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Problem description

Internet video applications and services are taking up an increasing share of the
Consumer Internet traffic. In this project we focus on Web Real-Time Communication
(WebRTC), which is browser-to-browser (peer- to-peer) applications. They do not
require download of additional third-party software (like Skype does). Avoiding
installations allow the user to run applications more seamlessly. Their success and
use are strongly influenced by the quality they provide and the experiences they
offer for users. At the same time, however, the delivered quality and the experience
for the user of video applications and services may be very negatively influenced
by technical constraints such as bandwidth, and parameters like packet loss, delay
and jitter. What actually causes degradation of the service is a hot research topic
without any clear answers. Conducting experiments in a controlled environment in
order to find the impact of these parameters is of great value for both users and
application developers.

To support experiments in a controlled environment an experimental test platform
is needed and in this project the focus is on implementing a testbed specifically
for the WebRTC video conference application Appear.in. The testbed can apply
different network limitations to different users (clients), to obtain a better insight on
how different network properties affect the perceived Quality of Experience (QoE).

The main tasks for this project will be as follows:

– Briefly, overview the state of the art on most relevant Quality of Service
(QoS) and QoE factors in the context of video conferencing (and in particular,
WebRTC-based real-time video communication).

– Plan and develop a testbed useful to study the effect parameters like bandwidth,
packet loss etc., has on the QoE of video-conferencing applications using
WebRTC.

– Setting up and running a pilot study using the developed testbed in a controlled
lab setting, data analysis and discussion of findings.



Responsible professor: Min Xie, ITEM
Supervisors: Doreid Ammar, ITEM

Katrien De Moor, ITEM
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Abstract

Online video applications are growing in popularity and using an
increasing share of the consumer Internet traffic. Web Real-Time Commu-
nication (WebRTC) is a new technology which allows browser-to-browser
communications without any software downloads or user registration.
The focus of this report is the Quality of Experience (QoE) in the context
of WebRTC.

We have created a fully controllable testing environment, a testbed,
where we can manipulate a network to perform under various conditions
by altering the parameters packet loss rates, Mean Loss Burst Size
(MLBS), delay, jitter, Central Processing Unit (CPU), and bandwidth. A
testbed is of importance for testing of QoE services in general, and also
for application developers because they can analyze their application’s
behavior in altered networks which can simulate real-world use.

We have used the WebRTC application appear.in for several different
experiments where we altered the network conditions. We have col-
lected both connection statistics and the subjective feedback from each
participant.

Firstly, we conducted a pilot study consisting of two-party conversa-
tions of 12 participants, where our main focus was on packet loss and
MLBS. After that, we conducted three-party conversations where we
tested packet loss, MLBS, delay, jitter, and CPU.

We found in our experiments that the perceived quality of a specific
packet loss rate depends also on the MLBS. Higher MLBS seems to result
in an overall worse user experience, especially impacting the audio quality
of the conversation. We also found that delay (<1 second) does not
necessarily leads to a worse user experience, while jitter quickly impacts
both audio and video quality. Finally, it seems that the CPU limitations
seem to affect only the user with the reduced CPU-usage.

The experiments show that the testbed is working as specified, and
can be used for more extensive research in the future.

Keywords - WebRTC, Quality of Experience, appear.in, testbed, pilot
study, Mean Loss Burst Size.





Sammendrag

Nettbaserte videoapplikasjoner øker i popularitet og bruker en stadig
større andel av den totale internett-trafikken. Web Real-Time Communi-
cation (WebRTC) er en ny teknologi som muliggjør nettleser-til-nettleser-
kommunikasjon uten at ytterligere programvare eller brukerregistrering
er nødvendig. Denne rapporten handler om Quality of Experience (QoE)
i kontekst av WebRTC.

Vi har laget et fullstendig kontrollerbart testmiljø hvor vi kan manipu-
lere et nettverk ved å endre parameterne pakketap, det gjennomsnittlige
antall pakker som blir tapt av gangen (Mean Loss Burst Size (MLBS)),
forsinkelse, jitter, Central Processing Unit (CPU) og båndbredde. Et
testmiljø er et nyttig verktøy for å teste QoE-tjenester generelt, og også
for applikasjonsutviklere fordi de får muligheten til å analysere hvor-
dan applikasjonen deres fungerer i varierende nettverksforhold som kan
simulere bruk over det åpne internett.

Vi har brukt WebRTC-applikasjonen appear.in i flere eksperimenter
der vi har endret på nettverksparametere. Vi har samlet inn både tekniske
data om nettverksforbindelsen og tilbakemeldinger fra brukerne.

Først gjennomførte vi en pilotstudie med 12 brukere, der hver samtale
besto av to brukere. Hovedfokuset vårt for pilotstudien var på pakketap
og MLBS. Deretter gjennomførte vi samtaler med tre samtidige brukere
der vi testet ut pakketap, MLBS, delay, jitter og CPU.

Vi har oppdaget i våre eksperimenter at den opplevde brukerkvaliteten
av en gitt verdi for pakketap er avhengig av hvor mange pakker som blir
tapt rett etter hverandre (MLBS). Flere pakker som blir tapt på rad gir
en samlet dårligere brukeropplevelse, spesielt med hensyn til lydkvaliteten.
Vi fant også at forsinkelse (< 1 sekund) ikke nødvendigvis bidrar til en
dårligere brukeropplevelse, mens jitter påvirker både lyd- og videokva-
liteten betydelig. Til slutt fant vi at begrensninger av maskinressurser
(CPU) ser ut til å kun påvirke personen med begrensede maskinressurser,
og ikke de andre brukerne i samtalen.

Eksperimentene vi har gjennomført viser at testmiljøet fungerer som
spesifisert, og at det kan bli brukt til mer omfattende undersøkelser i
fremtiden.

Nøkkelord - WebRTC, Quality of Experience, appear.in, testbed, pilot
study, Mean Loss Burst Size.
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Chapter1Introduction

Real-time communications services, like Skype, Google Hangouts, and appear.in, are
rising in popularity and taking over an increasing share of the consumer internet
traffic. Many existing video communication services, however, require plug-ins or
some software to be downloaded. Web Real-Time Communication (WebRTC) is a
relatively new technology which allows browser-to-browser communications, without
any downloads or plug-ins, offering a more seamless user experience.

Full-scale services that can run without any additional software downloads offer
easy-to-use applications for users. Novice users with little or no computer knowledge
may be attracted to use these new services, and experienced users do not have to
spend time on challenging and time-consuming setups. The popularity and usage
of these services are highly dependent on the Quality of Experience (QoE) the user
perceives, as poor user experience quickly will decrease popularity and usage.

1.1 Problem

Obtaining and gathering QoE data about WebRTC is a complicated matter. The
users’ perceived QoE relies on a large number of network factors such as bandwidth,
packet loss, and delays, but also hardware specifications such as processing power.
QoE also includes non-technical aspects such as how the user subjectively is satisfied
with the application performance. Real-life applications also run over the open
Internet, which may be affected by variables outside the application developers
control, and in situations and scenarios that can be hard or impossible to reproduce.

It is of interest to research how various network parameters affect the QoE of
WebRTC applications. As many parameters and a broad range of values easily will
reach an exponential number of scenarios, an important part of the research is to
decide what kind of scenarios that are of greatest interest, and to narrow down these
parameters as much as possible.

1



2 1. INTRODUCTION

1.2 Our Contributions

The goal of this project is to create a fully controllable testing environment for
browser-to-browser video communications. A testing environment, hereafter referred
to as a testbed, gives the opportunity to manipulate several software and hardware
parameters in the network. Our work is, to the best of our knowledge, the first work
which investigates QoE in the context of WebRTC in a fully controllable testing
environment.

Our main research area has been on how the combination of packet losses and the
Mean Loss Burst Size (MLBS) affects the user experience. The fact that QoE is a
highly subjective measurement also makes it problematic to draw clear conclusions on
conducted experiments. Observing correlation between different network properties
and user experience is, however, of great value, and is what we aim to achieve with our
work. We have organized and conducted a pilot study using the WebRTC-application
appear.in1, and used our testbed to generate various faulty network scenarios. These
scenarios were applied and tested by actual users, and we collected their subjective
feedback on the perceived user experience by the use of questionnaires.

QoE in WebRTC is an important research topic because it offers useful insight
for application developers in how the users experience the quality of their video
applications as the network parameters change. The aim of this project is to verify
that our testbed environment works correctly and that it can be used to conduct
more extensive experiments on user experience in the future.

1.3 Disclaimer

Our pilot study was carried out on 12 participants. This number is far too limited to
make any conclusive remarks about the user experience for various network scenarios,
as the statistical uncertainty is too large for a small number of participants. Our work
is intended as a proof-of-concept for a fully controllable testbed. We will, therefore,
use and discuss the feedback from the participants as indicators of the perceived user
experience rather than making definite conclusions.

1.4 Structure

This paper is organized as follows: Chapter 2 covers background information about
WebRTC, QoE, Quality of Service (QoS) as well as relevant related work. Chapter 3
discusses background information directly related to our experiments, the methodol-
ogy, and the experimental setup. Several conducted experiments are described in

1www.appear.in
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Chapter 4. Chapter 5 presents results and discussions from our experiments. Finally,
conclusive remarks, limitations, and future work are discussed in chapter 6.





Chapter2Background and Related Work

This chapter covers background information relevant to this thesis. Technical details
about the Web Real-Time Communication (WebRTC)-technology are discussed, as
well as the concepts of Quality of Service (QoS) and Quality of Experience (QoE).
The chapter is finalized by discussing relevant literature.

2.1 WebRTC

Internet communication applications, such as Skype, allow users to conduct audio and
video multi-party conversations by downloading the software and registering to the
service. WebRTC is the name of the emerging technology which allows browser-to-
browser (peer-to-peer) communications, and does not require any third-party software
download. The seamless and plugin-free nature of browser-to-browser communication
is expected to be a popular service in the future which for example can be used to
result in a better customer experience where WebRTC-conversations replace text
chats or Frequently Asked Questions (FAQs).

The goal of WebRTC is "to enable rich, high-quality RTC applications to be
developed for the browser, mobile platforms, and IoT devices, and allow them all to
communicate via a standard set of protocols" [14]. WebRTC is currently supported by
major browsers such as Chrome, Firefox, and Opera [3], and works on both Android
and iOS-platforms1.

It is important to note that WebRTC denotes a technology and not a service
that can be run. WebRTC describes a set of necessary protocols, but purposely
leaves some of the implementation details, such as initial signaling, to the developer.
After the session details are set, all communication can be sent directly between
peers, without any external access points, as illustrated in figure 2.1. The WebRTC
protocols after that allow users to communicate directly from browser to browser, as

1iOS and Android implementations as discussed on https://tech.appear.in/

5

https://tech.appear.in/
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subsequent data traffic does not have to go through an external server. Following is
a brief introduction about the technicalities of WebRTC.

Figure 2.1: Browser-to-browser communications through WebRTC [2].

Dealing with firewalls and Network Address Translators (NATs), however, makes
an actual implementation more difficult. If each endpoint had its own globally
unique Internet Protocol (IP)-address, the peers could connect directly. However,
NATs may hide the direct IP-address and prevent a direct connection for security
reasons. WebRTC’s Session Traversal Utilities for NAT (STUN) server is designed
to address this problem by retrieving an external network address, which is used for
all subsequent messages. The requests made to a STUN server are computationally
simple and are therefore used as a first option to connect peers. As much as 86% of
all WebRTC calls are successfully connected using the STUN server [13]. Figure 2.2a
illustrates a lookup using the STUN server.

In some cases, a users’ firewall can block all traffic sent directly from a peer.

(a) STUN server lookup. (b) STUN and TURN server lookup.

Figure 2.2: STUN and TURN server lookups in WebRTC [6].
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Traversal Using Relays around NAT (TURN) servers are used as a fallback solution
if the STUN servers do not return successfully. TURN servers relay data between the
different peers, which is not an ideal solution because they consume much bandwidth.
For this reason, the STUN server is always queried first. STUN and TURN servers
are an essential and required part of the WebRTC-infrastructure, which is needed
to operate properly. Figure 2.2b shows an attempted STUN connection which fails,
and then falls back on relaying data through the TURN server.

2.2 Perceived User Quality

User experience is an important aspect of all web applications. A service that is
faulty or in other ways not working properly will quickly lose its popularity and
customers. The literature today mainly uses two different measures for describing the
user quality: QoS and QoE. QoS can typically be monitored by measuring individual
network aspects such as delay and packet loss while the QoE is more about how the
user experiences the video and audio quality of an application.

2.2.1 Quality of Service (QoS)

QoS is the most widely used way of measuring the performance of a service. QoS
denotes quantifiable measurements of a network connection, accounting for bit rate,
throughput, and delay, to name a few. The term QoS has several slightly different
definitions, so we have chosen to use ITU’s definition [29], stating that QoS is the:

"Totality of characteristics of a telecommunications service that bear on its
ability to satisfy stated and implied needs of the user of the service."

The QoS is easily quantified by measurements, and is therefore often used to
quantify conditions in Service Level Agreements (SLAs) between providers and
customers. QoS is therefore particularly pertinent for applications that require a
given minimum network connection to operate properly, such as Voice over IP (VoIP),
video conferencing and safety-critical applications which may all require a good
end-to-end connection. The customers can complain to their service providers if they
violate the QoS-levels stated in the SLA.

But the objective nature of measuring is not only positive as QoS only covers
specific technical aspects concerning the application and the network. The objective
feedback is problematic as the only measurement because the user experience also
consists of several other aspects. It is, therefore, necessary to utilize other concepts
to discuss the user experience.
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2.2.2 Quality of Experience (QoE)

QoE is of interest because it covers other aspects than QoS. Even though QoE is
not as easy to quantify, as it is more of a subjective manner, it also concerns the
non-technical details of how a user experiences a given service. ITU’s definition is as
follows [28]:

"The overall acceptability of an application or service, as perceived subjectively
by the end-user."

This definition is relatively vague, not offering any elaboration on what is meant
by the word "acceptability", and it does not provide any detail about the "end-user".
As QoE is the primary focus of our report, it is desirable to have a more accurate
definition at hand. The Qualinet paper [31] proposes the following and more detailed
definition:

"Quality of Experience (QoE) is the degree of delight or annoyance of the
user of an application or service. It results from the fulfillment of his or her
expectations on the utility and enjoyment of the application or service in the
light of the user’s personality and current state."

Qualinet’s definition goes into much greater detail about the users’ expectations,
and it also highlights the fact that the type of users could be vastly different. Tech-
savvy users may expect a lot from a service while others might be happy with less. It
is therefore of great importance to take user diversity into account when discussing
QoE, and it should also be considered when conducting studies. In fact, QoE can be
said to account for a vast amount of factors influencing the user experience:

– User characteristics. Young tech-savvy people versus older people with less
computer experience may expect different performance values.

– The context of the video call, for example, whether the call is for business or
pleasure. The user is possibly likely to expect more in a business setting than
in a personal setting.

– Surroundings may also affect the expectations of a user. Factors such as room
size and noise may change the user’s mood and make the user more or less
likely to have a good experience.
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– The familiarity and quality of the equipment can also be important for the user
experience.

Although QoE and QoS are now discussed as very different measurements, QoE
is in fact highly dependent on QoS. If the QoS-parameters are bad, the connection
is likely to be poor, and the user experience will also decrease. But if the QoS-
parameters are acceptable, the users initial expectations may lead to different QoE-
values. However, it will always be difficult to conduct QoE-research, because of its
subjective nature and because experiments are hard or impossible to repeat as the
test participants may have different preferences and opinions.

Even though we have discussed QoE as a highly subjective measurement, it is also
possible to use QoE to obtain more objective data. While the individual feedback
consists mainly of questionnaires and interviews, the objective feedback can consist
of task scores or speech patterns [36]. Task scores can be used as a metric to see
whether the user manages to solve a problem within a time limit, or even measure
the number of successful attempts at a given case. Speech patterns can be used to
measure speaking times and length of turns and pauses. We have, however, chosen
to focus on the subjective measurements of QoE due to the time limitation of the
project.

QoE is important because it says something about both technical and non-
technical aspects of the network and application performance. In the pilot study
described later on, we are interested in observing the QoE for the users when we
manipulate the network to operate poorly. We will try to find out what combination
of parameters the users think is the most important to conduct a proper video call.
QoE is also of keen interest because it is much less researched than QoS. We will,
therefore, try to contribute to some useful insights on QoE in the context of WebRTC.

2.2.3 QoS/QoE in the Context of WebRTC

One of the main features of WebRTC is the simplicity for the users, who do not
have to download software nor register to a service. Plug-and-play applications like
appear.in offer an alternative to the well-established Skype. It is therefore of great
importance that the QoE and the QoS are as good in WebRTC applications as the
customers are used to from other applications.

2.3 Related Work

Browser-to-browser communication, realized by WebRTC, is currently a popular
research topic with broad academic interest. Several different research areas are
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highly relevant for discussing QoE and WebRTC applications including network
emulators, testing environments, and loss models.

A network emulator can be used to manipulate the network connection for a
particular set of users. Nussbaum and Richard discuss different network emulators’
features and problems [34]. The paper focuses on three main network emulators:
Dummynet, NISTNet, and Linux Traffic Control Subsystem, which are all freely avail-
able to download. Several problems that may occur when using network emulators,
such as system clock differences, are exposed.

The network emulator NetEm offers a simple interface for simulating different
network connections by adding delay, packet loss, and jitter to name a few. The
goal of NetEm is to "provide a way to reproduce long distance networks in a lab
environment" [24], and is a simple and useful tool for varying network conditions in
a testbed.

Cinar and Melvin use a black-box testing method for assessing the quality of
WebRTC-sessions under varying network conditions by using a network emulator [21].
The report highlights potential problems and dangers of black-box testing, as it can
lead to very misleading results if the testbed is not properly validated. Mainly they
discuss issues of particular network architectures for the testbed. This is relevant to
our project because it raises awareness of common pitfalls that might not be easy to
detect, and confirms the importance of properly validating a testing environment.

While many papers discuss the minimal network requirements to obtain an
acceptable QoE, Vucic and Kapov try to quantify the minimal hardware requirements
for mobile devices to be used for video communications in WebRTC [39]. This
paper discusses different smartphone configurations and suggests that a 2.5 GHz
processor and 2 GB RAM are minimal requirements for three-party video conferencing.
Hardware requirements are an important aspect of QoE, as poor hardware will lead
to bad user experiences. Even though the mentioned article is mainly about mobile
devices with generally weaker hardware specifications, it is still relevant restricting
the Central Processing Unit (CPU)-power of powerful desktop computers as they
can simulate less powerful devices.

Gunkel et al. discuss QoE in video conferencing under limited network conditions
[23]. They conduct experiments on how a single participant with a limited connection
can negatively affect the QoE for all other participants in the conversation. These
experiments are done by altering the layout, video quality and network limitations
of the conversations. Experiments on asymmetric connections are of high relevance
because it pictures a real-life setting.

A QoE testbed is implemented and discussed in [36], allowing modification and
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monitoring of network conditions in real-time. The ultimate goal of this approach
is to create a controllable and reproducible testing environment for real-time video
communications, which is quite similar to our ultimate goal. This report, however,
says little about how the testbed is used to control network parameters, but instead
focuses on building a single tool that can gather all the information required. They
have, for instance, included the functionality for adding speech pattern analysis
and questionnaires directly into their tool to collect all information in one place.
They tested this configuration by conducting a study with around 50 people, with
particular focus on the context of the conversation as well as the role of the user
participating in the conversation.

Ammar et al. discuss performance statistics and how they relate to QoE in the
context of WebRTC. Both the following reports describe Google Chrome’s webrtc-
internals tool, which is used to present real-time connection statistics from ongoing
WebRTC conversations.

A discussion on the usefulness of WebRTC-internals as a statistics gatherer despite
its limitations is found in [18]. This paper highlights problems such as limitation
in the number of sample points, imprecise sampling times, and that the tool lacks
clearly documented definitions of the data it presents. Their conclusion is that the
statistics can be very helpful for root-cause analysis, as long as the user is aware of
its shortcomings.

Potential video QoE killers with respect to performance statistics are discussed
in [17]. The authors try to relate the performance statistics to the users’ QoE. They
ran a series of tests involving two-party conversations while collecting real-time
session feedback by using the webrtc-internals tool, aiming to find specific network
parameters which can be related to the perceived user experience. Their findings
identify video freezes, which can be provoked by altering the mentioned network
parameters, as a key QoE killer, and suggest a further in-depth investigation of other
possible QoE killers.

Sunde and Underdal carried out a pilot study regarding QoE in Kahoot!2, which is
a cloud-based class response system [38]. Their goal was to see if the users’ perceived
experience changed as they made the game unfair by varying the network delay.
They conducted tests in a classroom with a large number of users and gathered user
forms to get feedback from each participant. They managed to conclude that an
unfair setting in a competitive environment enhances the feeling of annoyance among
the affected users while it also increases the delight of the users not affected by the
delay. Altering the delay can undoubtedly affect the QoE.

2https://kahoot.it

https://kahoot.it
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Apostopolous discusses how packet losses negatively affect the quality of different
network applications [19]. But packet losses can come in several different shapes:
isolated single-packet losses, burst losses which are (roughly consecutive) packets lost
or a temporary outage. The effect these loss types have on the connection depends
greatly on the application. Several error concealment techniques exist, such as the
Forward Error Correction (FEC), which makes it possible to deal with the problem of
single packet losses. Nevertheless, single packet losses have a relatively small effect on
video streaming applications. Burst losses, however, are harder to deal with, mostly
because error correction techniques become less effective when several consecutive
packets are lost.

Liang et al. also investigate whether or not the average packet loss burst length
matters for the perceived quality of video applications [33]. Several simulations
run show that the loss pattern of the packets lost greatly affect the total distortion
experienced by the user. These simulations are of great importance because they
imply that two network links with the same packet loss percentage can describe two
widely different user experiences, depending on the size of the bursts.



Chapter3Methodology and Experimental
Setup

The primary goal of this thesis was to create a fully controllable testing environment
for multi-party video conversations. We needed to create a testbed where we could
control the different network and other performance related properties. Several
experiments were carried out for this project, including deciding the network topology,
configuration of the testbed and verification of correctness. After verification and
validation, we conducted three different studies:

– A testing phase where we tried a broad range of parameters and values to
decide on what we wanted to further investigate in the other experiments.

– After that, we conducted a pilot study where we used our testbed implemen-
tation on a small group of users to gain feedback on the perceived QoE. The
parameters for the pilot study were narrowed down to the combination of
packet loss and Mean Loss Burst Size (MLBS).

– Ultimately, we conducted a three-party conversations where we tested different
parameters, such as packet loss combined with MLBS, delay combined with
jitter and restricting the CPU-usage.

This chapter describes the methodology, a detailed explanation of the experimental
setup and also includes background information about the tools we have used.
Chapter 4 elaborates on details from the actual experiments.

3.1 System Description and Technical Setup

Following is a description of different applications, tools, network parameters and
network protocols that are a part of our testbed.

13
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3.1.1 Appear.in

Appear.in is a multi-party video application which implements WebRTC and is used
without any software downloads or user registrations. A conversation has to be a
part of a session, referred to as a room in appear.in, which is limited to a maximum
of eight simultaneous users. Users can just enter an easy-to-remember URL with
the specified room name and wait for other users to access the same room. The
application also lets the users use a text chat and the possibility to lock the room to
prevent others from joining.

The users in a particular conversation are connected using a mesh topology.
Appear.in uses one link for audio and one for video. Therefore, a total of 2n(n− 1)
connections (for an n-party call) are needed, which quickly increases as n grow larger.
As appear.in is limited to eight people per room, the details on how WebRTC deals
with signaling for a substantially greater number of endpoints is therefore outside the
scope of this report. A paper on various network topologies and their effectiveness
can be found in [27].

The reason why we chose to use appear.in, and not for example Google Hangouts,
is that Norwegian University of Science and Technology (NTNU) hosts a research
version of the appear.in server, which is beneficial because we gain access to additional
features compared to other WebRTC applications. We can, for example, access data
about the connection quality and control the questionnaire which is presented to the
user at the end of a session. Therefore, appear.in offers a better total package than
any other WebRTC application.

3.1.2 Relevant Parameters

Numerous controllable and non-controllable parameters may impact audio and video
quality of a multimedia conversation and, therefore, affect the QoE. The following is
an explanation of the different parameters used in our testbed.

Bandwidth

Bandwidth is a measure of the available bit-rate in the network, usually measured in
Megabits per second (Mbps). Bandwidth will often vary from user to user depending
on their internet connection. An application that works perfectly with a large
bandwidth may operate poorly when the bandwidth decreases. Restricting maximum
bandwidth for different client links can offer interesting results on how QoE varies
depending on the available bandwidth.
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Packet Loss

Packet loss measures the number of packets lost versus the actual number of packets
sent, and is usually presented in the percentage of lost packets. One can look at
packet losses in two ways: independent losses or burst losses, and the QoE may be
different depending on the type of loss [32]. Later in this chapter, we will look at
various loss models for introducing different types of packet losses to the network.
According to [5], the number of packets lost, in WebRTC are defined as specified in
RFC3550 [37] which says that the number of packets lost is the number of expected
packets minus the actual received packets, including late and duplicate packets.
Further, the number of packets expected is computed by using the highest sequence
number received.

Mean Loss Burst Size (MLBS)

MLBS is directly dependent on the loss models discussed in chapter 3.1.4 but it needs
a separate explanation. MLBS describes the correlation of packet losses by explaining
how many consecutive packets that are lost on average each time a packet is lost.
High packet loss correlation will result in a higher MLBS. The assumption is that
loss events are to some extent correlated, meaning that the next packet transmission
after a packet loss has a higher probability of being lost as well.

01010101010101010101 (3.1a)
00011111000001111100 (3.1b)

An example is shown in listing 3.1, where 0 denotes a successful packet transmis-
sion and 1 denotes a packet loss. The listing illustrates (an extreme scenario of) two
bit sequences with the same packet loss percentage, but with vastly different MLBSs.
The first sequence has alternating successful and lost packets (MLBS = 1) while
the second series loses five consecutive bits twice (MLBS = 5). The negative effects
in the network caused by low MLBSs can be reduced by applying error correction
techniques, but this is not possible for high MLBSs as the error correction techniques
depend on a number of successful packets to find and correct single packet errors.

Delay

The delay is a measure of how long it takes to transmit a packet from its source to
its destination. The Round Trip Time (RTT) can also be used to describe the delay,
by measuring the time it takes from the source to destination and back again. The
delay may typically influence the QoE by having late play-out on the receiving end,
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which can cause long and unnatural pauses in a conversation. The two terms delay
and latency are used interchangeably in this report.

Jitter

Jitter is related to the delay, and it is known as the variation of the delay between
consecutive packets. Jitter may also lead to reordering of packets. WebRTC calculates
jitter as defined in RFC3550 [37], according to [5]. RFC3550 states that the difference
in arrival time, D(i, j), between two packets i and j should be computed as follows.

D(i, j) = (Rj − Sj)− (Ri − Si)

Where Si and Sj are the time stamps for when packets i and j are sent, and Ri and
Rj denotes the time of arrival for packets i and j. Further is the interarrival jitter
for a packet i, computed as follows.

J(i) = J(i− 1) + (|D(i− 1, i)| − J(i− 1))/16

Where J(i-1) is the inter-arrival jitter value of the previous packet, and D(i-1, i) is
the difference in arrival between packet i and the previous transmitted packet. The
value 1/16 is a noise reduction parameter.

A separate voice and video engine exists in WebRTC, each with its own jitter
buffer. An explanation about the jitter buffer for audio is as follows: "A dynamic
jitter buffer and error concealment algorithm used for concealing the negative effects
of network jitter and packet loss. Keeps latency as low as possible while maintaining
the highest voice quality" [12]. The jitter buffer in the video engine also mitigates the
impact jitter and packet losses has on the video quality. The jitter buffer is useful
because it can, to some extent, counteract the late arrival of a packet without the
user noticing.

CPU-usage

Unlike the other parameters, CPU-usage has to be specified at each single client,
as opposed to all other parameters which are controlled by the testbed controller.
We want to restrict the CPU-usage below what is actually used during a normal
conversation to see how the QoE is affected. It is of high relevance to see how different
hardware specifications can affect QoE of a video chat as this can simulate the use of
less powerful devices like mobile phones and tablets.

3.1.3 Relevant Protocols

Following is a short description of the Real-time Transport Protocol (RTP) and the
RTP Control Protocol (RTCP) which are both used in WebRTC.
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RTP is a protocol typically used in multimedia communication applications and
resides at the application layer, running on top of the User Datagram Protocol (UDP).
RTP supports services like identifying the payload type, sequence numbering and
delivery monitoring of both audio and video packets [37]. In RTP, audio and video
packets are separated and transmitted using different UDP ports.

RTCP is used together with RTP and is sent as separate packets to provide
information about QoS parameters in an active conversation. Statistics presented in
RTCP includes the fraction of packets lost, the highest sequence number received,
the cumulative number of packets lost, the inter-arrival jitter, and information about
the delay, to name a few. The delay is measured by the time since the last report
was received.

Figure 3.1 shows the relationship between RTP, RTCP, and the underlying
protocols UDP and the IP.

Figure 3.1: Relationship between RTP, RTCP, and underlying protocols, inspired by
[8].

3.1.4 Markov Models

A large-scale packet-switched network can be hard to monitor because many factors
affect the transmitted packets. We are interested in a quantitative measurement of
lost packets, and not necessarily the reasons why the packets are lost. It is therefore
of great value to be able to model an abstraction of the system, to gain some useful
insight on packet loss estimates. A Markov model can be used to model an abstraction
of the actual system.
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A Markov model consists of a finite number of states and the transitions between
them. Markov models hold the Markov property, which means that the future states
depend only on the current state, and not how it got to the current state [40]. An
illustration of a simple, two-state Markov model for packet losses can be seen in
figure 3.2. G (the Good state) is the state where no packets are lost while all packets
are lost in state B (the Bad state). p denotes the probability of a transition from
state G to state B, and r indicates the probability of going from state B to state G.

Figure 3.2: A simple Markov chain.

A Markov model can estimate the packet loss by calculating the probability of
being in a particular state. From [22], we have that: "If a system in a steady state is
observed over a long period of time (0,τ) where τ is large, the fraction of time the
system is in state i is equal to piτ ."

Therefore, we have that the probability of being in the different states is given by
[35]:

πG = r

p+ r
(3.2a)

πB = p

p+ r
(3.2b)

where πG is the probability of being in the good state (G) and πB is the probability
of being in the bad state (B). These equations are valuable because they offer
theoretical values which can be compared to the data from our practical approach
further discussed in chapter 4.2. Following is a more detailed description of existing
loss models from the literature.

Existing Loss Models

Figure 3.3 shows four different loss models, varying in complexity. It is important
to choose a model that is valid for the task at hand, but not use a model that is
more complex than necessary. Selecting a loss model should, therefore, be a trade-off
between simplicity and controllability.
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Figure 3.3: Existing packet loss models [35].

– The Bernoulli model only takes one parameter, p, which denotes the prob-
ability of the transition from state G to B, which corresponds to the packet
loss rate for this model. Using only one parameter means that each packet is
modeled independently from all other packets, and a bursty behavior is not
possible. Modeling only independently dropped packets is too simplified to be
applied to any real-world scenarios.

– The Simple Gilbert (SG) model takes the two parameters, p (transition
from G to B) and r (transition from B to G), and supports the modeling of
correlated loss events. Two parameters make it possible to model a simple
burst behavior by specifying a separate parameter for a repeated packet loss,
as opposed to only independent losses.

– The Gilbert model offers an enhancement to the SG model in the way that
it provides another parameter, 1-h, in addition to p and r. The 1-h parameter
describes the loss density in state B, which allows modeling successful packet
transmissions in state B. The loss density parameter is desirable because it
allows fine tuning of the packet loss and the probability of error in a more
accurate way than the SG model.

– The Gilbert-Elliot (GE) model introduces yet another parameter, 1-k. The
1-k parameter describes the loss density in state G, which makes it possible to
model isolated loss events in state G.

To better understand the difference between the four models, we can have a look
at the following bit sequences where 0 denotes a successful packet transmission and
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1 denotes a packet loss. The number of packets or packet losses in each case is not
important but we want to illustrate the different models’ application area.

Bernoulli :
Good︷ ︸︸ ︷

0000000000
Bad︷ ︸︸ ︷

1111111111
Good︷ ︸︸ ︷

0000000000 (3.3a)

SimpleGilbert :
Good︷ ︸︸ ︷

0000000000
Bad︷ ︸︸ ︷

1111111111
Good︷ ︸︸ ︷

0000000000 (3.3b)

Gilbert :
Good︷ ︸︸ ︷

0000000000
Bad︷ ︸︸ ︷

1011110111
Good︷ ︸︸ ︷

0000000000 (3.3c)

Gilbert− Elliot :
Good︷ ︸︸ ︷

0010100000
Bad︷ ︸︸ ︷

1101111101
Good︷ ︸︸ ︷

0100000100 (3.3d)

The listing in 3.3 illustrates important differences between the models. The first
two bit sequences support only successful packet transmissions in state G, and only
packet losses in state B. The third sequence, picturing the Gilbert model, allows
successful packet transmissions in state B. The last sequence, picturing the GE model,
allows both isolated loss events in state G and successful packet transmissions in
state B.

It is not obvious how the different variables of the presented model affect the
packet loss rate. The packet loss rate for the first two models corresponds to the
time spent in state B, but it is more complicated for the last two models. A general
error probability model valid for all models is as follows [35]:

pError = (1− k)πG + (1− h)πB (3.4)

for 0 < 1-h ≤ 1 and 0 ≤ 1-k < 1.

If 1-h was 0, we would have no packet losses in state B, and if 1-k was 1, we would
lose all packets in state G. For the models that do not contain these parameters, by
default the parameter stating the loss density in state B is set to, (1− h) = 1 and
the parameter specifying the loss density in state G is set to, (1− k) = 0, which is
the case for the SG model. This also shows that the packet loss rate for the first two
models corresponds only to the time spent in state B, as 1-k is zero.

3.1.5 Network Emulators

Network emulators which make networks operate poorly and slowly are of interest
because they allow us to investigate different protocols to see how they perform
under different circumstances. Adding latency to a Local Area Network (LAN) can,
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therefore, imitate the behavior of a Wide Area Network (WAN). Limiting a users’
bandwidth is of obvious importance because different users have different bandwidths.
Congestion control in the Transmission Control Protocol (TCP) is an example of a
protocol which should be tested in an imitated WAN network. The reason is that a
buffer size working nicely for a low latency LAN may not apply to a longer latency
because it may cause a significant number of re-transmissions and heavy congestion.

Note that it is of great importance to validate that the network emulator actually
does what is specified, and this should be a part of any work involving network
emulators.

Several different network emulators with varying perks exist, and their strengths
and weaknesses are further discussed in the following paragraphs. We have had a
closer look at Dummynet and NetEm which are both considered and compared in
[34]. These two are chosen because they are open-source and in use by the research
community.

Comparison of NetEm and Dummynet NetEm and Dummynet are network
emulators which share many of the same capabilities but they do have some important
differences. Dummynet is included in the operating system FreeBSD and OSX, but
can with some effort be used in Linux and Windows [20]. NetEm is a network
emulator available in most Linux distributions and is an addition to the Traffic
Control (TC) tool in Linux. NetEm adds more functionality such as packet loss,
delay, jitter, packet reordering and packet duplication into the network [24]. NetEm
combined with the extensive TC tool in Linux provides countless opportunities of
traffic shaping which is further discussed later in this chapter.

Both NetEm and Dummynet have the capability of adding delay to packets, but
only NetEm allows adding jitter in addition. NetEm also includes more functionality
regarding packet loss, particularly on packet loss with correlation, enabling packets
to be dropped in bursts, and not just independently [34]. Dummynet only allows
packet loss without any correlation, which was insufficient for the experiments in this
project.

One of the main advantages with Dummynet was that it was possible to modify
both incoming and outgoing packets [34]. All traffic in our testbed is, however, sent
through a single entity where the network emulator resides. Whether traffic is shaped
on the incoming or outgoing interface at this entity will not make any difference, so
NetEm’s capabilities are sufficient for our use.

NetEm also allows adding packet corruption, packet duplication, and packet
reordering in a network. We chose to use NetEm, as it includes more capabilities
than Dummynet relevant for the experiments in this project.
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NetEm and Traffic Control

To understand how NetEm works it is important to know how the TC tool in Linux
works. An introduction to the TC tool and how it was utilized in this testbed is
needed before looking into how NetEm can be used to change the properties of a
network.

Qdisc The qdisc is the scheduling component, or queuing discipline, in TC in Linux
and is used to schedule incoming packets in the network [10]. The queueing takes
place in the Linux kernel as shown in Figure 3.4. Note that the figure says that TCP
is used, but the same applies for UDP. By default, the kernel uses a simple First In
First Out (FIFO) queue, but it can be combined with other TC-components to create
a more sophisticated scheduler for network packets. qdiscs can further be divided
into classless and classful. The Hierarchical Token Bucket (HTB) is characterized as
classful and is the one we have used in this testbed.

Figure 3.4: Linux queuing discipline [24].

Hierarchical Token Bucket (HTB) It was desirable to distinguish and control
separate links between each party when controlling the network traffic with the
testbed, for all variations of multi-party conversations. Because the topology of the
testbed transmitted all the traffic on the same network link, this network link had
to be divided into separate simulated links each having its properties. TC in Linux
allows us to do this by using a component called HTB, which as the name suggests
applies a hierarchical division of a network link [10]. The top of the hierarchy, the
root, corresponds to the entire network link itself. It allows the top of the hierarchy to
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be divided into several simulated connections in a parent-child manner. Furthermore,
HTB allows each of the simulated links to have its traffic rate specified, thus enabling
each link to have its bandwidth.

The following listing shows how to split a network link into two separate simulated
links, each with a bandwidth of 24Mbps. It also specifies an identifier which can be
used by NetEm and other TC components to distinguish the links.

$ tc qdisc add dev eth1 handle 1: root htb
$ tc class add dev eth1 parent 1: classid 1:1 htb rate 1000Mbps
$ tc class add dev eth1 parent 1:1 classid 1:11 htb rate 24Mbps
$ tc class add dev eth1 parent 1:1 classid 1:12 htb rate 24Mbps

Filter Another component in TC is called filter. Filters are used to classify packets
based on their properties. The property we used in this testbed was the source and
destination IP-address of the packet, by using the u32 [11] filter. Combining filters
with the HTB allowed the specification of individual simulated links between all
parties in a conversation.

The following listing shows how to apply a filter for two parties with IP-addresses
10.0.0.2 and 10.0.0.3. The flowid parameter corresponds to an identifier of a simulated
link and is used to reference the specified link.

$ tc filter add dev eth1 prio 1 u32 match ip dst 10.0.0.3 match \
ip src 10.0.0.2 flowid 1:11

$ tc filter add dev eth1 prio 1 u32 match ip dst 10.0.0.2 match \
ip src 10.0.0.3 flowid 1:12

Up until now, every component discussed has been components in the TC tool.
We have shown how TC can be used to classify packets based on properties such
as source- and destination IP-addresses and how this classification can be used to
assign packets to specified simulated network links. What is left to describe is how
to apply network properties to a link, which is where NetEm comes in.

NetEm - Rules Different network properties can be assigned to different links by
specifying rules in NetEm. A rule can consist of one or more network properties,
such as packet loss, delay, and jitter. The following will look at how packet loss,
delay and jitter can be added to the network by using NetEm.
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Packet Loss in NetEm

NetEm includes three different functions for introducing packet loss in an emulated
network. The following section gives a description of the three functions and a
justification for our choice of function for the testbed. The following listing illustrates
the parameters available for the three different models:

LOSS := loss {random PERCENT [ CORRELATION ] |
state p13 [ p31 [ p32 [ p23 [ p14] ] ] ] |
gemodel p [ r [ 1−h [ 1−k ] ] ] } [ ecn ]

Note that ecn at the end of the listing makes it possible to mark a packet as lost,
without actually dropping it. We did not use ecn for any of our experiments, as we
wanted to actually drop the packets to impact audio and video quality of appear.in.
The listing is taken from [7].

Packet Loss Functions The first and simplest way to introduce packet loss with
NetEm is the function called random. Packet loss is added to the network by
specifying a percentage value and optionally a correlation percentage, indicating to
what extent a previously lost packet should affect the probability of a consecutive
packet loss [7]. Packets will be dropped independently if the correlation is not
specified. Below is an example of how to use NetEm to add a packet loss of 15%,
and packet loss of 15% with 30 % correlation, respectively.

$ tc qdisc add dev eth1 root netem loss 15%
$ tc qdisc add dev eth1 root netem loss 15% 30%

Packet losses in NetEm can also be introduced by using the state-function, which
uses Markov models with either two, three or four states [35]. The state function
is used by specifying transition probabilities rather than the packet loss directly. A
transition probability is a probability of transitioning from one state to another.

The third function in NetEm, denominated by gemodel, is an implementation of
the GE model previously described. Using two parameters results in using the SG
model, as illustrated in the following listing.

$ tc qdisc add dev eth1 root netem loss random gemodel 10% 70%

In the example above the transition probability p, from state G to state B, is
10%, while the transition probability r, from state B to state G is 70%, which adds
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up to a total packet loss rate of 12.5% (corresponding to the time in state πB by
using equation 3.2).

Delay in NetEm

The following listing will give a brief overview of the different capabilities NetEm
has on adding delay to a network link.

DELAY := delay TIME [ JITTER [CORRELATION] [DISTRIBUTION] ]

As shown in the listing above, the delay function in NetEm can take up to three
parameters. The only mandatory parameter is the delay value denoted as "TIME",
specified in milliseconds. As with packet loss, further functionality can be added by
specifying more optional parameters. Jitter and the correlation percentage of the
jitter can be added by specifying these values. A statistical distribution1 can also be
specified when applying delay and jitter. The following is an example of how delay
can be added by either determining the delay value, delay with jitter, delay with
jitter and correlation, and delay with jitter using a normal distribution, respectively.

$ tc qdisc add dev eth0 root netem delay 100ms
$ tc qdisc add dev eth0 root netem delay 100ms 50ms
$ tc qdisc add dev eth0 root netem delay 100ms 50ms 20%
$ tc qdisc add dev eth0 root netem delay 100ms 50ms distribution normal

Cpulimit

Cpulimit2, as the name suggests, makes it possible to limit how much of the CPU
that can be used by a single process. The restrictions are done on the client side and
has to be done for each client, which is different from all other parameters which are
controlled by the testbed controller.

An active appear.in two-party video-conversation uses around 70-80% of the CPU
on one single core on our clients. We restricted the maximum CPU-percentage this
browser tab is allowed to use by issuing commands with cpulimit, which alters the
maximum allowed CPU-usage by issuing SIGSTOP and SIGCONT signals to the
specified process [4].

SIGSTOP pauses the defined process in its current state and is applied when
the actual CPU-value exceeds the specified limit. The SIGCONT is used to resume

1Distribution can be specified for other NetEm functions also, but we have only used it for the
delay function.

2http://cpulimit.sourceforge.net/

http://cpulimit.sourceforge.net/
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the execution of the specified process at where it was when it was stopped. Since
cpulimit uses SIGSTOP and SIGCONT signals to control the total CPU-usage, the
actual usage will vary around the specified limit, and not be exactly equal to the
threshold set.

We then conducted several experiments by using our testbed to find various values
for CPU-usage by issuing commands such as:

$ cpu l im i t − l 30 −p 12880

which sets the maximum CPU-usage for process 12880 to 30%.

Running processes can be monitored by using the top command, as illustrated
in Figure 3.5, which shows a cropped version of a screenshot. While most web
browsers run in one single process, Chrome runs one process for each browser tab and
extension, so it is necessary to find out which process that runs the appear.in-session.
Luckily, Chrome has its own task manager, which shows the CPU-usage of each tab,
as can be seen in Figure 3.6.

Figure 3.5: Snippet from top command window, sorted on CPU-usage. Process 12880
is the appear.in conversation.

Monitoring the CPU-usage is of great importance because it can be used to find
minimum hardware requirements that result in an acceptable QoE. Finding minimum
hardware requirements is especially relevant for tablets and phones that have much
more restricted hardware specifications than desktop computers, which is important
because more and more people use tablets and phones for more demanding operations
than earlier. Limiting the CPU-usage is an important part of fully controlling our
testbed environment.
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Figure 3.6: Snippet from Chrome Task Manager after limiting the appear.in tab to
30%.

3.2 Testbed

This section includes an overview of the different components of the testbed. Firstly,
an outline of the testbed topology is provided, before the details of the hardware
and software of the testbed are given. Finally, the configuration of the devices in the
testbed are explained.

3.2.1 Testbed Topology

The testbed topology is illustrated in figure 3.7. The testbed consists of a number
of clients, a switch and a testbed controller (hereafter referred to as "controller").
Appear.in allows a maximum of eight simultaneous users while the switch we have
used have seven network interfaces available. If another WebRTC application and a
different switch was used, however, the number of participants would not have been
limited in the same way. Nevertheless, our intention was not to test the maximum
number of connections possible for the testbed.

All clients are connected through the switch which is connected to the controller.
Clients are not directly interconnected; instead, all traffic is redirected to the switch.
Redirecting to a single point is desirable because it allows a centralized point of con-
figuration. Each link, both uplink, and downlink from each client can be manipulated
independently.

All traffic from the clients will pass by the controller, and over the Internet
and eventually reach the appear.in test server. We used a separate computer to
remotely run scripts on the testbed controller by issuing Secure Shell (SSH) commands.
Administering the testbed controller remotely offers flexibility in the way that we do
not have to be at the same physical location .
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Figure 3.7: Testbed topology for up to n clients.

3.2.2 Hardware and Software Details

Desktop Specifications All the desktop computers used in the testbed, clients
and controller, have the same specifications:

Computer HP Compaq Elite 8100 SFF

Processor Intel® Core™i7 CPU 860 @ 2.80GHz x 4

Memory 2 x DIMM DDR3 Synchronous 1333 MHz - 2GiB

The clients were configured with Ubuntu 14.04, and the controller was configured
with Debian 8.3. Debian was chosen for the controller due to performance issues
with NetEm in Ubuntu, which is further elaborated in the next chapter.

Switch The switch used in the testbed was a D-Link Gigabit switch3, with the
following specifications:

3http://www.dlink.com/uk/en/business-solutions/switching/unmanaged-
switches/desktop/dgs-1008d-8-port-10-100-1000mbps-gigabit-switch
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Interfaces 8 x 10/100/1000 Gigabit LAN ports

Data Transfer Rates

– Ethernet
◦ Half Duplex 10Mbps
◦ Full Duplex 20Mbps

– Fast Ethernet
◦ Half Duplex 100Mbps
◦ Full Duplex 200Mbps

– Gigabit Ethernet
◦ Full Duplex 2000Mbps

Transmission Method Store and Forward

The additional equipment used for the experiments was as follows:

Headphones Koss SB45

Webcam Microsoft LifeCam Studio

Software Details appear.in can be used with several different browsers, for exam-
ple Firefox, Opera and Chrome. We are restricted to using Chrome because we use
a built-in function in Chrome to collect connection statistics.

3.2.3 Configuration

Configuration scripts were needed for the testbed to work properly. Following is an
explanation of the setup required for the different entities.

Testbed Controller

The testbed controller was configured as a proxy by forwarding traffic between all
clients. The IP-address of the controller was set to 10.0.0.1. Sending all traffic via
the controller made it possible to add restrictions from a single point on different
network parameters on all the traffic from the different clients. The controller can be
set up as a proxy for forwarding traffic from the interfaces connected to the switch.
The necessary commands can be found in Appendix A.1.1.
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We wanted all the traffic from one client to another to go via both the switch
and the controller. The controller, however, will by default notice that the path
going through it is unnecessarily long, and will automatically try to shorten down
the route by sending a Internet Control Message Protocol (ICMP) redirect message.
It was crucial that all the traffic between the clients went through the controller.
The commands required to redirect all traffic through the controller is listed in
Appendix A.1.2.

Clients

All clients in the testbed was configured to route all traffic through the testbed
controller, achieved by modifying the routing table on each client. The following is
an example of how to use the controller as a default gateway for all Internet traffic,
and how to route traffic to two other clients with IP-addresses 10.0.0.3 and 10.0.0.4.
This configuration is done from the client with IP-address 10.0.0.2.

$ ip route add default via 10.0.0.1
$ ip route add 10.0.0.3 via 10.0.0.1
$ ip route add 10.0.0.4 via 10.0.0.1

3.2.4 Optimal Network Conditions

It was important that the network conditions were optimal when no alterations were
added to the network. That is, no packet losses, negligible delay and jitter, and high
bandwidth. The optimal network conditions were essential to have a good reference
point when conducting QoE experiments using the testbed, and to be able to compare
results from different network conditions. It was also important to make sure that
the actual network conditions did not impact the desired network conditions specified
in the testbed.

Connecting the clients and the controller via a wireless connection would have
made the testbed more mobile and easier to configure than using physical links and
a switch. But since the setup done on each client is minimal, we decided to use a
wired connection between the entities in the testbed, because a wired connection is
more reliable than a wireless connection.

Data we have gathered shows that the RTT of a two-party conversation with
optimal network conditions had an average of 2.1 milliseconds which is negligible in
this context. The packet loss under optimal network conditions is measured to 0%.
We can see from Figure 3.8 and 3.9 that the throughput for video is stable around 1.7
Mbps and the throughput for audio is stable around 42 Kilobits per second (Kbps)
for optimal network conditions.
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Figure 3.8: Throughput for video in optimal conditions (from getstats.io).

Figure 3.9: Throughput for audio in optimal conditions (from getstats.io).

3.2.5 Synchronizing Machines in the Local Network

We experienced that the system clock on the different clients was not synchronized
even though they were set to retrieve the time automatically from the Internet.
The lack of synchronization led to problems when analyzing the statistics from
an appear.in-session. Even though the conversation was started simultaneously on
different clients, statistical data from getstats.io showed that the curves were shifted
and plotted according to their local clock. Figure 3.10 illustrates the shift (of ≈ 10
seconds) in the graphs for video latency. The same shifting applies to all the other
graphs in getstats.io as well.

The Linux program Network Time Protocol (NTP)4 is a TCP/IP protocol for
synchronizing time in a network. NTP requires that one machine in the local

4https://help.ubuntu.com/lts/serverguide/NTP.html

https://help.ubuntu.com/lts/serverguide/NTP.html
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Figure 3.10: Illustration of not synchronized graphs before use of NTP (from get-
stats.io).

network is set up as the time server while all other machines retrieve the time from
this machine. We used our testbed controller as the time server, and after that
synchronized all the clients by requesting the time from the controller.

NTP is "designed to mitigate the effects of variable network latency and can usually
maintain time to within tens of milliseconds over the public Internet. The accuracy
on local area networks is even better, up to one millisecond"5. The configuration
required to set up NTP is minimal, and leads to easier analyzing of the results in
getstats.io, and was therefore used for all our experiments.

We experienced no further issues regarding shifts in the graphs after using NTP.

3.3 Acquiring Data from appear.in-sessions

There are several possible ways of collecting information regarding the connection
quality from an appear.in-session. This section gives a brief overview of the tools
we have used. We differ between session-related technical statistics, which is using
the tools getstats.io and Chrome’s webrtc-internals, and user feedback gathered from
forms filled out by actual users. We also recorded the audio and the video of all
conversations for analysis purposes.

The session-related statistics are mainly used to verify that our testbed reacts
when we run scripts to manipulate the connection. User feedback is a useful way to
see how users respond to the different network alterations, and the most important
aspect of the QoE. Screen recordings are mostly necessary for analyzing all the data

5https://wiki.archlinux.org/index.php/Network_Time_Protocol_daemon

https://wiki.archlinux.org/index.php/Network_Time_Protocol_daemon
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in retrospect. All these three tools are useful in both verifying and analyzing the data
from a session, and is, therefore, important to use in combination with the testbed.

3.3.1 Session-related Statistics

Both getstats.io and Chrome’s webrtc-internals use the WebRTC "getStats" Applica-
tion Programming Interface (API) (not to be confused with the webpage getstats.io),
which offers a set of methods for downloading peer connection statistics. Both tools
show statistics real-time, and offer to download all the info as a dump file. Most
of the statistics collected by the API are gathered from received RTP and RTCP
packets. Since getstats.io and webrtc-internals use the same API to collect data.
They, therefore, hold all the same information initially but choose to present their
data slightly differently. For this reason, it is necessary to use them both. Following
is a discussion on how they differ.

getstats.io

Getstats.io6 generates one statistic overview per session, collecting data about each
user. Getstats.io offers information about the following parameters, presented in the
user interface:

– The time the conversation started and how long it lasted.

– Type of web browser for all clients.

– The geographic location of all clients.

– Events such as client connecting, client disconnecting, microphone and camera
on and off are illustrated for all users, marked with a time stamp.

– CPU-usage for all clients.

– bandwidth limited resolution for all clients.

– Latency, throughput, packet loss and jitter are plotted for all clients with two
graphs: one for audio and one for video.

The user interface allows the user to zoom in on different sections of the conversa-
tion. It is also possible to look at only a subset of the participants at a time, which
can be useful for finding details on specific users. A JavaScript Object Notation
(JSON)-object containing all data used to plot the graphs can be downloaded at
any time. The JSON-object also reveals information about the IP-address and what
Operating System (OS) is used by each client.

6https://getstats.io

https://getstats.io


34 3. METHODOLOGY AND EXPERIMENTAL SETUP

Access to the data in getstats.io is restricted, and we are not allowed to look at
session statistics for the appear.in production version for privacy reasons. Throughout
this project, we have therefore used a test version of appear.in which is located at
NTNU’s servers. Our access in getstats.io is limited to the conversations made on
the appear.in test server7.

webrtc-internals

Chrome offers a user interface for gathering statistics during a WebRTC-call, named
webrtc-internals8, as can be seen in Figure 3.11. The user interface provides a lot of
different data and also separates the audio and video statistics. Some of the graphs,
however, are hard to interpret and understand and therefore not so useful. Some of
the information offered by webrtc-internals is the following:

– Bits sent per second

– Packets lost

– Packets sent per second

– Encoding data

– Information about the frame rate

– RTT

webrtc-internals also offers to download a statistics file which includes session
metadata and real-time updates about delays, packet loss, and several more parame-
ters for both audio and video. This file is, however, limited to 1000 samples, sampling
every second. If the file exceeds 1000 samples, it will replace the oldest samples, and
hold the 1000 most recent samples. The limitation in the number of samples limits
webrtc-internals as a statistics gatherer, as the dump file needs to be downloaded
in the middle of the conversation if it is to last longer than ≈16 minutes. The log
file must be downloaded while the conversation is active, as it is not possible to
retrieve at a later instance. Webrtc-internals only gathers information about the
local computer, and therefore has to be downloaded separately for each client.

Using webrtc-internals offers challenges to the user as it is poorly documented.
Some of the graph names are cryptic and difficult to understand, and several of the
axes are without designation. Some of the graphs, such as packetsLost, are presented
in the accumulated value of packets lost, instead of showing packet loss percentages.

7Test server accessible at www.appear.item.ntnu.no
8chrome://webrtc-internals/, accessible from Chrome web browser

www.appear.item.ntnu.no
chrome://webrtc-internals/
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Figure 3.11: Screenshot of all graphs for sending video (from webrtc-internals).

The accumulated value can be used for retrospect analyses purposes, but is less
convenient when looking at the graphs in real-time. See [18] for a study on the
limitations of webrtc-internals and the consequences they lead to.

Sampling Times of getstats.io and webrtc-internals

The JSON-object downloadable from getstats.io contains all statistical data accom-
panied by a time stamp. Samples are made every 10 seconds in getstats.io.

Webrtc-internals does not include any time stamps in the dump file. It does not
even say anything about how often samples are collected. Our observations indicated
that it samples once every second, but [18] indicated that webrtc-internals sometimes
samples at uneven time intervals, and we wanted to be certain of the actual sampling
time. webrtc-internals does not have any time information in the file, but each
sample value is put in different lists, one list for each network property. We can,
therefore, check the number of elements in a list after a given amount of time. Since
the dump file is limited to 1000 samples, we conducted several conversations lasting
14 minutes (well under the limit of 1000 samples). We then checked the number
of elements in the list, to see if it varied between the different conversations. The
results were that a sample was taken every 0.9964 seconds on all three conversations.
These variations are so small that they can come from small delays when starting
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Table 3.1: Comparing properties in getstats.io and webrtc-internals.
getstats.io webrtc-internals

OS information yes no
Device information yes no
Information about
connection type

yes no

Browser information yes no
Start time, end time, duration yes yes
Information from conversation for all users in session only for single user
Events (connect, disconnect,

video on/off, microphone on/off)
yes yes

CPU-usage yes no
Bandwidth yes yes
Latency yes yes

Throughput yes yes
Packet loss yes yes

Jitter yes yes
Sampling period every 10 seconds every 1 second

Download data from conversation from whole
conversation

limited to 16 minutes

Downloading connection stats automatically and
at any time

manually and only when
conversation is active

up the application or when downloading the dump file at the end. We, therefore,
conclude that the sampling time of webrtc-internals is actually one second, and that
we did not experience the same problems as mentioned in [18].

The fact that the sampling period in getstats.io is so long may lead to situations
where large-valued short-lasting deviations are not accounted for at all. This is
an example of where it is useful to use webrtc-internals instead. We will use both
getstats.io and webrtc-internals to produce graphs in this report. We have used the
JSON-object from webrtc-internals to retrieve the statistics, and then plotted them
ourselves. Graphs from getstats.io are screenshots directly from the user interface.

Comparing Session-related Statistics

Getstats.io and webrtc-internals offer much of the same information, through slightly
different user interfaces. It seems that getstats.io provides a more user-friendly
interface, where the graphs are more easily interpreted than in webrtc-internals.
Table 3.1 compares the two, to see what information they offer.
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webrtc-internals and getstats.io should produce many of the same results, given
that they both collect information using the same API. However, they are both
interesting because they offer different perspectives. Statistics gathered can then
be analyzed and compared across the two tools. Ideally, individual user comments
can be connected with peaks visualized in the graphs, so that we can link these
observations with our network parameters, linking QoE and QoS together.

Getstats API - Recording Jitter

Obtaining strange recordings of jitter values from getstats.io motivated an investi-
gation to figure out what kind of data is computed and gathered in terms of jitter.
Analyzing the JSON-files collected by webrtc-internals from a session revealed that
three different parameters were collected with regards to jitter: googJitterBufferMs,
googPreferredJitterBufferMs and googJitterReceived. Another observation made from
the JSON files was that all three parameters were collected for audio, but only the
googJitterBufferMs was collected for video. No documentation could be found about
the three parameters, so an examination of the source code of WebRTC [15] was
done to understand what the parameters represented.

googJitterBufferMs The source code showed that the parameter googJitter-
BufferMs describes the size of the jitter buffer for both video and audio.

googPreferredJitterBufferMs This parameter indicates the preferred jitter buffer
size, which is indicated as the optimal buffer size for each sample.

googJitterReceived Only present in the data gathered for audio in a session,
googJitterReceived contains information about jitter value of RTP packets, collected
from the RTCP statistics, sampled every second.

3.3.2 Screen Recordings

A screen recorder was used during the tests to record the video and audio for the
duration of the pilot study. The screen recordings were useful when looking at the
user feedback from the pilot study, and to see what users considered as acceptable or
poor quality. It was also helpful to use the screen recordings when the session-related
statistics were analyzed in hindsight. The tool used for the screen recordings was
SimpleScreenRecorder9, available in most Linux distributions.

9SimpleScreenRecorder: http://www.maartenbaert.be/simplescreenrecorder/
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3.4 Questionnaires and Subjective Measurements

We wanted to collect information about users and the feedback from the different
conversations in a quantifiable way. Concrete feedback is much easier to discuss,
rather than having users describe freely how their QoE was. The questionnaires were
inspired from previous studies conducted at the Department of Telematics at NTNU.

Several statistical method should be used to analyze the results. The certainty of
the results and the ability to come with any useful conclusions is heavily dependent
on the sample size, N, which in our project corresponds to the number of users.
Martinéz-Mesa et al. discuss how the probability of error on the results are reduced
as the sample size increases [16]. An estimate of the error margin for obtaining a
95% confidence interval is suggested as 1√

N
by [9].

Our pilot study consisted of a total of 12 users, which indicates that we have
an error margin of ≈ 29%. The large error margin means that we should not be
too conclusive when looking at the data we have gathered from the participants, as
there is a relatively large error probability. We could, however, use the data to get
an idea about the results as it is still useful to look at correlations, and see whether
it matches our hypothesis. A much larger sample size is needed to reduce the error
probability (N = 100 gives perror = 10%) and is therefore too time-consuming for our
study. We choose to use our testbed and the feedback gathered as a proof-of-concept,
and could, therefore, allow a higher error probability, as the goal is not to draw any
definite conclusions.

3.4.1 Pre-session Survey

We divided the pre-session survey into three different parts:

– The first three questions are about the participants familiarity with video
communication tools in general. The participants familiarity gives us an insight
into what kind of applications they know, and how often they have used these
applications recently. They were also asked to quantify how important they
regard video and audio quality and the audio-video synchronization on a scale
from "Very unimportant" to "Very important".

– The next three questions were aimed specifically at the participants familiarity
with appear.in. We wanted to get an idea on how often and how many times
they have used the application, and rate how their previous experiences with
appear.in have been.
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– The remaining questions are demographic characteristics, which we could use
in our analysis, and included age, gender, profession and the participants
knowledge of the field of video and audio communication applications.

The complete questionnaire can be found in Appendix D.1

3.4.2 Appear-in Feedback After Each Conversation

The appear.in feedback form was presented to the users after a conversation when
they pressed "Leave" within the ongoing conversation. They were asked to rate the
overall audiovisual quality, video quality and audio quality on a scale from "Excellent"
(5) to "Bad" (1). They were also asked to describe which quality-related issues they
experienced. Finally, the participants were asked if they would consider quitting the
session because of quality-related issues, and if they perceived any reduction in their
ability to interact with the other party. The session feedback form can be found in
Appendix D.2.

3.5 Background for Pilot Study

Before conducting the pilot study, the number and type of network scenarios for
the pilot study were prepared. The testbed is configured such that a wide range
of parameters can be configured to alter the network properties and allows up to
seven clients to work simultaneously. We had to make a decision on the number of
scenarios that should be tested, the number of simultaneous parties, and what network
parameters that should be tested. The pilot study was limited to 12 people, and this
put restrictions on the number of scenarios that could be applied. Many different
parameters with a broad range of values is clearly not feasible for 12 participants.

Given the number of participants, we decided to conduct the study with two-party
conversations only. Further, to get more data from each scenario applied, we also
decided to use synchronous links between each party. Synchronous links mean that
we use the same network alterations from client 1 to client 2, as from client 2 to
client 1. We decided that each pair of participants should go through a total of five
different scenarios. The time of the entire pilot study, with introductory phase and
conversations with feedback, would be limited to at most 60 minutes per pair. We
chose to have each survival task (conversation) last for 4 minutes leaving enough
time for preparation and enough time for the participants to answer the surveys. Out
of the 4 minutes, we chose to have the first and last 30 seconds to have no network
alteration, as shown in Figure 3.12. We did this to allow the participants to get
settled in the beginning, and we had experienced that it took about 30 seconds for
the impact the network alterations had to wear off.
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We designed the scenarios to look at the impact MLBS has on the QoE. We used
the loss models to create scenarios with different packet loss rates and MLBSs.

Figure 3.12: Timeline for each survival task in the pilot study.

3.5.1 Participants

This pilot study was conducted with a total of 12 participants. All of the participants
are connected to the Telematics Department at NTNU: eight were students, and four
were employees. Two of the participants were female, and ten were male. They were
all between 21 and 35 years old. Two of the participants noted that they work or
study in the field of audio/video quality, multimedia processing or a related field.

It was relevant to the experiment that the participants did not sit in the same
room during the conversations to make it as realistic as possible. We controlled the
testbed remotely from a separate location, and we were only present in the rooms
with the participants during the setup and collection of data in between the sessions,
to avoid interfering with the study.

3.5.2 Discussion Topics

It is important to simulate a realistic situation when conducting studies on user
experience. A realistic situation is typically that all participants of the conversations
are active at some point and as natural conversation flow as possible. As many of the
participants did not know each other, we needed to make sure that the conversation
was going so that they could have some meaningful contributions to the quality of the
video conversation. It was important that the discussion tasks were easy and quick
to learn and that they simulated a real-life conversation. It was also important that
the tasks did not take the participants’ attention away from the video conversation.
Several possible discussion topics with different characteristics are proposed by ITU-T
[30]. ITU-T recommends the survival task, as it offers the best compromise between
"visual attention, number of speech turns, naturalness, and satisfaction".

The survival task is created so that 2-3 participants have to agree on a decision-
making problem. For each survival task, the participants have presented a survival
situation based on an accident as well as a list of objects to help them survive. The
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participants each has different lists of 5-7 objects, adding up to a total number of 15
objects. They have to present their objects and cooperate with the other participants
to choose at most six objects they would pick in order to survive. This task is
beneficial because it is easy to learn, and requires that the participants will justify
their choices through conversation.

The survival task would not, however, blindly be the best discussion task for all
kinds of experiments. The most important factor of the survival task is the audio
quality: It is possible to complete the task in a satisfactory way as long as the audio
quality is sufficient. Video problems can, however, be harder to notice when the
discussion task does not require any physical movement during the conversation. A
participants movement on the screen can be referred to as the Quantity of Movement
(QoM), indicating how much of the frame that needs to be rendered for each image.
A setting with two participants sitting still does not have to render the image from
scratch each time, and will suffer less from packet losses than for example sports
events with a high QoM. Situations with a low QoM may, therefore, not experience
the same problems as situations with a high QoM. We found that it is important
to be aware of the QoM, but that it was not as important for our experiments,
as the QoM is fairly low, and that the survival task is, therefore, suitable for our
experiments.

We used a total number of five survival tasks for our pilot study, where each
survival task corresponds to one accident location. For a full description of the
different survival contexts and object lists, see Appendix C.





Chapter4Experiments

This chapter covers the different experiments we have conducted during our lab work.
A validation of the tools we have used is followed by how we determined which loss
model to use. We then describe the early-phase experiments using the testbed, before
describing the pilot study. We finalize the chapter by describing the three-party
conversations experiment.

4.1 Validation

Both network and hardware parameters may affect the connection quality of a video
call. This section discusses the different parameters we can alter, how they are
validated to assure correctness, and how we have gathered information from the
video conversations.

4.1.1 Validation Tools

A testbed is used to create a fully controllable environment where it is possible to
recreate and reproduce experiments. The concept of QoE entails many variables. It
is therefore especially important that the parameters we can control are thoroughly
validated, to understand and manipulate the system in a controlled manner. The
different network parameters we have altered by the testbed requires different valida-
tion tools to ensure everything is working correctly. The following includes a brief
overview of the tools we have used.

Ping

Ping sends ICMP echo request packets to the specified destination and waits for the
response packet. Unless specified, Ping sends one request packet each second, but
can be configured to send packets much more frequently. Ping can be useful to check
your Internet connection and to gather information quickly about the average RTT
(which gives an indication of delay and jitter) and the packet loss percentage, as both

43
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are highlighted in Figure 4.1. We used ping mainly as a first step to quickly verify
commands regarding delay and packet loss issued through NetEm. The MLBS was
also calculated by analyzing the results of a ping command, counting packet losses
and calculating the mean length of a burst.

Figure 4.1: Example of ping request, displaying RTT and packet loss percentage.

Traceroute

Traceroute is similar to ping in the way that it retrieves the measured delay. Tracer-
oute also returns one line for each access point along the way the packet traverses
from its origin to destination, which can be an effective way for troubleshooting a
network connection. The illustration in Figure 4.2 shows that the packet is first
transmitted to 10.0.0.1 (the testbed controller) before it reaches its final destination
at 10.0.0.2 (client 1). We used Traceroute to verify that the routing tables of our
clients were set up correctly, ensuring that all traffic goes through the controller.
This traceroute is relatively small because it only finds access points within our LAN.
A traceroute to an external website, such as www.google.com, would result in a much
larger traceroute.

Figure 4.2: Traceroute showing that traffic between clients goes through the testbed
controller.

www.google.com
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iPerf

iPerf1 offers simple commands for active measurements of a bandwidth of an IP-
network, which is useful to verify and validate that bandwidth throttling works. iPerf
is also useful for recording packet loss and jitter in the network and can use both
UDP and TCP.

The following command sets up a server which can receive UDP-packets and
is scheduled to report the estimated bandwidth, packet loss, and jitter, every 20
seconds.

$ i p e r f −s −u − i 20

The following command creates a client which connects to the specified IP-address
for a total of 60 seconds.

$ i p e r f −c −u 1 0 . 0 . 0 . 2 −t 60

We used iPerf to validate bandwidth, packet loss, and jitter alterations.

4.1.2 Validation of Packet Loss Function in NetEm

We discovered some performance issues for some of the functions in NetEm. The
random-function was working as expected when specifying independent packet losses
without any correlation between lost packets. Introducing correlation with the packet
loss, however, drastically decreased performance, especially for higher correlation
values. We noticed the reduction in performance by detecting that the actual
percentage of lost packets was much lower than specified. Similar observations were
also detected in [35]. This incorrect behavior introduced from the correlation values
was problematic, because it meant we had no good way of testing our correlated
packet losses.

NetEm is dependent on the Linux kernel which affects the performance of the
functions. Problems occurred with both the state and the gemodel functions when
using an Ubuntu distribution of Linux. The problems occurred either by a considerable
decrease in performance as with the random function, but also by the failure to start
the tool altogether. As a step to mitigate the problems encountered, a different Linux
distribution, Debian, with a different kernel was tested. Using a Debian distribution
instead proved useful, and both the state and the gemodel was working as expected.

1iperf.fr

iperf.fr


46 4. EXPERIMENTS

The random function with correlation, however, had the same performance issues in
Debian as in Ubuntu.

For this reason, we chose to use Debian for the testbed controller and the gemodel
for modeling losses. Ubuntu was still used for the clients, as they were unaffected by
this problem.

4.1.3 Validating Delay and Jitter Functions

Due to the limited time of this project, our main priority was conducting experiments
regarding packet loss and MLBS. Our main focus was, therefore, validating and
experimenting with NetEm packet loss functions. We have, however, done some
testing of functions regarding delay and jitter in NetEm.

Delay without any jitter specified was working as expected and did not suffer
any performance issues. We did, however, experience some performance issues when
specifying both delay and jitter, but not as severely as the issues experienced with
packet loss and correlation. Some further testing revealed something strange about
the delay and jitter functions in NetEm. We found that specifying both delay and
jitter, with the normal distribution, provided better performance with respect to the
average jitter that was applied to the network, compared to only specifying delay
and jitter. This was strange because the documentation for NetEm [7] says that the
default distribution is the normal distribution when no distribution is specified. The
testing conducted with iPerf did, however, reveal a difference in performance of the
delay and jitter function, with and without, the normal distribution specified. We,
therefore, chose to specify the normal distribution when applying delay and jitter in
the experiments.

4.2 Choosing the Appropriate Loss Model

Four different loss models were described in chapter 3.1.4, the GE model and its
three varieties, Bernoulli, Simple Gilbert and Gilbert, all implemented in NetEm
in the gemodel function. We deemed the Bernoulli model too simple, and the GE
model unnecessarily complicated for our experiments. We have, therefore, conducted
experiments by using the SG model and the Gilbert model, to see which one would
serve its purpose best in the experiments.

The experiments of choosing the appropriate loss model consisted of two clients,
the switch, and the testbed controller. The setup is depicted in Figure 4.3. Ethernet
connects the clients to the switch, which lets the controller set various parameters
for the different network links. Client 1 is configured to transmit ping messages
continuously to client 2. The controller is configured to vary the network parameters
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between the two clients, to see how different values for the loss models affect the
actual network connection.

Figure 4.3: Ping simulation where client 1 continuously pings client 2, while the
testbed controller alters the network link.

We needed to find out how we could create scripts with the desired values for
both packet loss rate and MLBS. Figure 4.4 shows an overview of how different p
and r-values in the SG model result in different values for packet loss and MLBS. A
more detailed explanation on how to compute the MLBS follows.

Figure 4.4: How MLBS and packet loss rate varies when p and r varies.
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4.2.1 Computing the MLBS

Computation of the MLBS is less straightforward than the other network parameters.
As mentioned earlier, the MLBS describes how many packets that are lost on average
each time a packet is lost. The getstats API used by webrtc-internals gives samples
indicating packets lost each second, but this is not sufficient to correctly compute
the MLBS (getstats.io is obviously not better with a sample time of 10 seconds).
Losing x number of packets within a second does not reveal the actual burst sizes,
as a given number of packets lost in one second can either have come in one long
burst or in many small bursts, resulting in different MLBSs. Our statistic tools can,
therefore, not be used in hindsight to compute the average burst size.

Instead, we have to run ping between the clients while the network conditions are
active and save all the ping messages to a text file. After that, we iterate through all
entries in the text file and use the ICMP sequence number to identify packet losses.
This gives us the burst sizes at the packet level which is what correctly depicts the
MLBS.

4.2.2 Testing the Simple Gilbert Model

The SG model was run with p = {10,50,90}, and r-values ranging from [25,100] with
an interval of five (25,30,35,...,100). R-values below 25 are not included, as it results
in higher MLBS than we intended to use for the experiments later on.

We decided to do a large number of iterations to flat out statistical peaks, and to
obtain as correct values as possible. We ran through a total of 70 repetitions for each
combination of p and r, each iteration lasting 20 seconds, and recorded the average
packet loss and MLBSs. Figure 4.5 shows a plot from Matlab of the recorded MLBS
for all combinations of p and r, clearly indicating that the MLBS is independent of
the p-value, as the lines representing different p-values correspond closely.

4.2.3 Testing the Gilbert Model

As we showed that p is independent of the MLBS in Figure 4.5, we only tested
one p-value for the Gilbert model. The Gilbert model, however, introduces the
parameter 1-h, which allows further fine tuning of the packet loss behavior, by adding
the possibility of successful packet transmission in state B. We ran the simulations
with r = {20,35,50} and 1-h values ∈ [0, 100]. The simulations were executed with
lower r-values than in the previous simulation because we wanted to see to what
extent the 1-h value reduces the MLBS. As lower r-values give higher MLBS, the
impact the 1-h value had on the MLBS would become clearer. The number of
combinations to test was much larger, but we ran every scenario 50 iterations and
recorded the average values for packet loss and MLBS. Each simulation was run for
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Figure 4.5: Simple Gilbert simulation results.

a total of 20 000 packets instead of running it for a given period, because significant
packet loss rates would otherwise affect the total number of packets received and
give potentially misleading results. Figure 4.6 shows a Matlab plot of the MLBS for
different combinations of r and 1-h.

Different r-values are illustrated by different graphs. We can easily see how
smaller r-values result in a higher MLBS, and that a lower 1-h value reduces the
MLBS. It is important to notice here that burst density 1-h value also will impact
the total packet loss. The experiments with the Gilbert model were done to see if
more accurate results on MLBS were seen than with the SG model.

4.2.4 Deciding on the Loss Model

We discovered throughout the experiments that the SG model falls short for high
packet loss rates (>50%) combined with low MLBSs. Intuitively this makes sense.
For instance, consider a scenario with a packet stream of several thousand packets,
and assuming a packet loss ratio of 80%. This situation is impossible with an MLBS
of 1, as it would imply that every single lost packet is followed by at least one
successfully transmitted packet, resulting in a packet loss percentage of at most 50%.
Naturally, the same applies for the Gilbert model, even though we saw from the
simulations that the 1-h value could be used to reduce the MLBS, this will also
impact the total packet loss. The results from the two simulations showed that the
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Figure 4.6: Gilbert simulation results.

two loss models had the same capabilities in applying packet loss rates and MLBSs
needed for the experiments later in the project. The main difference between the two
loss models, from its intended use in this project, is that the Gilbert model is more
complicated to obtain the combination of parameters to get the expected packet loss
rate and MLBS.

By the Ockham’s razor theory, we have that: "Ockham’s Razor belongs to the
category of logical rules which indicate how to process experimental facts. It shows
the way to the best fit of observables to the least complicated possible interpretation."
[25]. We have therefore chosen to use the SG model, and not the Gilbert model.

The data gathered from the simulations with the SG model in NetEm, shown
in Figure 4.5, was used as a reference point for selecting r-values for all subsequent
experiments involving MLBS. Appendix B includes the data from the SG loss model
simulations, as well as an example of how to use the p and r-values to get specific
packet loss and MLBS combinations.

4.3 Experiments Using the Testbed Controller

Once all validations and verification were done, we could begin the actual experiments
involving participant conversations. We needed to find the testing parameters to
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use in the pilot study and later in the three-party conversations. Following is an
explanation of how we picked these parameters.

4.3.1 Early-phase Testing to Decide Parameters

Initially, we needed to test a broad range of values before we could decide on
parameters. We first tried all the parameters (bandwidth, packet loss rate, MLBS,
delay, jitter, and CPU) one at a time with a broad range of values to get a picture
of how they were working separately. We wanted to find values with significant
differences within each parameter so that they could be perceived differently by users,
which would be of value for our later experiments.

After getting an intuition on how the parameters worked separately, we started
grouping parameters that are somewhat related. The packet loss rate was combined
with the MLBS as they both model aspects of packet losses. We also combined delay
with jitter. These parameters are tightly coupled as jitter describes the difference
in the packet inter-arrival delay also known as the variation of the delay. As for
the bandwidth and the CPU limitation, we experienced that they affected other
parameters as they were introduced. The bandwidth led to an increased delay and
packet loss rate while the CPU-usage limitation had an impact on both delay and
jitter. For this reason, we did not want to combine bandwidth and CPU limitation
with any other parameters. Following is a description of how we chose the different
parameters.

Applying Bandwidth Limitations

We wanted to included some scenarios in the pilot study where we limited the
bandwidth to fully utilize the functionality of the testbed. But we did not want to
have dedicated scenarios where we only tested the limitations of bandwidth because
the number of scenarios we could fit into the pilot study was already limited. We
quickly found that introducing bandwidth limitation in combination with other
parameters led to further difficulties for us when analyzing the data in retrospect.
The reason for this is that lowering the bandwidth also impacts other network
parameters, such as the delay and packet loss rate, which made it problematic for us
to distinguish if the packet loss rate and the delay were due to the limitation of the
specific parameters or due to the limitation in bandwidth.

We conducted some testing regarding limitation of bandwidth for all the network
links in a conversation and found some indicators which could affect the QoE.
We concluded that the throughput is stable around 1.7 - 1.8 Mbps for a two-party
conversation with no alterations, and that we did not experience a significant reduction
in the quality of the conversation before the throughput dropped to less than 1.0
Mbps. Further experiments revealed that a bandwidth of under 1 Mbps led to
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increased delay for both audio and video. As the bandwidth was further reduced all
the way down to 350 Kbps, we recorded an increasing delay from 2000 milliseconds
up to 16 000 milliseconds. For values below 350 Kbps, our appear.in conversation
suffered a timeout.

Even though we did detect a reduction in the quality of both video and audio when
limiting the bandwidth, it only occurred when we severely limited the bandwidth.
For reference: the average connection speed was 16.4 Mbps, and 88% of Internet
subscribers had over 4 Mbps in Norway in 2015. Globally the average bandwidth
was 5.1 Mbps [1].

We did not do any further experiments with bandwidth limitations.

Packet Loss Rate and MLBS

A packet loss rate describes the average number of packets lost over a given time
interval. We have that the packet loss rate can behave differently from one scenario
to another since the packet loss is run by statistical probabilities, as long as the
total number of packets lost over time corresponds to the average packet loss rate.
Introducing an MLBS can increase the statistical differences for two scenarios with
the same packet loss rate and different MLBSs. A low MLBS will give small variations
in the actual packet loss rate while a larger MLBS will create bigger fluctuations and
have more significant deviations compared to the specified average.

For further experiments, we were interested in several values of both packet loss
rate and MLBS. After testing a wide number of values for each, we found that we
were able to distinguish between a packet loss rate of 10% and 20% and that they
could offer differences in the number of video freezes and audio reductions.

Several testing sessions with different MLBSs combined with the different packet
loss rates revealed that the perceived quality was noticeably degrading as the MLBS
increased. We did not want the difference between the MLBSs to be huge, but enough
to notice a change in the perceived quality. We ended up with choosing MLBSs equal
to 1.5 and 3.

Delay and Jitter

After that we wanted to test different combinations of delay and jitter values. All
real-life network connections have some delay, as the delay is directly dependent on
the physical distance between the communicating clients. Due to our connection
setup where all clients are connected directly to the switch, we have achieved a
negligible delay of less than one millisecond. We wanted to see how it affected the
connections when we substantially increased the delay.
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Researching delay independently revealed that we did not perceive any real
difference in the perceived quality for (one-way) delays < 500 milliseconds. Delays
up to 1000 milliseconds did not disturb the conversation quality much, but delays
exceeding 1000 led to annoyance when taking turns to talk and unintentionally
speaking simultaneously. We set 500 and 1000 milliseconds as threshold values for
the delay.

Jitter led to a clear difference in the perceived quality at 300 milliseconds. We
experienced further reduction in the conversation quality for a jitter value equal to
500 milliseconds. We also chose not to alter the jitter value, so that we could see the
effect of delay independently.

Note that a jitter value of 300 milliseconds added in combination with a delay
of 500 milliseconds means that the delay will fluctuate in the range 200 to 800
milliseconds which is a quite broad range.

Deciding Parameter Combinations for Further Experiments

Because of the difficulty in combining bandwidth with other parameters, and the
fact that the required bandwidth for maintaining a proper conversation is well below
the facts from Akamai [1], we, therefore, chose to focus on other parameters than the
bandwidth for the rest of the studies. Following are the parameters we did choose to
focus on:

– The effects of limiting the CPU-usage is of particular interest because limiting
CPU can be compared to using less powerful devices.

– The packet loss and MLBS parameters were chosen because they offer an
interesting approach saying that the packet loss rate alone is not enough to
determine the perceived QoE, as it can also vary with different MLBSs.

– Testing delay in combination with jitter is interesting because we find it difficult
to understand the impact of jitter. For this reason, we have chosen to conduct
further experiments with delay and jitter as well.

Due to the small number of participants and that the numbers of scenarios
increase quickly as more parameters are included, we had to narrow down the
parameters we would like to experiment with for the different experiments. For the
two-party pilot study, we focused on how packet losses and MLBSs affect the network
connections. As the three-party experiments were conducted by the two authors
and our supervisor, it required less planning and administrative work. We were,
therefore, able to test several other aspects of our testbed in addition to the pilot
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study. The three-party conversations had a wider range of testing values, but less
extensive testing with regards to the number of participants. The testing parameters
for the three-party conversations were packet losses and MLBS, the effects of delay
and jitter combinations, and finally, how restricting the CPU-usage influence the
QoE.

4.3.2 Pilot Study

The pilot study focused on two-party conversations only. Each pair of participants
conducted five different survival tasks, where four of the five survival tasks were
manipulated with different network conditions and one had no network alterations.
Because the number of possible scenarios to run was limited, we had to focus on
only a subset of the parameters that we can control with our testbed. Our choice of
parameters for the pilot study was therefore limited to packet loss and MLBS.

We randomized the order of the scenarios for all of the groups because we wanted
to remove the fixed order from 1 to 5 which would go monotonically from (what
we anticipated as) best to worst. Randomization is also interesting because we
can see how the participants perceive the contrast of going from a bad network
connection to the ideal scenario and back again to bad conditions. As mentioned
earlier, the network alterations were applied synchronously between all participants.
Even though asymmetric links may be a better approximation to the real world, we
chose synchronous links because we wanted to reduce the number of factors that affect
the user experience for analysis purposes. We, therefore, decided to use synchronous
links due to the relatively small number of participants. Figure 4.7 illustrates the
network topology for the pilot study.

Table 4.1 shows the parameters which are used in both the pilot study and the
three-party conversations. Note that the first scenario does not have anything to do
with packet loss and MLBS, as it is a no-alteration scenario for our reference. It is of
interest to see how the users rate the ideal conditions and compare it to how they
would rate poorer conditions. Our main hypothesis across the experiments was that
a high MLBS greatly can affect the perceived user experience, and we wanted to
investigate whether the participants were able to differ between combinations with
the same packet loss rate but different values for the MLBS.

Our hypothesis is that a packet loss rate of 20% will be significantly worse than
a packet loss rate of 10%. We also believe that a high MLBS will lead to a greater
reduction of the perceived quality than a lower MLBS for both audio and video. The
MLBS hypothesis comes from our testing from the early phase, and the fact that
error correction techniques become less effective when consecutive packets are lost,
as already discussed in section 3.1.2. A 10% increase in packet loss rate should be
worse for obvious reasons. We are also interested in a potential difference between
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Table 4.1: Scenarios applied in the pilot study.

Scenario Packet Loss MLBS
1 0 0
2 10 1.5
3 10 3
4 20 1.5
5 20 3

Figure 4.7: Network topology for two clients.

the two-party and three-party conversation, and to see if the perceived quality is
affected by the number of simultaneous users.

Here we will present the exact numerical values we have put in the SG loss model
for the different scenarios 2 through 5. Figure 4.8 depicts the values we used to create
scenario 2. The transition probability (p) from state G to state B is 7.33%, and the
transition probability (r) from state B to state G is 66%. Similarly, Figure 4.9, 4.10
and 4.11 show the SG loss model used for scenario 3, 4 and 5 respectively.

Recall that r controls the MLBS, and p is computed to give the desired packet
loss based on the r-value. Note also that the transition p happens more frequently
in Figure 4.8 than in Figure 4.9 but the time spent in state B will by probability be
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Figure 4.8: Simple Gilbert loss model for scenario 2 (10% loss rate and 1.5 MLBS).

Figure 4.9: Simple Gilbert loss model for scenario 3 (10% loss rate and 3 MLBS).

Figure 4.10: Simple Gilbert loss model for scenario 4 (20% loss rate and 1.5 MLBS).

Figure 4.11: Simple Gilbert loss model for scenario 5 (20% loss rate and 3 MLBS).

shorter, hence a smaller MLBS. We can see from the models that the MLBS is only
dependent on the r-value by comparing scenario 2 with scenario 4, and scenario 3
with scenario 5. The scripts run by the testbed controller uses the values we have
presented here, and can be found in Appendix E.
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4.3.3 Three-party Conversations

As mentioned, appear.in supports up to eight simultaneous users in the same session.
Conducting experiments, however, becomes more challenging as the number of
participants increases. Finding discussion topics that include all participants can
also be problematic and requires a much longer time for each network scenario for all
participants to be active. The most significant shortcoming, however, is the practical
limitation. Our testbed setup requires that all the participants are connected to the
same switch, and all participants are put in a separate room to make the setting
as realistic as possible. Testing with a larger number of participants is possible
but requires much more planning and other practical difficulties such as a separate
room for each. The maximum number of users, however, is not what we aim to
investigate in this report. We have therefore limited our multi-party experiments
to three participants. The setup would have been the same for more simultaneous
participants, but we choose to focus on the data from a smaller number of users.

Figure 4.12 illustrates the network topology for a three-party conversation in our
testbed.

Figure 4.12: Network topology for three clients.
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Packet Losses and MLBS

The parameters used for packet losses and MLBS were the same for these experiments
as for the pilot study. Please refer to Table 4.1 for details about the different scenarios
regarding packet losses and MLBSs.

Delay and Jitter

Table 4.2 holds the various combinations of delay and jitter used in the experiments
regarding delay and jitter (scenarios 6-11).

Our hypothesis was that adding reasonable amounts (less than 1000 milliseconds)
of delay would not affect the perceived quality, but could lead to annoyance because
the flow of the conversation would be interrupted. The effects of adding network
jitter were somewhat harder to predict. A high enough jitter value may cause enough
packet reordering and packet losses to affect both video and audio quality negatively.

Table 4.2: Three-party conversation - delay and jitter values.

Scenario Delay [ms] Jitter [ms]
6 500 0
7 500 300
8 500 500
9 1000 0
10 1000 300
11 1000 500

Restricting CPU-usage

We noticed that a regular two-party conversation used about 70% - 80% of one CPU
core. A three-party conversation was, however, clearly higher with values around
90% - 100%. A higher CPU-usage makes sense, as the computer needs to use more
resources when processing more video and audio data. For testing purposes, we
would decrease the limit gradually to see when we experienced a reduction in the
quality.

The focus on limiting the CPU was on how the users would perceive the QoE as
the CPU-usage decreased. An important difference compared to all other parameters
is that the CPU limitations needs to be applied on the client side and for each single
client participating in the conversation. The CPU limitation is the only parameter
we cannot control centrally from the testbed controller.
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The values used in the experiment for restricting the CPU-usage can be seen
in Table 4.3, as scenario 12 and 13. The two different values were chosen so that
we could clearly see the differences between them, where one was close to normal
conditions and the other one way worse.

Table 4.3: Three-party conversation - restricting CPU-usage.

Scenario CPU-usage [%]
12 80
13 60

Our hypothesis on restricting the CPU-limit is that both audio and video are
substantially negatively affected, and will lead to a bad experience for all involved
participants, even for small changes in the CPU-usage.





Chapter5Results and Discussion

This chapter covers the results we have obtained from the pilot study and the three-
party conversations. The results are followed by a discussion concerning our findings.
We begin the chapter by a comparison of the scenarios created by the testbed for
the pilot study.

5.1 Comparison Between Different Scenarios

We wanted to ensure that the testbed was working correctly at the time of the
pilot study before we looked at the feedback from the participants. We, therefore,
conducted a statistical analysis of the packet losses, to verify that our scripts resulted
in the specified network link values. As mentioned earlier, each scenario consisted
of 30 seconds with no network alterations, followed by a three-minute period with
network modifications, and ended with 30 seconds where all network alterations were
removed. We use data only from the three-minute period in our discussion, as this
is the time interval of interest with regards to the testbed. Table 5.1 shows the
statistics calculated from the measured packet loss values in the pilot study for all
participants combined. We see that average of the total packet loss rates are very
close to the values we specified with the testbed, with a negligible deviation between
the different scenarios. We can, therefore, conclude that the testbed was working
as specified during the pilot study and that each participant experienced the same
network conditions with respect to the total packet loss rate in each scenario.

As mentioned in Chapter 4.2, the MLBSs were computed actively when the
network alterations were applied, and not with the data gathered by either getstats.io
or webrtc-internals. Therefore, active testing was conducted with the pilot study
setup to ensure that the MLBSs were as expected for each scenario.

61
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Table 5.1: Actual packet loss rates for each scenario in the pilot study (all values in
percentages).

scen #1 scen #2 scen #3 scen #4 scen #5
Expected 0.0 10 10 20 20
Average 0.0 10.15 9.90 20.18 20.09
SD 0.0 0.47 0.58 0.63 0.82
Median 0.0 10.12 9.97 20.08 20.09

5.2 Results from the Pilot Study

After controlling the scenarios from the pilot study, we could start analyzing the
results. Table 5.2 holds all the participant feedback, and the results from this table
will be elaborated further in the following subsections where we discuss each scenario
from the pilot study.

Table 5.2: Statistics from user feedback for all scenarios (ratings for average, median
and mode are given from 1 to 5).

scen #1 scen #2 scen #3 scen #4 scen #5
Overall 4.50 3.64 3.55 3.09 2.75

Average Video 4.42 2.50 3.36 2.09 2.33
Audio 4.50 4.27 3.82 3.55 3.00
Overall 0.45 0.25 0.67 0.69 0.93

Variance Video 0.63 0.67 0.85 1.09 1.15
Audio 0.45 0.42 0.36 0.87 1.27
Overall 0.67 0.50 0.82 0.83 0.97

Standard dev. Video 0.79 0.82 0.92 1.04 1.07
Audio 0.67 0.65 0.60 0.93 1.13
Overall 5 4 4 3 3

Median Video 5 3 3 2 2
Audio 5 4 4 3 3
Overall 5 4 4 3 3

Mode Video 5 3 4 2 2
Audio 5 4 4 3 3

5.2.1 Scenario 1 (No network alterations)

The first scenario had no network alterations and was the highest rated scenario for
both video, audio, and overall audiovisual quality. The majority of the participants
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agreed that this was the best scenario with relatively small variations in the ratings.
No apparent freezes were found in the screen recordings from scenario 1. The audio
quality is stable, and the video is clear and without any blurriness.

5.2.2 Scenario 2 (PL = 10%, MLBS = 1.5)

The overall quality rating for scenario 2 was, as expected, lower than for the first
scenario. Several participants noted that they experienced some reduction in the
video quality. Some reported that the video suffers from blurring throughout the
session, but no incidents of video freeze. The audio quality seems to be little impacted
if any. These findings were supported by the video recordings.

5.2.3 Scenario 3 (PL = 10%, MLBS = 3.0)

Scenario 3 was rated higher than scenario 2 concerning the video quality but was
rated lower for both audio and overall audiovisual quality. The screen recordings
indicate that scenario 3 suffers less from blurring compared to scenario 2 for most of
the duration. There are, however, smaller periods of time where the video quality is
poor, but no apparent video freezes were found.

5.2.4 Scenario 4 (PL = 20%, MLBS = 1.5)

Scenario 4 was the scenario with the overall lowest rated video quality by the
participants. Some complained about the video quality for most of the conversation
and that they considered quitting the session. Most participants said that the audio
quality was fair, but some experienced audio problems. Screen recordings support
that the video quality was poor for most of the session and that there were three
specific incidents where the video froze, lasting 2-3 seconds each. The audio quality
seemed to have been relatively unaffected.

5.2.5 Scenario 5 (PL = 20%, MLBS = 3.0)

We assumed that scenario 5 would be the worst scenario due to the high packet
loss rate and MLBS. The participants’ overall rating of this scenario agreed, but
the video quality was rated higher than scenario 4. Scenario 5 was, however, the
scenario with the lowest audio quality rating, and where most participants noted
they perceived a reduction in their ability to interact with the other party. Some
participants described that the sound occasionally was lost and that some parts of the
conversation had to be repeated due to unintelligible sound. The screen recordings
show some blurriness throughout the entire session but appears to be less severe than
in scenario 4. Only one incident of video freezes was recorded, lasting less than a
second.
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Figure 5.1 is a Gnuplot visualization of the same data as in Table 5.2. The points
in Figure 5.1 represent the average rating for each scenario and the solid lines show
the standard deviation. Note that for scenario 1, the upper limit of the standard
deviation has been truncated, so it did not go above 5 (which was the maximum
rating). The dotted lines are added to better visualize the differences between the
scenarios with the same packet loss rates and different MLBSs.

Figure 5.1: Visualization of user feedback, indicating the average value ± one standard
deviation.

5.3 Discussion of Pilot Study Results

This section discusses and analyzes the results from the pilot study. We will consider
how the users were affected by the different network alterations and see the feedback
across the various groups in the pilot study. We also compare the scenarios that have
the same packet loss rate to see how the MLBS impacted the QoE.

The order of the scenarios was randomized between the different groups as
mentioned earlier. Randomization was done so the network conditions should not
monotonically decrease, but rather be experienced as variations throughout the study.
The order of the scripts is likely to affect how participants perceive the different
scenarios. If the worst scenario comes right after the scenario with no network
alterations, the user is more likely to give a worse rating because he will compare
the two most recent scenarios.
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We have chosen to compare scenario 2 with scenario 3, and scenario 4 with
scenario 5 when we discuss the scenarios in the pilot study, as these scenarios have
the same packet loss rate. The reason why we chose to compare the scenarios with
the same packet loss rates, and not the same MLBSs, is that our main focus was on
finding the effect of different MLBSs. Also, our early-phase testing indicated that
the difference between a packet loss rate of 10% and 20% was enormous, and that
the participants could easily differ between these two. For this reason, we have not
compared scenario 2 with scenario 4, and scenario 3 with scenario 5.

5.3.1 Interpreting Subjective User Feedback

Some users gave an overall high or low rating which deviated from the statistical mean.
One user gave 3-3-3 (for overall audiovisual-, video- and audio rating respectively,
from 1 to 5 where 5 is best) to the scenario with no network alterations. This user is
likely to give a relatively low rating to all scenarios. The opposite goes for a user
which consequently provides feedback which is higher than the statistical mean.

Another important factor is that the actual perceived quality of a single scenario
may be different between the pilot study groups. Even though the network alterations
are set to specific values, a different number of video freezes can be experienced
by different users due to statistical variations. Users may therefore actually experi-
ence differences in the same scenarios, which makes analyzing the data even more
challenging.

Finally, another factor is that the subjective user feedback is, in fact, subjec-
tive. What is considered acceptable differs from person to person, which can make
interpretation of the results more challenging.

5.3.2 Comparing Low MLBS with High MLBS

Video The scenarios with a total packet loss of 20% were, as expected, rated lower
with respect to video quality than the scenarios with a total packet loss of 10%.
What was interesting was the difference the MLBS had on the video quality in each
pair of scenarios with 10% packet loss and 20% packet loss. The analysis done after
the pilot study, shown in Table 5.1, shows that scenario 2 and 3 had the same total
packet loss rate of 10% and that scenario 4 and 5 had a total packet loss rate of 20%.
However, the participants on average rated the scenario with the lower MLBS worse,
with regards to video quality compared to the higher MLBS case. It seems, therefore,
that the different values of MLBS did somehow impact the video quality.

It was difficult to see from the collected data why the lower MLBS gave the worst
perceived video quality. For instance, the throughput (bits received per second) was
equally low in both cases. Figure 5.2 and 5.3 show the packet loss rates for video in
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Figure 5.2: Packet loss video scenario 2 (10% loss rate and 1.5 MLBS.)

Figure 5.3: Packet loss video scenario 3 (10% loss rate and 3 MLBS)

a conversation in scenario 2 and scenario 3, respectively1. Differences between these
graphs can be seen in how the packet losses are distributed, where high MLBS leads
to bigger fluctuations. One possible explanation for why the video quality was lower
when the MLBS was lower could be that difference in how the packet losses were
distributed during the conversation.

1Figures 5.2- 5.5 were plotted with Gnuplot with the data collected from webrtc-internals.
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Another way to look at this is with the figures from Chapter 4.3.2, which illustrate
the transition probabilities between the states in the SG model used to apply packet
loss rates in the network. The figures show that transition p happens more frequently
in scenario 2 than in scenario 3, and more frequently in scenario 4 than in scenario
5. Since the transition p happens more frequently in scenario 2, this could lead to
the video quality being relatively poor for the entire conversation. Similarly could
the smaller number of transitions in scenario 3 lead to larger time intervals with fair
conditions, and that this scenario therefore was perceived as the "better" one with
regards to video.

The difference between the rating of the video is smaller between scenario 4 and
scenario 5, than for scenario 2 and scenario 3 in the feedback from the participants
of the pilot study. When experiments were conducted prior to the pilot study, we did
notice this difference when applying packet losses. The difference in video quality
between for instance 10% and 15% was clearer than for 20% and 25%. That is, the
video was already so blurry and suffering from freezes at 20%, that the increase to
25% packet loss was not that prominent. Similarly, it is not unlikely that the impact
the different MLBSs had on 20% packet loss, was less apparent than with the 10%
packet loss, especially with the relatively small difference of 1.5 in the MLBS.

Audio It seems that audio the quality was less affected than the video quality
for the pilot study in general. However, the scenarios with the most complaints
and lowest rating regarding audio quality were the scenarios with the higher MLBS,
which is the opposite of what the feedback on the video quality indicated. The audio
quality feedback corresponds better to the hypothesis we made prior to the pilot
study, that the quality would decrease as the MLBS increases.

These differences in audio quality due to the higher MLBS could be because of
more consecutive lost packets which lead to less efficient error concealment techniques.
It is not apparent why audio seemed more impacted than video by higher MLBS
as WebRTC uses FEC for both. Part of the reasons for the recorded variations
could be related to differences in error correction techniques utilized in WebRTC
between audio and video. Error correction techniques for video in WebRTC are
discussed in [26]. Video in WebRTC uses multi-frame FEC for mitigating the effects
of burst losses, while audio only uses single-frame FEC2. These differences could be
an explanation for why audio appears to be more impacted than video for a larger
MLBS.

Overall Quality Table 5.2 shows that the rating of the overall quality of the
conversation decreased as both the packet loss and MLBS increased. This makes

2WebRTC Forward Error Correction Requirements draft-ietf-rtcweb-fec-03(Work in progress):
https://tools.ietf.org/html/draft-ietf-rtcweb-fec-03
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sense considering the scenarios that had the lowest perceived video and audio quality,
compared to the recorded answers about the importance of video and audio quality
presented in Table 5.3. Nine participants said that audio quality was Very Important,
while only one participant said the same about video quality. As many as five
participants said that they were Neutral when asked about the importance of video
quality, while all considered the audio quality as either Important or Very Important.
Considering these answers, it makes sense that the overall rating of the scenarios
with the higher MLBS was lower than the scenarios with the lower MLBS, because
the higher MLBS had the most issues regarding audio quality.

Table 5.3: How participants rated importance of different aspects of online video
communications.

Very unimportant Unimportant Neutral Important Very important
Audio quality 0 0 0 3 9
Video quality 0 0 5 6 1
Audio-video

synchronization
0 0 0 5 7

5.3.3 Scenarios with High Deviation

Here we will take a closer look at some of the scenarios where the feedback deviated
the most compared to the rest of the data. Ratings regarding video and audio quality
had standard deviation values over 1 in both scenario 4 and scenario 5. It is not
surprising that the data gathered from the participants had some deviation, as QoE
is a subjective matter and the number of participants was limited. However, we
decided to look closer at the situations that had much higher standard deviation
values then the rest to see if it was possible to detect some particular differences.

Scenario 4 - Video Quality Out of the twelve persons participating in the pilot
study, all but two gave scenario 4 a video rating of either 1 or 2. Two participants
gave the video quality of scenario 4 a rating of 4. Changes in the video quality can
be seen in the screen recordings from those two conversations. In both cases, the
video was blurry more or less the entire duration of the network alterations. We saw
three incidents of video freezes each lasting for about 1-2 seconds when analyzing the
screen recordings. Further, the screen recordings from the two most deviating cases
from scenario 4 was compared to the screen recording from another conversation with
scenario 4 rated closest to the average. We found the same amount of video freezes
with approximately the same duration regardless of the rating from the participants.

The data recorded of the packet losses from these conversations did not give any
clear indications to why this scenario was rated so differently between the participants.
When looking at the questionnaire the participants answered before the pilot study,
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however, it shows that the participants giving the highest rating of the video quality
of scenario 4 had responded that they were neutral to the importance of video
quality in a video communication service. The participants who rated the video
quality of scenario 4 as high also regards video quality as less important for a video
communication service which might be one reason why the rating is deviating.

Scenario 5 - Video Quality We also noted some deviations with scenario 5. From
the screen recordings, it appears that both participants who gave the worst rating
had the same number of video freezes and that there were no apparent differences
in the video compared to those who gave a high rating. Both the participants who
rated the video quality of scenario 5 as good, also said in the pre-session questionnaire
that they did not regard video quality very important in a video communication
service. We also noticed that the video conversation for one group of the participants
lasted longer than intended, such that scenario 5 was ended with several minutes
of perfect conditions, which may have impacted the rating the participants gave for
this specific scenario.

Scenario 5 - Audio Quality The feedback from the participants on the audio
quality of scenario 5 had the highest standard deviation out of all the ratings. We
took a closer look at the data from the maximum and minimum rated conversations.
From the screen recordings, we found that a noticeable reduction in audio quality
was detected for both the parties. The audio sounds metallic, and some small freezes
in audio occur several times during the conversation in both situations. The freezes
do not, however, last longer than approximately 0.5 seconds. Both the participant
who rated the audio quality high and the participant who rated the audio quality as
low had previously answered that audio quality was of great importance when using
a video communication service.

5.3.4 Differences in Packet Loss Distribution

Differences in the distribution of packet losses occur with use of the SG model, as
it is probabilistic. We have seen that the total packet loss rate has been the same
in the different situations when the same scenarios were applied, but at the same
time, individual differences in how the packet loss was distributed between different
situations have been recorded. For instance Figure 5.4 and 5.5 show the packet loss
for two different situations, but with the same network alterations (scenario 3).

Both situations have a total packet loss rate of 10%, but we can see clear differences
in how the packet losses are distributed. It is not unexpected that such differences
occur since packets are dropped or transmitted based on certain probabilities, and
statistical variations are bound to happen. It is, however, important to be aware of
such differences, because the distribution of packet losses might impact the overall
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Figure 5.4: Situation 1 scenario 3 (10% loss rate and 3 MLBS)

Figure 5.5: Situation 2 scenario 3 (10% loss rate and 3 MLBS)

perceived quality. Given the differences observed regarding the distribution of packet
losses, it shows the importance of having multiple experiments to even out the
statistical differences.
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5.4 Results from Three-party Conversations

The experiments on the three-party conversations were conducted with all participants
in separate rooms. The network alterations were the same for all network links for
all the scenarios, also known as symmetric links. Each participant answered the
same feedback form as was used in the pilot study, to rate the most recent scenario
(see Appendix D). The data gathered from these forms describes the rating of audio-
and video quality, as well as a description of potential problems experienced. The
feedback from the three-party conversations comes only from a total of three users
and is, therefore, hard to come up with any useful statistics. The results, however,
are used as a pinpoint, as they can give a good indication on the perceived QoE.

Each scenario is discussed briefly in the following section. Note that scenario
1 was a testing scenario with no network alteration and is therefore not further
discussed.

5.4.1 Packet Losses and MLBS Alterations

The scenarios for packet loss and MLBS are the same for the three-party conversation
as for the pilot study, as described in chapter 5.2. We did not experience any distinct
difference whether there were two or three parties in the conversation, so the details
about the perceived user quality of scenarios 2 to 5 are, therefore, not described
again here.

5.4.2 Delay and Jitter Alterations

Scenario 6 - Delay = 500 ms and Jitter = 0 ms

The participants noted that they experienced an almost ideal scenario with an overall
high rating and little annoyance for users. No occurrences of video freezes or degraded
audio.

Scenario 7 - Delay = 500 ms and Jitter = 300 ms

This scenario was rated in the mid-range. Some annoying disturbances from time
to time, which were bad enough that the users said they would consider quitting
the session in a normal setting. The users experienced troubles with both audio and
video.

Scenario 8 - Delay = 500 ms and Jitter = 500 ms

This scenario was rated very poorly by the participants. Severe problems with
both audio and video resulted in difficulties in understanding the other participants
and maintaining a conversation with good flow. All participants noted that they
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considered quitting the session and that they perceived a reduction in their ability
to interact because of poor network conditions.

Scenario 9 - Delay = 1000 ms and Jitter = 0 ms

Increasing the delay to 1000 ms and removing the jitter resulted in a good rating of
both audio and video quality for all users. The users did not experience any reduction
in their ability to interact with the other users. One user noted that there was a
slight problem with the synchronization, but not enough to cause any annoyance.

Scenario 10 - Delay = 1000 ms and Jitter = 300 ms

Adding 300 ms of jitter once again led to problems with both the audio- and video
quality. Several video freezes and problems with audio resulted in users who said
they considered quitting the session.

Scenario 11 - Delay = 1000 ms and Jitter = 500 ms

This scenario was, as expected, rated the overall worst scenario concerning delay
and jitter with severe audio- and video problems. All users said they perceived a
reduction in the ability to interact with the others, and they all considered quitting
the session. One user also noted a problem with audio-video synchronization.

5.4.3 CPU-limit Alterations

What we experienced for the different CPU limit experiments was that one of the
computers had much higher CPU-usage than the other two (≈ 130% versus ≈ 90%)
while maintaining the connection to the two other clients. This difference made the
links from that user asymmetric compared to the other users’ links.

Scenario 12

Limiting the CPU to 80% led to difficulties for the user who initially used the
most CPU, who reported that he had problems with hearing the other users and
experienced a stuttering video. The two other users noted that the CPU limitation
was an annoying factor but not problematic to maintain a conversation.

Scenario 13

A CPU of 60% affected both audio and video of the connection. The user with
originally high CPU-usage could not participate in the conversation at all while the
two others said they experienced some problems in understanding the other parties.



5.5. DISCUSSION OF THREE-PARTY CONVERSATIONS RESULTS 73

5.5 Discussion of Three-party Conversations Results

5.5.1 Packet Losses and MLBS

Packet losses and MLBS have been discussed in great detail in Section 5.2. Analyzing
the same scenarios in a three-party setting served as a confirmation of what we found
with regards to the pilot study as we experienced the same amounts of video freezes
and quality reductions.

5.5.2 Effects of High Jitter Values

We noticed that the delay values we have used alone did not seem to affect the
QoE. We also observed that the same jitter values for different delays are rated very
similarly. We also noticed slight audio-video synchronization issues when increasing
the delay to 1000 ms. The synchronization issues were noticeable but did not cause
a great deal of annoyance.

Scenario 8 and 11 both had a jitter value of 500 milliseconds but had different
delay values (500 ms and 1000 ms, respectively). Our experience was that a jitter
value of 500 ms led to a terrible user experience, regardless of the delay being 500
ms or 1000 ms. We made some interesting observations when analyzing the graphs
from getstats.io with large differences between the audio and video graphs. Note that
neither the script of scenario 8 or scenario 11 introduces any packet losses into the
network. As the graphs are fairly similar for both scenarios, we picked scenario 11 to
discuss further. Figure 5.63 and figure 5.7 are graphs for audio, showing the packet
losses and jitter, respectively. The graphs from both figures have high fluctuations.
The packet loss average is around 7 %, with peaks varying from 0 % to 14 %. The
jitter average is around 400 ms with values ranging from 0 ms to 800 ms, and is
too low compared to what we specified in the scenario. A discussion of weird jitter
recordings in getstats.io follows later in this section.

An interesting part is the fact that packet losses are present. As we have not
introduced any packet losses, it has to come from heavy jitter bursts. The extra
delay introduced by jitter and potentially also the packet reordering results in packet
losses. It seems that the jitter bursts has the most effect on the audio quality, but
that the story is different for the video graphs.

3For all graphs from getstats.io: each color corresponds to a one-way connection from one client
to another. The number of connections are given by n(n − 1) for audio and video separately, where
n is the number of users.
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Figure 5.6: Packet loss ratio for audio from scenario 11 (from getstats.io).

Figure 5.7: Jitter measures on audio from scenario 11 (from getstats.io).

Figure 5.8 shows the packet losses for video. The packet losses hit peaks at
approximately 80 - 90 % to begin with, and then drops down and stabilizes around
30 %. Figure 5.9 illustrates the jitter of the video connection. The graphs peak
at relatively high values at the beginning and in the ending (top peak equal to 4
seconds), but is 0 for most of the conversation.

It is of great interest how jitter can introduce packet losses for both audio and
video. A peculiar observation is that both packet losses and jitter are present and
variate for the duration of the call with respect to the audio graphs. It seems, however,
that the jitter value concerning the video graphs seems to drop down to zero, while
the packet loss rate drops down to around 30 %.

We looked closer at the data gathered by both getstats.io and webrtc-internals to
see if we could find an explanation for this strange behavior. When discussing the
session-related statistics of WebRTC earlier, we saw that webrtc-internals collected
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Figure 5.8: Packet loss rate for video from scenario 11 (from getstats.io).

Figure 5.9: Jitter measures on video from scenario 11 (from getstats.io).

three different parameters for jitter. The only parameter collected regarding jitter for
the video was the googJitterBufferMs parameter, which gave information about the
jitter buffer size. Further investigation of the data gathered by getstats.io revealed
that only one type of value was collected for the jitter, denoted simply by jitter.
Comparing the data entries for the jitter value from getstats.io and googJitterBufferMs
from webrtc-internals showed that the data was the same. This suggests that the
jitter graph in getstats.io shows the size of the jitter buffer and not the actual jitter
values recorded at the receiving end. We have not been able to confirm if this is,
in fact, the case, as we did not have any documentation of getstats.io. Considering
that webrtc-internals only recorded the jitter buffer size for video and that both
webrtc-internals and getstats.io uses the same API, it does make sense that also
getstats.io records the jitter buffer size.

If getstats.io only recorded the jitter buffer size, it still does not explain why
there was a difference between audio and video, and why the graph dropped down to
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zero for jitter for video. In the source code [15], it says that the video jitter buffer is
flushed if the number of consecutive old packets exceeds 300 packets. This would
explain why there first is a peak in Figure 5.9 before it drops down to zero, but it
does not explain why it remains zero. The differences between audio and video could
simply be that the jitter buffers for audio and video behave differently and that fewer
audio packets are transmitted. Without any proper documentation, this question
remains unanswered.

The graphs of the latency from the same scenario, shown in Figure 5.10, show
that there definitely is jitter in the network, that is, variation in the latency between
samples. The latency is stable around 2000 ms most of the time, but with some
peaks.

Figure 5.10: Delay measures for video from scenario 11 (from getstats.io).

5.5.3 CPU Limitation

The three-party conversations on CPU limitations indicated that both audio and
video are negatively affected whenever the maximum CPU-usage is restricted. The
data from getstats.io and webrtc-internals did not, however, give any clear indication
to what impact the CPU limitation had. We believe this is because there are
no alterations in the network but instead, the limitation of the CPU impacts the
processing of audio and video packets on the clients. An increase in delay was
recorded from the session statistics, and we believe this increase in delay is due to an
increase in packet processing time. No packet loss or reduction in throughput was
recorded.

Some interesting results we did find, was that the two clients who used the
computers with the lowest CPU-usage had a much better user experience than
the third user with high CPU-usage. It seems, therefore, that lower hardware
requirements for one user do not necessarily affect other users who have sufficient
hardware capabilities. To further investigate this a simple two-party experiment
was conducted, where only one party had limitations on the CPU. No considerable
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reduction in the quality could be seen at the party with no alterations, other than a
slight increase in the delay.

For this reason, we conducted the two-party asynchronous experiment with CPU
alterations as well to investigate the findings further. We set up a conversation
between two clients and limited the CPU of only one of them. We experienced that
the user who had no CPU alterations did not perceive any reduction in either audio
or video quality while the user with the limited CPU experienced problems with both
audio and video. At the client who had CPU limitations, a clear reduction in both
video and audio quality could be perceived. As before, no packet loss or reduction in
throughput could be seen.

The two-party asynchronous experiment was a little sidetrack because it is the
only experiment which was purposely done with asymmetric conditions. We felt,
however, that it was of interest to investigate further the findings of CPU limitation.
The experiment is also of interest because it illustrates further capabilities of the
testbed. Asymmetric limitation of CPU-usage is an interesting future research topic.

5.6 Limitations of Results

The testing is conducted on a relatively small sample size, N, which leads to uncer-
tainty in the results. Despite the uncertainty, the results can be used as indications
on factors that affect the QoE, but one should not draw definite conclusions based
on the material.

Some of the trends we have found, such as why audio and video is impacted so
differently for different MLBSs are difficult to explain. More thorough investigations
regarding the connection data and research in literature suggest that the MLBS does
have an impact on the perceived quality [19], [32]. These findings reveal no absolute
truth about the MLBS, but rather that this should be more extensively researched
in future studies.

WebRTC is a relatively new technology. Implementation details regarding the
WebRTC API are well documented but we experienced that the tools for gather-
ing session statistics were deficient with regards to explanations and descriptions,
especially Chrome’s webrtc-internals. We needed to search through the source code
to find meaning in some of the graphs because we did not understand several pa-
rameters and how they were implemented. We also struggled with finding details
about algorithms and error correction techniques used in WebRTC which would be
helpful for our discussion. Some of the topics we found were work-in-progress by the
Internet Engineering Task Force (IETF) but not yet published.





Chapter6Concluding Remarks

This thesis has discussed QoE in the context of WebRTC. We have created a testing
environment and conducted experiments to see how the user experience is affected
as different network alterations are applied.

We conducted a pilot study with 12 users, which consisted of two-party conversa-
tions and focused on the combination of packet loss rates and the Mean Loss Burst
Size (MLBS). Feedback from the participants indicates that a higher MLBS tends
to affect the overall perceived QoE negatively, especially with regards to the audio
quality. The video and audio appeared to be impacted differently by an increase in
the MLBS. We were unable to find any definite reasons for this difference with the
collected session statistics data.

Further experiments on three-party conversation tested both delay and jitter, as
well as limiting the CPU-usage on the clients. We found that delay alone has to be
high (> 1 second) to cause any annoyance for the users. Jitter, however, quickly led
to disturbances in both audio and video and led to a clear reduction in the QoE.
Further research also revealed that high jitter values (> 300 milliseconds) introduce
packet losses, which can help explain why both audio and video is negatively affected.

The experiments regarding CPU-restrictions showed that both the audio and
video quality is impacted as the maximum allowed CPU-usage is reduced. The
feedback from the users did, however, indicate that only the user who had limited
resources was affected, while the other users were seemingly unaffected.

The experiments described in this report demonstrate only some of the capa-
bilities of the testbed, and it can be used for more extensive research both with
respect to the number of simultaneous participants as well as a broader range of
parameter combinations. We conclude that the testbed was working as specified as
an experimental test platform.
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6.1 Limitations

6.1.1 Limitation in Setup

A lot of different factors will have an effect on the users’ perceived QoE, some which
are out of the developers control. It is, therefore, desirable to properly manage the
factors that can be controlled. One important factor is the users’ familiarity with
the equipment used during the experiments, as it might feel more comfortable to use
equipment you already know.

For this reason, it would be desirable if the users could use their computer for
the experiments. This is possible, but the configuration necessary on the clients will
be different depending on the OS used, and we have only provided documentation
for how this is done on Linux Ubuntu. Our setup also requires that all clients are
connected to the testbed controller via Ethernet, so currently, all devices needs to
have support for an Ethernet connection.

6.1.2 Limitation of Data from Pilot Study

Conducting experiments and collecting data can be useful to test out a system
and obtain useful insights. But certainty in statistics increases as the number of
participants grow large. Our pilot study consisted of a total of 12 users, so the results
are interpreted more as indications, rather than definite conclusions on how QoE is
impacted by the different scenarios we have applied to the network. The aim of this
project was not to come up with definite conclusions on the users’ QoE, but rather
to prove that the testbed can be used to generate a wide number of experiments
and scenarios. Conducting more extensive user studies in the future could help
determining with a greater certainty on how the users’ QoE changes as the network
is altered.

6.2 Future Work

The testbed made in this project is capable of applying a vast range of different
scenarios to a network, well beyond the experiments conducted in this thesis. There-
fore, the suggested future work based on our thesis involves utilizing the testbed to
conduct further experiments.

6.2.1 Asynchronous Links

As a part of greatly limiting the number of parameter combinations, we used syn-
chronous links for all experiments. It would be of interest to conduct experiments
using asynchronous links to see how different link conditions in a conversation impacts
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the overall QoE for all users as asynchronous network links are a better approximation
to the real world.

More specifically, a real-life approximation could be illustrated by applying
different delay values between different participants in a conversation, simulating
that they are located at different geographical locations.

6.2.2 Further MLBS Testing

We saw in Chapter 5 how MLBS to some extent impacted the overall perceived QoE.
It would, however, be of interest to conduct similar experiments where the differences
in MLBSs are more significant. We believe that the impact of a larger MLBS will
have a clearer effect on the perceived QoE.
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AppendixAConfiguration Scripts

A.1 Controller configuration

A.1.1 Configure forwarding table

The following listing shows how to enable ip forwarding between the two interfaces
eth0 and eth1 on the testbed controller. This is necessary so the clients connected
to the controller can send and receive data from outside the LAN, created by the
testbed.

$ echo 1 > /proc/sys/net/ipv4/ip_forward
$ iptables −t nat −A POSTROUTING −o eth0 −j MASQUERADE
$ iptables −A FORWARD −i eth0 −o eth1 −m state −−state \
RELATED,ESTABLISHED −j ACCEPT

$ iptables −A FORWARD −i eth1 −o eth0 −j ACCEPT

A.1.2 Redirecting traffic

The following listing shows how to disable ICMP redirect messages on the controller.
The testbed controller will not send redirect messages to the clients when it discovers
that there exists a shorter path between the clients if executing these commands.

$ echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects
$ echo 0 > /proc/sys/net/ipv4/conf/all/send_redirects
$ echo 0 > /proc/sys/net/ipv4/conf/all/secure_redirects
$ echo 0 > /proc/sys/net/ipv4/conf/default/accept_redirects
$ echo 0 > /proc/sys/net/ipv4/conf/default/send_redirects
$ echo 0 > /proc/sys/net/ipv4/conf/default/secure_redirects
$ echo 0 > /proc/sys/net/ipv4/conf/eth1/accept_redirects
$ echo 0 > /proc/sys/net/ipv4/conf/eth1/send_redirects
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$ echo 0 > /proc/sys/net/ipv4/conf/eth1/secure_redirects
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A.2 Static IP-address configuration

Both the clients and the controller needs to be configured with static IP-addresses.
The following listing shows the commands for how this was done.

In /etc/network/interfaces add the following:

$ auto eth1
$ iface eth1 inet static
$ address 10.0.0.2
$ netmask 255.255.255.0
$ dns−nameserver 8.8.8.8 8.8.4.4

The configuration was added to all the entities in the testbed, and the interface
name was specified to the name of the interface on the entity. The address field
must be specified for each entity and all the entities must be on the same subnet.
We chose that the testbed controller used the IP-address 10.0.0.1, and the clients
would use IP-addresses 10.0.0.2 to 10.0.0.x, depending on the number of clients. The
Domain Name System (DNS)-nameserver is specified so the clients can make DNS
lookups when they are configured with static IP-addresses. The DNS name server is
configured to use Googles’ DNS server.





AppendixBSimple Gilbert MLBS Data

The data in table B.1 is part of the results from the experiments in chapter 4, and
shows how different r-values in the SG loss model corresponds to different MLBSs.
The values in the table can be used to apply specific MLBSs to packet loss rate in
the scenarios by choosing the appropriate transition probability, p. For instance, a
scenario with 30% packet loss and MLBS = 2, would require a r-value of 50, and the
p-value would be computed as follows.

p = πB ∗ r
1− πB

= 0.30 ∗ 0.50
1− 0.30 = 0.214 = 21.4%

Table B.1: r-values with corresponding Mean loss burst size (MLBS)
r 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

MLBS 4.00 3.33 2.85 2.50 2.22 2.00 1.82 1.66 1.54 1.43 1.33 1.25 1.17 1.11 1.05 1.00
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AppendixCConversation Task for the Pilot
Study

The four first survival tasks, both textual description and object lists, are taken
directly from [30]. We made the fifth survival task concerning the jungle. For each
survival task, each participant is presented a brief description of the context of the
situation they are in, as well as a list of objects. The textual description is the same,
while the list of objects is different for the two participants. For brevity, we have cut
out the textual description for participant 2 in all the following scenarios.

C.1 Survival task 1: Survival task in winter

You have just crash-landed in the North of Canada. The small plane in which you
were traveling has been completely destroyed except for the frame. The pilot and
co-pilot have been killed, but no one else is seriously injured.

You are in a wilderness area, snow-covered and made up of thick woods broken
by many lakes and rivers. The pilot announced shortly before the crash that you
were eighty miles northwest of a small town that is the nearest known habitation.
It is mid-January. The last weather report indicated that the temperature would
reach minus twenty-five degrees in the daytime and minus forty at night. You are
dressed in winter clothing appropriate for city wear – suits, pantsuits, street shoes
and overcoats. While escaping from the plane, your group salvaged the items listed
below.

ix
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Ball of steel wool

Extra shirt and trousers for each survivor

A little axe

A strong sheet ( 6 m x 6 m)

Newspaper (one per person)

Compass

Table C.1: Items for surviving in the winter for participant 1

Loaded .45-calibre pistol

Sectional air map made of plastic

Margarine in a big iron box

Quart of 85-proof whiskey

Cigarette lighter without the fluid

Family-sized chocolate bar (one per person)

Table C.2: Items for surviving in the winter for participant 2
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C.2 Survival task 2: Survival task at sea

You are drifting in a private yacht in the South Pacific. A fire with unknown origin
has destroyed much of the yacht, notably navigational and radio equipment. After
having controlled the fire, you realize that the boat is sinking little by little. Your
best estimate is that you are many hundreds of miles from the nearest landfall. You
and your friends have managed to save 15 items, undamaged and intact, after the fire.
In addition, you have salvaged a four man rubber life craft and a box of matches.

A sextant

A small transistor radio

A shaving mirror

20 square feet of opaque plastic sheeting

A quantity of mosquito netting

A map of the Pacific Ocean

2 boxes of chocolate bars

Table C.3: Items for surviving at sea for participant 1
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A 20 litre container of water

One bottle of 160 per cent proof rum

A case of army rations

15 feet of nylon rope

A can of shark repellent

A floating seat cushion

A fishing kit

Table C.4: Items for surviving at sea for participant 2
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C.3 Survival task 3: Survival task on the moon

You are a member of a space crew originally scheduled to rendezvous with a mother
ship on the lighted surface of the moon. However, due to mechanical difficulties,
your ship was forced to land at a spot some 200 miles from the rendezvous point.
In addition to your space suit, your crew has managed to save items left intact and
undamaged after landing. Your task is to take the items which allow you to reach
the mother ship.

Food concentrate

Stellar map

50 feet of nylon rope

One case of dehydrated milk

Portable heating unit

First aid kit

A torch

Table C.5: Items for surviving on the moon for participant 1
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Magnetic compass

Two signal flares

Box of matches

Parachute silk

Solar-powered FM receiver-transmitter

A 100 lb. tanks of oxygen

A .45-calibre pistol

Table C.6: Items for surviving on the moon for participant 2
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C.4 Survival task 4: Survival task in the desert

You have just crash-landed in the Sonora desert in the south-west of United States.
The pilot and co-pilot have been killed in the crash. However, the pilot announced
that before impact you were approximately 110 kms off the course of the flight plan.
He also indicated that that you were 113 km southwest of a mining camp which is
the nearest known habitation. The surrounding desert is made up of sand dunes
and seems dry except for some cactus. The last weather report indicated that the
temperature at the ground level will be about 45°C. All of you are dressed in light
clothes – cotton shirts, trousers, socks and soft shoes. Before the crash, your group
was able to save some items.

Torch with 4 battery-cells

Bottle of 1000 salt tablets

Folding knife

1 litre of water per person

Air map of the area

First-aid kit

2 litres of 180 proof liquor

Table C.7: Items for surviving in the desert for participant 1
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Plastic raincoat (large size)

A cosmetic mirror

Magnetic compass

Sunglasses (for everyone)

A book entitled ’Desert animals that can be eaten’

.45-calibre pistol

Overcoat (for everyone)

Table C.8: Items for surviving in the desert for participant 2
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C.5 Survival task 5: Survival task in the jungle

You are on a guided trip in the Taman Negara jungle, on the Malaysian peninsula.
You and your friend fell into a river and was taken down stream for several hours,
and are now separated from the rest of the group. You have no idea how far away
from civilization you are, and it will soon be sunset. You need to prepare yourself to
spend the night in the jungle. Most of your equipment was lost in the river, but you
have the following left:

Machete

Toilet paper

Snake bite kit

Headlamp

Plastic raincoat (large size)

Satellite phone

Fire steel

Table C.9: Items for surviving in the jungle for participant 1
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Tent

Tree climbing gear

Additional pair of socks

Shotgun (loaded)

Magnetic compass

Life jacket

Book: Bear Grylls - Mission survival

Table C.10: Items for surviving in the jungle for participant 2
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AppendixDQuestionnaires

D.1 Pre-session questionaire

 
 
 

Quality of Experience of 
WebRTC-based application appear.in  
This form gathers information on your familiarity with online video conversations as well as 

some general questions about yourself. The information is used in the report for describing the 

reach of our test participants 
 
 

First, some general questions about how you use online 
video communication tools and services 

 
1. Which services and applications for online video conversations have you used 

during the last month (approximately)? 

Check all that apply. 
 

Skype 
 

Google Hangouts 
 

Appear.in  
Facetime 

 
Firefox Hello 

 
Tiny chat 

 
Viber  
Professional or semi-professional video conferencing service 

 
Other, please specify: …………………………………. 

 
 

2. How often have you participated in online video conversations, using any of the 
above (or other) applications, during the last month (approximately)? 

Mark only one oval. 
 

Never  
Once 

 
2 to 3 times  
Around once a week 

 
Several times a week  
Daily 
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3. To which extent do you consider the following aspects as (un)important when you 

are using online video communication service or application? 

Mark only one oval per row. 
 

Very 
Unimportant  Neutral  Important 

Very 
 

unimportant important 
  

Good audio quality  
Good video quality  
Good audio-video 

synchronization 

 

And now some questions specifically related to your use of 
appear.in 

 
4. When did you use appear.in for the first time? 

 

Mark only one oval. 
 

I have never used it before 
 

Less than one month ago 
 

Between 1-3 months ago 
 

Between 3-6 months ago 
 

Between 6-12 months ago 
 

More than a year ago 
 
 

5. How often did you use appear.in during the last month (approximately)? 
 

Mark only one oval. 
 

Never 
 

Once 
 

2 to 3 times 
 

Around once a week 
 

Several times a week 
 

Daily 
 
 

6. (If you have used appear.in before) To which extent are you (dis)satisfied with 
appear.in when it comes to the following aspects? 

Mark only one oval per row. 
 

Very 
Dissatisfied  Neutral  Satisfied 

Very 
 

dissatisfied satisfied 
  

Good audio quality  
Good video quality  
Good audio - video 

synchronisation 
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Finally, a few questions about yourself 

 
 

7. What is your birthyear? (please use 4 digits) 
 

 

 

 

8. What is your gender 
 

Mark only one oval. 
 

Male 
 

Female 
 
 

9. What is your profession / main occupation? 
 

Mark only one oval. 
 

Student 
 

Employee / civil servant 
 

Blue collar worker 
 

Executive 
 

Selv-employed / free profession 
 

Pensioner / retired 
 

Unemployed / job seeker 
 

Other, please specify: …………………………………. 
 
 

10. Are you studying or working in the field of audio / video quality, multimedia processing, or a 
related field? 

Mark only one oval. 
 

Yes 
 

No 
 
 

11. What is your email address 

 

 

 

 

12. Roomname 
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D.2 Session feedback from appear.in





AppendixEPilot Study - NetEm Scripts

The following includes all the NetEm scripts used in the testbed for the pilot study.
The only difference between the scripts is the part where the packet loss rate is
applied by using the gemodel in NetEm. Note that the bandwidth is only specified
so that TC and NetEm does not impose any restrictions on the bandwidth. The
bandwidth is, therefore, set to an arbitrary high value and the only restriction on
the bandwidth is the bandwidth initially available in the network.

E.1 Script 1 - (10% PL and 1.5 MLBS)

xxv
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E.2 Script 2 - (10% PL and 3 MLBS)

E.3 Script 3 - (20% PL and 1.5 MLBS)



E.4. SCRIPT 4 - (20% PL AND 3 MLBS) xxvii

E.4 Script 4 - (20% PL and 3 MLBS)
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