@NTNU

Norwegian University of
Science and Technology

A study of hardware compression of
Images

Per Arne Rgnning

Master of Science in Electronics
Submission date: June 2016
Supervisor: Bjgrn B. Larsen, IET

Co-supervisor: Roger Birkeland, IET
Amund Gjersvik, IET

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

ABSTRACT

In this paper, we will take a closer look at the possibility of compressing images
to the JPEG 2000 standard using an FPGA’s hardware architecture. This FPGA
will be put into a satellite, which is going to orbit the earth in a low earth orbit,
so considerations must be made regarding this.

The implementation was done in VHDL, and the created modules were simulated
using test benches. The simulations were mainly conducted with a generated in-
put from the image sensor. It was run through the module, and the output was
analyzed.

These simulations point in the direction that the modules work as intended, but
there is still further work that needs to be done, in order for the complete system to
be implemented in a physical FPGA and launched into space.

SAMMENDRAG

I denne oppgaven vil vi ta en naermere kikk pa mulighetene for & komprimere bilder
til JPEG 2000 standarden ved hjelp av en FPGA sin hardware-arkitektur. Denne
FPGAen vil bli plassert inni en satellitt, som vil ga i en low earth orbit, sa det er
hensyn som ma tas pa grunn av dette.

Implementasjonen ble gjort i VHDL, og modulene som ble laget ble simulert ved
hjelp av testbenker. Simuleringene ble hovedsakelig gjennomfgrt med generert
input fra bildesensoren. Disse dataene ble kjgrt gjennom modulene, og resultatene
ble analysert.

Disse simuleringene peker i den retning at modulene virker som planlagt, men at
det er fortsatt mer arbeid som kreves for at systemet skal kunne implementeres i
en fysisk FPGA og sendt ut i verdensrommet.

ACKNOWLEDGMENTS

I would like to thank Bjgrn B. Larsen for his support and guidance. I would like to
thank Anne Elisabeth Vallestad for her technical and professional help. I would also
like to thank Ingunn J. Vallestad for her help regarding the report and supporting
me throughout the process. I would also give a thank to Kristine Thevik and
Robert Balteskard for their help in proof reading the report.

ii

CONTENTS

ABSTRACT e i
ACKNOWLEDGMENTS e ii
LIST OF TABLES e e e v
LIST OF FIGURES« e vi
LIST OF ABBREVIATIONS AND SYMBOLS vii
0.1 Problem definition Lo oo viii

1 INTRODUCTION e e e e 1
2 THEORY e 3
2.1 FPGA . . . e 3
2.2 ASIC. . . . 3
2.3 VHDL 3
2.3.1 STD.LOGIC_.VECTOR 3

2.3.2 Division of STD_.LOGIC_VECTOR 4

2.3.3 Soft Processors 4

2.4 Colour transform 4
2.4.1 Luminanceo 5

2.4.2 Chrominance e)

2.5 Image compression o 6
2.5.1 Lossless compression oo 6

2.5.2 LosSy compression e e 6

2.6 JPEG 2000 6
2.6.1 Wavelet compression oL 7

2.7 Gamma correction 8
2.8 Histogram 9
2.9 Min-Max computation L Lo oL 9
2.10 Unsigned extension Lo 9
2.11 Demosaicing 9
212 Ring buffer 10
2.13 Space Radiation 11
2.13.1 Radiation Effects On FPGA 11

3 REQUIREMENTS e 13
4 APPROACH e 14
4.1 Unsigned extendero 15
4.2 Demosaicing version 1 L oL oo 15

iii

4.2.1 Processes e 19

4.3 Demosaicing version 2o 21
4.3.1 Processes e 24

4.4 Finding minimum and maximum values 24
4.5 Histogram L e 25
4.6 Colour transform 26
4.7 Gamma correction 26

5 TESTING 27
5.1 Unsigned extender L . 27
5.2 Testimage 27
5.2.1 Test image results L. 28

5.2.2 Test image on demosaicing version 2 35

5.3 minmaxmodule. L Lo 40
5.4 Histogramo 40
5.5 Gamma correction 41

6 DISCUSSION 42
6.1 Star tracking 42
6.2 Scalability 42
6.3 Bi-linear demosaicing Lo 42
6.4 Demosaicing version 1 versus version 2 43
6.5 Storing of rawdata L o 43
6.6 Reprogrammability oo 43
6.7 Black and white images L L oL 44
6.8 Choice of FPGA 44
6.9 Futurework 44

7 CONCLUSION . . . e 45
REFERENCES e 45
A Coderepository 48
B Image generation and regeneration, 49
B.1 Producing original image L. 49
B.2 Reproduce after simulation 53

iv

3.1

LIST OF TABLES

Camera module requirements

1.1
1.2
2.1
2.2
2.3
2.4
2.5
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23

LIST OF FIGURES

Image compressor Lo Lo 1
Payload overview oL oL L 2
Colour transform illustration)
CbCroplane 6
2 dimensional DW'T o oo 7
DWT illustration 8
Demosaicing illustration oo 10
Suggested pipeline L oo o 15
Sending of valid frame L0 oL 15
Pixel position overview Lo 16
Green pixel flow chart 17
Estimating the blue values 18
Red and blue pixel flowchart 19
Demosaicing state machine00 20
Flowchart of the demosaicing module, version 2 23
Flowchart for the min-max module 25
Waveform for the unsigned extender 27
Inputimageo Lo 28
Output image L 29
Redoutput 29
Greenoutput 30
Blueoutput 30
Blue and black transition 31
Blue and red transition Lo 31
Blue and green transition00 32
Blue and white transition 00000 32
White and black transition L. 33
Gradual change from green toblue 34
Anomaly of output oo 35
Output from demosaicing version 2 36
Red layer from demosaicing version 2. 36
Green layer from demosaicing version 2 37
Blue layer from demosaicing version 2 37
Anomaly from version 2 oL 38
Anomaly from version 2 39
Anomaly from version 2 L oL oL 39
Waveform, minmax module 40
Waveform for the histogram module 41
Waveform, gamma module L. 41

vi

LIST OF ABBREVIATIONS AND SYMBOLS
ASIC Application-specific integrated circuit.

DWT discrete wavelet transfer.

FPGA Field Programmable Gate Array.
HDL Hardware Descriptive Language.
MSB Most significant bit.

SEB Single event burn up.

SEFI Single event funtion interrupt.
SEGR Single event gate rupture.
SEL Single event latch up.

SET Single event transient.

SEU Single event upset.

VHDL VHSIC Hardware Description Language.
VHSIC Very High Speed Integrated Circuit.

vii

0.1 Problem definition

Review of the software and hardware description of the camera module for NTNU
Test Satellite (NUTS).

The current focus of the NUTS project is to finish the design and build hardware
for an integrated engineering model. The student should focus on the system
design of the camera module in general, with particular focus on how to split the
functionality between the hardware (FPGA) and the micro controller of the payload
module.

The camera module must be designed to be reliable, as maintenance is impossible
after launch. Challenges due to the space environment, such as temperature cycles,
radiation and vacuum must be identified and discussed. In areas where mitigation
of such problems is possible, solutions should be presented. Whether the solutions
are to be implemented should be based on a cost/benefit analysis.

Key tasks will be:

e Explore how the Jasper JPEG 2000 algorithm for image compression can be
ported to the FPGA, instead of being run on the MCU.

e Compare the different implementations (on FPGA and MCU) by looking
at implications for implementation time, run-time, power consumption and
hardware cost.

e Participate in the hardware design process of the camera module.

viii

CHAPTER 1
INTRODUCTION

This report will deal with the possibility of compressing images into JPEG 2000
using an FPGA. It will also discuss some of the problems and issues we have to
consider when an FPGA is going to space, where it will be operating in a high
radiation environment without the possibility of recovery.

Figure 1.1 shows the image compressor, which takes data from the image sensor
and processes them into a compressed image.

Image sensor data compressed image
Image compressor

Y

Y

Figure 1.1: Image compressor

Figure 1.2 shows a suggested setup of the completed system, with all the necessary
modules. We can see that the micro controller is what communicates with the rest
of the system. The micro controller is connected to the FPGA, multiplexer, and the
power sequencer. The FPGA will handle the image compression, and will store the
compressed image in the flash memory that it shares with the micro controller. It is
also connected to and controlling the image sensor and its power sequencer.

sabeyjon
losuas abew| +

._wor_w:_omm 1loMOd

Od

'

-

EREME! &

_

sobe)oA VO dd +

Jaouanbas Jamod

Josuas abfew| | vOdd

EREVAE!

'

asn

O4ld
asSn + ¥en asn

[\
:

W3 HSV1H

!

19]]0NU020I2IN

N\

wivlsAs

Figure 1.2: Overview of the total payload subsystem of the NUTS satellite

CHAPTER 2
THEORY

2.1 FPGA

FPGA stands for Field Programmable Gate Array, and is an integrated circuit
which can be configured after production. They are semiconductor devices that
are based around a matrix of configurable logic blocks. These blocks are connected
with each other using programmable interconnects. [1]

It is usually configured by using Hardware Descriptive Language (HDL). The
FPGA can also be reconfigured several times, and requires a bit file when pow-
ering up, to know what it is configured to do.

2.2 ASIC

Application Specific Integrated Circuit (ASIC) is a customized integrated circuit,
usually made for a single task, but unlike the FPGA it cannot be configured after
production.

2.3 VHDL

VHDL is a Hardware Descriptive Language, used to describe and design hard-
ware.

A VHDL program can be used to program FPGAs or design ASICs. The writ-
ten code is then converted into hardware which can perform what this code de-
scribes.

2.3.1 STD_LOGIC_VECTOR

A STD_LOGIC_VECTOR is a predetermined type, that can be found in the
Std_Logic_1164 package where they are described as ”a standard one-dimensional
array type with each element being of the Std_Logic type.” A Std_Logic type is
representing a single bit.

2.3.2 Division of STD_LOGIC_VECTOR

Dividing signals and variables of the type STD_LOGIC_VECTOR is usually not
allowed by VHDL compilers, because of the varying resolution length of the results,
and the fact that division cannot be performed on vectors.

But there are some things that can be done in order to make certain divisions. For
example, when dividing by 2, right shifting the vector once gives the result of the
division. One will lose the LSB (least significant bit) in this process, as long as
the LSB is situated at the right, which is the norm. Dividing by 4 is the same as
dividing by 2 twice, so therefore one can right shift the vector by two spaces and
get the desired result.

This way of dividing is only viable when the divisor is a power of two, and the
division is then a right shift equal number of times, to the exponent of two.

2k 1
>
n=0

2k

, k = numberofbits (2.1)

Using equation 2.1 shows the average value of a 12 bit number is 2047,5. But
since we are right shifting the number by two places the potential error will be in
comparison to a 10 bit number. Using equation 2.1 again, we get that the average
value is 511,5. The error will then on average be off by 0,14%.

2.3.3 Soft Processors

A soft processor is a micro processor that is realized in an FPGA, or as Xilinx puts
it, “A soft processor is an Intellectual Property (IP) core that is implemented using
the logic primitives of the FPGA. Key benefits of using a soft processor include
configurability to trade between price and performance, faster time to market, easy
integration with the FPGA fabric, and avoiding obsolescence.” [2]

2.4 Colour transform

Colour transform comes in two different forms, irreversible and reversible colour
transform. The colour transform requires that the R, G and B are of the same
bit-depth and dimensions [3, page 420]. R, G and B are the red, green and blue
layer of an image, with each of them representing the amount of said colour in any
given pixel. Equation 2.3 shows us that Cr is the difference between the red and
green, and Cb is the difference between blue and green. < is often referred to as
luminance, and Cb and Cr combined are referred to as chrominance.

0% 0.299 0.587 0.114 R

Cb| = |—-0.16875 —0.33126 0.500 G (2.2)
Cr 0.500 —041869 —0.08131| |B

2 B
:{R—i— f+ } Cb=B—-G, Cr=R—G (2.3)

Equation 2.2 is the equation for the irreversible colour transform, while 2.3 is for
the reversible colour transform. - can also be referred to as Y, this is seen in figure
2.1.

Figure 2.1 shows us the result of a colour transform. We observe that the Y channel
is the image in black and white.

RGB
to
Y’CrCb
—

Figure 2.1: Illustration of how an image is deconstructed and the colour transform
result. [4]

2.4.1 Luminance

In physics, luminance is the physical measurement of light projected from an area,
measured from a specific angle. In digital imagery, it is the brightness of a pixel.
This is the only value that is necessary in a black and white picture. The luminance
is normally represented by values from 0 to 1, where 1 represents white, and 0 is
black. All the values between these represent gray of varying darkness. [5]

2.4.2 Chrominance

Chrominance is the value that explains the colours of the image. The chrominance
is usually represented by the difference between the colour and the brightness of
the pixel, where the brightness is represented by the luminance. The chrominance
consists of the Cb and Cr channels, and can then represent any colour. Figure 2.2
illustrates how Cb and Cr represent the different colours, where each colour is a
point in the plane given by Cb and Cr, who can be between -1 and 1. By adjusting
the v we get the different shades of the colours.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Figure 2.2: The CbCr plane with a constant luminance v = 0.5. [6]

2.5 Image compression

Image compression is the process of making an image file smaller. This can be
done in several ways, but there are two very important approaches: Lossless and
lossy. The difference between these two algorithms is whether or not data is lost
in the compression process.

2.5.1 Lossless compression

In lossless compression, no data is lost. This is done by storing the data in a
smarter way than the uncompressed data is. The fact that no data is lost, but
the file size still decreases, is achievable by making sure the original file can be
reconstructed from the compressed file.

2.5.2 Lossy compression

Lossy compression loses data in the compression process, but will get a higher
compression rate than lossless compression. In image compression, much of the
lost data is irrelevant to the viewer.

2.6 JPEG 2000

JPEG 2000 is an image format that can be both lossless and lossy [7]. JPEG 2000
uses wavelet compression, which makes it possible for it to store data, and extract
pictures of different resolutions from it. In [8] we can read about how JPEG 2000
is working compared to other image formats, and why JPEG 2000 is chosen for
this project.

2.6.1 Wavelet compression

Wavelet compression is a way of compressing images and video. It compresses
images by looking at transients and does a wavelet transfer of this. This results in
less information needed to represent this. This process is done several times over
for a better and more compressed image, without losing information. This results
in an image that has degrees of resolution according to the amount of data you
transmit. The first data will be a low resolution image, whereas the later data
improves the quality of the image by adding higher frequency information.

Two dimensional discrete wavelet transfer

The two dimensional discrete wavelet transfer (DWT) is made from simple one
dimensional building blocks, which convert a finite length input sequence, x[n],
into two sub band sequences y0[n] and y1[n]. These two sub bands can be seen as
a low pass and high pass sub band, respectively, who have then been sub-sampled
by disregarding every second sample [3, page 423]. The high pass and low pass
filters must be related to each other and are quadrature mirror filters. This causes
half of the frequencies to go to each of the outputs. Since each of the outputs
now have half of their frequencies removed, half of the samples can be removed
according to Nyquist’s rule, and therefore every second sample is removed. The
high frequency and low frequency outputs are then processed again through another
set of quadrature mirror filters and down-sampled. The result of this is four outputs
called LL, HL, LH, HH, where L stands for low passed filtered, and H stands for
high passed filtered. HL is then the output from the signal that went first through
the high pass filter, and thereafter through the low pass filter. Figure 2.3 show how
the input is going through two filters for each of the outputs.

LP — LL
LP
> HP —
LH
Input
» LP —
HL
HP
- HP —
HH

Figure 2.3: 2 dimensional DWT

Multilevel two dimensional discrete wavelet transfer

To do a multilevel two dimensional discrete wavelet transfer, do a two dimensional
DWT of the LL output of an already transformed signal. Repeat this over and
over again until you either run out of samples or wish to stop for some other
reason [3, page 428-430]. Figure 2.4 illustrates the process, and it shows how the
image is compressed over and over again.

:‘j: .
3] = gs 52
@ @ ®©
Qg] Do
= g =3
N E N N B
= - o
6o 3% 2%
2 L 1y, A, o 5&%
2w | |2 W, 2 [HL,
(7]] LH, |HH, @ LH, |H,
original
image
LH, | HH, LH, | HH, LH, | HH,
(@)] (e (@

Figure 2.4: Hlustration of how DWT works with upper left image being compressed
over and over again [9]

2.7 Gamma correction

The human eye, under normal lighting conditions, is better able to differentiate
between the darker lighting levels than the lighter ones. This ability follows a non-
linear curve, and this is what the gamma correction tries to simulate. Without
the gamma correction, humans will find the images looking artificial and erro-
neous.

Gamma adjustment is then the process of taking the linear colour range observed
by the camera and adjusting it into nonlinear values, more similar to the way a
human observes the world.

Gamma correction value is given by:
Z=XY (2.4)

Where X is the original value, Y is the gamma adjustment and Z is the scaled
result.

2.8 Histogram

The computation of a histogram is to put individual pixel values into different
predetermined bins. This can be done either before or after the gamma correction.
The histogram will then have information of the colour composition of the image,
which can be used for further assessment of how good the image quality is.

The quality of the image can be seen by analyzing the distribution of the colour in
the image. In a good image, there will be a good distribution of the colour levels,
and there should not be indication of colours only being in the darker or brighter
area.

2.9 Min-Max computation

Min-Max computation is, as the name suggests, finding the lowest and highest
values of the pixels from the captured image. The information gathered from the
min-max computation can be used to see if the image is over- or underexposed. In a
good picture, neither the minimum nor the maximum pixel values should be at the
lowest or highest possible levels, respectively. A minimum or maximum value at an
extreme level means that the image is under- or overexposed, this in turn means
that the shutter time of the camera is not optimal, and should be changed.

2.10 Unsigned extension

Unsigned extension is to extend the size of an unsigned bit vector. To do this is to
pad one of the edges with zeros. One puts them in the most significant bit (MSB)
position, in order to retain the original value, as long as it is not a signed variable
or floating point. For example, a 12 bit variable with the value 111100001111, with
the MSB on the left side, will become 0000111100001111 if it gets extended to 16
bits.

2.11 Demosaicing

When taking a picture, the pixels of a camera are covered with individual filters,
to filter out certain colours. This means that every pixel only sees one of the
primary colours (red, blue or green). Hence, for each pixel we have to estimate the
colour values of the two colours not present. For example we must find the blue
and red value of a pixel that only sees green. The process of doing this is called
demosaicing.

Because of the way the human eye works, green will be the most important colour,
as this is the colour we differentiate the easiest. Therefore, there are twice as many
green pixels as there are red or blue. This also makes it much easier to calculate

the green values of red or blue pixels, as one only needs to calculate the average of
the neighbouring green pixels to get a good estimate.

For the estimation of the red and blue pixels, we must do it in two stages. First we
estimate the red values of the blue pixels, and the blue value of the red pixels. If
we look at figure 2.5, we can see that the blue pixels are surrounded by red pixels
diagonally, and that the same goes for the red pixel in correlation to blue. To
estimate the red and blue values we will then take the average of these diagonally
surrounding pixels. After this is done, we will have a similar pattern for red and
blue pixels, as we have for green. To find the remaining unknown blue and red
values, who are situated over the original green pixels, we can estimate these values
in the same manner as we did for estimating the green value [10]. We can see an
illustration of the demosaicing process in figure 2.5.

m (wf e =
H E EE
B =l . [
H N N E
CHEC -
B E_E W
ENEEENEN,
" EEE

Original Sensor Array Incomplete Red,
Green, and Blue

Channels

Grean

Raw

Converter
Final RGE File

Figure 2.5: Going from a three channel image, to three one channel images. [11]

2.12 Ring buffer

A ring buffer is a way of temporarily storing data. The ring buffer starts storing
data in an arbitrary place, and stores the consecutive data in the next spaces in
rising order. When the memory reaches the highest address it is allowed to access,

10

it starts again at the lowest address and continues storing data. Then when it has
stored data at all the available addresses it will overwrite the oldest data.

2.13 Space Radiation

NASA says “Radiation may be defined as energy in transit in the form of high-speed
particles and electromagnetic waves.” They can have different forms and can be
divided into two main groups: ionizing and non-ionizing radiation. Space radiation
consists mainly of the ionizing kind. This is the radiation with the highest energy,
and therefore the highest damage potential when interacting with objects, such as
an FPGA or other circuitry. [12]

2.13.1 Radiation Effects On FPGA

The ionizing radiation can have unwanted effects on transistors, and may therefore
prevent the FPGA from doing its task properly and as expected. These effects are
caused by the radiation hitting critical regions of the transistors, and may cause
various failures or single event effects. The sensitivity of a component to the space
radiation and single event effects differs. SRAM is very susceptible to it, while if
one has radiation hardened hardware it may be almost immune to it. The single
event effects are divided into to main categories; hard and soft errors. [13].

Soft errors

The soft errors are self correcting over time or by rewriting a memory element.
There are three subclasses of soft errors: single event transient (SET), single event
upsets (SEU) and single event function interrupts (SEFT).

SET A high energy particle impacts a combinatorial path and induces a volt-
age. If this impact is of great enough magnitude and length, it may cause an
error that propagates through the combinatorial path, and ends with an erroneous
result.

SEU The high energy particle changes the state of a memory element and can
be single bit or multibit upsets.

SEFI This is when the device functionality is no longer the same as intended,
and a power cycle may be the only way of getting back to the correct way of
operations.

11

Hard errors

These are errors with lasting effects on the device. There are three subclasses of
hard errors: single event latch up (SEL), single event burn up (SEB), and single
event gate rupture (SEGR).

SEL A circuit gets a latch up because of induced radiation, and this latch up
may or may not be cleared by a power cycle. A latch up is a short circuit in an
integrated circuit where a low-impedance path is generated between the power and
ground in a MOSFET. This causes the MOSFET to function incorrectly, and can
cause over-currents, leading to the destruction of the circuit or component.

SEB A high energy ion impacts a transistor source, causing it to become forward
biased.

SEGR A rupture in the gate ion oxide caused by an impact from a high energy
ion.

12

CHAPTER 3
REQUIREMENTS

The NUTS project has several requirements for its modules and submodules. For
the camera module, the requirements are listed in table 3.1.

1D

Specification

R05-CAM-COM-001

COM = Internal Communication Bus
Must be able to communicate with the other sub systems using
the back plane

R05-CAM-COM-002

Must be able to capture image on request

R05-CAM-COM-003

Must be able to send images to the OBC on request

R05-CAM-COM-004

Must be able to change image sensor parameters on request

R05-CAM-CPR-001

CPR = Compression of images
Must to be able to read images from the image sensor and com-
press them to reduce file size

R05-CAM-CPR-002

Must be able to produce thumbnails

R05-CAM-CPR-003

Must be able to produce histograms of pixel values

R05-CAM-CPR-004

Must be able to detect and not process unwanted images (Pictures
of space or the sun)

R05-CAM-CPR-005

Must be able to make gamma corrections on captured images

R05-CAM-IMG-001

IMG = Storing of images
Must be able to store compressed images to local memory

R05-CAM-IMG-002

Must be able to retrieve images from local memory

R05-CAM-REP-001

REP = Reprogramming
The compression logic should be able to be reprogrammed in flight

Table 3.1: Camera module requirements

Some of these requirements are not applicable to my work and will be handled
by other people working on this module now and in the future. My focus will
be towards the compression of images requirements (R04-CAM-CPR-001 to R04-

CAM-CPR-005).

13

CHAPTER 4
APPROACH

The earlier work on the camera module for the satellite, done by Andreas Bertheussen
and Thomas Nornes [14,15], had a working prototype for image capturing and com-
pression. This prototype had a soft-processor, which had a Linux operating system,
and a software implementation of the image compression written in C.

This way of doing image compression is not the most ideal, and is not ideal for
a space mission either. Because of the difficulty of problem fixing after launch,
the module should have as few possible states as possible. This is so one can
have a better overview of the system, and therefore know what happens in all
situations.

There are 4 main ways to improve on the existing code
1. To change all the existing C-code into VHDL code
2. To change parts of the C-code into VHDL code
3. Review the C-code and remove superfluous parts
4

. Make a new VHDL code, by converting existing jasper-codec files, and not
based on the earlier work of Andreas and Thomas.

First I tried to convert the existing C-code into VHDL, but several of the functions
used in the existing code were not supported by the converting software, Vivado
HLS [16]. This resulted in me trying to convert an existing jasper-codec code [17],
but this led to the same problem. The final solution was to write the VHDL for
the needed functions by hand, and not relying on conversion software.

The plan was to develop the codes with the existing structure still in place, so that
when a picture was taken, the original system would run in parallel with the new
modules and output data would be compared on the fly. This became problematic
during testing, and I ended up testing each module individually.

Figure 4.1 shows how the compression pipeline is supposed to look [14][page 9]. In
this pipeline we can see all the modules we need for a complete compression of a
captured image into JPEG 2000 format. In the sensor capture block, there needs to
be a demosaicing process to be able to do the rest of the processes correctly.

14

Quality estimation

[I I
Min/max metric Histogram Sharpness
computation computation estimate
H H H
Image | | Sensor ' | Gamma + | Main Color Wavelet Block | | Nonvolatile
sensor Capture adjustment memory transform transform coding memaory
TPEG2000

Figure 4.1: Suggested pipeline [14]

4.1 Unsigned extender

The task of this module is to take the incoming bit stream from the camera, and
make it into a bit vector. The incoming data is 12 bits long, and after recommen-
dation from [14], the vector is extended to be 16 bits long.

The module also has an output ready signal which will be used for the module
that receives its output, so that it only receives bit vectors that are correctly put
together.

The module uses a counter, which counts each incoming bit. This counter is used
to place the incoming bits in the correct position in the vector. It is also used
to detect when the last bit for the pixel has been received, and therefore knowing
when it is possible to push out a completed vector.

4.2 Demosaicing version 1

At the start of this module is the interface for gathering pixel values from the
camera. Detection of when to start capturing is relatively easy. One only needs
to look for the values of FV and LV to be high as shown in figure 4.2, taken
from [18, page 13].

. Y, T

-
xex | LI LILIL
!

[

Y
v .

Dout[11:0] W/fy////,'//[///ﬂ////f;

| Vertical Blanking i-loriz Blanking |'va|id Image Data Horiz Elan4ing wertical Elan+ing |

Figure 4.2: Sending of valid frame

I started making the demosaicing module by finding the green values. Figure 4.4
shows the algorithm for estimating the missing green values. To find if a pixel is

15

empty or not is just a matter of looking at the pixel position. From the datasheet
we can find which pixel positions correspond to which colour pixels. In figure
4.3, the position of the pixels in the image sensor is shown. The pixel position is

indicated by i and j, where i represents the horizontal position, and j represents
the vertical position.

column readout direction

black pixels

First clear
¥ pixel {10,50)

A
Gr|R |Gr| R JGr | R |Gr

row

readout |- |Gr|R |Gr| R |Gr| R |Gr
direction

Gr|R |Gr| R |Gr | R |Gr

Figure 4.3: Overview from [18] of pixel positions

The special cases refer to the edges of the image. Since they are not completely

surrounded by neighbouring pixels, we have to estimate their values in a different
manner than the non-edge pixels.

16

L

Pixel(i j)
empty?

Yes

Special
case?

N ixel(ij) = (Pixel(i j+1) + pixel(i j-1)
0 + pixel(i+1,j) + pixel(i-1j)y4

*

Pixel(ij) = (pixel{ij+1) +
pixel(i+1 j)n2

Jf

Pixel(ij} = pixel(ij+1)+
pixel(i+1j) + pixel(i-1,j)13

%

Pixel(ij) = pixel(ij+1) +
pixel(i-1,j)N2

J_

Pixel(ij) = (pixel(ij-1) +
pixel(i+1.j)y2

Jf

Pixel(i j) = pixel(ij-1) +
pixel(i+1j) + pixel(i-1j)¥3

%

Yes
Yes >
Yes Left Row? >—No Right Row? No_{
es_>|

No
Yes »
Bottom row?>-Yes Left Row? >—pNo Right Row? No‘{

Yes—)l

Pixel(i j) = pixel(ij-1) +
pixel(i-1,j)N2

J_

et Row YeE»[F'ixeui.jj: = (Pixel(ij+1) + pixel[i.j-‘I:}

+ pixel(i+1,jIN3

RightRov, + pixel(-14)3

YES*[PIKBHI.J_:

Figure 4.4: Flowchart of the process of finding the
pixels.

= (Pixel(ij+1) + pixel(ij-1 j:}

P4

17

missing values of the green

To estimate the red and blue values, we must take the average of the diagonals,
and then find the rest of the values, using the same method as for the green
values.

In figure 4.5 one can see how the missing blue values are estimated. First the blue
value of the red pixels are estimated, because they are surrounded by blue pixels on
their diagonals. After this is done, the blue value of the green pixel are estimated
by taking the average of the horizontal and vertical neighbours. The red pixels
have changed colour to purple, to represent that they at that moment have both a
known red value, and an estimated blue value.

f——

Figure 4.5: Estimating the blue values

This means that we can do the first estimations for the red and blue layer at the

18

same time as the green layer is being estimated. See figure 4.6

ﬂ

Pixel(ij)
empty?

J max

Yes

) pixeliij) = (pixel(i+1j+1) +
Scpaiggl Nowl pixel(i-1, j+1) + pixel(i+1, -1) +
! pixel(i-1,j-1))y4

Ye

Figure 4.6: Flowchart for finding the first values for red or blue.

As we can see in the datasheet for the camera chip [18], we have the format of
2592 x 1944 pixels that are active, but the active pixels do not start in the point
(0,0). The first readable pixel exists in the (10,50), but this is still not one of the
active pixels. They start at (16,54). This was taken care of by the camera chip
itself, as it explains [18, page: 13], readout of the pixel values can wait until the
two correct signals are high, and therefore only exports active pixels. The pixel
readout position (0,0), the first pixel to be read, will be in the top right corner.
This is important to know in order to correctly store the image and handle the
special cases during the demosaicing.

The algorithm for estimating the green values, shown in figure 4.4, is well suited for
a VHDL design in space. As stated earlier, the less complex the better. Therefore
the module was simplified, by postponing the special cases (edge pixels) until after
the non-edge pixels had been processed in full.

Figure 4.4 and 4.6 show that except for the special cases we need division by 4. We
choose to do this by a right-shift by two to get the correct values. The values that
are handled are 12 bits long and unsigned. The maximum error of a right shift of
two bits is 0.75.

Chapter 2.3.2 shows that this is a feasible way of doing the necessary division of
the numbers, as the potential errors are small enough to not matter.

4.2.1 Processes

The algorithm is realized in VHDL and this consists of several processes. The
code can be found at https://peraro90@bitbucket.org/peraro90/satellite.
git

19

Figure 4.7 shows the state machine that is being realized in the demosaicing module.

i=2592

read_out

special_case

i=2502
j=1944

normal_case red_blue_case

i=2592
j=1944

Figure 4.7: Demosaicing state machine

state_changer

This process handles the changing of states, and in addition it contains the counters
for the signals i and j.

The signals i and j are used in the layering process to determine the position in
the array to store, estimate and read values from. The i variable is indicating the
column position while j is indicating the row.

nstate
This process is a companion of the state_changer and is responsible for deciding

what the next state will be, so that state_changer later can change the state into
the correct one.

layering

In this process the incoming data is captured. Furthermore, it estimates the values
for the three layers of the output data. It also generates the output.

20

It also interprets the state machine that nstate and state_changer drives. This is
what happens during the six states:

init This is the first state, and the default state after a reset. Its main task is to
set initial vaules, and to be a known state to start in.

read_in The read_in is where the incoming data from the camera will be sent to
memory before further operations is done on that data.

read_out Usually the final state of a demosaicing process, unless a reset is applied
during the run. Here the estimated data is sent out from the module so it can be
further processed.

normal_case This is where most of the estimation happens. The majority of
the green layer is estimated here, with the exception of the edges. Half of the
estimation of the red and blue layer also happens here, with the exception of the
edges and the red and blue values in the green pixels.

red_blue_case This case is where the remaining red and blue values are estimated
on the basis of the known values and the previously estimated ones.

special_case This is where the edges are taken care of. The edges can not be
estimated in the same manner as the other pixels, and are therefore only a copy of
a neighbouring pixel instead of an average of the four neighbouring pixels of the
same colour. This deviates from the flowchart in figure 4.4, as this required to find
the average of the two or three neighbouring pixels depending on the position of
the pixel.

4.3 Demosaicing version 2

This version uses many of the same algorithms as version 1, but it uses ring buffers
instead of storing all the incoming data.

By doing this, we get parallelism, which decreases the time from completed reading
of the input to the generated output. The estimation of the unknown pixels can
in principle be started when we have read three rows of the image. For some extra
margin, I let the ring buffer contain six rows.

The output of a given pixel is generated as soon as the unknown values of that
pixel are estimated.

21

The version 2 design is a less intuitive, something that can be seen in figure 4.8.
This flowchart is not complete, as it is missing the description of how to find all
the red and blue pixel values.

22

layer_ready ="1'
layer_x = mod((j-3),5)

out_x=layer_x

out_j++

rb_i=0
rh_x=layer_x

rh_i++

Input
——>| memory(i,cam_X} = input'—gb@—yes

—)‘@) no 4&’)
yes
¥
.
} layer_up = 0 rb_up =0
“’ES layer_down = layer_x -1 "‘95 > rb_down = rb_x -1
no no
layer_down = 4 rb_up = rb_x +1
yes layer_up = layer_x +1 /es rb_down = 4

no
layer_down = layer_x -1
layer_up = layer_x +1

|)
blue_layer(ilayer_x)=
/ if (i mod 2) = 0 then \ (4' 1no camera_values(i layer_x)

green_layer(ilayer_x) =
camera_values(ilayer_x)

red_layer({ilayer_x) = C%r:_;:a—li‘;i:g';[ai"'lzr%r . green_temp =
camera_values(ilayer_x) - Jayer_x) signed(camera_values(i(layer_up)}+
camera_values(i (layer_u

green_temp ‘= signed(camera_values(i camera_values((i+1)layer_x
(layer_up))+ camera_values(i, camera_values((i-1) layer_x
(layer_dow green_layer(i,layer_:

camera_values((i+1) layer_x) std_logic_vector(shift_rightigreen_temp 2
camera_values((i-1),layer_x))
green_layer(ilayer_x) red_temp =
std_logic_vector(shift_right(green_temp,2)) signed({camera_values((i+1),{layer_up))+
camera_values((i-1),(layer_down
blue_temp = camera_values((i+1),(layer_dow
signed{camera_values((i+1),(layer_up)) camera_values((i-1),(layer_|
camera_values((i-1),(layer_dow red_layer(i,layer_:
camera_values((i+1) (layer_dow w_logic_vector[sniﬂ_right[red_tem
camera_values((i-1).(layer_up}))

blue_layer(i layer_x}=
&d_\ngic_\.recmr[shiﬂ_rignt[nlue_temp/

Figure 4.8: Flowchart of the demosaicing module, version 2

4.3.1 Processes

This version of the demosaicing module does not use a state machine. Instead it
uses several different processes operating in parallel. These processes have different
tasks.

counter

This process contains the different counters that are needed to operate the other
processes. All of these counters are clocked, and are synchronous with the positive
edge of the system clock. All of the counters are also reset to the default value, 0,
when the system is reset.

The counter that determines what row in the ring buffer to be written to or read
from, uses a modulo calculation of the j variable, which indicates what row we are
currently reading from the image sensor. In this case, it is a modulo of six, since
we have six rows in the ring buffer.

read_in

This process, as the name implies, reads in the data coming from the camera. The
data is then stored in the ringbuffer, with two counters determining the position
for the storage.

read_out

Writes the red, green and blue pixel values out so other modules may use them
further down the compression chain. As with the read_in process it uses counters
to determine position, but instead of determining where to write, the counters
determine what position to read from.

layering

This is the process that does the estimating of the unknown pixel values based on
the neighbouring known values. It uses several of the counters that are driven in
the “counter” process. These counters ensure that estimations depending on the
results of other estimations are delayed enough, so that it may estimate on the
correct basis.

4.4 Finding minimum and maximum values

I created a module whose task was to extract the minimum and maximum value
of each colour in the image.

24

This module will be situated right after the the demosaicing module, and read the
three output channels and from them determine what the maximum and minimum
value of each colour is.

The values are found by first setting the variables for the maximum values to all
zeroes, and the variables for the minimum to all ones. Then we compare the read in
values to the current variable for the respective colour. If the colour value from the
demosaicing module is larger than the variable for the maximum value, it becomes
the new maximum value. Ditto for the minimum value, except the other way
round.

MO Disregard X MO

YES YES

o == MAX X ==MIN

Figure 4.9: Flowchart for the min-max module

4.5 Histogram

The histogram module was made to produce histograms of the image data. The
values of the pixels are evaluated, and the correct part of the histogram is increased
by 1.

The incoming data from the image sensor is 12 bits before it gets extended in the
“Unsigned extender”. This means that the MSBs of the vectors that represent the
pixel value will always be zero. The easiest way to divide up the histogram is to
divide it into a number of bins that is a power of two. This is because, as described
in 2.3.2, it is very easy to divide by these numbers.

I made the histogram module such that it produces histograms with 8 bins. And
since the MSBs are always zero because of the unsigned extension, I read bits 11
to 9. These three bits will represent a number between 0 and 7, which will decide
what bin is increased.

25

4.6 Colour transform

After demosaicing, the next step towards a fully compressed image is a colour
transform, and now with all three colours represented in each pixel, we can just do
the needed arithmetic and create the transformed format.

By taking the generated three layers from the demosaicing process, the only thing
that was needed was to use the correct equations to get the correct transforms,
ready for further compression work.

4.7 Gamma correction

The normal gamma correction coefficient is 2.2 [19], but calculating the gamma
value with Y = 1/2.2 is not easy in hardware. I used Y = 1/2 instead, that is,
taking the square root of the input. Hardware solutions for square root of integers
were available. I chose one that requires only one clock cycle, and produces an
integer result.

26

CHAPTER 5
TESTING

5.1 Unsigned extender

This module was tested by making a test bench and analyzing the resulting wave-
form. In figure 5.1 we can see the waveform generated by the test bench for the
unsigned extender. If we analyze this waveform we can see incoming bits are being
grouped together, and they form a bit vector that is outputted.

Figure 5.1: Waveform for the unsigned extender

5.2 Test image

To test the demosaicing module, I generated several test images using MATLAB.
These images were made by first making them into a three layer image, where each
layer represented red, green or blue. Then the image was made into an array of
numbers, in the same style and format as the values from the camera.

The first test image to be made, was a total black image, this was made to verify
that it would give the correct number of pixels back, and it is easy to check if all
the pixel values are zero, as they should be for a black picture.

The next image was a completely white image, this was done to see that all the
colours were calculated at the same time, and all the pixel values should be at the
maximum value.

27

Then single-colour images were made, this was to see if the output image would
be the same colour, and therefore no colour estimations were made on the wrong
premises.

Finally, a more complex image with shapes and bordering colours of different hues
were made. It also has colours with smooth gradients to see how these are preserved
at the output. The image has colours with hard borders between them to observe
how the transition looks at the output. This image can be seen in figure 5.2

Figure 5.2: The matlab generated input image used to simulate demosaicing

5.2.1 Test image results

To the human eye, the reassembled output images are clearly the same as the input
images. In the case of the single coloured images, we got images of only the same
colour back, as expected.

The more complex test image returns what at first glance looks identical to the
input, but when zooming in at the transition areas between two colours, one can
see that the transition is not perfect. This is to be expected, however, because of
the way the bi-linear demosaic process works.

As we can see from figure 5.3, the demosaic process works, and the image reassem-
bled from the three output layers is clearly the same as the input image of figure
5.2. In figure 5.4, 5.5 and 5.6 we can see monochrome representations of the red,
green and blue layers respectively. The degree of white is how close it is to its max-
imum level. These images are as expected, and shows that the output correlates to
the input, and the outputted image is visually the same as the input image.

28

Figure 5.3: The image reassembled from three output layers from the demosaicing
simulation

Figure 5.4: The red output layer from the demosaicing simulation

Figure 5.5: The green output layer from the demosaicing simulation

Figure 5.6: The blue output layer from the demosaicing simulation

Figure 5.7 shows the transitional properties between the blue and black areas. We
can see that the intersection is not a sharp line. This is expected after the demosaic
process because of the way it estimates the values.

Figure 5.7: Zoomed in image of blue and black transitional area

Figure 5.8 shows red and blue, and we can see the transitional area has the same
pattern as in figure 5.7. This can also be seen in figures 5.9, 5.10 and 5.11. We
can see how the transitional area mixes the colours from the two areas, this is to
be expected because of the averaging process in the demosaicing process.

Figure 5.8: Transition from blue to red

Figure 5.9: Transition from blue to green

Figure 5.10: Transition from blue to white

Figure 5.11: Transition from white to black

33

Figure 5.12 shows how a zoomed in portion where the colour change from green to
blue is very gradual. We can see that this change is nice and smooth, indicating
that the demosaicing process has worked as intended. Since the estimated pixel
values are estimated from the average of the neighbouring pixels, it handles the
gradually changing colours very well.

Figure 5.12: Gradual change from green to blue

Anomalies

When I was running the tests, the outputted text file from the simulation would
always print out 14 very large negative numbers at the beginning. I was not able
to trace the source of this anomaly, and the images generated from these textfiles
would then be skewed by 14 bits. This is not a very significant fault if it is only an
error in the test bench because the output generation is wrong, but is more serious
if this correctly reflects the output.

When one looks at the waveform from the simulation, one cannot see the source
of the error. This indicates that this is only an error in the writing process in the
test bench, and not in the actual output from the module.

34

Figure 5.13: The anomaly creates a break in the line from starting the image 14
pixels later than it should.

5.2.2 Test image on demosaicing version 2

The same test images were run through the second version of the demosaicing
module in the same manner, with first a black image, then a white, followed by
images in only red, green or blue. These images gave the expected results.

Then, as was done for testing version 1, I sent the more complex test image through.
At first glance it looked good, but on closer inspection there were faults in the red
and blue layer. The green layer, however, looked correct and to expectations.
In the red and blue layer, there were faint lines across the image that were not
expected, and they should not be there. The problem of the 14 large negative
numbers persisted in this version, but this can be explained by the fact that they
are using the same test bench.

Figure 5.14 shows the output of the simulation from version 2, and we can see the
way strange lines have emerged across the image which are clearly not meant to be
there. If we look at the single colour output (figures 5.15, 5.16 and 5.17) we can see
that the green layer is correct, but the red and blue layer also have the mysterious
streaks. This points to the fact that the error has to be in the estimation of the
blue and red layers.

35

Figure 5.14: Output from demosaicing version 2

Figure 5.15: Red layer from demosaicing version 2

36

Figure 5.16: Green layer from demosaicing version 2

Figure 5.17: Blue layer from demosaicing version 2

37

If we look more closely at the outputted image, we can see from figure 5.18 that
the skew also exists here, and as explained earlier, the same unexplained numbers
appear in the output as they appeared in version 1.

In figure 5.19 we can see that the transition between the colours is not as smooth
as in version 1, and that we have the streaking going across the image. In figure
5.20 it might seem like the streaking originates in the the colour blocks. We can
also see, in both these images, that the red appears to be striped in stronger and
weaker stripes of red. This is the blue streaks coming over the red and obscuring
the image.

Figure 5.18: Anomaly from version 2

38

Figure 5.19: Anomaly from version 2

Figure 5.20: Anomaly from version 2

39

5.3 minmax module

The module that finds the largest and smallest value for the three output colours
from the demosaicing module was tested by using a test bench where only a few
input samples were simulated. This produced a waveform which was analyzed.
Figure 5.21 shows that the module correctly changes its maximum and minimum
values for red, green and blue, when new values of larger /smaller size are detected.

Figure 5.21: Waveform generated by the test bench belonging to the minmax
module

5.4 Histogram

The histogram module was tested by looking at the waveform generated by the test
bench to the module. Figure 5.22 shows part of the waveform that was generated
in the test bench. It shows that the counters representing the different bins in the
histogram are increased, and they are increased at the correct times.

40

Figure 5.22: Waveform for the histogram module

5.5 Gamma correction

The testing of the gamma correction module was done in a very similar way as
the testing of the minmax module. I made a test bench and ran several different
values as input, and studied the waveform to see how the module behaved, and if
that behaviour was correct.

Figure 5.23: Waveform generated by the test bench for the the gamma correction
module

We can see from figure 5.23 that the output is the square root of the input, but
is rounded down to the closest integer. This is what was expected, and are good
results.

41

CHAPTER 6
DISCUSSION

6.1 Star tracking

With the camera pointed towards space instead of earth, it may be possible to
perform what is called star tracking. This is to determine one’s position by using
the known position of stars in relation to earth. This is a possible extra use of the
camera, and can help the telemetry system of the satellite. The problem is that
we do not know how well the camera manages to see faint light sources in an dark
environment (stars in space).

6.2 Scalability

The current system is made to work with the camera at full resolution. The image
sensor has the ability to take pictures in different resolutions [18, page 16]. If there
should be a wish to change the resolution, this system would not allow for that.
To make a more scalable system would mean to make it more complex, and as
explained earlier in this thesis, that is not good.

On the other hand, a scalable system would have the opportunity to take smaller
pictures, which could be transmitted to earth faster. They could even be transmit-
ted in a raw format over a short period of time.

6.3 Bi-linear demosaicing

There are many solutions to how to perform the demosaicing process. All of them
have their strengths and weaknesses. The more complex the method, the less errors
in the result, but there is no 100 % error free way of doing it. This is because we
are only estimating the unknown values of the different colours, and we have no
way knowing what the correct values really are.

The simplest way of doing it would be to just copy the value of a neighboring pixel
of the same colour to the current pixel being estimated. This is also the method
with the biggest errors [10].

The more accurate the estimations become, the more complex the structure needed
to do the estimation becomes. As stated earlier, high complexity is not good,

42

)

nn
ilde

because of the difficulty of knowing how it will react in all situations. Because of
this, one needs to find a compromise between complexity and accuracy. I believe
bi-linear demosaicing is the best solution for our purpose, as it provides us with
good estimations of the unknown colour values, and at the same time is relatively
easy to implement in VHDL.

6.4 Demosaicing version 1 versus version 2

The two versions of the demosaicing module solve the same task, and are both
using the same basic algorithm to estimate the missing values. The difference lies
in the parallelism of the two systems, where version 2 manages to do the different
tasks in parallel, while version 1 performs them consecutively.

The other big difference is in the use of memory. Version 1 uses a lot of memory, as
it stores all the data that comes from the camera before it continues its processing,
and it also stores all the data from the three colours. Version 2 uses much less
memory because of its use of a ring buffer, and because it neither stores all the
data from the camera nor the data for the three colours that are outputted.

The problem with version 2, though, is that simulations have produced some
anomalies that we do not see in version 1, and hence will require further work
before it can be seen as a successful demosaicing module. So my recommendation
for the current versions is to use version 1 until version 2 has been fixed and tested

properly.

6.5 Storing of raw data

By using ring buffers we do not need to store much of the raw data from the camera.
This decreases the need for storage space and RAM drastically, but at the same
time, we lose the raw data during the process.

The loss of raw data means that there is no way of downloading this data to earth.
However, this is an unlikely scenario as the download would take a long time due
to limited bandwidth and the large size of the raw data.

6.6 Reprogrammability

The FPGA will be powered down when it is not needed, and each time it is turned
on it will read the bit file that holds the information of its functionality. This
means that if other parts of the satellite have access to the memory where it reads
the bit file from, it will be possible to reprogram the FPGA in flight.

This introduces both advantages and problems. The advantage is the possibility to
reprogram the FPGA, and that we can make sure the bit file is correct, and change

43

it, if a bit flip were to happen to it. The problem is the increased complexity of the
system, and the possibility of the bit file to be overwritten by a fault, and thereby
be erroneous.

6.7 Black and white images

After the colour transform, we have three new layers: Y, Cb and Cr. The Y layer
represents the luminescence, and when looking at this layer it is evident that it will
be an approximation of a black and white version of the image. This may be used
to generate black and white images, which can be compressed to generate even
smaller files than a colour image would.

6.8 Choice of FPGA

The current chosen FPGA is not rad-hardened. This can create problems, as space
is a high radiation environment. There exist FPGAs that are made specifically for
space operations. We have for example virtex 4 and virtex 5 from Xilinx.

6.9 Future work

The tested modules are not tested in cohesion with each other and this needs to
be done before the final implementation. However, the most important task is to
make a module for the compression of the image, using the pre-processed data from
the modules created.

The modules are also not implemented on a physical FPGA, they are only simulated
using test benches. So there needs to be done synthesis and “place and route”, and
this may uncover errors that were not discovered by simulation.

Further, there should be taken a closer look at whether the current FPGA is good
enough, and if one should change it to a rad-hardened device.

The code is not synthesized or placed and routed. This needs to be done. This
may uncover unknown faults in the design.

44

CHAPTER 7
CONCLUSION

The simulations show that the modules are working individually, but they are not
tested with each other. The module for compressing the captured images is also
missing, but [9] and [20] claim that doing DWT in an FPGA is no problem.

The code is not synthesized or placed and routed, and this may reveal problems
that simulations have not discovered. The lack of synthesis also means we do not
know if these modules can handle the desired clock frequency. Also, without the
synthesis, one does not know how large the physical circuit will be, and if the
currently chosen FPGA will be large enough.

Because of problems with the prototype, there has not been done any testing on
a physical circuit, and therefore we do not know if this new solution is better
regarding speed and power consumption.

In the future there should be made an effort to tie the current modules together
and synthesize them. Further, they should be tested on the prototype and see
how well this performs compared to the already existing solution made by Andreas
Bertheussen and Thomas Nornes.

45

1]
2]

REFERENCES

Xilinx, “Field programmable gate array (fpga).” http://www.xilinx.com/
training/fpga/fpga-field-programmable-gate-array.htm, 2016.

Xilinx, MBv7 FAQ. Xilinx, http://www.xilinx.com/ipcenter/processor_
central/microblaze/doc/mb_faq.pdf, jul 2008. Datasheet.

D. S. Taubman and M. W. Marcellin, JPEG2000: Image Compression Fun-
damentals, Standards and Practice (The International Series in Engineering

and Computer Science). ISBN 0-7923-7519-X, 2002.

LionDoc, “Own work, public domain.” https://commons.wikimedia.org/w/
index.php?curid=19224869. figure.

schorsch, “Luminance.” http://www.schorsch.com/en/kbase/glossary/
luminance.html, 2013.

S. A. Eugster, “Own work, public domain.” https://commons.wikimedia.
org/w/index.php?curid=10972475. figure.

“Overview of jpeg 2000.” https://jpeg.org/jpeg2000/. online.

N. O. Bakkeb, E. L. Flogard, M. Gammelster, H. S. Mork, A. F. Pignde, and
S. Solberg, “Bildekomprimering,” project report for eit, NTNU, https://wuw.
ntnu.no/wiki/download/attachments/63574301/Bildekomprimering.
pdf?version=1&modificationDate=1423675763000&api=v2, may 2014.

M.Puttaraju and A.R.Aswatha, “Fpga implementation of 5/3 integer dwt for
image compression,” International Journal of Advanced Computer Science and
Applications, vol. 3, no. 10, pp. 187 — 191, 2012.

H. S. Malvar, L. wei He, and R. Cutler, “High-quality linear interpolation for
demosaicing of bayer-patterned color images.” http://research.microsoft.
com/pubs/102068/Demosaicing_ICASSP04.pdf, 2016.

D. Khashabi, S. Nowozin, J. Jancsary, A. W. Fitzgibbon, and B. Lind-
bloom, “Pattern-independent demosaicing.” http://i.i.cbsi.com/cnwk.
1d/1i/tim/2012/02/06/Adobe-raw-demosaic-diagram. jpg, 2016.

J. S. C. Space Radiation Analysis Group, “What is space radiation?.” http:
//srag-nt.jsc.nasa.gov/spaceradiation/what/what.cfm, may 2014.

D. White, “Considerations surrounding single event effects in fpgas, asics,
and processors.” http://www.xilinx.com/support/documentation/white_
papers/wp402_SEE_Considerations.pdf, may 2012.

A. Bertheussen, “Digital processing system for a cubesat cam-
era,” project report, NTNU, https://www.ntnu.no/wiki/download/
attachments/63574301/digital_processing_for_cubesat_camera_
andreas_bertheussen.pdf?api=v2, 2014.

46

[15]

T. H. Nornes, “Prototype design for cubesat camera,” project report,
NTNU, https://www.ntnu.no/wiki/download/attachments/63574301/
prototype_design_for_cubesat_by_thomas_hanssen_nornes.pdf?
version=1\&modificationDate=1420909519000\\&api=v2, 2014.

”

Xilinx, “Vivado high-level synthesis.” http://www.xilinx.com/products/
design-tools/vivado/integration/esl-design.html. online.

M. Adams, “The jasper project home page.” https://www.ece.uvic.ca/
~frodo/jasper/. Location of the jasper codec.

O. semiconductor, “1/2.5-inch 5 mp cmos digital image sensor.” http://www.
onsemi.com/pub_link/Collateral/MT9P031-D.PDF, 2015. Datasheet.

C. in Colour, “Understanding gamma correction.” http://wuw.
cambridgeincolour.com/tutorials/gamma-correction.htm. Tutorial.

T.Vijayakumar and S.Ramachandran, “Fpga implementation of 2d-dwt and
spiht architecture for lossless medical image compression,” International Jour-
nal of Scientific and Engineering Research, vol. 4, August 2013.

47

APPENDIX A
CODE REPOSITORY

All relevant code mentioned in this thesis can be found in https://peraro90@
bitbucket.org/peraro90/satellite.git. In this repository one will find several
files and folders. There are .m files, which are MATLAB scripts, and the folders
are projects done in Vivado.

The folders demosaic, demosaic_2, demosaic_3 contain different versions of the de-
mosaicing version 1, where demosaic_3 is the completed one. Demosaic_4 contains
the demosaicing version 2 module.

The gamma folder contains the gamma adjustment module. Histogram contains the
histogram module, minmax_2 contains the minmax module, and unsigned_extender
contains the unsigned extender module.

48

33 image (431:490,431:490,1)

APPENDIX B
IMAGE GENERATION AND REGENERATION

The images were generated in MATLAB using MATLAB scripts. Here are the
scripts for making the test image, and how to read the outputted data from the
simulation and make an image from that data.

B.1 Producing original image

i=1;
=1
image = zeros (1944,2592,3);
%red squares
for i = 1:2:30
for j = 1:2:30
image ((10%(i—1)4+1):((10*(i—1))+10),(10%(j—1)+1:((10%(j—1))+10)
)71):1§
end
end
Y%green squares
for i = 2:2:30
for j = 2:2:30
image (((10x(i—1))+1):((10%(i—1))+10),((10*%(j—1))+1:((10x(j—1))
+10)) ,2) =1;
end

5 end

%blue squares
for i = 2:2:30
for j = 1:2:30
image ((10%(i—1)4+1):((10*(i—1))4+10),(10%(j—1)+1:((10%(j—1))+10)
end
end

%coloured ribbons that cross
image (401:410,:,1)=1;
image (411:420,:,2)=1;
image (421:430,:,3)=1;
image (:,401:410,1) =1;
image (:,411:420,2)=1;
image (:,421:430,3)=1;

%intersecting squares

1
image (471:530,431:490,2)=1;
image (431:490,471:530,3) =1;

49

w0

90

Y%graded square black to white
for i = 1:100
for j = 1:100

image (1+480,j,1)=((i+j)/2)/100;
image (i+480,j,2)=((i+j)/2)/100;
image (14480,j,3)=((i+j)/2)/100;

end
end

;s %graded squares of different colours

for i = 1:100
for j = 1:100
image (i+480,j+100,1)=((i+j)/2)/100;
image (i+480,j4+100,2)=(100—((i+j)/2))/100;
end
end

for i = 1:100
for j = 1:100
image (i+580,j+100,3)=((i+j)/2)/100;
image (i+580,j4+100,2)=(100—((i+j)/2))/100;
end
end

for i = 1:100
for j = 1:100
image (i+580,j,3
image (1+580,j,1
end

)=((i+j)/2)/100;
) =(100—((i+j)/2))/100;

end

for i = 1:100
for j = 1:100
image (1+680,j,3)=((i+j)/2)/100;
image (1+680,j,1) =(((i+j)/2))/100;
end

end

for i = 1:100
for j = 1:100
image (i+680,j+100,2)=((i+j)/2)/100;
image (1+680,j+100,1)=(((i+j)/2))/100;
end

end

for i = 1:100
for j = 1:100
image (i+680,j+200,2)=((i+j)/2)/100;
image (i +680,j+200,3)=(((i+j)/2))/100;
end

end

o %red block with contrasts

image (1:399,431:830,1)=1;
image (100:150,531:581,1) =0;
image (200:250,531:581,1:3) =1;

50

94
95

96

98

99
100
101
102
103
104
105
106

107

108

10¢

110

11

112

113
11

115

116

142
143
144
145
146
147
148

149

3 image (100:150,631:681,2)=1;
image (100:150,631:681,1)=0;
image (200:250,631:681,3) =1;
image (200:250,631:681,1) =0;

%green block with contrasts
image (1:399,831:1230,2)=1;
image (100:150,931:981,2)=0;
image (200:250,931:981,1:3) =1;
image (100:150,1031:1081,1)=1;
image (100:150,1031:1081,2) =0;
image (200:250,1031:1081,3) =1;
image (200:250,1031:1081,2) =0;

%blue block with contrasts
image(1:399,1231:1630,3) =1;
image (100:150,1331:1381,3) =0;
image (200:250,1331:1381,1:3)=1;
image (100:150,1431:1481,1) =1;
image (100:150,1431:1481,3) =0;
image (200:250,1431:1481,2) =1;
image (200:250,1431:1481,3) =0;

7 %white block with contrasts

image (1:399,1631:1944 ,:) =1;

image (100:150,1731:1781,:) =0;
image (200:250,1731:1781,1:2) =0;
image (100:150,1831:1881,2:3) =0;
image (100:150,1831:1881,3) =0;
image (100:150,1831:1881,2) =0;
image (200:250,1831:1881,1:2:3) =0;

;s %show image

figure , imshow (image)

for i = 1:1944
for j= 1:2592
if mod(j,2) = 0
if mod(i,2) = 0
image_out (i,j) =
else
image_out (i,j) =
end
else
if mod(i,2) = 0
image_out (i,j) =
else
image_out (i,j) =
end
end
end
end

fid=fopen (’bilde.txt’, ’wt’);
for i = 1:1944
for j= 1:2592

image (i

image (i

image (i

image (i

o1

,j,2) %4095,

,j,3) %4095;

,j,2)*%4095;

fprintf(fid, *%d\n’, image_out(i,j));
end
end
fclose (fid);

Listing B.1: Producing original image

52

B.2 Reproduce after simulation

1 fileID1 = fopen(’bilde_out_red.txt’,’r’);
> fileID2 = fopen(’bilde_out_blue.txt’,’'r’)
3 fileID3 = fopen(’bilde_out_green.txt’,’r’
. formatSpecs = "%f’;

5 A = fscanf(fileID1 ,formatSpecs);

¢ B = fscanf(fileID2 ,formatSpecs);

7 C = fscanf(fileID3 ,formatSpecs);

s n = 1;

picture_red (1:1944,1:2592) = 0;

10 picture_blue (1:1944,1:2592) = 0;

11 picture_green (1:1944,1:2592) = 0;

12 image = zeros(1944,2592,3);

);

14 for i = 1:1943
15 for j= 1:2592

16 picture_red (i,j) = A(n)/4095;
17 image(i,j,1) = A(n)/4095;
18 picture_blue(i,j) = B(n)/4095;

9 image (i,j,3) = B(n)/4095;
0 picture_green(i,j) = C(n)/4095;
image (i,j,2) = C(n)/4095;

1

21

22 n = n+1;

23 end

24 end

26 figure , imshow (image)

27 figure , imshow(picture_red)
2s figure , imshow (picture_green)
20 figure , imshow(picture_blue)

Listing B.2: Reproduce after simulation

93

