Symbolic Security Analysis Using Scyther

3.1

The Scyther Tool: Verification, Falsification, and Analysis of Security
Protocols

xi

xiii

Xv

W W N NN

© g ot

vii

3.2 Scyther Syntax

3.2.1 Security Claims L
3.3 Defining an Adversary Compromise Model
3.4 Scyther’s Graphical User Interface

Three Protocols for Key Establishment in 6LoWPAN

4.1 General Properties

4.2 Adaptable Pairwise Key Establishment Scheme (APKES)
4.2.1 Allowing “Pluggable” Schemes to Increase Universality
4.2.2 Avoiding Denial of Service Attacks
4.2.3 Node Compromise Resilience
4.2.4 Protocol Specificationo
4.2.5 Assumptions of Security Properties
4.2.6 Weaknesses and Challenges with APKES

4.3 Adaptable Key Establishment Scheme (AKES)
4.3.1 Renewing a Session.
4.3.2 Preventing Deadlocks and Removing Neighbours
4.3.3 Protocol Specification 0oL
4.3.4 Assumptions of Security Properties
4.3.5 Weaknesses and Challenges with AKES

4.4 Secure Authentication and Key Establishment Scheme (SAKES)
4.4.1 Protocol Specification Lo
4.4.2 Assumptions of Security Properties
4.4.3 Weaknesses and Challenges with SAKES

Formal Security Analysis of Three Key Establishment Protocols
5.1 Modelling Security Properties
5.2 Formal Security Analysis of APKES
5.2.1 Security Claims
5.2.2 Adversary
523 Results
5.3 Formal Security Analysis of AKES
5.3.1 Security Claims
532 Adversary
533 Results
5.4 Formal Security Analysis of SAKES
5.4.1 Authentication Phase
5.4.2 Key Establishment Phase
543 Results
5.5 Incompleteness in the Analysis of SAKES
5.6 General Limitations in the Analysis

39
39
41
41
42
43
43
44
45
46
47
47
48
49
49
50
92
55
95

6 Discussion 73

6.1 FEvaluation of Authentication Properties 73
6.2 FEvaluation of Key Secrecy Properties 74
6.3 Comparisono 75
6.3.1 APKES versus AKES 75
6.3.2 AKES versus SAKES 75
6.4 Suggested Improvements for APKES 76
6.5 Suggested Improvements for SAKES 76
6.5.1 Achieve Authentication in the Authentication Phase by Re-
turning Nonces Lo oL 76
6.5.2 Add Nonces in the Key Establishment Phase to Limit Malicious
Behaviour o 79
6.5.3 Return the Proof to the Router to Confirm the Identity of the
SEerver e 81
6.5.4 Generate Ephemeral Keys at Both Sides in the Diffie-Hellman
Key Agreement 82
6.5.5 Use Elliptic Curve Diffie-Hellman and the Elliptic Curve Digital
Signature Algorithm 83
7 Conclusion 85
References 87
Appendices
A Scyther Scripts 93
A.1 Scyther Script of Adaptable Pairwise Key Establishment Scheme
(APKES) . . .« 93
A.2 Scyther Script of Adaptable Key Establishment Scheme (AKES) . 95
A.3 Scyther Scripts of Secure Authentication and Key Establishment
Scheme (SAKES) 97
A.3.1 SAKES - Authentication. 97
A.3.2 SAKES - Key Establishment 99
A.3.3 SAKES - Key Establishment - Interaction Between A and B 101
A.4 Scyther Scripts of the Improved SAKES 103
A.4.1 TImproved Authentication Phase 103
A.4.2 TImproved Key Establishment Phase 105
B Scyther Attack Diagrams 109
C Notation 117
C.1 Notation 117

2.1

2.2

2.3

24

2.5

2.6

3.1
3.2

3.3
3.4

4.1

4.2

4.3

4.4

4.5

List of Figures

The OSI stack with layers, the data they carry, and example of technology
running at the different layers.

Figure of IEEE 802.15.4’s operational space compared to other wireless
standards.o

Figure of the 6LoWPAN stack, which uses the IEEE 802.15.4 physical
and link layer.

Figure of a symmetric encryption scheme, where both parties possess the
same symmetric key used for encryption and decryption.

Figure of the interaction between the client, the KDC, and the SS in
Kerberos.

Figure of public-key encryption where a message to Alice is encrypted
using her public key, and decrypted with her corresponding private key.

Figure of the mapping of Long-term Key Reveal rules.

Results of a verification process using Scyther where all claims are suc-
cessfully verified.

Results of a verification process using Scyther where a claim fails.

When Scyther finds an attack on a protocol, if will also provide a graph
of the attack.

APKES is positioned in the data link layer in the 6LOWPAN stack,
expanding the 802.15.4 security sublayer.
Figure of the messages sent between communicating parties during AP-
KES’ three-way handshake.

Figure of the messages sent between communicating parties during AKES’
three-way handshake.
Figure of the architecture for a 6LoWPAN using SAKES for authentication
and key establishment.
Figure of the messages sent between the end device, router, and border
router (with authentication module) in SAKES’ authentication phase.

10

15

17

18

35

36
36

37

42

44

48

o1

Xi

4.6

5.1
5.2
5.3
5.4
5.5

6.1

6.2

6.3

B.1

B.2

B3

B4

B.5

B.6

Figure of the messages sent between communicating parties in SAKES’
key establishment between the end device, the 6LoWPAN router, and the
TEMOTE SETVEL. v v vt e e

Result of verifying APKES’ security claims using Scyther.
Result of verifying AKES’ security claims using Scyther.
Result of verifying SAKES’ authentication claims using Scyther.

Result of verifying SAKES’ key establishment claims using Scyther.
Result of verifying SAKES’ the key distribution between the router and
the end device in the key establishment phase.

Result of verifying the fixed version of SAKES’ authentication claims
using Scyther.o
Result of verifying the model of the key distribution in SAKES’ using
Scyther with a mapping between session and session key.
Result of verifying the model of the key distribution in SAKES’ using
Scyther where the server returns both the proof and the nonce Ng. . . .

Graph of the discovered attack on the weak agreement property of the
role A in the authentication phase of SAKES.
Graph of the discovered attack on the Nisynch property of the roles A, B,
and C from A’s point of view in the authentication phase of SAKES. . .
Graph of the discovered attack on the entity authentication of the end
device in role B in the key establishment phase of SAKES.
Graph of the discovered attack on the Niagree and Nisynch properties in
the role A in the key establishment phase of SAKES.
Graph of the discovered attack on the weak agreement property of D in
role B in the key establishment phase of SAKES.
Graph of the discovered attack on the weak agreement property of B in
role A in the key establishment phase of SAKES.

o4

60
62
65
69

71

78

80

82

110

111

112

113

114

3.1

4.1
4.2
4.3

6.1

6.2

List of Tables

Relationship between security properties and the adversary models in
Scyther.

Overview of which general security properties that APKES satisfies.
Overview of which general security properties that AKES satisfies. . . .
Overview of which general security properties that SAKES satisfies.

Table of the security properties for authentication that are satisfied in
the different protocols.o
Table of the security properties for secrecy that are satisfied in the different
Protocols. e e e

34

41
46
50

74

xiii

3.1

3.2

3.3
3.4
3.5
3.6

3.7
3.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
6.1

6.2

6.3

6.4

Listings

Example of the structure of a protocol modelled in Scyther, consisting
of roles with different behaviours.
Terms can be generated, sent, and received when communicating with
otheragents.
Events in Role V usually corresponds to events in role U.
Example of how to use hashfunctions, macros and encryption.
Example of how to claim secrecy for terms in Scyther.
Example of how to claim authentication by use of alive, weak-agreement,
and non-injective agreement.
Claim for declaring non-injective synchronization in Scyther.

Example of running and commit claims in Scyther to provide authen-
tication for a set of terms.o oL
Security claims for role A in APKES..
Security claims for role Bin APKES.
Security claims for role A in AKES.
Security claims for role Bin AKES.

Security claims for role A during the authentication phase in SAKES.
Security claims for role B during the authentication phase in SAKES.

Security claims for role C during key establishment in SAKES.
Security claims for role A during key establishment in SAKES.
Security claims for role B during key establishment in SAKES.
Security claims for role D during key establishment in SAKES.
Fix to the SAKES protocol to provide weak agreement for the end
device in the authentication phase.
Fix to the SAKES protocol to provide non-injective synchronization
and data agreement for the end device and the border router during
the authentication phase.
Fix to the SAKES protocol to provide non-injective synchronization
and data agreement for the router during the authentication phase. .
Fix to the SAKES protocol to provide non-injective synchronization
and data agreement for the end device during the key distribution. .

31
32

33
59
59
61
61
63
64
64
67
68
68

7

7

79

XV

6.5

Al

A2
A3
A4
Ab

A6
AT

Fix to the SAKES protocol to provide authentication of the remote

server to the router in the key establishment phase. 81
Scyther script of Adaptable Pairwise Key Establishment Scheme (AP-

KES). . o 93
Scyther script of Adaptable Key Establishment Scheme (AKES) . . 95
Scyther script of the authentication phase in SAKES 97
Scyther script of the key establishment phase in SAKES 99
Scyther script of the interaction between the end device and the router

in SAKES 101
Scyther script of the improved authentication phase in SAKES . . . 103
Scyther script of the improved key establishment phase in SAKES . 105

List of Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Network.

AES Advanced Encryption Standard.

AKE Authenticated Key Exchange.

AKES Adaptable Key Establishment Scheme.

APKES Adaptable Pairwise Key Establishment Scheme.

AS Authentication Server.
BAN Burrows-Abadi-Needham.

CA Certificate Authority.
CCM Counter with CBC-MAC.

CTR Counter.
DoS Denial of Service.

EAP Extensible Authentication Protocol.

EBEAP Easy Broadcast Encryption and Authentication Protocol.
ECC Elliptic Curve Cryptography.

ECDH Elliptic Curve Diffie-Hellman.

ECDSA Elliptic Curve Digital Signature Algorithm.

GPS Global Positioning System.

GUI Graphical User Interface.

Xvii

IEEE Institute of Electrical and Electronics Engineers.
TIETF Internet Engineering Task Force.

IKE Internet Key Exchange.

IoT Internet of Things.

IP Internet Protocol.

KCI Key Compromise Impersonation.

KDC Key Distribution Center.

LEAP Localized Encryption and Authentication Protocol.

LKR Long-term Key Reveal.

MAC Message Authentication Code.
MIC Message Integrity Code.

MSC Message Sequence Chart.
NTNU Norwegian University of Science and Technology.
OSI Open Systems Interconnection.

PAN Personal Area Network.

PFS Perfect Forward Secrecy.

RAM Random Access Memory.
RFID Radio Frequency Identification.

RSA Rivest-Shamir-Adleman.

SAKES Secure Authentication and Key Establishment Scheme.
SKR Session-Key Reveal.

SNMP Simple Network Management Protocol.

SPDL Security Protocol Description Language.

SS Service Server.

TCP Transmission Control Protocol.
TGS Ticket Granting Service.
TGT Ticket Granting Ticket.

TLS Transport Layer Security.
UDP User Datagram Protocol.

WLAN Wireless Local Area Network.
WPA Wi-Fi Protected Access.

WPA2 Wi-Fi Protected Access II.
WPAN Wireless Personal Area Network.
wPFS Weak Perfect Forward Secrecy.

WSN Wireless Sensor Network.

Introduction

1.1 Motivation

Information is the new natural resource. It is around us at all times, the possibilities
of reshaping it into value are endless, and it is renewable. All we need to do is capture
it. Computer devices equipped with sensors can capture a particular property of
the physical world, and convert it into information. The information can then be
exchanged with other devices, processed, computed on, or transformed into something
new. To collect as much information as possible, we need a significant amount of
these devices, and they need to be able to communicate with each other through
networks.

Our information is valuable. Therefore, we need to secure the data that we
capture to protect it from possible adversaries that would want to steal, alter, or
delete our precious information. Information can be secured by encrypting it, which
would make the data look like nonsense to adversaries that intercept it. However,
before a device is capable of encrypting its outgoing information stream, it needs to
agree upon some key scheme to use for the encryption-decryption process. This is
done through key establishment.

There exist numerous well-tested and deployed protocols for key establishment
in wireless networks. These are not, however, always well-suited for device-to-
device communication where the devices are meant to be cheap and energy-efficient.
Therefore, the community needs to rethink their approach when it comes to key
establishment schemes for sensor networks.

Protocols for key establishment in device-to-device networks is an emerging
market and involves multiple different network technologies and standards. While
in the chase of creating energy efficient and universal key establishment schemes,
the security analysis may not always be conducted properly or conducted at all. As
the key establishment schemes become more sophisticated and complex, it may be

2 1. INTRODUCTION

difficult for humans to verify that a scheme is correct and does not contain any states
that may cause the scheme to misbehave.

To avoid insecure protocols being standardized and deployed, which has repeatedly
happened, formal security analysis is often conducted to verify that the protocol is,
in fact, correct. Over the recent years, multiple tools for formal security analysis have
been developed and made available to the public. By using these tools it is possible
to verify security protocols by allowing a machine to explore each possible state of
the protocol to expose possible malicious behaviour. Formally security analysis is
something that any protocol should be exposed to, but is surprisingly often omitted.
Hence, it would be interesting to explore proposed protocols for key establishment in
6LoWPAN in a formal way to verify that they provide the alleged security stated in
their proposal.

1.2 Scope and Objectives

The scope of this thesis is to give a formal security analysis of the three key estab-
lishment protocols APKES, AKES, and SAKES by using the tool Scyther. These
protocols are utilizing the IEEE 802.15.4 standard in conjunction with 6LoWPAN,
which allows for connecting devices to each over the IP. In addition to formally
verifying the protocols, improvements of the protocols should be suggested.

1.2.1 Objectives

This thesis has had three main objectives:

e Find and review three proposed protocols for key establishment in IEEE
802.15.4

e Perform formal security analysis of the protocols

e Propose improvements to the protocols

1.3 Methodology

The first part of this thesis presents a background study of wireless networks such
as the IEEE 802.15.4 and the 6LoWPAN to understand better how they provide
different types of security services. Also, various key establishment architectures
have been assessed to increase the understanding the properties that are desirable
for key establishment schemes in a sensor network setting.

To be able to formally analyse key establishment protocols, a part of the thesis
has involved learning how to implement and verify security protocols using the formal

1.4. CONTRIBUTION 3

security tool known as Scyther. This includes understanding the connection between
security properties for key establishment and how Scyther interprets and verifies
these properties.

Three protocols for key establishment without any previous formal security
analysis have been chosen for this thesis. APKES were proposed as the initial paper
which this thesis used as a starting point. This lead the author into AKES, which is
an improved version APKES. Finally, SAKES was chosen based on its interesting
architecture where it combines multiple cryptographic concepts. These protocols
are reviewed and discussed to establish their various security properties, as well
as security properties that they should possess. The protocols have been modelled
and formally verified by using the Scyther tool. When Scyther checks a protocol, it
returns a table of all the claimed security properties and an indication of whether
the property was successfully verified or falsified. In the event of a property being
falsified, the attacks have been inspected, and changes to the protocol have been
made to achieve the claimed security property.

1.4 Contribution

The contribution of this thesis is, to the author’s knowledge, the first published
formal security analysis of APKES, AKES, and SAKES, which are key establishment
protocols for 802.15.4 networks that utilize 6LoWPAN. In addition to formally
verifying these protocols, the thesis also suggests improvements of the protocols, and
explains their applicability for use in real world networks.

1.5 Outline

In Chapter 2, a general background is given on the Internet of Things and wireless
sensor technology. It covers the general idea of key establishment, its security
properties, and why it is challenging in an IoT context. The chapter also contains
a brief overview of formal security analysis and the importance of conducting such
analysis of modern security protocols.

Chapter 3 is an introduction to the formal security analysis tool known as Scyther.
It explains how it works, and what types of security properties can be formally
verified using the tool. In addition to the overall description, the chapter also
contains examples of Scyther syntax, how we can model security protocols using the
tool, and how to interpret the results of the verification process.

APKES, AKES, and SAKES are introduced in Chapter 4, along with their
specifications and weaknesses. These are recently proposed protocols that aim to
provide secure key establishment in 802.15.4 networks that utilize 6LoWPAN.

4 1. INTRODUCTION

Chapter 5 describes the formal security analysis of the protocols, how the proto-
cols have been modelled in Scyther, and how the different security properties are
assessed. The chapter also contains the results of the verification process with a brief

explanation.

The results of the formal security analysis are discussed and compared in Chapter
6, which also contains suggestions on how to improve the protocols. In Chapter 7,
concluding remarks of the thesis and its contribution are presented. The thesis also
comes with an appendix which contains the scripts of the modelled protocols, the
attacks that is presented by Scyther, and an overview of the notation that is used
when describing the protocols in detail.

Background and Related Work

2.1 Internet of Things

Over the last decade, a concept called the Internet of Things has gained increased
attention, both from the research community and commercial actors, as well as
consumers. The term IoT was, accordingly to most sources, coined in 1999 by the
British visionary Kevin Ashton in a presentation about Radio Frequency Identification
(RFID) [3, 67]. Ashton’s definition of the concept was a world where computers
do not depend on human beings to provide them with information. Out of all the
petabytes of information available on the Internet, the majority has been created
and captured by humans performing some sort of action. In his opinion, IoT is about
providing computers with the ability to gather information on their own.

Computational devices that contain some sort of sensor may be attached to your
everyday physical device, for example your potted plant. This creates a bridge
between our physical world and the cyber world [43]. The connection to the Internet
allows us to monitor and control these devices and sensors from a remote distance.
Another vital part of IoT is device-to-device communications, essentially enabling
devices to communicate with each other without human aid, and exchange and
retrieve information. Such devices could be sensors monitoring an operation, a
physical area, or even attached to a physical body. The possibilities are more or
less unlimited. Imagine a home automation and surveillance system for your cabin,
where lights, heaters, smoke detectors, underfloor heating, motion detectors, security
cameras, garage, and so on, are all interconnected with each other through small
wireless devices. As it is called the Internet of Things for a reason, your system and
devices would be accessible over the Internet, allowing you to monitor the current
status of your cabin remotely from your couch at home, as well as looking at historical
data of the different sensors and devices. When the weekend arrives and you head
for the mountains, the IoT provides you with an opportunity to preheat different (or
all) sections of the cabin, deactivate the alarm, and perhaps instruct the sauna to
start getting cosy.

6 2. BACKGROUND AND RELATED WORK

Another approach is to avoid using a monitor to remotely control the system,
and instead allowing the system to observe and act on your behaviour. We want the
devices to know us and figure out the correct decision to make without us telling
them. For example, when pulling your car into the driveway, you want the garage
door that is connected with your car to open up. The garage notifies your front door
that you are home, which conveniently unlocks and notifies your house to turn on
the lights in your hallway and perhaps the heater in your living room.

The possibilities that are revealed as the IoT grows larger and the services
expand are endless. The concept is highly applicable for different scenarios involving
home automation, standalone consumer products, industrial and environmental
facilities, as well as medical surveillance. While larger automation systems for
homes and facilities have been the target for the research community and early
adopters, the consumer market has been focused on so-called wearables. Wearables
are fundamentally devices that you wear, such as smart watches, fitness trackers,
virtual reality glasses, headphones, and smart clothing. Such human-centric devices
are less about automation, and more focused on personal improvement. Nevertheless,
the increase in IoT devices possibly provides us with a more cost efficient future,
both in our use of time, as well as energy and consumption of other resources.

As the IoT is built upon the Internet, it faces the same types of security issues as
the Internet itself. The amount of “things” connected to the Internet is calculated to
be 6.4 billions by the end of 2016, which is almost a 30% increase from 2015 [32].
By 2020, the expected number of these “things” is more than 20 billion, providing
attackers with equally many possible devices to attack. Given the knowledge that
some of these devices may be medical (or have other sensitive applications), we
quickly recognize potential catastrophic scenarios.

The IoT architecture can resemble the neural system of the human body. The
perception layer controls our sensors which we use to obtain information about
our environment by observing, feeling, smelling, tasting, or hearing. As previously
described, IoT devices are often deployed with one or more sensors to perform
these “human operations” for information collection. The perception layer is mainly
focusing on sensing and allowing IoT devices to observe their environment and collect
information. Examples of such technologies are RFID, Wireless Sensor Network
(WSN), and the Global Positioning System (GPS) [40]. Information from our
human sensors are carried to the brain through a neural network. Much alike in
IoT, the collected information is transmitted using the transportation layer. The
transportation layer is running over some wireless or wired medium such as 802.15.4,
6LoWPAN, 3G, Bluetooth or Infrared. Finally the information is processed by an
intelligent entity. In our human body, that would be the brain. In the IoT, the
brain would be an intelligent processing unit in the application layer which is able

2.2. THE IEEE 802.15.4 STANDARD 7

to compute and analyse actions based on the received information [42, 71]. The
application layer is also responsible for controlling the sensors, performing global
system management, and present data for the end users of the system.

As these layers covers different characteristics of IoT, they consists of different
types of hardware and provide different types of services, hence they are subject
to different types of security threats and solutions. The most adjacent problems
to the scope of this thesis are the problems related to key establishment and key
management, which define how two devices safely can establish secure communication
between each other. Or in other words, how collected information is safely transmitted
between the sensors and the “brain”.

In an IoT world, the protection of data and privacy is an essential part. As
previously mentioned, IoT technology may be a solution for problems involving
sensitive information. In a medical facility, a possible scenario could be a WSN,
which is a dynamic and bi-directional network of nodes where each node has one
or more sensors connected to it. A patient may have sensors implanted in their
body, as well as different instruments attached for measuring different properties. All
these devices communicate with each other wirelessly, and the network is therefore
a possible target for an attacker. To prevent the attacker from eavesdropping, and
possibly forging content in the network, encryption and authentication at the different
nodes is crucial.

2.2 The IEEE 802.15.4 Standard

Following the evolution of IoT, the need for cheap devices to communicate efficiently
between each other has arisen. Existing architectures such as 802.11 (WiFi) and
Bluetooth are too expensive in terms of processing and energy consumption, as the
idea of IoT is to connect even the smallest devices to a network or the Internet. As
these devices are small, they have a limited battery life, and need to use energy in a
highly efficient matter.

Protocols using the IEEE 802.15.4 standard are envisioned for applications
supporting smart homes, medical surveillance, monitoring systems for environmental
and industrial systems, as well as sensor systems for heating and ventilation. As we
know from the IoT, it is really the imagination that puts an end to the possibilities
for interconnected devices. The IEEE 802.15.4 standard only defines the physical
and data link layer of the Open Systems Interconnection (OSI) stack, which can
be seen in Figure 2.1. Therefore, specifications need to be developed to utilize the
possibilities provided by 802.15.4 in the upper layers. ZigBee [69], maintained by the
ZigBee Alliance, is the most notable example of specifications that uses 802.15.4 as
its base. Others include WirelessHART [36], MiWi [55], and ISA100.11a [39].

8 2. BACKGROUND AND RELATED WORK

Example
Layer Data technology
Application Data HTTP
Presentation Data SSL
Session Data RPC
Transport Segments TCP/UDP
Network Packets IP
Data link Frames MAC
Physical Bits Ethernet

Figure 2.1: The OSI stack with layers, the data they carry, and example of
technology running at the different layers.

The fundamental intention of the IEEE 802.15.4 standard is to provide low-rate,
low-power communication between devices within a sensor network or Wireless
Personal Area Network (WPAN). Its main use case is to let multiple devices within
a short range communicate with each other over a low-rate radio, while maintaining
a modest energy consumption. Figure 2.2 paints a picture of what 802.15.4 is,
compared to more well-established concepts such as WiFi (802.11) and Bluetooth,
focusing on energy consumption, complexity and date rate. While being smaller and
more cost efficient than those found in more complex networks, devices that operates
in 802.15.4 networks have a much more limited range (about 10 meters), and in
most cases a throughput below 250 Kbps [34]. Not only is the 802.15.4 standard
significantly lighter in terms of data rate and power consumption, it is also aimed
at a different market than regular WPANs. WPANSs are oriented around a person,
creating a personal network for the user, which has higher demands to data rate, and
can allow a higher energy consumption. 802.15.4, however, focuses on interconnecting
devices that do not necessarily have this constraint, such as industrial and medical
applications.

Four basic security services are provided in the 802.15.4 link-layer security pack-
age, namely access control, message integrity, message confidentiality, and replay
protection (sequential freshness) [66]. The IEEE 802.15.4 standard is delivered with
a total of eight different security suites, providing none, some, or all of the described
security services, and it is up to the application designer to specify and enable the
desired security properties. In the most secure end of the scale we find the Advanced
Encryption Standard (AES)-Counter with CBC-MAC (CCM), which is encryption
using the block cipher AES with either a 32, 64 or 128-bit Message Authentication
Code (MAC). Such a suite provides both strong encryption and possibly unforgeable

messages (a 64-bit MAC gives an adversary a 2754 chance of successfully forging a

2.3. 6LOWPAN: PUTTING IP ON TOP OF 802.15.4 9

Energy consumption

A A Complexity

802.11ac

802.11n

802.11g
802.11b
WLAN
802.151
(Bluetooth 1-4)
802.15.4
BLoWPAN
WPAN N
Data rate

Figure 2.2: Figure of IEEE 802.15.4’s operational space compared to other wireless
standards [34].

message, and is used to enable legitimate nodes in the network to detect if a received
message have been tampered with). On the other end of the scale we find a suite
providing only confidentiality using AES in Counter (CTR) mode. This suite does
not, however, provide any form of authentication — giving adversaries the possibility
to forge messages. One of the things that the 802.15.4 standard does not specify,
however, is how to deal with key establishment and key management. Therefore,
these issues have to be taken care of in the higher layers.

2.3 6LoWPAN: Putting IP on Top of 802.15.4

Initially, the IP was considered to be too “heavy” for low-power wireless networks
such as the ones described by the 802.15.4 standard. The idea of implementing IP
on top of 802.15.4 networks was born as early as 2001 under the question “Why
invent a new protocol when we already have IP?” [56]. With IP, the community
already had a bundle of existing protocols for management, transport, configuring
and debugging, such as Simple Network Management Protocol (SNMP), Transmission
Control Protocol (TCP) and User Datagram Protocol (UDP), as well as standardized
services for higher layers such as caching, firewalls, load balancing, and mobility.
Nevertheless, the initial idea of using IP in combination with sensor networks or
WPANs was not accepted by various groups such as ZigBee [56]. The rejection

10 2. BACKGROUND AND RELATED WORK

did not, however, stop the initiative, and a group of engineers within the Internet
Engineering Task Force (IETF) started designing and developing what would later
be known as 6LoWPAN.

One of the significant advantages with combining IP and 802.15.4 is the simplifi-
cation of the connectivity model between various devices in the networks. As most
802.15.4-based specifications usually need custom hardware that tends to be complex,
the possibilities to interconnect different networks with each other is somewhat
limited. By turning to IP, the need for complex connectivity models is obsolete as it
is possible to use well-understood technologies such as bridges and routers. Another
advantage with using IP is that the routers between the 6LoWPAN devices and the
outside networks (so-called edge routers) do not need to maintain any state of the
devices within a 6LoWPAN, as they are merely forwarding datagrams.

Layer Technology
Application
Presentation Application
Session
Transport UDP ICMP
Network IPv6 over 6LoWPAN
Data link IEEE 802.15.4 MAC
Physical IEEE 802.15.4 PHY

Figure 2.3: Figure of the 6LoWPAN stack, which uses the IEEE 802.15.4 physical
and link layer, but adds its own adoption layer at the network layer.

6LoWPAN enables wireless 802.15.4 sensor devices to connect directly to the
Internet via IPv6 by providing an adoption layer at the network layer as shown in
Figure 2.3. The adoption layer provides unique functionality that fragments and
compresses incoming packets to minimize header and packet size. This enables the
embedded devices in 802.15.4 networks to receive the packets while using the least
amount of memory and energy [46]. Its fundamental idea is that you only would
only have to “pay” for what you use. The dispatch header field identifies the type of
header to follow, and consists of 1 byte [56]. Such a header starts with either 00 or
01, respectively indicating whether the frame is a non-6LoWPAN frame or a regular
6LoWPAN-frame. Currently, only five different dispatch headers have been defined
[37]. In the special case of where a header consists solely of ones, an additional byte
is added to the header, enabling a total of 320 different header types [56]. This
greatly differs from IPv4 and Zigbee, which only define one monotonic header. The

2.4. KEY ESTABLISHMENT AND KEY MANAGEMENT 11

use of different headers can be used to greatly minimize the header size of a packet as
some types of frames may consist of smaller payloads than others, and where some
header fields may be obsolete for the purpose of the frame.

Compared to other alternatives such as ZigBee or Z-wave, 6LoWPAN’s imple-
mentation did not prove to be any more expensive in terms of code size and Random
Access Memory (RAM) requirements. 6LoWPAN seems to be a natural choice for
the future IoT as a networking protocol. It is scalable thanks to IPv6, and its headers
can be compressed to only a few bytes using its fragmentation and compression
mechanism. Following the expected bloom in IoT devices over the next few years (20
billion by 2020), and the fact that the IPv6 address space is not going to be exhausted
any time soon (roughly 2% addresses for each and every one of us), 6LoWPAN may
be the most reasonable approach.

2.4 Key Establishment and Key Management

As described, IoT devices communicate with each other over a network by utilizing
some network protocol. There is, however, not always a guarantee that the network
used for communication is secure. An attacker may be eavesdropping on the network,
and may even be capable of intercepting and spoofing traffic sent between different
nodes. From a security perspective, the described attacker is violating both the
confidentiality and integrity of the exchanged information. To cope with this, devices
should be encrypting and authenticating the data that they are exchanging.

Key establishment is a fundamental idea in cryptography where two (or more)
communicating parties exchange information in order to generate cryptographic
keys which would enable them to perform cryptography (i.e. encryption, decryption,
authentication) on the messages that are sent between them. The problem is,
however, how to safely agree upon the keys to use in the encryption-decryption
process when the network itself cannot be trusted. For IoT devices and sensor
networks, confidentiality and data integrity are important aspects. As previously
described, IoT devices have limited resources in terms of battery life and processing
abilities. This makes key establishment schemes that work well in other networks
with access to more resources, such as WiFi, infeasible in an IoT scenario.

2.4.1 Cryptographic Keys
Long-Term keys

Long-term keys, also known as static keys, are keys that are deliberately stored on
a device, as they are used multiple times for securing communication, and have no
“expiration date”. The shared secret key in symmetric key encryption, and the private
key in public-key cryptography are examples of long-term keys.

12 2. BACKGROUND AND RELATED WORK

Session Keys

Session keys are temporary keys that are used for a short period of time. By using
such keys, the amount of ciphertexts encrypted with the same key is limited for an
adversary to perform cryptanalysis on. Another advantage with using session keys is
in the case of a node being compromised. If the protocol provides forward secrecy
and known-key security (which will be described in Section 2.4.2), the data that is
compromised is limited to that particular session. Session keys are not permanently
stored at the client, and usually deleted after its expiration time, limiting the cost of
memory, and distancing it from leaking previous session keys in the case of being
compromised.

2.4.2 Security Attributes in Key Establishment Schemes
Authentication

Authentication is an important aspect of key establishment. More specifically,
confirming the identity of the entity you are establishing keys with, as well as
confirming that the established keys are authentic. If authentication is skipped, the
protocol can be weak to so-called man-in-the-middle attacks where an adversary
intercepts and relays messages between two communicating parties to learn or modify
its content. There are multiple ways for parties to provide authentication based on
the chosen key establishment scheme. For symmetric schemes, the inclusion of a
MAC could provide authentication of the identity of the origin of a message. Schemes
using public-key provides authentication through digital certificates, which are issued
by a Certificate Authority (CA), and ensure the link between an identity and a public
key.

For session keys, two properties are introduced, namely implicit key authentication
and explicit key authentication. One of the most used ways of establishing session
keys between two entities A and B is through A generating a random symmetric key,
which is encrypted under B’s public key, before it is transmitted. B is then able
to extract the session key that should be used for encrypting data using his private
key. Implicit key authentication assures that only the rightful owner of the public
key, which the session key is encrypted under (in this case B), is able to recover the
session key. It does not, however, assure that B is in fact possessing the session key
[35]. If the protocol also assures A that B has received and possesses the session
key, the protocol provides a property called key confirmation. If a protocol provides
both implicit key authentication and key confirmation, we say that the protocol
overall provides explicit key authentication. As a side note, exactly how to define
explicit key authentication is in some sense based on the glass half-full half-empty
paradox. Is the knowledge of that the other party possesses everything it needs to
derive the shared key enough for confirmation, or is explicit key authentication to

2.4. KEY ESTABLISHMENT AND KEY MANAGEMENT 13

actually obtain something signed or encrypted using the pairwise key that you have
derived. For this thesis, we will stick to the latter one as our definition of explicit
key authentication.

Known-Key Security

Session keys are single-use symmetric keys that are used for a given period of the
communication before being replaced and deleted from the system, never to be used
again. Known-key security is a property where the leak of information is minimized
in the case of one (or multiple) session keys are compromised. For example in the
case where session keys are derived from the private key, then the compromise should
not lead to the compromise of the private key, nor any of the past or future session
keys.

Perfect Forward Secrecy

Following in the lines of known-key security, Perfect Forward Secrecy (PFS) is a
security attribute where in the case of the long-term private key of one (or both)
of the communicating parties being compromised, it should not lead to the reveal
of any of the past session keys that are used in the communication between the
parties. The Heartbleed incident in 2014 was a painful example of the need for PFS,
where a bug in the OpenSSL cryptographic software library leaked secret keys for
certificates, as well as user names and passwords [30]. Attackers were able to retrieve
64 kilobytes of the memory of web servers for each attack (or “heartbeat”), which
could be used to retrieve the private long-term keys of the web servers which did
not support forward secrecy. The private keys could then be used to retroactively
decrypt almost all traffic that had previously been recorded. One exception was
servers that were utilizing one of Transport Layer Security (TLS)’s ephemeral modes,
which are based on the Diffie-Hellman key exchange. The great advantage with the
Diffie-Hellman key exchange is that it can be used to provide forward secrecy, making
web servers that was using such versions of TLS immune against the attacks that
exploited the Heartbleed bug.

PFS is a desirable security property for key establishment protocols, but it is often
difficult to achieve. Weak Perfect Forward Secrecy (wPFS) is a weaker type of PFS,
where the adversary is assumed to be passive [44]. In the case of a long-term key
compromise, previous sessions are guaranteed to be secure, but only if the adversary
was not actively interfering with the protocol during the session. As PFS is a property
related to session keys, it is not an achievable property for symmetric key schemes.

14 2. BACKGROUND AND RELATED WORK

Key-Compromise Impersonation

In this case, an adversary has obtained the long-term private key of an honest
entity A. Key Compromise Impersonation (KCI) prevents the adversary both from
impersonating A to other entities (establishing session keys with them), as well as
preventing the adversary from impersonating other entities in communication with A
(masquerading as a different entity in order to establish a session key with A). KCI
is, however, a very difficult security property to achieve for symmetric key protocols.

Key Control

Key control is to prevent a party from computing a part of the session key without
input from the other party. Essentially, one of the communicating parties should
not be able to force the secret key into something of its own choice. Key control is
usually accomplished through both parties creating a random value, which is shared
with the other party, and computed together into the shared key, for example in the
Diffie-Hellman key exchange.

Unknown Key-Share

Unknown key-share resilience is an attribute in key agreement protocols where a key
shared between two entities A and B cannot be shared with any others without both
consenting to it. When A and B are establishing a shared key, attacks targeting this
process may want to convince A that it is sharing the key with B, while B in fact is
under the impression that it is sharing the key with a third entity C'. After the key
establishment process is finished, A believes it has established a key with B (which is
correct), but B is under the belief that it has established a key with C. This results
in that when B thinks it is sending a message to C, A is the actual receiver of the
message.

2.4.3 Key Establishment Architectures
Symmetric Key

Symmetric encryption is a technique for encrypting messages sent between two
communicating parties, where the secret key used for encrypting the message is
identical to the key used for decrypting it, as seen in Figure 2.4. Plaintext messages
are processed through either a stream cipher, which encrypts the message byte by
byte, or through a block cipher, which operates on a certain number of bits of the
message for each round. The encryption process results in an encrypted message
called a ciphertext. In schemes utilizing this form of encryption, it is essential that
both parties possesses the same shared secret (or key). One approach to provide both
parties with the secret key is to load it into each of the parties in advance, which is
inconvenient and difficult approach for a network where nodes may be joining and

2.4. KEY ESTABLISHMENT AND KEY MANAGEMENT 15

leaving after network deployment. The most reasonable approach would be for two
nodes to agree upon the shared secret together in a possibly unsafe environment.

e

Shared
symmetric key

Bob E E

Plaintext Ciphertext Plaintext

Figure 2.4: Figure of a symmetric encryption scheme, where both parties possess
the same symmetric key used for encryption and decryption.

In the 1970s, Whitfield Diffie and Martin Hellman introduced the Diffie-Hellman
key exchange, which allows two communicating parties to safely establish a shared
secret without any prior knowledge of each other [26]. The shared secret could then
be used for encrypting and decrypting messages sent between the two parties. While
being a straightforward and fast way of encrypting information, symmetric encryption
has a major drawback in the case of when one of the nodes is compromised. Node
compromises would lead to an initially secure channel being insecure as the adversary
could easily decrypt any message that it intercepts. Also, the sharing of the key is
difficult to do in a secure manner. Another disadvantage with symmetric key schemes
is the difficulty of authenticating the other party as they both encrypt data using the
same key. For systems using symmetric encryption, authentication can be achieved
through construction of MACs, which are cryptographic values generated from a
symmetric key and the plaintext message. This enables the receiver of a message to
compute the same MAC from the decrypted ciphertext and the shared symmetric
key, and provides both authenticity of the sender and the integrity of the received
message.

Online Servers and Trusted Third Parties

By using a client-server architecture, the idea of a symmetric key that is shared
between two parties can be extended to also include mutual authentication and session
keys. Alice and Bob wants to establish a shared key, but they do not necessary trust
each other. However, they both trust Charlie, which vouches for them both and
assist them in agreeing upon a shared key to use for communication. This analogy

16 2. BACKGROUND AND RELATED WORK

is also used by the Needham-Schroeder Symmetric Key Protocol, which introduces
a trusted third party (often called a Key Distribution Center (KDC)) to generate
and distribute a symmetric session key for Alice and Bob. When Alice wants to
communicate with Bob, she notifies the server that she wants to establish a session
with Bob. The server computes the session key and encrypts it twice, one time using
Alice’s secret symmetric key, and one time using Bob’s. The secret keys of the parties
are stored in advance at the server, hence making it a trusted third party.

The server then sends the encrypted session key to Alice. Alice decrypts the
key encrypted with her symmetric key, and forwards the other cryptogram to Bob,
which decrypts it using his key to obtain the session key. Bob sends Alice a nonce
encrypted under the session key to prove to her that he has the session key, which
Alice decrypts, performs a simple operation on, re-encrypts it, and sends it back to
Bob, proving to him that she possesses the session key as well. However, this version
of the Needham-Schroeder protocol is vulnerable to replay attacks, but can be fixed
by using timestamps or include random nonces [58].

The Needham-Schroeder Symmetric Key protocol is the basis for Kerberos,
which is a trusted third-party authentication service [59]. Kerberos consists of an
Authentication Server (AS) and a Ticket Granting Service (T'GS), often hosted in
the same KDC, and an Service Server (SS) for providing services to the clients. The
authentication model consists of two different credentials: tickets and authenticators.
Tickets are used to securely transmitting the identity of the client between the AS
and the SS, and contains information that is used to confirm that the client using
the ticket is in fact the same client which it was issued to [68]. After generation, a
ticket can be used multiple times until it expires. Authenticators are another type of
credentials which is created by the client itself, encrypted, and passed along with the
tickets sent from the client to ensure that the presented ticket is issued to it. Figure
2.5 shows the interaction between the different entities in Kerberos, and how the
different tickets are passed through the authentication process.

When the client wants to contact another node in the network, it authenticates
itself to the AS by providing the AS with its identity. The AS generates a Ticket
Granting Ticket (TGT) and encrypts it under the client’s secret key, and challenges
the client: “If you can decrypt it, you are free to use the ticket to try to obtain a
server ticket from the TGS”. When the TGS receives a TGT, it first verifies that
it is valid, and that the client is authorized to access to requested service. It then
responds with a new ticket for the client to provide when requesting a service from
the SS. The protocol is finalized by the client sending the server ticket to the SS,
which is verified, before a confirmation message is generated and passed back to
the client. If the client is able to successfully verify the confirmation message, the
client and server start a session where the server provides the requested service to

2.4. KEY ESTABLISHMENT AND KEY MANAGEMENT 17

the client.

Key Distribution Center (KDC)

1. ldenti % %

Authentication | Ticket Granting
Server (AS) | Server (TGS)

2. TGT 3. TGT

E P 4, Server ticket %

5. Server ticket
6. Confirmation

A

A

Client’Server session

Figure 2.5: Figure of the interaction between the client, the KDC, and the SS in
Kerberos.

Public-Key

As described in the section above, the Diffie-Hellman key exchange allowed two
parties to agree upon a shared secret without any previous knowledge of each other.
This laid the basis for public-key (or asymmetric) encryption, which consists of two
keys that are generated mathematically: A private key for decryption, and a public
key for encryption. In a public-key encryption system, users who want to send a
message to Alice encrypt it using Alice’s public key, which is published to the public.
When Alice receives an encrypted message, she decrypts it using her private key, as
seen in Figure 2.6.

Compared to symmetric encryption, public-key cryptography is significantly more
computationally costly. However, the approach of using a public and private key for
communications is more convenient than using symmetric keys. In the case of a node
compromise, only one part of the communication is compromised. The adversary
has your private key, and decrypt messages sent to you. It cannot, however, decrypt
messages that you send to the other party as it does not possess the private key
of the other party. Public-key cryptography also allows for authentication of the
communicating parties by the use digital signatures. Digital signatures are used to
prove authenticity of a message, as well as proving that the message has not been
modified in transmission.

18 2. BACKGROUND AND RELATED WORK

| ——J: ﬁi ol
Alice's Public Alice's Private
key key
M a -

o — N -l aa
Bob z

Plaintext Ciphertext Plaintext

Figure 2.6: Figure of public-key encryption where a message to Alice is encrypted
using her public key, and decrypted with her corresponding private key.

As mentioned, public-key cryptography is significantly more computational expen-
sive than symmetric encryption, which has led to a hybrid solution where a symmetric
session key is established and encrypted under the public key of each recipient. Such
an approach reduces the computation time of encryption and decryption, giving a
more efficient encryption scheme.

Public-key cryptography often involves certificates, which are used to prove
ownership of a public key, and contains information about the identity of the owner,
and also the digital signature of the party that has issued that particular certificate
(often called a CA). When using a certificate, the sender of a message is able to
confirm the identity of the recipient, by validating the certificate and the public key.
The recipient may have signed the certificate himself, but the most normal approach
is to have it signed by a trusted third party, namely a CA, which often are companies
specializing in signing certificates and acting as a trusted third party.

2.4.4 Key Establishment Schemes
Symmetric Key

The simplest possible scheme for symmetric key establishment is the network-shared
key scheme, where every node in the network possess the same symmetric key which
is used for encryption and decryption between all nodes in the network [62]. While
being easy to set up, a network-shared symmetric key violates all of the security
properties previously described. In addition, it leaves the network vulnerable to node
compromises as wireless sensor nodes often are deployed in hostile and unattended
areas. This results in a network where the compromise of one node is equal to

2.4. KEY ESTABLISHMENT AND KEY MANAGEMENT 19

the compromise of the entire network [46]. Also, in 802.15.4, the network-shared
key scheme is incompatible with replay protection, moving the responsibility of
implementing such measures to the higher layers [66].

Pairwise keys is a better symmetric key scheme, where each node pair possesses
their own symmetric key for communication between them. This, however, leads to
higher memory requirements as the node has to store the symmetric key for possibly
N — 1 nodes (called fully pairwise key schemes), where the number of nodes in the
network can be high [62]. Group keying is another approach where groups of nodes
share the same symmetric key. This greatly reduces the memory consumption for
the devices, and can provide a mild version of compromise resilience. Unfortunately,
group keying is not supported in IEEE 802.15.4 [66]. When using pairwise keys, it is
possible to provide a certain level of authentication, hence avoid unknown key-share
attacks if implemented correctly, as well as key control, given that the two parties use
a key exchange protocol where both are contributing to the key. The other properties,
however, are not able to achieve using pairwise key establishment schemes.

Random pairwise keys is another scheme in the hunt for pairwise key schemes
that maintains a modest level of memory consumption. Assume a “pool” of all the
possible pairwise keys that can be created between the nodes in the network. Each
node obtains a certain portion of these keys chosen at random (If A gets the pairwise
key to B, B naturally also obtains the key for communicating with node A). By
randomly delegating keys for different links between nodes, the idea is that there
should be a possible path from A to C with high probability, even if they do not
possess the key for direct communication, they are able to establish a multi-hop path
between them by using the other nodes in the network [49]. This approach eliminates
the need for storing N — 1 keys in each node, and is also more compromise resilient
than pairwise key schemes as the adversary would only obtain a part of the pairwise
keys used in the network if it compromises a node.

Online Servers and Trusted Third Parties

As mentioned, Kerberos is the most notable example of authentication systems
utilizing a trusted third party, and it is implemented in most major operating systems
such as Microsoft Windows, and systems running Unix such as OS X and Ubuntu.
In IEEE 802.11, which is the standard for Wireless Local Area Network (WLAN)
communication networks, protocols such as Wi-Fi Protected Access (WPA) and Wi-
Fi Protected Access IT (WPA2) may utilize the Extensible Authentication Protocol
(EAP) as their authentication framework, which provides methods for negotiating
multiple different key establishment and authentication schemes.

20 2. BACKGROUND AND RELATED WORK

Public-Key

Of the different public-key cryptosystems in use today, the Rivest-Shamir-Adleman
(RSA) cryptosystem is the most commonly used, which provides key generation, key
exchange, and authentication [70]. RSA is not that often used for actually encrypt
data sent between two parties as it is a relatively slow algorithm. Therefore, it is more
convenient to encrypt a shared symmetric key under the parties’ public keys to use
for encryption of data. RSA provides authentication, while other properties involving
session keys rely on the protocol used for establishing such keys. The ElGamal
cryptosystem, which is based on the Diffie-Hellman key exchange, is another example
of a system that is usually operated as a hybrid system utilizing both symmetric
keys (for encryption) and public-key cryptography (for establishing symmetric keys).

Elliptic Curve Cryptography (ECC) systems utilize the algebraic structure of
elliptic curves over finite fields, and can be used to both generate asymmetric key
pairs and digital signatures, as well as providing key establishment [11]. Elliptic
Curve Diffie-Hellman (ECDH), which is also based upon the Diffie-Hellman key
exchange is, perhaps, the most notable scheme. One of the benefits with ECC over
more commonly used public-key algorithms such as RSA is the reduced key size,
which leads to greater memory and energy savings, while providing approximate the
same level of security (ECC-160, which has a key size of 160 bits, is equivalent to
RSA-1024 in terms of cryptographic strength) [5]. When operating in a mode that
uses ephemeral keys, which are temporary keys generated in a key establishment
process, ECDH provides security properties such as key control, known-key security,
and forward secrecy. ECDH does not, however, provide authentication, which has to
be addressed separately for example by using the Elliptic Curve Digital Signature
Algorithm (ECDSA).

2.4.5 Key Establishment Schemes in Wireless Sensor Networks
and the Internet of Things

When it comes to WSN applications, symmetric encryption algorithms have his-
torically been the most mature ones [40]. Sensor nodes running 6LoWPAN are
powerful enough to implement cryptography standards such as AES-128, providing
such nodes with a satisfactory level of encryption [64]. However, there exist several
drawbacks with technology utilizing symmetric encryption. For starters, their key
exchange protocols are often complex, which is a constraint for the scalability of the
network. Also, as the IoT devices are placed in possible hostile environment, they
may be physically tampered with by adversaries [46]. If they should successfully
compromise one of the nodes, then the security of the entire network may be at
stake. Finally, authentication is a rather complex and inconvenient procedure with
symmetric encryption involving MACs, which leads to higher requirements for storage

2.5. FORMAL SECURITY ANALYSIS 21

space, overhead in messages, and increased energy consumption.

Based on these issues, the research community looked to public-key cryptography,
which had previously been considered an unsuitable solution for key establishment
and key management in WSNs and other IoT related networks [33, 70]. While
improving the security over symmetric key encryption, and also providing easier
authentication and higher scalability, regular public-key protocols have issues related
to energy consumption due to higher computational complexity, as well as being
significantly more time consuming [31]. However, computer hardware specifications
improves on a yearly basis, as more transistors are placed on data chips, and the
processors are becoming more powerful and energy efficient. Public-key cryptography
algorithms such as Rabin’s Scheme, NtruEncrypt and ECC all have proven promising
results when implemented efficiently for wireless platforms [40], and especially ECC
and its implementation of ECDSA have reduced the time spent on constructing a
digital signature from 34 seconds in 2005, to 0.5 seconds in 2009 [64]. There is not,
however, any current scheme that provides a clear advantage over others, symmetric
or asymmetric, as they all have different advantages and disadvantages.

Following the line of thought where hardware specifications continuously improve,
devices are also getting smaller as new “doors” are opened based on the accessibility
of better hardware. Currently, companies such as Samsung and Sony are filing
patents for so-called “smart” contact lenses, which are allegedly capable of taking
pictures of the user’s current view, and transmitting the data wirelessly to another
device [54, 72]. Processing units on something as small as a contact lens, which has to
be transparent and not “bulky” to provide minimum distress on the eye, introduces a
whole new level of demands to the energy efficiency of the components. As the data
that is transferred from the lens obviously has to be secured in some way (having
your “eyes” hacked does not sound especially tempting), we can only assume that
the concept of symmetric key establishment is something that will be relevant in
the distant future. Therefore, the rest of this thesis will have a special focus on
symmetric key establishment.

2.5 Formal Security Analysis

As security protocols grow larger and more complex, they become more and more
difficult for humans to analyse. One of the examples of the need for formal security
analysis is the Needham-Schroeder Public-Key Protocol from 1978 [57]. The Needham-
Schroeder Public-Key Protocol is based on public-key cryptography and was intended
to allow two communicating parties to mutually authenticate each other. Throughout
this section, the protocol (referred to as the Needham-Schroeder protocol) will be used
as an illustrative example to underline the importance of formal security analysis.

22 2. BACKGROUND AND RELATED WORK

One of the pioneering works on security analysis was conducted by Burrows,
Abadi and Needham with their Burrows-Abadi-Needham (BAN) logic. BAN logic
is a set of rules which can be used to determine whether received information is
trustworthy or not, by formally describing the interaction between communicating
parties [12]. It showed promising results in finding security flaws and drawbacks for
several authentication protocols, but was later abandoned due to the fact that it
verified insecure protocols as secure, and in some cases perfectly sound protocols to
be insecure [52]. One of the protocols that was formally verified using BAN logic
was the Needham-Schroeder protocol.

In fact, 17 years later after being deployed and widely used, Lowe discovered using
the automatic tool Casper that the Needham-Schroeder protocol was insecure, and
vulnerable to a man-in-the-middle attack [7, 50]. The discovery of that such a flaw
had gone unnoticed for so many years puzzled the research community, leading to an
increased interest in formal security analysis [22]. Researchers started developing
tools for exhaustive search of the problem space of a protocol in order to detect
possible abnormalities in protocol behaviour.

In order to conduct formal security analysis, we need a formal model to be
able to study the protocol under precise assumptions. Formal security models are
abstractions of descriptions of systems, aiming to improve the understanding of the
security of the system by simplifying its interpretation. Models can be defined into
two different groups: Computational and symbolic models. Computational models
are detailed and cryptographic, while symbolic models are more abstract and simple.

By defining a formal security model, we aim to discover and correct errors,
incompleteness and inconsistencies in protocol specifications, before they are exploited
by adversaries. A protocol specification is a description of the behaviour of the
different entities that are allowed to communicate with each other during an execution
of the protocol [23]. More precise, a protocol description specifies the different roles
in the protocol, each containing a sequential list of the messages that are sent and
received from that particular role. It also contains the information of the initial
knowledge of the protocol, which are the functions, constants and variables that the
protocol needs to execute correctly. Such a specification is expressed using a formal
language, which has well-defined syntax and semantics, for example process algebra,
predicate logic, and lambda calculus.

Computational models are another way of mathematically model security proto-
cols, mainly used by cryptographers, hence it holds a more mathematical approach
compared to the symbolic model, and is also said to be more realistic and detailed.
Messages are represented as bitstrings, which are sent into cryptographic primitives
(can be seen as “functions”) where they are computed on bit-by-bit, and come out as

2.5. FORMAL SECURITY ANALYSIS 23

bitstrings [9]. Adversaries in computational models are modelled as powerful arbi-
trary and probabilistic Turing machines. They do not, however, account for physical
attacks such fault attacks, which may be more important as the device-to-device
communication increases in the future. Security proofs offered by computational
models are often acknowledged as powerful, but often difficult, long, and prone to
errors [14]. For constructing proofs, symbolic models are much more efficient as they
can more easily be automated to explore the entire problem space.

The Dolev-Yao model is a symbolic and formal intruder model used to prove the
security properties of cryptographic protocols. Symbolic analysis considers crypto-
graphic primitives as “black boxes” based on the assumption of perfect cryptography.
The black boxes are used to construct terms, which represents the computational
operations that the adversary is allowed to perform [9]. While initially being a
verification model built for public key protocols, the Dolev-Yao model is also the
basis for most of the security analysis done by verification tools that focus on verifying
secrecy and authentication properties [23]. The model is built upon three primary
assumptions: Perfect cryptography, complete control of network, and abstract terms
[27]. Firstly, the Dolev-Yao model assumes that the cryptography is perfect, es-
sentially meaning that the cryptographic system cannot be tampered with, and an
encrypted message can only be decrypted by the party possessing the corresponding
decryption key. The second assumption is that the adversary has complete control
over the communication network, hence he is able to observe all messages that are
sent between communicating parties, and can inject messages given that he is able
to forge its content in a valid matter. Lastly, messages that are sent in the network
are to be observed as abstract terms, where the attacker has two possible outcomes:
Either he learns the complete content of the message, or he learns nothing at all.

Falsification, presented by Popper in 1934, is the theory of presenting an observa-
tion that would disprove the correctness of an alleged theory, or more informally;
It is not possible to prove a theory from a single correct observation, but a single
observation that contradicts the theory is enough to disprove it [63]. The falsification
process in model checking is to formally assess the security properties of the protocol
in order to discover examples that disprove the claimed security by constructing
counter-examples. Following in the same line of thoughts, we can perform verification
by using formal models and languages to verify a statement (i.e. a security property).
In formal security analysis, this is referred to as model checking, which uses the
formal model to exhaustively verify whether it meets the alleged security properties
[7]. Verification can also be done by constructing mathematical proofs for each of
the security properties, proving that the alleged security property is fulfilled.

24 2. BACKGROUND AND RELATED WORK

2.6 Related Work

Over the last decade, formal security analysis using tools have been more popular,
and there exists numerous examples of key establishment protocols that have been
formally verified using tools such as Scyther.

One of the pioneers on formal security analysis is the author of the Scyther tool,
Cas Cremers, which has formally verified multiple protocols such as the Internet Key
Exchange (IKE) protocols IKEv1 and IKEv2 [19]. In addition to these, Cremers and
Horvat performed formal security analysis of the proposed protocols in the ISO/TEC
11770 standard [21], where they discovered unreported weaknesses in the protocols
related to authentication. There exists several analyses involving Authenticated Key
Exchange (AKE) protocols which use a stronger adversary than what the regular
Dolev-Yao model provides, where protocols such as Yahalom, HMQV, DH-ISO and
Naxos are verified in [22].

This thesis focuses on key establishment protocols for wireless networks such as
the IEEE 802.15.4 standard. The IEEE 802.16e standard, also known as WiMAX|
has been formally analysed in [2]. Key establishment schemes targeted on 802.15.4
networks, and especially 6LoWPAN, have not been the focus of formal security
analysis. As the requirements for key establishment schemes in WSNs differs from
well-known standards such as 802.11 and WiMAX, the focus of such schemes has
been more of efficiency and usability with respect to energy and complexity, rather
than verifying that they are secure for all possible scenarios.

Symbolic Security Analysis Using
Scyther

There exist multiple state-of-the-art tools for performing formal analysis of security
protocols, for example Avispa [4], ProVerif [8], Tamarin Prover [53], and Scyther
[15]. This thesis uses Scyther as its tool for conducting formal security analysis.
It is chosen on suggestions from C. Boyd and B. Hale, and also on a review of
popular formal security analysis tools in [61]. Another reason for choosing Scyther
is its relatively easy syntax that resembled syntax from well-known programming
languages. Tamarin was also considered, but it requires that protocols are modelled
using multiset rewriting and first-order expressions [29, 53]. The following chapter
will give an introduction to Scyther, how it works, and examples of usages.

3.1 The Scyther Tool: Verification, Falsification, and
Analysis of Security Protocols

Scyther is a tool for verification, falsification, and analysis of security protocols
developed by Cas Cremers. The tool is based on a pattern refinement algorithm
that enables unbounded verification, falsification, and characterization [17]. Scyther
allows its users to verify security protocols in two different ways. The first option
is to execute Scyther scripts through the command-line interface, which provides
an output file containing the results of the protocol verification. Option two is to
use Scyther’s own Graphical User Interface (GUI), which provides panels for both
verification results, and in case of attacks being found, a visual graph of Scyther’s
proposed attack on the protocol. The most recent release of Scyther was published
on April 4, 2014, and is currently available for Windows, OS X, and Linux.

Security protocol specifications are built up of messages that are sent between
different entities and computation that is done at either side. Much like a blueprint,
these specifications define what a protocol is allowed to do, and how it is allowed
to communicate [24]. The blueprint can be modelled by Scyther, where the entities
are converted into roles, the messages are converted into send and receive events,

25

26 3. SYMBOLIC SECURITY ANALYSIS USING SCYTHER

and the security requirements into claim events. These terms are explained in the
sections to follow. Scyther performs complete characterization of a protocol, where
roles are broken down into a finite set of representative behaviours by analysing all
the possible execution traces where the events hold. The intuitive idea behind this
algorithm is that the set of execution traces together represents all possible ways in
which the protocol can execute. These traces are then grouped into patterns, which
are partially ordered, symbolic sets of events [16]. From the patterns, Scyther is able
to construct a complete set of attack traces for each security claim. When analysing
protocols, the realizable traces are compared to the attack traces. If none of these
realizable traces of the protocol exhibits an attack trace, then no attack exists, and
the security property is verified.

Most protocols can be characterized into a finite set of traces, which enables
Scyther to perform unbounded verification of the protocol. This greatly differs from
the majority of other verification tools which perform bounded verification [17, 22].
When performing bounded verification, there exists a finite set of traces that the
tool is able to verify, meaning that the entire space of possible states is not covered
in the verification process [18]. At best, such a verification can guarantee that the
security requirements hold under a finite subset of the actual state-space. Unbounded
verification, however, is to verify all possible states, or behaviours, of the protocol
which is a great enhancement compared to bounded verification algorithms. In
addition to handling an infinite state-space, Scyther is also guaranteed to terminate,
which gives it the ability to provide useful results even when it is not able to establish
unbounded correctness, or in the scenario of where no attack is found.

As mentioned, a protocol specification contains a set of roles which serves as a
blueprint that describes what the protocol is allowed to do. When executing the
protocol, each of the different roles can be executed multiple times, and in parallel
with each other by one or more agents [16]. The execution of a role is referred to as
a run, and defines a unique instance of the protocol with respect to local constraints
and the binding between the role and the actual agent acting out the role’s behaviour.
Scyther allows its users to state security claims which are evaluated as they appear in
the protocol trace, either ending in a successful verification of the security property
or in a failure. In the presence of a failure, Scyther will provide a concrete attack on
the protocol by utilizing one of the attack traces from the pattern, and it will also
present an attack graph to illustrate the threat. If the protocol developer is unsure of
what types of claims should be stated for each role, Scyther has support for so-called
verification of automatic claims, where Scyther will provide general claims such as
secrecy for keys and values, and authentication of communicating parties.

Another of the major novelties in Scyther is the possibility for performing so-called
multi-protocol analysis, which essentially means analysing multiple protocols that

3.2. SCYTHER SYNTAX 27

co-exist in the environment. Such an analysis has previously been infeasible because
of an incredibly wide state-space, but thanks to Scyther’s unique algorithm that
operates on an unbounded state-space, it allows for multi-protocol analysis.

Scyther is available in two versions. The first version is a plain implementation
of Scyther, while the second version also contains options for creating a stronger
adversary compromise model than the Dolev-Yao model. The compromise edition
contains different Long-term Key Reveal (LKR) rules, which are used for modelling
different adversary capabilities such as KCI, wPFS, and PFS, along with support for
known-key security.

3.2 Scyther Syntax

The syntax used in Security Protocol Description Language (SPDL) files, which
are protocol files that can be run and verified by Scyther, can resemble popular
object-oriented languages such as C, C++, or Java. Listing 3.1 contains the structure
of a minimum working example of a protocol we call Test, consisting of an outer
class defining the protocol and multiple agents (or roles) inside the protocol. In this
example, we define that our protocol consists of two communicating parties, U and
V, without any specific behaviour.

protocol Test (U, V){
role U { };
role V { };

}s

Listing 3.1: Example of the structure of a protocol modelled in Scyther, consisting
of roles with different behaviours.

For each of the different roles in the protocol, behaviour can be added as a
sequence of send and receive events, as well as variable declarations, constants, and
claims. For the role U, we can define a simple behaviour as shown in Listing 3.2,
where U generates a random nonce Ru and sends it to V, before receiving a message
from V containing the random nonces Ru and Rv. All events are labelled with either
send or recv followed by a subscript and a number. The number indicates the
message’s position in a Message Sequence Chart (MSC), and must be incremented
for each message sent.

28 3. SYMBOLIC SECURITY ANALYSIS USING SCYTHER

role U{
fresh Ru: Nonce; # Freshly generated nonce
var Rv: Nonce; # Variable for receiving a nonce

send_1(U, V, Ru); # Send message to V containing Ru

recv_2(V, U, Ru, Rv); # Receive message from V containing
Ru and Rv. The received Rv value is stored as the
variable Rv.

Iz

Listing 3.2: Terms can be generated, sent, and received when communicating with
other agents.

Typically, a send-event has a corresponding recv-event at the receiving role with
the same number.

role V{

recv_1(U, V, Ru); # Receive message sent from U containing
Ru. The received Ru nonce is stored as the variable Ru.

send_2(V, U, Ru, Rv); # Send message to U containing the
received nonce Ru and the freshly generated Rv.

Iz

Listing 3.3: Events in Role V usually corresponds to events in role U.

Along with support for creating fresh nonces, variables, and terms, Scyther also
provides a wide set of cryptographic elements such as hash functions, symmetric-key
cryptography, and public-key cryptography. Scyther also allows for declaring user
specific types and macros, which are abbreviations of complex expressions. In Listing
3.4, a hash function is used to define a function that generates a Message Integrity
Code (MIC) (which is essentially the same as a MAC). On the next line, we have
created a macro representing the generation of a pairwise key between U and V. The
key is represented as an encryption of the two values Ru and Rv using a symmetric
key that is shared between U and V. Constants and functions defined outside of a role
are considered to be global, and available to all of the defined roles in the protocol.
When the protocol run reaches the send_3 event, it looks up the macro for pairwise
key and computes it by encrypting the Ru and Rv values using the symmetric key
shared between U and V. send_3 also contains an example of a MIC of the constant
msg sent from U to V, which is created by hashing the message and the pairwise key

3.2. SCYTHER SYNTAX 29

together using the predefined hashfunction MIC.

hashfunction MIC; # An hashfunction to represent a Message
Integrity Code (MIC) generation .

macro PairwiseKey = {Ru, Rv}k(U, V);

role U {

const msg;
send_3(U, V, {msg}PairwiseKey , MIC(msg, PairwiseKey)

}

Listing 3.4: Example of how to use hashfunctions, macros and encryption.

3.2.1 Security Claims

A sequence of events within a role is usually followed by a set of claim events. Claim
events are used for describing security properties of a role, for example that some
value should be considered secret, or that certain properties hold for authentication.
Such claims can be formally verified by Scyther. If the protocol is not instructed
with any security claims, Scyther is able to generate general claims for claiming
secrecy for keys and values that are sent between roles, as well as authentication for
communicating parties, by using the “Verify automatic claims” alternative provided
by the GUI.

Secret

The first, most trivial security claim is secrecy. Secrecy expresses that the stated
property is to be kept hidden from an adversary, even in the case of where the
adversary controls the network used for communication. However, if one of the
agents gets compromised by the adversary and the protocol is executed between an
honest agent and the adversary, it would in the end learn what was meant to be
kept hidden from it [23]. The secrecy claim does not hold for such cases (nor is it
intended to), but for each case where the protocol is executed between two honest
agents where the secret property is successfully kept hidden from the adversary. For
our example protocol, we can claim that the two values Ru and Rv are supposed to be
secret and thereby hidden from the adversary as shown in Listing 3.5. These claims
will obviously fail as we have not specified that any encryption should be used on
the messages that are passed between the two roles.

30 3. SYMBOLIC SECURITY ANALYSIS USING SCYTHER

role U{

Claims:

claim_F1(U, Secret, Ru);

claim_F2(U, Secret, Rv);
};

Listing 3.5: Example of how to claim secrecy for terms in Scyther.

Session-Key Reveal (SKR)

Session keys are created at the end of a key establishment process, and are usually
used for a session of the communication, before being replaced. When they expire,
they are deleted from the system and never used again, limiting the amount of
ciphertexts available for the adversary to perform cryptanalysis. In Scyther, the
claim SKR is used to identify the session keys in the protocol, and claim that they
are secret. SKR can be used by Scyther to model unknown key share attacks (as
described in Section 2.4.2), where Scyther will reveal any session key to the adversary,
given that its session identifier (i.e. run identifier) differs from the current session’s
[21]. In order to use Scyther’s SKR claims, the compromise edition has to be used,
and the session-key reveal checkbox needs to be checked in the settings. If the SKR
claim is used without enabling this setting, the claim is verified as a regular secrecy
claim as defined above.

Aliveness

Aliveness is considered to be the weakest form of authentication, guaranteeing to the
party stating the claim (U) that if the protocol is completed successfully, then the
communicating party (V) has previously executed the protocol [51]. This does not
necessarily mean that U knew he was interacting with V, nor does it mean that V
has executed the protocol any time recently.

Weak Agreement

Weak agreement strengthens the authentication form introduced as aliveness. Such
an authentication states that the responder in fact was executing the protocol with
the initiator (U), and not just having run the protocol at some point [51]. By claiming
that the protocol holds under the weak agreement, we state that if U successfully
completes a run with the intended responder (V), then V also believes that it has
previously run the protocol with U. Such a claim would prevent an adversary from
acting as a responder by running another run of the protocol in parallel with a run

3.2. SCYTHER SYNTAX 31

with U, and conducting a man-in-the-middle-attack. The Needham-Schroeder case
presented in Chapter 2 failed on this claim, allowing Lowe to construct his attack.

Non-injective Agreement

Where the authentication provided by weak agreement does not specify which of the
two communicating parties acted as initiator and responder, non-injective agreement
does. It guarantees that if the initiator (U) successfully completes a run of the proto-
col, apparently with the responder (V), then V has completed a run with U, where
he acted as a responder [51]. This does, however, not indicate that they both have
executed exactly one run. There is still a possibility that U has executed multiple runs
with a responder which he believed to be V, but may in fact have been communicating
with the adversary. Another guarantee provided by non-injective agreement is that if
U also sends a set of variables to V in the completed run, then they both agree that
the exchanged data values correspond to all of those in the set of variables. In Listing
3.6, the example protocol claims that V is “alive”, has run the protocol at some time
with U, and that during this particular run, it was U and V that were communicating.

role U{

Claims:

claim_U1(U, Alive);

claim_U2(U, Weakagree) ;

claim_U3 (U, Niagree);
b

Listing 3.6: Example of how to claim authentication by use of alive, weak-agreement,
and non-injective agreement.

Non-injective Synchronization

Synchronization requires that all protocol messages occur in the expected order with
their expected values, and that the behaviour is equivalent to as if the protocol was
executed without the presence of any adversary [25]. The injective synchronization
property states that the protocol executes as expected over multiple runs, claiming
that it is not possible for an attacker to use information from previous runs to
disrupt the current protocol execution [23]. Such an attack is known as a replay
attack, and is used by an adversary to inject traffic into the protocol execution to
induce undesirable or unexpected behaviour. Scyther, however, does not support
this enhanced form of synchronization, hence it strongest type of synchronization is
non-injective synchronization. Because of this, Scyther is not able to verify whether

32 3. SYMBOLIC SECURITY ANALYSIS USING SCYTHER

or not a protocol is secure against replay attacks. Listing 3.7 contains an example
on how to claim non-injective synchronization for the example protocol.

role U {

Claims:

claim_ U4 (U, Nisynch);
}

Listing 3.7: Claim for declaring non-injective synchronization in Scyther.

Running, Commit

Running and commit signals can be used as a form of authentication over variables
that are sent in a message. By using these signals (in Scyther modelled as claims),
we can verify that a variable sent from U to V, and then returned to U, has not been
changed from its initial value during transmission. From a formal view, this can be
seen as non-injective agreement over a set of terms [20].

The expression claim(V, Running, U, Ru) denotes that V is currently executing
the protocol with U, and with the nonce Ru. In U’s case, claim(U, Commit, V, Ru)
indicates that the protocol as reached a point where authentication is claimed (U
has completed the protocol run with V), where Ru is the variable that is claimed to
be exchanged during this part of the run [65]. Usually, the commit claim is stated
at the end of the protocol run. For the correctness of the commit claim to hold, it
requires that the running signal is added in the communicating role, and preceding
the commit claim in the trace.

This pattern is a scheme for authentication properties, but it also allows for
expressing authentication for additional information specific to a certain part of
the protocol run, for example some variable inside the message. Occurrence of a
commit signal in U’s protocol run means that a corresponding running signal has
previously occurred in V’s protocol run, which guarantees that the received message
containing Ru must have been transmitted by V [65]. Listing 3.8 contains an example
of how we can claim non-injective agreement over a variable, in this case the nonce Ru.

3.3. DEFINING AN ADVERSARY COMPROMISE MODEL 33

role U{

send_1(U, V, Ru);

recv_2(V, U, Ru, Rv);

claim_U5(U, Commit, V, Ru); # Authentication over the term
Ru is claimed

T

role V{

recv_1(U, V, Ru);
claim_V6(V, Running, U, Ru); # Claim that V is currently
running the protocol with U with the value Ru
send_2(V, U, Ru, Rv);

}

Listing 3.8: Example of running and commit claims in Scyther to provide
authentication for a set of terms.

3.3 Defining an Adversary Compromise Model

Formal adversary models are described in Section 2.5. Compromise of long-term keys
can, for example, allow an adversary to recover previous session keys (and future) and
decrypt the traffic if the protocol does not provide forward secrecy. Another option
is for the adversary to perform KCI where it impersonates the victim towards other
agents, or impersonate other entities in communication with the victim. Scyther
allows for customizing different adversary models through its settings for an adversary
compromise model, which enables a strong Dolev-Yao style adversary with support
for verifying security properties such as PFS, wPFS, KCI and known-key security.
These security properties are decomposed in Table 3.1 into their basic property, type
of security property, and what adversary model (which will be elaborated in the next
section) provides them.

34 3. SYMBOLIC SECURITY ANALYSIS USING SCYTHER

Security property

Basic property

Adversary model

KCI Authentication {LKR, Actor}
PFS Secrecy {LKR, After}
wPFS Secrecy {LKR, Aftercorrect}

Known-Key Security

Session key secrecy

(SKR}

Table 3.1: Relationship between security properties and the adversary models in
Scyther [6].

The initial adversary in the Dolev-Yao intruder model has access to the long-term
keys of the communicating parties that do not participate in the current run of
the protocol. In other words, if A and B are communicating with each other, then
the adversary has access to C’s private long-term key during the execution of the
protocol. Scyther’s initial intruder model, however, does not have access to these
keys without directly specifying it in its LKR settings [6].

Section 2.4.2 mentioned KCI, where an adversary in possession of A’s long-term
private key is able to impersonate A when communicating other agents, or impersonate
other entities when communicating with A. Such an attack can be modelled by
enabling {LKR, Actor} in Scyther’s adversary compromise model. Forward secrecy
is the security property where previous communication is protected in the case of
compromise of the long-term key, and is enabled in the adversary model by specifying
{LKR, Aftercorrect} or {LKR, After}. These properties restricts the compromise of
long-term keys to only occur after the protocol execution [6]. {LKR, Aftercorrect} is
used to model wPFS, and is the weaker case of forward secrecy, where the adversary
is considered to be passive. For the adversary model, this would restrict it from
both injecting messages and obtaining the private keys of the communicating parties
after the protocol run. {LKR, After} models an active adversary capable of actively
interfering with the protocol during it run while obtaining the long-term private
keys, hence protocols able to provide secrecy in the present this adversary is said to
provide PFS.

Figure 3.1 illustrates the different LKR rules in two dimensions; when a compro-
mise occurs, and whose long-term keys are compromised. The rows indicate when
the compromise occurs, and can either be before the run, during, or after. Columns
describe whose keys are compromised, where actors are agents that execute the
protocol, peers are communicating partners during the execution, and others are
agents not participating in the protocol run. The different capabilities are captured
and labelled as different LKR rules, as shown on the right hand side of the figure.

In addition to compromising long-term keys, Scyther is also able to model the

3.4. SCYTHER’S GRAPHICAL USER INTERFACE 35

Keys of Keys of
SR peers others
Before
protocol run e ® ® LKRactor
tocol
protocol run LKRotners
protocol run LKRattercorrect

Figure 3.1: Mapping of LKR rules. Rows display when the compromise occurs,
columns display whose data gets compromised, and the boxes captures the capabilities
of the different adversaries, which are labelled to the right [6].

security property known-key security. By enabling the SKR rule, the adversary
is allowed to obtain all session keys whose session identifier (the identifier of that
particular run of the protocol) differs from the current run’s identifier.

3.4 Scyther’s Graphical User Interface

As mentioned, Scyther provides a GUI for quickly understand and assess the security
of a protocol. If we continue our example of the protocol Test from the section on
Scyther’s syntax, we now want to verify all the stated security claims. By using the
GUI, we can configure the verification process by stating a maximum number of runs,
the adversary compromise model, as well as more advanced options for how to prune
the search space. Scyther provides three options in its GUI: verification of claims,
verification of automatic claims, and characterization of the protocol [17]. Figure 3.2
contains the results of running a verification of the claims previously described for a
secure protocol.

When no attacks are found, Scyther provides one of two comments: No attacks
within bounds or No attacks. In the first case, Scyther was not able to find any
attacks within the bounded state-space, meaning that it may or may not be an attack
in the unbounded state-space. The latter, however, states that there was not found
any attacks within both the bounded and the unbounded state-space. In this case,
Scyther can construct a formal proof of the absence of any attacks, hence the security
property is successfully verified. Scyther returns an Ok status code and a Verified
message for each claim that is successfully verified. As we see in Figure 3.2, Scyther
is not able to find any attacks on the protocol. To illustrate the case of Scyther
actually finding an attack, we try to verify the claims introduced in the paragraph on
secrecy in Section 3.2.1, claiming that Ru and Rv are secret. In our example protocol,
both nonces are sent in plaintext between U and V, hence this claim will naturally
fail, as seen in Figure 3.3.

36 3. SYMBOLIC SECURITY ANALYSIS USING SCYTHER

Claim Status Comments
TEST U TEST,U1 Alive Ok Verified Mo attacks.
TEST,U2 Weakagree Ok Verified Mo attacks.
TEST,U3 Niagree Ok Verified Mo attacks.
TEST,U4 Nisynch Ok Verified Mo attacks.
TEST,US CommitV,Ru Ok Verified Mo attacks.
vV TESTWVI Alive Ok Verified Mo attacks.
TESTNZ Weakagree Ok Verified Mo attacks.
TESTV3 Niagree Ok Verified Mo attacks.
TESTV4 Nisynch Ok Verified Mo attacks.

Figure 3.2: Results of a verification process using Scyther where all claims are
successfully verified.

Claim Status Comments Patterns
TEST U TEST,F1 SecretRu Fail Falsified Exactly 1 attack. 1 attack
TEST,F2 SecretRv Fail Falsified Exactly 1 attack. 1 attack

Figure 3.3: Results of a verification process using Scyther where a claim fails.

The status Falsified states that the claim is provable false. When a claim is
proved to be false, Scyther will also provide a comment; either At least X attack(s)
or Fzactly X attack(s). In the first case, X attacks where found by Scyther, but the
search is not able to detect whether or not there may be other attacks as well. In
the other case, Scyther can prove that within the given state-space, there are exactly
X attacks.

Whenever Scyther finds an attack on a protocol, it will also provide a concrete
illustration of the attack as a graph. Figure 3.4 shows an example of such a graph. The
top box for each vertical alignment of boxes describes the run, which is confined inside
the grey boxes. It contains a description with the identifier of the run, instance type
(i.e. what type of role it is running as), which agents it assumes it is communicating

3.4. SCYTHER’S GRAPHICAL USER INTERFACE 37

with, and also what fresh values that are generated and instantiated in the run [20].
Boxes symbolises events in the different runs, connected by arrows which symbolises
ordered constraints. Incoming arrows do not indicate that the messages is sent
directly in this step, but is merely an ordering stating that this message can only be
received after something else has happened. For example, in Figure 3.4, the recv_2
event in Run 1 can only happen after Bob has sent his message in the send_1 event
and Alice has sent her message in the send_2 event.

Run 2

Alice in role V

Assumes U->Bob

Var Ru#2 -> IntruderNonce1

Run 1 /

Bob in role U recv_1
Assumes V->Alice IntruderNonce1
Var Rv#1 -> Rv#2

Initial knowledge

send_1 send_2
Ru#i M1

\ ><
recv_2
Mi Learn Ru#1

Abbreviations:
M1 = {Rv#2}k(Bob,Alice)

claim_F1(Bob,Secret, Ru#1)

Scyther pattern graph for the TEST protocol, claim TEST,F1 in role U.

Figure 3.4: When Scyther finds an attack on a protocol, if will also provide a graph
of the attack.

Arrows in Scyther graphs can be coloured differently. Red arrows indicate that
the sent message does not correspond to the received message, which means that the
adversary used some information from the sent message in order to construct the
one that is received [20]. Green arrows indicates that the sent message is identical to
the received message. The last possible color (other than black, which does not carry
any specific information) is yellow. Yellow arrows indicate that the two parties agree
upon the message that is exchanged between the two, but do not agree upon who
was the sender and receiver during the exchange.

When a message is sent, it is instantly obtained by the adversary. Initial knowledge
(or intruder knowledge) corresponds to the intuition that the intruder is able to
generate fresh values of any type, which it in Figure 3.4 uses to generate the nonce
that is sent in the send_2 event. The green oval shape indicates where the adversary

38 3. SYMBOLIC SECURITY ANALYSIS USING SCYTHER

obtains the information which falsifies the claim, which in this example is the Ru
value that is sent in plaintext. The two last boxes in the graph are the black box at
the bottom of Run 1 which contains the claim that is falsified by Scyther, and the
white box to its right which contains abbreviations of the messages that are passed
between roles to increase the readability of the graph.

Three Protocols for Key
Establishment in 6LOWPAN

In this chapter, three proposed protocols for key establishment in 6LoWPANs will
be introduced. The chapter also contains an assumption of the different security
properties that would be natural to assume for the respective protocols, and a
summary of the protocols’ immediate weaknesses. The notation that is used for
describing the presented protocols can be reviewed in Appendix C.1.

4.1 General Properties

Multiple properties are common for all of the protocols that this thesis addresses.
These properties are more general than regular key establishment properties and
cover a wide area of different schemes and attacks.

Key scheme As mentioned in Section 2.4.4, multiple versions of key establishment
schemes exist. The network-wide shared key and pairwise keys are commonly used for
symmetric key schemes, while public-key schemes is another option where encryption
and decryption is done using separate, but mathematically tied, keys. Session keys
are symmetric keys which are used for a single session, and never to be used again.
These are often used in conjunction with public-key cryptography.

Replay protection Replay protection is a general property for a network which
prevents an adversary from capturing a data frame and injecting (replaying) at a
later time. Fortunately, the IEEE 802.15.4 security sub-layer is capable of filtering
out replayed frames and thereby preventing injection [46].

Resilience against node compromises In 6LoWPANs, nodes are potentially
deployed in hostile areas, which gives an adversary another way into the node, in
addition to regular hacking. Therefore, it is important for key establishment schemes
to discover and avoid establishing sessions with compromised nodes. In the case of
a network shared key, the whole network would be compromised in the event of a

39

40 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

node compromise. Also, the attacker would be able to add new nodes to the network
as the upper-layer protocols rely on the 802.15.4 security sub-layer. For schemes
using pairwise schemes, however, only communication going between a node pair
would be compromised in the case where an adversary obtains the secret pairwise
keys of the node. For schemes utilizing public-key schemes, only information going
to the compromised node would be vulnerable, as the attacker only possesses the
private key which can be used to decrypt information that is encrypted using the
corresponding public key.

Key revocation When a node is compromised for a public-key scheme, this usually
includes the adversary to obtain the private key of the device. Key revocation is to
retire the public key of this device by marking them as revoked, to avoid that other
devices encrypts data using the compromised node’s public key.

Tamper resistance Devices in 6LoWPANs are often deployed in hostile areas,
where attackers may physically tamper with the devices. This is an issues that is not
easily resolved, but can be avoided by constructing tampering resilient devices. For
physical tampering with the device to be avoided, it has to be hermetically sealed, as
well as providing strong cryptography for keeping the key secret from side-channel
attacks and hostile testing. Devices used in 6LoWPANs are considered to be small,
cheap, and with a limited battery supply. Hence it is difficult to provide sufficient
countermeasures against tampering, and not a preferable solution [1]. Therefore, it
is important for the network being able to provide node compromise resilience while
storing the minimum amount of sensitive keying material on the devices.

Denial of Service (DoS) attacks DoS attacks are essentially flooding an entity
with more requests than it is able to handle to force it to break down. In a key
establishment setting, this would be to overwhelm a device with key establishment
requests. The goal of a DoS attack in abLoWPAN could be to drain the device for
battery, but also to keep the device from establishing keys with other devices in the
network.

Wormbhole attacks As explained, DoS attacks actively target an entity to deny it
from providing a service or performing a certain operation. Wormhole attacks are
more passive attacks, where the adversary announces itself as the best path between
two nodes A and B to trick the network into choosing the path through the adversary.
By announcing an exceptional good path between two nodes, the adversary creates a
non-existent path between the two nodes referred to as a wormhole. Now the attacker
can turn a link in the network on and off at its own choosing, and also drop specific
frames, for example those initiating key establishments. How to avoid such attacks
is the topic of current research [47].

4.2. ADAPTABLE PAIRWISE KEY ESTABLISHMENT SCHEME (APKES) 41

4.2 Adaptable Pairwise Key Establishment Scheme
(APKES)

The Adaptable Pairwise Key Establishment Scheme (APKES) is a proposed scheme
by Krentz et al. for handling key establishment and key management in 6LoWPANs
[46]. Tt is currently implemented in the operating system Contiki, which is targeted at
the sensor network community. Table 4.1 displays which general security properties
that the scheme provides. As previously described in Section 2.3, 6LoOWPAN is a
protocol stack for integrating WSNs running on 802.15.4 with IPv6 networks, and
enables the nodes in the network to communicate with each other, or remote hosts,

over IP. APKES provides a framework for establishing pairwise keys for nodes in
6LoWPANS.

Key scheme: Pairwise symmetric keys
Replay protection: Yes, 802.15.4 security sublayer
Node compromise resilient: Yes, with EBEAP
Key revocation: No
Tamper resistant No
DoS resilient: Yes
‘Wormbhole resilient: No

Table 4.1: Overview of which general security properties that APKES satisfies.

Figure 4.1 illustrates how APKES is implemented at the link layer along with the
802.15.4 security sublayer. In its implementation, APKES introduces three special
messages which are used in the key establishment process, namely HELLO, HELLOACK,
and ACK [46]. These are defined as 802.15.4 command messages, which are only
processed by the data link layer (i.e. they are not passed to upper layers). Hence
APKES can establish pairwise keys for networks building on 802.15.4 independently
from the protocols running in the upper layers.

4.2.1 Allowing “Pluggable” Schemes to Increase Universality

APKES provides a “pluggable” key establishment scheme for 6LoWPANSs using pair-
wise keys, where the developer of a 6LoWPAN picks an appropriate key establishment
scheme and delegates APKES into handling the key establishment with other nodes
[46]. As there is no general scheme for 6LoWPANSs, the use of pluggable schemes
enhance the overall usability of the protocol, as the developer can use the most appro-
priate scheme based on the challenges he faces. The only function of the plugged-in
scheme is to feed APKES with the shared secret for the communicating nodes, and
APKES will handle both key establishment and key management. Examples of
pluggable schemes that have been suggested for APKES are Localized Encryption

42 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

Layer
Application CoAP
Transport UDP
GLoWPAN-ND RPL
Network ICMPv6

IPvE

ELoWPAN ELoWPAN Adaption Layer
302.5.urily APKES | EBEAP

Data Link

m

Figure 4.1: APKES is positioned in the data link layer in the 6LoWPAN stack,
expanding the 802.15.4 security sublayer [46].

and Authentication Protocol (LEAP) [73], Blom’s Scheme [10], and random pairwise
keys [13]. In the case of random pairwise keys, path key establishment has to be
implemented in addition to APKES.

4.2.2 Avoiding Denial of Service Attacks

During the key establishment process, a responding node goes from not being a
neighbour to a tentative neighbour, before ending up as a permanent neighbour, given
that the key establishment was successfully executed. The change of neighbour status
is implemented to prevent DoS attacks on nodes by flooding them with messages for
starting key establishments (HELLO messages). Flooding a device with HELLO requests
would force it to reply to each message (denoted as HELLOACK), potentially draining
its battery. Also, injecting and replaying these responses could aid an attacker in
draining the network-nodes for batteries. Upon receiving a HELLO message, the
responder (B) checks if the initiator (A) is already a neighbour, and that it has
available space in its list of tentative neighbours, which is limited to M; neighbours.

APKES modifies the security sub-layer of 802.15.4 to instantly discard data frames
that arrive from non-permanent neighbours, only accepting HELLOs, HELLOACKs,
or ACKs from these neighbours. By limiting the number of tentative neighbours,
B is protected against a DoS attack consisting of consecutive HELLO messages.
Such requests are discarded without being processed when the number of tentative
neighbours exceeds M;. The list of tentative neighbours is processed for each HELLO,
where neighbours whose expiration time has expired are deleted.

4.2. ADAPTABLE PAIRWISE KEY ESTABLISHMENT SCHEME (APKES) 43

4.2.3 Node Compromise Resilience

The Easy Broadcast Encryption and Authentication Protocol (EBEAP) is a suggested
protocol for authenticating broadcast frames in 6LoWPANs that use APKES as their
key establishment scheme, and is implemented along with APKES in the data link
layer. EBEAP does not have any direct influence of the key establishment process,
but runs in cooperation with APKES to provide node compromise resilience to the
network. When APKES is run in conjunction with EBEAP, compromised nodes
are only able to decrypt broadcast frames of its neighbours, but are not capable
of impersonating the compromised node. However, EBEAP and its contribution is
outside of the scope of this thesis.

4.2.4 Protocol Specification

Key establishment in APKES consists of a three-way handshake, as described in
Figure 4.2

1. When a node A in a 6LoOWPAN running APKES wants to establish contact
with other nodes, it broadcasts an unauthenticated HELLO message containing
a random nonce Ng4.

2. Upon receiving a HELLO, B computes a random nonce Npg, as well, and stores
the concatenation of the two.

3. B then waits for a random time T;,. The waiting period is introduced to avoid
flooding A with responses, as there may be an unknown number of nodes that
received the broadcasted HELLO message.

4. After T,,, B loads its key Kp 4 from the pluggable key scheme, and uses this
key to authenticate a HELLOACK message containing the generated Np nonce
and the received N4 by computing a MIC. MICs are generated by the 802.15.4
security sublayer, through the use of CCM* operation mode in a block cipher.
CCM* is a modified version of the regular CCM which allows for the payload
of the frame to be encrypted using AES with a 128-bit key [46]. CCM* has
additional capabilities, where the sender can choose whether to encrypt or
authenticate the data.

5. B uses K, 4 to authenticate the HELLOACK, and sends it to A. Afterwards, B
derives the pairwise key K 4 for future communication with A, by plugging
Kp 4 it into the AES algorithm along with the two nonces.

6. When A receives a HELLOACK message, it verifies the attached MIC by extracting
its key K4, p from the pluggable scheme and computing the MIC for the
concatenation of N4 and Np.

44 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

7. A then computes the pairwise key for further communication with B by plugging
K 4 p into the AES algorithm. A also checks that the N4 value has not been
tampered with, and that it is equal to the value it initially sent in its HELLO
broadcast.

8. The three-way handshake ends with A sending an ACK to B that is authenticated
using the pairwise key K 5.

9. When B receives the ACK, it verifies the MIC by using its derived pairwise key
K 1’3, 4- After this process, A and B have successfully agreed upon a shared
pairwise key where K 1’47 g=K 1'3, 4, which is to be used for encrypting all future
communication between the two nodes.

Three-way handshake in APKES

A : Generate N randomly
A — % : HELLO(N)
B : Generate Ng randomly. Wait T,, < M,
B : Kp s from pluggable scheme
B— A: HELLDACK<NA, NB>KB,A
B : K]’B’A = AES(Kp a,Na|lNp)
A: K p from pluggable scheme
A: K;LB = AES(Ka p,Na|lNp)
A — B:ACK()K

Figure 4.2: Figure of the messages sent between communicating parties during
APKES’ three-way handshake.

4.2.5 Assumptions of Security Properties

One focus of APKES is to provide authentication of parties during the key estab-
lishment process. By inspecting the messages that are exchanged between the two
sides in Figure 4.2, we observe that no encryption is involved in the handshake, but
messages are authenticated by the use of MICs. These MICs are either computed
using K 4, p (the pre-shared secret) or Ky p (the established pairwise key). Therefore,
we can assume that entity authentication has to hold for the two communicating
parties.

As mentioned in Section 2.4.2, implicit and ezplicit key authentication are two
of the other attributes within authentication. For a three-way handshake such as

4.2. ADAPTABLE PAIRWISE KEY ESTABLISHMENT SCHEME (APKES) 45

the one used by APKES, the initiator achieves implicit key authentication, while the
responder (B) achieves explicit key authentication. As the pairwise key is computed
from the two nonces that are shared between A and B, and the secret from the
pluggable scheme (which we assume is secure), both know that the only parties that
can compute the pairwise key are those possessing the pre-shared secret, giving them
both implicit key authentication. B also receives an ACK which is authenticated
using the pairwise key K 1’47 g, effectively meaning that A has computed the pairwise
key. B can confirm this by verifying the attached MIC, hence B can be said to
achieve explicit key authentication of A. From A’s point of view, however, it has no
confirmation of that B has in fact computed the pairwise key, other than it knows
that B has to in order to verify the authenticity of the ACK. Also, as APKES is a key
establishment scheme, the established key is of course assumed to be secret from the
adversary.

4.2.6 Weaknesses and Challenges with APKES
Storing frame counters in case of reboot

APKES establishes a shared symmetric key between nodes, which is used to encrypt
and decrypt data that is sent between them. One issue that the protocol does not
address is the case where, for some reason, the node is forced to do a reboot. To
avoid replay attacks, a node needs to keep control of the frame counters of the nodes
it communicates with. These frame counters need to be swapped from the RAM of
the device to a non-volatile storage over time. Such storages are for most 802.15.4
devices flash memory, making the swapping process both energy and time consuming
[45]. In the Contiki operating system (where APKES is currently implemented),
reboot commands are issued whenever processes get stuck or when the battery of
the device is replaced [28]. In the case of a reboot without storing the frame counter,
neighbouring nodes would just discard all messages from the node as the frame
counter would start at zero, and the frames would be considered replayed. Another
issue with storing anti-replay data is that APKES does not remove information of
disappeared neighbours (nor does it discover that a node has left the neighbourhood),
which may unnecessarily seize a large part of the node’s memory over time.

Deadlock with previous neighbours after reboot

In addition to the weaknesses related to frame counters and storing anti-replay
protection data, APKES has issues related to its usage of temporary and permanent
neighbours. As mentioned, the life cycle of a neighbour node ranges from not
being associated at all to becoming a temporary neighbour, and finally a permanent
neighbour during the key establishment process. However, APKES discards HELLO
messages from permanent neighbours to prevent DoS attacks. This means that if
a neighbour reboots, it goes into a deadlock with former neighbours, where it is

46 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

not able to establish any new keys with these nodes as its HELLOs would silently be
discarded [45]. The broadcasting of HELLOs occurs immediately after the node is
booted up, which means that after the node is up and running, it will not attempt
to connect to any new neighbours that may have been deployed afterwards. One can
argue that it is the responsibility of the post-deployed nodes to establish contact
with “early birds”, but deployed nodes should nevertheless be able to discover new
nodes at runtime.

4.3 Adaptable Key Establishment Scheme (AKES)

Key scheme: Symmetric and session keys
Replay protection: Yes

Node compromise resilient: | Yes, with EBEAP

Key revocation: No

Tamper resistant No

DoS resilient: Yes

Wormbhole resilient: No

Table 4.2: Overview of which general security properties that AKES satisfies.

The Adaptable Key Establishment Scheme (AKES) aims to improve and fix the
weaknesses that were introduced in APKES and is currently implemented in the
Contiki operating system [45]. Its primary goal is to establish session keys between
devices in a 6LoWPAN while being able to withstand reboots and movement from
one network to another. The general security properties that AKES satisfies As
described in Section 4.2.6, APKES suffered from issues when restarting the device,
and it was unable to provide mobility for the devices. Most of these problems can
be solved by one “simple” adjustment: Establishing session keys between nodes
instead of long-term keys. By establishing session keys, MICs from previous sessions
would be invalidated, which enables the node to delete data used for providing
replay protection (such as frame counters), and will also filter out old frames. Also,
this removes the problem related to frame counters being reset after a reboot, as
mentioned in Section 4.2.6.

AKES builds on the approach from APKES, where the underlying scheme is
pluggable, and provides AKES with the secret that is pre-shared between the nodes.
Before an 802.15.4 node can run AKES, addressing information (which uniquely
identifies a node within an 802.15.4 network and is used by the pluggable scheme
when establishing the shared secret) and keying material has to be preloaded into
it. AKES also has access to the same command frames HELLO, HELLOACK, and ACK,
which are used to establish session keys, and only processed by the data link layer.

4.3. ADAPTABLE KEY ESTABLISHMENT SCHEME (AKES) 47

Figure 4.1 describes where APKES is implemented in the 6LoWPAN stack, and as
AKES is merely an improvement over APKES, it is implemented in the same layer
as APKES and the 802.15.4 Security Sublayer.

4.3.1 Renewing a Session

As in APKES, AKES also utilizes a differentiation between non-neighbours, temporary
neighbours, and permanent neighbours. When a node sends a HELLO, it obtains a
temporary node status at the receiver. This status will be changed to a permanent
neighbour upon receipt of an authentic ACK message as part of the final step in the
session key establishment. Keep in mind that one of the issues with APKES was the
deadlock state rebooted nodes would start in with previously permanent neighbours.

In AKES, a permanent neighbour who transmits a HELLO message will obtain
status as a temporary neighbour in addition to its old permanent neighbour status
until the ACK is received. After receiving the ACK, the permanent neighbour status
is deleted, and the temporary neighbour is turned into a permanent one, which
effectively renews the session between the two nodes. When a permanent neighbour
(i.e. a session key) is established, the neighbour is assigned an expiration time when
the key becomes invalid. The lifetime of a session is, however, prolonged for each
received, authentic frame from the particular session, and can also be extended by
issuing individual commands.

4.3.2 Preventing Deadlocks and Removing Neighbours

AKES introduces two tasks for preventing deadlocks and increasing mobility for
devices while still keeping DoS attacks in mind: Periodically pinging its permanent
neighbours to delete disappeared nodes, and discover new neighbours by routinely
broadcasting HELLOs. When a session with a neighbour expires, the node issues an
authenticated UPDATE command and sends it to the node, which potentially responds
with an UPDATEACK. A received UPDATEACK leads to both parties of the session
extending the lifetime of their key, while in the absence of such an acknowledgement,
it will try for a few more times before eventually giving up and deleting the neighbour
from its view of the network.

Trickle, which is an algorithm for distributing information in WSNs [48], is
adopted by AKES for discovering new neighbours in a routine matter. The challenge
is to define how often the node should broadcast HELLOs to discover new nodes and
changes to the network topology, which Trickle aims to solve by applying different
network statistics into its algorithm.

48 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

Three-way handshake in AKES

A : Generate Ny randomly
A— *: HELLD(PANA,IDA,NA,CA>
B : Kp.a from pluggable scheme
B : Generate Ng randomly. Wait for T,, < M,
B:Kp, = AES(Kp ., Na||NB)
B — A : HELLOACK(PAN4,IDa,PANg,IDp,Ng,14,5,CB,PA)Kp 4
A: Kap from pluggable scheme
A:Kjp = AES(Ka,B,N4l|NB)
A—B: ACK(PANB,IDB,PANA,IDA,IB7A,C'A)KI’4,B

Figure 4.3: Figure of the messages sent between communicating parties during
AKES’ three-way handshake.

4.3.3 Protocol Specification

In AKES, the key establishment process consists of a three-way handshake where
the two nodes establish a session key, as described in Figure 4.3.

1. Initially, the node A broadcasts a HELLO message to its neighbours containing
a randomly generated nonce value N4 along with the identity of the node,
its Personal Area Network (PAN) address, and the frame counter C'4. The
HELLO broadcast is authenticated using EBEAP [46], which is a protocol for
authenticating broadcast frames in 6LoWPANSs, or a pre-distributed group
session key.

2. When B receives a HELLO transmission, it generates a random nonce as well,
denoted as Npg.

3. It then proceeds to request the shared secret Kp 4 from its pluggable scheme,
and uses this secret to derive the pairwise session key K 4 as
AES —128(Kp, a, Na||NB).

4. B then crafts a HELLOACK response which is sent to A containing Np. The
HELLOACK is authenticated by adding a MIC generated with K jgy 4, in addition
to B’s PAN address, identity, and other values related to frame counters and
EBEAP authentication.

4.3. ADAPTABLE KEY ESTABLISHMENT SCHEME (AKES) 49

5. In the response, B attaches a field P4 as well to indicate whether or not A
is currently registered as a permanent neighbour of B, and is also capable of
piggybacking group session keys. If the P4 field is set, A can choose to abort
the session key establishment, which would be normal if the HELLO was just a
routine broadcast.

6. Upon receiving the HELLOACK, A validates the attached MIC by computing the
pairwise session key Ky p in the same manner as B.

7. A then completes the three-way handshake by creating an ACK which is authen-
ticated using the pairwise session key K 1’4’ p and sent to B.

8. When B receives the ACK, it verifies the attached MIC using its own session
key. After this, future communication between A and B is encrypted using the
shared pairwise session key until it expires.

4.3.4 Assumptions of Security Properties

AKES focuses on secure session key establishment between nodes in a 6LoWPAN.
As it primarily builds on APKES, we can assume that the same security properties
should hold for AKES as well. However, there are some deviations. In AKES, the
responding party B uses the generated session key K ’B7 4 to generate the MIC that
is sent in the HELLOACK response. By doing so, A can verify that B has in fact
computed the session key, which can be interpreted as explicit key authentication.
Forward secrecy is often affiliated with session keys, but as the session keys are
generated from a symmetric key, forward secrecy is not achievable for AKES.

4.3.5 Weaknesses and Challenges with AKES
Addressing information has to be loaded into the node at start-up

As previously mentioned, APKES introduced some protocol weaknesses that AKES
aims to fix. While repairing most of these issues, AKES is still not perfect. For
example, all addressing information (i.e. the PAN identifier, short address, and other
parameters used for identifying nodes in 6LoWPANSs) has to be preloaded into the
node. The IEEE 802.15.4 standard has support for auto-configuring such address
information at runtime, but these protocols require that the 802.15.4 security is up
and running before being able to execute [45]. AKES modifies the security sublayer of
802.15.4, which means that AKES is running before the 802.15.4 addressing protocols
are running, hence they are not applicable with AKES. When AKES establishes
session keys with a node, it sends the node’s address and identity to the pluggable
scheme in order to obtain the shared secret. This means that if AKES did not have
the address of the node when it was booted up, it is not able to establish keys with

50 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

it. Therefore, AKES does only support mobility for devices that are known to the
node at startup.

4.4 Secure Authentication and Key Establishment Scheme
(SAKES)

The third, and last protocol which will be discussed in this thesis is the Secure
Authentication and Key Establishment Scheme (SAKES). SAKES aims to provide
secure authentication and key establishment for nodes in a device-to-device network
running on 6LoWPAN [38]. The general security properties that are provided by the
scheme is presented in Table 4.3. Previous described protocols such as APKES and
AKES enables devices to communicate directly with each other without any previous
authentication have taken place. The architecture in SAKES as seen in Figure 4.4
consists of end devices, 6LoOWPAN routers, 6LoWPAN border routers, and remote
servers providing services to the devices. End devices are typically sensors, with very
limited computational power. Border routers and conventional 6LoWPAN routers
are more powerful entities which can perform lightweight public key cryptography
operations.

Key scheme: Asymmetric, Symmetric, and Session keys
Replay protection: Yes
Node compromise resilient: | No
Key revocation: No
Tamper resistant No
DoS resilient: No
Wormbhole resilient: Yes

Table 4.3: Overview of which general security properties that SAKES satisfies.

Border routers, also known as “edge routers”, are in addition responsible for
handling communication between the end devices and the Internet (as well as other
IP-based networks), act as a broker between local data exchanged between the end
devices, and generate and maintain the 6LoOWPAN subnet [60]. In SAKES, the
border router is responsible for authenticating end devices and 6LoWPAN routers to
each other, as well as generating ephemeral public-key pairs for the router to use
in session key establishment. In addition to these tasks, the border router is also
responsible for periodically distribute symmetric shared keys to its registered nodes.

The use of different entities with more computational power than a regular sensor
device allows SAKES to provide a key establishment scheme utilizing both pairwise
symmetric keys and lightweight public key cryptography. SAKES assumes that the
nodes within the network are stationary and pre-registered in the border router’s

4.4. SECURE AUTHENTICATION AND KEY ESTABLISHMENT SCHEME (SAKES)
51

SAKES Architecture

o 1 G Ehuthentlcaﬂon module
4 e

LLL L LT LY} i:i

DGL()WPAN End Device 6LOWPAN Border Router
! 6LoWPAN Router %Remom Server

Figure 4.4: Figure of the architecture for a 6LoWPAN using SAKES for authenti-
cation and key establishment [38].

authentication module, which is a trusted entity between the remote server and the
6LoWPAN. While not defined anywhere in the specification, we assume that this
includes possessing the public key of the border router.

Before a device is able to communicate with the remote server, it needs to
authenticate itself to the server, as well as confirming that the nearest 6LoWPAN
router is an authentic and valid gateway on its way to the server. The authentication
module of the border router handles the authentication process, by authenticating a
request sent by the end device to the router, which relays it to the edge router. This
request contains the identity of the end device, the router, and the remote server. If
the entities are registered in the authentication module, the border router notifies
both the end device and the router with a confirmation of the other party’s identity.
SAKES utilizes, as mentioned, a lightweight public key approach where the border
router also generates an ephemeral public key pair for the router, which is to be used

52 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

for session key establishment with the remote server.

Session key establishment between the end device and remote server is done by
the router acting on behalf of the end device and the server. For establishing the
session key, SAKES utilizes a form of Diffie-Hellman key agreement by exchanging
public keys with the remote server, before distributing the key securely to the end
device.

4.4.1 Protocol Specification

SAKES consists of two phases: Authentication and session key establishment. Figure
4.5 describes the messages exchanged between the end device (A4), the 6LoOWPAN
router (B), and the border router (C) in the authentication phase of SAKES.

Authentication in SAKES

A : Generate Ny randomly

A— B: <NA>
B : Generate N randomly
B— A: <NB>

A Construct Cp: {IDa,IDp,IDp}k,
A— B: <CA,IDA,NA>KA7B
B — C:{Cx,IDp, N5)Ks.c
C : Verify the identity of A, B, and D
C : Construct Cc : {IDy,IDp,IDp} sk,
C : Generate N¢ randomly and a public key pair (Pkg, Skg)
C — B:{N¢,Cc, Pkp, Sk} Ky o
C—A: <IDB7N0>KA’C

Figure 4.5: Figure of the messages sent between the end device (A), router (B), and
border router (with authentication module) (C) in SAKES’ authentication phase.

1. A starts the authentication phase by generating a random nonce N4, which it
transmits to its closest router B.

2. The router responds by generating its own random nonce Np, and sends this
back to A.

4.4. SECURE AUTHENTICATION AND KEY ESTABLISHMENT SCHEME (SAKES)
53

3. The identities of the end device, the nearest router of the end device, and
the remote server the device wants to connect to is then encrypted into the
ciphertext C4 by A with the symmetric key K4 ¢, which is shared between
the end device and the border router. A also then sends this ciphertext along
with its identity and previously computed nonce to the router after adding a
MAC of the message using the symmetric key K4 p.

4. Upon receiving the request from A, B authenticates the MAC of the message
by using its copy of the secret key K4 g, and adds its nonce Np to the message.
The request is authenticated by B, who generates a MAC using Kp ¢ and
relays it to the border router C.

5. When the request is received by C, it verifies the attached MAC by using
its copy of the symmetric key that it shares with B. It then decrypts the
ciphertext created by A containing the identity of the end device, the router,
and the remote server by using the symmetric key K c.

6. The border router then checks with its authentication module whether the
message is sent by the end device A, and if the identity of its nearest neighbour
router B is correct. If these checks are successful, the border router creates
a signed message C'c containing the identities of the end device, router, and
remote server. It also generates a public key pair (Pkg, Skg) based on ECC,
and random nonce Np.

7. It then sends two messages: one to the router, and one to the end device. The
message sent to B contains the nonce Np, the signed message C¢ containing
the verified identities of the request, and the public key pair for B to use in the
key establishment phase. To provide secrecy for the generated key pair, the
entire message is encrypted under the shared symmetric key Kp ¢ to ensure
that the key pair is only accessible to B.

8. The end device A also receives a confirmation message from C containing the
identity of the router, as well as the random nonce Np to prevent replaying.
The message is authenticated using a MAC with the shared secret K 4 ¢ as the
key to ensure its authenticity.

After both the end device and the router receives their confirmation messages
and successfully verifies their authenticity, the authentication process is believed to
be completed. The next step in SAKES is for the router B to establish a session
key with the remote server D on behalf of the end device A, as the end device often
has limited computational power. The messages sent between the entities in the key
establishment phase of SAKES can be seen in Figure 4.6.

54 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

Key Establishment in SAKES

B — D : {C¢,Np, Pkp, B,hash}si,
D : Calculate Session Key (SKp): SKp = gF*#*5kp mod P
D : Generate Np randomly
D — B:{Pkp,D,P,g,Np,hash}sk,,
B : Calculate Session Key for A (SK4): SKa = gF*r*5k2 mod P
B— A: {SKa, N}k, »
Claim : SK, = SKp

Figure 4.6: Figure of the messages sent between communicating parties in SAKES’
key establishment between the end device (A), the 6LoOWPAN router (B), and the
remote server (D). In SAKES, the session key is established between the router and
the server before the router distributes it to the end device.

1. The router crafts a request containing the obtained signed proof from the border
router, its identity, and the random nonce Np, and also adds its temporary
public key Pkp. B computes a hash of the message and appends it as well,
before signing it and sending it to the remote server D. By signing the message
using its corresponding private key Skp, B allows the remote server to verify
the authenticity of the message by using the attached public key Pkp.

2. When the server D receives the request, it verifies the signature of the message.
It then proceeds to check the authenticity of the signed proof in the message
that the authentication module in C' created by applying its copy of C’s public
key Pkc.

3. The computation of the session key SKp in SAKES is displayed in Equation
4.1, allegedly utilizing a version of the Diffie-Hellman key agreement. In the
equation, g and P are two cryptographic numbers, respectively a generator
and a prime modulus, while the exponents are the public key of the router B
and the private key of the server D.

4. After generating the session key, D constructs a message to B containing its
public key, a random nonce Np, and the two cryptographic numbers g and P.
A hash of the message is attached as well, before it is signed using the remote
server’s private key Skp, and sent to B.

SKp =g P*s * 50 mod P (4.1)

4.4. SECURE AUTHENTICATION AND KEY ESTABLISHMENT SCHEME (SAKES)
55

5. Upon receiving the response from the remote server, B computes the hash for
the message and compares it to the attached hash value, as well as verifying
that the signature matches the public key.

6. The session key for the end device is computed as in Equation 4.2, using the
received cryptographic numbers g and P, and the public key of D and B’s
ephemeral private key.

SKy =g PFo * 5k5 mod P (4.2)

7. In order to distribute the session key securely to the end device A, the key is
encrypted along with the nonce Np under the symmetric key K4 g, and sent
to A.

8. After the end device successfully decrypts and retrieves its session key, future
communication between A and D will be encrypted using the session key.

4.4.2 Assumptions of Security Properties

SAKES uses an authentication module located in the border router to authenticate
end devices and routers before granting them a signed proof to use in the key
establishment process. Authentication is one of the most fundamental security
properties in a key establishment, and therefore it is fair to assume that SAKES
should provide authentication between end devices, routers, and border routers. The
key establishment process is merely conducted between the router and the remote
server, where the remote server has no knowledge of the end device while the border
router is absent from this phase. Therefore, we assume that authentication in this
process is claimed between the end device and the router, and between the router
and the remote server.

As SAKES makes use of both pairwise keys and public key pairs, the generated
session keys should, of course, be claimed to be secret. Also, the private key of the
ephemeral key pair generated the authentication module should be secret to ensure
the secrecy of the generated session key. In modern key establishment schemes,
the Diffie-Hellman key agreement process can be used to provide forward secrecy
for communicating parties. In SAKES, the remote server holds a long-term public
key pair, while the border router generates a fresh ephemeral key pair for each
session. Nevertheless, forward secrecy should be a desirable property for protocols
that leverage Diffie-Hellmen.

4.4.3 Weaknesses and Challenges with SAKES

The major downside with SAKES is that the authors have misunderstood the concept
of Diffie-Hellman key agreement. If we look closer at the two equations that derive

56 4. THREE PROTOCOLS FOR KEY ESTABLISHMENT IN 6LOWPAN

the alleged identical session keys, we observe that they are in fact unequal. The
mathematical equation for Diffie-Hellman is listed in Equation 4.3 below.

(g® mod p)® mod p = (¢° mod p)® mod p (4.3)

In SAKES, the private key of the remote server and the ephemeral public key of
the router are used to calculate the session key at the server’s side. However, the
router uses its ephemeral private key and the public key of the server to compute
the session key, which gives us two different session keys as shown in Equation 4.4.

(g% mod p)*? mod p # (¢©* mod p)*# mod p (4.4)

As for the computation of the key, the remote server has a fixed public key
pair which is used for generating every session key, while the router uses a freshly
generated key pair that it gets from the border router. The Diffie-Hellman key
agreement relies on the mathematical challenge in computing discrete logarithms (i.e.
finding « when presented with ¢®), and having half the key fixed for each session key
can potentially leak information about the secret key over time.

Also, the authors seem to have misused the notation of MAC in the key establish-
ment phase, where they generate MACs using publicly known keys such as Pkp and
PEkp instead for a shared secret key, which is the conventional way of applying such
functions. Lastly, the protocol specifications uses private keys to sign the messages
that are exchanged during the key establishment, but the public keys that should
be used to verify the signed messages are not published at any secure server. Also,
the public key that should be used to verify the signature is sent within the signed
message, which can remind of a self-signed certificate. While the identities of the
end device and the router are verified through the signed message C¢ created by the
authentication module, it does not verify that the public key pair used for the key
establishment is the same that was generated by the border router.

Formal Security Analysis of Three
Key Establishment Protocols

5.1 Modelling Security Properties

As mentioned in Section 2.4.2, key establishment schemes desire certain security
properties. In the verification of the security protocols of this thesis, the following
properties are verified: Entity authentication, Implicit key authentication, Explicit key
authentication, Known-key secrecy, Key control, and Secrecy of key. As mentioned
in Section 2.4.2, symmetric key establishment schemes are not resilient against KCI
attacks and do not provide forward secrecy. These properties are nevertheless included
in the models as SAKES uses a lightweight version of public-key cryptography and
the type of Diffie-Hellman key agreement to establish session keys.

Entity authentication Entity authentication between nodes corresponds to the
security claim of aliveness, and can also be verified through stronger claims such as
weak agreement. This property can only be violated if the adversary can inject or
tamper with messages that are transmitted over the network, which we assume that
the adversary in a 6LoWPAN is.

Implicit key authentication Implicit key authentication is modelled through the
settings of the adversary compromise model described in Section 3.3. The property
is modelled by allowing the adversary to obtain the long-term keys and impersonate
anyone except for the nodes that are supposedly establishing keys.

Explicit key authentication Is achieved when the protocol satisfied both implicit
key authentication and key confirmation. Explicit key authentication is modelled
through the security claim for non-injective agreement denoted as ni-agree, but
can also be modelled by using running and commit claims.

Known-key security By revealing session keys to the adversary after usage (i.e.
the session key is expired, and will never be used again) known-key security can

57

58 5. FORMAL SECURITY ANALYSIS OF THREE KEY ESTABLISHMENT
PROTOCOLS

be modelled. This is done by setting the Session-key reveal rule in the adversary
compromise model.

Key control Scyther has no support for verifying key control. Therefore, this
security property has to be checked by hand.

Secrecy of key To model a key (or any other property) as secret, the secrecy
claim is used in Scyther.

Forward secrecy Both PFS and wPFS are related to active adversaries and is
modelled through the adversary compromise model, which can be configured to leak
the long-term private key which the session keys are derived from.

Key compromise impersonation KCI is also a property related to an active
adversary and is, therefore, available through the adversary model where the adversary
can be allowed to obtain the long-term private key of the actors.

5.2 Formal Security Analysis of APKES

APKES is modelled as two roles, the initiator A and the responder B, agreeing upon
a pairwise key through the message exchange that is presented in Figure 4.2. There
is not specified any concrete type of pluggable scheme (i.e. the scheme where APKES
obtains the shared secret between two nodes). Hence, we assume that whatever
scheme is used is secure. In the model, the shared secret derived from the pluggable
scheme has been modelled using Scyther’s built-in support for shared symmetric
keys, where the two nodes A and B both possesses the shared secret at start-up.

APKES states that the N4 value has to be checked whether or not it has been
tampered with before the pairwise key can be derived on the initiating side. This can
be verified by modelling the protocol to agree upon the N4 value during the protocol
execution, and committing to this. In addition, we model agreement over the pairwise
key by using a Running claim in role B after receiving the ACK authenticated with
the pairwise key, and Commit claims in both roles to claim explicit key authentication
on the pairwise key. As B authenticates the HELLOACK by using the shared secret, we
do not claim that the pairwise key is created before A receives the HELLOACK from B.
The Scyther model of APKES can be viewed in its entirety in Appendix A.1.

5.2.1 Security Claims

By taking a starting point in the protocol specification from Section 4.2.4 and the
alleged security properties from Section 4.2.5, the protocol is modelled as an SPDL-
script, which can be verified by Scyther. Listing 5.1 describes the various security

5.2. FORMAL SECURITY ANALYSIS OF APKES 59

claims that are chosen for A. In these claims; we verify that the other party in the
protocol is authentic and that the pairwise key is secret. Claims for non-injective
synchronization and agreement is also added to verify that the protocol executes
as expected. The security claims for role B in APKES are stated in Listing 5.2.
Compared to the claims for A, B does not contain the Commit claim for the variable
N4, as the Running, Commit approach is used in role A to provide agreement (i.e.
confirm that the nonce has not been altered by B) over the nonce N4. We also claim
non-injective synchronization and data agreement.

claim (A, Alive);

claim (A, Weakagree) ;

claim (A, Niagree);

A, Nisynch);

A, Commit, B, Na);

A, Secret, PairwiseKey);

A, Commit, B, PairwiseKey);

Listing 5.1: Security claims for role A in APKES.

claim (B, Alive);

claim (B, Weakagree) ;

claim (B, Niagree);

claim (B, Nisynch);

claim (B, Secret, PairwiseKey);
claim (B, Commit, A, PairwiseKey);

Listing 5.2: Security claims for role B in APKES.

5.2.2 Adversary

In the description of APKES, no particular adversary is mentioned. We assume
that such a protocol would be used for key establishment in 6LoWPANSs, which are
potentially deployed in hostile areas. Therefore, we can assume that the adversary
would be able to observe, inject, and tamper with messages that are sent over the
network. As APKES does not utilize any session keys, but rather agreeing upon a
fixed long-term key, we model the adversary in a Dolev-Yao way without giving it
any active capabilities other than being able to obtain the long-term keys of nodes
not participating in the current key establishment process.

5.2.3 Results

Figure 5.1 shows the verification result from running the model of APKES through
Scyther in the presence of the adversary described above. Scyther was able to perform

60 5. FORMAL SECURITY ANALYSIS OF THREE KEY ESTABLISHMENT
PROTOCOLS

an unbounded verification of the model where all claims but one were successfully
verified. APKES provides valid entity authentication, explicit key authentication
for role B (implicit for A), and holds the non-injective synchronization property,
which means that every message in the protocol is executed as expected, even in the
presence of the adversary. When looking at the characterization of the protocol, there
exist only one executable trace for each of the roles. Hence, there does not exist any
malicious behaviour that can force the modelled protocol to misbehave. The attack
proposed by Scyther on Commit B,{Na, Ng}k(A, B) is not a direct attack on the
protocol, but shows that it is not possible to achieve explicit key authentication for
the role A, as it has no knowledge of if B has computed the pairwise key.

Claim Status Comments Patterns
APKES A APKESAZ Alive Ok Verified Mo attacks.
APKES, A3 Weakagree 0Ok Verified No attacks.
APKES A4 Miagree Ok Verified No attacks.
APKES,A5 Nisynch Ok Verified No attacks.
APKES A6 Commit B,Na ok Verified Mo attacks.
APKES,A7 Secret{Na Nb}k(A,B) Ok Verified No attacks.
APKES AB Commit B,{Na,Nb}k(A,B) Fail Falsified Atleast1 attack. 1 attack
B APKESB3 Alive Ok Verified No attacks.
APKES,B4 Weakagree ok Verified No attacks.
APKES,B5 Miagree ok Verified No attacks.
APKES,B6 Nisynch ok Verified No attacks.
APKES,B7 Secret{Na Nb}k(A,B) 0Ok Verified No attacks.

APKES,B8 Commit A {Na,Nb}k{A,B) Ok Verified No attacks.

Figure 5.1: Result of verifying APKES’ security claims using Scyther.

5.3 Formal Security Analysis of AKES

AKES is modelled almost like its predecessor, but with additional content that is
used to allow mobility for the devices. As AKES is used for establishing session
keys, the SKR claim is used emphasize that the key is, in fact, a session key. The

5.3. FORMAL SECURITY ANALYSIS OF AKES 61

pluggable scheme is assumed to be secure and is modelled as a symmetric key
shared between the two communicating parties using Scyther’s built-in symmetric
key support. Appendix A.2 contains the model in its entirety. APKES was not
able to provide explicit key authentication of role B for the initiator A. In AKES,
however, the received HELLOACK is authenticated using the session key. Therefore,
we model a Running claim (not present in Listing 5.3 or 5.4 - See Appendix A.2) to
indicate that the role B has computed the key at this point and a Commit claim to
state that the two parties agree that the session key has been derived.

5.3.1 Security Claims

From the protocol specification in Section 4.3.3 and the assumed security properties
in Section 4.3.4, the security claims that are claimed to hold for the two roles in
AKES are listed in Listing 5.3 and Listing 5.4. In addition to claiming authentication
for the other party, we also argue that the protocol has been executed as intended
by adding claims for non-injective synchronization and agreement.

claim (A, SKR, SessionKey);
claim (A, Alive);
claim (A, Weakagree);
claim (A, Niagree);
claim (A, Nisynch);
(

claim (A, Commit, B, SessionKey);

Listing 5.3: Security claims for role A in AKES.

claim (B, SKR, SessionKey);

claim (B, Alive);

claim (B, Weakagree) ;

claim (B, Niagree);

claim (B, Nisynch);

claim (B, Commit, A, SessionKey);

Listing 5.4: Security claims for role B in AKES.

5.3.2 Adversary

The adversary in this model is nearly the same adversary as the one introduced in
the verification of APKES. However, to model session keys, the adversary is allowed
to obtain all session keys whose identifier differs from the current protocol execution.

62 5. FORMAL SECURITY ANALYSIS OF THREE KEY ESTABLISHMENT
PROTOCOLS

5.3.3 Results

Figure 5.2 shows the result of running the model of AKES through Scyther in the
presence of the adversary presented above, where AKES is verified for an unbounded
state space and all the claimed security properties are successfully verified. AKES
provides provable authentication for both roles, as well as explicit key authentication.
In addition, AKES is proved to hold the non-injective synchronization and data
agreement claims which state that the protocol was executed as intended. When
looking at the characterization of AKES, only one possible trace is returned for each
role, which means that there exists only one way to execute the protocol.

Claim Status Comments
AKES A AKESA2 SKR{Na,Nb}k{AB) Ok Verified No attacks.
AKES A3 Alive Ok Verified Mo attacks.
AKES,A4 Weakagree Ok Verified No attacks.
AKES,A5 Niagree Ok Verified Mo attacks.
AKES,A6 Nisynch Ok Verified Mo attacks.

AKES,A7 Commit B,{MNa,Nb}k(A,B) Ok Vverified No attacks.

B AKESB3 SKR{MNaMb}kiaB) Ok Vverified No attacks.
AKES,B4 Alive ok verified No attacks.
AKESBS Weakagree Ok Verified No attacks.
AKES,B6 Niagree Ok Verified No attacks.
AKES,B7 Nisynch Ok Verified No attacks.

AKES,BE Commit A {MNa Nb}k(A,B) Ok Verified No attacks.

Figure 5.2: Result of verifying AKES’ security claims using Scyther.

5.4 Formal Security Analysis of SAKES

From the protocol specification in Section 4.4.1 and the assumed security properties
in Section 4.4.2, SAKES have been modelled into four roles: A (End device), B
(Router), C (Border router), and D (Server). The authentication phase is carried out
between A, B, and C before B and D establish the session key, which is distributed
from the router B to the end device A. As the protocol specification presented in

5.4. FORMAL SECURITY ANALYSIS OF SAKES 63

the original protocol proposal can be considered inconsistent; some assumptions have
been made in the model.

The verification of the original protocol in its entirety takes over 72 hours to
complete on a workstation equipped with an Intel Core i7 processor with four cores
and 12 GB RAM (The experiment was aborted at this point). Therefore, it has been
infeasible to formally verify the complete protocol in one round, and the two phases
have been separated into two different models to be able to provide some insight
on the weaknesses of SAKES. The two models are available in Appendix A.3.1 and
A.3.2.

5.4.1 Authentication Phase
Security Claims

The end device A is only in direct communication with the router B and the border
router C, which is why authentication is only claimed for these two roles as seen in
Listing 5.5. We add claims for non-injective synchronization and agreement to find
attacks where the messages are not exchanged as intended.

claim (A, Alive, B);

(Alive, C);
claim (A, Weakagree, B);
claim (A, Weakagree, C);

(A, Niagree);

(Nisynch) ;

Listing 5.5: Security claims for role A during the authentication phase in SAKES.

Listing 5.6 contains the claims that are stated for role B (i.e. the 6LoOWPAN
router) in SAKES during the authentication phase. The router is originally interact-
ing with all the other entities in the network, but during the authentication, it only
interacts with the end device A, and the border router C. Hence we are claiming
authentication for only these roles. In addition, we state that the ephemeral key Skp,
which is generated by the border router during the authentication phase and which
is to be used in the key establishment, is secret. To verify that the role behaves as
intended, we add claims for non-injective synchronization and agreement.

64 5. FORMAL SECURITY ANALYSIS OF THREE KEY ESTABLISHMENT
PROTOCOLS

claim (B, Secret, Sk);
(B, Alive, A);
claim (B, Alive, C);
claim (B, Weakagree, A);
claim (B, Weakagree, C);
claim (B, Niagree);

(B, Nisynch);

Listing 5.6: Security claims for role B during the authentication phase in SAKES.

The border router C' does only participate in the authentication phase with A
and B; hence, we claim authentication for these two parties. In addition, we add
claims for non-injective synchronization and agreement to state that the protocol
was executed as expected as seen in Listing 5.7.

(C, Alive, A);
(C, Alive, B);

(C, Weakagree, A);
claim (C, Weakagree, B);
(C, Niagree);

(C, Nisynch);

Listing 5.7: Security claims for role C during key establishment in SAKES.

Adversary

For the authentication phase in SAKES, we assume a Dolev-Yao adversary who
is capable of eavesdropping, delete messages, compute cryptographic analysis on
intercepted messages, forge new messages from its knowledge, and insert them into
the network.

Results

Figure 5.3 shows the result of verifying SAKES’ authentication phase, where multiple
of the claimed security properties are falsified. Scyther can verify that SAKES
provides entity authentication for the end device, router, and border router, but
fails to provide stronger notions of authentication such as weak agreement for
the end device. Also, the authentication phase in SAKES does not provide non-
injective synchronization nor non-injective data agreement for either of the three
roles. The attacks presented below are described more thoroughly in Section 6.5,
and improvements are suggested to achieve the claimed security properties.

5.4. FORMAL SECURITY ANALYSIS OF SAKES 65

Claim Status Comments Patterns
SAKES_AUTH A SAKES_AUTHA1 Alive B ok Verified No attacks.
SAKES_AUTHAZ Alive C Ok Verified Mo attacks.
SAKES_AUTHA3 Weakagree B Fail Falsified Atleast1 attack. | 1attack
SAKES_AUTHA4 Weakagree C Fail Falsified Atleast1 attack. | 1attack
SAKES_AUTHAS Niagree Fail Falsified Atleast1 attack. | 1atack
SAKES_AUTHA6 Nisynch Fail Falsified Atleast1 attack. | 1attack
B SAKES_AUTH,B1 Secret Sk ok No attacks within bounds.
SAKES_AUTH,BZ Alive A Ok No attacks within bounds.
SAKES_AUTHB3 Alive C ok No attacks within bounds.
SAKES_AUTHB4 Weakagree A Ok No attacks within bounds.
SAKES_AUTHBS Weakagree C ok No attacks within bounds.
SAKES_AUTH,B6 Niagree Fail Falsified Atleast1 attack. | 1 attack
SAKES_AUTH,B7 Nisynch Fail Falsified Atleast1 attack. [1 attack
C SAKES_AUTHC1 Alive A ok Verified No attacks.
SAKES_AUTHC2 Alive B Ok Verified No attacks.

SAKES_AUTH,C3 Weakagree A ok Verified Mo attacks.
SAKES_AUTH,C4 Weakagree B Ok Verified Mo attacks.
SAKES_AUTH,C5 Niagree Fail Falsified Atleast1 attack. 1 attack

SAKES_AUTH,C6 Nisynch Fail Falsified Atleast1 attack. | 1attack

Figure 5.3: Result of verifying SAKES’ authentication claims using Scyther.

e SAKES_AUTH, A3 & A4 Weakagree B & C: The attacks proposed by Scyther
that falsifies the Weakagree claims for the end device leverage the last message
that is sent between the end device and the edge router, and can be seen in
Appendix B.1. When the border router receives the relayed request from the
router, it has to confirm the identity of the router to the end device. There are,
however, flaws in the messages that are exchanged, which enables an adversary
to use the request created by the end device and the nonce generated by the

66 5. FORMAL SECURITY ANALYSIS OF THREE KEY ESTABLISHMENT
PROTOCOLS

router to change a different end device’s perception of its closest router.

e SAKES_AUTH, A6 & B7 & C6 Nisynch: Neither A, B, or C hold the non-
injective synchronization property. If we study the attack proposed in Appendix
B.2, we see that the adversary is using the same approach as in the attack
on the Weakagree above. In the original protocol description of SAKES, the
adversary can combine the information sent in the second and third message
into a message that is sent directly to the border router. Such an alternation is
the message flow is not allowed in the model of the protocol, and hence the
Nisynch properties are falsified.

o SAKES_AUTH, A6 & B7 & C6 Niagree: Scyther also proposes attacks targeting
the non-injective agreement claims. These attacks are of the same flavour as
the attacks aimed at the Nisynch property above, and the claims are falsified
as the adversary is able to combine information in observed messages into valid
new messages. Generation of new messages leads to a different set of data items.
Hence, the protocol can agree upon the data that is exchanged throughout the
protocol.

5.4.2 Key Establishment Phase

In order to model the key establishment phase in SAKES, it is assumed that the
Diffie-Hellman key agreement is done correctly by letting B and D share their secret
key to the power of the generator g. Also, it is assumed that when the authors use
a notion of “decrypting the ciphertext encrypted with the private key of X7, they
mean that the message is signed using the private key of X and that the signature
can be verified by applying the corresponding public key. When it comes to the
notation of MACs, an assumption is that the alleged MAC that is sent between the
router and the server that do not share any symmetric key is simply a hash of the
message.

Originally, the server distributes the generator g and the prime modulus P to
the router. This means that a new message needs to be introduced to allow for
the Diffie-Hellman procedure to be executed correctly. If the router B either has
these two cryptographic numbers preloaded in its memory or if the numbers get
distributed from the border server, then the router can send ¢°*2 to the server in
its first message. As the original protocol specification got the Diffie-Hellman part
wrong, the models presented in this section assume that the router has access to
both g and P before initiating the key establishment process with the remote server
D. Therefore, these two elements have been omitted from the key establishment
phase in the model presented in this thesis.

5.4. FORMAL SECURITY ANALYSIS OF SAKES 67

Also, the border router C generates an ephemeral public-key pair for the router
to use in the key establishment process. This, however, leads to challenges when
separating the two phases. Thus, the ephemeral key pair is modelled as the regular
public-key pair of the entity B. We can argue that this appropriate as the trusted
authentication module have authenticated the ephemeral key pair, and transmitted
to B under the secret symmetric key Kp c.

To improve the accuracy of the analysis, the generated session key has been split
into two separate keys, namely SessionKeyA and SessionKeyD. SessionKeyA is a
fresh session key generated by the router B and transported to A to model the
distribution of the session key from the router to end device. SessionKeyD is the key
that is computed in the Diffie-Hellman key agreement between the router and the
remote server. As it is not possible to directly model a Diffie-Hellman exponentiation
in Scyther, session keys are computed by using the two hash functions g1 and g2.
More specifically, instead of transmitting g°*2, the router sends g1(Skp) to the
remote server, which returns g1(Skp) to B. The session key is then derived by
applying these two terms in a new hash function g2: ¢2(g1(Skg), Skp). This gives
an under-approzimation of that the two computed session keys are equal.

Security Claims

The session key establishment in SAKES is conducted between the router B and the
server D before the session key is distributed from the router to the end device A.
We assume that A and B have authenticated each other before the key establishment
process is engaged. Listing 5.8 shows the claims that are stated for the end device in
the key establishment phase of SAKES. Since the only message that is sent between
the two contains the session key, which is encrypted with their shared symmetric key
K 4. B, we assume that the session key is secret by using the SKR claim. In addition,
claims for non-injective synchronization and agreement have been added to ensure
that the protocol is executing as expected based on the model.

claim (A, Niagree); ‘
claim (A, Nisynch); ‘
claim (A, SKR, SessionKeyA); ‘

Listing 5.8: Security claims for role A during key establishment in SAKES.

As the router generates the session key on behalf of the end device B, we also
state that the session key should be secret at the router side using the SKR claim as
seen in Listing 5.9. As the router interacts with the remote server D, we also add
claims for entity authentication. Finally, claims for non-injective synchronization
and data agreement are added to verify that the protocols behave as specified in the

68 5. FORMAL SECURITY ANALYSIS OF THREE KEY ESTABLISHMENT
PROTOCOLS

protocol model.

claim (B, Alive, D);
claim (B, Alive, B);
claim (B, Weakagree, D);
claim (B, Weakagree, B);
(B, Niagree);
(B, Nisynch);
claim (B, SKR, SessionKeyA);
claim (B, SKR, SessionKeyD);

Listing 5.9: Security claims for role B during key establishment in SAKES.

For the remote server, authentication is claimed only between it and the router
which it establishes session keys with. The end device is indirectly authenticated
through the proof that is signed by the authentication module in the border router,
but this is not modelled as a direct authentication claim in this model. The generated
session key is claimed to be secret using the SKR notation. In addition, we also claim
non-injective synchronization and agreement for the role as seen in Listing 5.10.

claim (D, Alive, B);

claim (D, Weakagree, B);
claim (D, Niagree);

claim (D, Nisynch);

claim (D, SKR, SessionKeyD);

Listing 5.10: Security claims for role D during key establishment in SAKES.

Adversary

For the key establishment phase, we assume a Dolev-Yao adversary who is capable
of eavesdropping, delete messages, compute cryptographic analysis on intercepted
messages, forge new messages from its knowledge, and insert them into the network.
It is allowed for the adversary to obtain the session keys for all sessions whose
identifier differs from the current session’s identity. As SAKES utilizes a form of
Diffie-Hellman key agreement, it is also assumed that the protocol should possess
forward secrecy, especially since the half of the key is fixed as the remote server uses
a permanent public key pair.

5.4. FORMAL SECURITY ANALYSIS OF SAKES 69

5.4.3 Results

The results of verifying the model of the key establishment phase in SAKES using
Scyther is presented in Figure 5.4. Entity authentication of both the router and the
server is provided and verified in the key establishment process but is falsified for the
end device. Stronger notions of authentication such as Weakagree for the end device
A and the server D are falsified for the router B in this model. Both non-injective
synchronization and data agreement are falsified for the end device and the router in
the key establishment phase.

Claim Status Comments Patterns
SAKES KEYS A SAKES_KEYSA1 Niagree Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYSA2 Nisynch Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYS A3 SKR SessionkeyA Ok Mo attacks within bounds.
B SAKES_KEYS,B1 Alive D Ok Verified Mo attacks.
SAKES_KEYS,B2 Alive A Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYSB3 Weakagree D Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYSB4 Weakagree A Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYS,B5 Niagree Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYS,BE Nisynch Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYS,B7 SKR SessionKeyA ok No attacks within bounds.
SAKES_KEYS,B8 SKR g2(g1(sk(B)),sk(D}) ok No attacks within bounds.
D SAKES_KEYS,D1 Alive B Ok Verified No attacks.
SAKES_KEYS,D2 Weakagree B Ok Verified No attacks.
SAKES_KEYS,D3 Niagree Ok Mo attacks within bounds.
SAKES_KEYS,D4 Nisynch ok No attacks within bounds.
SAKES_KEYS,D5 SKRg2(g1(sk(B)),sk(D)) ok No attacks within bounds.

Figure 5.4: Result of verifying SAKES’ key establishment claims using Scyther.

o SAKES_KEYS, Al & A2, Niagree & Nisynch: The attack on the non-injective
synchronization and the data agreement claims for the end device A is shown in
Figure B.4 in Appendix B. Non-injective synchronization and data agreement
are falsified because the adversary can generate its response to the message

70 5. FORMAL SECURITY ANALYSIS OF THREE KEY ESTABLISHMENT
PROTOCOLS

that is sent between the router B and the remote server D. This attack occurs
because the remote server does not authenticate itself to the router, which can
be problematic. Given that the remote server’s public key is not published
(not mentioned in the specifications), then there is not possible for the router
to verify that the received response does, in fact, originate from the trusted
remote server D. Another important part of this attack, is that there is no
linkage between the message that is sent from the router to the server and the
response that is received following this message.

e SAKES_KEYS, B2 & B4, Alive A & Weakagree A: Entity authentication is
for the end device is falsified by Scyther. However, if the attack in Figure B.3
in Appendix B is inspected, we see that it does not involve the end device at all.
In the model of the key establishment phase, the end device does not contribute
to the protocol, and hence, it is impossible for the router to determine whether
the end device has ever participated in the protocol runs at all. This attack
will be examined more carefully in the next subsection.

e SAKES_KEYS, B4, Weakagree D: Scyther also discovers an attack on the weak-
agree claim of the remote server at the router, as seen in Figure B.5 in Appendix
B. This attack indicates that the adversary can impersonate the remote server
D, and forge response messages that are sent to the router during the key
establishment phase. As the responses are not authenticated, nor contains a
linkage to the previous request, there is no way for the router to detect if the
message originates from the remote server, nor which request it is tied to.

o SAKES_KEYS, B5 & B6 Niagree & Nisynch: The attacks targeted at the non-
injective synchronization and data agreement claims are identical. This is
essentially the same attack as the one Scyther proposed on the weakagree
claim above, which can be reviewed in Figure B.5 in Appendix B. In this attack,
the adversary can use the computed part of the session key g1(Skp) in a new
message that is sent from the remote server D to the router B that differs from
what was initially sent, as the response from the server is not authenticated or
linked to a request.

Deeper analysis of the entity authentication of the end device at the
router

Above, Scyther discovered an attack that falsified the entity authentication of the
end device (SAKES_KEYS, B2 & B4, Alive A & Weakagree A). Apparently, there
is no evidence for that the end device has ever run the protocol. However, the end
device is the entity that kicks off the protocol, but due to a large state-space, the
key establishment model is not able to capture this. Therefore, this part of the
protocol is analysed more carefully. By isolating the two roles A and B in the key

5.4. FORMAL SECURITY ANALYSIS OF SAKES 71

establishment, another model is presented in Appendix A.3.3. This captures the
interaction between the end device and the router and includes the exchanging of
the two nonces N4 and N from the authentication phase.

In this model, the interaction between the router and the remote server in
establishing the session key is omitted. Instead, the router generates a fresh key,
without giving it any specific properties. This key is used to illustrate the last part
of the key establishment phase, where the router distributes the computed session
key to the end device.

Claim Status Comments Patterns
SAKES_KEYS A SAKES_KEYSA1 Alive B Ok Verified No attacks.
SAKES_KEYSA2 Weakagree B Fail Falsified Atleast 1 attack. 1 attack
SAKES_KEYS,A3 Niagree Fail Falsified Atleast1 attack 1 attack
SAKES_KEYSA4 Nisynch Fail Falsified Atleast1 attack 1 attack
SAKES_KEYS,AS SKR SessionkeyA ok Mo attacks within bounds.
B SAKES KEYSB1 Alive A ok Verified No attacks.
SAKES_KEYS,B2 Weakagree A Fail Falsified Exactly 1 attack. 1 attack
SAKES_KEYS,B3 Niagree Fail Falsified Atleast1 attack 1 attack
SAKES_KEYS,B4 Nisynch Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYS,BS SKR SessionKeyA Ok No attacks within bounds.

Figure 5.5: Result of verifying SAKES’ the key distribution between the router B
and the end device A in the key establishment phase.

The results of using Scyther to verify this model is presented in Figure 5.5
below. As observed, this part of the protocol is able to provide entity authentication
of the end device, which was falsified in the model that captured the entire key
establishment phase. This is because in the model only focusing on the end device
and the router contains the nonce N4, which indicates that the end device must have
run the protocol at some point. We observe that stronger notions of authentication
such as Weakagree are falsified, as well as non-injective synchronization and data
agreement. These attacks will be addressed in Section 6.5 in Chapter 6. Also, the
freshly generated session key is distributed securely to the end device.

Therefore, it is fair to assume that the key establishment phase of SAKES actually

72 5. FORMAL SECURITY ANALYSIS OF THREE KEY ESTABLISHMENT
PROTOCOLS

provides entity authentication when it is protocol is verified in a complete model
containing the entire protocol execution.

5.5 Incompleteness in the Analysis of SAKES

As the SAKES protocol proved to be computational and time expensive to verify
on the available equipment, it has been divided into two separate protocols for
the analysis to provide some insight into SAKES security. Therefore, the mutual
authentication that is achieved between A, B, and C in the authentication phase
is not transferable to the key establishment phase. The separation may or may not
cause some of the attacks that are discovered because of lack of authentication, and
could also lead to attacks that bypass the analysis undiscovered.

5.6 General Limitations in the Analysis

Even though Scyther is a powerful tool for formal security analysis, there are
particular types of attacks that Scyther is not able to model. Replay attacks, where
the adversary saves a captured frame for injecting it into the network at a later
time, are not possible to model in Scyther. Both AKES and APKES claim to avoid
replay attacks through the 802.15.4 security sub-layer and the use of frame counters
to discover frames that have been previously observed [45, 46]. SAKES claims to
prevent replay attacks by adding nonces and MACs to prevent messages from being
tampered with and to ensure freshness [38]. However, the presented analyses do not
verify such security properties.

Discussion

In this chapter, the results from the formal analysis will be evaluated and compared.
If an attack were discovered in the analysis, possible improvements and alternatives
will be suggested.

6.1 Evaluation of Authentication Properties

Table 6.1 shows the security properties related to authentication for the three
protocols that have been verified by Scyther. In the section for entity authentication,
we assume that successful verification of the weakest property in the hierarchy of
authentication properties, Aliveness, is enough to earn a checkmark in the column.
However, Aliveness has to hold for the role in the claims of all the other roles,
meaning that all roles that claim aliveness for role A have to be successfully verified
to obtain the check mark. In cases where the property is not applicable, for instance
claiming entity authentication for role C' in APKES or AKES, a dash is inserted.
The authentication phase in SAKES only includes A, B, and C, while the key
establishment phase includes the claim for entity authentication of role D.

Protocol Entity authentication Implicit key Explicit key authentication
authentication

OfA OfB OfC OfD OfA OfB OfC OfD OfA OfB OfC Of D

APKES v v — — v v — — X v — —
AKES v v — - v v — - v v - -
SAKES v v v v v v — v X X — X

Table 6.1: Table of the security properties for authentication that are satisfied in
the different protocols. v'indicates that that the property is verified, x that the
property is falsified, and — that the property is inapplicable for the protocol.

APKES is only able to achieve explicit key authentication for the responding
role B because the HELLOACK that is sent from B to A is authenticated by using the
shared secret from the pluggable scheme. AKES fixes this by computing the session

73

74 6. DISCUSSION

key before sending the HELLOACK and use the session key to compute the MAC. Hence
it achieves explicit key authentication. As for SAKES, the session key cannot be
computed without the other side of the key establishment sending its secret key to
the power of the generator. There is not, however, any message passing proving that
the session key is in fact computed, and therefore, no explicit key authentication
is provided by either party, which means that during its key establishment process,
SAKES is only able to provide implicit key authentication. A is included in this
process even though it is not directly computing the key, but receives it from the
router B.

6.2 Evaluation of Key Secrecy Properties

Table 6.2 shows the results related to the secrecy of the computed keys in the various
schemes. In all three schemes, the computed key is verified to be secret, which is the
most valuable property in key establishment schemes. Key control is not directly
modelled and verified, but can verified manually by confirming that each side in the
key establishment phase has to contribute to the computation of the key. Known-key
security is modelled by allowing the adversary to obtain session keys from other
sessions than the current one. The importance of verifying this property is so that
there is not possible to compute future session keys from knowledge of previous ones.
AKES holds for this property, as well as SAKES, while APKES does not claim this
property as it computes a static key rather than session keys.

Protocol Secrecy of Key control Known-key security Forward Secrecy Key compromise
key impersonation
APKES v v — — —
AKES v v v - -
SAKES v v v X X

Table 6.2: Table of the security properties for secrecy that are satisfied in the
different protocols. v’'indicates that that the property is verified, x that the property
is falsified, and — that the property is inapplicable for the protocol.

As explained in Section 2.4.2, forward secrecy is a property where the compromise
of the long-term key used to generate session keys does not lead to compromise of
previous sessions. The Diffie-Hellman key agreement is one of the most well-known
schemes that provide forward secrecy. SAKES leverages this type of agreement, and
therefore it should provide forward PFS or at least wPFS.

When looking at Table 6.2, this is not the case based on the models that this
thesis presents. If we observe the protocol more closely, we see that the server has,
in fact, a fixed public key pair (Pkp, Skp), and does not generate anything fresh for
each session. This means that if the key pair of the remote server is compromised,

6.3. COMPARISON 75

all previous sessions would be compromised as well, given that the adversary has
recorded the messages passed in previous protocol runs AKES generates session keys
as well, but as these keys are computed using a symmetric key, it is infeasible for
the protocol to achieve forward secrecy. Forward secrecy is not, however, a claimed
secrecy property of either APKES nor AKES.

6.3 Comparison

6.3.1 APKES versus AKES

Both infrastructures focus on device-to-device communication without any in-between
routers to forward messages. AKES is merely an improvement over APKES, which
addresses its known issues. From the results in Table 6.1 and Table 6.2, we see that
the security properties provided in both protocols are almost identical, but as we
know: AKES generates session keys. The advantage with AKES is its support for
mobility regarding handling reboot of nodes and deleting disappeared neighbours to
save precious storage space on devices that these protocols target.

Also, AKES uses its derived session key to authenticate the message providing the
initiating party with its nonce, which eventually ends in the protocol achieving explicit
key authentication. Overall, AKES is naturally the best choice of the two based on
its security properties and built-in mechanisms which gives it more robustness when
deployed in a dynamic 6LoWPAN.

6.3.2 AKES versus SAKES

Both AKES and SAKES are protocols for establishing session keys in 6LoWPANS,
but the infrastructure for the following protocol includes both 6LoWPAN routers and
border routers, as well as a remote server which the devices connect to. Based on the
security properties in Table 6.1 and Table 6.2, we see that both protocols provide
the same security properties. However, based on the Scyther analysis presented in
Section 5.3 and Section 5.4, AKES seems to be the protocol that is most carefully
designed. Multiple attacks are introduced that target different phases of SAKES,
which may indicate that the suggested protocol is not a preferable protocol to use
for key establishment in your next 6LoWPAN.

Apart from the attacks discovered in the analysis, SAKES has a more thorough
authentication hierarchy, where the trusted authentication module authenticates each
device and router in the network for each session key establishment. Authentication
in AKES is solely based on that if the node is capable of establishing keys using the
shared secret, it is authenticated.

76 6. DISCUSSION

It’s hard to recommend SAKES over AKES as a protocol to use in a 6LoWPAN
as it is wrong in its original proposed form, and since its complexity leads to a
security analysis where the model had to be split into separate phases. They are
also proposed for different infrastructures. However, AKES can successfully establish
session keys for device-to-device communication, and is also implemented and tested
in the Contiki operating system [45].

6.4 Suggested Improvements for APKES

Use the pairwise session key to authenticate the HELLOACK APKES
does provide verifiable and secure key establishment. One improvement, however,
could be to use the pairwise session key to authenticate the HELLOACK that is sent
between B and A in Figure 4.2, instead of the shared secret. By doing so, the scheme
would achieve explicit key authentication of B to A as well, and behave much like
AKES while still generating a pairwise symmetric key.

6.5 Suggested Improvements for SAKES

Flaws for SAKES have been discovered in the formal analysis presented in this thesis.
This section aims to propose possible improvements to the protocol.

6.5.1 Achieve Authentication in the Authentication Phase by
Returning Nonces

As presented in Section 5.4.1, certain authentication claims fail in SAKES. Two of
them are weak agreement claims in role A for the router B and the border router C.
These can be fixed by adding the nonce N4, which was initially generated by the
end device to the response that is sent from the border router to the end device for
confirming the identity of the router B. Listing 6.1 shows how this is implemented
in the improved model of SAKES, which can be found in Appendix A.4.1. When the
following improvements are implemented, all claimed security properties are verified
as seen in Figure 6.1.

6.5. SUGGESTED IMPROVEMENTS FOR SAKES 77

Previous:
send_6(C, A, B, Nc, MAC(B, Nc¢, k(A, C)); # In role C
recv_6(C, A, B, Nc, MAC(B, Nc, k(A, C)); # In role A

Fix:
send_6(C, A, B, Na, Nec, MAC(B, Na, Nc¢, k(A, C)); # In role C
recv_6(C, A, B, Na, Nc¢, MAC(B, Na, Nc, k(A, C)); # In role A

Listing 6.1: Fix to the SAKES protocol to provide weak agreement for the end
device in the authentication phase. The changes to the protocol are highlighted with
blue.

The next step is to achieve non-injective synchronization and data agreement
for the authentication phase. As discovered in the attacks from Section 5.4.1, the
issue lies in two messages. The first message is the request that is created at the end
device and sent to the router. To avoid that the request can be reused in pair with
an unrelated nonce Ny from another session, we have to add the received nonce
Np; in the initial request as seen in Listing 6.2. By adding this nonce, the protocol
achieves both non-injective synchronization and data agreement for the end device
A and the border router C, as seen in Figure 6.1.

Previous:
send_3(A, B, {A, B, D}k(A,C), A, Na, MAC); # In role A
recv_3(A, B, {A, B, D}k(A,C), A, Na, MAC); # In role B

Fix:
send_3(A, B, {A, B, D}k(A,C), A, Na, Nb, MAC); # In Role A
recv_3(A, B, {A, B, D}k(A,C), A, Na, Nb, MAC); # In Role B

Listing 6.2: Fix to the SAKES protocol to provide non-injective synchronization and
data agreement for the end device and the border router during the authentication
phase. The changes to the protocol are highlighted in blue.

Lastly, the protocol lacks non-injective synchronization and data agreement for
the router B. When the router relays the request from the end device to the border
router, it receives a signed proof of identities and an ephemeral public key pair from
the border router. There is not, however, confirmation of that this is the intended
response to that particular request. It may be possible that the returned identities
and key pair are actually from a different session, hence the protocol is not able to
fulfil the two claims non-injective synchronization and data agreement for the router
B. If the border router C' is instructed to return the nonce Np that was generated

78 6. DISCUSSION

by the router and sent with the request, the router can verify that the response
corresponds to the initial request, and not a different session. Listing 6.3 shows how
this improvement can be added to the message which has been verified as seen in
Figure 6.1.

Claim Status Comments
SAKES AUTH A SAKES_AUTHA1 Alive B Ok Verified Noattacks.
SAKES_AUTHAZ AliveC Ok Verified No attacks.

SAKES_AUTHA3 Weakagree B Ok Verified MNo attacks.

SAKES_AUTHA4 Weakagree C Ok Verified MNo attacks.

SAKES_AUTH,AS Miagree Ok Verified MNo attacks.
SAKES_AUTHAB Nisynch Ok Verified No attacks.

B SAKES_AUTHB1 SecretSk ok Mo attacks within bounds.
SAKES_AUTHEZ Alive A ok Mo attacks within bounds.
SAKES_AUTHEB3I AliveC ok Mo attacks within bounds.
SAKES_AUTH,B4 Weakagree A ok Mo attacks within bounds.
SAKES AUTH,B5 Weakagree C ok Mo attacks within bounds.
SAKES_AUTH,B6 Niagree 0Ok No attacks within bounds.
SAKES_AUTH,B7 Nisynch 0ok No attacks within bounds.

C SAKES_AUTH.C1 Alive A Ok Verified No attacks.
SAKES_AUTH,CZ AliveB Ok Verified No attacks.

SAKES_AUTH,C3 Weakagree A Ok Verified No attacks.
SAKES_AUTH,C4 Weakagree B Ok Verified No attacks.
SAKES_AUTH,C5 Niagree Ok Verified No attacks.

SAKES_AUTH,CB Nisynch Ok Verified MNo attacks.

Figure 6.1: Result of verifying the fixed version of SAKES’ authentication claims
using Scyther.

6.5. SUGGESTED IMPROVEMENTS FOR SAKES 79

Previous:
send_5(C, B, {Signed—Proof, Pk, Sk, Nc}k(B, C)); # In role C
recv_5(C, B, {Signed—Proof, Pk, Sk, Nc}k(B, C)); # In role B

Fix:

send_5(C, B, {Signed—Proof, Pk, Sk, Nb, Nc}k(B, C)); # In
role C

recv_5(C, B, {Signed—Proof, Pk, Sk, Nb, Nc}k(B, C)); # In
role B

Listing 6.3: Fix to the SAKES protocol to provide non-injective synchronization
and data agreement for the router B during the authentication phase. Changes to
the protocol are highlighted in blue.

6.5.2 Add Nonces in the Key Establishment Phase to Limit
Malicious Behaviour

Above, the adding of nonces in the authentication phase was suggested to improve
the level of authentication and protect the protocol against misbehaviour. This idea
should also be transferred to the key establishment phase. When inspecting the
protocol specification for SAKES, which can be reviewed in Figure 4.6, we observe
that the nonce N4, which the end device creates for each session request, is not
returned to the end device along with the session key.

The formal security analysis of SAKES in Section 5.4 revealed attacks on the
authentication of the end device during the key establishment, which can be reviewed
in Figure 5.5. When inspecting the protocol, we observe that the protocol lacks the
same type of message linking as explained above. More specific, the nonce that is
generated by the end device at the start-up of the protocol, N, is not returned
along with the session key.

Previous:
send_3(B, A, {Nb, SessionKeyA}k(A, B)); # In role B
recv_3(B, A, {Nb, SessionKeyA}k(A, B)); # In role A

Fix:
send_3(B, A, {Na, Nb, SessionKeyA}k(A, B)); # In role B
recv_3(B, A, {Na, Nb, SessionKeyA}k(A, B)); # In role A

Listing 6.4: Fix to the SAKES protocol to provide non-injective synchronization
and data agreement for the end device A during the key distribution. Changes to
the protocol are highlighted in blue.

80 6. DISCUSSION

Not returning the N4 nonce along with the session key removes the mapping
between the request and the session key, effectively meaning that the end device is
unable to detect which session the received session key belongs to. By adding this
nonce as seen in Listing 6.4 above, the model presented in Appendix A.3.3 would
achieve both non-injective synchronization and data agreement for the end device as
seen in Figure 6.2.

However, the attack on the Weakagree claim in A is still present in Figure 6.2,
and can be seen in Figure B.6 in Appendix B. The attack claims to fake the sending of
the nonce Np from the router to the end device. In the subsection on improving the
authentication phase that was discussed previously in this section, weak agreement
was provided for the end device, the router, and the border router. As the attack
found in the model of the isolated interaction between the end device and the router
targets a message that was sent in authentication phase of the protocol, it may be
that the attack is a consequence of the separation of the two phases, and not a direct
attack on the protocol itself.

Claim Status Comments Patterns
SAKES_KEYS SAKES_KEYS A1 Alive B ok Verified No attacks.
SAKES KEYS,A2 Weakagree B Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYS,A3 Miagree ok Verified No attacks.
SAKES_KEYS,A4 Nisynch ok Verified No attacks.
SAKES_KEYS,AS SKR SessionKeyA ok Verified Mo attacks.
SAKES KEYS,B1 Alive A ok Verified No attacks.
SAKES KEYS,B2 Weakagree A Fail Falsified Exactly 1 attack. 1 attack
SAKES_KEYS,B3 Niagree Fail Falsified Atleast1 attack 1 attack
SAKES_KEYS,B4 Nisynch Fail Falsified Atleast1 attack. 1 attack
SAKES_KEYS,BS SKR SessionKeyA Ok No attacks within bounds.

Figure 6.2: Result of verifying the model of the key distribution in SAKES’ using
Scyther with a mapping between session and session key.

6.5. SUGGESTED IMPROVEMENTS FOR SAKES 81

6.5.3 Return the Proof to the Router to Confirm the Identity of
the Server

In Section 5.4.3, the results of Scyther’s verification of the key establishment model
was presented. As discussed, the two phases in SAKES has been divided into
two separate models due to the large state-space. In the results, both claims for
non-injective synchronization and data agreement for the router B were falsified, in
addition to the Weakagree claim of the server D in B’s claims. A theory was presented
where these attacks were suggested to originate from the lack of mapping between
the request to the server and its response, and also the absence of authentication of
the server to the router.

To protect the protocol from an adversary that can forge the responses from the
server, a suggestion was to include both the proof generated by the border router
C and the nonce Np in the response from the server, which can be done as seen in
Listing 6.5.

Previous:
send_3(D, B, {Nd, gl(Sk(D), MAC}k(sk(D))); # In role D
recv_3(D, B, {Nd, gl(Sk(D), MAC}k(sk(D))); # In role B

Fix:

send_3(D, B, {Nb, Nd, Signed—Proof, gl(Sk(D), MAC}k(sk(D)));
In role D

recv_3(D, B, {Nb, Nd, Signed—Proof, gl(Sk(D), MAC}k(sk(D)));
In role B

Listing 6.5: Fix to the SAKES protocol to provide authentication of the remote
server D to the router B in the key establishment phase.

When running the model with the changes above in Scyther, the results in Figure
6.3 is returned. As we see, the protocol achieves both non-injective synchronization
and data agreement, as well as weak agreement for the server D. We observe that
the claims for non-injective synchronization and data agreement for A, as well as
aliveness and weak agreement in B, are failing. However, these were previously
addressed in the fix proposed in Subsection 6.5.2, where a possible solution was
introduced and verified. When seeing these two results as one, all the claims in the
protocol are essentially confirmed after the presented fixes.

82 6. DISCUSSION

Claim

SAKES KEYS A

Figure 6.3:

SAKES_KEYS A1

SAKES_KEYS A2

SAKES_KEYS,A3

SAKES_KEY5,B1

SAKES_KEY5,B2

SAKES_KEYS,B3

SAKES_KEYS B4

SAKES_KEY5,B5

SAKES_KEY5,B6

SAKES_KEYS5,B7

SAKES_KEYS,BS

SAKES_KEYS,D1

SAKES_KEYS5,D2

SAKES_KEYS,D3

SAKES_KEYS5,D4

SAKES_KEYS5,D5

Niagree

Nisynch

SKR SessionkeyA
Alive D

Alive A
Weakagree D
Weakagree A
Niagree

Nisynch

SKR SessionkeyA
SKR g2(g1(sk(B)),sk(D))
Alive B
Weakagree B
Niagree

Nisynch

SKR g2(g1(sk(B)),sk(D))

Status
Fail Falsified
Fail Falsified
ok

Ok Verified
Fail Falsified
ok

Fail Falsified
ok

ok

ok

ok

Ok Verified
Ok Verified
ok

ok

ok

Comments
At least 1 attack.

At least 1 attack.

No attacks within bounds.

No attacks.

Atleast 1 attack.

No attacks within bounds.

At least 1 attack.

No attacks within bounds.

No attacks within bounds.

No attacks within bounds.

No attacks within bounds.

No attacks.

No attacks.

No attacks within bounds.

No attacks within bounds.

No attacks within bounds.

Patterns

1 attack

1 attack

1 attack

1 attack

Result of verifying the model of the key distribution in SAKES’ using
Scyther where the server returns both the proof and the nonce Np.

6.5.4 Generate Ephemeral Keys at Both Sides in the

Diffie-Hellman Key Agreement

SAKES uses the private key of an ephemeral key pair at the router side and the
private of the server to generate the session key in a Diffie-Hellman manner. The
reason for generating the key pair in the first place is to use them in the computation
of the session key. Another usage is to sign the messages that are sent between the

router and the server using the private key, and verify them with the public key.

Generating public key pairs is a time-consuming process for a server, especially if

it has to do so for each session, and if the network of end devices that request services
is large. Therefore, random nonces could be generated in addition to improve the
security of the session keys that are generated in the key establishment phase. This

6.5. SUGGESTED IMPROVEMENTS FOR SAKES 83

approach will also allow for maintaining the signing capability of the server and the
router.

Generating random nonces is relatively inexpensive compared to generating public
key pairs. Let both B and D generate one nonce each, Ny and Npo, to use in the
key establishment phase. When B sends its request to D, it also sends ¢"V®2 to the
server. At the server side, the server sends ¢™VP2 in return to B, and computes the
session key as (¢™V#2)VP2. The advantage of this approach is that it provides forward
secrecy. In the case where the server is compromised, the adversary is not able to
decrypt previous sessions since the nonces used to generate the session keys are fresh
on both sides each time.

6.5.5 Use Elliptic Curve Diffie-Hellman and the Elliptic Curve
Digital Signature Algorithm

Another suggestion is to use the ECDH in conjunction with the ECDSA [41] in the
key establishment phase. ECDH uses ECC public key pairs in the Diffie-Hellman key
agreement. However, as the protocol generates an ephemeral public key pair for the
router to use in each key establishment session, we need to handle authentication
and integrity of the messages in addition. Authentication can be achieved by using
the ECDSA to sign the messages that are exchanged.

The protocol specifications of SAKES states that the key pair generated by the
authentication module C' is an ECC key pair, while no information is given about
how the public key pair of the server D is derived. As the server is assumed to be a
computationally powerful entity, it is fair to assume that it is capable of generating
an ECC public key pair as well.

As mentioned in Section 2.4, public-key cryptography is more computationally
expensive than symmetric cryptography, meaning that the energy consumption on
the devices is significantly higher. However, given the architecture of SAKES, where
more powerful routers utilizes public-key cryptography to generate the session key, it
may be a feasible approach to use ECDH and ECDSA in the key establishment.

Conclusion

In this thesis, the first formal security analyses of three proposed protocols for
key establishment in IEEE 802.15.4 networks that utilize 6LoWPAN are presented.
The protocols have been investigated, reviewed, and formally analysed using the
tool Scyther. Scyther, the selected tool for verifying these protocols, has also been
examined and explained in detail to aid the reader in understanding the importance
of verifying the correctness of security protocols, and how this can be done using
computer software. Key establishment, different schemes, and the desirable properties
in key establishment have also been thoroughly assessed and explained to support
the analysis and to explain the modelling choices.

Outcomes

There exist multiple architectures for key establishment schemes, namely those based
on symmetric and asymmetric encryption, as well as those that leverage online key
servers and trusted third parties. This thesis has identified some of the reasons
for choosing a symmetric key establishment scheme over key servers and public-key
cryptography. It has also discussed the possibility of using a hybrid system where
the infrastructure allows for having more powerful devices in the 6LoOWPAN to
handle the heavier computation. However, as technological progress often leads
to smaller devices and new business opportunities, symmetric key establishment
schemes are suited for future applications because of their low complexity and low
energy consumption.

Based on the results that been presented, AKES seems to be a valid and usable
scheme for establishing keys in a 6LoWPAN, but as the analysis has not covered
replay attacks, there may still be undiscovered vulnerabilities. Both APKES and
AKES have been formally verified for an unbounded state space and have been
proven to be correct schemes that may have an appropriate role in a real-life network.
AKES, however, holds advantages over APKES when it comes to providing mobility
in networks, which can be assumed to be a requirement for modern device-to-device

85

86 7. CONCLUSION

communication in dynamic networks.

Flaws have been presented and explained in the SAKES protocol, along with
suggested changes that can improve the protocol. The improved protocol have
then been formally verified using Scyther. However, due to the design of SAKES,
it has been infeasible to provide an analysis of the protocol in a single model.
Therefore, the protocol has been divided into two separate models targeting the
authentication and key establishment phases. Because of this separation, the security
analysis is not entirely complete, and there may exist attacks that went undiscovered
through the formal analysis presented in this thesis. SAKES provides an interesting
authentication phase, which holds advantages over the two other protocols, given
that the authentication module used in the scheme is trusted and secure. These
advantages include a more robust authentication system and protection against
wormhole attacks.

Future Work

As the formal security analysis of SAKES was separated into two components with
each formally verified individually, it raises the question of undiscovered attacks on
the protocol. One way to verify this unanswered question is to use a more powerful
computer to search through the state-space of the protocol, for example, NTNU’s
super-computer Vilje.

Also, as this thesis presents multiple fixes that may improve the usability of SAKES
as a key establishment protocol in 6LoWPANS, a compelling case for future work
would be to implement the protocol in a real-world network to analyse its suitability
as a future key establishment protocol in a 6LoWPAN. This work would include
more extensive security analysis and also an analysis of the energy consumption of
the different entities in SAKES to verify whether standard technologies can run the
protocol in an efficient matter.

References

[1] Anderson, R. and M. Kuhn. Tamper Resistance - A Cautionary Note. In
Proceedings of the second Useniz workshop on electronic commerce, Volume 2, pp.
1-11 (1996).

[2] Andova, S., C. J. F. Cremers, K. Gjgsteen, S. Mauw, S. F. Mjglsnes, and
S. Radomirovic. A Framework for Compositional Verification of Security Protocols.
Inf. Comput. 206(2-4), 425-459 (2008).

[3] Ashton, K. That “Internet of Things” Thing. http://www.rfidjournal.com/
articles/view?4986. Accessed: 2016-03-31 (2009).

[4] AVISPA Project. AVISPA. http://www.avispa-project.org/: AVISPA Project.
Accessed: 2016-02-23.

[5] Barker, E. Recommendation for Key Management Part 1: General. NIST
Special Publication 800(4), 57 (2016).

[6] Basin, D. and C. J. F. Cremers. Modeling and Analyzing Security in the Presence
of Compromising Adversaries. In Computer Security—-ESORICS 2010, pp. 340-356.
Springer (2010).

[7] Basin, D., C. J. F. Cremers, and C. Meadows. Model Checking Security Protocols.
Handbook of Model Checking (2015).

[8] Blanchet, B. ProVerif. http://prosecco.gforge.inria.fr/personal/bblanche/
proverif/. Accessed: 2016-02-23.

[9] Blanchet, B. Security Protocol Verification: Symbolic and Computational
Models. In Principles of Security and Trust - First International Conference,
POST 2012, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2012, Proceedings, pp. 3-29 (2012).

[10] Blom, R. An Optimal Class of Symmetric Key Generation Systems. In
Advances in Cryptology: Proceedings of EUROCRYPT 84, A Workshop on the
Theory and Application of of Cryptographic Techniques, 1984, Proceedings, pp.
335-338 (1984).

87

http://www.avispa-project.org/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

88 REFERENCES

[11] Bos, J. W., J. A. Halderman, N. Heninger, J. Moore, M. Naehrig, and
E. Wustrow. Elliptic Curve Cryptography in Practice. JACR Cryptology ePrint
Archive 2013, 734 (2013).

[12] Burrows, M., M. Abadi, and R. M. Needham. A Logic of Authentication. ACM
Trans. Comput. Syst. 8(1), 18-36 (1990).

[13] Chan, H., A. Perrig, and D. X. Song. Random Key Predistribution Schemes
for Sensor Networks. In 2003 IEEE Symposium on Security and Privacy (S€P
2003), pp. 197 (2003).

[14] Cortier, V., S. Kremer, and B. Warinschi. A Survey of Symbolic Methods in
Computational Analysis of Cryptographic Systems. J. Autom. Reasoning 46(3-4),
225-259 (2011).

[15] Cremers, C. J. F. Scyther. https://www.cs.ox.ac.uk/people/cas.cremers/
scyther/index.html. Accessed: 2016-02-23.

[16] Cremers, C. J. F. Scyther - Semantics and Verification of Security Protocols.
Ph.D. dissertation, Eindhoven University of Technology (2006).

[17] Cremers, C. J. F. The Scyther Tool: Verification, Falsification, and Analysis of
Security Protocols. In Computer Aided Verification, 20th International Conference,
CAV 2008, Proceedings, pp. 414-418 (2008a).

[18] Cremers, C. J. F. Unbounded Verification, Falsification, and Characterization
of Security Protocols by Pattern Refinement. In Proceedings of the 2008 ACM
Conference on Computer and Communications Security, CCS 2008, pp. 119-128
(2008Db).

[19] Cremers, C. J. F. Key Exchange in IPsec Revisited: Formal Analysis of IKEv1
and IKEv2. In Computer Security - ESORICS 2011 - 16th European Symposium
on Research in Computer Security. Proceedings, pp. 315-334 (2011).

[20] Cremers, C. J. F. Scyther User Manual. Oxford University (2014).

[21] Cremers, C. J. F. and M. Horvat. Improving the ISO/IEC 11770 Standard
for Key Management Techniques. In Security Standardisation Research - First
International Conference, SSR 201/, Proceedings, pp. 215-235 (2014).

[22] Cremers, C. J. F., P. Lafourcade, and P. Nadeau. Comparing State Spaces in
Automatic Security Protocol Analysis. In Formal to Practical Security - Papers
Issued from the 2005-2008 French-Japanese Collaboration, pp. 70-94 (2009).

[23] Cremers, C. J. F. and S. Mauw. Operational Semantics of Security Protocols.
In Scenarios: Models, Transformations and Tools, International Workshop, 2003,
Revised Selected Papers, pp. 66-89 (2003).

[24] Cremers, C. J. F., S. Mauw, and E. De Vink. Defining Authentication in a
Trace Model. In 1st International Workshop on Formal Aspects in Security and
Trust (FAST 03) (2003).

https://www.cs.ox.ac.uk/people/cas.cremers/scyther/index.html
https://www.cs.ox.ac.uk/people/cas.cremers/scyther/index.html

REFERENCES 89

[25] Cremers, C. J. F.,; S. Mauw, and E. P. de Vink. Injective Synchronisation:
An Extension of the Authentication Hierarchy. Theor. Comput. Sci. 367(1-2),
139-161 (2006).

[26] Diffie, W. and M. E. Hellman. New Directions in Cryptography. IEEE Trans.
Information Theory 22(6), 644—654 (1976).

[27] Dolev, D. and A. C. Yao. On the Security of Public Key Protocols. IEEE
Trans. Information Theory 29(2), 198-207 (1983).

[28] Dunkels, A., B. Gronvall, and T. Voigt. Contiki - A Lightweight and Flexible
Operating System for Tiny Networked Sensors. In 29th Annual IEEE Conference
on Local Computer Networks (LCN 2004), 16-18 November 2004, Tampa, FL,
USA, Proceedings, pp. 455-462 (2004).

[29] Durgin, N. A., P. Lincoln, and J. C. Mitchell. Multiset Rewriting and the
Complexity of Bounded Security Protocols. Journal of Computer Security 12(2),
247-311 (2004).

[30] Durumeric, Z., J. Kasten, D. Adrian, J. A. Halderman, M. Bailey, F. Li,
N. Weaver, J. Amann, J. Beekman, M. Payer, et al. The Matter of Heartbleed.
In Proceedings of the 2014 Conference on Internet Measurement Conference, pp.
475-488. ACM (2014).

[31] Eschenauer, L. and V. D. Gligor. A Key-Management Scheme for Distributed
Sensor Networks. In Proceedings of the 9th ACM Conference on Computer and
Commaunications Security, CCS 2002, pp. 41-47 (2002).

[32] Gartner. Gartner Says 6.4 Billion Connected “Things” Will Be in Use in
2016, Up 30 Percent From 2015. http://www.gartner.com/newsroom/id/3165317.
Accessed: 2016-03-31.

[33] Gaubatz, G., J. Kaps, and B. Sunar. Public Key Cryptography in Sensor
Networks - Revisited. In Security in Ad-hoc and Sensor Networks, First European
Workshop, ESAS 2004, Revised Selected Papers, pp. 2—-18 (2004).

[34] Gutierrez, J. A., M. Naeve, E. Callaway, M. Bourgeois, V. Mitter, and B. Heile.
IEEE 802.15.4: A Developing Standard for Low-power Low-cost Wireless Personal
Area Networks. network, IEEE 15(5), 12-19 (2001).

[35] Hankerson, D., A. J. Menezes, and S. Vanstone. Guide to Elliptic Curve
Cryptography. Springer Science & Business Media (2006).

[36] HART Communication Foundation. WirelessHART. http://en.hartcomm.org/
main article/wirelesshart.html: HART Communication Foundation. Accessed:
2016-04-15.

[37] Hui, J. and P. Thubert. Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks. RFC 6282, Internet Engineering Task Force (IETF),
https://tools.ietf.org/html/rfc6282 (2011).

http://en.hartcomm.org/main_article/wirelesshart.html
http://en.hartcomm.org/main_article/wirelesshart.html

90 REFERENCES

[38] Hussen, H. R., G. A. Tizazu, M. Ting, T. Lee, Y. Choi, and K.-H. Kim. SAKES:
Secure Authentication and Key Establishment Scheme for M2M Communication
in the IP-Based Wireless Sensor Network (6LoWPAN). In Ubiquitous and Future
Networks (ICUFN), 2013 Fifth International Conference on, pp. 246-251. IEEE
(2013).

[39] International Society of Automation. ISA100.11a. http://www.nivis.com/
technology /ISA100.11a.php: International Society of Automation. Accessed:
2016-04-15.

[40] Jing, Q., A. V. Vasilakos, J. Wan, J. Lu, and D. Qiu. Security of the internet of
things: perspectives and challenges. Wireless Networks 20(8), 2481-2501 (2014).

[41] Johnson, D., A. Menezes, and S. A. Vanstone. The Elliptic Curve Digital
Signature Algorithm (ECDSA). Int. J. Inf. Sec. 1(1), 36-63 (2001).

[42] Khan, R., S. U. Khan, R. Zaheer, and S. Khan. Future Internet: The Internet
of Things Architecture, Possible Applications and Key Challenges. In 10th
International Conference on Frontiers of Information Technology, FIT 2012, pp.
257-260 (2012).

[43] Kopetz, H. Real-Time Systems - Design Principles for Distributed Embedded
Applications. Real-Time Systems Series. Springer (2011).

[44] Krawczyk, H. HMQV: A High-Performance Secure Diffie-Hellman Protocol. In
Advances in Cryptology - CRYPTO 2005: 25th Annual International Cryptology
Conference, Proceedings, pp. 546-566 (2005).

[45] Krentz, K. and C. Meinel. Handling Reboots and Mobility in 802.15.4 Security.
In Proceedings of the 31st Annual Computer Security Applications Conference,
2015, pp. 121-130 (2015).

[46] Krentz, K., H. Rafiee, and C. Meinel. 6LoWPAN Security: Adding Compromise
Resilience to the 802.15.4 Security Sublayer. In Proceedings of the International
Workshop on Adaptive Security, ASPIQUbiComp 2013, pp. 1:1-1:10 (2013).

[47] Krentz, K. and G. Wunder. 6LoWPAN Security: Avoiding Hidden Wormholes
using Channel Reciprocity. In Proceedings of the 4th International Workshop on
Trustworthy Embedded Devices, TrustED ’14, 2014, pp. 13-22 (2014).

[48] Levis, P., T. Clausen, J. Hui, O. Gnawali, and J. Ko. The
Trickle Algorithm. RFC 6206, Internet Engineering Task Force (IETF),
https://tools.ietf.org/html/rfc6206 (2011).

[49] Liu, D., P. Ning, and R. Li. Establishing Pairwise Keys in Distributed Sensor
Networks. ACM Trans. Inf. Syst. Secur. 8(1), 41-77 (2005).

[50] Lowe, G. Breaking and Fixing the Needham-Schroeder Public-Key Protocol
Using FDR. In Tools and Algorithms for Construction and Analysis of Systems,
Second International Workshop, TACAS 1996, Proceedings, pp. 147-166 (1996).

http://www.nivis.com/technology/ISA100.11a.php
http://www.nivis.com/technology/ISA100.11a.php

REFERENCES 91

[61] Lowe, G. A Hierarchy of Authentication Specification. In 10th Computer
Security Foundations Workshop (CSFW ’97), pp. 31-44 (1997).

[52] Mao, W. and C. Boyd. Towards Formal Analysis of Security Protocols. In 6th
IEEE Computer Security Foundations Workshop - CSFW’93, Proceedings, pp.
147-158 (1993).

[63] Meier, S., B. Schmidt, C. J. F. Cremers, and D. A. Basin. The TAMARIN
Prover for the Symbolic Analysis of Security Protocols. In Computer Aided
Verification - 25th International Conference, CAV 2013. Proceedings, pp. 696701
(2013).

[64] Michallon, C. Sony files to patent new contact lenses that can record
video, store it, play it back - and adjust zoom, focus and aperture automat-
ically. http://www.dailymail.co.uk/sciencetech/article-3567402/Sony-patent-
application-reveals-new-contact-lenses-record-video-store-play-adjust-zoom-
focus-aperture-automatically.html. Accessed: 2016-05-04.

[65] Microchip Technology. MiWi. http://www.microchip.com/wwwAppNotes/
AppNotes.aspx?appnote=en536181: Microchip Technology. Accessed: 2016-04-15.

[56] Mulligan, G. The 6LoWPAN architecture. In Proceedings of the 4th Workshop
on Embedded Networked Sensors, EmNets 2007, pp. 78-82 (2007).

[67] Needham, R. M. and M. D. Schroeder. Using Encryption for Authentication in
Large Networks of Computers. Commun. ACM 21(12), 993-999 (1978).

[68] Needham, R. M. and M. D. Schroeder. Authentication Revisited. Operating
Systems Review 21(1), 7 (1987).

[69] Neuman, B. C. and T. Ts’ O. Kerberos: An Authentication Service for Computer
Networks. Communications Magazine, IEEE 32(9), 33—-38 (1994).

[60] Olsson, J. 6LoWPAN Demystified. Tezas Instruments 29, 2015. http://
www.ti.com/lit/wp/swry013/swry013.pdf (2014).

[61] Patel, R., B. Borisaniya, A. Patel, D. R. Patel, M. Rajarajan, and A. Zisman.
Comparative Analysis of Formal Model Checking Tools for Security Protocol
Verification. In Recent Trends in Network Security and Applications - Third
International Conference, CNSA 2010. Proceedings, pp. 152-163 (2010).

[62] Perrig, A., J. A. Stankovic, and D. Wagner. Security in Wireless Sensor
Networks. Commun. ACM 47(6), 53-57 (2004).

[63] Popper, K. The Logic of Scientific Discovery. Routledge (2005).

[64] Roman, R., C. Alcaraz, J. Lopez, and N. Sklavos. Key Management Systems
for Sensor Networks in the Context of the Internet of Things. Computers &
FElectrical Engineering 37(2), 147-159 (2011).

http://www.dailymail.co.uk/sciencetech/article-3567402/Sony-patent-application-reveals-new-contact-lenses-record-video-store-play-adjust-zoom-focus-aperture-automatically.html
http://www.dailymail.co.uk/sciencetech/article-3567402/Sony-patent-application-reveals-new-contact-lenses-record-video-store-play-adjust-zoom-focus-aperture-automatically.html
http://www.dailymail.co.uk/sciencetech/article-3567402/Sony-patent-application-reveals-new-contact-lenses-record-video-store-play-adjust-zoom-focus-aperture-automatically.html
http://www.microchip.com/wwwAppNotes/AppNotes.aspx?appnote=en536181
http://www.microchip.com/wwwAppNotes/AppNotes.aspx?appnote=en536181
http://www.ti.com/lit/wp/swry013/swry013.pdf
http://www.ti.com/lit/wp/swry013/swry013.pdf

92 REFERENCES

[65] Ryan, P. Y. A. and S. A. Schneider. Modelling and Analysis of Security
Protocols. Addison-Wesley-Longman (2001).

[66] Sastry, N. and D. Wagner. Security Considerations for IEEE 802.15.4 Networks.
In Proceedings of the 2004 ACM Workshop on Wireless Security, pp. 32-42 (2004).

[67] Simmonds, C. “The Internet of Things”: What the Man Who Coined the
Phrase Has to Say. www.theguardian.com/sustainable-business/2015/feb/27/the-
internet-of-things-what-the-man-who-coined-the-phrase-has-to-say. Accessed:
2016-03-31 (2015).

[68] Steiner, J. G., B. C. Neuman, and J. I. Schiller. Kerberos: An Authentication
Service for Open Network Systems. In Proceedings of the USENIX Winter
Conference, 1988, pp. 191-202 (1988).

[69] The Zigbee Alliance. Zigbee. http://www.zigbee.org/: The Zigbee Alliance.
Accessed: 2016-04-15.

[70] Wander, A., N. Gura, H. Eberle, V. Gupta, and S. C. Shantz. Energy analysis of
public-key cryptography for wireless sensor networks. In 3rd IEEE International
Conference on Pervasive Computing and Communications (PerCom 2005), pp.
324-328 (2005).

[71] Wu, M., T.-l. Lu, F.-Y. Ling, L. Sun, and H.-Y. Du. Research on the Archi-
tecture of Internet of Things. In Advanced Computer Theory and Engineering
(ICACTE), 2010 3rd International Conference on, Volume 5, pp. V5-484. IEEE
(2010).

[72] Yadron, D. Samsung patent reveals “smart” contact lens with built-in cam-
era. https://www.theguardian.com/technology/2016/apr/06/samsung-smart-
contact-lens-camera-patent. Accessed: 2016-05-04.

[73] Zhu, S., S. Setia, and S. Jajodia. LEAP: Efficient Security Mechanisms for Large-
Scale Distributed Sensor Networks. In Proceedings of the 10th ACM Conference
on Computer and Communications Security, CCS 2003, pp. 62-72 (2003).

http://www.zigbee.org/
https://www.theguardian.com/technology/2016/apr/06/samsung-smart-contact-lens-camera-patent
https://www.theguardian.com/technology/2016/apr/06/samsung-smart-contact-lens-camera-patent

Scyther Scripts

This appendix contains the Scyther scripts that have been developed to formally
verify APKES, AKES, and SAKES.

A.1 Scyther Script of Adaptable Pairwise Key
Establishment Scheme (APKES)

/ *
Adaptive Pairwise Key Establishment Scheme (APKES)

*/

usertype Index; # User defined type Index
hashfunction MIC; # Message Integrity Code

macro PairwiseKey = {Na, Nb}k(A, B);

macro Messagel = (Na, AddressA);

macro Message2 = (Na, Nb, Iab, AddressB);

macro Message2—MIC = MIC(Message2, k(A,B));
macro Message3 = (Msg, Iba);

macro Message3—MIC = MIC(Message3, PairwiseKey);

const Msg; # ACK—message.

const AddressA; # A’s Short Address

const AddressB; # B’s Short Address

const Iab: Index; # A’s index in B’s list of neighbours
const Iba: Index; # B’s index in A’s list of neighbours

protocol APKES(A, B)

{
role A

{

fresh Na: Nonce;

93

94 A. SCYTHER SCRIPTS

var Nb: Nonce;

4 HELLO
send_1(A, B, Messagel);

HELLOACK

recv_2(B, A, Message2, Message2-MIC) ;

claim (A, Running, B, PairwiseKey); # Agree upon the value of
Na

#ACK
send_3 (A, B, (Message3, Message3—MIC));

claim (A, Alive); # Entity authentication

claim (A, Weakagree); # Weak agreement, A and B believe they
are communicating with each other

claim (A, Niagree); # Non—injective agreement

claim (A, Nisynch); # Non—injective synchronization

claim (A, Commit, B, Na); # Claim that the recv2 value of Na
has not been changed from the send 1 value of Na

claim (A, Secret, PairwiseKey); # Secrecy of key

claim (A, Commit, B, PairwiseKey); # Explicit key
authentication

role B

{
fresh Nb: Nonce;
var Na: Nonce;

HELLO
recv_1(A, B, Messagel);
claim (B, Running, A, Na); # Agree upon the value of Na

HELLOACK
send_2(B, A, Message2, Message2—MIC) ;

ACK
recv__3(A,B, Message3, Message3—MIC) ;
claim (B, Running, A, PairwiseKey);

claim (B, Alive);
claim (B, Weakagree) ;
B, Niagree);
B

(
(
claim (B,
(B, Nisynch);

claim

A.2. SCYTHER SCRIPT OF ADAPTABLE KEY ESTABLISHMENT SCHEME (AKES)
95

claim (B, Secret, PairwiseKey);
claim (B, Commit, A, PairwiseKey);

Listing A.1: Scyther script of Adaptable Pairwise Key Establishment Scheme
(APKES)

A.2 Scyther Script of Adaptable Key Establishment Scheme
(AKES)

/ *
Adaptive Key Establishment Scheme (AKES)
*/

hashfunction MIC; # Message Integrity Code

const Msg; # ACK message

const PANa; # A’s Personal Area Network (PAN) Id

const PANb; # B’s Personal Area Network (PAN) Id

const IDa: Agent; # A’s extended, short or simple address

const IDb: Agent; # B’s extended, short or simple address

const Ca; # B’s frame counter of the last accepted frame from A

const Cb; # A’s frame counter of the last accepted frame from B

const Pa; # Flag indicating whether or not A is currently one of
B’s permanent neighbours

const AddressA; # A’s Short Address

const AddressB; # B’s Short Address

const Iab; # A’s index in B’s list of neighbours (EBEAP)

const Iba; # B’s index in A’s list of neighbours (EBEAP)

macro SessionKey = {Na, Nb}k(A,B); # Where k(A,B) is the key from
the plugged—in scheme

macro Messagel = (Na, PANa, IDa, Ca);

macro Message2 = (Nb, PANa, IDa, PANb, IDb, Iab, Cb, Pa);

macro Message2—MIC = MIC(Message2, SessionKey);

macro Message3 = (Msg, PANb, IDb, PANa, IDa, Iba, Ca);

macro Message3—MIC = MIC(Message3, SessionKey);

protocol AKES(A, B)
{
role A
{
fresh Na: Nonce;
var Nb: Nonce;

96 A. SCYTHER SCRIPTS

send_1(A, B, Messagel); # HELLO

recv_2(B, A, Message2, Message2-MIC); # HELLOACK

claim (A, Running, B, SessionKey); # Claim that the session key
is computed

send_3 (A, B, Message3, Message3—MIC); # ACK

claim (A, SKR, SessionKey); # Secrecy of session key

claim (A, Alive); # Entity authentication

claim (A, Weakagree); # Weak agreement

claim (A, Niagree); # Non—injective agreement

claim (A, Nisynch); # Non—injective synchronization

claim (A, Commit, B, SessionKey); # Secrecy of session key

}

role B

{

fresh Nb: Nonce;
var Na: Nonce;

recv__1(A, B, Messagel); # HELLO

claim (B, Running, A, SessionKey); # Claim that the session key
is computed

send_2 (B, A, Message2, Message2—MIC); # HELLOACK

recv_3(A, B, Message3d, Message3—MIC); # ACK

claim (B, Running, A, SessionKey);

claim (B, SKR, SessionKey);

claim (B, Alive);

claim (B, Weakagree) ;

claim (B, Niagree);

claim (B, Nisynch);

claim (B, Commit, A, SessionKey); # Explicit key authentication

}

Listing A.2: Scyther script of Adaptable Key Establishment Scheme (AKES)

A.3. SCYTHER SCRIPTS OF SECURE AUTHENTICATION AND KEY
ESTABLISHMENT SCHEME (SAKES) 97

A.3 Scyther Scripts of Secure Authentication and Key
Establishment Scheme (SAKES)

A.3.1 SAKES - Authentication

/ *
Secure Authentication and Key Establishment Scheme (SAKES) —
Authentication phase

*/
hashfunction MAC;

macro Messagel = Na;

macro Message2 = Nb;

macro Message3—Cipher = {A, B, D, Na}k(A, C);

macro Message3 = Message3—Cipher, A, Na;

macro Message3-MAC = MAC(Message3, k(A, B));

macro Messaged = Message3—Cipher, B, Nb;

macro Message4d-MAC = MAC(Messaged, k(B, C));

macro Message5—Signed = {A, B, D}sk(C); # The authentication
module at the border router verifies the identites and signs
them in a proof to be used in the key establisment phase

macro Messageb = {Message5b—Signed , Pk, Sk, Nc}k(B, C); #
Distributes the proof and key pair to the router. Encrypted
using symmetric key.

macro Message6 = B, Nc;

macro Message6—-MAC = MAC(Message6, k(A,C)); # Confirms the
identity of the router to the end device.

protocol SAKES-AUTH(A, B, C, D) {

role A {
6LoWPAN End Device (A)

fresh Na: Nonce;
var Nb, Nc: Nonce;
var Pk, Sk;

send_1(A, B, Messagel); # Initial "Hello" from end device
recv_2(B, A, Message2); # Closest router responds.
send_3 (A, B, Message3, Message3-MAC); # End device crafts a
th the router and its desired server.
A,

Message6 , Message6-MAC) ;

request wi

recv_6(C,

claim_Al1(A, Alive, B); # Entity authentication
claim_A2(A, Alive, C); # Entity authentication

98 A. SCYTHER SCRIPTS

claim__ A3 (A, Weakagree, B);

claim__ A4 (A, Weakagree, C);

claim_A5(A, Niagree); # Non—injective data agreement
claim__ A6 (A, Nisynch); # Non—injective synchronization

}

role B {
6LoWPAN Router (B)

fresh Nb: Nonce;
var Na, Nc: Nonce;

var Pk, Sk;

recv_1(A, B, Na);

send_2 (B, A, Message2);

recv_3(A, B, Message3d, Message3-MAC) ;
send_4 (B, C, Messaged, Messaged-MAC) ;
recv_5(C, B, Messageb);

claim (B, Secret, Sk);
claim (B, Alive, A);

(B, Alive, C);
claim (B, Weakagree, A);
claim (B, Weakagree, C);
claim (B, Niagree);
claim (B, Nisynch);

role C {
6LoWPAN Border Router (C)

fresh Nc: Nonce;
var Na, Nb: Nonce;

const Pk: Function;
secret Sk: Function;
inversekeys (Pk, Sk);

recv_4(B, C, Messaged, Messaged-MAC) ;
send_5(C, B, Message5);
send_6(C, A, Message6, Message6-MAC) ;

claim_C1(C, Alive, A);
claim__C2(C, Alive, B);
claim_C3(C, Weakagree, A);

A.3. SCYTHER SCRIPTS OF SECURE AUTHENTICATION AND KEY
ESTABLISHMENT SCHEME (SAKES) 99

claim_ C4(C, Weakagree, B);
claim_C5(C, Niagree);
claim__C6(C, Nisynch);

}

role D {
Remote Server (D)
}

}

Listing A.3: Scyther script of the authentication phase in SAKES

A.3.2 SAKES - Key Establishment

/ *
Secure Authentication and Key Establishment (SAKES) — Session
Key Establishment
*/
usertype key; # User defined type
hashfunction HASH; # Un—keyed hash function
hashfunction gl, g2; # Hash functions to model Diffie —Helmman
var A, B, C, D: Agent; # Identities of the different entities

macro Proof = {A, B, D}sk(C); The identities of the end device,
router and remote server are verified and signed by the
authentication module in the border router

macro Messagel = (Proof, B, Nb, gl(sk(B)));

macro Messagel -HASH = HASH(Messagel) ;

macro Messagel—Signed = {Messagel , Messagel—-HASH}sk (B) ;

macro Message2 = (Nd, gl(sk(D)));

macro Message2—HASH = HASH(Message2) ;

macro Message2—Signed = {Message2, Message2—HASH}sk (D) ;

macro SessionKeyD = g2(gl(sk(B)), sk(D));

macro Message3 = {Nb, SessionKeyA}k(A,B);

protocol SAKES-KEYS(A, B, C, D) {
role A {
6LoWPAN End Device (A)

var Nb: Nonce;
var SessionKeyA: key;

recv_3(B, A, Message3);

claim (A, Niagree);

100

}

A. SCYTHER SCRIPTS

claim (A, Nisynch);
claim (A, SKR, SessionKeyA);

role B {

}

6LoWPAN Router (B)

fresh Nb: Nonce;
var Nd: Nonce;
fresh SessionKeyA: key;

send_1(B, D, Messagel, Messagel-HASH, Messagel—Signed);
recv_2(D, B, Message2, Message2—HASH, Message2—Signed);
send_3 (B, A, Message3);

claim (B, Alive, D); # Entity authentication of D

claim (B, Alive, A); # Entity authentication of A

claim (B, Weakagree, D); # Weak agreement of D

claim (B, Weakagree, A); # Weakagreement of A

claim (B, Niagree); # Non—injective agreement

claim (B, Nisynch); # Non—injective synchronization

claim (B, SKR, SessionKeyA); # Session key reveal of the fresh
key that is distributed from the router to the end device
claim (B, SKR, SessionKeyD); # Session key reveal of the
session key that is established between the router and the
server

role C {

}

6LoWPAN Border Router (C)

role D {

Remote Server (D)
fresh Nd: Nonce;
var Nb: Nonce;

recv__1(B, D, Messagel, Messagel—-HASH, Messagel—Signed);
send_2 (D, B, Message2, Message2—HASH, Message2—Signed);

claim (D, Alive, B);

claim (D, Weakagree, B);
claim (D, Niagree);

claim (D, Nisynch);

claim (D, SKR, SessionKeyD);

A.3. SCYTHER SCRIPTS OF SECURE AUTHENTICATION AND KEY
ESTABLISHMENT SCHEME (SAKES) 101

}
}

Helper protocol to model the Diffie —Hellman approximation
protocol @exp(DH){
role DH {
var x,y: Agent;

recv__ !DHI(DH, DH, g2(gl(sk(x)),sk(y)));
send_ !|DH2(DH, DH, g2(gl(sk(y)),sk(x)));

}
}

Listing A.4: Scyther script of the key establishment phase in SAKES

A.3.3 SAKES - Key Establishment - Interaction Between A and
B

/ *
Secure Authenticatio and Key Establishment (SAKES) —
Interaction between end device and router in key
establishment phase

*/

usertype key;
hashfunction HASH;
hashfunction MAC;
hashfunction gl, g2;
var A, B, C, D: Agent;

macro Proof = {A, B, D}sk(C); # The identities of the end device,
router and remote server are verified and signed by the
authentication module in the border router C

macro Messagel = (Na, MAC(A, Na, k(A,B))); # Provide the router
with the end device’s nonce. MAC added because we assume that
the authentication phase has authenticated all parties.

macro Message2 = (Nb, MAC(B, Nb, k(A,B))); # Provide the end
device with the router’s nonce. MAC added because we assume
that the authentication phase has authenticated all parties.

macro Message3 = (Proof, B, Nb, gl(sk(B)));

macro Message3—HASH = HASH(Message3) ;

macro Message3—Signed = {Message3, Message3—HASH}sk (B) ;

macro Messaged = (D, Nd, gl(sk(D)));

macro Message4d—HASH = HASH(Message4) ;

macro Message4d—Signed = {Message4, Messaged—HASH}sk (D) ;

102 A. SCYTHER SCRIPTS

macro Message5 = {Nb, SessionKeyA}k(A,B);
protocol SAKES-KEYS(A, B, C, D) {

role A {
6LoWPAN End Device (A)

fresh Na: Nonce;
var Nb: Nonce;
var SessionKeyA: key;

send_1(A, B, Messagel);
recv_2(B, A, Message2);
recv_3(B, A, Messageb);

claim (A, Alive, B); # Entity authentication of B

claim (A, Weakagree, B); # Weak agreement of B

claim (A, Niagree); # Non—injective agreement

claim (A, Nisynch); # Non—injective synchronization

claim (A, SKR, SessionKeyA); # Secrecy of the fresh session

role B {
6LoWPAN Router (B)

fresh Nb: Nonce;
var Na, Nd: Nonce;
fresh SessionKeyA: key; # The session key is modelled as a

fresh key to verify the secrecy between the end device and
the router

recv_1(A, B, Messagel);
send_2 (B, A, Message2);
send_3 (B, A, Message5);

claim (B, Alive, A);

claim (B, Weakagree, A);
claim (B, Niagree);

claim (B, Nisynch);

claim (B, SKR, SessionKeyA);

role C {
6LoWPAN Border Router (C)

A.4. SCYTHER SCRIPTS OF THE IMPROVED SAKES 103

}
role D {

Remote Server (D)
¥

}

Listing A.5: Scyther script of the interaction between the end device and the router
in SAKES

A.4 Scyther Scripts of the Improved SAKES

A.4.1 Improved Authentication Phase

/ *

Secure Authentication and Key Establishment Scheme (SAKES) —
Authentication — Improved

*/

hashfunction MAC; # Message Authentication Code

macro Messagel = Na;

macro Message2 = Nb;

macro Message2-MAC = MAC(Nb, k(A,B));

macro Message3—Cipher = {A, B, D, Na}k(A, C);

macro Message3 = Message3—Cipher, A, Na, Nb; # Adding Nb achieves

Nisynch and Niagree for A and C

macro Message3-MAC = MAC(Message3, k(A, B));

macro Messaged = (Message3—Cipher, B, Nb);

macro Message4—-MAC = MAC(Messaged , k(B, C));

macro Message5—Signed = {A, B, D}sk(C);

macro Messageb = {Message5—Signed, Pk, Sk, Nb, Nc}k(B, C); #
Adding Nb achieves Nisynch and Niagree for B

macro Message6 = B, Na, Nc; # Adding Na achieves Weakagree for B
and C in A

macro Message6—-MAC = MAC(Message6, k(A,C));

protocol SAKES-AUTH(A, B, C, D) {
role A {
6LoWPAN End Device (A)

fresh Na: Nonce;
var Nb, Nc: Nonce;
var Pk, Sk;

104 A. SCYTHER SCRIPTS

send_1(A, B, Messagel);
recv_2(B, A, Message2);
send_3 (A, B, Message3d, Message3-MAC) ;
recv_6(C, A, Message6, Message6-MAC) ;

claim (A, Alive, B); # Entity authentication of B
claim (A, Alive, C); # Entity authentication of C
claim (A, Weakagree, B); # Weak agreement of B
claim (A, Weakagree, C); # Weak agreement of C
claim (A, Niagree); # Non—injective agreement

claim (A, Nisynch); # Non—injective synchronization

}

role B {
6LoWPAN Router (B)

fresh Nb: Nonce;
var Na, Nc: Nonce;

var Pk, Sk;

recv_1(A, B, Na);

send_2 (B, A, Message2);

recv_3(A, B, Message3, Message3-MAC) ;
send_4 (B, C, Messaged, Messaged—-MAC) ;
recv_5(C, B, Messageb);

claim (B, Secret, Sk); # Secrecy of the received ephemeral
private key

claim (B, Alive, A);

claim (B, Alive, C);

claim (B, Weakagree, A);

claim (B, Weakagree, C);

claim (B, Niagree);

claim (B, Nisynch);

role C {
6LoWPAN Border Router (C)

fresh Nc: Nonce;
var Na, Nb: Nonce;

const Pk: Function;
secret Sk: Function;
inversekeys (Pk, Sk);

A.4. SCYTHER SCRIPTS OF THE IMPROVED SAKES 105

recv_4 (B, C, Messaged, Messaged—-MAC) ;
send_5(C, B, Message5);
send_6(C, A, Message6, Message6-MAC) ;

claim (C, Alive, A);
claim (C, Alive, B);
claim (C, Weakagree, A);
claim (C, Weakagree, B);
claim (C, Niagree);
claim (C, Nisynch);

}

role D {
Remote Server (D)

}

}

Listing A.6: Scyther script of the improved authentication phase in SAKES

A.4.2 TImproved Key Establishment Phase

/ *
Secure Authentication and Key Establishment (SAKES) — Session
Key Establishment — Improved
*/
usertype key;
hashfunction HASH;
hashfunction gl, g2;
var A, B, C, D: Agent;

macro Proof = {A, B, D}sk(C); The identities of the end device,
router and remote server are verified and signed by the
authentication module in the border router C

macro Messagel = (Proof, B, Nb, gl(sk(B)));

macro Messagel -HASH = HASH(Messagel) ;

macro Messagel—Signed = {Messagel , Messagel—-HASH}sk (B) ;

macro Message2 = (Nd, Proof, Nb, gl(sk(D)));

macro Message2—HASH = HASH(Message2) ;

macro Message2—Signed = {Message2, Message2—HASH}sk (D) ;

macro SessionKeyD = g2(gl(sk(B)), sk(D));

macro Message3 = {Nb, SessionKeyA}k(A,B); # Should also return
the Na value in a full—size model.

protocol SAKES-KEYS(A, B, C, D) {

106 A. SCYTHER SCRIPTS

role A {

6LoWPAN End Device (A)

Na should be linked from the authentication phase in a full
—size model.

var Nb: Nonce;

var SessionKeyA: key;

recv_3(B, A, Message3);

claim (A, Niagree);

claim (A, Nisynch);

claim (A, SKR, SessionKeyA);
}

role B {
6LoWPAN Router (B)
fresh Nb: Nonce; # Nb should be linked from the
authentication phase in a full —size model
var Nd: Nonce;
fresh SessionKeyA: key;

send_1(B, D, Messagel, Messagel—HASH, Messagel—Signed);
recv_2(D, B, Message2, Message2—HASH, Message2—Signed) ;
send_3 (B, A, Message3);

claim (B, Alive, D);
claim (B, Alive, A);
B, Weakagree, D);
B, Weakagree, A);
B, Niagree);
claim (B, Nisynch);
claim (B, SKR, SessionKeyA);
claim (B, SKR, SessionKeyD);

role C {
6LoWPAN Border Router (C)

}

role D {
Remote Server (D)
fresh Nd: Nonce;
var Nb: Nonce;

}

A.4. SCYTHER SCRIPTS OF THE IMPROVED SAKES 107

recv_1(B, D, Messagel, Messagel —-HASH, Messagel—Signed);
send_ 2 (D, B, Message2, Message2—HASH, Message2—Signed) ;

claim (D, Alive, B);

claim (D, Weakagree, B);

claim (D, Niagree);

claim (D, Nisynch);

claim (D, SKR, SessionKeyD);
}

//Computation from Message 2
protocol @exp (DH) {

}

role DH {
var x,y: Agent;

recv__ !DHI(DH, DH, g2(gl(sk(x)),sk(y)));
send !DH2(DH, DH, g2(gl(sk(y)),sk(x)));
}

Listing A.7: Scyther script of the improved key establishment phase in SAKES

Scyther Attack Diagrams

When Scyther discovers an attack on a protocol property, it generates an attack
graph (or diagram). The following attacks are listed in this appendix:

o B.1 - SAKES: Attack on the weak agreement property of A in the authenti-
cation phase. Here, the adversary can combine different protocol runs in to
trick A into believing it is receiving the nonce Ng from B, when it is, in fact,
sent by an adversary Dave that has previously observed the nonce from B.

« B.2 - SAKES: Attack on the non-injective synchronization property of B in
the authentication phase. Here, the nonce that A receives from B differs from
what B is sending in this protocol run.

« B.3 - SAKES: Falsification of the alive property of A in role B in the key
establishment phase. In this model, the session key is distributed from B
to A. However, due to the separation of the two phases, A is never actively
participating in the protocol. Hence, B is not able to verify that A has ever
run the protocol.

« B.4 - SAKES: Attack of the non-injective agreement and synchronization
property of A in the key establishment phase. In this attack, the adversary is
able to forge a response from D to B in the key establishment phase.

« B.5 - SAKES: Attack on the weak agreement property of D in role B in the
key establishment phase. In this attack, information from two request messages
from B is combined into the message received by D.

« B.6 - SAKES: Attack on the weak agreement property of B in role A in
the interaction component between A and B. This is a special attack that
targets the set-up of the authenticated nonces, and may not be an attack of
the protocol itself as the authentication phase have been corrected by the
improvements that have been presented.

109

110 B. SCYTHER ATTACK DIAGRAMS

d D->Eve

A->Dave, C->Bob, and D->Eve
k#3 >
Var Pk#3 > 2
Var Ne#3 -> IntruderNonced
Var Na#3 > Na#2

knowledge

recv_2 from Charlie

send_2 to Dave
Nb#3

send_3 to Charlie
M1l

tecv_3 from Dave [y

Run |

Dave in role A Run4.

Assumes C->Bob, B->Charlie, and D->Alice Bob in role C

Var Skitl > IntruderData2 Assumes A->Dave, B->Charlie, and D->Eve
Var Pk#1 > IntruderDatal Var Nb# -> Nb#3

Var Ne#l > Ne#d Var Na#d > Na#2

Var Nbif1 -> IntruderNonce |

send_ to Charlie
Natfl

recv_4 from Charlie
MI0

recv_2 from Charlie

x send_S to Charlie
IntruderNoncel

M2

send_3 to Charlie
M1MAC(M 1 k(Dave,Charlie))

send_6 to Dave
Ms

(Dave.Bob).Dave.N:

Pl Skit4.Nef4)k(Charlic Bob)

recy_6 from Bob.
M5

M7 = Md.Dave.Na#2

M9 = MAC(M7 k(Dave,

MI11=M7.M9

Seyther pattern graph for the SAKES-AUTH protocol, claim SAKES-AUTH,A3 in role A

Figure B.1: Graph of the discovered attack on the weak agreement property of the role A in the authentication phase of
SAKES.

111

"SHMVS Jo eseyd uoryeorjuayine
o} Ul MorA Jo qurod s,y wogj) pur ‘g “y so[0l1 oy} Jo Aprodord YouASIN o) U0 yoe}je PaIoAodsIp o) jo yderr) :g-g 2andi g

‘201 Wl LG HLAV-SANYS Wie[> ‘[os0101d HINV-STAVS 241 10§ ydesd waped 12159

€N
qog woIj ¢ A%31

LIN'SIN = 6

IN'FIN = 8

(anpreyy 242 MY SNOVIN = LIN

(T FPINOVIAL = 9

T#EN'2ARQTIN = S

THANITUDTIN = +IN

T e#NEIS eid (e s (2o v arpreyy2ae) = €W
(qogane@M{ T#eN"2d My ARy 2neq) = TN

qog-amyd = TN

ISUOIRIAMIQQY

£W
a1 0) ¢puss

SN
qog o1 {7 puas

8
SI[TEY D) WOIf {7 A3T

6N
QAR(] WOIJ £ A3
3

T

[#EN <= CHEN A

THAN < CHIN A

WAy <-(pue ALRYD<- ‘2ABJ<-Y SAWNSSY
D 2lerur qog

€ uny

6N THIN
Ay 0) € puss

[2ouUoNIapnIu]
IRy WoLy Z7Ad31

T#eN

SAR(] WOIJ [A3

T#EN < THEN TeA

CHON < THON TeA

Pl < TP A

€IS < TIPS A

My <-(PUE ‘qog<-D ALY SAUNSSY
€ 2[eF it ARy

cumy

T#eN

SEFEEIE ARy 0) [puss

[ROUONIAPNIU] <- THAN TeA
TROUONITapNIU] <- [#ON TeA

TerRqRpnIuL <- [#id BA

TRRQIAPAIUL <- [45(S A

ANy <-(] PUe “ALRYD<-{ *qOg<-1) SAUNSSY
'V 201 ur 2Ae(]

T umy

112 B. SCYTHER ATTACK DIAGRAMS

Run #2
Alice in role D

A > Dave

Run #1
Charlie in role B

A>
B>
c>
D>

Dave
Charlic
Bob
Alice

Fresh Nbfi1, SessionKeyA# 1

Var Nd > Nd#2

to Alice
Charlic, Alice }sk(Bob),Charlic,Nb#1,g1 (sk(Charlic))), HASH({ Dave,Charlic,Alicc }sk(Bob)Charlic,Nb#1.g1(sk(Charlic))) }sk(Charlic))

_ (({ Dave,Charlie, Alice }sk(Bob),Chalie,Nbit1,g1 (sk(Charlie)), HASH({ Dave,Charlie, Alice }sk(Bob).Charlie,Nbt1,g1(sk(Charlie))

{ Dave,Charlie, Alice }sk(Bob).Charlie,Nb#1,g1 (sk(Charlie))), HASH({ DaveChaslie, Alice }sk(Bob),Charlie,Nbit1.g1(sk(Charlie))) }sk(Charlie))

Figure B.3: Graph of the discovered attack on the entity authentication of the

phase of SAKES.

|

(Na#2.

HASH(NG#2,

send_2 to Charlic
{ (Nd#2

HASH(Nd#: ice))) Jsk(Alice))

(Na# HASH(NG#2,

recy_2 from Alice.
{ (Nd#: HASH(Nd#:

{ Nb#1,Sess

1 9] Protocol SAKES-KEYS, role B, claim type Alive

send 3 to Dave.
sionKeyA#1 Jk(Dave,Charlie)

end device in role B in the key establishment

113

"SAMVS jo oseyd
JIOUIYSI[RISO AdY 91} Ul Y o[ol o) ul sorpredord YOUASIN pur 99I3eIN 91} U0 }ov))R PaIoA0odsIp oY) Jo ydein) :f g oInSrg

youksin adK) urmeps v 3101 'S AAN-SAMVS 0201014 [9 p1l

(qoganreyd)y{ z#vAaduorssag z#aN }
qQOg WOIf §TASI

!

THAN < AN A
TH#VASYUOISSEg < YAINUOISSIS oA

(qograrreqD)y{ g#vAMuOISSISTHIN } _ qod <- €

AR 0} £ puas aEgd < v

v o1 ur arny
T# umy

((agpys{ (((245)s) 13 [12pnaju20uoN)HS VH (((345)38) 13 [19pnajua0uoN) F(((SAZ)8) 13 [19pnajuf20uoN) HS Y H(((SAZ)3$) [3* [42pnajuj20uoN))
QAN WoLj 7T AdAT

f

((qogyrsf (((qoe)15) 13 Z#aN qog (w5 { 2amqog anreyd DHSVH ((Qoe)19)18-z#aN qoa (a1w)ys{ 2ag qog a1red) }((qoe)s) 18 z#an‘qog (anwpis{ 2ag-qog anirend NHSYH((qoe)1s) 18 z#aN‘aod (arv)ys{ 2ag qog anizeyd 1))
2AF O} [T puas

(((27)35) 134 14apnanu] 20UoN) HSV H

T42pNNUDUON <- PN TeA
THYADIUOISSIS “THAN US21L

ag < a
Y <D
qog < d
ARy <-
€3]01 W qog
TH Uy

[OPNIUIEOUON :S2IIaUSE I3pRauT YL,
28papmowny sapnut [enuy

114 B. SCYTHER ATTACK DIAGRAMS

Sead i
@ DChatie ke D Chate e D Charie ke

/
/

et Diave e e}t Chate

kAt

14 111 Protocol SAKES-KEVS. ol ., claim te Weakgse

Figure B.5: Graph of the discovered attack on the weak agreement property of D in role B in the key establishment phase of
SAKES.

115

‘SHMVS
Jo aseyd juemuysI[qe)se Aoy o) ul y ool ur g jo Ajedord juotresrde yrom oY) UO HoRIJR PAIdA0OSIP oY) Jo yderr) :9:¢g oin3rg

aaigexea gy 2d) wiepd y 2[01 ‘SATN-SHNVS (020101 [pIl

(anpreyyaae @l T4V Aa)UOISsag [#EN T#AN |
AMBYD) WOl €A1

P —

(((Arrey AR QY ZTHAN THEN AIRYD) DV IN' THEN THAN) (arpeypaseni{ ga#vASYuOISSag [#ENTHAN }
AACYD) WO 7~ Ad AAe(] O) ¢ puas

A€ 0} j22mpal
ATt 13pUSS ef
T#EN 199[8

(((erprey D AR () THAN T#EN A TRUD) DV N T #EN THAN)
AAR(] O) T puas

[

(((arpmey AR @) T#EN A AIVIN T#EN)
SAR(] WOIJ [~ AT

[

[#EN < EN TBA

THV A uUOISSAg THAN ysaty

(((Arrey Dy 2ae Q)Y [#EN2ABAOV A [#EN) AR <-
ALY 03 [puss e <- Y

€ 3]0 w A
TH umy

THAN < QN TeA
TV AUOISSag < YAaUOISSag Te A

TH#HEN Usald

SIEeyD < |
2UB(J < ¥

V 2[OI UT 2AR(
T# uny

C.1 Notation

Notation

Notation used in protocol specifications

Symbol

A B,C, D
A— B

A — %

(Pknode, Sknode)
IDyode
AES(k,m)
Nrode

X||Y

Meaning

Nodes A, B, C, D

Unauthenticated message

Authenticated message with key k
Message encrypted with key &

Message sent from A to B

Message broadcasted from A

Public key pair for a node

Identity of a node

AES encryption of message m with key k
Cryptographic nonce generated by a node

Concatenation of two terms X and Y

117

	List of Figures
	List of Tables
	Listings
	List of Acronyms
	Introduction
	Motivation
	Scope and Objectives
	Objectives

	Methodology
	Contribution
	Outline

	Background and Related Work
	Internet of Things
	The IEEE 802.15.4 Standard
	6LoWPAN: Putting IP on Top of 802.15.4
	Key Establishment and Key Management
	Cryptographic Keys
	Security Attributes in Key Establishment Schemes
	Key Establishment Architectures
	Key Establishment Schemes
	Key Establishment Schemes in Wireless Sensor Networks and the Internet of Things

	Formal Security Analysis
	Related Work

	Symbolic Security Analysis Using Scyther
	The Scyther Tool: Verification, Falsification, and Analysis of Security Protocols
	Scyther Syntax
	Security Claims

	Defining an Adversary Compromise Model
	Scyther's Graphical User Interface

	Three Protocols for Key Establishment in 6LoWPAN
	General Properties
	Adaptable Pairwise Key Establishment Scheme (APKES)
	Allowing ``Pluggable'' Schemes to Increase Universality
	Avoiding Denial of Service Attacks
	Node Compromise Resilience
	Protocol Specification
	Assumptions of Security Properties
	Weaknesses and Challenges with APKES

	Adaptable Key Establishment Scheme (AKES)
	Renewing a Session
	Preventing Deadlocks and Removing Neighbours
	Protocol Specification
	Assumptions of Security Properties
	Weaknesses and Challenges with AKES

	Secure Authentication and Key Establishment Scheme (SAKES)
	Protocol Specification
	Assumptions of Security Properties
	Weaknesses and Challenges with SAKES

	Formal Security Analysis of Three Key Establishment Protocols
	Modelling Security Properties
	Formal Security Analysis of APKES
	Security Claims
	Adversary
	Results

	Formal Security Analysis of AKES
	Security Claims
	Adversary
	Results

	Formal Security Analysis of SAKES
	Authentication Phase
	Key Establishment Phase
	Results

	Incompleteness in the Analysis of SAKES
	General Limitations in the Analysis

	Discussion
	Evaluation of Authentication Properties
	Evaluation of Key Secrecy Properties
	Comparison
	APKES versus AKES
	AKES versus SAKES

	Suggested Improvements for APKES
	Suggested Improvements for SAKES
	Achieve Authentication in the Authentication Phase by Returning Nonces
	Add Nonces in the Key Establishment Phase to Limit Malicious Behaviour
	Return the Proof to the Router to Confirm the Identity of the Server
	Generate Ephemeral Keys at Both Sides in the Diffie-Hellman Key Agreement
	Use Elliptic Curve Diffie-Hellman and the Elliptic Curve Digital Signature Algorithm

	Conclusion
	References
	Scyther Scripts
	Scyther Script of Adaptable Pairwise Key Establishment Scheme (APKES)
	Scyther Script of Adaptable Key Establishment Scheme (AKES)
	Scyther Scripts of Secure Authentication and Key Establishment Scheme (SAKES)
	SAKES - Authentication
	SAKES - Key Establishment
	SAKES - Key Establishment - Interaction Between A and B

	Scyther Scripts of the Improved SAKES
	Improved Authentication Phase
	Improved Key Establishment Phase

	Scyther Attack Diagrams
	Notation
	Notation

