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ABSTRACT

Corrosion resistant alloys (CRAs) used in subsea pressure-retaining components must be
compatible with production fluids and resistant to pitting and crevice corrosion in
seawater. Whereas materials selection in production environments is governed by well-
established international standards such as ISO 15156, much debate still exists as of
how to determine the seawater localized corrosion resistance of higher grade CRAs such
as duplex super duplex stainless steels (DSS and SDSS, respectively).

While most industry specifications rely on the ASTM G48 standard to determine
localized corrosion resistance, for duplex and super-duplex stainless steels there is no
consensus on surface finish prior testing (e.g. polishing or pickling) and test temperature
(e.g. 50 °Cin NORSOK 630 versus 40 °C in ASTM A923). Moreover, it is unclear whether
existing procedures are sensitive enough to determine the onset of deleterious phases
such as o-phase and chromium nitrides.

The objective of this investigation was to quantify the seawater pitting corrosion
resistance of a type 25Cr SDSS (UNS S32750) and its correlation with microstructure and
surface finish before testing. Cyclic potentiodynamic polarization (CPP) testing was used
to determine the effect o-phase on the corrosion response of the system. CPP results
were then compared against industry standard practices based on the ASTM G48
Method A test.

In addition, CPP tests were conducted at various temperatures, ranging from 25 to 90°C,
to determine the effect of deleterious phases on critical pitting temperature (CPT) and
overall localized corrosion resistance.

The results from this project indicate that the Critical Pitting temperature for standard
solution annealed Super Duplex Stainless Steel is 60-70°C. It is also shown that the
corrosion resistance is reduced for material that contains sigma phase showing a Critical
Pitting Temperature of 40-50°C. The surface treatments seem to have less effect on the
values, but pickled surfaces gave a more repeatable result.
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1 INTRODUCTION AND EXPERIENCE FROM AVAILABLE LITERATURE

1.1 BACKGROUND

Corrosion resistant alloys (CRAs) used in subsea pressure-retaining components must be
compatible with production fluids and resistant to pitting and crevice corrosion in
seawater. Whereas materials selection in production environments is governed by well-
established international standards such as ISO 15156, much debate still exists as of
how to determine the seawater localized corrosion resistance of higher grade of
Corrosion Resistant Alloys (CRAs) such as duplex super duplex stainless steels (DSS and
SDSS, respectively).

While most industry specifications rely on the ASTM G48 standard to determine
localized corrosion resistance, for duplex and super-duplex stainless steels there is no
consensus on surface finish prior testing (e.g. polishing or pickling) and test temperature
(e.g. 50 °Cin NORSOK 630 versus 40 °Cin ASTM A923). Moreover, it is unclear whether
existing procedures are sensitive enough to determine the onset of deleterious phases
such as o-phase and chromium nitrides.

The objective of this investigation was to quantify the seawater pitting corrosion
resistance of a type 25Cr SDSS (UNS S32750) and its correlation with: i) alloy’s
microstructure and ii) surface finish before testing. Cyclic potentiodynamic polarization
(CPP) testing was used to determine the effect of the presence of o-phase on the
corrosion response of the system. CPP results were then compared against industry
standard practices based on the ASTM G61 Method A test. In addition, CPP tests were
conducted at various temperatures, ranging from 25 to 90°C, to determine the effect of
deleterious phases on critical pitting temperature (CPT) and overall localized corrosion
resistance.



1.2 DUPLEX STAINLESS STEELS
An overview of Duplex stainless steels (DSS) are given by J.O. Nilsson [1]

Duplex Stainless Steels may be defined as a family of steels having a two phase ferritic-
austenitic microstructure, the components of which are both stainless, i.e. contain more
than 13%Cr. In practice, the term DSS is reserved for alloys in which ferrite and
austenite are present in relatively large separate volumes and in approximately equal
volume fractions, as opposed to alloys in which one constituent appears in the form of
small precipitates. When the DSS were compared with austenitic steels several
advantages became apparent, namely, higher mechanical strength, superior resistance
to corrosion, and a lower price because of the low nickel content. It was later realised
that advantages could be obtained from the use of DSS in environments where, owing
to stress corrosion cracking, standard austenitic steels were inappropriate.

The interest in DSS in recent years derives from the high resistance of high alloy DSS to
chloride induced corrosion, which is a problem of major concern in many marine and
petrochemical applications. Perhaps even more important are the great improvements
in weldability achieved by reducing the carbon content and increasing the nitrogen
content. An attractive combination of corrosion resistance and mechanical properties in
the temperature range - 50 to 250°C is offered by DSS. For example, the resistance to
stress corrosion cracking and pitting corrosion is excellent and in many cases superior to
that of standard austenitic steels of comparable cost. Owing to the fine grained
structure yield strength values typically twice those of austenitic grades are obtained in
the annealed material state without any substantial loss in toughness. It is important to
stress, however, that DSS are less suitable than austenitic steels above 250°C and below
- 50°C because of the brittle behaviour of ferrite at these temperatures.

A factor of economic importance is the low content of expensive nickel, usually 4-7%
compared with 10% or more in austenitic grades, as a result of which the life cycle cost
of the DSS is the lowest in many applications.

There has been an increased use of nitrogen as an alloying element, stabilising austenite
and therefore replacing nickel in this respect. As a result of this, austenite reformation
during welding has become more rapid and in addition improved corrosion resistance,
in particular resistance to pitting corrosion, have been obtained.

The use of stainless steels and other corrosion resistant materials in corrosive
environment has increased drastically over the last 30 years. The development of high
strength materials with good weldability and corrosion resistance contributes to weight



reduction, reduced maintenance activities and they have a nice and smooth surface
finish that is easy to keep clean.

Super duplex is by definition a duplex stainless steel with a Pitting Resistance Equivalent
Number (PREN) = 40.

PREN = %Cr + 3.3%Mo + 16%N

Some include the content of Tungsten also in the formula giving the following
expression:

PREN = %Cr + 3.3 (%Mo + 0.5%W) + 16%N

Most super duplex grades have 25% chromium or more. The most common grades are
$32760, S32750 and S32550. [2] The composition and main characters are listed in Table
1

Table 1 Composition of Super Duplex

UNS Material Fe Cr Ni Mo N Other
$32550 Bal 25 5,5 3,5

$32750+« SAF 2507 Bal 25 7 3,5 0,27 Co(1,0)
$32760 Bal 25 7 3,5

* Material used in this thesis

According to NORSOK M-001 25Cr Duplex stainless steel cannot be used in seawater
above 20°C however this requirement is based on chlorinated seawater since most
seawater for process use is chlorinated. [2].



1.3 PITTING CORROSION AND POLARIZATION CURVES

Pitting corrosion occur on passive metals and alloys in corrosive environment containing
chlorine, bromine, iodine or perchlorate ions when the potential exceed a critical value
called the Pitting Potential. This limit is depending on many different factors e.g. pH,
temperature, oxide layer, electrolyte composition, flow rate, surface finish and
microstructure. [3]

The Open Circuit Potential (OCP) will be different for different environments. This is the
potential that is natural for an alloy in an electrolyte without applying any potential.

Traditionally the PREN has been used to compare different alloys and their resistance to
pitting corrosion. However this is not sufficient to fully describe or evaluate the pitting
resistance of a material as there are many other factors than chemical composition that
affects the pitting resistance of a material. An alternative way of describing the
resistance to pitting corrosion is to evaluate the difference between Pitting Potential
(Ep)), Re-passivation Potential (Egp) and Corrosion potential (Ecogg). The alloy can be
considered seawater resistant if Egp-Ecorg > 200mV [4]. These parameters can be
determined by running a cyclic polarization scan. A typical plot from such a scan is
shown in the schematic in Figure 1.
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Figure 1 Typical cyclic polarization scan [5]



Er is defined as the least positive potential at which pits can form. Eggpis the potential
where the material comes back to a passive state after pits have been formed.

There are several ways of defining the critical potentials when running cyclic
polarization scans. For this project the Pitting potential (Ep) is defined as the inflection
point as shown in Figure 2 below. It is the point where a sharp increase in current
density occurs. Notice that in this plot, the current density is plotted on the vertical axis
and the potential on the horizontal axis.
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Figure 2 Definition of pitting potential [5]



The Repassivation potential (Egp) is defined as the potential where the current density is
below 2puA/cm? as shown in Figure 3
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Figure 3 Definition of Repassivation Potential [5]



For conditions where the steel show transpassive behaviour and therefore has no clear
pitting potential the transpassive potentials are measured at the inflection point as
shown in Figure 4. In these cases the transpassive potential is reported instead of the
pitting potential.
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Figure 4 Definition of Transpassive Potential [5]



The Passive Current Densities (ip,ss) are defines as the average or midpoint of the current

density in the passive state. This is shown in Figure 5
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Figure 5 Definition of Passive Current Density



1.4 CRITICAL PITTING AND CREVICE TEMPERATURE

The Critical Pitting Temperature (CPT) and the Critical Crevice Temperature (CCT) have
been investigated by many researchers over the years, but for such complex forms of
corrosion with many parameters, the values seem to vary. CPT is the temperature
where the pitting is likely to initiate and it can be found in many different ways. The
most common one is by using a standard method like the one described in ASTM
standard G48 E [6] or similar. It can also be found by evaluating an E; vs Temperature
plot as done in this project.

CCT is dependent on the repassivation properties of a material. Egp is @ measure of the
susceptibility of a material to localized corrosion. Egp is related to the repassivation of
growing pits. In the "deep pit condition", a growing pit can be visualized as a special case
of crevice corrosion. Early work correlated crevice corrosion resistance with Egp of lower
grade stainless steels.

By measuring Repassivation potential (Egp) vs Test temperature (T) we can infer a critical
temperature, which could be associated with the initiation of crevice corrosion. [7]

Some of the CPT and CCT values given by the suppliers of steel are presented in Table 2.
The test methods are not given for all values, but it gives an indication of how much the
results are varying. The values given by the suppliers and the critical temperatures given
in the literature show that there are no common temperature limit for Super Duplex SS
in seawater defined. See table 2-4.

Table 2 Critical Pitting and Crevice Corrosion Temperatures grade UNS $32750

SUPPLIER CPT [°C] CCT [°C] REFERENCES
SANDVIK 80 (ASTM G48) 50 Appendix C
OUTOKUMPU 84+2 (ASTM G150) 35 8]

65 (ASTM G48)
LANGLEY ALLOYS >50 (ASTM G48) - [9]
SANDMEYER STEEL >95 (1M NacCl) 42 (10% FeCls) [10]

From available literature some other values are found.

A. B. Hgydahl [11] did research on crevice corrosion at different potentials. The different
potentials represent different environments and chloride contents. The results are listed
in Table 3. The experiments were done on a slightly different type of Super Duplex SS
namely UNS 32760 that contains some extra alloying elements like Copper (Cu) and
Tungsten (W) compared to UNS S32507.



Table 3 Measured CCT and weight loss of UNS S32760 at different potentials [11]

POTENTIAL CCT
V*] rel REMARK
+0,250 >92 No corrosion occurred
+0,300 89+1 Potential area for OCP with normal biofilm
+0,350 7311 Potential area for OCP with normal biofilm
+0,400 49+1 Potential area for OCP with normal biofilm
+0,500 61+1
+0,550 63+1
+0,600 51+1 Corresponds to OCP in presence of chlorine

*Ag/AgCl Reference electrode

Other critical temperatures collected from available literature are listed in Table 4.

Table 4 CPT and CCT from previous research

STEEL GRADE CPT CCT TEST METHOD REFERENCE

UNS S32507 78 38 ASTM G48 [12]

UNS S32507 50 CrevCorr [13]
30(welded) Artificial seawater

UNS S32507 82 68 Potensiostatic test 700mV Ag/AgCl [14]

UNS $32750 87,6 - Potensiodynamic test 1M NaCl [15]

UNS 32507 8015 - ASTM G48 [1]

10



1.5 EFFECT OF MICROSTRUCTURE

Super Duplex Stainless Steel has a microstructure consisting of the two phases Austenite
and Ferrite. If the heat treatment is not performed correctly some unwanted secondary
phases can be formed. See Figure 7 for the Temperature-Time-Transformation (TTT)
diagram for Super Duplex SS.

Formation of precipitates changes the properties of the material. Higher Cr and Mo
content promotes the precipitation of phases such as o (Sigma), x (Chi) and o’ (alpha
prime) when exposed to temperatures of 300°C and 900°C. Above all the o -phase is
considered to be the most detrimental phase in Super Duplex Stainless Steels. It affects
the mechanical properties by making the material more brittle and weaker. The phase
depletes Cr and Mo from the surrounding phases leading to a reduction in corrosion
resistance. It has been shown from potential and current transients that the alloy
became susceptible to pitting when o phase was present. [16] This effect is investigated
further in this master thesis.

Bastos et al. [17] performed pitting corrosion tests of samples with and without phase

precipitates in a Sodium Chloride (NaCl) solution at 25°C, 60°C and 90°C. The results of
their anodic polarization are shown in Figure 6. Sample A was not heat treated, Sample
B had been heat treated for 15 minutes at 800°C and Sample C for 2 hours at 800°C.

The figures show that the corrosion current density is strongly dependent on the
microstructure and on temperature. The samples with secondary phase precipitates
reach the current limit criterion of 3mA/cm? at very low potentials even at low
temperatures. These samples also show a less smooth curve indicating less homogenous
electrode reactions than the untreated sample. [17]

11
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Figure 6 Polarization curves at 25 (top) and 90° C (bottom) after immersion for 30 min.

The TTT diagram for Super Duplex Stainless Steel (Grade SAF 2507) is shown in Figure 7.
[1] The TTT diagram shows at what temperatures and exposure time the different
phases and precipitates are formed. The heat treatment used for this project is marked
with red arrows; 875°C for 7 minutes, then quenched in water to room temperature.
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Figure 7 Temperature - Time - Transition Diagram for Super Duplex Stainless Steel [1]

1.6 THE EFFECT OF ALLOYING ELEMENTS

The different alloying elements are added to the steel to give the steel its mechanical
and chemical properties. The amount of the different elements in addition to the
fabrication process will determine the materials strength, ductility, microstructure,
temperature resistance, weldability and corrosion properties. For Super Duplex SS the
following alloying elements are the most relevant.

Chromium (Cr)

Chromium (Cr) is one of the main alloying elements in stainless steels. It is a ferrite
former and at concentrations above 12% it can make a stable passive film on the metal
surface. Increasing the Cr content up to 30% gives a better corrosion resistance,
however at higher concentrations the risk of getting unwanted precipitates and change
in mechanical, forming and welding properties. Adding other alloying elements to
improve the chromium oxide film performance is therefore recommended instead of
adding more chromium. [18]

13



Nickel (Ni)

Nickel (Ni) improves the chromium oxide and has good repassivation properties. It
stabilizes Austenite and the amount of Ni required to retain the austenite structure is
decreasing with increased Carbon content in the steel. Nickel improves the ductility at
low temperatures and increases the resistance against acids. [18]

Molybdenum (Mo)

Molybdenum (Mo) is added to the steel to improve the resistance against localized
corrosion such as pitting or crevice corrosion. Mo increases the strength of the passive
layer by creating a layer of MoO,> at the surface. The negative CI ions will be repelled
and will not have access to the surface to degrade the oxide layer. Mo is also a ferrite
former. [18]

Nitrogen (N)

Nitrogen (N) is an austenite stabilizer and it increases the concentration of Mo at the
surface. This is due to ammonium ions that lower the pH at the surface causing
increased formation of MoO,”. Nitrogen improves the weldability of duplex stainless
steels and can have a positive effect on avoiding hydrogen embrittlement. Ni increases
the resistance against localized corrosion at concentrations up to 0,25%. At higher
concentrations the material becomes more brittle. [18]

Tungsten (W)

Addition of Tungsten (W) to Super Duplex SS show increased resistance to pitting and
stress corrosion with the ratio of W to Mo content. The rate of embrittlement and the
nucleation and growth of the o phase due to aging is significantly delayed with
increased W content. [19]

1.7 SURFACE FINISH

The exact condition of a surface can have a large influence on the pitting initiation and
growth of a material. In general, samples prepared with a rough surface finish are more
susceptible to pitting and has a lower pitting potential. For stainless steels heat
treatment, polishing and abrasive blasting have been reported to decrease the pitting
resistance, whereas pickling with Nitric and Hydrofluoric Acid is beneficial. [20] A
smooth and clean surface will have less initiation points where pitting can occur.

The more homogenous the surface is, both chemically and physically, the higher the
pitting potential, the lower the pit number and the better resistance to pitting corrosion.
The effect of roughness on the pitting potential has been well documented. Surface
treatments like polishing or chemical treatment in HNO3 with additions of H,SO,4, HF or

14



HCL will increase the pitting potential due to a smooth metal surface, removal of sulfide
inclusions and enrichment of chromium in the stainless steel surface. [21]

There is not a lot available literature describing the difference of pickled and non-pickled
surfaces. It might be because the difference is not very clear and there are other
parameters like surface roughness that will have a larger influence on the corrosion
properties.

15
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2 EXPERIMENTS

To investigate the corrosion properties of Super Duplex SS experiments were performed
according to the following procedure. The objective was to quantify the seawater pitting
corrosion resistance of Super Duplex SS and its correlation with microstructure and
surface finish.

The experiments were carried out at NTNUs corrosion lab at IPM in January to March
2014. The material that was tested was a sample of UNS $32570. See Appendix A for
chemical composition and mechanical properties.

2.1 TEST PROCEDURE

1.

The sample material was provided by GE Oil & Gas. Composition and mechanical
properties are given in the Material Data Sheets in Appendix B.

The samples were machined at the workshop at NTNU, department of
production and quality engineering (IPK) according to Figure 10

A total of 64 samples were tested according to the conditions presented in Table
2 below.

32 of the samples were heat treated prior to testing to simulate poor heat
treatment causing o phase precipitation. These samples were put into the
furnace at 875°C and kept there for 7 minutes before they were quenched in
water. See Figure 7 for TTT diagram. The furnace used was a Nabertherm N
17/HR at the heat treatment laboratory at NTNU.

The micro structure was revealed by polishing and etching as described in ASTM
A-923 and the precipitates were counted according to ASTM E562. The standards
are described in section 2.2.

The surfaces of all samples were polished with SiC paper grade 600 and rinsed in
ethanol in an ultrasonic bath for 5 minutes.

32 of the samples were pickled according to NORSOK M-630. [22] The samples
were lowered into a solution of 20% Nitric Acid (HNO3) and 5% Hydrofluoric Acid
(HF) at a temperature of 60°C and kept there for 5 minutes. Special safety
procedures for handling HF were followed.

The surface roughness was measured on some of the samples. There was no
clear difference in surface roughness for the pickled or non-pickled samples. The
values were in the range of R, ~2,5um

After the polishing and/or pickling the samples were rinsed in distilled water and
left in a desiccator for minimum 24h prior to testing.

17



10.The samples were connected to the potentiostat by platinum thread. The
potentiostat used was a Gamry Interface 1000 connected to a computer with
Gamry software. Two samples were run in parallel in different

11.3,5 wt. % NaCl solution was used as electrolyte and heated to the given test
temperature by a hot plate connected to a thermostat.

12. pH of the electrolyte was measured before and after the test by a calibrated pH
meter.

13.The electrolyte was connected to a calibrated SCE reference cell using a tube
filled with electrolyte and a cotton string to provide constant connection (salt
bridge). The reference cell was filled with saturated Potassium Chloride (KCl)
solution.

14.The sample was lowered into the electrolyte when the electrolyte was at test
temperature.

15.The OCP was measured for one hour before the polarization scan. During this
hour Nitrogen gas was used for purging to remove the oxygen in the solution. The
purging continued during the whole test.

16.The sample was polarized at a rate of 600mV/h from OCP until the current
density reached the limit of 5mA/cm? was reached. Then the potential was
brought back down at the same rate. Most of the samples were brought back to
OCP, but some scans were stopped a bit earlier when assured that the
repassivation potential was reached.

17.The samples were rinsed in water and pictures were taken and stored. The
pictures are found in Appendix C

18.Some of the samples were examined in a microscope to evaluate the corrosion
and surface after testing. The samples were examined first and then polished
slightly with 3um diamond suspension to reveal the pits and to remove the
oxides. Then they were examined in the microscope again to confirm if pitting
had occurred.

19.The data from the tests was stored and evaluated.

18
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Figure 8 Sample geometry

The two different microstructures examined in this project are shown in Figure 9 and
Figure 10. The samples with the solution annealed microstructure, as delivered, showed
clear grains of Austenite and Ferrite. There are no visible signs of precipitations.

Figure 9 Microstructure of Super Duplex Stainless Steel, Solution Annealed, no sigma phase.
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The samples that were heat treated for 7 minutes at 875°C showed precipitations at the
grain boundaries. These precipitations are assumed to be mainly o phase. The volume
fraction of precipitations were 5% according to counts done in accordance with ASTM E-
562 [23]

Figure 10 Microstructure of Super Duplex Stainless Steel, Heat treated steel, ~5% sigma phase

A total of 64 samples were tested at temperatures from 25°C to 90°C as shown in table
5. 2 types of microstructures and both pickled and non-pickled surfaces were tested.
The count of the precipitates in the heat treated samples gave a volume fraction of 5%
(£1,5).

Two samples were tested at each condition for reference. Hence one test contains 2
parallel samples. The results are based on the average value between the two parallel
samples. An overview of the tests is given in Table 5.

20



Table 5 Test overview

TEMP SOLUTION SOLUTION 5 % SIGMA, 5 % SIGMA,
[°C] ANNEALED, ANNEALED, POLISHED PICKLED
POLISHED PICKLED
25 TesT 1 TEST9 TesT 17 TEST 25
30 TEST 2 TEST 10 TEST 18 TEST 26
40 TEST 3 TEST11 TEST 19 TEST 27
50 TEST 4 TEST 12 TEST 20 TEST 28
60 TESTS TEST 13 TesT 21 TEST 29
70 TEST6 Test 14 TEST 22 Test 30
80 TEST7 TeST 15 TesT 23 Test 31
90 TEST 8 TesT 16 TesT 24 TeST 32

The set-ups for the experiments are shown in Figure 11 and Figure 12. The two setups in
Figure 11 are equal. The only difference is the type of heater and container used.

Figure 11 Parallel test set-ups, potentiostat, Nitrogen bottle and logging system.

21
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2.2 STANDARDS
There are several standards available for pitting corrosion testing and evaluation. The
following standards were used in this master thesis.

ASTM G 61 - Standard test method for conducting Cyclic Potentiodynamic Polarization
measurement for localized corrosion susceptibility of Iron-, Nickel-, or Cobalt-based
alloys [24]

This standard covers a procedure for conducting Cyclic Potentiodynamic Polarization to
determine relative susceptibility to localized corrosion in a chloride environment. The
solution used is 3,56% Sodium Chloride (by weight). The surface is to be wet polished
with 600 grit SiC paper and the sample is to be cleaned in detergent and ultrasonic bath
for 5 minutes before it’s rinsed in distilled water and dried. The test temperature is 25
1°C. The test cell contains of a container of NaCl solution, a platinum counter electrode,
a salt bridge probe connected to a reference electrode and the test specimen. Nitrogen
gas is used for purging to remove oxygen for minimum one hour before immersion of
the test sample.

ASTM E 562 - Standard Method for determining volume fraction by systematic
manual point count [23]

This standard describes a method for calculating volume fraction of constituents using a
polished planar cross section of the specimen. The standard includes examples of
circular or square grids that can be used. The grid may be in the form of a transparent
sheet or it can be superimposed upon the microscope images.

The standard includes formulas to calculate the volume fraction and the statistical
precision of the results.

The test grid used in this thesis is shown in Figure 13

e x
X X
+.

+ X X X
+ o+ + +
x x X +
X X
71‘ | )(

Figure 13 Circular Grid used for determining volume fraction of sigma phase in test specimen.
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ASTM A 923-03 Standard test method for detecting Detrimental Intermetallic Phase in
Duplex Austenitic/Ferritic Stainless Steels [25]

The standard includes a procedure for electrochemical etching of the surface. The
specimen is etched in a 40 % (by weight) sodium hydroxide (NaOH) solution at 1-3V for
5 to 60 seconds. In this thesis 1,5V for 30-40 seconds were used. After etching the
specimen are to be rinsed in acetone followed by air drying before it was examined in a
confocal microscope. Examples of pictures are given in Figure 8 and Figure9.

ASTM G46-94 Standard Guide for Examination and Evaluation of Pitting Corrosion [26]

This standard describes several techniques for examination and evaluation of pitting
corrosion. It includes both destructive and non-destructive methods. A standard rating
chart is given to compare the extent of pitting corrosion for different samples. However
this method may not be sufficient in itself. In this master thesis this method was used in
addition to pit depth measurement using a confocal microscope and visual examination.
Pictures of all samples are given in Appendix C.

A _B Cc

DENSITY SIZE DEPTH

] —
2.5x10%/m? 0.5 mm? 0.4mm

2 . —
12104/m2 2.0 mm? 0.8mm

3 ® —
5!]04.““2 8.0 mm?2 1.6mm

4 s ® ——
12.5mm? 3.2mm

5 o I
24.5 mm? 6.4mm

Figure 14 Standard rating charts for pits
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NORSOK M-630 [22]

This standard includes material requirement in a collection of Material Data Sheets for a
range of different materials used for process equipment and piping. The standard
requires a corrosion test according to ASTM G48 and recommends samples pickled for 5
minutes in 20% HNO3 and 5% HF at 60°C. This pickling method is used in this master
thesis.
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3 RESULTS

The results from the testing done during this project are described in this chapter. All
values for potential refer to a Saturated Calomel Reference Electrode (SCE). The area of
the samples used for calculating the current densities was 16,9cm?. The values given in
tables etc. are based on the average of the two values for the parallel samples run at
each condition. Where pitting occurred the Pitting Potential is plotted. For the samples
showing transpassive behaviour the transpassive potential is plotted.

All values and plots are given in Appendix A. Only a small selection of the results is given
in this chapter.

3.1 CycCLIC POLARIZATION SCAN

Cyclic potentiodynamic polarization scans were performed according to the test
procedure in section 2.1. The Open Circuit Potential (OCP) from the test start and the
measured pH before and after each test are given in Appendix B.

Based on the results of the cyclic polarization scans Pitting potential Ep, Repassivation
potential Egp and the passive current density were determined as described in section
1.3. The critical potentials are given in Table 6 to 9. They form the basis for the critical
temperatures given in section 3.2.

Table 6 Critical values for Solution Anealed, polished samples

Temperature Ep Erp ipass
(°c) (V vs. SCE) (V vs. SCE) (mA/cm?)
Test 1 20 0.965 1.0395 1.52
Test 2 30 0.957 0.971 1.43
Test 3 40 0.905 1.008 1.345
Test 4 50 0.995 0.8475 1.78
Test 5 60 0.967 0.333 1.53
Test 6 70 0.845 0.063 1.92
Test 7 80 0.533 -0.0484 5.835
Test 8 90 0.2075 -0.0125 0.75
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Table 7 Critical values for Solution Anealed, pickled samples

Temperature E, Erp ipass
(°C) (V vs. SCE) (V vs. SCE) (nA/cm?)
Test9 20 0.947 1.003 2
Test 10 30 0.9115 0.977 1.515
Test 11 40 0.8705 1.0015 1.85
Test 12 50 0.89 0.94 2.085
Test 13 60 0.801 0.197 1.92
Test 14 70 0.845 0.037 2.025
Test 15 80 0.547 -0.00465 1.783
Test 16 90 0.5205 -0.0308 1.38
Table 8 Critical values for 5% Sigma phase, polished samples
Temperature Ep Erp ipass
(°C) (V vs. SCE) (V vs. SCE) (mA/cm?)
Test 17 20 0.873 0.928 0.90
Test 18 30 0.875 0.91 0.89
Test 19 40 0.834 0.189 0.51
Test 20 50 0.033 0.042 N/A
Test 21 60 0.0575 -0.028 N/A
Test 22 70 -0.01265 -0.0775 N/A
Test 23 80 -0.017 -0.077 N/A
Test 24 90 -0.072 -0.078 N/A
Table 9 Critical values for 5% Sigma phase, pickled samples
Temperature Ep Erp ipass
(°C) (V vs. SCE) (V vs. SCE) (MA/cm?)
Test 25 20 0.8235 0.927 1.44
Test 26 30 0.6135 0.838 0.71
Test 27 40 0.835 0.85 1.43
Test 28 50 0.2875 0.085 0.76
Test 29 60 0.2135 -0.03 0.4
Test 30 70 0.0755 -0.07015 0.4
Test 31 80 0.174 -0.086 N/A
Test 32 90 0.0282 -0.1005 0.5




Some examples of the polarization curves are shown in Figure 15 and 16. The rest are
found in Appendix A. The plots show that for the solution annealed sample with a
pickled surface at 50°C, the Ep and Egp are close as there are no significant hysteresis
between the pitting and the repassivation potentials. This is typical for a materialin a
passive state and that the formation of oxides is rapid under these conditions.

w't+—_TT—TT7 7T
-08 -06 04 02 00 02 04 06 08 10 12 14

E (V vs. SCE)

Figure 15 Cylcic polarization scan, Solution Annealed, pickled samples at 50°C

For the equivalent samples run at 80°C there is a large difference between the pitting
potentials and the repassivation. This indicates that the sample is corroding and the
oxide layer is not stable. It takes a very low potential to repassivate the surface.
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Figure 16 Cylcic polarization scan, Solution Annealed, pickled samples at 80°C
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3.2 CRITICAL POTENTIALS AND TEMPERATURES

The critical potentials for the different types of conditions are shown in the plots below.
The red circles represent each of the two parallel samples run for each condition. The
black circle is the average values.

The Critical Pitting Temperature (CPT) is given where the critical potentials show a
sudden drop in Pitting Potential (Ep). The Critical Crevice Temperature (CCT) is given at
the drop in Repassivation Potential (Egp). The temperature interval for the tests was
10°C. Hence the accuracy of the CPT and CCT are within the range of £ 9°C.

The critical potentials given in table 6 are plotted in Figure 17 and Figure 18. The
solution annealed samples with the as delivered microstructure show a CPT of 65-75°C
and a CCT of 55°C as shown in Figure 17 and 18. The plot in Figure 17 Epvs. Temperature
for solution annealed samples with polished surface. Figure 17 shows that the material
is resistant against pitting corrosion up to 60°C. Then the pitting potential decreases
with increased temperature.

o Ep1

1.25 o o Ep|2
CPT =65-75 °C o  Ep|AVG

1.00 o 6

0.75 H

0.50

E. (Vvs. SCE)

0.25

0.00

-0.25 +——7or-—v—-"-"T——--T—a--"T—""T—"—"T—"—T"
0 20 30 40 50 60 70 8 90 100

Temperature (°C)

Figure 17 Epvs. Temperature for solution annealed samples with polished surface.
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The repassivation potentials are used to determine the CCT. The results show an even
sharper drop than for the pitting potentials and the CCT is estimated to 55°C for the
solution annealed, polished condition.

o Erp|1

1.25 - . o Erp|2
CCT =55 °C > ErplAVG

1,00 6

0.75

0.50

E. (V vs. SCE)

0.25 4

0.00 4 | ‘_ |

OS4—T—— T T T
10 20 30 40 50 60 70 80 90 100

Temperature (°C)

Figure 18 Egp vs. Temperature for solution annealed samples with polished surface



The samples with a pickled surface and the same microstructure from Table 7 show a
slightly higher pitting potential at high temperatures as shown in Figure 19 and 20.
However the CPT and CCT are 75°C and 55°C respectively as for the polished surface.

Pickled surfaces seem to give more repeatable results for the pitting potentials than the
non-pickled samples.
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Figure 19 Ep vs. Temperature for solution annealed samples with pickled surface.
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Figure 20 Egp vs. Temperature for solution annealed samples with pickled surface.
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The critical temperatures from Table 8 are plotted in Figure 21 and 22. For the heat

treated samples with ~5% Sigma phase the critical temperatures are in the range of 35-

45°C as shown in Figure 15-18. There are no major differences in the results for the

polished or pickled surfaces.
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Figure 21 Ep vs. Temperature for 5% Sigma Phase with polished surface
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Figure 22 Egp vs. Temperature for 5% Sigma Phase with polished surface
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The results from the pickled samples in Table 9 are plotted in Figure 23 and Figure 24.
They show a clear drop in potentials at approximately 45°C for both Epand Egp.
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Figure 23 Ep vs. Temperature for 5% Sigma Phase with pickled surface
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Figure 24 Egp vs. Temperature for 5% Sigma Phase with pickled surface



A summary of critical temperatures found in this master thesis are given in Table 10

Table 10 CPT and CCT for the different conditions tested

MICROSTRUCTURE ~ SURFACE TREATMENT CPT cCT
Solution Annealed \ Polished 65-75°C 55°C
Solution Annealed | Pickled 75°C 55°C
5% Sigma Phase | Polished 45°C 35°C
5% Sigma Phase | Pickled 45°C 45°C
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3.3 EVALUATION OF SURFACE AFTER TESTING

The surfaces were studied and evaluated after the testing to confirm the presence and
extent of pits on the corroded surfaces. Samples were studied in a confocal microscope.
These results are shown in Figure 25 to 28. The pictures are taken with a magnification
of 2,5x. To reveal pits, the oxides were removed by polishing the sample with 3um
diamond suspension. This was done to make sure that the dark spots were pits and not
just surface contamination. For the solution annealed samples small scattered pits were
found at 50°C. The oxide layer was discoloured.

i o p R A 53 » i o, £
.."". ” * R ,
e, 4 ; { o

Figure 25 Test 12: Solution Anealed, pickled surface, 50°C, magnification 2,5x,
Top: Surface with oxides, Bottom: Diamond polished surface.
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At 60°C larger and deeper pits were detected. The oxide layer had also changed its
colour.

Figure 26 Test 13: Solution Anealed, pickled surface, 60°C, magnification 2,5x,
Top: Surface with oxides, Bottom: Diamond polished surface.

The samples containing sigma phase precipitates the critical temperature limits are
lower. Some of the samples showed no passive behaviour either and the corrosion had
a more uniform dominance and not so clear pitting corrosion behaviour. The pitting
corrosion attacks seem to have been concentrated more on the edges of the samples
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rather than on the polished surface. Figure 27 and 28 show the microstructure images
of 2 samples with 5% sigma phase after testing. The pits are smaller than and not as
distinct as for the solution annealed samples. They seem to be less deep, but the true
depth and size was not measured.

Figure 27 Test 27: 5% sigma phase, pickled surface, 40°C, magnification 2,5x
Top: with oxides, Bottom: Diamond polished surface.
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Figure 28 Test 28: 5% sigma phase, pickled surface, 50°C, magnification 2,5x
Top: with oxides, Bottom: Diamond polished surface.
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4 DISCUSSION

Most of the results found in this project are according to what was expected based on
previous research with some deviations. In this chapter the most interesting results
from this project are discussed.

4.1 CORROSION POTENTIALS

From the plots from the cyclic polarization scans found in Appendix A it is shown that
the test gives reproducible results as there are no large deviations between the two
samples run in parallel. The deviations are smaller for the pickled samples than the
grinded samples. This is probably due to a cleaner and more homogenous surface for
the pickled samples.

The corrosion potentials for Super Duplex Stainless Steel are strongly dependent on
temperature. Both the pitting and repassivation potentials show a significant change
between 50 and 60°C for the solution annealed samples. The tests performed in this
master thesis show a difference between the pitting potential and the repassivation
potential (Ep— Egp) changes from =150mV to =600mV over the 10° temperature
difference. This indicates that the immunity of the material to localized corrosion is
reduced.

The current densities show that the solution annealed samples show a clearly passive
behaviour and the passive current density is in the range of 1,5-2 pA/cm?. For the heat
treated samples containing sigma precipitates this value is lower (range of 0,5-
O,7uA/cm2) and for many of the samples there is no clear passive current density since
the sample is in an active state where the corrosion attacks are more general than
localized.

4.2 CRITICAL CORROSION TEMPERATURES

Defining a critical pitting or crevice corrosion temperature for a material is not easy.
Many scientists have tried and they all show different results. It’s clear that the
electrolyte and test method will influence the results. From the literature that was
studied in this master thesis CPT values for Super Duplex SS vary from 65 to 95°C. The
results from the experiments done in this thesis show that the CPT for as delivered
Super Duplex SS in 3,5% NaCl solution is close to 70£5°C.

If the microstructure is destroyed by poor heat treatment, welding or other treatments
causing precipitation of sigma phase, the resistance against corrosion is drastically
reduced. The CPT for Super Duplex SS with 5% sigma phase is found to be between 40
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and 50°C. The presence of sigma phase should therefore be discovered in a corrosion
test like the commonly used ASTM G84 test. It also documents that the use of PRE
number in itself is not enough to evaluate the resistance against localized corrosion. All
samples used in this project had the same chemical composition and with that the same
PREN, but not the same pitting resistance.

Some of the same trends are found for crevice corrosion; however the drop in critical
temperature CCT is not as large as for pitting corrosion. The CCT for as delivered,
solution annealed material is found to be 55°C as for material with precipitates the CCT
is closer to 40+5°C. The available literature gives values for CCT of 35-60°C but for
crevice corrosion, the test method and sample preparation will make a large impact.
This makes it difficult to compare the values.

In this project two types of surface treatment were evaluated. The results show no
greater effect of the pickling except slightly more reproducible results. Some of the
noise was also eliminated. This is most likely due to a cleaner surface and less
contamination on the surface. Some of the oxide residuals on the sample edges were
also removed by the pickling process.

4.3 SOURCES OF ERROR

The potentiostat was very sensitive to noise especially at low current densities. The
producers of the potentiostat Gamry were contacted and some adjustments were made,
but the noise had to be removed after testing.

The cells contained approximately 5 litres of electrolyte. It took a long time to heat the
electrolyte to the correct temperature. Some variation in temperature at the top and
bottom of the cell was inevitable. A smaller cell is recommended for similar experiments.

The pH meter was broken for some time before it was discovered. Some of the pH
values may be wrong. However the values seemed to be in the range of pH 6 to 8 with
little change before and after the tests.

The pickling process did not seem to remove all oxides on the sides of the samples. The
front and back of the samples were polished, but some residual oxides were observed
even after pickling. Square samples would be recommended to make polishing or
polishing of the sides would be easier that on a round sample. Some samples showed
large pits on the edges and a lot less attack on the polished surfaces. This may have
affected the results.
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The microscopy images are taken with a certain magnification, however when this
master thesis is printed, the document is scaled to fit the right format. This
magnification will therefore not be correct, but it will be ok for comparing the different
images at the same magnification.

4.4 FURTHER WORK

To find out more about Super Duplex SS in chloride environments more tests could be
done. It could be interesting to focus on the temperatures around the critical
temperatures (30-70°C) and to test specimen with different volume fractions of sigma
phase, e.g. 1% sigma phase. To test samples with different amount of precipitates would
give valuable information about how much sigma phase can be detected by corrosion
testing and how the amount of precipitates will affect the corrosion properties of the
material.
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5 CONCLUSION

A study of available literature and a series of tests have been performed to investigate
how the presence of secondary phases and different surface finish affect the corrosion
properties of Super Duplex Stainless Steel in a chloride environment.

The experiments show that Super Duplex Stainless Steel has a Critical Pitting
Temperature between 65°C and 75°C. If sigma phase precipitates are present the Critical
Pitting Temperature is lowered to 55°C.

The critical crevice corrosion temperature changes from 55°C for a solution annealed
material to approximately 40°C for material with sigma phase precipitation.

Pickled surfaces give more repeatable results and less noise on the results indicating
that a cleaner surface is preferred.

Pitting corrosion tests according to the executed procedure can be used to detect
material with poor heat treatment and precipitation of sigma phase.
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APPENDIX A POTENTIODYNAMIC TEST RESULTS



Results for Solution Annealed, polished samples:

Table 11 Critical values for Solution Anealed, polished samples

TEMPERATURE ERP IPASS
(°C) (V VS. SCE) (V VS. SCE) (LA/CM2)
TEST 1 20 0.965 1.0395 1.52
TEST 2 30 0.957 0.971 1.43
TEST 3 40 0.905 1.008 1.345
TEST 4 50 0.995 0.8475 1.78
TEST 5 60 0.967 0.333 1.53
TEST 6 70 0.845 0.063 1.92
TEST 7 80 0.533 -0.0484 5.835
TEST 8 90 0.2075 -0.0125 0.75
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Results for Solution Annealed, Pickled Samples:

Table 12 Critical values for Solution Anealed, pickled samples

TEMPERATURE ERP IPASS
(°C) (V VS. SCE) (V VS. SCE) (LA/CM2)
TEST 9 20 0.947 1.003 2
TEST 10 30 0.9115 0.977 1.515
TEST 11 40 0.8705 1.0015 1.85
TEST 12 50 0.89 0.94 2.085
TEST 13 60 0.801 0.197 1.92
TEST 14 70 0.845 0.037 2.025
TEST 15 80 0.547 -0.00465 1.783
TEST 16 90 0.5205 -0.0308 1.38
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Results for Polished Samples with 5% Sigma Phase:

Table 13 Critical values for 5% Sigma phase, polished samples

TEMPERATURE EP ERP IPASS

(°C) (V VS. SCE) (V VS. SCE) (LA/CM2)
TEST 17 20 0.873 0.928 0.90
TEST 18 30 0.875 0.91 0.89
TEST 19 40 0.834 0.189 0.51
TEST 20 50 0.033 0.042 N/A
TEST 21 60 0.0575 -0.028 N/A
TEST 22 70 -0.01265 -0.0775 N/A
TEST 23 80 -0.017 -0.077 N/A
TEST 24 90 -0.072 -0.078 N/A
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Results for Pickled Samples with 5% Sigma Phase:

Table 14 Critical values for 5% Sigma phase, pickled samples

TEMPERATURE ERP IPASS
(°C) (V VS. SCE) (V VS. SCE) (LA/CM2)
TEST 25 20 0.8235 0.927 1.44
TEST 26 30 0.6135 0.838 0.71
TEST 27 40 0.835 0.85 1.43
TEST 28 50 0.2875 0.085 0.76
TEST 29 60 0.2135 -0.03 0.4
TEST 30 70 0.0755 -0.07015 0.4
TEST 31 80 0.174 -0.086 N/A
TEST 32 90 0.0282 -0.1005 0.5




i (Alcm?)

T v — 7717 v T T
-08 -06 -04 -02 00 0.2 0.4 0.6 0.8 1.0 1.2 1.4

E (V vs. SCE)

Plot TEST 25

i (A/lcm?)

w't———T— 7T T T T T T
-08 06 -04 -02 00 02 04 06 08 10 12 14

E (V vs. SCE)

Plot TEST 26



i (Alcm?)

Plot TEST 27

i (A/lcm?)

r 71+~ r1 T ~rr T 77T 717 "1
06 -04 -02 00 0.2 0.4 0.6 0.8 1.0 1.2 1.4

E (V vs. SCE)

Plot TEST 28

r 71+~ r1 T ~rr T 77T 717 "1
06 -04 -02 00 0.2 0.4 0.6 0.8 1.0 1.2 1.4

E (V vs. SCE)



i (Alcm?)

Plot TEST 29

i (A/lcm?)

—T T r -1 Tt 1T 17T 1
06 -04 -02 00 02 04 06 08 10 12 14

E (V vs. SCE)

Plot TEST 30

LA L A L B B B B B B |
06 -04 -02 00 02 04 06 08 10 12 14

E (V vs. SCE)



i (Alcm?)

wr't———T— 7T T T T T T T
-08 06 -04 -02 00 02 04 06 08 10 12 14

E (V vs. SCE)

Plot TEST 31

i (A/lcm?)

wr't———T— 7T T T T T T T
-08 06 -04 -02 00 02 04 06 08 10 12 14

E (V vs. SCE)

Plot TEST 32






APPENDIX B OPEN CIRCUIT POTENTIALS AND MEASURED PH



Measured OCP and pH before and after testing

FIRST SAMPLE SECOND SAMPLE
TEST ocCP pH before pH after ocCP pH before pH after

1 -183 6,8 6,8 -105 6,8 6,8
2 -89 6,7 6,7 -223 6,9 -

3 -175 7,1 7,3 -11 7,1 7,2
4 -174 7,1 7,6 -63 7,2 7,3
5 -274 6,9 7,1 17 7,1 7,1
6 -323 7,9 8,3 -187 6,7 6,9
7 -526 6,8 8,9 -319 6,7 8,7
8 -208 6,9 8,3 -199 7,2 7,8
9 -206 6,8* 6,9* -214 6,8* 6,9*
10 -262 6,8* 6,8* -196 6,8* 6,8*
11 -221 6,8* 6,8* -156 6,8* 6,8*
12 -387 7,5 8,4 7,6 7,5 7,2
13 -156 6,8* 6,8* -209 6,8* 6,8*
14 -351 8,5 - -157 8,4 8,3
15 -239 6,8* 6,8* -263 6,8* 6,8*
16 -249 7,5 8,3 -323 7,5 8,4
17 -259 7,6 8,3 -194 7,7 8,2
18 -407 7,0 7,5 -324 7,0 7,4
19 -125 7,4 7,4 -198 7,4 7,6
20 -547 7,6 8,6 -337 8,3 8,5
21 -339 8,3 8,3 -243 8,2 8,2
22 -504 7,6 8,6 -136 7,7 8,8
23 -355 7,4 8,2 -242 7,4 8,3
24 -617 8,3 8,3 -505 8,3 8,6
25 -111 7,8 7,4 -551 7,8 7,6
26 43 7,6 7,8 -39 7,8 7,8
27 -166 6,8* 6,8* -183 6,8* 6,8*
28 -115 7,2 9,1 -83 8,4 9,3
29 -138 7,4 9,0 -74 7,6 8,8
30 -348 8,7 8,4 -84 7,9 8,7
31 -32 7,1 7,2 -82 7,6 8,4
32 -326 7,4 8,3 -82 7,4 8,3

* pH-meter was broken. Reading is not valid.
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Datasheet updated 2013-11-28 10:24:29 (supersedes all previous editions)

Sandvik SAF 2507

(Tube and pipe, seamless)

Sandvik SAF 2507 is a super-duplex (austenitic-ferritic) stainless steel for service in
highly corrosive conditions. The grade is characterized by:

Excellent resistance to stress corrosion cracking {SCC) in chloride-bearing environments
Excellent resistance to pitting and crevice corrosion

High resistance to general corrosion

Very high mechanical strength

Physical properties that offer design advantages

High resistance to erosion corrosion and corrosion fatigue

Good weldability

STANDARDS

UNS §32750

EN number |.4410

EN name X 2 CrNiMoN 25-7-4
8512328

Product standards
Seamless tube and pipe: EN 10216-5
Seamless and welded tube and pipe: ASTM A78%; A790
Flanges: ASTM A 182
Fittings: ASTM A182; (ASTM ABI5 applied for)
Plate, sheet and strip: ASTM A240, EN [0088-2
Bar steel: ASTM A479, EN 10088-3
Forged billets: EN 10088-3

Approvals
Approved by the American Society of Mechanical Engineers (ASME) for use in accordance
with ASME Boiler and Pressure Vessel Code, Section VIII, div. |. There is no approval for
UNS 532750 in the form of plate. However, according to the ASME paragraph UG- 15 it is
allowed to use the design values for seamless tube according to ASME Section VIII, div. |
also for plate.
ASME B31.3 Chemical Plant and Petroleum Refinery piping.
VATUV-Werkstoffblatt 508
ISO 15156-3/NACE MR 0175 (Sulphide stress cracking resistant material for oil field
equipment), {applies to liquid quenched tubes).
NGS 1609 Nordic rules for application of the non-standard steel SAF 2507 manufactured
by AB Sandvik Steel.

CHEMICAL COMPOSITION (NOMINAL) %

c Si Mn P S Cr Ni Mo Others

<0.030 £0.8 €1.2 <0.035 £0.015 25 7 4 N=0.3

FORMS OF SUPPLY

Seamless tube and pipe- finishes and dimensions

Seamless tube and pipe in Sandvik SAF 2507 is supplied in dimensions up to 260 mm
outside diameter. The delivery condition is solution annealed and either white pickled,
or bright annealed.

Other forms of supply:
Welded tube and pipe
Fittings and flanges
Wire electrodes and filler wire/rods
Covered electrodes
Plate, sheet and wide strip
Bar steel
Forged products
Cast products

MECHANICAL PROPERTIES

The following figures apply to material inthe solution annealed condition. Tube and
pipe with wall thickness above 20 mm (0.787 in.) may have slightly lower values. Por
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Temperature

Stress

°F °C ksi MPa
100 38 38.7 2865
200 93 35.0 240
300 149 33.1 230
400 204 31.9 220
500 260 31.4 215
600 316 31.2 215
PHYSICAL PROPERTIES
Density: 7.8 glem”, 0.28 lo/in.”
Specific heat capacity
Metric units Imperial units
Temperature, °C Ji{kg °C) Temperature, °F Btu/({Ib°F)
20 490 68 0.12
100 505 200 0.12
200 520 400 0.12
300 550 600 0.13
400 585 800 0.14
Thermal conductivity
Metric units, W/[m°C)
Temperature, °C 20 100 200 300 400
Sandvik SAF 2507 14 15 17 18 20
ASTM 316L 14 15 17 18 20
Imperial units, Btu/(ft h °F)
Temperature, °F 68 200 400 600 800
Sandvik SAF 2507 8 9 10 11 12
ASTM 316L 8 9 10 10 12
Thermal expansion
Sandvik SAF 2507 has a coefficient of thermal expansion close to that of carbon steel.
This gives Sandvik SAF 2507 definite design advantages over austenitic stainless steels in
squipment comprising of both carbon stesl and stainless steel. The valuss given below
are average values in the temperature ranges.
METRIC UNITS, X10%/C
Temperature, °C 30-100 30-200 30-300 30-400
Sandvik SAF 2507 13.5 14.0 14.0 14.5
Carbon steel 12.5 13.0 13.5 14.0
ASTM 316L 16.5 17.0 17.5 18




IMPERLSL UHITS,Z".II}_EFF

Temperaturs, 9F 2d-200 2d-400 sd-800 sd-200
Zandulk SAF Z507 T.5 T.5 2.0 2.0
carbon sleel a.2 T.0 7.5 7.8
AZTM 31561 2.0 &5 io.o0 io.o0
Samdwvik SAF 7507
b uimd
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el
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Fipure 1. Thermal opamicn, po”C |30~ LED*C, EJ-2LEF].
Ammixtieity
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s o.23 52 3z.7
100 o.2o 200 d+.5
Z00 0.25 +00 3ar.e
3oo 1.03 s00 +0.7
+00 i.02 =00 +3.2
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METRICEUN TS A WD IMPERIALUMNITE
Temperature, 9C M Pa Temperature, OF HEl
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Pitting and cravica corrosion

The pitting and crevics corrosion resistance of stainless steel is primarily determined by
the content of chromium, malybdenum and nitrogen. The manufacturing and
fabrication practics, £.g. welding, are also of vital importance for the actmal performance
i service.

A parameter for comparing the resistance to pitting in chloride envirommentsis the FRE
number [Fitting Resistance Equivalent).

The PREis defined as, in weight-9%

PRE = %Cr + 3.3 x %Mo + 16 x %I

For duplex stainless steels the pitting corrosion resistance is dependent on the PRE value
i both the ferrite phase and the austenite phase, so that the phase with the lowest PRE
wvalue will be lirmiting for the actual pitting corrosion resistance. In Sandvik SAF 2307 the
FRE value is equal in both phases, which has been achieved by a careful balanee of the
clements.

The minimum PRE value for Sandvik SAF 2507 seamless tubesis 42.5. This is
significantly higher than e g the PRE values for other duplex stainless steels of the 25Cr
type which are not super-duplex. As an example UNS 531260 25Cr3Mo0.21d hasa
minimum PRE-value of 33.

One of the most severe pitting and crevice corrosion tests applied to stainless steel is
ASTM G48, ie. exposure to 6% FeClz with and without crevices (method A and B
respectively). In a modified version of the ASTM G48 A test, the sample is exposed for
periods of 24 hours. When pits are detected together with a substantal weightloss (=5
mg), the test is interrupted. Otherwise the temperature isincreased by 5 °C (9 °F) and
the testis continued with the same sample. Figure 11 shows critical pitting and erevice
temperatures (CPT and CCT) from the test.

Potentio static tests in solutions with different chloride contents are presented in Figure
11. Fignre 12 shows the effect of increased acidity. In both cases the applied potential is
G00 mV vz 5CE, a very high value compared with that normally associated with
natural unchlorinated seawater, thus resulting in lower critical temperatures compared
with most practical service conditdons.

Temperature (°C)
B cerc)

62470

90 6Mo+N Sandvik

. CCT(°C) austenitic SAF 2507
801 +25Cr-3Mo- 2N

70
25Cr
Duplex*

40 Sandvik
904L SAF 2205

20
10

Figure 10. Critical pitting and crevice temperatures in 6% FeClz, 24h (similar to ASTM
G48).
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limiting the risk of crevice corrosion.

Machining

Being a two-phase material (austenitic-ferritic) Sandvik SAF 2507 will present a different
tool wear profile from that of single-phase steels of type ASTM 304L. The cutting speed
must therefore be lower than that recommendsd for ASTM 304L. [t is recommendsd
that a tougher insert grade is used than when machining austenitic stainless steels, e.g.
ASTM 304L.

APPLICATIONS

Sandvik SAF 23507 is a duplex stainless steel especially designed for service in aggressive
chloride-containing environments. Typical applications are:

TYPICAL APPLICATIONS FOR SANDVIK SAF 2507

Qil and gas Chloride-containing environments such as seawater handling and process systems. Hydraulic and
exploration process fluid tubes in umbilicals
and production

Seawater cooling Tubing for heat exchangers in refineries, chemical industries, process industries and other
industries using seawater or chlorinated seawater as coolant

Salt evaporation Evaporator tubing for production of corrosive salts, e.g. chlorides, sulphates and carbonates

Desalination plants Pressure vessels for reverse osmosis units, tube and pipe for seawater transport, heat exchanger
tubing

Geothermal wells Heat exchangers in geothermal exploitation units, systems exposed to geothermal or high salinity

brines, tubing and casing for production

Qil refining and Tubes and pipes where the process environment contains a high amount of chlorides, or is
petrochemical and gas contaminated with hydrochloric acid
processing

Pulp and paper Material for chloride-containing bleaching environments
production

Chemical processing Organic acid plants, also when process solutions are contaminated with e.g. chlorides

Mechanical Propeller shafts and other products subjected to high mechanical load in seawater and other
components requiring chloride-containing environments
high strength

Desulphurisation units As reheater tubes in flue gas desulphurisation systems. The good mechanical and corrasion
properties make Sandvik SAF 2507 an economical choice in many applications by reducing the life
cycle cost of equipment.

DISCLAIMER
Recommendations are for guidance only, and the suitability of a material for a specific application can be confimned onlywhen
wie know the actual service: conditions. Continuous development may necessitate changes in technical data without notice. This

datasheet is only valid for Sancdvik materials.

www.sit.sandvik.com/contact-us SAN DVI K
www.smt.sandvik.com [
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MASTER THESIS SPRING 2014
FOR
STUD.TECHN. MONIKA NAESS

EFFECT OF MICROSTRUCTURE AND SURFACE FINISH ON LOCALIZED CORROSION
PERFORMANCE OF SUPER DUPLEX STAINLESS STEELS IN SEAWATER

Effekt av mikrostruktur og overflatefinish pa lokal korrosjon av super dupleks rustfritt
stal i sjovann

BACKGROUND

Corrosion resistant alloys (CRAs) used in subsea pressure-retaining components must be
compatible with production fluids and resistant to pitting and crevice corrosion in seawater.
Whereas materials selection in production environments is governed by well-established
international standards such as ISO 15156, much debate still exists as of how to determine
the maximum allowable seawater service temperature. Most industry specifications rely on
the ASTM G48 standard to determine localized corrosion resistance. However, for 22% Cr
duplex and 25% Cr super-duplex stainless steels (DSS and SDSS, respectively) there is no
consensus on surface finish prior testing (e.g. grinding or pickling) and test temperature
(e.g. 50°C in NORSOK 630 versus 40°C in ASTM A923). Moreover, testing is conducted in
a 6% ferric chloride (pH 1.30) or a 6% ferric chloride + 1% hydrochloric acid (pH 0.4)
solution, which may lead to a gross underestimation of the actual critical pitting temperature
(CPT) in seawater. Underestimating CPT will result in a very conservative material selection
criterion, increasing materials and manufacturing costs.

OBJECTIVE

The main objective of the Master project will be to: quantify the seawater pitting corrosion
resistance of a SDSS and its correlation with: i) alloy’s microstructure and ii) surface finish
before testing.

SCOPE-OF-WORK

This master project will determine the maximum allowable seawater temperature of SDSS.
This will be accomplished by evaluating corrosion, pitting and re-passivation potentials (Ecor,
Epy, and Epep, respectively) as well as passive current densities (ipass) determined by the
cyclic potentiodynamic polarization (CPP) test as a function of microstructure, test
temperature, and sample preparation procedures. ASTM G61 shall be used as a guideline.

Materials

One SDSS alloy will be tested — but with two metallurgical conditions — i) base material
(solution annealed + water quenched) and ii) heat treated to introduce sigma phase
precipitations.

Surface finish

Two different surface finishes will be evaluated; i) pickling according to NORSOK M-630 (5
min. at 60°C in a solution of 20% HNO; + 5% HF) and ii) wet grinding 120-grit SiC paper or
equivalent, allowing samples to dry in a desiccator 24 hour prior to testing.



Electrolyte
The electrochemical tests will be done in 3.5% NaCl solution. The temperature range will be
from room temperature and up to 90°C.

Analysis

After exposure selected surfaces shall be examined in light microscope and/or SEM to
describe the corrosion attacks. For some samples also EDS/EDX can be used to determine
chemical composition in a corrosion region.

The following activities will be executed in the project (can be revised during the project):

o Execute a literature survey to establish the state of knowledge on localized corrosion
of SDSS in chloride containing (seawater) environment. Special attention shall be
given to the effect of microstructure, second phase precipitation, and surface finish.

o Develop a detailed test program for the experimental part of the project including
heat treatment, characterization of microstructure, electrochemical testing.

o Execute the test program

o Evaluate the outcome from the experimental work and make conclusions and
recommendations.

Three weeks after start of the thesis work, an A3 sheet illustrating the work is to be handed
in. A template for this presentation is available on the IPM’s web site under the menu
“Masteroppgave” (http:/www.ntnu.no/ipm/masteroppgave). This sheet should be updated
one week before the Master’s thesis is submitted.

Performing a risk assessment of the planned work is obligatory. Known main activities must
be risk assessed before they start, and the form must be handed in within 3 weeks of
receiving the problem text. The form must be signed by your supervisor. All projects are to
be assessed, even theoretical and virtual. Risk assessment is a running activity, and must
be carried out before starting any activity that might lead to injury to humans or damage to
materials/equipment or the external environment. Copies of signed risk assessments should
also be included as an appendix of the finished project report.

The thesis should include the signed problem text, and be written as a research report with
summary both in English and Norwegian, conclusion, literature references, table of
contents, etc. During preparation of the text, the candidate should make efforts to create a
well arranged and well written report. To ease the evaluation of the thesis, it is important to
cross-reference text, tables and figures. For evaluation of the work a thorough discussion of
results is appreciated.

The thesis shall be submitted electronically via DAIM, NTNU'’s system for Digital Archiving
and Submission of Master’s thesis.

This project will be run in close cooperation with GE Oil & Gas. Contact person is Mariano
lannuzzi (E-mail: mariano.iannuzzi@ge.com)

Torgeir Wel Ro sen
Head of Division Professor/Supervisor
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Beregn risikoverdi for Menneske. Enheten vurderer selv om de i tillegg vil beregne risikoverdi for Ytre miljg,

disse hver for seg.
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skjerpet beredskap, dvs. konsekvensreduserende tiltak.

MATRISE FOR RISIKOVURDERINGER ved NTNU

KONSEKVENS

Svaer.t El
alvorlig
Alvorlig D1 D2
Moderat C1 C2 C3
Liten B3 B4
Svart
liten Ad A5
Svart liten Liten Middels Stor Svart stor

SANNSYNLIGHET

Prinsipp over akseptkriterium. Forklaring av fargene som er brukt i risikomatrisen.

Farge Beskrivelse
Rgd Uakseptabel risiko. Tiltak skal gjennomfgres for & redusere risikoen.
Gul Vurderingsomrade. Tiltak skal vurderes.

Grgnn Akseptabel risiko. Tiltak kan vurderes ut fra andre hensyn.




