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Abstract

Condition-based Maintenance (CBM) is a maintenance policy that take 

maintenance action just when need arises with real-time condition monitoring. 

Intelligent CBM means a CBM system is capable of understanding and making 

maintenance decisions without human intervention. To achieve this objective, it is 

needed to detect current conditions of mechanical and electrical systems and 

predict the fault of the systems accurately. What’s more, the maintenance 

scheduling need to be optimized to reduce the maintenance cost and improve the 

reliability, availability and safety based on the results of fault detection and 

prediction.  

Data mining is a computational process of discovering patterns in large data sets 

involving methods at the intersection of artificial intelligence, machine learning, 

statistics, and database systems. The goal of the data mining is to extract useful 

information from a data set and transform it into an understandable structure for 

further use. 

This thesis develops framework of Intelligent Fault Diagnosis and Prognosis 

System (IFDPS) for CBM based on Data Mining Techniques. It mainly includes 

two tasks: the one is to detect and predict the condition of the equipment and the 

other is to optimize maintenance scheduling accordingly. It contains several phases: 

sensor selection and its placement optimization, signal processing and feature 

extraction, fault diagnosis, fault prognosis and predictive maintenance scheduling 

optimization based on results of fault diagnosis and prognosis. This thesis applies 

different data mining techniques containing Artificial Neural Network such as 

Supervised Back-Propagation (SBP) and Self-Organizing Map (SOM), Swarm 

Intelligence such as Particle Swarm Optimization (PSO), Bee Colony Algorithm 

(BCA) and Ant Colony Optimization (ACO), and Association Rule (AI) in most of 

these phases.  

The outcomes of the thesis can be applied in mechanical and electrical system in 

industries of manufacturing, wind and hydro power plants.  
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1 Introduction

1.1 Motivation of Present Work 

With the rapid development of manufacturing, automobile, aeronautics and 
aerospace industries, the equipment of those become more and more complex and 
integrated, and thus an unanticipated breakdown of the equipment can cause more 
losses in economy and human sources. To avoid the unanticipated failure of 
equipment, the maintenance action should be performed before the machine 
becoming failure. The number of maintenance actions should not exceed its 
necessary, or it may increase the cost of maintenance and reduce the product life. 
Therefore, the maintenance action should be performed just before the machine 
failure. To reach this objective, condition monitoring has to be performed in 
equipment and processes of manufacturing and operations to support the 
maintenance decision. Therefore, the motivation for present work can be described 
as following paragraphs. 

Because of the complex, integration and associativity of the equipment, the right 
maintenance policy of equipment has to be researched for reducing the loss and 
increasing the life cycle of products. As mentioned above, for the key components 
of equipment, the maintenance action should be performed just when it is 
necessary before failure. Condition-based Maintenance (CBM) policy is based on 
the condition of equipment and tries to maintain the correct equipment at right time. 
To implement CBM policy, the healthy condition of equipment needs to be 
assessed according to the real-time information from the sensors mounted on the 
equipment. The present work establishes a framework called IFDPS for CBM to 
reducing the maintenance cost and increase the life cycle of products. 

To carry out CBM policy, equipment health must be assessed based on the 
condition information of the equipment. Fault diagnosis, which means detecting, 
isolating, and identifying an impending or incipient failure condition in which 
affected component is still operational even though at a degraded mode, is a very 
important technique to obtain the information. Normally, when a machine goes 
down, most of downtime is used to identify the causes of the failure while only a 
small part of that is used to repair or maintain the machine. Diagnostics can answer 
this question: why the performance of the observed process, or equipment is 
degrading, or in other word, what is the cause of the observed process or machinery 
degradation [Djurdjanovic et al., 2003]. It is to see that diagnostics’ function is to 
identify the components or causes of the failure happening or about to happen. 
Therefore, the present work introduces many Data Mining (DM) methods to carry 
out diagnostics to tell the staff which components should be repaired or maintained. 

Meanwhile, to carry out CBM policy, the fault prognosis is very important as well 
to support maintenance decision.  The prognostics can answer the question: when 
the observed process, or equipment is going to fail, or degrade to the point when its 
performance becomes unacceptable [Djurdjanovic et al., 2003]. CBM policy can 
make predictive maintenance scheduling based on the condition of machine. 
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Condition, the state of a machine, is related to the Remaining Useful Life (RUL). 
In the industrial and manufacturing arenas, fault prognosis can be used to estimate 
the remaining useful life of a machine or a component once an impending failure 
condition is detected, isolated and identified. It is obviously seen that fault 
prognosis with fault diagnosis is a basis of predictive maintenance scheduling. 
Therefore, the present work also proposes methods for fault prognosis to support 
CBM policy. 

To carry out CBM, condition monitoring is very important and obtaining parameter 
information of machine is the bases for all the processes include diagnostics, 
prognostics and predictive maintenance decision. Normally, sensors are used to 
collect information of machines. There are two issues need to be considered for 
sensors. The one is what kind of sensors should be chosen to collect the 
information. The other is where the sensors should be set up on the machine to get 
the information continuous or periodically. Actually, the present work focuses on 
the second issue, i.e. the sensor placement optimization. 

Data Mining (DM) techniques could be very useful for maintenance scheduling, 
prognostics, diagnostics and sensor placement selection. Many companies, such as 
BMW, ABB, Boeing and Statoil, have lots of history data. But the data has not 
been used effectively in current time. DM techniques can be used to extract useful 
information from the history data to support all process mentioned above.  

Therefore, during the three years of PhD work, Intelligent Fault Diagnosis and 
Prognosis System (IFDPS) for Condition-based Maintenance in Manufacturing 
systems and processes is established. The framework IFDPS includes almost all 
processes of sensor selection, sensor placement optimization, fault diagnosis, fault 
diagnosis and prognosis, and maintenance scheduling optimization. It is hoped that 
IFDPS can help the companies to carry out near-zero breakdown manufacturing 
and further to carry out zero-defect manufacturing. 

1.2 Literature Review 

As mentioned above, the present work mainly based on the maintenance policy, 
methods of diagnostics and prognostics, signal process and sensor strategy. In this 
section, the state-of-the-arts for these topics are reviewed briefly. 

1.2.1 Review of Maintenance Strategies  

Maintenance is defined [EN 13306: 2001, 2001] as the combination of all technical, 
administrative and managerial actions during the life cycle of an item intended to 
retain it in, or restore it to, a state in which it can perform the required function (a 
function or a combination of functions of an item which are considered necessary 
to provide a given service). It is a set of organized activities that are carried out in 
order to keep an item in its best operational condition with minimum cost acquired. 
The maintenance actions could be either repair or replacement activities, which are 
necessary for an item to reach its acceptable productivity condition, and these 
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activities should be carried out with a minimum possible cost. In the period of pre-
World War II, people saw maintenance as an added cost to the plant which did not 
increase the value of finished product, and thus, the maintenance at that era was 
restricted to fixing the unit when it breaks because it was the cheapest option. 
During and after World War II at the time when the advances of engineering and 
scientific technology developed, people developed other types of maintenance, 
which were much cheaper such as preventive maintenance and in addition, people 
in this era classified maintenance as a function of the production system. 
Nowadays, increased awareness of such issues as environment safety, quality of 
product and services makes maintenance one of the most important functions that 
contribute to the success of the industry and world-class companies are in 
continuous need of a very well organized maintenance plan to compete world-wide. 
The brief history of maintenance mentioned above can be seen in Fig. 1.1 [Shenoy 
& Bhadbury, 1998]. 

Fig. 1.1 Maintenance History 

It is very important for a manufacturing company to choose a right maintenance 
policy because the affections of maintenance are not only on economy, reliability 
and availability but also on personnel safety. The range of maintenance cost is from 
15% for manufacturing companies and 40% for iron and steel industry of the whole 
cost of manufactured parts and machines in 1990s [Keith Mobley, 2002] and even 
more nowadays. The corresponding cost in United Stated is more than 200 billion 
dollars every year [Chu et al., 1998]. This shows the significance of maintenance in 
the viewpoint of economy. Unexpected failure causes tremendous losses in 
economy and production, and may also cause hazard of staff and equipment in 
manufacturing plant. Therefore, the maintenance actions are performed before the 
failure is very important which is referring to the preventive maintenance and 
predictive maintenance. 

Maintenance objectives should be consistent with and subordinate to production 
goals. The relation between maintenance objectives and production goals is 
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reflected in the action of keeping production machines and facilities in the best 
possible condition. Typically, the objectives of maintenance can be classified into 
three groups [Boucly, 2001; Marquez, 2007; Wireman, 1990]: 

Technical objectives. These objectives are the operational imperatives from 
the business sector of a company or plant. In general, operational 
imperatives are linked to a satisfactory level of equipment availability and 
people safety. A generally accepted method to measure the fulfillment of 
this goal is the Overall Equipment Effectiveness (OEE), as described in 
TPM method [Nakajima, 1988]. 
Legal objectives/Mandatory regulations. Normally it is a maintenance 
objective to fulfill all these existing regulations for electrical devices, 
pressure equipment, vehicles, protection means, etc. 
Financial objectives. To satisfy the technical objective at the minimum cost. 
From a long term perspective global equipment life cycle cost should be a 
suitable measure for this. 

 Generally, the objectives can be list as bellowing: 

1) Maximizing production or increasing facilities availability at the lowest 
cost and at the highest quality and safety standards.  

2) Reducing breakdowns and emergency shutdowns. 
3) Optimizing resources utilization. 
4) Reducing downtime. 
5) Improving spares stock control. 
6) Improving equipment efficiency and reducing scrap rate. 
7) Minimizing energy usage. 
8) Optimizing the useful life of equipment. 
9) Providing reliable cost and budgetary control.  
10) Identifying and implementing cost reductions. 

A maintenance action may include a set of maintenance activities: inspection, 
monitoring, routine maintenance, overhaul, rebuilding and repair. Inspection can be 
performed by measuring, observing, testing or gauging the relevant features of an 
item before, during or after other maintenance activity. Monitoring is a kind of 
activities performed manually or automatically, continuously or periodically 
intended to obtain the actual state of the equipment which can be used to evaluate 
parameters changes of the equipment when the equipment is in operating state. 
Routine maintenance is a kind of regular elementary maintenance activities, such 
as cleaning, tightening of connections and checking lubrication, which usually do 
not need special qualification authorization or tools. Overhaul is a comprehensive 
set of examinations and actions performed at prescribed intervals of time or a 
number of operations in order to maintain the required level of reliability, 
availability and safety, and sometimes may require partial or complete dismantling 
of the items. Rebuilding is performed when the equipment or components are 
approaching their useful life or should be regularly replaced in order to provide the 
equipment with a useful life that may be greater than the lifespan of the original 
equipment. Repairing is a physical action to restore the required functions of faulty 
equipment [Marquez, 2007]. A maintenance action could include some of one or 
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more above activities. The maintenance may also need fault diagnosis and 
prognosis for monitored equipment. 

With a long history development, maintenance has been made great progress. At 
the beginning, maintenance action is performed when the equipment become 
failure. However, this kind of maintenance policy cannot meet the requirement of 
the industry and many other types of maintenance are emerged during the several 
decades as seen in Fig. 1.2 [EN 13306: 2001, 2001]. In many literatures, Condition-
based Maintenance (CBM) is also called predictive maintenance. This section 
mainly reviews corrective maintenance and preventive maintenance briefly, and 
review predictive maintenance in detail. 

Fig. 1.2 Maintenance Types 

1.2.1.1 Corrective Maintenance (CM) 

Corrective Maintenance is similar to repair work, which is undertaken after a 
breakdown or when obvious failure has been located. That is why it is also called 
run-to failure maintenance, maintenance-on-failure or breakdown maintenance. In 
CM, the plant item is allowed to failure before maintenance is performed and thus 
that it is only suitable if the consequences of failures are small, such as light bulb. 
It is only appropriate to apply CM policy if it does not matter whether the machine 
fails, or how long the repair will take or how much it will cost. Sometimes a failure 
is not predictable using any instrument or analysis, and only checking for failure 
will detect the fault. Unfortunately the strategy is widely used in inappropriate 
situations. At failure, the task of the repair team is to restore the machine to a state 
in which it can perform the required function as quickly as possible [Holmberg et 
al., 2010]. Therefore, CM at its best should be utilized only in non-critical areas 
where capital costs are small, consequences of failure are slight, no safety risks are 
immediate, and quick failure identification and rapid failure repair are possible.  

Corrective maintenance is maintenance carried out after fault recognition and 
intended to put the equipment into a state in which it can perform a required 
function. It could be immediate or deferred [Marquez, 2007]. Immediate 
maintenance means the maintenance is carried out without delay after a fault has 
been detected to avoid unacceptable consequences, while deferred maintenance 
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means the maintenance is not immediately carried out after fault detection but is 
delayed according to given maintenance rules.  

The CM policy has its advantages. Its planning is very simple because the 
maintenance action is needed only when the failure happens and the plan is only to 
consider the failure rate. The maintenance work is not scheduled until it is really 
needed. However, it has major disadvantages [Holmberg et al., 2010]:  

Failure can, and probably will, occur at an inconvenient time, e.g., when the 
plant is at full load, or while it is starting. 
A component fault may go unnoticed, leading to expensive consequential 
damage, e.g., bearing seizure causes damage to a shaft. 
Dangerous and/or expensive failure consequences should be expected. 
No data are available regarding the past, present and possible future state of 
the machine. 
A large breakdown crew may need to be available on standby. All the 
required expertise should be either within the plant or easily accessed from 
external resources, which is almost always costly, or a longer waiting time 
should be expected. 
A large spares inventory is necessary to ensure quick repair. 
Failures exceeding the capacity of the repair team lead to “fire-fighting”. 

1.2.1.2 Preventive Maintenance  

Preventive Maintenance can be defined as maintenance carried out at 
predetermined intervals or according to prescribed criteria and intended to reduce 
the probability of failure or the degradation of the functioning of an item [EN 
13306: 2001, 2001]. The preventive maintenance action can be condition-based or 
predetermined maintenance. Predetermined maintenance carried out in accordance 
with established intervals of time or number of units of use but without previous 
condition investigation. Condition based maintenance is preventive maintenance 
based on performance and/or parameter monitoring and the subsequent actions 
which is also known as predictive maintenance which is reviewed in section 1.2.1.3. 

Predetermined maintenance means that the maintenance is scheduled without the 
occurrence of any monitoring activities [Niu et al., 2010; Zhang & Wang, 2013]. 
The scheduling can be based on the number of hours in use, the number of times an 
item has been used the number of kilometers the items has been used, according to 
prescribed dates.  

While predetermined maintenance is not the optimum maintenance program, it 
does have several advantages over that of a purely corrective program as follows 
[Sullivan et al., 2010]: 

Cost effective in many capital-intensive processes. 
Flexibility allows for the adjustment of maintenance periodicity. 
Increased component life cycle. 
Energy savings. 
Reduced equipment or process failure. 
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Estimated 12% to 18% cost savings over corrective maintenance program. 

However, there are still some disadvantages [Sullivan et al., 2010]: 

Catastrophic failures still likely to occur. 
Labor intensive. 
Includes performance of unneeded maintenance. 
Potential for incidental damage to components in conducting unneeded 
maintenance. 

1.2.1.3 Predictive Maintenance (PM) 

Condition based maintenance is also known as predictive maintenance which 
means a set of activities that detect changes in the physical condition of equipment 
(signs of failure) in order to carry out the appropriate maintenance work for 
maximizing the service life of equipment without increasing the risk of failure. It 
depends on continuous or periodic condition monitoring equipment to detect the 
signs of failure. 

Condition-based Maintenance (CBM) is most popular policy in modern industries 
[Carnero Moya, 2004; Dieulle et al., 2001; Han & Song, 2003]. CBM is 
maintenance when need arises which is performed after one or more indicators 
show that equipment is going to fail or that equipment performance is deteriorating. 
It was introduced in 1975 in order to maximize the effectiveness of PM decision 
making. CBM is a maintenance program that recommends maintenance actions 
(decisions) based on the information collected through condition monitoring 
process [Jardine et al., 2006]. In CBM, the lifetime (age) of the equipment is 
monitored through its operating condition, which can be measured based on 
various monitoring parameters, such as vibration, temperature, lubricating oil, 
contaminants, and noise levels. The motivation of CBM is that 99 percent of 
equipment failures are preceded by certain signs, conditions, or indications that a 
failure is going to occur [Bloch & Geitner, 2012]. Therefore, CBM is needed for 
better equipment health management, lower life cycle cost, catastrophic failure 
avoidance etc. [Ahmad & Kamaruddin, 2012].  

The heart of CBM is the condition monitoring process, where signals are 
continuously monitored using certain types of sensor or other appropriate 
indicators [Campos, 2009]. Thus, maintenance activities (e.g., repairs or 
replacements) are performed only ‘when needed’ or just before failure [Andersen 
& Rasmussen, 1999]. In general, the main goal of CBM is to perform a real-time 
assessment of equipment conditions in order to make maintenance decisions, 
consequently reducing unnecessary maintenance and related costs [Gupta & 
Lawsirirat, 2006].  

Monitoring is defined as: ‘An activity which is intended to observe the actual state 
of an item’ [SS-EN 13306, 2001]. In other words, condition monitoring is a tool 
used to indicate the condition of equipment in a system [Hameed et al., 2009]. In 
general, the purpose of the condition monitoring process is twofold. First, it 
collects the condition data (information) of the equipment. Second, it increases 
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knowledge of the failure causes and effects and the deterioration patterns of 
equipment [Ahmad & Kamaruddin, 2012]. 

The condition monitoring process can be carried out into two ways: on-line and 
off-line. On-line processing is carried out during the running state of the equipment 
(operating state), while off-line processing is performed when the equipment is not 
running. In addition, condition monitoring can be performed either periodically or 
continuously. Typically, periodical monitoring is carried out at certain intervals, 
such as every hour or every working shift end, with the aid of portable indicators, 
such as hand-held meters, acoustic emission units, and vibration pens. The 
condition monitoring process also includes evaluations based on human senses to 
measure or evaluate equipment conditions, such as degree of dirtiness and 
abnormal color. As for continuous monitoring, as its name suggests, monitoring is 
performed continuously and automatically based on special measurement devices, 
such as vibration and acoustic sensors. 

There are two main limitation of continuous monitoring exist: it is expensive 
because many special devices are required and inaccurate information may be 
obtained because the continuous flow of data creates increased noise. In contrast, 
the main limitation of periodic monitoring is the possibility of missing some 
important information of equipment failure between monitoring intervals [Jardine 
et al., 2006]. Most equipment failures are preceded by certain signs, conditions, or 
indications that such a failure was going to occur and many condition monitoring 
techniques can be used to monitor equipment conditions [Bloch & Geitner, 2012].  

PM has some advantages over other maintenance policies: 1) Improving 
availability and reliability by reducing downtime; 2) Enhancing equipment life by 
reducing wear from frequent rebuilding, minimizing potential for problems in 
disassembly and reassembly and detecting problems as they occur; 3) Saving 
maintenance costs by reducing repair costs, reducing overtime and reducing parts 
inventory requirements; 4) Decreasing number of maintenance operations causes 
decreasing of human error influence. However, there are still some challenges of 
PM: 1) Initiating PM is costly because the cost of sufficient instruments could be 
quite large especially if the goal is to monitor already installed equipment; 2) The 
goal of PM is accurate maintenance, but it is difficult to achieve for the complexity 
of equipment and environment; 3) Introducing PM will invoke a major change in 
how maintenance is performed, and potentially to the whole maintenance 
organization in a company. Organizational changes are in general difficult.  

There are many kinds of techniques, such as sensors techniques, signal process 
techniques, fault diagnosis techniques, fault prognosis techniques and maintenance 
optimization techniques, can be used to support maintenance decision making. All 
these techniques will be reviewed. 
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1.2.2 Review of Sensor System and Sensor Placement Optimization  

1.2.2.1 Sensor Classification  

There are many kinds of data could be collected from the system because of the 
complex and integrated manufacturing system and process [Vachtsevanos et al., 
2006]. Therefore, the selection of the suitable sensors is the key for effective 
condition monitoring. A variety of sensors exist to effectively monitor and control 
various process parameters (Fig. 1.3): 

Mechanical sensors such as acceleration, position, displacement, speed 
sensors and strain gauges etc.; 
Performance sensors such as pressure, fluid and thermodynamic sensors etc.; 
Electrical measurement sensors such as eddy-Current proximity probes and 
micro-electromechanical system sensors etc.; 
Fibre-optic sensors. 

Mechanical Sensor 
Systems

Accelerometers (Vibration Measurements)
Strain gauges
Ultrasonic Sensor System

Performance Sensors
Temperature Sensors / Thermography

Electrical Measurement
Eddy-Current Proximity Probes

Microelectromechanical System (MEMS) Sensors
Fiberoptic Sensors 

Pressure, Fluid and thermodynamic
Optical properties and biochemical elements  

Position, speed, acceleration, torque, strain

Fig. 1.3 The Classification of Sensors. 

Mechanical sensor systems have been studied extensively, and a large number of 
such devices are currently in use to monitor system performance for operational 
state assessment and tracking of fault indicators. A number of mechanical 
quantities - position, speed, acceleration, torque, strain, temperature, etc. - are 
commonly employed in dynamic systems. Most of devices for measuring these 
quantities are available commercially, and their operation has been amply 
described in textbooks and publications [Silva, 1989; Stuart & Allocca, 1984]. 
However, the most useful Mechanical sensors for condition monitoring are 
accelerometers and strain gauge.  

System performance and operational data are monitored routinely in all industrial 
establishments, utility operations, transportation systems, etc. for process control, 
performance evaluation, quality assurance, fault diagnosis and prognosis, and 
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maintenance decision support purposes. A large number of sensor systems have 
been developed and employed over the years. The list includes devices that are 
intended to measure such critical properties as temperature; pressure; fluid, 
thermodynamic, and optical properties; and biochemical elements, among many 
others. Sensors based on classic measuring elements—inductive, capacitive, 
ultrasound-have found extensive applications. More recently, biochemical sensors 
have begun taking central stage, and their detection principles and requirements are 
described in the technical literature [Guardia, 1995]. Characteristic chemical-sensor 
properties with potential application to structural fault diagnosis include liquid and 
solid electrolytic sensors, photochemical sensors, humidity sensors, and field-effect 
and mass-sensitive devices. As an example of their principles of operation, 
consider conductivity sensors. In these devices, the interaction of the gas with the 
solid (semiconducting metal oxide or organic semiconductor) causes a change in 
conductivity. A change in resistance also can be caused by a change in the 
temperature of the sensor material [Vachtsevanos et al., 2006].   

Electromechanical, electrical, and electronic systems constitute a major component 
of industrial engine. They are the dominant element in such areas as transportation 
systems, utilities, biomedical instrumentation, communications, computing, etc. A 
number of sensor systems have been developed and applied in the recent past in an 
attempt to interrogate critical components and systems for fault diagnosis and 
prognosis. Transducing principles based on eddy-current response characteristics, 
optical and infrared signal mentoring, microwaves, and others have been 
investigated [Vachtsevanos et al., 2006; Zou et al., 2000]. 

Fiber optics has penetrated the telecommunications and other high technology 
sectors in recent years. They find utility in the sensor field because of their 
compact and flexible geometry, potential for fabrication into arrays of devices, 
batch fabrication, etc. Fiberoptic sensors have been designed to measure strain, 
temperature, displacement, chemical concentration, and acceleration, among other 
material and environmental properties. Their main advantages include small size, 
light weight, immunity to electromagnetic and radio frequency interference, high- 
and low-temperature endurance, fast response, high sensitivity, and low cost. The 
basic physics leads to a very stable, accurate, and linear temperature sensor over a 
large temperature range. These sensors are also quite small and therefore ideal for 
applications where restricted space or minimal measurement interference is a 
consideration. The size also leads to a very small time response as compared with 
other temperature measurement techniques [Ansari, 1998; Lienhart & Brunner, 
2003; Vachtsevanos et al., 2006].  

Normally, the output of sensor is electrical signal whatever the physical signals is. 
The electrical signals need to be transferred to a database for analysis. The signals 
can be transferred with cables or wireless network. Recently, a fast development 
technology RFID can be used to transfer the signals. Transferring signals with 
cables is a kind of traditional methods and is very effective. However, for some 
companies such as wind generator plant, the monitoring equipment may be far 
away from the plant and thus wireless network and RFID could be used to solve 
this problem.  
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1.2.2.2 Wireless Sensor Networks (WSNs) 

Wireless sensor networks (WSNs) are important in applications where wires cannot 
be run owing to cost, weight, or accessibility. Properly designed WSNs can be 
installed and calibrated quickly and can be up and running in a very short time 
frame [Lewis, 2004]. Typically, WSNs generally consist of a data-acquisition 
network, a data-distribution network monitored and controlled by a management 
center as shown in Fig. 1.4 [Lewis, 2004]. Too many of available technologies 
make even the selection of components difficult, let alone the design of a consistent, 
reliable, robust overall system.   

The basic issue in WSNs is the transmission of messages to achieve a prescribed 
message throughput and quality of service which can be specified in terms of 
message delay, message due dates, bit error rates, packet loss, economic cost of 
transmission, transmission power, etc. Depending on quality of service, the 
installation environment, economic considerations, and the application, one of 
several basic network topologies may be used. A communication network is 
composed of nodes, each of which has computing power and can transmit and 
receive messages over communication links, wireless or cabled. The basic network 
includes fully connected, mesh, star, ring, tree, bus as shown in Fig. 1.5 [Lewis, 
2004]. A single network may consist of several interconnected subnets of different 
topologies. Networks are further classified as Local Area Networks (LAN), e.g. 
inside one building, or Wide Area Networks (WAN), e.g. between buildings. 

Fig. 1.4 Wireless Sensor Networks 
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Fig. 1.5 Basic Network Topologies 

Fully connected networks suffer from problems of NP-complexity [Garey & 
Johnson, 1979]; as additional nodes are added, the number of links increases 
exponentially. Therefore, for large networks, the routing problem is 
computationally intractable even with the availability of large amounts of 
computing power. Mesh networks are regularly distributed networks that generally 
allow transmission only to a node’s nearest neighbors. The nodes in these networks 
are generally identical, so that mesh nets are also referred to as peer-to-peer nets. 
Mesh nets can be good models for large-scale networks of wireless sensors that are 
distributed over a geographic region. Since there are generally multiple routing 
paths between nodes, these nets are robust to failure of individual nodes or links. 
An advantage of mesh nets is that, although all nodes may be identical and have the 
same computing and transmission capabilities, certain nodes can be designated as 
‘group leaders’ that take on additional functions. If a group leader is disabled, 
another node can then take over these duties [Lewis, 2004]. Star topology means 
that all nodes are connected to a single hub node. The hub requires greater message 
handling, routing, and decision-making capabilities than the other nodes. If a 
communication link is cut, it only affects one node. However, if the hub is 
incapacitated the network is destroyed. Ring topology means all nodes perform the 
same function and there is no leader node. Messages generally travel around the 
ring in a single direction. However, if the ring is cut, all communication is lost. In 
the bus topology, messages are broadcast on the bus to all nodes. Each node checks 
the destination address in the message header, and processes the messages 
addressed to it. The bus topology is passive in that each node simply listens for 
messages and is not responsible for retransmitting any messages [Lewis, 2004]. 

1.2.2.3 Radio-frequency Identification (RFID) 

Radio-frequency identification (RFID) is one of numerous technologies grouped 
under the term of Automatic Identification (Auto ID), such as bar code, magnetic 
inks, optical character recognition, voice recognition, touch memory, smart cards, 
biometrics etc. Auto ID technologies are a new way of controlling information and 
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material flow, especially suitable for large production networks [Ilie-zudor et al., 
2006]. RFID is the use of a wireless non-contact radio system to transfer data from 
a tag attached to an object, for the purposes of identification and tracking 
[http://en.wikipedia.org/wiki/Radio-frequency_identification]. In general terms, it 
is a means of identifying a person or object using a radio frequency transmission. 
The technology can be used to identify, track, sort or detect a wide variety of 
objects [Lewis, 2004]. Recently, RFID become more and more interesting 
technology in many fields such as agriculture, manufacturing and supply chain 
management. 

The history of RFID technology can be tracked back to the radio-based 
identification system used by allied bombers during World War II [Garfinkel & 
Holtzman, 2005]. Early identification Friend or For (IFF) systems were used to 
distinguish Allied fighter and bomber by identifying the correct signals sent by 
Allied aircrafts, from aircrafts sent by enemy at night. After the war, Harry 
Stockman realized that it is possible to power a mobile transmitter completely from 
the strength of a received radio signal, and then he introduced the concept of 
passive RFID systems [Stockman, 1948]. In 1972, a patent application for 
“inductively coupled transmitter-responder arrangement” was filed which is used 
separate coils for receiving power and transmitting the return signal [Kriofsky & 
Kaplan, 1975]. In 1979, a patent application for “identification device” (two 
antennas was combined) was filed which is seen as a RFID landmark because it 
emphasized the potentially small size of RFID device [Beigel, 1982]. The 1980s 
became the decade for full implementation of RFID technology, though interests 
developed somewhat differently in various parts of the world. The greatest interests 
in the United States were for transportation, personnel access, and to a lesser extent, 
for animals. In Europe, the greatest interests were for short-range systems for 
animals, industrial and business applications, though toll roads in Italy, France, 
Spain, Portugal, and Norway were equipped with RFID. The 1990s was a 
significant decade for RFID since it saw the wide scale deployment of electronic 
toll collection in the United States. The world's first open highway electronic 
tolling system opened in Oklahoma in 1991 and then extended to the whole world. 
Interest was also keen for RFID applications in Europe during the 1990s. Both 
Microwave and inductive technologies were finding use for toll collection, access 
control and a wide variety of other applications in commerce [Landt, 2001]. The 
21st century opens with the smallest microwave tags built using, at a minimum, 
two components: a single custom CMOS integrated circuit and an antenna. Tags 
could now be built as sticky labels, easily attached to windshields and objects to be 
managed [Landt, 2005]. It seems that there are still a great many developments of 
RFID to look forward to as the history continues to teach that and RFID will be 
presented in our daily life. 

As mentioned above, most of applications of RFID are in logistics or Auto ID area. 
However, from its principle, it is possible to apply this technology in signal 
transmission in condition monitoring (vibration measuring). However, there are no 
matured products of the RFID sensor for measuring vibration in production so far. 
Generally, there are two kinds of RFID vibration sensor could be developed. The 
one is combining the RFID tag and vibration sensor together to compose a new 
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RFID vibration sensing tag. The other is to connect vibration sensor to RFID tag 
and the RFID system only used to transmit vibration data to RFID reader and 
further to host computer. This application can make the measuring vibration 
become very flexible and effective [Wang & Zhang, 2012].  

1.2.2.4 Sensor Placement Optimization 

The basic problem for condition monitoring is to deduce the existence of a defect 
in a structure from measurements taken at sensors distributed on the structure. The 
correctness of defect diagnosis depends on the method of pattern recognition for 
fault and effectiveness of signals from the sensors mounted on the machines. While 
carrying out on-site condition monitoring for a machine, the inappropriate 
distribution of sensors might result in weak incentives of certain order or modal, 
and affect the accuracy of fault identification. The aim of optimizing the placement 
of sensors is to obtain as much as possible of machine structural information with 
as few as possible sensors, which benefit the company in the economy viewpoint. 
Because of constraints of machine structure and environment, and consideration of 
economy, only a small number of sensors are installed when a condition 
monitoring system is established. It is very important to design the optimal position 
of the sensor to mount in order to ensure the accuracy and correctness of 
monitoring and fault judgment.  

There are many literatures in optimal placement optimization of sensors in machine 
level. The spatial controllability was used to find the optimal placement of 
collocated actuator-sensor pairs for effective average vibration reduction over the 
entire structure, and the maintaining modal controllability and observability were 
used to select vibration modes for a thin plate [Halim & Moheimani, 2003]. 
Recently, intelligent optimization algorithm has developed well which is a method 
to simulate the biological and physical process which can be used in sensor 
placement optimization. Many researchers focus on Genetic Algorithm (GA) 
application in sensor placement optimization and make up for a lot of shortage of 
the traditional optimization algorithm [Li et al., 2000; Liu et al., 2008; Sun et al., 
2008]. But GA has to adopt binary coding and has complex operation process such 
as mutation, genetic and crossover. PSO adopts real number coding to avoid the 
complex operation, which is simple and easy to realize. So it is easy to apply in 
sensor placement optimization. PSO and finite element analysis were combined 
together to search the sensors optimal placement of a gearbox [Pan et al., 2010]. 
Binary PSO and Analytical redundancy Relations (ARRs) were combined to 
optimize the sensor placement for fault diagnosis [Du et al., 2011]. The sensor 
placement optimization is a very important aspect for many applications such as 
modal test and parameter identification [Cherng, 2003; Papadimitriou, 2004; 
Pennacchi & Vania, 2008], fault diagnosis [Bhushan & Rengaswamy, 2000; 
Staszewski, 2002; Worden & Burrows, 2001] and process monitoring [Wang et al., 
2002]. The PhD work tries to apply Swarm Intelligence (SI) such as Particle 
Swarm Optimization (PSO) and Bee Colony Algorithm (BCA), and finite element 
analysis in sensor placement optimization in order to get enough information of 
machine structure using a small number of sensors and ensure the accuracy and 
correctness of condition monitoring.  
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1.2.3 Review of Fault Diagnosis and Prognosis 

During a system failure, only a small fraction of the downtime is spent to maintain 
or repair the components that cause the fault. Up to 80% of that is spent to locate 
the source of the fault [Kegg, 1984]. In case of complex installation such as 
automotive manufacturing plant, one minute downtime may cause as high as 
$20,000 cost [Spiewak et al., 2000]. Early fault diagnosis is crucial for avoiding 
major malfunction and massive loss in economy and productivity. In diagnosing 
rotating machinery, sound emissions or vibration signals are used to monitor the 
performance of the machine and could be used to judge whether the machine is 
failure or degrading. Many useful techniques for signal analysis have been applied. 
These techniques can be classified into three types: time domain [Chen et al., 2008; 
Wang et al., 2010], frequency domain such as Fast Fourier Transform [Corinthios, 
1971; Liu et al., 2010; Rai & Mohanty, 2007] and time-frequency domain such as 
the Short Time Fourier Transform [Portnoff, 1980], Hilbert-Huang Transform [Yu 
et al., 2007], Wigner-ville distribution [Andria et al., 1994; Staszewski et al., 1997; 
Wang et al., 2008] and Wavelet Transform [Dongyan Chen & Trivedi, 2005; Lin & 
Qu, 2000; Prabhakar et al., 2002; Seker & Ayaz, 2003; Tse et al., 2004; Wu & 
Chen, 2006; Wu & Kuo, 2009; Wu & Liu, 2009; Zheng et al., 2002]. 
Autoregressive model method can also be used to extract features of a machine or 
component for fault diagnosis and prognosis [Li et al., 2009]. Wavelet transform is 
the best of these tools because short time Fourier transform only provides a 
constant time-frequency resolution, and Wigner-ville distribution produced 
interface terms on the time-frequency domain in a critical condition [Wu & Chen, 
2006]. It has particular advantages for characterizing signals at different 
localization levels in time as well as signal processing, image processing, pattern 
recognition, seismology and machine fault diagnosis. 

After processing vibration signals and extracting the features, the more important 
thing is identifying the fault and predicting the remaining useful life. There are 
many methods could be used in this area. Support vector machine (SVM) learning 
is a popular machine learning application due to its high accuracy and good 
generalization capabilities [Saravanan et al., 2008]. Li et al. [Li et al., 2005] 
proposed a hidden Markov model (HMM)-based fault diagnosis in speed-up and 
speed-down process for rotary machinery. In the implementation of the system, one 
PC was used for data sampling and another PC was used for data storage and 
analysis. Wu and Chow [Wu & Chow, 2004] presented a self-organizing map 
(SOM) based radial-basis-function (RBF) neural network method for induction 
machine fault detection. The system was implemented by utilizing a PC and 
additional data acquisition equipment. Many methods based on ANN have been 
developed for online surveillance with knowledge discovery, novelty detection and 
learning abilities [Kasabov, 2001; Markou & Singh, 2003; Marzi, 2004]. ANN, 
Fuzzy Logic System (FLS), Genetic Algorithms (GA) and Hybrid Computational 
Intelligence (HCI) systems were applied in fault diagnosis and a case of centrifugal 
pump was utilized to show how the methods work [Wang, 2002]. Decision tree 
method was used to identify fault in of mean shifts in bivariate processes in real 
time [He et al., 2011]. Probability based Bayesian network methods was used to 
identify vehicle fault which can be used to diagnose single-fault and multi-fault 
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[Huang et al., 2008]. Lee, et al. [Lee et al., 2006] developed an intelligent 
prognostics and e-maintenance system named “Watchdog Agent” with the method 
of Statistical matching, and performance signature and Support Vector Machine 
(SVM) based diagnostic tool. 

There exist some literatures integrating these techniques for fault diagnosis and 
prognosis. Momoh and Button integrated FFT and ANN to analyze and identify the 
fault of aerospace DC arcing [Momoh & Button, 2003]. Fourier transform and 
wavelet transform were integrated to detect and identify the fault of induction 
motor using stator current information [Lee, 2011]. Wavelet analysis techniques 
and ANN were integrated for fault diagnosis in induce motors [Lee, 2011], 
automotive generator [Wu & Kuo, 2009] and gear box [Saravanan & 
Ramachandran, 2010] and the results were pretty good. In the PhD work, some 
techniques are integrated together to classify and predict fault and further to predict 
the remaining useful life. These results can be used to support the maintenance 
decision making and optimizing the scheduling.  

1.2.4 Review of Maintenance Scheduling Optimization 

As mentioned above, PM is a dynamic schedule according to the state of 
equipment from continuous and/or periodic inspection. It utilizes the product 
degradation information extracted and identified from on-line sensing techniques to 
minimize the system downtime by balancing the risk of failure and achievable 
profits. Mathematically, the maintenance scheduling problem is a multiple-
constraint, non-linear and stochastic optimization problem. This kind of problem 
has been studied for several decades and many kinds of different methods have 
been applied to solve it. Two methods for PM optimization had been developed 
during 1980s. The first method [Perla, 1984; Walker, 1987] performs cost/benefit 
analysis of each analyzed piece of manufacturing equipment. It is based on 
identifying important equipment firstly, and then predicting its future performance 
with and without changes in the regularly scheduled maintenance program. The 
second approach is the Reliability-Centered Maintenance (RCM) [Crellin, 1986; 
Hook et al., 1987; Vasudevan, 1985]. This methodology was adopted from the 
commercial air transport industry. It is based on a series of orderly steps, including 
identification of system/subsystem functions and failure modes, prioritization of 
failures and failure modes (using a decision logic tree), and finally selection of PM 
tasks that are both applicable (i.e. have the potential of reducing failure rate) and 
effective (i.e. economically worth doing). In the last two decades, many kinds of 
intelligent computational methods, such as the artificial neural network method, 
simulated annealing method, expert system, fuzzy systems and evolutionary 
optimization, have been applied to solve the maintenance scheduling problem and 
obtained many very exciting results [Huang, 1998; Miranda et al., 1998; Satoh & 
Nara, 1991; Sutoh et al., 1994; Yoshimoto et al., 1993]. And also, with the rapid 
development of the evolutionary theory, genetic algorithms (GAs) had become a 
very powerful optimization tool and obtained wide application in this area [Arroyo 
& Conejo, 2002; Back et al., 1997; Huang et al., 1992; Lai, 1998; Lee & Yang, 
1998; Wang & Handschin, 2000]. In recently years, several new intelligent 
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computational methods such as Ant Colony Optimization (ACO) and Particle 
Swarm Optimization (PSO) have been applied in preventive maintenance 
scheduling [Benbouzid-Sitayeb et al., 2008; Pereira et al., 2010; Yare & 
Venayagamoorthy, 2010]. 

All the above methods of maintenance scheduling are based on the specified time 
periods other than based on the condition of the equipment or facilities. PM is a 
good strategy which could be used to improve reliability and increase useful life of 
the equipment and reduce the cost of maintenance according to the condition of 
machine. When the condition of a system, such as its degradation level, can be 
continuously monitored, PM policy can be implemented, according to which the 
decision of maintaining the system is taken dynamically on the basis of the 
observed condition of the system. Recently, genetic algorithms, Monte Carlo 
method, Markov and semi-Markov methods are applied in PM [Amari et al., 2006; 
Barata et al., 2001, 2002; Be renguer et al., 2000; Grall et al., 2008; Marseguerra 
et al., 2002]. Normally, to make a dynamic PM scheduling, there are main three 
tasks as following and will be discussed in Chapter 8.  

Establishing a predictive maintenance model mathematically; 
Finding a suitable optimization method to optimize the predictive 
maintenance model; 
Making a dynamic maintenance decision based on the predictive model and 
optimization method. 

1.3 Contributions

This section provides the overview of scientific contributions to the topic of 
Condition-based Maintenance (CBM) especially in data mining approaches. CBM 
is a technique that has not yet been implemented on a large scale in industry. Many 
companies have installed various sensors on their equipment and used this gathered 
information to determine the current health of the system. However, the gathered 
information has seldom been used effectively for fault diagnosis and prognosis. 
This PhD work tries to find an easy way to implement CBM technique. 

The main contributions of this thesis are located in data mining approaches other 
than the other techniques such as model based or statistical methods. The 
framework contains many relevant aspects, i.e. sensor placement optimization, 
signal processing and feature extraction, fault diagnosis and prognosis, and 
maintenance scheduling optimization. The contributions of this thesis are described 
as follows. 

During the PhD work, the framework called Intelligent Fault Diagnosis and 
Prognosis System (IFDPS) for Condition-based Maintenance (CBM) is established. 
The thesis tried to apply data mining techniques in most of the aspects in this 
framework. 

Sensor placement optimization is a nontrivial problem of fault diagnosis and 
prognosis for equipment. Optimal positions of sensors mounted on equipment can 
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improve the effectiveness and reliability of condition monitoring and improve the 
quality of data collection. This thesis proposes a method for sensor placement 
optimization in machine level by combining Finite Element Analysis (FEA) and 
Swarm Intelligence, i.e. Particle Swarm Optimization (PSO) and Bee Colony 
Algorithm (BCA). The method can find the optimal positions of a number of 
sensors. 

Techniques of signal processing and feature extraction are crucial for obtaining key 
performance information so that the system can diagnose and prognose effectively. 
The thesis analyze the vibration signal through traditional methods such as fast 
Fourier transform (FFT), short-time Fourier transform (STFT) and some modern 
signal analysis techniques such as wavelet transform, etc. These techniques 
together feature extraction method such as Principal Component Analysis (PCA)  

For fault diagnosis, the thesis combines the methods of signal processing and 
feature extraction mentioned above, and some data mining techniques such as 
Artificial Neural Network (ANN) and Self-organizing Map (SOM). These methods 
can detect and diagnose the fault effectively. 

For fault prognosis, the thesis proposes a methodology to predict the indicator of 
component fault based on the collected information by sensors and ANN other than 
based on the traditional statistics methods. This methodology has already applied to 
wind turbine fault prognosis and it works effectively. The method establishes ANN 
model for the indicator in normal condition of wind turbine using the history 
SCADA which is collected by wind farm operator but not use effectively. Then the 
thresholds of different conditions can be set by using the history data with different 
extent fault. Finally ANN model can be applied online to monitor the wind turbines 
and gives staff earn warning of fault so that they can schedule the maintenance 
actions in advance to reduce downtime, production loss and maintenance cost. 

For different purpose, the different maintenance models are established. Based on 
these models, the maintenance schedule can be optimized by Swarm Intelligence 
(SI), i.e. Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO) and 
Bee Colony Algorithm (BCA).  

The algorithms of PSO, ACO and BCA are improved or modified in order to be 
applied to maintenance scheduling optimization. 

1.4 List of Scientific Articles 

Zhang, Z., Wang, Y. and Wang, K., (2013). Fault Diagnosis and Prognosis 
using Wavelet Packet Decomposition, Fourier Transform and Artificial Neural 
Network. Journal of Intelligent Manufacturing, vol. 24 (6), pp. 1213-1227 (doi: 
10.1007/s10845-012-0657-2). 
Zhang, Z., Wang, Y. and Wang, K., (2013). Intelligent Fault Diagnosis and 
Prognosis Approach for Rotating Machinery integrating Wavelet Transform, 
Principal Component Analysis, and Artificial Neural Networks. International 
Journal of Advanced Manufacturing Technology, vol. 68 (1-4), pp. 763-773 
(doi: 10.1007/s00170-013-4797-0). 



Chapter 1: Introduction 
 

19 
 

Zhang, Z., and Wang, K., (2014). Wind turbine fault detection based on 
SCADA data analysis using ANN. Advances in Manufacturing, 2(1), pp. 70-78 
(doi: 10.1007/s40436-014-0061-6).  
Liu, Y., Zhang, Z. and Liu, Z., (2011). Customized Configuration for 
Hierarchical Products: Component Clustering and Optimization with PSO. The 
International Journal of Advanced Manufacturing Technology, 57. pp. 9-12. 
Zhang, Z. and Wang, K., (2013). Wind Turbine Fault Detection Based on 
SCADA Data Analysis Using ANN. International Workshop of Advanced 
Manufacturing and Automation (IWAMA2013), Nov. 27, pp. 323-335. 
Wang, K., Sharma, V. and Zhang, Z. (2013). SCADA Data Interpretation for 
Condition-based Monitoring of Wind Turbines. International Workshop of 
Advanced Manufacturing and Automation (IWAMA2013), Nov. 27, pp. 307-321. 
Zhang, Z. and Wang, K., (2012). Sensors Placement Optimization for 
Condition Monitoring. Proceedings of International Workshop of Advanced 
Manufacturing and Automation (IWAMA2012), June 20-21, pp. 69-76.  
Zhang, Z. and Wang, K., (2012). IFDPS-Intelligent Fault Diagnosis and 
Prognosis System for Condition-based Maintenance. International Workshop of 
Advanced Manufacturing and Automation (IWAMA2012), June 20-21, pp.77-84.   
Zhang, Z. and Wang, K. (2010). Application of Improved Discrete Particle 
Swarm Optimization (IDPSO) in Generating Unit Maintenance Scheduling. 
International Workshop of Advanced Manufacturing and Automation 
(IWAMA2010), pp. 79-86. 
Zhang, Z. and Wang, K., (2012). Dynamic Condition-Based Maintenance 
Scheduling Using Bee Colony Algorithm. Proceedings of International Asia 
Conference on Industrial Engineering and Management Innovation (IEMI2012), 
Oct. 27-29, pp.1607-1618. 
Zhang, Z. and Wang, K., (2011). Fault isolation using self-organizing map 
(SOM) ANNs. IET International Conference of Wireless Mobile & Computing, 
Nov. 14-16, pp. 425-431. 
Wang, K. and Zhang, Z., (2012). Application of Radio Frequency Identification 
(RFID) to Manufacturing. SFI-Norman, SINTEF (ISBN 978-82-14-05388-3), 
pp. 1-24.  
Wang, K. and Zhang, Z. (2011). Intelligent Fault Diagnosis and Prognosis 
System (IFDAPS) for Condition-based Maintenance. Trondheim: SINTEF 
A17147 (ISBN 978-82-14-05057-8) pp. 1-21. 
Wang, K., Sharma, V. and Zhang, Z., (2013). SCADA Data Mining for wind 
turbine fault diagnosis and failure prognosis: Principles, Trends, Applications 
and Research Areas, Trondheim: SINTEF (ISBN 978-82-14-05496-5), pp. 1-20. 
Zhang, Z. and Wang, K. (2012). Fault Diagnosis using Association Rules. In 
Wang, K. and Wang, Y. edit: Data Mining for Zero-Defect Manufacturing, pp. 
53-75. 
Cusanno, R., Zhang, Z. Regattieri, A. and Wang, K., (2012). Apply Particle 
Swarm Optimization for Condition-based Maintenance Scheduling. In Wang, K. 
and Wang, Y. edit: Data Mining for Zero-Defect Manufacturing, pp. 117-131. 
Crucian, D., Zhang, Z. and Wang, K., (2012). Fault Diagnosis and Prognosis 
Using Self-organizing Map. In Wang, K. and Wang, Y. edit: Data Mining for 
Zero-Defect Manufacturing, pp. 101-115. 



Chapter 1: Introduction 
 

20 
 

1.5 Outline of Thesis 

The present thesis is structured in 9 Chapters. Chapter 2 describes the general 
structure of framework of IFDPS very briefly. Chapter 3 introduces some 
Computational Intelligence (CI) techniques, such as Artificial Neural Network 
(ANN), Association Rules (AR), Decision Trees (DT), Particle Swarm 
Optimization, Bee Colony Algorithm and Semi-Supervised Learning, which are 
applied in the phases of the framework of Intelligent Fault Diagnosis and Prognosis 
(IFDPS) for Condition-based Maintenance. Chapter 4 introduces the sensor 
strategies very briefly and proposes the data mining methods application in sensor 
placement optimization. Chapter 5 describes the techniques of signal processing 
and feature extraction. Chapter 6 presents the data mining technology applications 
in fault diagnosis. Chapter 7 proposes a fault prognosis method for fault prognosis 
based on fault indicator prediction by data mining techniques. Chapter 8 presents 
how to apply the Computational Intelligence methods in maintenance scheduling 
optimization both for CBM and Preventive maintenance. Finally the conclusions 
and future research directions are presented in Chapter 9. The problem of fault 
diagnosis and prognosis and CBM are the very hot research points recently. The 
present work is focus on the data mining methods for phases of IFDPS.  
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2 Framework of Intelligent Fault Diagnosis and Prognosis 
Systems (IFDPS) for CBM 

2.1 Introduction  

Any operation or process done on machine or its components to enhance the 
efficiency of machine before or after the breakdown is called maintenance 
[Deshpande & Modak, 2002]. It contains all technical and administrative activities, 
including management activities, which have the objective to sustain or recover 
equipment state and thus enable it to perform at a required level. The maintenance 
cost ranges between 15% (for manufacturing companies) and 40% (for iron and 
steel industry) of the cost of the manufactured goods [Mobley, 1990]. In the United 
States, this corresponds to more than 200 billion dollars every year. This shows the 
importance of maintenance from an economical point of view. Usually, three 
different types of maintenance are considered [Chu et al., 1998], that is: corrective 
maintenance, preventive maintenance and predictive maintenance. Corrective 
maintenance consists in repairing a system only after a breakdown occurred which 
contains all maintenance performed in order to repair a failure [Wilson, 2002]. 
Corrective maintenance is probably the most commonly used approach, but it is 
easy to see its limitations. When equipment fails, it often leads to downtime in 
production and therefore this approach is often expensive. Preventive maintenance 
consists in maintaining the system periodically to prevent breakdown. Statistics of 
failures are used to define the period such as every 100 working hours, or every 10 
000 km for a car. Because of uncertainty of products, the lifecycle can vary much 
even if they are products in the same class. The periodical maintenance may carry 
out far before or after the time of the product become failure. Therefore, the 
predictive maintenance (also called Condition-based Maintenance) became a much 
better alternative maintenance strategy, which consists in starting a maintenance 
operation only when required by the state of the system, i.e. when a potential 
failure is detected. With the predictive maintenance strategy, the maintenance 
action can be done just before the product become failure, and thus it can prolong 
the product life without breakdown. 

Condition-based Maintenance (CBM) is the use of machinery run-time data to 
determine the machinery condition and hence its current fault/failure condition, 
which can be used to schedule, required repair and maintenance prior to breakdown 
[Vachtsevanos et al., 2006]. To support CBM policy, a framework called 
Intelligent Fault Diagnosis and Prognosis System (IFDPS) is established in KDL 
for manufacturing systems and processes. This Chapter mainly introduces the 
general idea of IFDPS and its functions very briefly. 

2.2 Objectives and Benefits 

The main objective of IFDPS is to establish a framework to show how to use the 
signals, databases, analysis tools and maintenance decision-making techniques for 
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reaching near zero-breakdown in sustainable manufacturing. It is a part of a big 
project called SFI Norman (NORMAN - Center for Research-based Innovation). 
The final aim of IFDPS is to reach zero-defect manufacturing in which the first 
step is to reach zero-breakdown manufacturing. Therefore, there are several 
benefits of the framework of IFDPS.  

It can monitor plant floor assets, link the production and maintenance 
operation system, acquire data, collect feedback from remote customer site, 
and integrate it into upper level enterprise applications, discovery and 
generate maintenance knowledge. 
It can monitor the degradation of manufacturing machine and process, and 
predict the condition (remaining useful life) of the equipment. 
It can make predictive maintenance decision to prevent occurrence and 
development of failures effectively, ensure the safety of equipment and 
personnel, and reduce economic lost caused by failure. 
It can use fault diagnosis, performance assessment of level of degrading, 
fault prognosis models to reach zero-breakdown performance and further 
to reach zero-defect manufacturing, and improve the productivity of a 
company. 

2.3 Structure of IFDPS 

Fig. 2.1 shows the general structure of IFDPS which presents from the machine 
degrading, sensors, signal processing, fault diagnosis and prognosis, and 
maintenance scheduling optimization. The main tasks performed by IFDPS are the 
following: 

Continuous collection of data from different sensors mounted on the 
machine includes the information of machine and environment. 
Continuous processing the data collected from sensors in order to get 
useful information to evaluate the off-line and on-line health condition of 
the machine and also to detect if some symptoms of degradation or 
anomalies are present or could become present. 
According to the useful information mentioned above, the condition or the 
fault can be identified. If there are any degradation become unaccepted, the 
system can tell staff which components or machines and when should be 
maintained or repaired. 
According to the condition of the component or machine, the remaining 
useful life can be predicted.  
According to the condition of equipment and predicted remaining useful 
life, the maintenance action plan can be scheduled by some intelligent 
computational optimization algorithm. 

The techniques of subtasks are presented in the following sections. 
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Fig. 2.1 Framework of IFDPS  

2.3.1 Data Acquisition 

Data acquisition is first phase of the IFDPS and is a basis of fault diagnosis and 
prognosis and hence is foundation of intelligent Condition-based Maintenance 
scheduling. The tasks of this phase are selecting a suitable sensors and optimal 
sensor strategy. Sensors and sensing strategies constitute the foundational basis for 
fault diagnosis and prognosis. Strategic issues arising with sensor suites employed 
to collect data that eventually will lead to online realization of diagnostic and 
prognostic algorithms are associated with the type, number, and location of sensors; 
their size, weight, cost, dynamic range, and other characteristic properties; whether 
they are of the wired or wireless variety; etc. [Vachtsevanos et al., 2006]. Data 
collected by transducing devices rarely are useful in their raw form. Such data must 
be processed appropriately so that useful information may be extracted that is a 
reduced version of the original data but preserves as much as possible those 
characteristic features or fault indicators that are indicative of the fault events we 
are seeking to detect, isolate, and predict the time evolution of. Thus such data 
must be preprocessed, that is, filtered, compressed, correlated, etc., in order to 
remove artifacts and reduce noise levels and the volume of data to be processed 
subsequently. Furthermore, the sensor providing the data must be validated; that is, 
the sensors themselves are not subjected to fault conditions. Once the 
preprocessing module confirms that the sensor data are “clean” and formatted 
appropriately, features or signatures of normal or faulty conditions must be 
extracted. This is the most significant step in the IFDPS architecture whose output 
will set the stage for accurate and timely diagnosis of fault modes. The extracted-
feature vector will serve as one of the essential inputs to fault diagnostic algorithms. 
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Following will introduce the two aspects: sensor category and placement 
optimization. 

2.3.1.1 Classification of Sensors 

There are many methods can be used to classify sensors such as measurends, 
detection mass used in sensors, materials and applications [White, 1987]. However, 
for fault diagnosis and prognosis, we only use the sensors can measure physical 
measurends. For condition monitoring, it is generally agreed that two classes of 
sensors are making significant inroads into system monitoring for fault diagnosis 
and prognosis. The first one refers to classic or traditional transducers aimed at 
monitoring mechanical, structural, performance and operational and 
electrical/electronic properties that relate to failure mechanisms of mechanical, 
structural, and electrical systems. In this category, there are many sensors that 
measure fluid and thermodynamic, thermal, and mechanical properties of a variety 
of systems or processes—gas turbines, ground vehicles, pumps, aerospace systems, 
etc. The second important category refers to sensor systems that are placed almost 
exclusively to interrogate and track system properties that are related directly to 
their failure mechanisms. The most useful sensors in fault diagnosis and prognosis 
are first category which is shown in Fig. 1.3. When the sensors need to be selected, 
many aspects such as position, accuracy, ease of fitting and cost, need to be 
considered. After the sensors are chosen, the most important this is where to install 
the sensors.  

2.3.1.2 Sensor Placement Optimization 

Researches of sensor placement become very important issues for obtaining as 
much as possible information of machines or components using as few as possible 
sensors considering efficiency, effectiveness and economic issues. Traditionally, 
the sensor are placed to meet control and performance monitoring objectives [Al-
Shehabi & Newman, 2001; Chen & Li, 2002; Faulds & King, 2000; Giraud & 
Jouvencel, 1995]. It is instructive to take advantage of such sensors in a fault 
diagnosis monitoring scheme because they can provide useful information relating 
to fault behaviors of critical system variables.  More recently, research on sensor 
placement has focused on two different levels: the component level and the system 
level. At the component level, attempts have been reported regarding placement at 
the component’s range, for example, a bearing or an object in three dimensional 
views [Faulds & King, 2000; Naimimohasses et al., 1995]. For complex, large-
scale systems consisting of multiple components/subsystems, a fault may propagate 
through several components. With a large number of possible sensor locations, 
selection of an optimal location, as well as the number and types of sensors, poses 
a challenging problem that must be addressed at the system level.  

IFDPS optimize the distribution of sensor placement in both component level and 
system using some Swarm Intelligence (SI) such as Particle Swarm Optimization 
(PSO) and Bee Colony Algorithm (BCA). For component level, the structure is 
analyzed using Finite Element Method (FEM) which information can be used to 
optimize the sensor placement using SI. For system level, the information transmit 
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flaw is analyzed which information can also be used to optimize the sensor 
placement. 

2.3.2 Signal Preprocessing and Feature Extraction 

Generally, there are two steps to deal with the signals from sensors. The one is 
signal preprocessing which is intended to enhance the signal characteristics that 
eventually may facilitate the efficient extraction of useful information that is the 
indictors of the condition of monitoring component or subsystem. The tools in this 
category include filtering, amplification, data compression, data validation, and de-
noising which generally aim at improving the signal-to-noise ratio. And the other is 
extracting features from preprocessed signals that are characteristic of an incipient 
failure or fault. Generally, the features can be extracted from three domains: time 
domain, frequency domain and time-frequency domain. All possible signal 
preprocessing and feature extraction methods are shown in Table 2.1 and which 
features could be selected depend on the real machines or system. All these kinds 
of methods are selectable in IFDPS and which methods are applied can be decided 
by real machine or system analysis. What’s more, in order to express the enough 
information to express the condition, the methods in the table can be combined 
together to be indicators of the condition. 

Table 2.1 The Methods of Signal Pre-process and Signal Process. 

Signal 
Preprocessing 

Signal process 

Time Domain Frequency Domain Wavelet 
Domain 

Filter, 
Amplification, 
Signal 
Conditioning, 
Extracting Weak 
Signals, De-noising 
Vibration Signal 
Compression and 
Time Synchronous 
Averaging (TSA) 

Mean, RMS,  
Shape factor, 
Skewness, Kurtosis, 
Crest factor, 
Entropy Error, 
Entropy estimation, 
Histogram Lower 
and 
Histogram upper 

Continues Fourier 
Transform (CFT), Discrete  
Fourier Transform (DFT), 
Fast Fourier Transform 
(FFT), 
Wigner-ville Distribution 
(WVD) and 
Short Time Fourier 
Transformation (STFT) 

Wavelet 
Transform 
(WT) and 
Wavelet Packet 
(WP) 

2.3.3 Fault Diagnosis and Identification 

Fault diagnosis strategies have been developed in recent years and have found 
extensive utility in a variety of application domains. The enabling technologies 
typically fall into two major categories: model based and data-driven, as shown in 
Fig. 2.2. Model-based techniques rely on an accurate dynamic model of the system 
and are capable of detecting even unanticipated faults. They take advantage of the 
actual system and model outputs to generate a ‘‘discrepancy’’ or residual, as it is 
known, between the two outputs that is indicative of a potential fault condition. On 
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the other hand, data-driven techniques often address only anticipated fault 
conditions, where a fault ‘‘model’’ now is a construct or a collection of constructs 
such as neural networks, expert systems, etc. that must be trained first with known 
prototype fault patterns (data) and then employed online to detect and determine 
the faulty component’s identity. 

Fig. 2.2 Model-based and Data-driven Fault Diagnosis Techniques 

IFDPS focus on the data-driven techniques and hybrid techniques. If the historical 
data can be obtained easily, the data-driven is very good to identify the fault and 
evaluate the condition. When only part of historical can be obtained, the hybrid 
techniques which combine the data-driven techniques and model-based techniques 
can be used to evaluate the condition of machine effectively. The semi-supervised 
learning method also can be used to evaluate condition and identify fault when 
only part of historical data is available and it is very effective. All these techniques 
are selectable according to the real manufacturing system analysis. 

2.3.4 Fault Prognosis and Remaining Useful Life Evaluation  

Generally speaking, current prognostic approaches can be classified into three 
basic groups: physical model prognostics, stochastic model prognostics and data-
driven model prognostics.  

Since physical models usually are based on a physical mechanism (failure 
mechanism) or process (failure process), they are valid for all problems where the 
process/mechanism leads to a failure. Sometimes, they are restricted to specific 
types of components. Typical for physical models is that the input parameters have 
a clear meaning and represent real (and often measurable) quantities or natural, 
physical or material constants. Thus, the models provide a clear understanding 
about the model input and the output, resulting in a so-called white-box model. 
Therefore, physical models are appealing for those who wish to get better 
understanding of the mechanisms and processes leading to failure [Loucks et al., 
2005]. Physical models are in particular useful for design improvement.  
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In a first step, a physical model must be established if a good model is not available. 
This can be a challenging work and requires good knowledge about the problem 
that is modelled. However, once a good model is available, it can be applied to all 
comparable problems where good estimates or measurements of the model input 
parameters are available. Since the processes in real world may be quite 
complicated and may be affected by many mechanisms and effects, one usually has 
not the possibility to take all of them into account. Thus, a physical model may be 
restricted to include the main mechanisms and main effects only. 

Physical models are often empirical, which means they are based on observation or 
experiments. Physical models can basically be used for all kinds of predictions, 
both long-term and short-term, depending on what they are designed for.  

Most stochastic can be applied for many different problems. An advantage of 
stochastic models applied to lifetime models are of general nature and prediction is 
that both an estimate of the mean lifetime and various estimates of uncertainty can 
be established, such as variance of the lifetime, confidence intervals for parameters 
and predictions, etc. Parameter estimation in stochastic modelling is based on the 
observation of the model output. Thus, observations of the model output, such as 
observations of lifetime or degradation, are usually collected as basis for parameter 
estimation. When possible, one should fit different stochastic models to the data 
and choose the model that gives the best prediction. Many techniques exist to 
choose the best model and to check the goodness of fit (e.g. p-value, confidence 
intervals, comparison of maximum likelihood values and various graphical 
methods such as probability plots). As alternative to data collection, expert 
judgement can be used for parameter estimation. There exist different techniques 
for expert judgement, e.g. [Cooke, 1992]. Stochastic models can basically be used 
for both short-term and long-term predictions. However, for lifetime prediction, 
they are mostly used to make medium and long-term predictions. Furthermore, 
they are often used in system modelling or as input in other models (such as 
maintenance and optimization models) where the main interest is in long- term 
averages (such as failure rates). They can also successfully be applied for 
comparing and explaining the lifetime influence of different designs or other 
factors either by looking on the results from different samples or by incorporating 
explanatory variables in the model. 

However, in the absence of a reliable and accurate system model, and statistical 
data, another approach to determine the remaining useful life is to monitor the 
trajectory of a developing fault and predict the amount of time until the developing 
fault reaches a predetermined level requiring action, which is the so called data-
driven prognostic method. Data-driven techniques utilize monitored operational 
data related to system health. They can be beneficial when understanding of first 
principles of system operation is not straightforward or when the system is so 
complex that developing an accurate alternative model is prohibitively expensive. 
An added value of data-driven techniques is their ability to transform high-
dimensional noisy data into lower dimensional information useful for decision-
making [Dragomir et al., 2007]. Furthermore, recent advances in sensor technology 
and refined simulation capabilities enable us to continuously monitor the health of 
operating components and manage the related large amount of reference data.  
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Many data-driven models can be classified as black-box models because the 
relation of input and output variables and the model parameters is unclear in such 
types of models. Parameter estimation in black-box models is often based on 
learning and training. Thus, the models require data, and often data covering a time 
period where a failure was observed, in order to make a prediction of the lifetime. 
Learning can be based on data from a situation identified as normal. Then, all 
situations that are different from the normal situation may be defined as abnormal 
and (potentially) erroneous. Such an approach is appealing for diagnostic 
applications, because the observation of failures is not required. However, this 
approach is not sufficient for making predictions of the remaining lifetime. 

Data-driven models are mostly suitable for making short-term predictions when the 
component reaches the end of life and when a potential failure becomes apparent in 
monitoring data. Since there are many models and methods in the field of AI, that 
in addition often are quite different, it is difficult to make general statements about 
models properties and the ways of parameter estimation. Many models can be 
considered as black-box models. Some others however, as for example expert 
systems, are white-box models where the internal model logic is based on expert 
knowledge. 

IFDPS evaluate the remaining useful life by data-driven techniques because of 
physical or mathematical model absence. Traditional prognostic techniques are to 
find the relationship between the remaining useful life and time of the machine or 
component has been used. IFDPS try to find the relations between the remaining 
useful life and the condition of machine or component. Fig. 2.3 shows an example 
of this relationship. When the condition is identified, the remaining useful life can 
be predicted with a standard deviation.  
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Fig. 2.3 Remaining Useful Life Distribution for Each Condition 

After the condition of the component is determined, the remaining useful life can 
be evaluated according to the condition. Most current RUL estimation methods are 
based on the event data or condition monitoring data which want to find the 
relationship between RUL and time the component used or RUL and feature values 
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[Lee et al., 2006; Si et al., 2011]. The method of Fig. 2.3 tries to find the 
relationship between the RUL and the condition of a component that is evaluating 
RUL by the condition and RUL distribution for each condition. The distributions of 
RUL are obtained by the statistical methods. For example, if the condition of a 
component is 0, the remaining useful is 350h with a certain standard deviation. 
When the condition is 1.0, the RUL is much closed to 0 which means the 
component has to be maintained or repaired. From Fig. 2.3 the RUL distribution 
become narrow that means the RUL evaluation is more accuracy when the 
condition closed to failure. Therefore the confidence value of RUL increases with 
the condition deterioration. 

IFDPS also propose another method to predict the RUL by establishing ANN 
model for machines in normal condition and set thresholds in several different 
levels. This method has applied in real industries such as wind power industry 
which is described in Chapter 7. 

2.3.5 Maintenance Scheduling Optimization 

The functions of the maintenance are finding out fault status of maintenance object 
and maintenance effect, and selecting right maintenance policy to achieve expected 
maintenance effect. The purpose of it is making maintenance decision based on 
current information to prevent occurrence and development of failure effectively, 
ensure the security of equipment and personnel, and reduce economic lost caused 
by failure. Maintenance scheduling optimization is a kind of NP problem and the 
SI algorithms could be a very good technique to solve this kind of problem. IFDPS 
apply Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Ant Colony 
Optimization (ACO) and Bee Colony Algorithm (BCA) and try to find the optimal 
dynamic predictive maintenance scheduling. All these kind methods are selectable 
in IFDPS to solve maintenance scheduling optimization problems. 

2.4 Summary 

IFDPS (Intelligent Fault Diagnosis and Prognosis System) for Condition-based 
Maintenance is developed to monitor the manufacturing system and process, and to 
classify and predict faults and states, and to evaluate remaining useful life. Based 
on this system, the suitable maintenance actions can be made before any failure 
happens to ensure the security of equipment and personnel, and reduce economic 
lost caused by failure. In this framework, the suitable sensors should be selected to 
monitor the manufacturing system firstly, and then the collected data from the 
sensors is processed. For signal processing, the parameters of time domain, 
frequency domain and time-frequency domain can be used to process the signals 
and extract features as indicators of machines’ condition. The condition of 
machines can be identified and predicted based on the extracted features from the 
real time signals. The remaining useful life can be evaluated based on the condition 
of machine and finally the maintenance decision can be made using some Swarm 
Intelligence algorithms. 
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3 Data Mining Techniques for IFDPS 

3.1 Introduction 

There are many aspects can be researched for the Framework of IFDPS. The 
volumes of data from sensors and processing procedure become tremendous filling 
the computers and networks. Sometimes, the data is too huge and too complicated 
to analyze effectively and thus how to get the useful information from these data 
becomes very significant point. This PhD work mainly focus on the application of 
Data Mining (DM) techniques in all processes of IFDPS such as sensor placement 
optimization, fault diagnosis, fault prognosis and maintenance scheduling 
optimization. There are already some researches in these areas but most of these 
researches focus on one process. DM technology has recently become a hot topic 
for decision-makers because it provides valuable, hidden business and scientific 
“Intelligence” from a large amount of historical data. It is a kind of methods to 
extract information and knowledge from recorded data. This Chapter describes 
some DM techniques used in the PhD work.   

Data mining can be defined as the analysis of (often large) observational data sets 
to find unsuspected relationships and to summarize the data in novel ways that are 
both understandable and useful to the data owner [Hand et al., 2001]. It is the entire 
process of applying computer-based methodology, including new techniques for 
knowledge discovery, from data. It draws ideas and resources from multiple 
disciplines, including machine learning, statistics, database research, high 
performance computing and commerce. This explains the dynamic, multifaceted 
and rapidly evolving nature of the data mining discipline. Generally, there are two 
main goals of data mining: prediction and description. Prediction involves using 
some variables or fields in the dataset to predict unknown or future values of other 
variables of interest. Description focuses on finding patterns describing the data 
that can be interpreted by humans. Therefore, the data mining activities can be 
classified into two categories: predictive data mining which produces the model of 
the system described by the given dataset, and the descriptive data mining which 
produces new, nontrivial information based on the available dataset. The main 
tasks of DM techniques are [Kantardzic, 2003]: 

Classification – discovery of a predictive learning function that classifies a data 
item into one of several predefined classes.  
Regression – discovery of predictive learning function, which maps a data item 
to a real-value prediction variable. 
Clustering – a common descriptive task in which one seeks to identify a finite 
set of categories or clusters to describe the data. 
Summarization – an additional descriptive task that involves methods for 
finding a compact description for a set of data. 
Dependency Modeling – finding a local model that describes significant 
dependencies between variables or between the values of a feature in a data set 
or in a part of a data set. 
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Change and Deviation Detection – discovering the most significant changes in 
the data set. 

To carry out these tasks, many DM techniques are available so far and more 
techniques will appear in the future. This Chapter will introduce some DM 
techniques used in the IFDPS framework. 

3.2 Artificial Neural Networks (ANN) 

The pattern classification theory has become a key factor in fault diagnosis and 
prognosis. Some classification methods for equipment performance monitoring use 
the relationship between the type of fault and a set of patterns which is extract from 
the collected signals without establishing explicit models. Currently, ANN is one 
of the most popular methods in this domain. ANN is a model that emulates a 
biological neural network [Wang, 2005]. The origin of ANN can be traced back to 
a seminar paper by McCulloch and Pitts [McCulloch & Pitts, 1943] that 
demonstrated a collection of connected processors, loosely modeled on the 
organization of brain, could theoretically perform any logical or arithmetic 
operation. Then, the development of ANN techniques is very fast which is 
extensive to many categories containing Back-propagation (BP), Self-organization 
Mapping (SOM) and Radial Basis Function (RBF), etc. The application of artificial 
neural network models lies in the fact that they can be used to infer a function from 
observations. This is particularly useful in applications where the complexity of the 
data or task makes the design of such a function by hand impractical. This 
attribution is very nontrivial in diagnostic problems. BP neural network is a main 
type of ANN used to solve fault diagnosis and prognosis problems.  

ANN can deal with complex non-linear problem without sophisticated and 
specialized knowledge of the real systems. It is an effective classification 
techniques and low operational response times needed after training. The 
relationship between the condition of component and the features is not linear but 
non-linear. BP neural network does not need to know the exact form of analytical 
function on which the model should be built. This means neither the functional 
type nor the number and position of the parameters in the model-function need to 
know. It can deal with multi-input, multi-output, quantitative or qualitative, 
complex system with very good abilities of data fusion, self-adaptation and parallel 
processing. Therefore, it is very suitable to be selected as a method of fault 
diagnosis and prognosis. There are many papers dealing with the use of ANN and 
most of their contributions are ANN training efficiency and strategies for ANN 
itself. ANN in IFDPS will be used to detect and predict the condition of machines 
with other techniques such as wavelet analysis and Fourier transform. Two ANN 
techniques of Supervised Back-Propagation (SBP) and Self-Organizing Map are 
introduced in this subsection.  

3.2.1 Supervised Learning ANNs 

BP neural network which is the most widely used neural network model currently 
was proposed by Rumelhart and McCelland in 1986 [Rumelhart et al., 1986]. It is a 
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multilayer feed-forward network usually containing the input layer, hidden layer, 
and output layer (Fig. 3.1), which trained by an error back propagation algorithm. 
The biggest advantage of ANNs trained by back propagation is that there isn’t need 
to know the exact form of analytical function on which model should be built. So 
it’s not necessary have neither the function type not even the number and position 
of the parameters in the model function. Moreover, BP network can learn and store 
a lot of input-output model mapping without mathematical equations which 
describing this mapping. The learning method of BP is the steepest descent method 
which is adjusting the weights and thresholds of the network to minimize the sum 
of squared errors. The general procedure of BP network training can be 
summarized as follows [Wang, 2005]. 

1) Initialize the weights to small random vales (-1, 1); 
2) Select a training vector pair (input and the corresponding desired output) 

from the training set and present the input vector to the inputs layer of the 
ANN; 

3) Calculate the actual outputs (forward phase); 
4) Adjust the weights to reduce the difference according to the error between 

actual output and target (backward phase); 
5) Return to step 2 and repeat for each pattern p until the total error has 

reached an acceptable level; 
6) Stop. 

The backward phase and forward phase are described separately in this section. 

Fig. 3.1 A BP Neural Network with Single Hidden Layer 

3.2.1.1 Forward Phase 

Fig. 3.1 shows a BP network with signal hidden layer which is used to explain how 
the BP network works. In the figure, there are m  nodes of input layer, h  nodes of 
hidden layer and n  nodes of output layer. Weight connections between input layer 

( 1,2, , )thi i m  node and hidden layer ( 1,2, , )thj i h node are denoted as jiv , 
while Weight connections between hidden layer ( 1,2, , )thj i h  node and output 
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layer ( 1,2, , )thk i n  are denoted as kjw . ix represents the thi  input value, jy  
represents the output value of  thj node of hidden layer, kz  represents the thk  output, 
and kt  represents the target value of the thk output. The following terms are now 
defined: 

 
1

1, 2 , ; 1, 2,
m

j ji i
i

H v x i m j h  (3.1) 

 1
1, 2 , ; 1, 2,

h

k kj j
j

I w y k n j h
 (3.2) 

where jH is the combined or net input to hidden layer node j , while kI  is the net 
input to the node k of the output layer. The output for each node of hidden layer 
and output layer can be obtained as following respectively: 

 ( ) 1, 2, ,iy f H j h  (3.3) 

 ( )k kz f I  (3.4) 

where f  is an activation function. Finally, the output of node k  of output layer can 
be rewritten as: 

 
1 1

( )
h m

k kj ji i
j i

z f w f v x  (3.5) 

3.2.1.2 Backward Phase 

After calculating outputs of all nodes of output layer, the backward phase can be 
started to calculate according to Gradient Decent Learning [Wang, 2005]. The 
update rule for output layer node can be obtained: 

 ( ) '( )kj k i k k k i
kj

Ew y t z f I y
w

 (3.6) 

where  is a constant often called the learning rate. Then the update rule for hidden 
layer nodes can be obtained as: 
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Then, all weights kjw  and jiv  can be updated according to Eq. (3.6) and Eq. (3.7) 
respectively as following: 

 ( ) '( )new old old
kj kj kj kj j k k kw w w w y t z f I  (3.8) 
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This is the process of forward phase and backward phase in BP network training. 
Afterward, the whole training processes can be done according to the steps 
descripted above. The objective of ANN training is to obtain suitable weights to 
meet the inputs and the targets of training data. After the training of BP network, 
for each set of test data or query data, there is a set of output calculated by the final 
updated weights. BP network is a very useful model in real application especially 
when the real physical model and mathematic model are unavailable. It acts as a 
black box, which allows no physical interpretation of its internal parameters and 
functions. This propriety is very important to apply BP network in condition 
monitoring because most real mathematic models are unavailable. For a specific 
application in fault diagnosis and prognosis, after training by features extracted 
from processed historic data, the BP network can classify the fault and predict the 
states of the monitored components or machine units.  

3.2.2 Self-Organizing Map (SOM) 

Machine learning is an approach of using data to synthesize programs. In a case 
when the data are input/output pairs, it is called supervised learning as BP learning 
mentioned above. In a case, where there are no output values and the learning task 
is to gain some understanding of the process that generated the data, this type of 
learning is said to be unsupervised [Kankar et al., 2011]. The concept of SOM was 
introduced by Teuvi Kohonen in 1982 [Kohonen, 1982], and numerous versions, 
generalizations, accelerated learning scheme, and application of SOM have been 
developed since then. It is a type of Artificial Neural Network that is trained using 
unsupervised learning mode to produce a low-dimensional, discretized 
representation using the input datasets of the training samples. SOM is the closest 
of all Artificial Neural Networks architectures and learning schemes to the 
biological neuron network. Its network is composed by only one layer of neurons 
arranged in two-dimensional plane with a well-defined topology.  

The most important unsupervised ANNs learning algorithm is the Kohonen 
competitive learning algorithm, and Fig. 3.2 shows a typically example of Kohonen 
map. The neurons on the output layer (also called competitive layer) can find the 
organization of relationship among input patterns. The output of each neuron isn’t 
connected to all of the other neurons in the plane, but only to a small number that 
are topologically close to it. The network map shows the natural relationship 
between the patterns, that is, each input neuron is connected to every neuron on the 
competitive layer which is organized as two-dimensional grids. The network is 
presented by a set of training input patterns without target output patterns. At the 
beginning one of the patterns is chosen randomly, and then each neuron in the 
input layer of the SOM takes on the value of the corresponding entry in the input 
pattern. In the competitive learning, only one neuron in the output layer is selected 
after input occurs, regardless of how close the other neurons are from the best one. 
This is so-called “Winner takes it all” method. 
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ij

Fig. 3.2 Kohonen Model of SOM 

In generally, the learning process of SOM network can be several steps [Wang, 
2005].  

1) Initializing the weight vector randomly ij , the learning rate  and other 
relative training parameters.  

2) For each input vector, the responses of all neurons in the output layer are 
calculated and the winning node cU  is selected. The winning node means its 
weight ij  best matches the input vector that is the Euclidean Distance is the 
smallest among all nodes.  

3) After the winning node is selected, identifying the neighborhood around cU , 
that is the set of competitive units close to the winning node. Fig. 3.3 shows the 
two examples of a neighborhood around wining node: the one is rectangular 
lattice and the other is the hexagonal lattice. The size of the neighborhood 
begins with a large enough size and then decreases with the number of iterations 
of the network. 

4) Updating the weight vectors of node cU and all nodes in the neighborhood 
around it by the following functions: 
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where: 

t : the current learning epoch; 
x : input vector; 
T : the total number of learning epoch; 

0H : the initial neighborhood size; 

c id d : the topological distance between the central neuron c and the current 
neuron i ; 
f : topology dependent function. 

( )H t : the actual neighborhood size in tht  epoch; 
( )j t : the weigh vectors of cU  and its neighborhood in tht  epoch; 

( )t : the learning rate in tht  epoch; 
5) Updating the learning rate using Eq.  (3.12). 
6) Reduce the neighborhood function using Eq.  (3.11). 
7) Loop from 2) to 6) until no noticeable changes of the feature map. 

Fig. 3.3 Different Forms of the Neighborhood in SOM Network around cU  

SOM network has some advantages and some disadvantages. SOM permits to 
cluster data where there is no prior knowledge of the results or of the clustering. It 
is able to convert multi-dimensional data clusters into the form of a two-
dimensional grid preserving the topological relationship of the data. It may be used 
where there is ample supply of “good normal” data containing some but little bad 
or usual data. That is engine monitoring or alarm monitoring. The SOM has very 
serious computational disadvantages, which affects the performance of large scale 
application running on parallel computers. In order to find which neuron is to be 
stimulated, the program has to check all of the neurons. This is a big restriction 
when large SOM network are to be trained. Sometimes grid size may need to be 
adjusting in response to number of clusters expected.  

3.3 Semi-supervised Learning Methods (Manifold Regularization) 

Semi-supervised learning (SSL) is halfway between supervised learning and 
unsupervised learning. In addition to unlabeled data, the algorithm is provided with 
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some supervision information – but not necessarily for all examples. In this case, 
the data set [ ]( )i i nX x  can be divided into two parts: the points 1( , , )l lX x x  for 
which labels 1( , , )l lY y y  are provided, and the points 1( , , )u l l uX x x , the 
labels of which are not known. SSL is very useful in real industry application 
especially when the history data are huge but only a small part of them are labeled. 
Semi-supervised learning methods fall into ve categories: SSL with generative 
models, SSL with low density separation, graph-based methods, co-training 
methods, and self-training methods [Blum & Chawla, 2001; Yuan, 2012]. 

Recently graph-based methods with more applicable assumption have attracted 
considerable attention. Speci cally, graph-based manifold regularization [Belkin et 
al., 2006] exploits the geometric structure of the marginal distribution of the CM 
data in the feature space. The incorporation of unlabeled data has demonstrated the 
potential for improved accuracy in time series prediction [Wei & Keogh, 2006], 
speech recognition [Jansen & Niyogi, 2005], calibration-e ort reduction problem 
[Pan et al., 2001]. In this paper, we are looking for a general semi-supervised 
classi cation framework for fault detection. The manifold regularization based 
methods is a good option.  

The Manifold regularization combines the ideas of spectral graph theory, manifold 
learning and kernel methods in a coherent and natural way to incorporate both the 
cluster assumption and the manifold assumption in Reproducing Kernel Hilbert 
Spaces (RKHS) regularization framework. In this section, we address the manifold 
regularization based SSL framework concisely following the description of [Belkin 
et al., 2006]. More details refer to [Sindhwani et al., 2005]. 

As mentioned above, consider a set of l  labelled samples 1{( , )}l
i i ix z  and a set of u  

unlabelled samples 1{ }l u
j j lx , where , R d

i jx x  are the feature vectors collected 
from the input space  according to the marginal distribution , and iz R  is 
the classi ed label determined by the conditional distribution ( | )z x . Manifold 
regularization introduces the regularized risk functional as an additional regularizer 
that serves to impose this assumption on the learning problem. The learning 
problem corresponds to solving the following optimization problem: 

 2

1
H

1arg min ( , , ) ,
K

l
i i A I M MKi Mf

f x z f f
l

 (3.13) 

which nds the optimal function f in the RKHS space KH  of functions :f R  
corresponding to a Mercer kernel :K R , e.g. a linear or Gaussian kernel. 

The rst term of the regularized risk functional in Eq. (3.13) is de ned on the loss 
function  measured the discrepancy between predicted value ( )if x  and actual 
label iz . The second term controls the complexity of f in terms of the RKHS norm, 
with A  being the RKHS norm regularization parameter. The third term is speci c 
to manifold regularization and is based on the assumption that the support of  
forms a compact sub-manifold . It controls the complexity of f  in the intrinsic 
geometry of , with I  being the corresponding manifold regularization 
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parameter. The third term is approximated using the graph Laplacian de ned on all 
l u  labelled and unlabelled examples without using the label information. Hence 
the optimization problem can be reformulated as: 

 2
21

H

1 ˆ ˆarg min ( , , )
( )K

l TI
i i A Ki

f
f x z f f f Lf

l l u
 (3.14) 

where 1
ˆ  ( ( ),  . . . ,  ( ))l uf f x f x  and L  is the Laplacian matrix of a graph that models the 

underlying geometric structure. 

From the extended Representer theorem [Belkin et al., 2006], the optimal function 
can be expressed in the following form: 

 
1

( ) ( , )
l u

i i
i

f x K x x  (3.15) 

When lose function  in Eq. (3.14) is adopt to be the squared loss function 
2( , , ) ( )i i ix z f z f x , the Laplacian Regularized Least Squares (LapRLS) algorithm  

formulates the optimization problem: 
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( )K
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f
f z f x f f Lf
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 (3.16) 

For the LapRLS, the optimal solution in Eq. (3.16) 1( , , )l u  is given by: 

 1
2( )

( )
I

A
lJK lI LK Z

l u
 (3.17) 

where K  is the ( ) ( )l u l u  Gram matrix over all labelled and unlabelled samples, 
Z  is an (   )l u  -dimensional label vector given by 1( , , ,0, ,0)lZ z z , and 

(1, ,1,0, ,0)J  is an ( ) ( )l u l u  diagonal matrix with the rst l  diagonal 
entries being 1 and the rest being 0. 

When lose function  in Eq. (3.14) is adopt to be the hinge loss function
( , , ) 1 ( )i i ix z f z f x , the algorithm formulates the Laplacian Support Vector 

Machines (LapSVM). Please refer to [Belkin et al., 2006] in details. The manifold 
regularization algorithms SSL can be summarized as following [Belkin et al., 
2006]: 

Input: l  labelled examples 1{( , )}l
i i ix y , u  unlabelled examples 1{ }l u

j j lx . 

Output: Estimated function f : n . 

Step 1: Construct data adjacency graph with ( l u ) nodes using, for example, k -
nearest neighbours or a graph kernel. Choose edge weights ijw , for example, 

binary weights or heat kernel weights 
2

4
i jx x

t
ijw e . 

Step 2: Choose a kernel function ( , )K x y . Compute the Gram matrix ( , )ij i jK K x x . 
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Step 3: Compute graph Laplacian matrix: L D W  where D  is a diagonal matrix 
given by 1

l u
ij ijj

D W . 

Step 4: Choose A  and I . 

Step 5: Compute *  using Eq. (3.17) for square loss (Laplacian RLS). 

Step 6: Output function * *
1

( ) ( , )l u
i ii

f x K x x . 

3.4 Association Rules 

Association rules are one of the major techniques of data mining and it is perhaps 
the most common form of local-pattern discovery in unsupervised learning systems. 
Association rules mining retrieve all possible interesting associations (patterns, 
relationships or dependencies) in large sets of the data items which are stored in the 
form of transactions that can be generated by an external process, or extracted from 
relational database or data warehouse. Due to good scalability characteristics of the 
association rules algorithm and the ever-growing size of the accumulated data, 
association rules are an essential data mining tool for extracting useful knowledge 
from database. The most important thing in this case would be a rule that is 
interesting, that tells you something about your database that you have not already 
known and probably weren’t able to explicitly articulate. 

3.4.1 Market-basket Analysis 

Market-basket analysis is one of the most intuitive applications of association rules 
which strive to analyze customer buying patterns by finding associations between 
items that customers put into their basket. For example, customers visit to a 
grocery store or an online purchase who may buy milk and bread together and even 
that some particular brands of milk are more often bought with certain brands of 
bread. That means for each customer, there is a typical transaction. Retails 
accumulate huge collections of transactions by recording business activities over 
time. Then, the transactions database is analyzed to find sets of items, or itemsets 
that appear together, such as bread and milk, in many transactions. These and other 
more knowledge can be used to maximize the profits by helping to design 
successful marketing campaigns and customizing store layout. A number of 
association rules can be generated from the market basket database as shown in Fig. 
3.4. 
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Fig. 3.4 Application of Association Rules in Market-basket Analysis 

From the database of sales transactions, the important associations among items 
such that the presence of some items in a transaction will imply the presence of 
other items in the same transactions can be discovered. Let 1 2  ,  ,  ,  mI i i i  be a 
set of literals which called items. Let D (database) be a set of transactions where 
each transaction T  is a set of items such that T I . Note that the quantities of the 
items bought in a transaction are not considered which means each item is a binary 
variable indicating whether an item was bought or not. Each transaction is 
associated with an identifier called a transaction identifier (TID ). An example of 
the model for such transaction database is given in Table 3.1. 

Table 3.1 A Model of a Simple Transaction Database 

TID Items 
001 Apples, Celery, Diapers 
002 Beer, Celery, Eggs 
003 Apples, Beer, Celery, Eggs 
004 Beer, Eggs 

A transaction T  is said to contain a set of items X  if and only if X T . A 
transaction rules implies the form X Y  where X I , Y I , and X Y . The 
rule X Y holds in the transaction set D with confidence c  if %c  of the 
transaction in D that contain X also contain Y . The rule X Y  has support s  in 
the transaction set D  if %s  of the transaction in D  that contain X Y . Here, two 
important concepts are defined bellowing: 

—Support, which indicates the frequency (probability) of the entire rule with the 
respect to D . It is defined as a ratio of the number of transactions containing A  and 
B  to the total number of transactions (the probability of both A  and B  co-
occurring in D ): 

 
T D|A B T

A B =P A B =
D

support  (3.18) 
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—Confidence, which indicates the strength of implication in the rules. It is defined 
as ratio of the number of transactions containing A  and B  to the number of 
transaction s containing A  (Conditional probability of B  given A ): 

 
T D|A B T

A B =P A|B =
T D|A T

confidence  (3.19) 

It is often desirable to pay attention to only those rules that may have a reasonably 
large support. Such rules with high confidence and strong support are referred to as 
strong rules. The task of mining association rules is essentially to discover strong 
association rules in large databases. 

3.4.2 Mining Association Rules Steps 

The following four steps are used to generate association rules: 

1) Prepare input data in the transaction format; 
2) Select items of interest, i.e. itemsets; 
3) Calculate support counts to evaluate whether the selected itemsets are 

frequency which depend on whether the support s is above the 
predetermined minimum threshold; 

4) Generate the association rules for the database that have confidence c 
above the predetermined minimum threshold using the large itemset. 

The computational performance of an association-rule mining is determined by the 
second and the third step above. Then, the large itemsets are identified; the 
corresponding association rules can be derived in a straightforward manner. 
Efficient counting of large itemsets is thus the focus of most mining algorithm, and 
many efficient solutions have been designed to address previous criteria. Therefore, 
the following discussion concentrates on these two steps. 

3.4.3 The Apriori Algorithm 

The simplest way to calculate frequency itemsets is to consider all possible 
itemsets, compute their support, and check whether they are higher than the 
predetermined minimum threshold. The number of test of this method grows 
exponentially with the number of the items, and thus for large problems the 
computations would take an unacceptable long time. This reasoning resulted in the 
development of the Apriori algorithm. 

The Apriori algorithm uses prior knowledge about an important property of 
frequent itemsets. The Apriori property of an itemset says that all nonempty 
subsets of a frequent itemset must also be frequent. In other words, if a given 
itemset is not frequent, any superset of this itemset will also be not frequent, 
because it cannot occur more frequently than the original itemset. The simplest 
superset of an itemset is the itemset with one more added item. The Apriori 
property is used to reduce the number of itemsets that must be searched to find 
frequent itemsets. The association-rule mining algorithm, the Apriori algorithm, 
performs the iterative search through itemsets, starting with 1-itemsets, through 2-
itemsets, 3-itemsets, etc. In general, it finds and processes k-itemsets based on the 
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exploration of ( –1k )-itemsets. Using the Apriori property, the Apriori algorithm is 
shown in Fig. 3.5. 

Based on the Apriori property, in each iteration, k -itemsets that do not satisfy the 
minimum support are removed and only the remaining k -itemsets are used to 
generate itemsets for the next, 1k , iteration. This process substantially reduces 
the number of itemsets that have to be checked if they are frequent. The only 
unknown in implementing the Apriori algorithm is how to perform generation of

kC , which is a set of k -itemsets based on 1kL . These k -itemsets are checked 
against the minimum support to derive kL . The kC  is generated in two steps: 

1) For each frequent itemset ( FI ) from 1kL , find each item i  that does not 
belong to FI , but belongs to some other frequent ( 1k )-itemset in 1kL . 
Add i  to FI  to create a k -itemset. Remove duplicate k -itemsets after all 
additions for all ( 1k )-itemsets are finished. 

2) If frequent ( 1k )-itemsets from 1kL  have ( 2k )-items in common, 
then create a k -itemset by adding the two different items to ( 2k ) 
common items. 

Fig. 3.5 The process of Aprioi Algorithm 

3.4.4 Generating Association Rules from Frequent Itemset 

The last step of the four that are used to generate single-dimensional association 
rules is to generate association rules from frequent itemsets. The association-rule 
mining algorithm requires the generation of strong rules, i.e., those that satisfy both 
minimum confidence and minimum support. The minimum support level is 
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guaranteed by using frequent itemsets, and thus we need only to generate the rules 
and prune those rules which do not satisfy the minimum confidence. The 
confidence can be defined based on the corresponding support values as follows: 

 (A B)A B =P A|B =
(A) 

supportconfidence
support

 (3.20) 

Where ( )support A B  is the number of transactions in D  containing the itemset
A B , and ( )support A is the number of transactions in D  containing the itemset A . 
Based on this formula, each frequent itemset FI  is used to generate association 
rules in two steps: 

a) Generate all nonempty subsets of items, Y , of  FI ; 

b) For each Y, output the rules ( )Y FI Y  if the value of support_count(FI)
support_count(Y)

 

is larger than minimum confidence threshold. 

To demonstrate the Apriori algorithm in action, we generate association rules from 
the transactional data given in Table 3.1. Fig. 3.6 shows the process of how to 
select the frequent itemsets. Finally, the association rules can be derived as 
bellowing from the generated frequency 3-itemset ,  ,  B C E with support=50% 
which also have to satisfy the minimum confidence=60%.  

B and C  E with support = 50% and confidence = 2 / 2 = 100% 

B and E  C with support = 50% and confidence = 2 / 3 = 66.7% 

C and E  B with support = 50% and confidence = 2 / 2 = 100% 

B  C and E with support = 50% and confidence = 2 / 3 = 66.7% 

C  B and E with support = 50% and confidence = 2 / 3 = 66.7% 

E  B and C with support = 50% and confidence = 2 / 3 = 66.7% 

Fig. 3.6 Example Generation of Association Rules using Apriori Algorithm 

TID Transactions
001 Apples (A), Celery (C), Diapers (D)
002 Beer (B), Celery (C), Eggs (E)
003 Apples (A), Beer (B), Celery (C), Eggs (E)
004 Beer (B), Eggs (E)

Itemset
Support 
count

A 2
B 3
C 3
D 1
E 3

Itemset
Support 
count

A 2
B 3
C 3
E 3

Itemset
Support 
count

A,B 1
A,C 2
A,E 1
B,C 2
B,E 3
C,E 2

Itemset
Support 
count

A,C 2
B,C 2
B,E 3
C,E 2

Itemset
Support 
count

A,B,C 1
A,B,E 1
A,C,E 1
B,C,E 2

Itemset
Support 
count

B,C,E 2
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3.4.5 Improving the Efficiency of the Apriori Algorithm 

Since the amount of the processed data in mining frequent itemset tends to be huge, 
it is significant to devise efficient algorithms to mine such data. Our basic Apriori 
algorithm scans the database several times depending on the size of largest frequent 
itemsets. Several refinements have been proposed that focus on reducing the 
number of database scan, the number of candidate itemsets counted in each scan, or 
both. 

3.4.5.1 Partition-based Apriori 

Partition-based Apriori is an algorithm that requires only two scans of the 
transaction database. The database is divided into disjoint partitions, each small 
enough to fit into available memory. In the first scan, the algorithm reads each 
partition and computes local frequent itemsets on each partition. The frequent local 
itemsets may or may not be frequent in transaction database D  , but any itemset 
that is potentially frequent in D  must be frequent in at least one subset. Therefore, 
local frequent itemsets from all subsets become candidate itemsets for D  . The 
collection of all local frequent itemsets is referred to as global itemsets with respect 
D  . In the second scan, the algorithm counts the support of all global frequent 
itemsets toward the complete database D  . Then comparing between the support 
values and minimum support threshold and find out which of the global candidate 
itemsetsare frequent itemsets. The process of partition-based Apriori algorithm to 
select frequent itemsets is shown in Fig. 3.7. 

Fig. 3.7 Generation of Frequent Itemsets using Partition-based Apriori 

3.4.5.2 Sampling

As the database size increases, sampling appears to be an attractive approach to 
data mining. Sampling generates association rules based on a sampled subset of 
transactions in D  . In this case, a randomly selected subset S  of D  is used to 
search for the frequent itemsets. The generation of frequent itemsets from S  is 
more efficient (faster), but some of the rules that would have been generated from 
D  may be missing, and some rules generated from S may not be present in D , i.e., 
the “accuracy” of the rules may be lower. Usually the size of S  is selected so that 
the transactions can fit into the main memory, and thus only one scan of the data is 
required (no paging). To reduce the possibility that we will miss some of the 
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frequent itemsets from D  when generating frequent itemsets from S , we may use 
a lower support threshold for S  as compared with the support threshold for D  . 
This approach is especially valuable when the association rules are computed on a 
very frequent basis. 

3.4.5.3 Hashing

Hashing is used to reduce the size of the candidate k-itemsets, i.e., itemsets 
generated from frequent itemsets from iteration 1k , kC , for 1k . For instance, 
when scanning D  to generate L1 from the candidate 1-itemsets in 1C , we can at 
the same time generate all 2-itemsets for each transaction, hash (map) them into 
different buckets of the hash table structure, and increase the corresponding bucket 
counts. A 2-itemset whose corresponding bucket count is below the support 
threshold cannot be frequent, and thus we can remove it from the candidate set 2C . 
In this way, we reduce the number of candidate 2-itemsets that must be examined 
to obtain 2L . 

3.4.5.4 Transaction removal  

Transaction removal removes transactions that do not contain frequent itemsets. In 
general, if a transaction does not contain any frequent k -itemsets, it cannot contain 
any frequent ( 1k ) itemsets, and thus it can be removed from the computation of 
any frequent t -itemsets, where t k . 

3.5 Swarm Intelligence 

Swarm intelligence (SI), which is an Artificial Intelligence (AI) discipline, is 
concerned with the design of intelligent multi-agent systems by taking inspiration 
from the collective behavior of social insects such as ants, termites, bees, and 
wasps, as well as from other animal societies such as flocks of birds or schools of 
fish. Colonies of social insects have fascinated researchers for many years, and the 
mechanisms that govern their behavior remained unknown for a long time. Even 
though the single members of these colonies are non-sophisticated individuals, they 
are able to achieve complex tasks in cooperation. Coordinated colony behavior 
emerges from relatively simple actions or interactions between the colonies’ 
individual members. Many aspects of the collaborative activities of social insects 
are self-organized and work without a central control. For example, leafcutter ants 
cut pieces from leaves, bring them back to their nest, and grow fungi used as food 
for their larvae. Weaver ant workers build chains with their bodies in order to cross 
gaps between two leaves. The edges of the two leaves are then pulled together, and 
successively connected by silk that is emitted by a mature larva held by a worker. 
Other examples include the capabilities of termites and wasps to build 
sophisticated nests, or the ability of bees and ants to orient themselves in their 
environment [Abraham et al., 2006]. The research scientists extract the term swarm 
intelligence according to these collaborative activities of social insects. The term 
swarm intelligence was first used by Beni in the context of cellular robotic systems 
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where simple agents organize themselves through nearest-neighbor interaction 
[Beni, 1988]. Meanwhile, the term swarm intelligence is used for a much broader 
research field [Bonabeau et al., 1999]. Swarm intelligence methods have been very 
successful in the area of optimization especially to find an optimal solution for NP 
problem, which is of great importance for industry and science.  

The main algorithms of Swarm Intelligence currently are Ant Colony Optimization 
(ACO), Particle Swarm Optimization (PSO) and Bee Colony Algorithm (BCA). 
ACO deals with artificial system that is inspired from the foraging behavior of real 
ants, which are used to solve discrete optimization problems [Dorigo et al., 1996]. 
The main idea is the indirect communication between the ants by means of 
chemical pheromone trials, which enables them to find short paths between their 
nest and food. PSO incorporates swarming behaviors observed in flocks of birds, 
schools of fish, or swarms of bees, and even human social behavior, from which 
the idea is emerged [Clerc & Kennedy, 2002; Kennedy & Eberhart, 2001; 
Parsopoulos & Vrahatis, 2004]. PSO is a population-based optimization tool, 
which could be implemented and applied easily to solve various functional 
optimization problems, or the problems that can be transformed to functional 
optimization problems. As an algorithm, the main strength of PSO is its fast 
convergence, which compares favorably with many global optimization algorithms 
like Genetic Algorithms (GA) [Goldberg, 1989], Simulated Annealing (SA) [Orosz 
& Jacobson, 2002; Triki et al., 2005] and other global optimization algorithms. For 
applying PSO successfully, one of the key issues is finding how to map the 
problem solution into the PSO particle, which directly affects its feasibility and 
performance. There are several advantages of Swarm Intelligence: 

Flexibility - the swarm can quickly respond to internal perturbations and 
external challenges. 

Adaptability - The swarm can adapt to a changing environment.  

Robustness - even if one or more individuals in the swarm fail, the swarm can 
still complete its tasks.  

Self-organization - Paths to solutions are emergent rather than predefined. 

Decentralization - The swarm needs relatively little supervision or top-down 
control. In other words, there is no central control in the swarm. 

Scalability - The control mechanisms used are not dependent on the number of 
agents in the swarm.  

This section will mainly introduce the algorithms of ACO, PSO and BCA. 

3.5.1 Ant Colony Optimization (ACO) 

Ant colonies can accomplish complex tasks that far exceed the individual 
capabilities of a single ant [Dorigo & Stützle, 2004]. The ACO model is applied 
firstly to solve the Travelling Salesman Problem (TSP). The two main phases of 
the algorithm constitute the solution construction and the pheromone update. For 
TSP, m  ants concurrently build a tour and select cities randomly at the beginning 
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of the tour construction. At each construction step, ant k  decides which city to visit 
next according to a random proportional rule. The probability with which ant k , 
currently at city i , chooses to go to city j  is: 

 '

[ ] [ ]
,

[ ] [ ]k
i

ij ijk k
ij i

ij ijl N

p if j N  (3.21) 

where ij  is the pheromone deposited on ( , )arc i j , 1/ij ijd , which represents the 
visibility of city j  towards city i  which is inversely proportional to the distance 

ijd ,  and are two parameters which determine the relative influence of the 
pheromone trail and the heuristic information, and k

iN  is the set of cities that ant k  
has not visited yet [Dorigo & Stützle, 2004]. 
The pheromone trails are updated after tours constructing by evaporating at a 
constant rate and accumulating with new deposits: 

 
1
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m

k
ij ij ij

k
i k L  (3.22) 

where 0 1  is the pheromone evaporation rate and k
ij is the amount of 

pheromone that ant k  deposits on the arcs it has visited, defined as follows: 

 1 / if arc(i, j) belongs to T
0

k k
k
ij

C
otherwise

 

where kC  is the length of the tour kT built by ant k . By using this rule, the 
probability increases that forthcoming ants will use this arc. A brief pseudo-code 
and the implementation steps of ACO can be written as following pseudo-code and 
Fig. 3.8. 
 
Begin 

Initialization 
While stopping criterion not satisfied do 

Deploy each ant in a starting city 
For each ant 

Repeat  
Calculate probability of remaining cities selected to be next city 
Choose next city according to probability using roulette wheel selection 
algorithm 

Until all cities are visited 
Update pheromone  

End for 
Update the best route (beat solution) 

End while 
Record and output the beat route (solution) 

End
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Fig. 3.8 The implementation steps of ACO 

3.5.2 Particle Swarm Optimization 

3.5.2.1 Biological Metaphor 

We can imagine such a scenario that a group of birds were searching of food 
randomly. There is only one food in this region. All the birds don’t know where the 
food is but know how far they away from the food. Then, what is the best strategy 
to find the food? 

The easiest way is to search the region around of nearest bird from the food. And 
according to their own experience of flying to judge the position of food. 
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3.5.2.2 Basis Algorithm of PSO 

The Particle Swarm Optimization (PSO) algorithm is a heuristic approach 
motivated by the observation of social behavior of composed organisms such as 
birds flocking (Fig. 3.9). A number of simple entities – the particles – are placed in 
the search space of some problem or function, and each evaluates the objective 
function at its current location. Each individual in the particle swarm is composed 
of D  dimensional vectors, where D  is the dimensionality of the search space.  

( )ix t

( ( ) ( ))i ip t x t

( ( ))g ip x t

( 1)ix t( 1)iv t

( )iv t
( )ip t

gp

Fig. 3.9 Birds Flocking of PSO 

The current position ix  can be considered as a set of coordinates describing a point 
in space. If the current position is better than any that has been found so far, then 

the coordinates are stored in the vector ip . The value of the best function result so 

far is stored in a variable that can be called gp . The objective, of course, is to keep 

finding better positions and updating ip  and gp . New points are chosen by adding 

iv  coordinates to ix , and the algorithm operates by adjusting iv , which can 
effectively be seen as a step size. The steps of implementing PSO were shown as 
follows: 

Step 1: Initialize a population array of particles with random positions and 
velocities on D  dimensions in the search space. 

Step 2: Loop
Step 3: For each particle, evaluate the desired optimization fitness function in 

D  variables. 

Step 4: Compare particle’s fitness evaluation with that of its ip . If current 

value is better than that of ip , then set ip  equal to the current 
coordinates. 
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Step 5: Identify the particle in the neighborhood with the best success so far, 

and assign it to the variable gp . 
Step 6: Change the velocity and position of the particle according to the 

following equations: 

 1 1 2 2( 1) ( ) ( ( )) ( ( ))i i i i g iv t v t c r p v t c r p v t  (3.23) 

 ( 1) ( ) ( 1)i i ix t x t v t  (3.24) 

where is the inertia weighting; 1c and 2c are acceleration coefficients, 
positive constraint; 1r  and 2r  are the random numbers deferring 
uniform distribution on [0, 1]; i  represents thi  iteration. 

Step 7: If a criterion is met (usually a sufficiently good fitness or a maximum 
number of iterations), exit loop.  

The flowchart of PSO can be seen as Fig. 3.10. In PSO, every particle remembers 
its own previous best value as well as the neighborhood best. therefore it has a 
more effective memory capability than the GA. PSO is also more efficient in 
maintaining the diversity of the swarm, since all the particles use some information 
related to the most successful particle in order to improve themselves, whereas in 
GA, the worse solutions at every generation are discarded and only the good ones 
are saved for next generation. Therefore in GA the population does the evolution 
around a set of best individuals in every generation. In addition, PSO is easier to 
implement and there are fewer parameters to adjust compared with GA [Valle et al., 
2008]. 

3.5.2.3 The Parameters of PSO 

The role of inertia weight  in Eq. (3.23), is considered critical for the 
convergence behavior of PSO. The inertia weight is employed to control the impact 
of the previous history of velocities on the current one. Accordingly, the parameter 

 regulates the trade-off between the global (wide-ranging) and local (nearby) 
exploration abilities of the swarm. A large inertia weight facilitates global 
exploration, i.e. searching new areas, while a small one tends to facilitate local 
exploration, i.e. fine-tuning the current search area. A suitable value for the inertia 
weight  usually provides balance between global and local exploration abilities 
and consequently results in a reduction of the number of iterations required to 
locate the optimum solution. Initially, the inertia weight is set as a constant. 
However, some experiment results indicates that it is better to initially set the 
inertia to a large value, in order to promote global exploration of the search space, 
and gradually decrease it to get more refined solutions [Eberhart & Shi, 2000]. 
Thus, an initial value is set to maximum one max  (for example around 1.2) and 
gradually reducing towards the minimum one min (for example around 0.6) can be 
considered as a good choice. A better method is to use some adaptive approaches 
(example: fuzzy controller), in which the parameters can be adaptively fine-tuned 
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according to the problems under consideration [Liu & Abraham, 2005; Shi & 
Eberhart, 2001].  

Fig. 3.10 The flowchart of PSO algorithm 

The parameters 1c  and 2c , in Eq. (3.23), are not critical for the convergence of PSO. 
However, proper fine-tuning may result in faster convergence and alleviation of 
local minima. As default values, usually, 1 2 2c c  are used, but some experiment 
results indicate that 1 2 1.49c c  might provide even better results. From Eq.(3.23), 
it is better for local exploitation when 1 2c c , while it is better for global 
exploration when 1 2c c . Recent work reports that it might be even better to choose 
a larger cognitive parameter, 1c , than a social parameter, 2c , but with 1 2 4c c
[Clerc & Kennedy, 2002]. Therefore, the parameter 1c  can be changed from 1minc  to 

1maxc  and the parameter 2c  can be changed from 2 maxc to 2 minc  regularly in order to 
make the algorithm promote global exploration in the beginning and get more 
refined solutions (local exploitation) in the end.  

3.5.2.4 Variants of PSO

There are many different variants of the PSO algorithm. Some of these variants 
have been proposed to incorporate either the capabilities of other evolutionary 
computation techniques, such as hybrid versions of PSO or the adaptation of PSO 
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parameters for a better performance (adaptive PSO). In other cases, the nature of 
the problem to be solved requires the PSO to work under complex environments as 
in the case of the multi-objective or constrained optimization problems or tracking 
dynamic systems. There are also some discrete variants of PSO and other 
variations to the original formulation that can be included to improve its 
performance. This section will present some of them. 

A. Binary PSO 

Kennedy and Eberhart proposed a discrete binary version of PSO for binary 
problems [Kennedy & Eberhart, 1997]. In their model a particle will decide on 
"yes" or “no", "true" or "false", "include" or "not to include" etc. also this binary 
values can be a representation of a real value in binary search space.  

In the binary PSO, the particle’s personal best and global best is updated as in 
continuous version. The major difference between binary PSO with continuous 
version is that velocities of the particles are rather defined in terms of probabilities 
that a bit will change to one. Using this definition a velocity must be restricted 
within the range [0, 1]. So a map is introduced to map all real valued numbers of 
velocity to the range [0, 1] [Kennedy & Eberhart, 1997]. The normalization 
function used here is a sigmoid function as: 

 
( )

1( ( ))
1 ijij v tSig v t

e
 (3.25) 

where ( )ijv t  means the thj  component of vector ( )iv t . The Eq. (3.23) is also used 
to update the velocity vector of the particle. And the new position of the particle is 
obtained using the following equation: 

 1 ( ( 1))
( 1)

0
ij ij

ij

r sig v t
x t

otherwise
 (3.26) 

where: ijr  is a uniform random number in the range [0, 1]. 

B. Hybrid PSO (FPSO) 

A natural evolution of the particle swarm algorithm can be achieved by 
incorporating methods that have already been tested in other evolutionary 
computation techniques. Many authors have considered incorporating selection, 
mutation and crossover, as well as the differential evolution (DE), into the PSO 
algorithm. The main goal is to increase the diversity of the population by: 1) either 
preventing the particles to move too close to each other and collide [Blackwell & 
Bentley, 2002; Krink et al., 2002] or 2) to self-adapt parameters such as the 
constriction factor, acceleration constants [Miranda & Fonseca, 2002], or inertia 
weight [Lovbjerg & Krink, 2002]. As a result, hybrid versions of PSO have been 
created and tested in different applications. The most common ones include hybrid 
of genetic algorithm and PSO (GA-PSO), evolutionary PSO (EPSO) and 
differential evolution PSO (DEPSO and C-PSO). All these variants of PSO can be 
seen in paper [Valle et al., 2008] which described very detail. 
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There are also some other variants of PSO such as Fuzzy PSO [Shi & Eberhart, 
2001; D. Tian & Li, 2009], Adaptive PSO [Valle et al., 2008], Gaussian PSO 
[Krohling, 2004, 2005; Secrest & Lamont, 2002], Dissipative PSO (DPSO) [Biskas 
et al., 2006; Xie et al., 2002], PSO With Passive Congregation (PSOPC) [He et al., 
2004], Stretching PSO (SPSO) [Kannan et al., 2004; Parsopoulos & Vrahatis, 
2002], Cooperative PSO (CPSO) [Baskar & Suganthan, 2004; Bergh & 
Engelbrecht, 2004; El-Abd & Kamel, 2006], and Comprehensive Learning PSO 
(CLPSO) [Liang et al., 2006]. Each variant of PSO mentioned above have 
improved its performance in one or more aspects. We can choose a suitable one 
when we need apply PSO or its variants to find optimal solution. 

3.5.3 Bee Colony Algorithm 

Bee Colony Algorithm (BCA) is based on the waggle dance which was discovered 
by the Austrian ethnologist and Nobel laureate Karl von Frisch in 1967 [Frisch, 
1967]. In the recent years some people has used this knowledge to develop 
algorithms to solve real problems. There are several different algorithms inspired 
from the bee colony behaviors such as Artificial Bee Colony (ABC) [Karaboga & 
Basturk, 2007; Karaboga, 2005], Bees Algorithm (BA) [Pham et al., 2006], Honey 
Bee Colony Algorithm (HBCA) [Chong et al., 2006], and Bee Colony 
Optimization (BCO) [Teodorovic & Dell’Orco, 2005]. This section will introduce 
an algorithm called Bee Colony Algorithm (BCA) [Karaboga & Akay, 2009; 
Karaboga & Basturk, 2007]. 

3.5.3.1 Biological Metaphor 

BCA is inspired from the behavior of bee colony during their forage and thus this 
biological behavior is introduced firstly before the BCA algorithm. A first 
explanation of the behaviour of the bees, was given by the biologist Karl von 
Frisch [Frisch, 1967]. The bees use a dance language inside the hive to 
communicate the location of the food sources. Sources which are located closer to 
the hive are solicited by a round dance. With this dance, the bees describe several 
circles with a changing orientation. Food sources with a further distance to the hive 
are communicated through a waggle dance which is the most important aspect for 
our purpose.  

A waggle dance consists (Fig. 3.11) of one to 100 or more circuits, each of which 
has two phases: the waggle phase and the return phase. For this dance, the dancing 
bee starts to bounce with its abdomen. A worker bee's waggle dance involves 
running through a small figure-eight pattern: a waggle run (waggle phase) followed 
by a turn to the right to circle back to the starting point (return phase), another 
waggle run, followed by a turn and circle to the left, and so on in a regular 
alternation between right and left turns after waggle runs.  

The meaning of the direction and duration of waggle runs is the direction and 
distance of the patch of flowers being advertised by the dancing bee. Flowers 
located directly in line with the sun are represented by waggle runs in an upward 
direction on the vertical combs, and any angle to the right or left of the sun is coded 
by a corresponding angle to the right or left of the upward direction. The distance 
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between hive and recruitment target is indicated by the duration of the waggle runs. 
The farther the target, the longer the waggle phase, with a rate of increase of about 
75 milliseconds per 100 meters. 

 

Fig. 3.11 The waggle dance

After unloading the collected food, a foraging bee returning to the beehive from a 
food source (employed bee) decides whether to abandon the food source or not. If 
the food source is abandoned, the bee observes the dances of other employed bees 
and follows one of the possible ways adverted for other bees as a follower bee or 
starts to search for an entirely new source as a scout bee. However, if the food 
source is not abandoned, the employed bee decides whether to dance for the source 
to recruit other bees or not and just keep on going to the same food source without 
adverting it. Fig. 3.12 shows the decision model of bees’ behaviour. 
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Some researchers have developed a model for foraging behaviour of a honeybee 
colony based on reaction–diffusion equations as Karaboga did. His model, that 
leads to the idea of collective intelligence of bee swarms consists of three essential 
components: food sources, employed foragers, and unemployed foragers, and 
defines two ways for the bee colony behaviour: recruitment to a food source and 
abandonment of a source [Karaboga & Akay, 2009]. The explanation of the main 
components of the model is: 

Food Sources: In order to select a food source, a forager bee evaluates 
several properties related with the food source such as its closeness to the 
hive, richness of the energy, taste of its nectar, and the easiness or 
difficulty of extracting this energy. To simplify, the quality of a food 
source can be represented by only one quantity although it depends on 
various parameters mentioned above. 
Employed Bees: An employed bee is employed at a specific food source 
which is currently exploiting, carrying information about this specific 
source and sharing it with other bees waiting in the hive. The information 
includes distance, direction and profitability of the food source. 
Unemployed Bees: A forager bee that looks for a food source to exploit is 
called unemployed. It can be either a scout who searches the environment 
randomly or an onlooker who tries to find a food source by means of the 
information given by the employed bee. The mean number of scouts is 
about 5–10%. 

3.5.3.2 Algorithm of BCA 

In BCA algorithm [Karaboga & Akay, 2009; Karaboga & Basturk, 2007], the 
position of a food source represents a possible solution to the optimization problem 
and the nectar amount of a food source corresponds to the quality of the associated 
solution. The number of the employed bees and the onlooker bees is equal to the 
number of solutions in the population. The process of the behavior of bees to 
search food can be described as following Fig. 3.12: the first phase is called 
employed bee phase. In this phase, every food source (FS) is visited by one 
employed bee (EB) who then take nectar to hive, and do the waggle dance in the 
dance area to express the quality of nectar. The second phase is onlooker bee (OB) 
phase. The onlooker bees will chose the food source to visit according to the 
waggle dance by the employed bees. The finally phase is scout bee (SB) phase. If 
the reaming food source is not good, the scout bees will be set out to find new food 
sources, take the nectar back to hive and dance in the dance area. The new food 
sources with the old ones will be combined together to be visited by onlooker bees 
and employed bees according to their qualities of nectar. 

The algorithm of BCA can be described as following steps: 

1) Initialize the positions of solutions ix , the colony size ( NP ), the maximum 
cycle number ( maxCycle ), the number of parameters ( D ), and the number 
of trials to improve a source ( limit ). 

2) Evaluate the population using fitness function. 
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3) Repeat ( 1Cycle ) 
4) Produce new solutions iv  (food source positions) in the neighbourhood of 

ix for the employed bees using Eq. (3.27) and evaluate these solutions 
using fitness function.  

 ( )ij ij ij ij kjv x x x  (3.27) 

where 

ij : Random number between [-1, 1]. 
i : {1, 2, , }C  the thi food source. 
j : the thj  component of parameters. 
k : {1, 2, , }SN randomly chosen index of parameter (dimension) which is 
different from j . 

5) Apply the greedy selection process for employed bees between iv and ix .  
6) Calculate the probability value ip for the solutions ix  by means of their 

fitness values using Eq.  (3.28).  

 
1

/ SN
i i nn

p fit fit  (3.28) 

7) Produce the new solutions iv  (new positions) for the onlookers from the 
solutions ix  using Eq. (3.27), which selected depending on ip , and 
evaluate them. 

8) Apply the greedy selection process for the onlooker bees between iv  and 
ix . 

9) Determine the abandoned solution (source), if exists, replace it with a new 
randomly produced solution ix  for the scout using the following equation. 

 min max min[0,1]( )j j j j
i i i ix x rand x x  (3.29) 

10) Memorize the best food source position (solution) achieved so far. 
11) 1Cycle Cycle  
12) Exit if  Cycle maxCycle  or other criterion is met. 

In the process of BCA algorithm, step 5) and step 6) constitute the employed bee 
phase, step 7) and step 8) constitute the onlooker bee phase while step 9) is scout 
bee phase. The problem of dynamic CBM scheduling is a kind of NP  problem and 
the BCA is a good method to find the optimal solution for this kind problem.  

3.6 Summary 

This Chapter introduced the basic concepts of Data Mining techniques and 
algorithms. ANN includes supervised learning and unsupervised learning is mainly 
applied in the case of the accurate physical model or mathematical model is 
unavailable, but the huge history data are available. When there are huge history 
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data but only a small part of them are labeled, the Semi-supervised learning can be 
very good method to build the model. Association rules are mainly used to find the 
relations between the features. Swarm Intelligence, such as particle Swarm 
Optimization and Bee Colony Algorithm, is mainly used to solve the optimization 
problems, find the optimal solution for NP problems. 

There are too many methods and algorithm of Data Mining techniques. This 
Chapter only introduced some of them which will be applied in IFDPS system. 
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4 Sensor Classification and Sensor Placement Optimization 

4.1 Introduction 

A sensor is a converter that measures physical quantity and converts it into signal 
which can be read by an observer or by instruments. It is device that detects 
changes in the ambient conditions or in the state of another device or a system, and 
conveys or records this information in a certain manner. Sensors and sensing 
strategies constitute the foundational basis for fault diagnosis and prognosis 
systems. Most of sensors are well-developed in market and the customers just need 
to choose suitable sensors to collect data which can be used to monitor the 
condition of components or machines.  When choosing sensors for diagnostics and 
prognostics, many parameters and features of the sensors must to be considered 
which are the type, number, and location of sensors; their size, weight, cost, 
dynamic range, and other characteristic properties; whether they are of the wired or 
wireless variety; etc. The raw data collected from the sensors are rarely useful 
because they may contain much noise or no explicit features. These data must be 
processed appropriately so that useful information may be extracted that is a 
reduced version of the original data but preserves as much as possible those 
characteristic features or fault indicators that are indicative of the fault events we 
are seeking to detect, isolate, and predict the time evolution of. Thus such data 
must be preprocessed, that is, filtered, compressed, correlated, etc., in order to 
remove artifacts and reduce noise levels and the volume of data to be processed 
subsequently. Furthermore, the sensor providing the data must be validated; that is, 
the sensors themselves are not subjected to fault conditions. Once the 
preprocessing module confirms that the sensor data are ‘‘clean’’ and formatted 
appropriately, features or signatures of normal or faulty conditions must be 
extracted. This is most important in the framework of IFDPS because it is the input 
of the processes of diagnostics and prognostics [Wachtsevanos et al. 2006] 

Sensor suites are specific to the application domain, and they are intended to 
monitor such typical state awareness variables as temperature, pressure, speed, 
vibrations, etc. Some sensors are inserted specifically to measure quantities that are 
directly related to fault modes identified as candidates for diagnosis. Among them 
are strain gauges, ultrasonic sensors, proximity devices, acoustic emission sensors, 
electrochemical fatigue sensors, interferometers, etc., whereas others are of the 
multipurpose variety, such as temperature, speed, flow rate, etc., and are designed 
to monitor process variables for control and/or performance assessment in addition 
to diagnosis. More recently we have witnessed the introduction of wireless devices 
in the area of condition monitoring. 

For a normal word ‘sensor’ device, it actual have two components: sensor and 
transducer. A sensor is defined as a device that is sensitive to light, temperature, 
electrical impedance, or radiation level and transmits a signal to a measuring or 
control device. On the other hand, a transducer is defined as a device that receives 
energy from one system and retransmits it, often in a different form, to another 
system. A measuring device passes through two stages while measuring a signal. 
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First, the measurand (a physical quantity such as acceleration, pressure, strain, 
temperature etc.) is sensed by the sensor. Then, the measured signal is transduced 
into a form that is particularly suitable for transmitting, signal conditioning, and 
processing. For this reason, output of the transducer stage is often an electrical 
signal that is then digitized. The sensor and transducer stages of a typical 
measuring device are represented schematically in Fig. 4.1. 

Fig. 4.1 Schematic Representation of a Measuring Device 

The sensor strategies are mainly focused two issues: the one is which kind of 
sensors is suitable to measure the signals, and the other is which place the sensors 
should be set up. This Chapter will introduce these two issues. 

4.2 Classification of Sensors 

There are many kinds of sensors in the business market. White [White, 1987] 
presented out a sensor classification scheme for categorizing sensors which are 
recalled in the following tables. Table 4.1 shows most measurands for which 
sensors may be needed under the headings: acoustic, biological, chemical, electric, 
magnetic, mechanical, optical, radiation (particle), and thermal, etc. With a 
particular measurand, one is primarily interested in sensor characteristics such as 
sensitivity, selectivity, and speed of response which is shown in Table 4.2 called 
technological aspects of sensors. Table 4.3 shows the detection means used in 
sensors. Table 4.4 is intended to indicate the primary phenomena used to convert 
the measurand into a form suitable for producing the sensor output. The application 
fields are listed in Table 4.5. Most sensors contain a variety of materials (for 
example, almost all contain some metal). The entries in Table 4.6 should be 
understood to refer to the materials chiefly responsible for sensor operation. 

Table 4.1 Measurands of Sensors 

A. Measurands 
Al. Acoustic 

Al.1 Wave amplitude, phase, polarization, spectrum 
A1.2 Wave velocity 
A1.3 Other (specify) 

A2. Biological 
A2.1 Biomass (identities, concentrations, states) 
A2.2 Other (specify) 

A3. Chemical 
A3.1 Components (identities, concentrations, states) 
A3.2 Other (specify) 

A4. Electric 
A4.1 Charge, current 
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A4.2 Potential, potential difference 
A4.3 Electric field (amplitude, phase, polarization, spectrum) 
A4.4 Conductivity 
A4.5 Permittivity 
A4.6 Other (specify) 

A5. Magnetic 
A5.1 Magnetic field (amplitude, phase, polarization, spectrum) 
A5.2 Magnetic flux 
AS.3 Permeability 
AS.4 Other (specify) 

A6. Mechanical 
A6.1 Position (linear, angular) 
A6.2 Velocity 
A6.3 Acceleration 
A6.4 Force 
A6.5 Stress, pressure 
A6.6 Strain 
A6.7 Mass, density 
A6.8 Moment, torque 
A6.9 Speed of flow, rate of mass transport 
A6.10 Shape, roughness, orientation 
A6.11 Stiffness, compliance 
A6.12 Viscosity 
A6.13 Crystallinity, structural integrity 
A6.14 Other (specify) 

A7. Optical 
A7.1 Wave amplitude, phase, polarization, spectrum 
A7.2 Wave velocity 
A7.3 Other (specify) 

A8. Radiation 
A8.1 Type 
A8.2 Energy 
A8.3 Intensity 
A8.4 Other (specify) 

A9. Thermal 
A9.1 Temperature 
A9.2 Flux 
A9.3 Specific heat 
A9.4 Thermal conductivity 
A9.5 Other (specify) 

A10. Other (specify) 
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Table 4.2 Technological Aspects of Sensors 

B. Technological Aspects of Sensors 
B1 Sensitivity 
B2 Measurand range 
B3 Stability (short-term, long-term) 
B4 Resolution 
B5 Selectivity 
B6 Speed of response 
B7 Ambient conditions allowed 
B8 Overload characteristics 
B9 Operating life 
B10 Output format 
B11 Cost, size, weight 

Table 4.3 Detection Means Used in Sensors 

C. Detection Means Used in Sensors 
C1 Biological 
C2 Chemical 
C3 Electric, Magnetic, or Electromagnetic Wave 
C4 Heat, Temperature 
C5 Mechanical Displacement or Wave 
C6 Radioactivity, Radiation 
C7 Other (specify) 

Table 4.4 Sensor Conversion Phenomena 

D. Sensor Conversion Phenomena 
Dl. Biological 

D1.1 Biochemical transformation 
D1.2 Physical transformation 
D1.3 Effect on test organism 
Dl .4 Spectroscopy 
D1.5 Other (specify) 

D2. Chemical 
D2.1 Chemical transformation 
D2.2 Physical transformation 
D2.3 Electrochemical process 
D2.4 Spectroscopy 
D2.5 Other (specify) 

D3. Physical 
D3.1 Thermoelectric 
D3.2 Photoelectric 
D3.3 Photomagnetic 
D3.4 Magnetoelectric 
D3.S Elastomagnetic 
D3.6 Thermoelastic 
D3.7 Elastoelectric 
D3.8 Thermomagnetic 
D3.9 Thermooptic 
D3.10 Photoelastic 
D3.11 Other (specify) 
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Table 4.5 Fields of Application 

F. Fields of Application 
F1 Agriculture 
F2 Automotive 
F3 Civil engineering, construction 
F4 Distribution, commerce, finance 
F5 Domestic appliances 
F6 Energy, power 
F7 Environment, meteorology, security 
F8 Health, medicine 
F9 Information, telecommunications 
F10 Manufacturing 
F11 Marine 
F12 Military 
F13 Scientific measurement 
F14 Space 
F15 Transportation (excluding automotive) 
F16 Other (specify) 

Table 4.6 Sensor Materials 

E. Sensor Materials  
El Inorganic 
E2 Organic 
E3 Conductor 
E4 Insulator 
E5 Semiconductor 
E6 Liquid, gas or plasma 
E7 Biological substance 
E8 Other (specify) 

 

The scheme shown in above tables can facilitate comparing sensors, 
communicating with other workers about sensors, and keeping track of sensor 
progress and availability. Categorizing might help one think about new sensing 
principles that could be explored, and Table 4.2 might serve as a checklist to 
consult when considering commercial sensors. Refer to the sensor application in 
Condition Monitoring, the first step is to determine which measurands need to be 
measured which is shown in Table 4.1, and then analyze the requirements of the 
system to decide the technological aspects of the selected sensors which are shown 
in Table 4.2. In this Chapter, only the sensors can be used to collect data for fault 
diagnosis and prognosis are considered. Fig. 4.2 shows the most kinds of sensors 
applied in condition monitoring for fault diagnosis and prognosis. Some of these 
kinds of sensors are described following. 

Mechanical sensor systems have been studied extensively, and a large number of 
such devices are currently in use to monitor system performance for operational 
state assessment and tracking of fault indicators. A number of mechanical 
quantities—position, speed, acceleration, torque, strain, etc.—are commonly 
employed in dynamic systems. The most widely used sensors in condition 
monitoring for manufacturing machines are vibration sensors and strain gauges.  
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Mechanical Sensor 
Systems (A6)

Accelerometers (Vibration Measurements)
Strain gauges
Ultrasonic Sensor System

Performance Sensors
(A1, A3, A7 and A9)

Temperature Sensors / Thermography

Electrical Measurement
(A4)

Eddy-Current Proximity Probes

Microelectromechanical System (MEMS) Sensors
Fiber Optic Sensors 

Pressure, Fluid and thermodynamic
Optical properties and biochemical elements  

Position, speed, acceleration, torque, strain

Fig. 4.2 The Classification of Sensors. 

Recent years have seen an increased requirement for a greater understanding of the 
causes of vibration and the dynamic response of failing structures and machines to 
vibratory forces. An accurate, reliable, and robust vibration transducer therefore is 
required to monitor online such critical components and structures. Piezoelectric 
accelerometers offer a wide dynamic range and rank among the optimal choices for 
vibration-monitoring apparatus. They exhibit such desirable properties as 
[Wachtsevanos et al., 2006]: 

Usability over very wide frequency ranges; 
Excellent linearity over a very wide dynamic range; 
Electronically integrated acceleration signals to provide velocity and dis- 
placement data. 
Vibration measurements in a wide range of environmental conditions while 
still maintaining excellent accuracy 
Self-generating power supply  
No moving parts and hence extreme durability  
Extremely compact plus a high sensitivity-to-mass ratio 

Piezoelectric accelerometers are used to measure all types of vibrations regardless 
of their nature or source in the time or frequency domain as long as the 
accelerometer has the correct frequency and dynamic ranges.  

A strain-gauge sensor is based on a simple principle from basic electronics that the 
resistance of a conductor is directly proportional to its length and resistivity and 
inversely proportional to its cross-sectional area. Applied stress or strain causes the 
metal transduction element to vary in length and cross-sectional area, thus causing 
a change in resistance that can be measured as an electrical signal. Certain 
substances, such as semiconductors, exhibit the piezoresistive effect, in which 
application of strain greatly affects their resistivity. Strain gauges of this type have 
a sensitivity approximately two orders greater than the former type. The transducer 
usually is used within a Wheatstone bridge arrangement, with one, two, or all four 
of the bridge arms being individual strain gauges, so that the output voltage change 
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is an indication of measurand (the strain) change. The output of the strain-gauge is 
a simple voltage signal that can be connected to an oscilloscope to view the strain 
output or to the data-acquisition system to take strain-gauge data.  

Ultrasonic sensor systems are being considered for monitoring the health of critical 
structures such as airplanes, bridges, and buildings. Ultrasonic methods are 
particularly suitable for structural health monitoring both because ultrasonic waves 
travel long distances and thus have the potential to monitor a large volume of 
material and because ultrasonic methods have proven useful for nondestructive 
inspection of such structures during maintenance. There are three main types of 
ultrasonic waves that are suitable for structural health monitoring: guided waves, 
bulk waves, and diffuse waves. Regardless of the type of wave, the strategy is to 
monitor changes and then detect, localize, and characterize damage based on the 
nature of the change. This strategy of looking for changes can enable detection 
sensitivity to be similar to that of nondestructive inspection despite the limitation of 
fixed sensors. The theory behind ultrasonic ranging is quite simple (as shown in 
Fig. 4.3). Typically a short ultrasonic burst is transmitted from the transmitter. 
When there is an object in the path of the ultrasonic pulse, some portion of the 
transmitted ultrasonic wave is reflected and the ultrasonic receiver can detect such 
echo. By measuring the elapsed time between the sending and the receiving of the 
signal along with the knowledge of the speed of sound in the medium, the distance 
between the receiver and the object can be calculated.  

Fig. 4.3  Principle of Ultrasonic Sensors 

System performance and operational data are monitored routinely in all industrial 
establishments, utility operations, transportation systems, etc. for process control, 
performance evaluation, quality assurance, and fault diagnosis purposes. A large 
number of sensor systems have been developed and employed over the years. The 
list includes devices that are intended to measure such critical properties as 
temperature; pressure; fluid, thermodynamic, and optical properties; and 
biochemical elements, among many others. Sensors based on classic measuring 
elements—inductive, capacitive, ultrasound— have found extensive applications.  

Temperature variations in many mechanical, electrical, and electronic systems are 
excellent indicators of impending failure conditions. Temperatures in excess of 
control limits should be monitored and used in conjunction with other 



Chapter 4: Sensor Classification and Sensor Placement Optimization 
 

66 
 

measurements to detect and isolate faults. Temperature sensing has found 
numerous applications over the years in such areas as engineering, medicine, 
environmental monitoring, etc. Therefor the temperature sensors play a very 
important role in condition monitoring. A temperature sensor is a device that 
gathers data concerning the temperature from a source and converts it to a form 
that can be understood either by an observer or another device. Temperature 
sensors come in many different forms and are used for a wide variety of purposes, 
from simple home use to extremely accurate and precise scientific use. They play a 
very important role almost everywhere that they are applied. The best known 
example of a temperature sensor is the mercury-in-glass thermometer. Mercury 
expands and contracts based on changes in temperature; when these volume 
changes are quantified, temperature can be measured with a fair degree of 
accuracy. The outside temperature is the source of the temperature measurements 
and the position of the mercury in the glass tube is the observable quantification of 
temperature that can be understood by observers. Typically, mercury-in-glass 
thermometers are only used for non-scientific purposes because they are not 
extremely accurate. In some cases, they can be used in high school or college 
chemistry labs when a very accurate measurement of temperature is not important. 
The most common temperature sensors in scientific area are resistance temperature 
detectors (RTDs), whose principle of operation is variation of the resistance of a 
platinum wire or film as a function of temperature. Platinum usually is employed 
because of its stability with temperature and the fact that its resistance tends to be 
almost linear with temperature. Such temperature devices have higher accuracy 
than that of mercury-in-glass thermometer and thus are used widely in condition 
monitoring when the temperature of the machines or environment needs to be 
monitor accurately. 

Electrical measurements are the methods, devices and calculations used to measure 
electrical quantities. Measurement of electrical quantities may be done to measure 
electrical parameters of a system. Using transducers, physical properties such as 
temperature, pressure, flow, force, and many others can be converted into electrical 
signals, which can then be conveniently measured and recorded. According to the 
principle, a number of sensor systems based on the Electrical measurements have 
been developed and applied in the recent past in an attempt to interrogate critical 
components and systems for fault diagnosis and prognosis. Transducing principles 
based on eddy-current response characteristics, optical and infrared signal 
mentoring, microwaves, and others have been investigated.  

Response characteristics of induced eddy currents in conducting media are 
monitored for changes in their behavior owing to material anomalies, cracks, shaft 
or mating-part displacements, etc. Eddy-current proximity probes are a mature 
technology that has been used for protection and management of rotating 
machinery. They are employed commonly in high-speed turbo machinery to 
observe relative shaft motion directly, that is, inside bearing clearances of fluid-
film interfaces. Zou et al. describe the application of eddy-current proximity 
sensing to the detection of a crack in a seal/rotor drive-shaft arrangement [Zou et 
al., 2000].  
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Of interest also are sensor systems that can be produced inexpensively, singly or in 
an array, while maintaining a high level of operational reliability. 
Microelectromechanical systems (MEMS) and sensors based on fiber-optic 
technologies are finding popularity because of their size, cost, and ability to 
integrate multiple transducers in a single device. Micro-machined MEMS devices 
in silicon or other materials are fabricated in a batch process with the potential for 
integration with electronics, thus facilitating on-board signal processing and other 
‘‘smart’’ functions. A number of MEMS transducer and sensor systems have been 
manufactured in the laboratory or are available commercially, monitoring such 
critical parameters as temperature, pressure, acceleration, etc. [Wachtsevanos et al., 
2006]. 

Fiber optics has penetrated the telecommunications and other high-technology 
sectors in recent years. They find utility in the sensor field because of their 
compact and flexible geometry, potential for fabrication into arrays of devices, 
batch fabrication, etc. Fiber optic sensors have been designed to measure strain, 
temperature, displacement, chemical concentration, and acceleration, among other 
material and environmental properties. Their main advantages include small size, 
light weight, immunity to electromagnetic and radio frequency interference 
(EMI/RFI), high- and low-temperature endurance, fast response, high sensitivity, 
and low cost. Fiber optic technologies are based on extrinsic Fabry-Perot 
interferometry (EFPI), chemical change in the fiber cladding, optical signal 
changes owing to fiber stress and deformation, etc.  

There are also some other kinds of sensors available in the market and most of 
them are very good to meet the monitoring requirement. We only need choose 
suitable ones to collect data from the machines for monitoring. 

4.3 Wireless Sensor Networks 

A sensor network is a group of specialized sensors with a communications 
infrastructure intended to monitor and record conditions at diverse locations. 
Commonly monitored parameters are temperature, humidity, pressure, wind 
direction and speed, illumination intensity, vibration intensity, sound intensity, 
power-line voltage, chemical concentrations, pollutant levels and vital body 
functions. 

Sensor networks may consist of many different types of sensors such as seismic, 
low sampling rate magnetic, thermal, visual, infrared, acoustic and radar, which are 
able to monitor a wide variety of ambient conditions that include the following 
[Estrin et al., 1999]: 

Temperature,  
Humidity,  
Vehicular movement,  
Lightning condition,  
Pressure,  
Soil makeup,  
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Noise levels,  
The presence or absence of certain kinds of objects, 
Mechanical stress levels on attached objects, and  
The current characteristics such as speed, direction, and size of an object. 

A sensor network consists of multiple detection stations called sensor nodes, each 
of which is small, lightweight and portable. Every sensor node is equipped with a 
transducer, microcomputer, transceiver and power source. The transducer generates 
electrical signals based on sensed physical effects and phenomena. The 
microcomputer processes and stores the sensor output. The transceiver, which can 
be hard-wired or wireless, receives commands from a central computer and 
transmits data to that computer. The power for each sensor node is derived from 
the electric utility or from a battery.  

Sensor networks can be deployed in the following two ways [Intanagonwiwat et 
al., 2000]: 

Sensors can be positioned far from the actual phenomenon, i.e., something 
known by sense perception. In this approach, large sensors that use some 
complex techniques to distinguish the targets from environmental noise are 
required. 
Several sensors that perform only sensing can be deployed. The positions 
of the sensors and communications topology are carefully engineered (Fig. 
1.5). They transmit time series of the sensed phenomenon to the central 
nodes where computations are performed and data are fused. 

The above described features ensure a wide range of applications for sensor 
networks. Some of the application areas are health, military, and security. For 
example, the physiological data about a patient can be monitored remotely by a 
doctor. While this is more convenient for the patient, it also allows the doctor to 
better understand the patient’s current condition. Sensor networks can also be used 
to detect foreign chemical agents in the air and the water. They can help to identify 
the type, concentration, and location of pollutants. In essence, sensor networks will 
provide the end user with intelligence and a better understanding of the 
environment [Akyildi et al., 2002]. Sensor networks can also be very helpful in 
condition monitoring for manufacturing machines, wind turbines, transporters and 
infrastructure because they may be distributed in different place. Potential 
applications of sensor networks may include: 

Condition monitoring for factory or infrastructure; 
Industrial automation; 
Automated and smart homes; 
Video surveillance; 
Traffic monitoring; 
Medical device monitoring; 
Monitoring of weather conditions; 
Air traffic control; 
Military applications; 
Robot control. 
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While many sensors connect to controllers and processing stations directly (e.g., 
using local area networks), an increasing number of sensors communicate the 
collected data wirelessly to a centralized processing station which are compose a 
Wireless Sensor Network (WSN). This is important since many network 
applications require hundreds or thousands of sensor nodes, often deployed in 
remote and inaccessible areas. Therefore, a wireless sensor has not only a sensing 
component, but also on-board processing, communication, and storage capabilities. 
With these enhancements, a sensor node is often not only responsible for data 
collection, but also for in-network analysis, correlation, and fusion of its own 
sensor data and data from other sensor nodes. When many sensors cooperatively 
monitor large physical environments, they form a WSN. Sensor nodes 
communicate not only with each other but also with a base station (BS which could 
be a gateway) using their wireless radios, allowing them to disseminate their sensor 
data to remote processing, visualization, analysis, and storage systems. For 
example, Fig. 4.4 shows two sensor fields monitoring two different geographic 
regions and connecting to the Internet using their base stations [Dargie and 
Poellabauer, 2010].  

Fig. 4.4 Wireless Sensor Networks 

The capabilities of sensor nodes in a WSN can vary widely, that is, simple sensor 
nodes may monitor a single physical phenomenon, while more complex devices 
may combine many different sensing techniques (e.g., acoustic, optical, magnetic). 
They can also differ in their communication capabilities, for example, using 
ultrasound, infrared, or radio frequency technologies with varying data rates and 
latencies. While simple sensors may only collect and communicate information 
about the observed environment, more powerful devices (i.e., devices with large 
processing, energy, and storage capacities) may also perform extensive processing 
and aggregation functions. Such devices often assume additional responsibilities in 
a WSN, for example, they may form communication backbones that can be used by 
other resource-constrained sensor devices to reach the base station. Finally, some 
devices may have access to additional supporting technologies, for example, 
Global Positioning System (GPS) receivers, allowing them to accurately determine 
their position. However, such systems often consume too much energy to be 
feasible for low-cost and low-power sensor nodes  [Dargie and Poellabauer, 2010]. 
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The well-known IEEE 802.11 family of standards was introduced in 1997 and is 
the most common wireless networking technology for mobile systems. It uses 
different frequency bands, for example, the 2.4-GHz band is used by IEEE 802.11b 
and IEEE 802.11g, while the IEEE 802.11a protocol uses the 5-GHz frequency 
band. IEEE 802.11 was frequently used in early wireless sensor networks and can 
still be found in current networks when bandwidth demands are high (e.g., for 
multimedia sensors). However, the high-energy overheads of IEEE 802.11-based 
networks make this standard unsuitable for low-power sensor networks. Typical 
data rate requirements in sensor networks are comparable to the bandwidths pro- 
vided by dial-up modems, therefore the data rates provided by IEEE 802.11 are 
typically much higher than needed. This has led to the development of a variety of 
protocols that better satisfy the networks’ need for low power consumption and low 
data rates. For example, the IEEE 802.15.4 protocol [Callaway et al., 2002] has 
been designed specifically for short- range communications in low-power sensor 
networks and is supported by most academic and commercial sensor nodes. 

The network topologies can be seen as in Fig. 1.5 and the most widely used ones 
are topologies of star and mesh. When the transmission ranges of the radios of all 
sensor nodes are large enough and the sensors can transmit their data directly to the 
base station, they can form a star topology as shown on the left in Fig. 4.5. In this 
topology, each sensor node communicates directly with the base station using a 
single hop. However, sensor networks often cover large geographic areas and radio 
transmission power should be kept at a minimum in order to conserve energy; 
consequently, multi-hop communication is the more common case for sensor net- 
works (shown on the right in Fig. 4.5). In this mesh topology, sensor nodes must 
not only capture and disseminate their own data, but also serve as relays for other 
sensor nodes, that is, they must collaborate to propagate sensor data towards the 
base station. This routing problem, that is, the task of finding a multi-hop path from 
a sensor node to the base station, is one of the most important challenges and has 
received immense attention from the research community. When a node serves as a 
relay for multiple routes, it often has the opportunity to analyze and pre-process 
sensor data in the network, which can lead to the elimination of redundant 
information or aggregation of data that may be smaller than the original data. The 
more detailed information about Wireless Sensor Networks can be found at the 
reference of [Dargie & Poellabauer, 2010]. 

Fig. 4.5 Single-hop Versus Multi-hop Communication in Sensor Networks  
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4.4 RFID Sensor Networks 

Radio Frequency IDentification (RFID) is one of numerous technologies grouped 
under the term of Automatic Identification (Auto ID), such as bar code, magnetic 
inks, optical character recognition, voice recognition, touch memory, smart cards, 
biometrics etc. Auto ID technologies are a new way of controlling information and 
material flow, especially suitable for large production networks [Ilie-zudor et al., 
2006]. RFID is the use of a wireless non-contact radio system to transfer data from 
a tag attached to an object, for the purposes of identification and tracking. In 
general terms, it is a means of identifying a person or object using a radio 
frequency transmission. The technology can be used to identify, track, sort or 
detect a wide variety of objects [Lewis, 2004]. Recently, RFID become more and 
more interesting technology in many fields such as agriculture, manufacturing and 
supply chain management. 

The history of RFID technology can be tracked back to the radio-based 
identification system used by allied bombers during World War II [Garfinkel & 
Holtzman, 2005]. Early identification Friend or For (IFF) systems were used to 
distinguish Allied fighter and bomber by identifying the correct signals sent by 
Allied aircrafts, from aircrafts sent by enemy at night. After the war, Harry 
Stockman realized that it is possible to power a mobile transmitter completely from 
the strength of a received radio signal, and then he introduced the concept of 
passive RFID systems [Stockman, 1948]. In 1972, a patent application for 
“inductively coupled transmitter-responder arrangement” was filed which is used 
separate coils for receiving power and transmitting the return signal [Kriofsky & 
Kaplan, 1975]. In 1979, a patent application for “identification device” (two 
antennas was combined) was filed which is seen as a RFID landmark because it 
emphasized the potentially small size of RFID device [Beigel, 1982]. The 1980s 
became the decade for full implementation of RFID technology, though interests 
developed somewhat differently in various parts of the world. The greatest interests 
in the United States were for transportation, personnel access, and to a lesser 
extent, for animals. In Europe, the greatest interests were for short-range systems 
for animals, industrial and business applications, though toll roads in Italy, France, 
Spain, Portugal, and Norway were equipped with RFID. The 1990s were a 
significant decade for RFID since it saw the wide scale deployment of electronic 
toll collection in the United States. The world's first open highway electronic 
tolling system opened in Oklahoma in 1991 and then extended to the whole world. 
Interest was also keen for RFID applications in Europe during the 1990s. Both 
Microwave and inductive technologies were finding use for toll collection, access 
control and a wide variety of other applications in commerce [Landt, 2001]. The 
21st century opens with the smallest microwave tags built using, at a minimum, 
two components: a single custom CMOS integrated circuit and an antenna. Tags 
could now be built as sticky labels, easily attached to windshields and objects to be 
managed [Landt, 2005]. It seems that there are still a great many developments of 
RFID to look forward to as the history continues to teach that and RFID will be 
presented in our daily life. 
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4.4.1 RFID System 

Typical RFID systems fundamentally consist of four elements: the RFID tags, the 
RFID readers, the antennas and choice of radio characteristics, and the computer 
network (if any) that is used to connect the readers (Fig. 4.6). Tags are attached to 
objects and each of them has a certain amount of internal memory (E2PROM) in 
which it stories information about the object, such as its unique ID number, or in 
some cases more details including manufacture data and product composition. 
When these tags pass through a field generated by a reader, they transmit this 
information back to the reader, thereby identifying the object. Until recently, the 
focus of RFID technology was mainly on tags and readers which were being used 
in systems where relatively low volumes of data are involved. This is now 
changing as RFID in the supply chain is expected to generate huge volumes of data, 
which will have to be filtered and routed to the backend IT systems. To solve this 
problem companies have developed special software packages (Middleware), 
which act as buffers between the RFID front end and the IT backend [Wang & 
Zhang, 2012].  

Fig. 4.6 Typical RFID System  

Fig. 4.7 RFID Tags Communication Methods 

There are two main communication principles between RFID readers/antennas and 
RFID Tags: inductive coupling and backscatter reflection which are used in near 
field and far field respectively (Fig. 4.7). The principle of inductive coupling 
means transferring energy from one circuit to another through mutual inductance. 
Near field employs inductive coupling of the tag to the magnetic field circulating 
around the reader antenna (like a transformer). In RFID systems using inductive 
coupling, the reader antenna and the RFID tag antenna each have a coil which 
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together forms a magnetic field so that the tag draws energy from the field to 
change the electrical load on the tag antenna. The change is picked up by the reader 
and read as a unique serial number. Far field uses similar techniques to radar 
(Backscatter reflection) by coupling with the electric field. RFID tags using 
backscatter technology reflect radio waves at the same carrier frequency back to 
the tag reader, using modulation to transmit the data. 

The communication process between the reader and tag is managed and controlled 
by one of several protocols, such as the ISO 15693 and ISO 18000-3 for HF or the 
ISO 18000-6, and EPC for UHF. Basically what happens is that when the reader is 
switched on, it starts emitting a signal at the selected frequency band (typically 860 
- 915MHz for UHF or 13.56MHz for HF). Any corresponding tag in the vicinity of 
the reader will detect the signal and use the energy from it to wake up and supply 
operating power to its internal circuits. Once the Tag has decoded the signal as 
valid, it replies to the reader, and indicates its presence by modulating (affecting) 
the reader field. 

The communication principle can be used to compose parts of wireless sensor 
network. 

4.4.2 Embedded RFID Sensor Monitoring 

RFID sensor enabled tags, which can be used in such fields as project tracking, 
environmental monitoring, automotive electronic system, telemedicine and 
manufacturing processes controlling, etc., are bred as the result. Without doubts, 
they will play important roles in more and more areas as the technology is 
progressively growing. Roughly, the primary sensors in use today can be classified 
according to their functions in many categories such as: temperature, pressure, 
acceleration, inclination, humidity, light, gas sensor and chemical sensors 
[Ruhanne et al., 2008] . 

Fig. 4.8 shows the system architecture for a generic sensor tag and its interaction 
with RFID systems as it passes through various stages of the manufacturing, 
assembling and supply chain. The RFID tags can be combined to the sensor 
devices (many different sensors) and transfer the sensing data to the RFID reader 
and further to the database through radio waves. Typically for the supply, there are 
a number of RFID portals and at each of these passive RFID tag is interrogated. 
The data obtained could be used for improving the process and scheduling of 
supply chain and production process [Wang & Zhang, 2012]. For the 
manufacturing systems and processes, there are many sensors mounted on the 
machines which can be combined with RFID tags. The collected data can be 
transmitted to RFID reader and database, and the data with some processing 
techniques can be used to monitor the condition of the machine and improve the 
performance. 
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Fig. 4.8 General Structure of Embedded RFID Sensing System 

4.5 General Sensor Networks 

This section is a summary of sensor network techniques mentioned above. The 
wired network, Wi-Fi wireless networks, Bluetooth and RFID can be integrated 
together to collect data according to the requirements of real projects. The general 
structure of the integrated sensor networks are shown in Fig. 4.9. In the real 
application sites, suitable sensors are selected to collect data of the machines. The 
collected data can be transmitted to database through wired network, wireless 
network (Wi-Fi), RFID and Bluetooth. The customers may use one or more these 
kinds of methods to transfer the data according to the requirements and considering 
the cost of human resource, economy and so on.  

4.6 Sensor Placement Optimization (SPO) 

The basic problem for condition monitoring is to deduce the existence of a defect 
in a structure from measurements taken at sensors distributed on the structure. The 
correctness of defect diagnosis depends on the method of pattern recognition for 
fault and effectiveness of signals from the sensors mounted on the machines. While 
carrying out on-site condition monitoring for a machine, the inappropriate 
distribution of sensors might result in weak incentives of certain order or modal, 
and affect the accuracy of fault identification. The aim of optimizing the placement 
of sensors is to obtain as much as possible of machine structural information with 
as few as possible sensors, which benefit the company in the economy viewpoint. 
Because of constraints of machine structure and environment, and consideration of 
economy, only a small number of sensors are installed when a condition 
monitoring system is established. It is very important to design the optimal position 
of the sensor to mount in order to ensure the accuracy and correctness of 
monitoring and fault judgement.  
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Fig. 4.9 General Sensor Network Structure 

There are many literatures in optimal placement optimization of sensors in machine 
level. The spatial controllability was used to find the optimal placement of 
collocated actuator-sensor pairs for effective average vibration reduction over the 
entire structure, and the maintaining modal controllability and observability were 
used to select vibration modes for a thin plate [Halim & Reza Moheimani, 2003]. 
Recently, intelligent optimization algorithm has developed well which is a method 
to simulate the biological and physical process which can be used in sensor 
placement optimization. Many researchers focus on Genetic Algorithm (GA) 
application in sensor placement optimization and make up for a lot of shortage of 
the traditional optimization algorithm [Li et al., 2000; Liu et al., 2008; Sun et al., 
2008]. But GA has to adopt binary coding and has complex operation process such 
as mutation, genetic and crossover. PSO adopts real number coding to avoid the 
complex operation, which is simple and easy to realize. So it is easy to apply in 
sensor placement optimization. PSO and finite element analysis were combined 
together to search the sensors optimal placement of a gearbox [Pan et al., 2010]. 
Binary PSO and Analytical redundancy Relations (ARRs) were combined to 
optimize the sensor placement for fault diagnosis [Du et al., 2011]. The sensor 
placement optimization is a very important aspect for many applications such as 
modal test and parameter identification [Cheng 2003; Papadimitriou 2004; 
Pennacchi and Vania 2008], fault diagnosis [Bhushan and Rengaswamy, 2000; 
Molter et al., 2010; Staszewski, 2002; Worden and Burrows, 2001] and process 
monitoring [Wang et al., 2002]. This section tries to apply PSO and finite element 
analysis in sensor placement optimization in order to get enough information of 
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machine structure using a small number of sensors and ensure the accuracy and 
correctness of condition monitoring. 

4.6.1 Problem Description 

Modal analysis (finite element analysis) is a very important method for fault 
diagnosis and condition monitoring. Faults of a machine, such as crack, axis 
loosening and fatigue, usually accompany with the change of physical parameters, 
such as natural frequency, modal damping, vibration mode and frequency response 
function. The faults can be diagnosed according to these changes. The machine’s 
vibration is supposed to be a n degree of freedom linear time-invariant system 
which differential function can be written as [Wei and Pan 2010]: 

 ( ) ( ) ( ) ( )M x t C x t Kx t f t  (4.1) 

where: M , C  and K are the system mass, damping and stiffness matrix 

respectively which are n n  matrix. ( )x t , ( )x t and ( )x t are n order response 
vectors of system displacement, velocity and acceleration respectively. ( )f t
represents n  order excitation force vector. Then the frequency displacement 
response function can be obtained by Fourier transform and set  ( ) j tx t xe  as: 

 ( ) ( ) ( )x H F  (4.2) 

where ( )H  means the frequency displacement response function which is a 
matrix. If the actuation is charged in i  point of the machine, the frequency 
response function of j  point can be written as:  

 2
1

( )
n

jr ir
ij

r r r r

H
M j C K

 (4.3) 

where rM , rC rK  and r  represent modal mass, modal damping, modal stiffness 
and each order vibration mode vector. Eq. (4.3) shows the relationship between 
transfer function and the modal parameters and for a certain machine the value of 

2( )r r rM j C K is always the same because it only depends on the frequency 
and damping ratio. Therefore, the value of frequency response function depends on 
vibration mode vector of  i  and j  points.   

Let 1 2[ , , , ]n  be a displacement mode in which i  is a N dimension vector 
where N means the freedom degree of the machine structure. Let m  be the number 
of sensors (or number of measurement points) mounted on the machine while 
o N m  be a non-measurement points. The fitness function can be as: 

 
1 1

n n

ri rj
i j r o

f  (4.4) 
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where ri means the thr component of thj vibration mode and r o means all 
calculation vectors are of non-measurement points. Compared Eq. (4.3) and 
Eq.(4.4), it is only task to find the minimum value of Eq. (4.4) for the optimal 
distribution of sensors. Therefore, it is chosen to be fitness function to find optimal 
placement of sensors. 

4.6.2 Application of PSO in Sensor Placement Optimization 

4.6.2.1 The Process of PSO Application in Sensor Placement Optimization 

The principle of PSO has been introduced in Section 3.5. This section induced how 
to apply PSO to solve the Sensor placement optimization problems. Sensor 
placement can be solved by simple mathematical calculation, but it will be time-
consuming. For example, if there are n  possible measuring points and m  sensors 
are available to set up there will be !/ ( !( )!)n m n m  times need to be calculated. 
PSO is a good optimization algorithm which can easily solve this problem. Fig. 
4.10 shows the structure to apply PSO in sensor placement optimization. First of all, 
the machine structure is analyzed using finite element analysis, and at the same, 
according to the shape and the application, all possible measurement points can be 
determined. From result of above step, all vibration displacement modes can be 
calculated. Then, input all of these data to PSO to find the optimal sensor 
placement which can be sent to design and management center. According to the 
result, the staff can improve the structure design, or make it is easy to monitor the 
machine with high accuracy and correctness.  

Finite Element 
AnalysisCAD Mode

Find all 
possible 

measurement 
points

Calculation all 
vibration 

displacement 
mode for each 
measurement 

points

Start

Initialization 
of velocities 

and 
Positions 

and structure 
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Evaluate fitness For all 
particle with Eq. 4.4

Is termination condition 
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Update velocity and position  
with Eq. 3.21 and Eq. 3.22

Loop until 
maximum iteration

NOYES
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than pbest ?

YES
NO
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Is pbest better than 
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Loop for
all particles

Optimal sensor placement Design and Management 
Center

Fig. 4.10 Structure of PSO Application in Sensor Placement Optimization   

4.6.2.2 Case Study and Its Results 

In order to validate the effectiveness of the proposed method, a blower is chosen to 
analyze. The 3D model is bolted based in the practical installation and possible 10 
measurement points are chosen to analyze (Fig. 4.11). When it is analyzed, the 
elastic modulus is set to E 210 Gpa, mass density to 7800 kg/m3 and Poisson ratio 
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to 0.3. The 3D solid model of the blower is built using the three-dimensional 
software Solidworks and then import to ANSYS 13.0 to carry out finite element 
analysis calculation and modal analysis. The blower is bolted to the floor in real 
installation, and thus the boundary condition of baseboard of blower is set to fixed 
constraint. This study calculates total 10 order natural frequency (Table 4.7) and its 
10 vibration mode shapes of the blower are obtained. The finite element model and 
its first four vibration modes are shown in Fig. 4.12. Fig. 4.12(a) to Fig. 4.12 (d) 
shows from first to forth order of vibration shape mode respectively. In these 
figures, the arrows mean the movement directions of that mode.  The natural 
frequency results (displacement) in total is shown in Table 4.8, and in three 
different directions (X, Y and Z) are shown in Table 4.9-Table 4.11. 

Table 4.7 Main Natural Frequencies of Blower 

Order Frequency Order Frequency 
1 58.282 6 185.62 
2 116.77 7 214.41 
3 121.98 8 229.1 
4 164.62 9 243.49 
5 165.52 10 250.3 

Fig. 4.11 Initial Placement of Measuring Points on the Blower 
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Fig. 4.12 The Finite Element Model of Blower and Its First Four Modes 

Table 4.8 Total Displacement Mode for Each Point Order 

Measuring 
Point 1st order 2nd order 3rd order 4th order 5th order 6th order 7th order 8th order 9th other 10th 

order 

1 0.17836 9.060e-2 7.433e-2 6.391e-2 4.649e-2 0.2028 0.32562 0.10588 4.435e-2 3.509e-2 

2 0.16318 9.666e-2 6.106e-2 6.268e-2 4.406e-2 0.18447 0.30796 9.893e-2 4.048e-2 4.081e-2 

3 0.17333 0.13224 8.327e-2 7.811e-2 4.548e-2 0.259 0.31935 0.11036 4.282e-2 2.617e-2 

4 0.17537 0.21849 0.12898 0.10694 4.355e-2 0.38771 0.30514 0.1153 4.059e-2 3.384e-2 

5 5.862e-3 1.840e-3 6.917e-4 1.681e-3 2.018e-3 1.222e-2 2.505e-2 9.816e-3 6.142e-4 4.418e-3 

6 2.433e-2 2.246e-2 9.974e-3 1.343e-2 6.225e-3 5.518e-2 3.595e-2 3.119e-2 3.028e-3 3.148e-2 

7 5.9661e-
10 

2.6120e-
10 

2.7633e-
10 

7.6294e-
11 

2.009e-
11 

1.951e-
10 

4.300e-
10 

5.0898e-
11 

2.5647e-
11 

8.9125e-
11 

8 0.2517 9.544e-3 8.621e-2 3.165e-2 3.646e-2 0.10458 0.14308 0.19168 9.056e-2 0.12752 

9 0.31278 4.151e-2 9.815e-2 5.240e-2 4.757e-2 0.11371 0.1602 0.18728 4.534e-2 0.12261 

10 0.3195 6.082e-2 0.10333 6.415e-2 5.369e-2 0.20737 0.15862 0.2448 4.327e-2 0.16902 
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Table 4.9 X Directional Displacement Mode for Each Point Order 

Measuring 
Point 1st order 2nd order 3rd order 4th order 5th order 6th order 7th order 8th order 9th other 10th 

order 

1 -5.07e-3 9.585e-2 -4.30e-3 6.389e-2 3.341e-3 0.19631 -5.48e-2 0.10362 -7.03e-4 2.618e-2 

2 -4.91e-3 8.861e-2 -4.54e-3 6.260e-2 3.204e-3 0.18686 -5.21e-2 9.645e-2 -6.69e-4 2.406e-2 

3 -6.96e-3 0.1349 -5.64e-3 7.755e-2 4.552e-3 0.25141 -6.62e-2 0.10779 -1.02e-3 1.254e-2 

4 -1.23e-2 0.21812 -8.48e-3 0.10665 7.873e-3 0.38268 -9.18e-2 0.10778 -1.79e-3 -2.65e-2 

5 4.178e-5 9.337e-4 -1.40e-4 1.545e-3 6.528e-5 3.761e-3 -1.82e-3 2.943e-3 -3.67e-5 1.914e-3 

6 -7.02e-3 6.974e-3 7.819e-4 7.756e-3 1.026e-3 3.040e-2 7.178e-3 -1.79e-4 2.035e-3 -3.20e-3 

7 6.717e-
12 

-1.3584e-
10 

1.3694e-
11 

-5.702e-
11 

-9.6312e-
12 

-3.1304e-
10 

6.3539e-
11 

1.2883e-
11 

1.4565e-
12 

3.8828e-
11 

8 -9.822e-4 8.667e-3 2.214e-4 3.020e-2 -4.575e-3 3.122e-2 -3.36e-2 0.19303 3.795e-4 0.12611 

9 2.46e-3 3.002e-2 -2.68e-3 4.980e-2 -2.146e-3 9.763e-2 -4.31e-2 0.18305 1.835e-5 0.11062 

10 -2.6e-3 3.381e-2 -3.37e-3 5.157e-2 -2.602e-3 0.10477 -4.23e-2 0.18105 -4.48e-4 0.10807 

 

Table 4.10 Y Directional Displacement Mode for Each Point Order 

Measuring 
Point 

1st 
order 2nd order 3rd 

order 4th order 5th order 6th order 7th 
order 8th order 9th 

other 
10th 
order 

1 -5.21e-
2 -4.59e-3 4.28e-2 -3.77e-4 1.085e-2 -1.19e-2 -6.76e-

2 -3.50e-3 -9.81e-
3 -3.84e-3 

2 -4.95e-
2 -7.17e-3 4.459e-

2 -4.24e-3 1.072e-2 -1.89e-2 -6.46e-
2 -1.18e-2 -9.65e-

3 -8.59e-3 

3 -8.09e-
2 -6.84e-3 6.938e-

2 -1.05e-3 1.763e-2 -1.77e-2 -0.1073 -5.09e-3 -1.67e-
2 -6.50e-3 

4 -0.1542 -1.28e-2 0.12835 -1.65e-3 3.355e-2 -3.35e-2 -0.2039 -8.85e-3 -3.13e-
2 -1.23e-2 

5 8.573e-
4 2.268e-4 2.018e-

4 1.432e-4 -2.52e-4 5.930e-4 -7.87e-
4 1.417e-3 -3.39e-

6 2.517e-4 

6 -4.25e-
3 2.351e-3 -2.38e-

3 -2.21e-3 1.412e-3 -3.25e-4 -7.73e-
3 -1.11e-2 -8.34e-

4 -8.52e-3 

7 
-
9.490e-
11 

3.1173e-
11 

-
6.281e-
12 

5.5385e-
12 

7.3163e-
13 

2.3211e-
11 

-
3.944e-
11 

2.3103e-
12 

-
0.605e-
13 

5.8361e-
13 

8 6.86e-2 5.901e-4 2.12e-2 -3.92e-4 -1.79e-2 -2.00e-3 -3.3e-2 -1.30e-3 -2.1e-2 -1.94e-3 

9 5.224e-
2 -6.94e-2 1.575e-

2 -1.43e-2 -4.16e-3 -3.77e-2 -1.39e-
2 -2.21e-2 -3.56e-

3 -1.24e-2 

10 3.905e-
2 -1.87e-2 1.841e-

2 -2.56e-2 -3.92e-2 -6.34e-2 -1.13e-
2 -6.66e-2 -4.11e-

4 -3.80e-2 

 

  



Chapter 4: Sensor Classification and Sensor Placement Optimization 
 

81 
 

Table 4.11 Z Directional Displacement Mode for Each Point Order 

Measuring 
Point 1st order 2nd order 3rd order 4th 

order 
5th 
order 6th order 7th order 8th 

order 9th other 10th 
order 

1 0.16931 1.879e-2 -5.70e-2 8.68e-3 -4.53e-
2 6.517e-2 0.31279 2.239e-

2 4.327e-2 2.347e-
2 

2 0.15121 -2.33e-2 -4.03e-2 -5.27e-
3 

-4.25e-
2 -2.36e-3 0.29841 1.322e-

2 3.957e-2 3.204e-
2 

3 0.15458 1.774e-2 -4.40e-2 4.932e-
3 

-4.21e-
2 5.924e-2 0.29066 2.198e-

2 4.027e-2 2.328e-
2 

4 8.796e-2 1.260e-2 1.308e-2 8.660e-
3 

-2.73e-
2 4.474e-2 0.1988 1.825e-

2 2.641e-2 1.603e-
2 

5 -6.27e-3 1.490e-3 -9.35e-4 1.195e-
3 

1.903e-
3 7.195e-3 2.383e-2 -6.82e-

3 8.225e-4 -6.28e-
3 

6 1.839e-2 -2.14e-2 9.795e-3 -1.11e-
2 

-5.78e-
3 -4.79e-2 3.553e-2 2.910e-

2 2.075e-3 3.007e-
2 

7 2.2494e-
10 

8.1034e-
11 

6.7551e-
11 

-
4.605e-
11 

-
1.717e-
11 

3.0784e-
10 

6.1781e-
10 

-
4.387e-
11 

2.7575e-
11 

-
7.837e-
11 

8 0.23909 3.971e-3 8.188e-2 1.070e-
4 

-7.81e-
3 -8.09e-3 -0.1400 -2.76e-

2 3.71e-2 -1.72e-
2 

9 0.31009 -1.83e-2 9.733e-2 -1.60e-
2 

-4.64e-
2 -7.03e-2 -0.1563 2.965e-

2 -4.47e-2 5.089e-
2 

10 0.3156 -4.82e-2 0.1005 -3.22e-
2 

-5.38e-
2 -0.1671 -0.1538 0.1491 -4.33e-2 0.12277 

All parameters are presented in above figures and tables. Accordingly, the process 
of PSO application in sensor placement optimization in Fig. 4.10 and the fitness 
function Eq. (4.4), the optimal sensor placement of the blower can be obtained 
using PSO. For the PSO algorithm, the number of particles is initialized as 10 and 

(1 ~ 10)n  sensors are assumed to place on blower measuring points. The weight  
is set to 1.2-0.8 with decreasing linearly, and the acceleration coefficient 1c and 2c  
is set as 1.2. The vibration mode parameters in Table 4.8-Table 4.11 are input to 
the PSO respectively which can be used to calculate the fitness value.  

Table 4.12 shows the smallest fitness value and the corresponding sensor 
placement for the different number of measuring points using the total 
displacement mode for each measuring point (Table 4.8). From this table, the 
amount of information on the blower increases with the increasing of measuring 
points, because the fitness become smaller and smaller. The smallest fitness is very 
big (8.824) when there only one sensor place on the blower while it became very 
small even equal 0 when the number of sensors increasing to 8, 9 to 10. From this 
table, the importance of measuring points can be obvious observed. The point 4 is 
the most important while the point 7 is the least important. The amount information 
also can be calculated from this table. Just take measuring point 6 as example, its 
amount information can be calculated as fitness value in point 5 minus in point 6 
(2.422-1.213=1.209).  

Table 4.13, Table 4.14 and Table 4.15 present the smallest fitness values and the 
corresponding sensor placement for the different number of measuring points using 
displacement modes for each measuring point in X direction, Y direction and Z 
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direction respectively. With these tables, the same conclusions can be obtained as 
the Table 4.12, and what’s more, when the same number of sensors is planned to 
installed to the blower, the optimal places may different using different 
displacement modes. When optimal sensor placement is applied in real machine, it 
is very significant to know which direction is important for deformation referring 
to failure of machine.  

Fig. 4.13 to Fig. 4.16 show fitness values changes with the changes of iteration 
PSO ( 5n ) for total, X direction, Y direction and Z direction respectively. From 
these figures, the optimal sensor placement can be obtained within 20 iterations of 
PSO for using all kinds of displacement mode. Combining all these figures and 
tables, PSO can successfully solve the optimal sensor placement problem. 

As PSO has it important advantages in solving the optimization and NP problems, 
it is employed to solve sensor placement optimization problem for improving 
product design and fault diagnosis. Fitness is established for PSO application in 
sensor placement optimization based on the analysis on placement guidelines of 
vibration sensors.  Generally, the proposed method combined the structure finite 
element modeling and its modal analysis, and PSO the carry out the optimal sensor 
placement distribution. The proposed method combining PSO and FEM analysis 
can be applied in machine level and component level but not system level because 
it need finite element mode and modal analysis of the structure. Therefore, the 
future research will be on the method for optimal sensor distribution in system 
level.  

Table 4.12 Optimal Sensor Placement for Different Number of Measuring Point using Total 
Displacement Mode 

Measuring Point 
No. 

Sensor place 
position Fitness Measuring Point 

No. 
Sensor place 
position Fitness 

1 4 8.824 6 1 2 3 4 9 10 1.213 
2 4 10 6.793 7 1 2 3 4 8 9 10 0.059 
3 3 4 10 5.183 8 1 2 3 4 6 8 9 10 0.004 

4 3 4 9 10 3.786 9 1 2 3 4 5 6 8 9 
10 

4.1E-
18 

5 1 3 4 9 10 2.422 10 1 2 3 4 5 6 7 8 9 
10 0 

Table 4.13 Optimal Sensor Placement for Different Number of Measuring Point using X 
Direction Displacement Mode 

Measuring Point 
No. 

Sensor place 
position Fitness Measuring Point 

No. 
Sensor place 
position Fitness 

1 4 1.7706 6 1 2 3 4 9 10 0.1886 
2 3 4 1.3236 7 1 2 3 4 8 9 10 0.0046 
3 1 3 4 1.0166 8 1 2 3 4 6 8 9 10 0.0002 

4 1 3 4 10 0.7351 9 1 2 3 4 5 6 8 9 
10 

4.26E-
19 

5 1 2 3 4 10 0.4605 10 1 2 3 4 5 6 7 8 9 
10 0 
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Table 4.14 Optimal Sensor Placement for Different Number of Measuring Point using Y 
Direction Displacement Mode 

Measuring Point 
No. 

Sensor place 
position Fitness Measuring Point 

No. 
Sensor place 
position Fitness 

1 4 0.3971 6 1 2 3 4 9 10 0.0299 
2 3 4 0.2888 7 1 2 3 4 8 9 10 0.0017 

3 3 4 10 0.1860 8 1 2 3 4 6 8 9 10 2.240e-
5 

4 3 4 9 10 0.1257 9 1 2 3 4 5 6 8 9 
10 

4.17E-
20 

5 2 3 4 9 10 0.0729 10 1 2 3 4 5 6 7 8 9 
10 0 

Table 4.15 Optimal Sensor Placement for Different Number of Measuring Point using Z 
Direction Displacement Mode 

Measuring Point 
No. 

Sensor place 
position Fitness Measuring Point 

No. 
Sensor place 
position Fitness 

1 10 2.7715 6 1 2 3 8 9 10 0.2538 
2 9 10 2.0660 7 1 2 3 4 8 9 10 0.0478 
3 1 9 10 1.4790 8 1 2 3 4 6 8 9 10 0.0032 

4 1 3 9 10 0.9906 9 1 2 3 4 5 6 8 9 
10 

2.287E-
18 

5 1 2 3 9 10 0.5705 10 1 2 3 4 5 6 7 8 9 
10 0 

Fig. 4.13 Fitness Changes with Change of Iteration PSO ( 5n ) for Total Displacement 
Mode 
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Fig. 4.14 Fitness Changes with Change of Iteration PSO ( 5n ) for X Direction 
Displacement Mode 

Fig. 4.15 Fitness Changes with Change of Iteration PSO ( 5n ) for Y Direction 
Displacement Mode 

Fig. 4.16 Fitness Changes with Change of Iteration PSO ( 5n ) for Z Direction 
Displacement Mode 
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4.6.3 Application of BCA in Sensor Placement Optimization 

4.6.3.1 The Process of Application of BCA in Sensor Placement 
Optimization 

The principle of BCA was introduced in Section 3.5.2 and this part will present 
how to apply BCA to solve the problem of sensor placement optimization. Fig. 
4.17 shows the process of application of BCA to find the optimal sensor placement 
for manufacturing machines and other equipment. The necessity of using 
intelligent algorithm was described in Section 4.6.2.1. The 3D model of a machine 
can be established using Solidworks and transfer it into FEM software ANSYS to 
calculate the vibration displacement mode for all measuring point. The parameters 
obtained from vibration displacement modes are input to BCA to find the optimal 
sensor placement to get as much as information using as less as sensors. The results 
can be used to improve the machine design, management and operations.  

Fig. 4.17 Structure of BCA Application in Sensor Placement Optimization   

4.6.3.2 Case Study and Its Results 

The object of this case study is the same as Section 4.6.2.2 and the finite element 
model analysis is the same as well. Therefore, the 3D model and the vibration 
mode shapes of blower are shown in Fig. 4.11 and Fig. 4.12, and the parameters of 
the blower are the same as shown in Table 4.7 to Table 4.11. All these parameters 
are input to the BCA to find the optimal sensor placement. For the BCA algorithm, 
the colony size is set to 10, the maximum cycle number is set to 50, and the 
number of trial to improve a solution is set to 20. 

The final results are the same as PSO application in Section 4.6.2.2 in Table 4.12 to 
Table 4.15, and the explanations are also the same as that. In order to compare to 
the PSO method, Fig. 4.18 to Fig. 4.21 show the the fitness value changing of 
iteration of BCA in total, X direction, Y direction and Z direction displacement 
mode for 5 sensors ( 5n ) installing on the blower. From these four figures, the 
optimal can be found within 10 iterations of BCA and the convergence is faster 
than PSO compared to Fig. 4.13 to Fig. 4.16. 
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Fig. 4.18 Fitness Changes with Change of Iteration BCA ( 5n ) for Total Displacement 
Mode 

Fig. 4.19 Fitness Changes with Change of Iteration BCA ( 5n ) for X Direction 
Displacement Mode  

Fig. 4.20 Fitness Changes with Change of Iteration BCA ( 5n ) for Y Direction 
Displacement Mode  
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Fig. 4.21 Fitness Changes with Change of Iteration BCA ( 5n ) for Z Direction 
Displacement Mode  

4.7 Summary 

This Chapter introduced sensor classification scheme for categorizing and list some 
criteria to categorize sensors. Most of sensors are very mature in the market. When 
a machine needs to be monitored, the properties of signals and the parameters of 
sensors can be firstly determined, and then the suitable sensors can be found from 
the market. The more important thing in this Chapter is to define a sensor 
placement optimization problem which is a NP problem, and introduce two Swarm 
Intelligence algorithms: PSO and BCA to solve this problem. The Swarm 
Intelligence algorithms are very good at solving the NP problems, and thus, they 
are suitable to solve the sensor placement optimization problems. Finally, a case 
study is descripted in this Chapter which shows that both BCA and PSO can find 
the optimal sensor placement accurately and fast.  

When a machine needs to be monitored, one always wants to use as few as possible 
sensors to obtain as much as possible information of the machine. To find the 
optimal sensor placement could be a basis of condition monitoring of 
manufacturing machines which can reduce the number of sensors used and thus 
reduce the cost. 
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5 Signal Preprocessing and Feature Extraction 

5.1 Introduction 

The main challenge of Condition-based Maintenance is that how to find the 
relations between the collected data/signals and the conditions of machines. For a 
complex machine, there could be many sensor are installed for monitoring its 
condition and thus too many signals and information are collected. However, the 
collected data cannot indicate the machine condition automatically, and sometimes 
it is very difficult to get the real machine condition because the mass of signals.  
Data are rarely useful or usable in their row form, because they may contain too 
much noise or too weak, and sometimes only because they are too large. Consider, 
for example, vibration data sampled at 100 kHz. Such large amounts of data are 
unmanageable unless they are processed and reduced to a form that can be 
manipulated easily by fault diagnostic and prognostic algorithms. The objective in 
processing the raw sensor data is to reflect the true and correct information of 
machine from the signals. 

Generally, there are three steps of the raw sensor signal processing: signal 
preprocessing, feature extraction and feature selection. The aim of signal 
preprocessing is to improve the general quality of the signal, or in other words, 
improving the signal-to-noise ratio, for more accurate analysis and measurement, 
which eventually may facilitate the efficient extraction of useful information, that 
is, the indicators of the condition of a failing component or subsystem. The tools of 
preprocessing include filtering, amplification, data compression, data validation, 
and de-noising. The aim of feature extraction is to extract features or indicators 
from the preprocessed data that are characteristic of an incipient failure or fault. 
The main aim of feature selection is to determine a minimal feature subset from a 
problem domain while retaining a suitably high accuracy in representing the 
original features. Table 5.1 shows the techniques of these three phases. This 
Chapter will introduce some of these techniques which are used in IFDPS.  

Table 5.1 The Methods of Signal Pre-process, Feature Extraction and Feature Selection

Signal 
Preprocessing 

Feature Extraction 
Feature 
Selection Time Domain Frequency 

Domain 
Time-Frequency 
Domain 

Filter, 
Amplification, 
Signal 
Conditioning, 
Extracting Weak 
Signals, De-
noising, 
Vibration Signal 
Compression, etc. 

Mean, RMS, 
Shape factor, 
Skewness, 
Kurtosis, 
Crest factor, 
Entropy Error, 
Entropy 
estimation, etc. 

Continues 
Fourier 
Transform 
(CFD), Discrete  
Fourier 
Transform 
(DFT), 
Fast Fourier 
Transform 
(FFT), etc. 

Short Time 
Fourier 
Transformation 
(STFT), Wavelet 
Transform 
(WT), Wavelet 
Packet (WP), 
etc. 

Principal 
Component 
analysis, 
Support Vector 
Machine, 
Boosting Tree 
Algorithm, etc. 
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5.2 Signal Preprocessing  

There are many methods for signal preprocessing as shown in Table 5.1. As 
mentioned above, the main aims of signal pre-processing are to improve the signal-
to noise ratio, enhance the signal characteristics, and facilitate the efficient 
extraction of useful information from the signals. The electrical signals generated 
by sensors are often not adequate for useful information extraction because they 
may be very nosy, of low amplitude, biased and dependent on secondary 
parameters such as temperature and humidity. What’s more, the quantities of 
interested parameters may be not able to be measured directly but can only 
measure their related quantities. Therefore, signal conditioning is required which 
can be performed with hardware and/or software which can include: amplification, 
filtering, converting, range matching, isolation and any other processes required to 
make sensor output suitable for processing after conditioning [Gutierrez-Osuna et 
al., 2003]. Denoising techniques aim at eliminating noise from measured data while 
trying to preserve the important signal features (such as texture and edges) as much 
as possible[Ramani et al., 2008]. It is very important step to enhancing data 
reliability and improving the accuracy of signal analysis methods. Wavelet based 
denoising methods have been successfully applied for signal analysis to improve 
the signal-to-noise ratio[Benouaret et al., 2012; Patil & Chavan, 2012]. Soft-
thresholding [Donoho, 1995] and wavelet-shrinkage denoising [Zheng et al., 2000] 
are two popular denoising methods. There are still some other denoising techniques: 
adaptive threshold denoising for fault detection in power systems [Yang & Liao, 
2001], acoustic emission signal denoising for fatigue cracks detection in rotor 
heads [Menon et al., 2000], denoising using modulus maxima algorithm for 
structure fault detection in fighter aircraft [Hu et al., 2000], signal decomposition 
technique (wavelets, wavelet packets and matching pursuit method) based 
denoising methods for improving signal-to-noise ratio of knee-joint vibration 
signals [Krishnan & Rangayyan, 2000], and reducing background noise level using 
The second order displaced power spectral density (SDPSD) function for localized 
defects in roller bearings [Piñeyro et al., 2000]. The amount of data collected from 
industrial systems tends to be voluminous and, in most cases, difficult to manage 
because the increasing of sensors and sample rates. Therefore, data compression is 
very important for condition monitoring system especially for those implemented 
online or Internet-based systems. Transient analysis is mostly used to compress 
data because it can significantly improve the performance of sensor arrays with 
careful instrument design and sampling procedures which are: improving 
selectivity, reducing acquisition time and increasing sensor lifetime. There are 
main three classes of transient analysis methods: Sub-sampling method [Gutierrez-
Osuna et al., 1999; Kermani et al., 1998; Roussel et al., 1998; White et al., 1996], 
parameter-extraction method [Eklöv et al., 1997; Gibson et al., 1997; Llobet et al., 
1997; D. M. Wilson & DeWeerth, 1995], and system-identification method [Eklöv 
et al., 1997; Gutierrez-Osuna et al., 1999; Nakamoto et al., 2000]. The signal 
preprocessing techniques for condition monitoring are mature, and more techniques 
and more detail can be referred in the literatures [Gutierrez-Osuna et al., 2003; 
Marwala, 2012; Vachtsevanos et al., 2006]. 
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5.3 Feature Extraction 

Feature and condition indicator extraction and selection play curial roles in 
condition monitoring especially for accuracy and reliability of fault diagnosis and 
prognosis. The function of condition monitoring mainly depends on a set of 
features extracted from sensor data that can distinguish between fault categories of 
interest, and detect and isolate a specific fault at early initiation stages. These 
features should be fairly insensitive to noise and within fault class variations. It 
should beware that not losing useful information in feature extraction stage. For 
time series signals, such as vibration signals, voltage signals and current signals, 
the features can be extracted from four domains: time domain, frequency domain, 
time-frequency domain and wavelet domain. 

5.3.1 Feature Extraction in Time Domain 

Features in time domain is very traditional methods for extraction features, but is 
very widely used in fault diagnosis and prognosis which mainly computer the 
statistical parameters from signals. The following features are some of these 
statistical parameters [Vachtsevanos et al., 2006; Wang & Zhang, 2010]: 

Peak value,  

 1 max min
2v i iP x x  (5.1)

where ( 1, 2 , )ix i N  is the amplitude at sampling point i  and N  is the number 
of sampling points. 

RMS value, 

 2

1

1 N

i
i

RMS x
N

 (5.2) 

 
Standard deviation, 

 2

1

1   
N

i
i

SD x x
N

 (5.3) 

 
Kurtosis value, 

 

4

1

4

1

 

N
ii

v

x x
NK

RMSValue
 (5.4) 

Crest factor, 

  
 

PeakValueCrf
RMSValue

 (5.5) 
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Clearance factor, 

 2

1

 
1 | |N

ii

PeakValueClf
x

N

 (5.6) 

Impulse factor, 

 
1

 
1 | |N

ii

PeakValueImf
x

N

 (5.7) 

Shape factor, 

 
1

   
1 | |N

ii

RMSValueShf
x

N

 (5.8) 

Weibull negative log-likelihood value was used recently for feature extraction from 
vibration signals. The Weibull negative log-likelihood value (Wnl ) and the normal 
negative log-likelihood value ( Nnl ) of the time domain vibration signals are used 
as input features along with the other features defined above in this study. The 
negative log-likelihood function is defined as: 

 1 2
1

 , ,
N

i
i

Log f x  

where 1 2, ,if x  is the probability density function ( pdf ). For Weibull negative 
log-likelihood function and normal negative log-likelihood function, the pdfs  are 
computed as follows: 

Weibull pdf : 

 1| |, , i
i i

x
f x x exp  (5.9) 

Where  and  are the shape and the scale parameters respectively. 

Normal pdf : 

 
2

2

1
2

, ,
2
i

i

x
f x exp  (5.10) 

Where and  are the mean and the standard deviation respectively. 

There are still three time domain parameters, i.e. Activity, mobility and complexity, 
can be used for feature extraction [Hjorth, 1970; Xinyang Li et al., 2011]: 

 var( ( ))Activity x t  (5.11) 
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 ( )
( ( ))

Activity xMobility
Activity x t

 (5.12) 

 ( )
( ( ))

Mobility xComplexity
Mobility x t

 (5.13) 

The above three parameters are often referred as Hjorth parameters and have been 
widely applied [Cecchin et al., 2010; Obermaier et al., 2001]. There are also other 
parameters can be used for feature extraction: Time-Domain Morphology and 
Gradient [Mazomenos et al., 2012], Correlation, Covariance and Convolution 
[Vachtsevanos et al., 2006]. For details of these techniques, the corresponding 
literatures can be found in above mentioned references. 

5.3.2 Feature Extraction in Frequency Domain 

In many situations, especially with rotating machinery [Eisenmann & Eisenmann, 
1998], the frequency domain data of measured time signals, such as vibration, 
carries a great deal of information useful in diagnosis [Vachtsevanos et al., 2006]. 
Frequency domain methods are difficult to use in that they contain more 
information than is necessary for fault detection. There is no method to select the 
frequency bandwidth of interest, and they are usually noisy in anti-resonance 
regions  [Ewins, 1995; Marwala, 2012]. However, frequency domain methods still 
have some advantages: 1) the measured data comprise the effects of out-of-
frequency-bandwidth modes; 2) one measurement offers ample data; 3) modal 
analysis is not necessary and consequently modal identification errors are 
circumvented; and, 4) frequency domain data are appropriate to structures with 
high damping and modal density [Marwala, 2012]. A fault on a component of a 
machine might be indicated by the base rotational frequency, two times of this 
frequency or n  times of this frequency. This principle can be used in fault 
diagnosis and prognosis. The main algorithm of frequency of a signal is Fourier 
Transform which is introduces in this section. 

The Fast Fourier Transform (FFT) is basically a computationally efficient 
technique for calculating the Fourier transform which exploits the symmetrical 
nature of the Fourier transform [Marwala, 2012]. The theory of FFT is retrieved 
here from the literature [Ewins, 1995; Marwala, 2012]. If the FFT is applied to the 
response, the following expression is obtained: 

 1( ) ( )
2

i tX x t e dt  (5.14) 

Similarly, the transformed excitation can be written as: 

 1( ) ( )
2

i tF f t e dt  (5.15) 
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Frequency Response Function (FRF) ( )wij  of the response at position i  to the 

excitation at j  is the ratio of the Fourier transform of the response to the transform 
of the excitation: 

 ( )
( )

( )
i

ij
j

X
F

 (5.16) 

The FRF matrix is related to the spatial properties by the following expression: 

 
12( ) M j C K  (5.17) 

Here  is the frequency response function,  is the frequency, M is the mass 
matrix, C  is the damping matrix, K  is the stiffness matrix and 1j . The 
above transform is for the continue signals. For the discrete signals, the frequency 
response function can be expressed as: 

 2 ( 1)( 1) /

1
( ) ( ) 1, 2, ,

N
j k n N

n
X k x n e k N  (5.18) 

where N  is the number of time series ( )x n . Fig. 5.1 shows a vibration signal with 
the sample rate 4096 in one second while Fig. 5.2 shows the corresponding 
frequency response function. From Fig. 5.2, the base frequency of this vibration 
signal is 46 Hz, the second order frequency is 92 Hz and the third order frequency 
is 138 Hz. There are also some other features can be extracted from the FRF figure 
to find the characteristics of the signals for fault diagnosis and prognosis. For 
example, power spectral density (PSD): 

 2'1 1( ) ( ) ( )x X k X k X k
N N

 (5.19) 

is for fault diagnosis and prognosis which is easier to see details in the frequency 
response than using ( )X k  [Vachtsevanos et al., 2006]. 

Fig. 5.1 Vibration Signal in Time Domain 
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Fig. 5.2 Frequency Response Function of Vibration Signal in Fig. 5.1 

5.3.3 Feature Extraction in Time-Frequency Domain 

Although FFT based methods are powerful tools for fault diagnosis and prognosis, 
they are not suitable for non-stationary signals.  For analysis in the time-frequency 
domain, the Wigner-Ville distribution (WVD) and the short time Fourier transform 
(STFT) are the most popular methods for non-stationary signal analysis. However, 
WVD suffers from interference terms appearing in the decomposition, and STFT 
cannot provide good time and frequency resolution simultaneously because it uses 
constant resolution at all frequencies. Moreover, no orthogonal bases exist for 
STFT that can be used to implement a fast and effective STFT algorithm 
[Okamura, 2011; Vachtsevanos et al., 2006]. The methods for time-frequency 
analysis are compared in Table 5.2 [Vachtsevanos et al., 2006]. This section mainly 
introduces Wavelet transform for time-frequency analysis and feature extraction. 

Wavelet transform is a time-frequency decomposition of a signal into a set of 
“wavelet” basic function. Wavelet analysis has proved its great capabilities in 
decomposing, denoising, and signal analysis which made the analysis of non-
stationary signals achievable as well as detecting transient feature components as 
other methods were inept to perform since wavelet can concurrently impart time 
and frequency structures. Wavelet Transform (WT) gives good time and poor 
frequency resolution at high frequencies, and good frequency and poor time 
resolution at low frequencies. Analysis with wavelets involves with breaking up a 
signal into shifted and scaled versions of the original (or mother) wavelet, i.e., one 
high frequency term from each level and one low frequency residual from the last 
level of decomposition. There are three categories of this transformation: 
Continuous Wavelet Transform (CWT), Discrete Wavelet Transform (DWT) and 
WPD. 
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Table 5.2 Comparing Different Time-Frequency Analysis Methods 

Methods Resolution Interference Speed 

Wavelet 
Transform (WT) 

Good frequency and low time resolution for 
low-frequency components; low frequency 
and high time resolution for high-frequency 
components 

None Fast 

Short time 
Fourier transform 
(STFT) 

Depending on window function used, either 
good time or good frequency resolution None 

Slower 
than 
CWT 

Wigner-Ville 
distribution 
(WVD) 

Good time and frequency resolution Severe 
Slower 
than 
STFT 

Choi-Williams 
distribution 
(CWD) 

Good time and frequency resolution Less than 
WVD 

Very 
slow 

Cone-shaped 
distribution 
(CSD) 

Good time and frequency resolution Less than 
WVD 

Very 
slow 

5.3.3.1 Continuous Wavelet Transform (CWT) 

A CWT is used to divide a continuous-time function into wavelets. Unlike Fourier 
transform, the continuous wavelet transform possesses the ability to construct a 
time-frequency representation of a signal that offers very good time and frequency 
localization [Soman & Ramachandran, 2005]. The continuous wavelet transform of 
a time function ( )x t  is given by following equation:

 *
( , )( , ) ( ) ( )a bCT a b x t t dt  (5.20) 

where *
( , ) ( )a b t  is a continuous function in both the time domain and the frequency 

domain called the mother wavelet and * represents operation of complex conjugate. 
*
( , ) ( )a b t  can be expressed as:

 *
( , )

1( ) , , 0a b
t bt where a b R a

aa
 (5.21) 

The main purpose of the mother wavelet is to provide a source function to generate 
the daughter wavelets which are simply the translated and scaled versions of the 
mother wavelet. As seen in Eq. (5.21), the transform signal ( , )CT a b  is defined on 
a b  plane, which a  and b  are used to adjust the frequency and the time location 
of the wavelet in Eq. (5.21). A small a  produces a high-frequency wavelet when 
high frequency resolution is needed and the reverse is also true. The WT’s superior 
time-localization properties stem from the finite support of the analysis wavelet: as 
b  increases, the analysis wavelet transverses the length of the input signal, and a  
increases or decreases in response to changes in the signal’s local time and 
frequency content. Finite support implies that the effect of each term in the wavelet 
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representation is purely localized. This sets the WT apart from the Fourier 
Transform, where the effects of adding higher frequency sine waves are spread 
throughout the frequency axis. 

5.3.3.2 Discrete Wavelet Transform (DWT) 

In numerical analysis and functional analysis, DWT is a wavelet transform for 
which the wavelet ( , )a b  is discretely sampled. As with CWT, a key advantage it 
has over Fourier transforms is temporal resolution: it captures both frequency and 
location information (location in time). Usually, the DWT can be derived from 
discretization of CWT. The most common discretization is dyadic method: 

 *
( , )( , ) ( ) ( )j kDT a b x t t dt  (5.22) 

 
( , )

* 1 2( )
22j k

j

jj

t kt  (5.23) 

where a  and b  are replaced by 2 j and 2 j k respectively [Daubechies, 1988; Mallat, 
1989]. An efficient way to implement this scheme using filters was developed by 
Mallat [1989]. The original signal ( )x t  passes through two complementary filters 
and emerges as low frequency called approximations ( )jA t  and high frequency 
called details ( )iD t  as shown in Eq. (5.24). The decomposition process can be 
iterated, with successive approximations being decomposed in turn, such that a 
signal can be broken down into many lower-resolution components. 

 
1

( ) ( ) ( )
i j

i j
i

f t D t A t  (5.24) 

Where ( )iD t  denotes the wavelet detail and ( )iA t  stands for the wavelet 
approximation at the thj level. DWT analysis is more efficient still with the 
identical accuracy [Goumas et al., 2001]. 

As discussed above, DWT can decompose the signal into two parts: low-frequency 
1A  and high frequency 1D . In the process of decomposition, the lost information 

belonging to the low frequency part is captured by the high frequency part. In the 
next level of decomposition, this method will also decompose 1A  into two parts: 
low-frequency 2A and high frequency 2D . The lost information belonging to low 
frequency 2A  is capture by the high-frequency 2D , and thus, a deeper level 
decomposition can be done. The 3-layer structure of signal based on DWT is 
shown in Fig. 5.3 in which only approximation version is decomposed.  
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Fig. 5.3 3-layer Signal Decomposition by Discrete Wavelet Transform

For the case of signal with the maximum frequency 2048 Hz, 1D , 2D  , 3D  and 3A  
represent the frequency 1024~2048 Hz, 512~1024 Hz,  128~512 Hz and 0~128 Hz 
respectively. The decomposed signals by DWT from vibration signal (Fig. 5.1) are 
shown in Fig. 5.4.  

Fig. 5.4 Decomposed Signals by DWT 

5.3.3.3 Wavelet Packet Decomposition 

The structure of wavelet packet Decomposition (WPD) is similar to DWT. The 
typical 3 layers signal decomposition by WPD is shown in Fig. 5.5. Both have the 
framework of multi-resolution analysis. The main difference in the two techniques 
is the WPT can simultaneously break up detail ( iD ) and approximation ( iA ) 
versions [Li et al., 2003] while DWT only breaks up as an approximation version. 
Therefore, the WPD have the same frequency bandwidths in each resolution and 
DWT does not have this property. The mode of decomposition does not increase or 
lose the information within the original signals. Therefore, the signal with great 
quantity of middle and high frequency signals can offer superior time-frequency 
analysis. The WPT suits signal processing, especially non-stationary signals 
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because the same frequency bandwidths can provide good resolution regardless of 
high and low frequencies.  

Fig. 5.5 Decomposed Signals by WPD 

Wavelet packets consist of a set of linearly combined usual wavelet functions 
which inherit the attributes of their corresponding wavelet functions such as 
orthonormality and time–frequency localization. A wavelet packet is a function 
with three indices of integers, i , j  and k  which are the modulation, scale and 
translation parameters, respectively [Shinde, 2004], 

 2
, 1, 2,2 2 3,

j
i j i
j k t k it  (5.25) 

The wavelet functions j can be obtained from the following recursive relations: 

 2 2 2j it h k t k  (5.26) 

 2 1 2 2j it g k t k  (5.27) 

The original signal ( )f t  after j  level of decomposition can be stated as: 

 
2

1

,
j

i
j

i

f t f t  (5.28) 

while the wavelet packet component ( )i
jf t can be stated by a linear combination of 

wavelet packet functions , ( )i
j k t in such a way: 

 , , ,
i i i
j k j k j kf t c t t  (5.29) 

where the wavelet packet coefficients ,
i
j kc t can be obtained from, 

 , ,( )i i
j k j kc t f t t dt  (5.30) 

providing that the wavelet packet functions are orthogonal: 

 , , 0m n
j k j k ift nt m  (5.31) 
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Since different types of wavelet functions have different time–frequency structures, 
a function with a time–frequency structure matching superlatively that of the 
transient component must be used to effectively detect the transient component. In 
general, the smooth wavelets are better for regular, stationary, periodic data and the 
compact wavelets are better for non-stationary, transient data [Staszewski, 1997]. 
As a result, Daubechies 4 (Db4) wavelet function has been chosen for this case 
after several trials as it is often chosen arbitrarily for signal analysis and synthesis 
by experiments in many papers in the field (e.g., [Vafaei & Rahnejat, 2003]) there 
is no computational logic behind the selection of Daubechies order. 

The dilation equations may be used to generate orthogonal wavelets. The scaling 
function  is a dilated (horizontally expanded) version of (2 )t . The dilation 
equation in general has the form [Vachtsevanos et al., 2006]: 

 0 1 2 32 2 1 2 2 2 3t c t c t c t c t  (5.32) 

The Daubechies D4 wavelet coefficients have values: 

 0 1 2 3
(1 3) (3 3) (3 3) (1 3),?

4 2 4 2 4 2 4 2
c c c c  (5.33) 

Thus, a particular family of wavelets is specified by a particular set of numbers, 
called the wavelet filter coefficients. The above set of numbers 0c , 1c , 2c  and 3c are 
called the Db4 wavelet filter coefficients.  

In general, for an even M  number of wavelet filter coefficients  ( 1, 2, , 1)kc k M , 
the scaling function is defined by: 

 
1

1

2
M

k
k

t c t k  (5.34) 

and the corresponding wavelet is derived as: 

 
1

1

( 1) 2 1
M

k
k

k

w t c t k M  (5.35) 

It is observed that the scaling function has a low-pass form, whereas the wavelet 
function has a high-pass form. Thus, the wavelet function is essentially responsible 
for extracting the detail (high-frequency components) of the original signal. 

5.3.3.4 Wavelet-based Features 

There are several types of features can be extracted from wavelet-based methods, 
which can be categorized roughly into wavelet coefficients-based, wavelet energy-
based, singularity-based, and wavelet function-based methods. All these features 
are retrieved from the literature [Vachtsevanos et al., 2006]. 

The wavelet coefficients kc  can be used to extracted features for fault detection and 
prognosis. The standard deviations of the coefficients are good features for feature 
extraction. For example, for each of the signal, wavelet packet is applied up to the 
fourth level thus giving 16 signal coefficient sets. The wavelet packet coefficients 
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and their corresponding standard deviations for medium-worn fault sampled at 
second configuration are shown in Fig. 5.6. At the end, the standard deviation of 
wavelet packet coefficients of pre-processed signals is used as features for fault 
diagnosis and prognosis.  

Fig. 5.6. Wavelet Packet Coefficients and Their Relevant Standard Deviation 

Energy-based features: The most important advantage of wavelets versus other 
methods is their ability to provide an image visualization of the energy of a signal, 
making it easier to compare two signals and identify abnormalities or anomalies in 
the faulty signal. Based on these observations, suitable features can be designed 
either using image-processing techniques or simply exploiting the energy values 
directly. For example, in a study of a helicopter ’s planetary gear system [Saxena & 
Vachtsevanos, 2005], it was observed that the energy distribution among the five 
planets became asymmetric as a fault (crack) appeared on the gear plate. This 
observation led to a feature based on the increasing variance among energy values 
associated with the five planets as time evolves. Similarly, other features can be 
designed that characterize a visible property in a numerical form. 

Singularity-Based Features: Singularities can be discerned from wavelet phase 
maps and can be used as features for detecting discontinuities and impulses in a 
signal. Singularity exponents, extracted from the envelope of vibration signals, 
have been used to diagnose breakers’ faults [Yang & Liao, 2001]. Other 
applications reported in the technical literature relate to detection of shaft center 
orbits in rotating mechanical systems [Peng et al., 2002]. 

Some of the most interesting applications of wavelet-based features include fault 
detection in gearboxes [Chen & Wang, 2002; Hambaba & Huff, 2000; Yen & Lin, 
1999, 2000; Zheng et al., 2002], Fault detection in rolling element bearings 
[Altmann & Mathew, 2001; Shibata et al., 2000], and fault diagnosis in analog 
circuits[Aminian, 2001], among others. 

Wavelet energy-based features often cannot detect early faults because slight 
changes in the signal result in small energy changes. Coefficient-based features are 
more suitable for early fault detection. Similarly, singularity- based methods are 
not very robust to noise in the signal, and denoising must be carried out before 
calculating any such features [Vachtsevanos et al., 2006]. 
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5.4 Feature Selection 

There might be too many features extracted from the signals and collected from 
sensors which make extraction of useful and understandable information from 
these features become difficult. Therefore the dimensionality of the features needs 
to be reduced. Feature selection is primarily performed to select relevant and 
informative features which can reduce the dimensionality of features effectively. It 
can have the other motivations, including [Guyon & Elisseef, 2006]:  

1) General data reduction, to limit storage requirements and increase 
algorithm speed; 

2) Feature set reduction, to save resources in the next round of data collection 
or during utilization; 

3) Performance improvement, to gain in predictive accuracy;  
4) Data understanding, to gain knowledge about the process that generated 

the data or simply visualize the data 

Many data mining algorithms can be used to carry out feature selection: neural 
network ensemble (NNE) [Hansen & Salamon, 1990], neural network (NN) [Liu, 
2001; Siegelmann & Sontag, 1994], boosting regression tree (BRT) [Friedman, 
2001, 2002; Smola & Scholkopf, 2003], support vector machine (SVM) [Schölkopf 
et al., 1999; Steinwart & Christmann, 2008], random forest with regression (RF) 
[Breiman, 2001], standard classification and regression tree (CART) [Speybroeck, 
2012], k nearest neighbour neural network (kNN) [Shakhnarovich et al., 2005], 
wrapper approach integrated with the genetic or the best-first search algorithm 
[Espinosa et al., 2005; Tan et al., 2006] and principal component analysis (PCA) 
[Jolliffe, 2002]. All these algorithms are widely used for feature selection. Zhang 
and Kusiak applied all these algorithm for parameter selection in wind turbine 
condition monitoring and compared these algorithm [Kusiak & Verma, 2011; 
Kusiak & Zhang, 2010; Zhang & Kusiak, 2012].  

PCA is an unsupervised learning approach for dimensionality reduction that uses 
correlation coefficients of the parameters to combine and transform them into a 
reduced dimensional space [Miranda et al., 2008]. The concept of Principal 
Component Analysis (PCA) was invented in 1901 by Karl Pearson [Pearson, 1901]. 
It is a mathematical procedure that uses an orthogonal transform to convert a set of 
observations of possibly correlated variables into a set of values of uncorrelated 
variables called principal components. This transform is defined in such a way that 
the first principal component has as high a variance as possible, which means 
accounting for as much of the variability in the data as possible, and each 
succeeding component in turn has the highest variance possible under the 
constraint that it be uncorrelated with the preceding components. It can reduce data 
dimension and eliminate multi-collinearity. Currently, PCA mostly used to reduce 
the dimension while maintain the main information in data mining analysis and 
making models. This section mainly introduces the principle of PCA. 

PCA computes a new set of uncorrelated multivariate (vector) samples by a 
transform of coordinate rotation from original correlated multivariate samples. A 
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matrix composed by n  rows which means n  samples are collected and m  columns 
which represent the number of features are expressed as bellowing: 

 
11 1

1

m

n nm

x x
X

x x
 (5.36) 

PCA can obtain a new set of vector according to the following steps: 

1) Calculate the correlation coefficient matrix 

The correlation coefficient matrix is calculated according to the following equation: 

 
22

1 1

( 1) ( , )( , )
( ) ( )

ij m nn n

i i j j
k k

n Cov i jR Cor i j r
x k x k

 (5.37) 

where n  is the number of samples. The dimension of the correlation matrix R  is 
m n . ( , )Cov i j  means the covariance which matrix is m n  can be expressed as: 

 1( , ) ( )( ) , 1, 2,...,
( 1) i i j jCov i j x x i j m
n

 (5.38) 

where i  and  j are the averages of the thi  and thj  rows of matrix X  respectively. 

2) Calculate the eigenvectors and eigenvalues of the matrix R  

The m  eigenvalues i  which have the constraint as 1 2 m  and their 
responding eigenvectors iV are calculated from correlation matrix. i  and  iV  
satisfy the following equation: 

 1, 2, ,i i iAV V i m  (5.39) 

where A  is a m n  covariance matrix or correlation matrix and the vector iV  can 
be expressed as 1 2[ , , , ]i i i miV V V V . 

3) Generates the new samples 

A new set of uncorrelated multivariate (vector) samples are computed according to 
the following equation: 

 T
newX V X  (5.40) 

where newX  is the new uncorrelated multivariate (vector) sample, and X  is the 
original correlated multivariate (vector) samples. Both of them are n m  matrices 
whose row vectors represent a single channel sample. V is eigenvectors matrix 
which is also called the weight matrix. Each column of V is one principle 
component. newX  is the principal component scores. Each row of newX is the scores 
for one principal component. Each i  is variance of the scores for one principal 
component. Most of time, only first several components in newX  are selected as 
principal components according to the variance threshold. The case study of how to 
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apply PCA to reduce dimensionality of features will be presented in Chapter 6 with 
the case study of fault diagnosis. 

5.5 Summary 

This Chapter introduced the techniques of signal preprocessing, feature extraction 
and feature selection. Signal preprocessing and feature extraction are mainly for 
time series such as vibration signals and electrical signals. The features can be 
extracted in time domain, frequency domain and time-frequency domain in which 
the features extracted based on wavelet transform has special advantages and 
becomes very popular. The extracted features might be too many to manage for 
condition monitoring because there are too many sensors and many features can be 
extracted from one signal. Therefore, dimensionality reduction and feature 
selection become important for ease of management for these features but not 
reduce the useful information. All these processes are the preparation for fault 
diagnosis and prognosis which are crucial parts of condition monitoring. 
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6 Fault Diagnosis based on Data Mining Techniques 

6.1 Introduction 

Fault diagnosis has become the subject of numerous investigations over the past 
two decades. Researchers in many disciplines, such as medicine, engineering, the 
sciences, business, and finance, been developing methodologies to detect fault 
(failure) or anomaly conditions, pinpoint or isolate which component or object in a 
system or process is faulty, and decide on the potential impact of a failing or failed 
component on the health of the system [Vachtsevanos et al., 2006]. Fault 
diagnostic algorithms must have the ability to detect system performance, 
degradation levels, and faults (failures) based on physical property changes through 
detectable phenomena. Referring the fault diagnosis and condition monitoring, the 
following concepts need to be defined and distinguished [Vachtsevanos et al., 
2006]:  

Fault diagnosis. Detecting, isolating, and identifying an impending or 
incipient failure condition—the affected component (subsystem, system) is 
still operational even though at a degraded mode. 
Failure diagnosis. Detecting, isolating, and identifying a component 
(subsystem, system) that has ceased to operate. 
Fault (failure) detection. An abnormal operating condition is detected and 
reported. 
Fault (failure) isolation. Determining which component (subsystem, sys- 
tem) is failing or has failed. 
Fault (failure) identification. Estimating the nature and extent of the fault 
(failure). 

Therefore, the aim of fault diagnosis is to detect abnormal condition of machine 
before the failure happens, and also identify which component of the machine will 
become failure. To evaluate the techniques for fault diagnosis of a condition 
monitoring system, several qualification factors can be used [Vachtsevanos et al., 
2006]: 

Isolability. A measure of the model’s ability to distinguish between certain 
specific failure modes. Enabling technologies include incidence matrices 
involving both deterministic (zero-threshold) and statistical (high-threshold) 
isolability. 
Sensitivity. A qualitative measure characteristic of the size of failures. This 
factor depends on the size of the respective elements in the system’s 
matrices, noise properties, and the time to failure. Filtering typically is 
used to improve sensitivity, but it is rather difficult to construct a straight- 
forward framework. 
Robustness. This factor refers to the model’s ability to isolate a failure in 
the presence of modeling errors. Improvements in robustness rely on 
algebraic cancelation that desensitizes residuals according to certain 
modeling errors. 
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There are many techniques can be used for fault diagnosis. The development of 
model-based fault diagnosis began in the early of the 1970s [Dirilten, 1972; Hayes, 
1971]. This method of fault detection in dynamic systems has been receiving more 
and more attention over the last two decades [Schubert et al., 2011; Soman et al., 
2012; Van den Kerkhof et al., 2012]. It has much to offer in addressing system-
based fault diagnosis issues for complex systems [De Kleer & Williams, 1987; 
Isermann, 2005]. It is used to detect any discrepancy between the system outputs 
and model outputs. It is assumed that this discrepancy signal is related to a fault. 
This method is perfect when the mathematical model or physical model is accurate 
and the system outputs are no noise. However, the same difference signal can 
respond to model plant mismatches or noise in real measurements, which are 
erroneously detected as a fault. What’s more, sometimes, it is impossible to model 
nonlinear systems by analytical equations [Mendonqa, 2006]. Therefore, the 
model-based fault diagnosis techniques are not very good for some cases such as 
non-linear system which mathematical model is not available.  

Case-based Reasoning (CBR) [Aamodt & Plaza, 1994; Reisbec & Schank, 1989] 
offers a reasoning paradigm that is similar to the way people routinely solve 
problems which is another method can be used for fault diagnosis. CBR began to 
be applied in fault diagnosis in 1990s [Grant et al., 1996; Patterson & Hughes, 
1997], and become very popular afterwards [Fu et al., 2011; Tsai, 2009]. The 
cyclic process of CBR can be described as following. When a new problem 
happens, one or more similar cases are retrieved from the case base. A solution 
suggested by the matching cases then is reused and tested for success. Unless the 
retrieved case is a close match, the solution probably will have to be revised, 
producing a new case that can be retained. Currently, this cycle rarely occurs 
without human intervention and most CBR systems are used mainly as case 
retrieval and reuse systems [Watson & Marir, 2009]. The CBR designer is faced 
with two major challenges: coding of cases to be stored into the case library or case 
base and adaptation, that is, how to reason about new cases so as to maximize the 
chances of success while minimizing the uncertainty about the outcomes or actions. 
Additional issues may relate to the types of information to be coded in a case, the 
type of database to be used, and questions relating to the programming language to 
be adopted [Vachtsevanos et al., 2006].  

It is obviously that the Model-based fault diagnosis techniques can detect and 
identify any faults even for unanticipated ones. But these methods need accurate 
mathematical model or physical model which is usually not available for complex 
machines. Therefore, data-driven methods could be better solution for fault 
diagnosis when the model is unavailable and the CBR does not work well.  

In contrast to model-based approaches, data-driven fault diagnostic techniques rely 
primarily on process and data which are from sensors specifically designed to 
respond to fault signals, to model a relationship between fault features or fault 
characteristic indicators and fault classes. Such “models’’ may be cast as expert 
systems or artificial neural networks or a combination of these computational 
intelligence tools. They require a sufficient database (both baseline and fault 
conditions) to train and validate such diagnostic algorithms before their final online 
implementation. They lack the insight that model-based techniques provide 
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regarding the physics of failure mechanisms, but they do not require accurate 
dynamic models of the physical system under study. They respond only to 
anticipate fault conditions that have been identified and prioritized in advance in 
terms of their severity and frequency of occurrence, whereas model-based methods 
may be deployed to detect even unanticipated faults because they rely on a 
discrepancy or residual between the actual system and model outputs 
[Vachtsevanos et al., 2006]. In the past few years, many Computational 
Intelligence (CI) techniques have been applied as tools for fault diagnosis [Sun et 
al., 2012; Wang, 1996]. This Chapter mainly introduces data mining techniques 
especially of CI techniques application in fault diagnosis. Some case studies will be 
used to show how these techniques work in fault diagnosis. 

6.2 Fault Diagnosis based on SBP 

The pattern classification theory has become a key factor in fault diagnosis. Some 
classification methods for equipment performance monitoring use the relationship 
between the type of fault and a set of patterns which is extract from the collected 
signals without establishing explicit models. Currently, ANN is one of the most 
popular methods in this domain. The principle of ANN has been introduced in 
Section 3.2 which included Back-propagation (BP), Self-organization Mapping 
(SOM). The application of artificial neural network models lies in the fact that they 
can be used to infer a function from observations. This is particularly useful in 
applications where the complexity of the data or task makes the design of such a 
function by hand impractical. This attribution is very nontrivial in diagnostic 
problems. BP neural network is a main type of ANN used to solve fault diagnosis 
and prognosis problems.  

ANN can deal with complex non-linear problem without sophisticated and 
specialized knowledge of the real systems. It is an effective classification 
techniques and low operational response times needed after training. The 
relationship between the condition of component and the features is not linear but 
non-linear. BP neural network does not need to know the exact form of analytical 
function on which the model should be built. This means neither the functional 
type nor the number and position of the parameters in the model-function need to 
know. It can deal with multi-input, multi-output, quantitative or qualitative, 
complex system with very good abilities of data fusion, self-adaptation and parallel 
processing. Therefore, it is very suitable to select as a method of fault diagnosis. 

Fig. 6.1 shows the procedure of fault diagnosis based on BP network. There are 
mainly three phases of this method. The first phase is training phase to establish an 
ANN model for a specific type of fault. The training data could be history data or 
collected data from sensors. The collected raw signals, such as vibration signals 
and acoustics signals are very hard to be used to train ANN model, and thus need 
extract features from these signals. The signals of vibration and acoustics may 
contain noise electrically or mechanically, thus the signals need to be processed to 
filter out the noise, improve signal-to-noise ratio and amplify the weak signals. 
Then the extracted features can be used to training ANN to establish the model of 



Chapter 6: Fault Diagnosis based on Data Mining Techniques 

108 
 

the fault. Once the ANN model is established, it can be used to judge if the 
machine has fault and identify which component will be failure. This phase called 
test phase. The data here used to test ANN model must be the same kind of features 
as the training data. Thus, the techniques to be used for signal processing and 
feature extraction must be same as that of the training data. The last phase is 
maintenance decision making based on the test results of ANN model. This phase 
will be complete in Chapter 8. 

Fig. 6.1 Procedure of Fault Diagnosis BP Network 

6.3 Fault Diagnosis based on SOM 

Unsupervised learning [Jain et al., 1999; Oja, 2002] is another method of data 
classification and clustering in addition to the supervised methods (for example BP 
network) in the field of data analysis. Supervised methods mostly deal with 
training classifier for known symptoms, while unsupervised learning (clustering) 
provides exploratory techniques for finding hidden patterns in the data. With huge 
volumes of data being generated from different systems every day, what makes a 
system intelligent is its ability to analyze the data for efficient decision-making 
based on known or new cluster discovery. Unsupervised data clustering is an 
intelligent tool for delving deep into the unknown and unexplored data. It is a tool 
that brings out the hidden patterns and association between different variables in a 
multivariate dataset. When the knowledge of the data is not well known and 
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explored, the unsupervised learning method can be used to analyze the data. That 
means in the field of fault diagnosis, it can be used to understand the data and 
cluster the fault hidden in database. 

Self-Organizing Mapping (SOM) is a competitive learning network, it uses self-
learning mode of non-supervision and non-direction, and its algorithm is simple 
with function of sidewise association [Brando et al., 2007]. It is one of the most 
popular unsupervised learning algorithms which can be used to explore useful 
information from not well-known data, and thus can be applied in fault diagnosis 
when the knowledge of the history data is not known. The principle of SOM is 
introduced in Section 3.2.2. Fig. 6.2 shows the procedure of applying SOM in fault 
diagnosis which mainly has three phases: training phase, test phase and decision 
making phase. The whole procedure of SOM application in fault diagnosis is 
similar with that of SBP application. In the training phase, the sensors are used to 
collect the data from the monitored mechanical equipment. The data could be the 
signals such as vibration and acoustics or the time series such as temperature. The 
former signals need to be processed in order to extract useful features while the 
later data can be used as features. The features, then, can be used to train SOM for 
establish classifier model of different type of faults. Once the classifier is 
established, the test phase can be done. The features used to test the classifier must 
be the same type with the training data. The finally phase is maintenance decision 
making based on the test results of SOM classifier.  

6.4 Fault Diagnosis based on Semi-supervised Learning 

Fault diagnosis for mechanical equipment is the essence of pattern recognition 
problem over the condition monitoring data, in the process of which the balanced 
fault and fault-free data and the features definition are the basis for data-driven 
diagnosis model such as BP model. However, the collection of fault data is very 
difficult because of its expensive costs and stochastic causes for offline system. 
Mostly, the fault data with label (type of fault) is collected by test rig in the lab. 
However, data-driven model such as BP network, cannot inherently support the 
transplant model of fault diagnosis if the test rig is not enough similar with real 
system. Typically for a long time running machine, there are lots of unlabeled 
samples of condition monitoring data which may contain valuable information of 
normal or abnormal conditions. Traditional supervised classifier cannot explore 
these data, but it is very improvident to just throw them [Yuan, 2012].  

Conventional fault diagnosis methods using supervised learning are good at solving 
the problems of condition monitoring (CM) data with labels, but not well at 
utilizing unlabelled CM data. Semi-supervised learning algorithm can be 
implemented in fault identification by using labelled data and unlabelled data 
collected from sensors. Manifold Regularization (MR) is one of the most popular 
semi-supervised algorithms which principle is introduced in Section 3.3. MR has 
the capacity of learning intrinsic geometric structure of complexity nonlinearity 
fault samples and exploiting the intrinsic geometric distribution property embedded 
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in the high-dimensional fault patterns. Thus, the well-trained model can be utilized 
to further conditions based monitoring as well as fault diagnosis and prognostics.  

Fig. 6.2 Procedure of SOM in Fault Diagnosis 

To show the advantages of semi-supervised learning with additional unlabelled 
dataset, a toy example called two-moon problem is presented.  

Fig. 6.3 shows the solution of two-moon problem without unlabelled dataset. In 
this figure, the number of labelled training dataset is 50 and the number of test 
dataset is 200. From the figure, there are some dataset are misclassified. Fig. 6.4 
shows the solution of two-moon problem with unlabelled dataset. The difference 
between  

Fig. 6.3 and Fig. 6.4 is that the latter figure utilizes 500 unlabelled dataset with the 
50 labelled dataset to train the model. Comparing the two figures, Fig. 6.4 is much 
better for two-moon problem which almost no test dataset is misclassified.  



Chapter 6: Fault Diagnosis based on Data Mining Techniques 

111 
 

The fault diagnosis process of semi-supervised learning is shown in Fig. 6.5. The 
manifold regularization based on semi-supervised manifold learning for fault 
diagnosis system can be described as follows: 

1) Building up general condition monitoring system to collect the labelled and 
unlabelled data from both local monitoring machines and the test rig; 

2) Implementing feature extraction and feature selection from the labelled and 
unlabelled examples according to the criteria which determines the features set 
that represent the geometric structure well; 

3) Constructing a data adjacency graph with labelled and unlabelled nodes using 
graph kernel, which describes an intrinsic manifold, and regulating 
classi cation decision boundary with manifold regularization algorithm, and 
then classifying the online patterns in the features space with classi ed labels; 

4) Obtaining diagnosis information by classi cation of the results, then 
determining the failure causes, and putting the corresponding decision or 
control measures back to local condition monitoring system. 
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Fig. 6.3 Solution of Two-moon Problem without Unlabelled Dataset 
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Fig. 6.4 Solution of Two-moon Problem with Unlabelled Dataset  

Fig. 6.5 Procedure of Semi-supervised Learning in Fault Diagnosis 
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6.5 Fault Diagnosis based on Association Rules 

Association rules mining is a kind of data mining techniques which can discover 
significant association rules between items in database [Agrawal et al., 1993]. The 
basic concept and process of association rules are introduced in Section 3.4. This 
part will propose an Association Rule-based Fault Diagnosis which structure is 
shown in Fig. 6.6. 

Fig. 6.6 The Structure of Association Rule-based Fault Diagnosis 

Whatever a machines, cars or Robots, after long time running, their performance 
may become degradation or failure. Some suitable kinds of sensors should be 
selected to monitor their conditions. The data should be pre-processed before 
features extraction because the raw data from sensors may contain noise. After 
extracting the features, all the data are stored in a database called “Raw Training 
Database” which can be used to mine the association rules. For each kind of fault, 
several rules can be mined from the training data. Then, select and combine all the 
rules together as the whole association rules which can classify the fault or judge 
the condition of monitored equipment. Finally, the features extracted from pre-
processed real time data can be used to diagnose the fault using the association 
rules generated above. According to result from association rules, the maintenance 
or control decision can be made correctly and efficiently. 

6.6 Case Study 1: Fault Diagnosis Integration of WPD, PCA and BP 
Network 

To demonstrate how the BP network works in fault diagnosis for mechanical 
machines, a lab setup is established in Knowledge Discovery Lab (KDL) in NTNU. 
The first case will show fault diagnosis integrating WPD, PCA and BP network. 
This case study is retrieved from [Zhang et al., 2013]. 
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6.6.1 Experimental Setup 

Fig. 6.7 shows the hardware of the experimental setup which includes a blower, 
three vibration sensors, power supply for sensors, connector, DAQ card and a 
computer. In this setup, the blower is selected as our monitoring object and a kind 
of vibration sensors (Kistler: Type 8702B100) are chosen to collect the signals 
from the blower. Three sensors are mounted on the blower in three directions 
which can collect the vibration signals in different directions (Fig. 6.8). The signals 
are collected from the sensors and processed using some processing method like 
filter, de-noising and compression. Then the features are extracted in wavelet 
domain which can be used to train and query BP network. After training, the 
system can judge the real states of monitored components using real time signals. 

Fig. 6.7 Hardware of Experimental Setup 

Fig. 6.8 Sensors Setup on Blower 

6.6.2 Experimental Procedure 

In the present study, four different degradation’s levels of unbalance are simulated 
using three different parts (Fig. 6.9) which are mounted in the axis end of the 
blower. The unbalance degradation (condition) contains 0, 0.3, 0.7 and 1 which 
represents the performance states from perfect to absolutely failure (unbalance). In 
the first case, power on the blower, collect and store signals with sample rate 1024 
per second from the sensors without mounting any simulation part. Next, power off 
the blower and mount first part in the axis end and then, power on the blower, 
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collect and store the signals from sensors. Repeat this process until collect all the 
degrading signals simulated by simulation parts.  Fig. 6.10 shows the signals of the 
second sensor from perfect state to absolutely failure. 

Fig. 6.9 Parts for Simulation Degradations 

Fig. 6.10 Raw Signals with Different Degradations 

6.6.3 Features Extraction in Wavelet Domain 

Wavelet packet method [Li et al., 2003] which is a generalization of wavelet 
decomposition offers a richer range of possibilities for signal analysis. Contrary to 
WT, the wavelet packets contain a complete set of decompositions and details at 
every level and hence providing a higher resolution in the high frequency region, 
i.e., the wavelet detail component at each level is further decomposed to obtain its 
approximation and detail components. The principle of Wavelet Packet 
Decomposition (WPD) was introduced in Section 5.3.3. In this experiment, the 
structure of Wavelet Packet Decomposition (WPD) algorithm broke up to 4 
resolution levels is shown in Fig. 6.11 In the figure, the node (4, 0) presents the 
symbol for a subspace that stands for the 4th resolution and the 0th subspace. For 
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this case, each node present the frequency bandwidth 64 Hz which means a node (4, 
0) presents the signal character of the bandwidth between 0 Hz and 64 Hz. 

Fig. 6.11 Tree structures of wavelet packet transform (4 levels) 

For each signal, wavelet packet was applied up to the fourth level, thus giving 16 
signal coefficients. The wavelet packet coefficients (Eq.(5.30)) and their 
corresponding standard deviations for one signal are shown in Fig. 6.12. In the end, 
the Standard Deviation of Wavelet Packet Coefficients (SDWPC) of processed 
signals is selected as feature vector which is used to train ANN after PCA analysis. 

1.57504 0.023591
5.45224 0.032451
0.630946 0.054542
1.9242 0.033564
0.443467 0.316338
0.395521 0.194326
0.302271 0.063202
0.15776 0.071707

Fig. 6.12 Wavelet Packet Coefficients (WPC) and Their Relevant Standard Deviation 

There are three vibration sensors mounted on the blower and for signal from each 
sensors, 16 parameters are extracted and thus overall 48 features for each time 
signals. Therefore, Principal Component Analysis (PCA) is employed to reduce the 
dimension of the features. 

6.6.4 Principal Component Analysis (PCA) 

PCA is a good option to reduce dimension of the features and its principle was 
introduced in Section 3.5. In this experiment, 200 samples for each condition are 
collected as training data and are analyzed by PCA. There are 48 variables 
(SDWPC) in each sample. Now the original sample matrix’s dimension is 800 48 . 
Then, these data are analyzed by PCA. The variance for each component is shown 
in Table 6.1 (only first 8 values are shown) and the first four principal components 
were displayed in Fig. 6.13. If the value of threshold is set to , only first 
principal component was selected as feature to train ANN. If the value of threshold 
is set to , only first two principal components were selected as features to 
train ANN. 
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Table 6.1 Variance for each component 

Component No. 1 2 3 4 5 6 7 8 … 

Variance 5625.841 0.681 0.424 0.133 0.053 0.005 0.002 0.001 … 

0 100 200 300 400 500 600 700 800
-20

0

20

40

60

80

100

120

140

160

Samples

V
al

ue
s 

of
 e

ac
h 

co
m

po
ne

nt
 in

 e
ac

h 
sa

m
pl

e

Fig. 6.13 The first four Principal Components 

6.6.5 Fault Diagnosis using BP Network 

The PCA new features from SDWPC of vibration signals are used to estimate the 
fault status of components and machines. The input nodes of BP neural network 
come from the test signal sensors. BP neural network made up of one input layer, 
one output layer and one hidden layers of nodes. And it has been proved that such 
three layers’ BP neural network model can approach any continuous functions at 
any precision. The values of output are from 0 to 1 which represent from perfect 
condition to complete failure of specific kinds of fault. 

For convenience of handling the signal collection, signal processing and interface 
things, the Labview are selected as program software in this case study. However, 
the capability of mathematical calculation of Labview is not as good as Matlab. 
Therefore, both kinds of software are combined. The procedure of fault diagnosis 
and prognosis integrating BP Network, PCA and WPC is shown in Fig. 6.14 which 
is modified from Fig. 6.1. The historic data is collected and processed which are 
fist two steps. Then, the features in wavelet domain (SDWPC) are extracted from 
the processed signals. These features are analyzed by the PCA which can generate 
new features called principal component which can used to train ANN. After 
training, the signals in real time are collected and used to query the BP network, 
and then the condition of the monitored components can be obtained. 
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Fig. 6.14 Procedure of Fault Diagnosis Integrating BP Network, PCA and WPC 

6.6.6 Results and Discussion 

In this case study, four conditions are defined for the monitored component which 
are 0, 0.3, 0.7 and 1. They represent from perfect performance (condition 0) to 
completely failure (condition 1) discretely. For each condition, 200 training signals 
are collected and processed. The new feature vectors are generated using PCA 
from SDWPC. These new features are put into BP network for training. Finally, 
test signals are collected and processed like the training data. In this experiment, 
for each condition, 20 samples are collected which used to test trained BP network 
for verification.  

For each testing data, the output of BP network and the nominal values which can 
be called “error from nominal value” (average value of testing data for each 
condition) are compared. The values of these errors are shown in Fig. 6.15-Fig.
6.18. There are two curve-lines for each figure. One represents only using the 
features of SDWPC as inputs while the other represents using the new features 
generated by PCA from the features of SDWPC as inputs to BP network. 
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Fig. 6.15 Errors of Condition 0 
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Fig. 6.16 Errors of Condition 0.3 
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Fig. 6.17 Errors of Condition 0.7 
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Fig. 6.18 Errors of Condition 1 

All these four figures show the differences between the predicted values and 
nominal values of four different conditions using the features of SDWPC and new 
features generated by PCA from SDWPC. Fig. 6.15 shows the result of condition 
0. The error is much smaller of the result using the new features generated by PCA 
from SDWPC compared to using the features of SDWPC as inputs of ANN. Fig. 
6.16 and Fig. 6.18 show the results of condition 0.3 and condition 1 respectively. 
When the number of training sets is very small, the results using new features 
generated by PCA from SDWPC are much better than using features of SDWPC in 
these two figures. However, with the number of the training data increasing, the 
results of using both features are almost the same in these two figures and both of 
them are correct and precise. Fig. 6.17 shows the result of condition 0.7. In this 
figure, in both kinds of features, the performance is very effective and corrective 
whatever the number of training data is, but the result of using the new features 
generated by PCA from SDWPC is much better than using features of SDWPC. 
We can see from Fig. 6.16 and Fig. 6.17, when the condition is neither perfect nor 
completely failure, the result of using SDWPC is not believable if the number of 
training data is very small because the ‘error from nominal value’ is large. But it is 
still believable of using new features generated by PCA from SDWPC to training 
and testing ANN in these conditions. We can see from the four figures, the 
precision is better of using new features generated by PCA from SDWPC than 
using features of SDWPC in any condition and in any number of training data. 

6.7 Case Study 2: Fault Diagnosis Integration of WPD, FFT and BP 
Network 

This case study is retrieved from [Zhang et al., 2012]. The experimental setup and 
Experimental Procedure are the same as Section 6.6.1 Experimental Setup and 
Section 6.6.2 Experimental Procedure. However, the data analysis and diagnostic 
algorithm are different.  
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6.7.1 Feature Extraction  

The feature extraction algorithm is combining WPD and FFT. For WPD, not like 
previous case, the vibration signals are decomposed to 3 levels and for each level, 
the approximation part is not decomposed in order to reduce the dimension of the 
parameters without omitting much information. The structure of wavelet packet 
decomposition is shown in Fig. 6.19. 

Fig. 6.19 3-layer Structure of Wavelet Packet Decomposition 

For this case, the signal maximum frequency is 512 Hz, and thus D1, D2, D3 and 
A3 represent the frequency 256~512 Hz, 128~256 Hz,  64~128 Hz and 0~64 Hz 
respectively in Fig. 6.19. In this experiment, only these four parts are analyzed to 
judge the degradation of the performance. The decomposed signals by WPD from 
the different degrading signals are shown in Fig. 6.20-Fig. 6.23. 

Fig. 6.20 Decomposed Signal of Condition 0 
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Fig. 6.21 Decomposed Signal of Condition 0.3 

Fig. 6.22 Decomposed Signal of Condition 0.7 

Fig. 6.23 Decomposed Signal of Condition 1 
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6.7.2 Fast Fourier Transform to WPD Signals 

The principle of FFT was introduced in Section 5.3.2. In Section 6.7.1, the original 
signal was decomposed as on approximation and details. Then, the decomposed 
signals are transformed with FFT which are shown in Fig. 6.24-Fig. 6.27 which 
present different conditions from condition 0 to condition 1. From the result of FFT, 
some kinds of features can be chosen. In this paper, the peaks for each part are 
selected as features to judge the condition of monitored equipment. 

 

Fig. 6.24 FFT for Each Version Signal of Condition 0 

Fig. 6.25 FFT for Each Version Signal of Condition 0.3 
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Fig. 6.26 FFT for Each Version Signal of Condition 0.7 

Fig. 6.27 FFT for Each Version Signal of Condition 1 

6.7.3 Fault Diagnosis Procedure of Integrating WPD, FFT and BP Network 

Fig. 6.28 shows the procedure of fault diagnosis integrating WPD, FFT and BP 
Network which is modified from Fig. 6.1. The historic data is collected and 
processed which are first two steps. Then, the processed signals can be 
decomposed by WPD. Each part of decomposed signals can be transformed using 
FFT and the peak value for each of them is selected as feature to train BP network. 
After training, the signals in real time are collected and used to query the BP 
network, and then the condition of the monitored components can be obtained. 
Finally, the remaining useful life is evaluated for decision making of maintenance 
according to the condition. 
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Fig. 6.28 Procedure of Diagnosis Integrating WPD, FFT and BP Network 

6.7.4 Experiment and Results  

In this case study, four conditions for the monitored component are defined which 
include 0, 0.3, 0.7 and 1 which represent from perfect performance to completely 
failure discretely. For each condition, 200 training signals were collected and 
processed. The training signals are pre-processed firstly and then decomposed by 
WPD. For each part of decomposed signal, calculating the peak value in its 
frequency domain transformed using FFT which called PFD1, PFD2, PFD3, and 
PFA3.  In this case, there are three sensors and thus there are 12 parameters are 
input to input nodes of BP network and one output value which represents 
condition of the monitored component (Called C). A part of training data is shown 
in Table 6.2. After training, test data or query data obtaining from real system can 
be used to test or query BP network. In this case, 20 sets of test data (Table 6.3) are 
used to test BP network.  

There is no mathematical method to select the best structure of the BP network, but 
the three layers SBP structure was validated its powerful function to build a 
complex model. The SBP structure in this experiment is set to three layer 12×20×1 
networks. 12 means the number of input parameters (features in this experiment), 
20 means the number of the hidden layer nodes and 1 means only one output in this 
BP network structure (condition). Its maximum training epoch is set to 5000. For 
each condition, 80 training sets are used to train ANN and 20 sets of features are 
chosen to test it. Table 6.3 shows the results of the test data. As mentioned before, 



Chapter 6: Fault Diagnosis based on Data Mining Techniques 

126 
 

there are 20 sets of test data in which there are 5 sets of them for each condition. 
The nominal condition is called NC while the output condition of test is called TC 
in this table. From this table, the results are 100% correct in the above parameter 
sets. However, the output is not exactly the same as the nominal condition and 
there are deviations between them. The precision of the output is discussed next 
section. 

Table 6.2 Part of Training Data 

Sensor 1 Sensor 2 Sensor 3 
 C 

PFD1 PFD2 PFD3 PFA3 PFD1 PFD2 PFD3 PFA3 PFD1 PFD2 PFD3 PFA3 

4.20 3.18 3.768 49.05 4.07 3.756 3.26 95.17 4.325 4.323 2.816 101.08 0 

4.46 2.965 2.788 20.38 4.54 3.404 3.346 102.0 3.891 4.108 3.248 107.36 0 

4.58 4.039 3.874 317.6 6.15 3.603 3.704 4170 4.663 3.55 5.447 1094.9 0.3 

3.42 3.802 3.227 314.3 3.46 3.765 3.659 4220 4.261 3.42 4.659 1132.5 0.3 

4.87 4.238 5.951 482.2 5.19 4.184 4.617 6975 3.523 3.845 2.723 1889.8 0.7 

4.49 3.745 4.178 395.6 4.03 4.412 4.289 6828 4.781 3.705 3.022 1861.4 0.7 

6.41 3.007 18.46 1933 4.94 3.053 5.048 2035 5.095 2.919 5.601 6189.9 1 

4.54 4.304 18.43 1936 4.72 4.23 4.73 2103 4 4.506 6.062 6391.8 1 

… … … … … … … … … … … … … 

6.7.5 Discussion  

In this section, three issues will be discussed. The first one is how many training 
sets should be used in order to achieve enough accurate condition of the machine 
from BP network. The second one is attempting to discuss the relationship between 
the accuracy and the number of hidden layer nodes. The last issue is convergent 
time of the BP network training.  

To discuss the first issue, the numbers of training sets for each condition are 
changed from 1 to 200. The number of hidden layer nodes is set to 20 and the 
number of training epoch is set to 5000. For each testing data, compare the output 
of ANN and the nominal value which is called “error from nominal value” which is 
average value of testing data for each condition. The values of these errors are 
shown in Fig. 6.29. We can see from this figure, the result is believable whatever 
the condition of the component is when the number of training data is larger than 
20. For condition 0 and condition 1, the result is still believable even if the number 
of training data is smaller than 20. It is clear that the result will be believable if 
there are only two conditions (0 and 1 or good and fault) even if the number of 
training data is very small. But if there are more conditions, the number of training 
data should be increased. Therefore, the number of conditions should be considered 
in designing of how many training sets are used to trained BP neural networks.
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Fig. 6.29 Errors for Each Condition 

Fig. 6.30 Output with Different Number of Hidden Layer Nodes 

To discuss the second issue, the number of hidden layer nodes is changed from 5 to 
135. The number of training data is set to 80 and the number of maximum training 
epoch is set to 5000. For each training process, several test sets for every condition 
are used to test the trained SBP networks. The results are shown in Fig. 6.30. From 
the figure, with the increasing of the number of hidden layer nodes, the fluctuations 
of the output for each condition are small. So the changing of the number of hidden 
layer nodes does not affect the accuracy of the output. What’s more, there is no 
mathematical method to prove what the number of it is best. Therefore, the number 
of hidden layer nodes does not need to be considered much.  
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To discuss the last issue, the number of hidden layer nodes is set as 20 and the 
training epoch is set as 2000. Fig. 6.31 shows the BP network training time with 
the number of training data increasing from 10 to 200. From the figure, training 
time is not apparently increasing with the increasing of training data sets. 
Therefore, when the BP network is need, we should use as many as possible data 
sets to complete the training. Fig. 6.32 shows the training time changes with the 
increasing of hidden layer nodes. The number of training data sets is set as 200 and 
the training epoch is set as 2000. From this figure, the training time increase 
gradually with the increasing of hidden layer nodes. Therefore, when a BP network 
need to trained, the number of hidden layer nodes should be considered. However, 
from the experience of previous work, the numbers of the hidden layer neurons 
depends both on the input layer number and the output layer neuron number but the 
numbers can not be too many [Meng & Meng, 2010]. 

Fig. 6.31 BP Network Training Time with the Increasing of Training Data 

Fig. 6.32 BP Network Training Time with the Increasing of Hidden Layer Nodes 
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6.8 Case Study 3: Fault Diagnosis based on Self-organizing Map 

SOM is a type of Artificial Neural Network (ANN) which is trained by 
unsupervised learning to map a high dimensional dataset into low dimensional 
space. It is very suitable for classification and clustering. The principle of SOM has 
been introduced in Section 3.2.2. This example shows how the SOM works in fault 
diagnosis, i.e. fault classification which is retrieved from [Zhang & Wang, 2011]. 

6.8.1 Experimental Setup 

The experimental set-up consists of a centrifugal pump designed for a pressure 
increase of 6.6 bars at 90m3/h and at an operating speed of 3000 rpm. The drive 
unit is a 3 phase induction motor with an output of 26 kW. The pump rig is rigidly 
mounted in a relatively noise-free environment. It is designed to lift and circulate 
water. Both the motor and the pump are equipped with ball bearings. Vibration 
measurements were taken in axial direction at the free ends of both the motor and 
the pump. Measurements were also taken at the vertical and the horizontal 
directions on the bearing housing at both the pump and the motor drive and free 
ends. Along the vertical direction on the pump casing, another measurement was 
taken close to the impeller (Fig. 6.33). The following types of vibration 
measurements were carried out on the pump rig: 

High Frequency Domain (HFD) parameter (5-60 kHz).  
Low Frequency (LF) spectrum (0- 400 Hz).  
High Frequency (HF) spectra (0-8 kHz).  

For the respective measuring point, the frequency components in Table 6.4 will be 
registered. 

Fig. 6.33 Vibration Measurement Points 
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Table 6.4 Measurement Points and Their Corresponding Vibration Types 

Equipment Measurement Points Type of vibration measurement 

Pump 

Free-end axial (1) 

Free-end horizontal (2) 

Drive-end horizontal (4)

Low Frequency Spectrum 

Free-end vertical (3) 

Free-end vertical (5) 

High Frequency Domain 

Low Frequency Spectrum 

High Frequency Spectrum 

Pump Casing (6) 
High Frequency Domain 

High Frequency Spectrum 

Motor 

Drive-end horizontal (7) 

Free-end horizontal (10) 

Free-end axial (11) 

Low Frequency Spectrum 

Drive-end vertical (8) 

Free-end vertical (9) 

High Frequency Domain 

Low Frequency Spectrum 

High Frequency Spectrum 

6.8.2 Fault Types of Centrifugal Pump System 

There are several types of faults in the centrifugal pump system have different 
symptoms with different failure. The most important problems to be monitored are 
introduced as the following: 

Leakage from worn wearing-ring (L) 

Inner leakage as a result of worn wearing-ring in a pump will have a result that a 
large part of the delivered capacity, which the pump delivers, will go directly back 
to the suction side of the pump. The efficiency will be lower, and the pump will no 
longer be able to produce the same pressure at a given capacity. 

This problem is simulated by exchanging one of the two rings with another which 
had a clearance of 1.0 mm instead of the recommended clearance of 0.25 mm. 
Clearance is measured as the maximum distance between the inner side of the ring 
and the impeller in radial direction. 

Unbalance on impeller (U) 

The efficiency of the pump is decreased as a result of the unbalance on the 
impeller, and this leads to high current consumption at speed and flow. This 
symptom includes high and steady once per revolution component (1x) at both 
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bearing. Approaching a phase difference of 90 digress between the 1x components 
in the vertical and horizontal directions for both bearing, and approaching zero 
phase difference between 1x vibration at the pump’s free-end and drive-end 
bearings. 

This problem is simulated by exchanging the impeller with another which has a 
steel weight of 0.114 kg mounted on the suction side, at a radius of 100 mm. the 
shape of the weight was designed to give minimum disturbance to the flow around 
the impeller. 

Unbalance on coupling (N) 

The symptoms include the high and steady once per revolution component (1x) at 
the bearing on both side of the coupling, approaching a phase difference of 90 
degrees between 1x vibration at the pump’s free-end and drive-end bearings. 

This problem is simulated by mounted a steel weight of 0.102 kg on the periphery 
of the coupling at a radius of 80 mm. 

Misalignment between Motor and Pump (M) 

Misalignment manifests itself as coupling misalignment, and can therefore cause 
deflection forces to be generated in the rotor, friction in seals and casings, and 
bearing failure, etc. This can result in high current consumption at high flows and 
rpm. Misalignment is characterized by steady 1x and 2x frequency amplitude 
components ,approaching a phase difference of 90 degrees between 1x vibration 
component at the pump’s free-end and drive-end bearings. It can be accompanied 
by large axial vibration, up to about 50% of the radial level. 

This problem is simulated by moving the motor in both vertical and horizontal 
directions; as a result a combination of parallel and angular misalignment exists. A 
laser alignment monitoring instrument was used to verify the amount of 
misalignment present. 

Bearing Damage (B) 

The effect could be measured by high frequency domain parameter and the total 
revolution-level for a high frequency. 

This problem is simulated by exchanging the ball bearing at the pump’s free-end 
with another bearing that has a small cavity on the inner ring. 

Cavitation (C) 

Cavitation is one of the most frequent occurring problems in centrifugal pump 
system which is unfavorable operational state as a result of pressure losses along 
the pipe at the suction side at high flow rates. The most important effects of 
cavitation are increased hydraulic losses, noise and vibration, and massive wear of 
surface. 

In experiment, a flow valve is used to regulate the flow on the suction side to a 
pressure below the pump’s Net Position Suction Head (NPSH). 
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When a problem is going to occur or has occurred, a certain number of symptoms 
or parameters will demonstrate themselves in a certain way, i.e., some frequency 
component value will change significantly when there is a bearing problem, these 
parameters are then called “features” for monitoring or detecting that problem. In 
this system, there are 56 parameters can be collected which is shown in Table 6.5. 
A part of data used to Train SOM network while the others are used to test SOM 
classifier. In this case study, 100 training data sets are used to train SOM network 
and 20 data sets are used to test these network. 

Table 6.5 Parameters Calculated from Vibration Signals  

Parameters 

SCFLOW, SCSPEED, CPFATOTL, CPFA1X, CPFA2X, CPFHTOTL, 
CPFH1X, CPFH2X, CPFH36X, CPFHSYNC, CPFHSUBS, CPFHNONS, 
CPFRAT1X, CPFVTOTL, CPFV1X, CPFV2X, CPFV36X, CPFVSYNC, 
CPFVSUBS, CPFVNONS, CPFVTOTH, CPFVHFD, CPDHTOTL, 
CPDH1X, CPDH2X, CPDH36X, CPDHSYNC, CPDHSUBS, 
CPDHNONS, CPDRAT1X, CPDVTOTL, CPDV1X, CPDV2X, 
CPDV36X, CPDVSYNC, CPDVSUBS, CPDVNONS, CPDVTOTH, 
CPDVHFD, CMDH1X, CMDV1X, CMDRAT1X, CMFATOTL, 
CMFA1X, CMFA2X, CPFVHPHA, CPDVHPHA, CPFDPHA, 
CMDVHPHA, CPMAPHA, CPCATOTH, CPCASHFD, CPOWER, 
CTORQUE, CDELTAP 

Terminology 

SCFLOW - normalized flow, SCSPEED - normalized speed, CX…X-
normalized data, X…X - raw data, P - pump, M - Motor, F - free end, D - 
drive end, H - horizontal direction, V - vertical direction, A -axial direction, 
CAS - pump casing, 1X, 2X, …, 6X - first, second up to sixth fundamental 
frequency, PHA - phase angle, TOTL-total low frequency, TOTH - total 
high frequency, SYNC - synchronous frequency, SUBS - sub synchronous 
frequency, NONS - non-synchronous frequency, FREQ - frequency, P1 - 
inlet pressure, P2 - outlet pressure, PH - phase, DELTAP - difference 
between P1 and P2, VOLTAGE - voltage, CURRENT - current, SPEED - 
rotational speed, FLOW - flow rate, CPFRAT1 - difference between 
CPFV1X and CPFH1X. 

6.8.3 Experiment and Results 

Fig. 6.34 shows the visualization of SOM for U-matrix and first 5 variables. Fig. 
6.34(a) shows the U-matrix which is short for unified distance matrix which means 
the Euclidean distance between the SOM node vectors of the neighboring neurons 
is depicted in a gray scale image. From this figure, it is easy to see that the maps 
are classified as several different groups. Fig. 6.34(a)-(f) displays the distributions 
of the variables from Variable1 to Variable5. It is noticeable that the groups in 
variables are not the same as ones in U-matrix map and are not the same 
themselves. This is because the effects of each variable for different type of faults 
are different. For each variable, the map is classified as several groups clearly 
according to its values. Combining all the maps together, the general map like U-
matrix could be generated which presents the whole groups of clustering, and here 
presents the types of faults.  
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Fig. 6.35 shows the results of SOM classification of Centrifugal Pump System. The 
labels “B”, “C”, “L”, “M”, “N”, “U” and “M” present the types of faults. In this 
map, the neurons with the fault type means the inputs with the same fault are 
mapped into this node. It is noticeable that there are probably more than one fault 
types locating in the same node which means the input data represent 
corresponding fault types. It is also noticeable that the neurons representing the 
same fault type may be not in the same area, which means a type of fault may be 
caused by different parameters. The numbers located in the neurons mean the 
sequence of the test data sets. From the map, the fault type of the test data could be 
classified very clearly. 

Fig. 6.34 Visualization of SOM 

Fig. 6.35 Classification Result of SOM 
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6.9 Summary 

This Chapter mainly describes how the data mining techniques work in fault 
diagnosis of mechanical machines. These data mining techniques include: BP 
network, SOM, Semi-supervised learning and association rules.  Some case studies 
are used to verify these techniques except semi-supervised learning because there 
are no data for case study and a two-moon problem was used to show how it 
works. From these case studies, the data mining techniques are suitable to diagnose 
the faults of mechanical equipment. The discussion for each case study is presented 
in following paragraphs. 

Case Study 1 and Case Study 2 described two examples integrating BP network 
with other two techniques. The former described case study with the method of 
integrating BP network, PCA and WPD while the later described the case study of 
methods integrating BP network, WPD and FFT. To verify the correctness and 
effectiveness of these two methods, Blower Fault Diagnosis System was 
established. These methods demonstrated high effectiveness in diagnosing machine 
faults. They can classify the condition of the monitored components.  

In former case study, PCA was applied to reduce the input dimension (number of 
variables) of BP network without omitting the useful information. BP network 
model may become over specified, i.e. more input variables than is strictly 
necessary, due to including superfluous variables which are uninformative, weakly 
informative, or redundant [May et al., 2011]. In this case, the total volume of the 
modeling problem domain increases exponentially with the linearly increasing of 
variable dimensionality which is called curse of dimensionality [Bellman, 1961]. 
This will cause many problems such as: computational burden increasing which is 
a significant influence in determining speed of training and training difficulty due 
to inclusion of redundant and irrelevant input variables. By reducing the 
dimensionality of variables, PCA can solve these problems and improve the 
effectiveness of BP network training. Therefore, the method provides a faster, more 
effective and more precise solution for fault diagnosis and prognosis. The latter 
case study applies FFT after WPD to extract features which does not too many 
variables, and thus the PCA is not applied.  

In these two cases, the minimum bandwidth 0 64 Hz is chosen in WPD because 
the fundamental frequency of the vibration signal is 47.5 Hz. In a real system, the 
minimum bandwidth of WPD (which means how many levels should be 
decomposed) should be selected according to the real fundamental frequency. 
There is only one type of fault (unbalance) simulated. In the future, multi-fault 
diagnosis should be a research topic. These two methods can also be applied to 
decide many other faults such as wear, crack, and fatigue of bearings and gearbox 
which faults can be reflected by vibration signals. To apply these methods, the 
fundamental frequency has to be known firstly and thereafter the sample rate of 
vibration signals, the level of wavelet decomposition, and the structure of BP 
network can be determined properly. The degradation information could be very 
useful for maintenance decision making, and thus, how to apply this degradation 
information in maintenance decision making should be a research issue as well in 
the future. 
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Case Study 3 described a Self-organizing Map (SOM) classifier applying in fault 
isolation for a machine (here is a centrifugal pump), which could be called as 
pattern clustering as well. The Self-Organizing mapping describes a mapping from 
a higher dimensional input space to a lower dimensional space. In the experiment, 
SOM maps 56 dimensional variables into a two dimensional space (15×15). The 
result of SOM method is very effective, clear and easy to understand. The results of 
the experiment shows SOM is very suitable for solving this kind of problem like 
fault isolation, fault classification and pattern recognition.  

From this case, the way to continuously monitor the condition of machines, 
components, systems and processes have been found. The first stage is determining 
the number of neurons of a two-dimensional SOM lattice and the number of 
clusters of the conditions and fault type according to the real machines or systems. 
The second stage is to train SOM which is mapping the many of variables to the 
predefined SOM neurons, that is, finding the groups of lattice which each of them 
represent a kind of condition or fault. The third stage is finding the location of the 
test data or real time data inside the lattice. Finally, the conditions or faults of 
machines, components, systems or processes could be determined according to the 
trained lattice and the location of the test data or real time data.   

In this case, for each type of fault, only two conditions (normal or failure) are 
considered.  However, this is not enough and not fitting the real situation. In the 
future, more conditions should be considered for each type of fault. Here, only 
offline data are used to test trained SOM neurons, but in the future, the real time 
data should be used for real time monitoring, control and maintenance. Finally, in 
the future, SOM could be applied in these kinds of problems such as pattern 
recognition combining with other machine learning method such as Support Vector 
machine (SVM) and Supervised Back-propagation (SBP). 
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7 Fault Prognosis based on Artificial Neural Network 

7.1 Introduction  

Prognosis is the ability to predict accurately and precisely the Remaining Useful 
Life (RUL) of a failing component or subsystem. The task of the prognostic 
module is to monitor and track the time evolution (growth) of the fault. In the 
industrial and manufacturing arenas, prognosis is interpreted to answer the question: 
“what is the RUL of a machine or a component once an impending failure 
condition is detected, isolated, and identified?” It is a basis of a Condition-Based 
Maintenance (CBM) system and presents major challenges to CBM system 
designer primarily because it entails large-grain uncertainty. Long-term prediction 
of the fault evolution to the point that may result in a failure requires means to 
represent and manage the inherent uncertainty. Moreover, accurate and precise 
prognosis demands good probabilistic models of the fault growth and statistically 
sufficient samples of failure data to assist in training, validating, and fine-tuning 
prognostic algorithms. Fault prognosis has been approached through probabilistic, 
artificial intelligence and other methodologies. Specific techniques include fuzzy-
adaptive Kalman predictor [Tian et al., 2011], Autoregressive Model [Xin et al., 
2012], fuzzy-filtered neural networks [Li et al., 2013] and Case-Based Reasoning 
[Berenji, 2006]. However, there are still some challenge in this area [Vachtsevanos 
et al., 2006]: 

How we can infer the actual crack dimension over time in the absence of 
the techniques of measuring creak length directly?  
How do we predict accurately and precisely the temporal progression of 
the fault? 
How do we prescribe the uncertainty bounds or confidence limits 
associated with the prediction? 
Once we have predicted the time evolution of the fault and prescribed the 
initial uncertainty bounds, how do we improve on such performance 
metrics as prediction accuracy, confidence, and precision? 

The techniques of fault prognosis can be classified into three categories: model-
based, probability-based and data-driven methodologies. The model-based 
techniques can predict any fault of the machines or components if the accurate 
physical model or mathematical model is available. The advantages of this 
technique are very apparent: it can predict any type fault in any component in any 
stage of faults of a machine. However, determining a complete dynamic model in 
terms of differential equations that relate the inputs and outputs of the system being 
considered may be impractical in some instances since the machine becomes more 
and more complex and integration. Often, historical data from previous failures for 
a given class of machinery can be used to establish probabilistic model [Hu et al., 
2011] based on statistic methods. These methods require less detailed information 
than model-based techniques because the information needed for prognosis resides 
in various probability density functions (PDFs), not in dynamic differential 
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equations. Advantages are that the required PDFs can be found from observed 
statistical data and that the PDFs are sufficient to predict the quantities of interest 
in prognosis. Moreover, these methods also generally give confidence limits about 
the results, which are important in giving a feeling for the accuracy and precision 
of the predictions. In many instances, one has historical fault/failure data in terms 
of time plots of various signals leading up to failure, or statistical data sets. In such 
cases, it is very difficult to determine any sort of model for prediction purposes. In 
such situations, nonlinear network approximators can be used for prediction of 
failure which provides desired outputs directly in term of data using well-
established formal algorithms. This is so-called data-driven technique fault 
prognosis. This Chapter will describe the process of fault prognosis based on 
neural network. 

7.2 Procedure of Fault Prognosis based on Artificial Neural Network 

As mentioned before, most of big companies have huge history data which is not 
effectively used currently. This kind of data can be used to predict and identify the 
fault of machines before the failure happens. Fig. 7.1 shows how the history data 
can be used in fault prognosis by ANN. This figure and the following sections just 
take the SCADA data of wind turbines as an instance of research objects. These 
kinds of history data normally contain the performance parameters such as 
temperatures, vibrations, speed and lubrication, etc., and alarm/fault/warning list of 
all components of the machines. The first step of fault prognosis is to select right 
parameters to be analyzed. For a specific fault/failure, there is normally one or 
more performance parameters could be the indicator to determine if the 
fault/failure happens. For instance the temperature of bearing can be the indicator 
of the bearing defect. It is not too difficult to choose the right indicator for a 
specific fault through data analysis or experience. Besides, the related performance 
parameters with the indicator should be also selected through data analysis, 
experience or some algorithms such as boosting tree algorithm [Kudo & 
Matsumoto, 2004] and wrapper with genetic search [Kohavi & John, 1997]. Then 
the ANN model in normal condition can be trained in which the selected 
performance parameters could be the input while the indicator of the fault could be 
the output of the ANN model. The trained ANN is so-called ANN model of normal 
behavior. The second step is to establish ANN predictor for fault prognosis. In this 
step, the history data with fault will be used. With the ANN normal behavior and 
the selected performance parameter values, the theoretical values of the indicator 
can be estimated and compared with real values from the history data. Through the 
comparison and how early the customer wants to have early warning, close alarm 
and emergency stop, the thresholds of these levels can be set. Fig. 7.5 could be an 
example of these functions. Finally, the ANN model with these thresholds can be 
the fault predictor of a machine. 
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7.3 Fault Prognosis based on Indicator Prediction by ANN for Wind 
Turbine Monitoring 

Renewable energy sources are playing an important role in the global energy mix, 
as a means of reducing the impact of energy production on climate change. Wind 
energy is the most developed renewable energy technologies worldwide with more 
than 282.48 GW installed capacity at the end of 2012 [GWEC, 2013]. Certain 
forecasts indicate that the share of wind in Europe’s energy production will reach 
up to 20% in the close future [Krohn et al., 2007]. Today, large wind turbines (2-
6MW) are becoming established as economically viable alternatives to traditional 
fossil-fuelled power generation. In some countries, such as Denmark, Germany and 
Spain, wind turbines have become a key part of the national power networks [Pinar 
Pérez et al., 2013].   

Condition monitoring of wind turbines is of increasing importance as the size and 
remote locations of wind turbines used nowadays makes the technical availability 
of the turbine very crucial. Unexpected faults, especially of large and crucial 
components, can lead to excessive downtime and cost because of restricted turbine 
accessibility especially for some remote controlled wind farms on mountain and 
offshore wind farms.  However, even smaller issues and faults of auxiliary 
equipment like pumps or fans can also cause expensive turbine downtime due to 
the same causes. From an operator’s point of view it is therefore worth increasing 
the effort spent to monitor the turbine condition in order to reduce unscheduled 
downtime and thus operational costs. The key part of wind turbine monitoring 
system is to detect and predict fault (fault diagnosis and prognosis) of turbines as 
early as possible so that the maintenance staff can manage and prepare the 
maintenance action in advance.  

Most wind turbines installed nowadays are integrated with SCDA system which 
can monitor the main components. SCADA system typically monitors parameters 
such as temperatures of bearings, lubricating oil, windings and vibration levels of 
driven train [Becker & Poste, 2006]. This monitored data is collected and stored 
via a SCADA system that archives the information in a convenient manner, usually 
for all of the turbines in the wind farm. This data quickly accumulates to create 
large and unmanageable volumes that can hinder attempts to deduce the health of a 
turbine’s components. It would prove beneficial, from the perspective of utility 
companies, if the data could be analyzed and interpreted automatically to support 
the operators in identifying defects. One main function of SCADA data analysis is 
fault detection and predict as early as possible to support the decision of 
maintenance action and operation.  

Model based methods require a comprehensive physical or mathematical model 
which is normally unavailable. Success of data based methods is conditioned by 
the significance of historical data and the mathematical method used to detect the 
patterns in data. For wind turbine systems where an important amount of data is 
stored regularly by SCADA system and process model is not available, the use of 
data driven methods is preferred [Nassim, 2011].  
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This section describes Artificial Neural Network (ANN) that can be used to predict 
and identify incipient faults in the main component of a turbine, such as main 
bearing, gearbox and blades, through the analysis of this SCADA data. BP network 
is one type of ANN which can solve the non-linear problems without sophisticated 
and specialized knowledge of the real systems. It is suitable to be applied in fault 
detection and predict and the principle of BP network was described in Section 
3.2.1.The SCADA data sets are already collected and stored, and therefore, no new 
installation of specific sensors or diagnostic equipment is required. The technique 
developed normal behavior model by ANN and SCADA data analysis which can 
calculate the theoretical value of related parameters and compare to the real 
measurement of the same parameters. The parameters mentioned above can be 
indicator of abnormal behavior of incipient component failure. In this way, only 
interesting information is highlighted to the operator, therefore significantly 
reducing the volume of data they are faced with. This section just take the main 
shaft rear bearing monitoring as an instance to show how the technique works. 

7.3.1 SCADA Dataset Description 

An operational wind farm typically generates vast quantities of data which is well 
known SCADA data. 

The SCADA data contain information about every aspect of a wind farm, 
from power output and wind speed to any errors registered within the 
system. Thus by keeping track of both wind speed and power output 
parameters, the overall health of the turbine can be supervised. 
SCADA data may be effectively used to “tune” a wind farm, providing 
early warning of possible failures and optimizing power output across 
many turbines in all conditions 

It is common for “condition monitoring” to be applied to a wind farm. However, 
this involves the addition of extra instrumentation, involving wind farm down time, 
extra cost and potential warranty implications. As distinct from condition 
monitoring, performance monitoring using existing instrumentation to analyze 
SCADA data of wind turbines is no extra instrumentation, no down time and no 
cost. It has the advantage of using data already routinely gathered.  By making use 
of specially-designed software tools, a great deal of information may be gathered 
and analyzed to provide a detailed look at the performance of the wind farm. 

Typical parameters recorded by SCADA on wind turbines could be broadly 
categorized into following types which could be used in fault detection and 
diagnosis activity [Verma & Kusiak, 2012]. 

Wind parameters, such as wind speed and wind deviations;  
Performance parameters, such as power output, rotor speed, and blade 
pitch angle;  
Vibration parameters, such as tower acceleration and drive train 
acceleration; and  
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Temperature parameters, such as bearing temperature and gearbox 
temperature.  

Specifically the SCAD data recorded and used for condition monitoring from wind 
turbines are as follows: 

Active power output (10 min max/min/average)  
Anemometer-measured wind speed (10 min max/min/average)  
Turbine speed (10 min max/min/average) 
Nacelle temperature (10 min max/min/average)  
Turbine rear bearing temperature (10 min max/min/average) 
Turbine rear vibration (10 min RMS max/min/average) 
Turbine front bearing temperature (10 min max/min/average) 
Turbine front vibration (10 min RMS max/min/average) 

The technique presented utilizes only some types of the data mentioned above. The 
parameters listed above are typical of data collected and stored by commercial 
wind turbine SCADA systems. This means the approach developed in this section 
can be widely applied by wind farm operators.  

7.3.2 Modeling of SCADA Parameter Normal Behavior  

A parameter of main shaft rear bearing in the SCDA data, i.e. turbine rear bearing 
temperature, gives an indication of how hot of the bearing are running, and 
therefore offer the possibility to detect rear bearing overheating. The 
straightforward threshold check which has already been applied in real wind farm, 
could be used to flag up temperature exceeding a certain limit, this might be too 
late to avoid significant damage to the main shaft rear bearing. The desired 
functionality should take into consideration any relevant aspects of turbine 
operation. This approach would allow temperatures to be detected that are too high 
in the context of the concurrent level of power generation, leading to a quicker and 
more effective identification of abnormal behavior. 

7.3.2.1 Parameter Selection 

In order to establish the normal behavior ANN model of main shaft rear bearing 
temperature, the variables that can affect this temperature must be taken into 
consideration to build an accurate model. Wind turbines can only aerodynamically 
capture a proportion of the energy in the incident wind [Hansen, 2007]. This 
energy is converted by the rotor blades into mechanical power and is transmitted 
directly to the generator by the main shaft because the turbine monitored in this 
paper is direct-driven turbine without gearbox. Zaher et al. [Zaher et al., 2009] 
established the normal behavior model of gearbox bearing temperature and cooling 
oil temperature and Sanz-Bobi et al. [Garcia et al., 2006] built the same model in 
addition to cooling oil thermal difference. The former model utilized active power 
and nacelle temperature while the later also utilized the operation of fans used to 
cool the gearbox. However, there is no gearbox in direct-driven wind turbine and 
thus avoid to faults of comprehensive gearbox. The main shaft bearings are the key 
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components of this type of wind turbine. Therefore, one of the key components, 
main shaft rear bearing, is main monitoring object in this section.  

Accordingly, the parameters may affect the rear bearing temperature contain: 
active power output, nacelle temperature, turbine speed and cooling fan status. 
Unfortunately, the cooling fan status is not available in current SCADA data and 
thus the parameters selected to establish ANN model for the parameter of main 
shaft rear bearing temperature can be chosen as seen in Table 7.1.  

Table 7.1 Input and Outputs of ANN Model 

Model Output Input 

Rear Bearing Temperature 

Rear bearing temperature (t-1) 
Active power output (t) 
Nacelle temperature (t) 
Turbine speed (t) 

7.3.2.2 Training ANN Model 

The models are trained using the parameters discussed in Table 7.1. In order to get 
an accurate representation for the parameter under study, the range of the 
parameters as inputs to ANN should be as varied as possible while still ensuring 
the turbines are in normal operational condition in ANN training process. This was 
achieved through selection the period of training data with many conditions as 
possible: the starting and stopping of turbine, big changes of turbine speed, with 
and without active power output. Therefore, three months from 01.01.2009-
01.04.2009 SCADA data are chosen as training data for ANN rear bearing normal 
behavior model as seen in Fig. 7.2. This amounts to roughly 13,000 data points for 
each input. The training process then attempts to capture the nonlinear relationship 
between these parameters, i.e. the associated rear bearing and nacelle temperatures 
for the turbine speed and corresponding power output. The number of training 
cycles used, also known as epochs, was 1000. Determining the architecture for the 
network is an iterative process and depends solely on the structure that yields the 
best accuracy when tested. The final architecture used for rear bearing model was 
5-10-1.  

The trained model was tested in new data from a healthy wind turbine which had 
not been used in training process of ANN. Fig. 7.3 shows the input data used to test 
rear bearing ANN model from the same turbine of the date from 26.05.2009 to 
26.07.2009. The test data shown here was also very varied. Fig. 7.4 shows the 
output of rear bearing ANN model (EstimatedTemp), the real temperature of that 
(BearTemp) and the difference between these values. The average difference 
between actual and estimated value is 0.026 oC, and the root mean square error is 
0.2, which is considered to be an acceptable level for successful fault detection and 
prediction. This means that the output of ANN model can be used directly as a 
comparison with the actual temperature to assess if a fault is present. If the 
difference between the estimated value and the actual value increases for a 
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continuous number of instances, i.e. a prolonged period of time and not a minor 
fluctuation, then this would flag as a fault.  

 
Fig. 7.2 Neural Network Turbine Rear Bearing Temperature Model Training Data 
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Fig. 7.3 Rear Bearing Model Testing Input Data  
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Fig. 7.4 Rear Bearing Model Output in Normal Condition 

7.3.3 Prediction and Detection of Rear Bearing Fault 

Once the normal behavior of rear bearing ANN model was trained, it can be used 
to detect and predict the corresponding fault of rear bearing by comparing 
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maintenance actions before the failure happens to reduce the maintenance cost, 
reduce the unanticipated downtime and improve the reliability of the wind turbine.  

Fig. 7.5 Fault Detection Results of Rear Bearing  
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new turbine is in normal condition. Therefore, the ANN model of rear bearing 
using SCADA data from one turbine can be applied for other turbines in same type.  

Fig. 7.6 Rear Bearing Model Testing Input Data of New Turbine 
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Fig. 7.7 Rear Bearing Model Output in Normal Condition of New Turbine 
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8 Maintenance Scheduling Optimization based on Data 
Mining Techniques 

8.1 Introduction 

The range of maintenance cost is from 15% for manufacturing companies and 40% 
for iron and steel industry of the whole cost of manufactured parts and machines 
[Mobley, 1990]. The corresponding cost in United Stated is more than 200 billion 
dollars every year [Chu et al., 1998]. This shows the significance of maintenance in 
the viewpoint of economy.  

Generally, there are three different types of maintenance strategies. The first one is 
called Corrective Maintenance (CM) which is similar to repair work, is undertaken 
after a breakdown or when obvious failure has been located. However, CM at its 
best should be utilized only in non-critical areas where capital costs are small, 
consequences of failure are slight, no safety risks are immediate, and quick failure 
identification and rapid failure repair are possible. The second one is called 
preventive maintenance which is scheduled without the occurrence of any 
monitoring activities. The scheduling can be based on the number of hours in use, 
the number of times an item has been used, or the number of kilometers the items 
has been used, according to prescribed dates. The preventive maintenance may 
cause much more or much less maintenance activities, which may cause more 
maintenance cost or hazard of personnel and equipment. The last one is called 
Predictive Maintenance (PM) which is a set of activities that detect changes in the 
physical condition of equipment (signs of failure) in order to carry out the 
appropriate maintenance work for maximizing the service life of equipment 
without increasing the risk of failure. PM is a dynamic schedule according to the 
state of machines from continuous and/or periodic inspection. It utilizes the product 
degradation information extracted and identified from on-line sensing techniques to 
minimize the system downtime by balancing the risk of failure and achievable 
profits. 

PM has some advantages over other maintenance policies: 1) Improving 
availability and reliability by reducing downtime; 2) Enhancing equipment life by 
reducing wear from frequent rebuilding, minimizing potential for problems in 
disassembly and reassembly and detecting problems as they occur; 3) Saving 
maintenance costs by reducing repair costs, reducing overtime and reducing parts 
inventory requirements; 4) Decreasing number of maintenance operations causes 
decreasing of human error influence. However, there are still some challenges of 
PM: 1) Initiating PM is costly because the cost of sufficient instruments could be 
quite large especially if the goal is to monitor already installed equipment; 2) The 
goal of PM is accurate maintenance, but it is difficult to achieve for the complexity 
of equipment and environment; 3) Introducing PM will invoke a major change in 
how maintenance is performed, and potentially to the whole maintenance 
organization in a company. Organizational changes are in general difficult. The 
objective of maintenance scheduling optimization is to optimize maintenance 
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scheduling in order to maximize the whole profit, ensure safety and increase 
availability. 

Mathematically, the maintenance scheduling problem is a multiple-constraint, non-
linear and stochastic optimization problem. This kind of problem has been studied 
for several decades and many kinds of different methods have been applied to 
solve it. Two methods for PM optimization had been developed during 1980s. The 
first method [Perla, 1984; Walker, 1987] performs cost/benefit analysis of each 
analyzed piece of manufacturing equipment. It is based on identifying important 
equipment firstly, and then predicting its future performance with and without 
changes in the regularly scheduled maintenance program. The second approach is 
the Reliability-Centered Maintenance (RCM) [Crellin, 1986; Hook et al., 1987; 
Vasudevan, 1985]. This methodology was adopted from the commercial air 
transport industry. It is based on a series of orderly steps, including identification 
of system/subsystem functions and failure modes, prioritization of failures and 
failure modes (using a decision logic tree), and finally selection of PM tasks that 
are both applicable (i.e. have the potential of reducing failure rate) and effective 
(i.e. economically worth doing). In the last two decades, many kinds of intelligent 
computational methods, such as the artificial neural network method, simulated 
annealing method, expert system, fuzzy systems and evolutionary optimization, 
have been applied to solve the maintenance scheduling problem and obtained many 
very exciting results [Huang, 1998; Miranda et al., 1998; Satoh & Nara, 1991; 
Sutoh et al., 1994; Yoshimoto et al., 1993]. And also, with the rapid development 
of the evolutionary theory, genetic algorithms (GAs) had become a very powerful 
optimization tool and obtained wide application in this area [Arroyo & Conejo, 
2002; Back et al., 1997; Huang et al., 1992; Lai, 1998; Lee & Yang, 1998; Y. 
Wang & Handschin, 2000]. In recently years, several new intelligent computational 
methods such as Ant Colony Optimization (ACO) and Particle Swarm 
Optimization (PSO) have been applied in preventive maintenance scheduling 
[Benbouzid-Sitayeb et al., 2008; Pereira et al., 2010; Yare & Venayagamoorthy, 
2010]. 

All the above methods of maintenance scheduling are based on the specified time 
periods other than based on the condition of the equipment or facilities. PM is a 
good strategy which could be used to improve reliability and increase useful life of 
the equipment and reduce the cost of maintenance according to the condition of 
machine. When the condition of a system, such as its degradation level, can be 
continuously monitored, PM policy can be implemented, according to which the 
decision of maintaining the system is taken dynamically on the basis of the 
observed condition of the system. Recently, genetic algorithms, Monte Carlo 
method, Markov and semi-Markov methods are applied in PM [Amari et al., 2006; 
Barata et al., 2001, 2002; Be renguer et al., 2000; Grall et al., 2008; Marseguerra 
et al., 2002]. However, there are very few literatures on applying the intelligent 
computational methods in predictive maintenance based on the conditions 
(degradation) of monitored machines.  

This Chapter will build PM scheduling models and optimize it using Swarm 
Intelligence algorithms.  
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8.2 Predictive Maintenance Scheduling Optimization Based on 
Swarm Intelligence 

Swarm Intelligence (SI) is an innovative distributed intelligent paradigm for 
solving optimization problems that originally took its inspiration from the 
biological examples by swarming, flocking and herding phenomena in vertebrates. 
Particle Swarm Optimization (PSO) incorporates swarming behaviors observed in 
flocks of birds, schools of fish, or swarms of bees, and even human social behavior, 
from which the idea is emerged. Ant Colony Optimization (ACO) deals with 
artificial systems that are inspired from the foraging behavior of real ants, which 
are used to solve discrete optimization problems. Bee Colony Algorithm (BCA) is 
an optimization algorithm based on the intelligent foraging behavior of honey bee 
swarm, proposed by Karaboga in 2005 [Karaboga, 2005]. These optimization 
algorithms are metaheuristic which can solve the difficult optimization problems 
even the problem is NP problem. They can easily to be applied in maintenance 
scheduling optimization. 

The maintenance scheduling mentioned in this Chapter does not refer to the 
scheduling for one machine or one component in its life cycle but to number of 
machines or components in specific time duration in order to reduce cost and 
increase productivity or profit. Fig. 8.1 shows the scheme of maintenance 
scheduling optimization. The results of fault diagnosis and prognosis are the key 
information of the maintenance scheduling optimization. The objective of 
maintenance optimization is to maximize or minimize the fitness function with 
some constraints such as crew constraint and maintenance window. The following 
sections will show how the swarm intelligence techniques work in maintenance 
scheduling optimization through some case studies. 
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Fig. 8.1 Maintenance Scheduling Optimization Scheme 

8.3 Generating Unit Maintenance Scheduling (GMS) using PSO 

Power generating companies must generate sufficient electrical power to cater for 
the varying demands of consumers. Electricity cannot be easily and cheaply stored, 
so it must be continuously generated based on the customers’ demand. With the 
increasing demand of electricity, the generating unit maintenance scheduling (GMS) 
of power system has become a complex, multi-object-constrained optimization 
problem. Within the last three decades, several techniques have appeared in the 
literature addressing such optimization problems under different scenarios 
[Marwali & Shahidehpour, 2000; Negnevitsky & Kelareva, 1999]. The primary 
goal of the GMS is the effective allocation of generating units for maintenance 
while ensuring high system reliability, reducing production cost, prolonging 
generator life time subject to some units and system constraints [Yare et al., 2008].  

In order to obtain an approximate solution of a complex GMS, some new concepts 
have been proposed in recent years. They include applications of probabilistic 
approach [Billinton & Abdulwhab, 2003], simulated annealing [Satoh & Nara, 
1991], decomposition technique [Yellen et al., 1992] and genetic algorithm (GA) 
[Firmo & Legey, 2002]. A flexible GMS that considered uncertainties is proposed 
with a fuzzy 0-1 integer programming technique adopted and applied to the Taiwan 
power system. The application of GA to GMS has been compared with and 
confirmed to be superior to other conventional algorithms such as heuristic 
approaches and branch-and-bound (B&B) in the quality of solutions [Firmo & 
Legey, 2002]. However, the application of particle swarm optimization (PSO) and 
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their variants to GMS has not been fully explored in the literature. This section is 
retrieved from [Zhang & Wang, 2010].  

8.3.1 Fitness function and Constraints of GMS 

Generally, there are two main categories of objective functions in GMS problems, 
namely based on reliability and economic cost. The reliability criteria of levelling 
reserve generation for the entire period of study is considered in this paper. As an 
objective function of the GMS problems, we establish annual supply reserve ratio 
levelling one of the deterministic index. Because algorithms for levelling supply 
reserve ratio is easy to implement without considering probabilistic simulation 
procedures operation cost, it is possible to establish an annual GMS problem (52-
week horizon). However, it has a weak point in not considering probabilistic 
conditions such as generators' forced outage. Actually generation companies have 
been utilizing minimizing annual supply reserve ratio more than probabilistic index 
methods. For our research, we just focus on PSO algorithm accessing to GMS 
problem, so it is enough to formulate the objective function as an annual supply 
ratio levelling.  

The problem studied here was solved by minimizing the annual supply reserve 
ratio. The problem has a number of units and system constraints to be satisfied 
which were described as follows: 

Load constraints – total capacity of the units running at any interval should 
be not less than predicted load at that interval. 
Crew constraint – for each period, the capacity of maintenance units cannot 
exceed the maximum available maintenance capacity considering crew in 
this period. 
Start week of maintenance – Each unit has its maintenance periods, the 
maintenance schedule cannot exceed these periods.   
Maintenance window constraints – defines the starting of maintenance at 
the beginning of an interval and finish at the end of the same interval 
which may contain one or several weeks. The maintenance cannot be 
aborted or finished earlier than scheduled. 

The objective function to be minimized is given by Eq. (8.1) subject to the 
constraints given be Eq. (8.2)-(8.5). 
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 t tIC SL SL  (8.2) 

Subject to crew constraint 
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Subject to start week of maintenance 

 min max
j j jS S S  (8.4) 

Subject to maintenance window 

 
     

                 
j j j

j j j

t S or t S M nomaintenance
S t S M maintenance

 (8.5) 

Where: 
T : Length of the maintenance planning scheduling (normally 52 weeks); 

tAC : Available generation capacity at tht week; 

tL : Load demand at tht  week; 

IC : Total Installed Capacity; 

tSL : Capacity loss in tht  week because of maintenance; 

tCR : Maximum available maintenance capacity at tht  week considering crew 
[MW]; 

jS : Starting week for maintenance scheduling of thj  unit; 
min
jS : Feasible minimum starting week for maintenance scheduling of thj  unit; 
max
jS : Feasible maximum starting week for maintenance scheduling of thj  unit; 

jC : Capacity of thj  unit; 

 { | ?jt j j jP P t S t S M : Whether the thj  unit maintenance in tht  week. 

8.3.2 Improved PSO (IPSO) Algorithm  

PSO performs well in the early iterations, but they have problems approaching a 
near-optimal solution. If a particle’s current position accords with the global best 
and its inertia weight multiply previous velocity is close to zero, the particle will 
only fall into a specific position. If their previous velocities are very close to zero, 
all the particles will stop moving around the near-optimal solution, which may lead 
to premature convergence of algorithm. All the particles have converged to the best 
position discovered so far which may be not the optimal solution. So, an improved 
PSO (IPSO) is proposed here. 
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In IPSO, before updating the velocities and positions in every iteration, the 
particles are ranked according to their fitness values in descending order. Select the 
first part of particles (suppose mutation rate is , fist part is (1 )  and put them 
into the next iteration directly. Regenerate the rest part of particles ( ) randomly. 
In this case, we can regenerate the positions and velocities according to the 
following equations instead of Eq. (3.23)-(3.24): 

 max min min( ) ( ) ( )idx round rand S j S j S j  (8.6) 

 2 [ , ]id max max id max maxv t v round rand v v t v v  (8.7) 

8.3.3 Case Study and Results 

In order to investigate the performance of IPSO for the GMS problem, a test 
system comprising 32 units over a planning period of 52 weeks was used. The case 
study is described below and implemented in a MATLAB environment. 

There are 32 generating units, annual peak load demand is 2,850 MW, and installed 
capacity is 3,450 MW. The weekly peak loads in present of annual peak are shown 
in Table 8.1. The specific data of the generators are shown in Table 8.2 which 
include capacity (MW), maintenance period and load constraints. The value of 
crew constraint is constant at 800 MW. 

To implement PSO and IPSO, a population size of 150 particles was chosen to 
provide sufficient diversity into the population taking into account the 
dimensionality and complexity of the problem. This population size ensured that 
the domain was examined in full but at the expense of an increase in execution 
time. The other parameters of PSO and IPSO were: c1 = c2 = 2.0,  = 1.2 - 0.8 
with linearly decreasing, total iteration = 300 and V [-3, 3].  

Annual supply reserve ratio values by the change of the number of iteration are 
shown in Fig. 8.2. We compared simulation results between the PSO and IPSO 
algorithms. We can see from this figure, the IPSO algorithm has a better 
performance than PSO in GMS problems to find optimal solutions. The particles of 
IPSO have a higher possibility to find optimal solution than those of PSO. The 
optimal solutions of GMS problems using PSO and IPSO are shown in Table 8.3. It 
contains global particles of PSO and IPSO respectively which have a best 
maintenance period satisfying maintenance continuity and crew constraints, etc. 
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Table 8.1 Weekly Peak Load in Percent of Annual Peak (%) 

Week Load Week Load Week Load Week Load 
1 86.2 14 75.0 27 75.5 40 72.4 
2 90.0 15 72.1 28 81.6 41 74.3 
3 87.8 16 80.0 29 80.1 42 74.4 
4 83.4 17 75.4 30 88.0 43 80.0 
5 88.0 18 83.7 31 72.2 44 88.1 
6 84.1 19 87.0 32 77.6 45 88.5 
7 83.2 20 88.0 33 80.0 46 90.9 
8 80.6 21 85.6 34 72.9 47 94.0 
9 74.0 22 81.1 35 72.6 48 89.0 

10 73.7 23 90.0 36 70.5 49 94.2 
11 71.5 24 88.7 37 78.0 50 97.0 
12 72.7 25 89.6 38 69.5 51 100 
13 70.4 26 86.1 39 72.4 52 95.2 

Table 8.2 Data of Generators 

Generat
or 

(Unit) 

Capaci
ty 

(MW) 

Maintena
nce 

Window 

Maintena
nce period 

Generat
or 

(Unit) 

Capaci
ty 

(MW) 

Maintena
nce 

Window 

Maintena
nce period 

1 12 1-52 2 17 76 18-29 3 
2 12 1-52 2 18 76 18-29 3 
3 12 1-52 2 19 76 18-29 3 
4 12 1-52 2 20 100 18-29 3 
5 12 1-52 2 21 100 18-29 3 
6 20 18-29 2 22 100 18-29 3 
7 20 18-29 2 23 155 1-52 4 
8 20 18-29 2 24 155 1-52 4 
9 20 18-29 2 25 155 1-52 4 

10 50 41-52 2 26 155 1-52 4 
11 50 41-52 2 27 197 1-52 4 
12 50 41-52 2 28 197 1-52 4 
13 50 1-27 2 29 197 1-52 4 
14 50 1-27 2 30 350 1-52 5 
15 50 1-27 2 31 400 1-52 6 
16 76 18-29 3 32 400 1-52 6 
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Fig. 8.2 Fitness Value by the Change of the Number of Iteration 

Table 8.3 Result (Maintenance period) 

Unit 
Maintenance period (week) 

Unit 
Maintenance period (week) 

PSO IPSO PSO IPSO 
1 35,36 14, 15 17 26,27,28 26,27,28 
2 21,22 21,22 18 18,19,20 26,27,28 
3 31,32 8,9 19 26,27,28 18,19,20 
4 21,22 35,36 20 26,27,28 26,27,28 
5 17,18 21,22 21 26,27,28 26,27,28 
6 27,28 21, 22 22 21,22,23 18,19,20 
7 21,22 27,28 23 14,15,16,17 34,35,36,37 
8 27,28 21,22 24 14,15,16,17 29,30,31,32 
9 18,19 27,28 25 34,35,36,37 14,15,16,17 

10 41,42 50,51 26 14,15,16,17 6,7,8,9 
11 41,42 50,51 27 10,11,12,13 10,11,12,13 
12 41,42 41,42 28 40,41,42,43 14,15,16,17 
13 6,7 14,15 29 38,39,40,41 37,38,39,40 
14 14,15 3,4 30 29,30,31,32,33 9, 10, 11, 12, 13 

15 21,22 14, 15 31 34,35,36,37,3839 38, 39, 40, 41, 42, 
43 

16 18,19,20 21,22,23 32 8,9,10,11,12,13 31, 32, 33, 34, 35, 
36 

8.4 Dynamic Condition-Based Maintenance Scheduling using BCA 

8.4.1 Model of Condition based PM 

In order to show the general idea of applying BCA in condition-based PM 
scheduling, a manufacturing model is built assuming the features of the system that 
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we analyze. There are several assumptions of the manufacturing system as 
following: 

1) The manufacturing system is subjected to deterioration. 
2) Periodically the system is under inspection and each inspection reveals the 

system deterioration state perfectly. 
3) Machine inspection is planned at the beginning of each period. 
4) The inspection time is very short and can be ignored compared to the whole 

period. 
5) Following an inspection based on the current state of machine ( iS ), one of the 

following action is taken: 
0 i kS S : no maintenance is performed ( kS is PM threshold); 

k i nS S S : PM is planed ( nS is CM threshold) but is not always performed ; 

i nS S : CM has to be performed. 
6) Following a PM or CM, the machine is restored to an as-good-as-new 

condition. 
7) The duration of PM action is much less than that of CM action for a same 

machine. 

8.4.1.1 Modeling of Manufacturing System 

The manufacturing system has a number of machines marked as M , and for each 
machine, the productivity is iProd . Therefore, the maximum productivity of this 
system can be expressed as Eq. (8.8) while its real total productivity can be 
expressed as Eq. (8.9). 

 max
1

M

i
i

Prod Prod  (8.8) 

 
1

( )
M

tot i i
i

Prod Prod  (8.9) 

where: iProd is the productivity of thi machine. i  is the coefficient of thi machine 
productivity. The value of i  is 1 if the thi machine is not under any kind of 
maintenance, the value is 0 if it is under CM action, and the value is 0.5 if the 
machine is under a PM action in a period. 

8.4.1.2 Modeling of Equipment Inspection 

The value of the state can belong to arrange from 0 to 1 which represent the perfect 
state to the totally failure of the component. The state of machine is can be 
discretized as 1 2, , , nS S S which 1S  can be set equal 0 while nS  can be set equal 1 or 
a value very closed to 1 (for example 0.98 which is the CM threshold). In this 
model, the beginning condition is considered for each interval. During each period, 
degradation of each machine is independent and random distribution according to 
Poisson distribution. At the start of each period, there is the inspection of a 
machine and the obtaining of the value of the state S  of a machine as shown in Fig. 
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8.3. The states for all the machines can be used as parameters in predictive 
maintenance scheduling. 

 
Fig. 8.3 Inspection Point Schematic Diagram 

8.4.1.3 Deterioration Model for Each Machine 

Deterioration means a process where the important parameters of a system 
gradually worse. If left unattended, the process will lead to deterioration failure. 
Therefore, the deterioration has to be considered when a maintenance policy needs 
to be employed. Fig. 8.4 shows the deterioration model of a machine. The state S  
of a machine can be a value among 1[ , ]nS S . In Fig. 8.4, ( 1,2, , )iS i n is the 
predefined state of a machine, kS is while nS  is CM threshold. ijP  is the transition 
probability for the state from iS  to jS  in one period. The P M should be planned 
when the state is between kS  and nS . If the state goes to nS , the CM action must be 
performed which means 1 1nP . The state transition matrix P can be expressed as 
Eq. (8.10) with the constraint of Eq. (8.11). 

Fig. 8.4 Degradation Model for One Machine 
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1

1 1, ,
n

ij
j

P i n  (8.11) 

This model is very similar with the Markov model in lack of a random variable of 
inspection time. With the Markov, the mean time between CM  and mean time 
between PM  can be estimated [Amari et al., 2004]. But with the Markov model, 
the accumulative error is very difficult to eliminate. The result is only the mean 
time between CM and mean time between PM  rather than the real plan or 
scheduling of CM  or PM . With that result, the maintenance action CM and PM  
could be much more or less than it necessary because of uncertainty of mechanical 
products. Therefore, the inspection action is performed in the beginning of every 
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period as mentioned in section 8.4.1.2. What’s more, in this model, there is no any 
CM or PM action when the state of the machine is in the range between 1S  and 

1kS . The PM  plan is made when the state of the machine is in range between kS  
and 1nS , and as mention above, the CM action is performed if and only if the state 
of machine reach or exceed nS . To simplify the analysis, for the element values in 
the state transition matrix in Eq. (8.10), from the 1S  to 1kS , only iiP and 

, 1( 1,2, , 1)i iP i k have positive values and others are all zero, while from the kS  
to 1nS , only iiP , , 1i iP and 1( , 1, , 1)iP i k k n  have positive values and the others 
are all zero as well. The new equation can be expressed as Eq. (8.12). 

 

11 12

22 23

33 34

1 , 1

1,1 1, 1

2,1

1,1 1, 1 1,

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0
1 0 0 0 0 0 0 0 0

k kk k k

k k k

k

n n n n n

P P
P P

P P

P P P
P

P P
P

P P P

 (8.12) 

The ideal values of all the elements in Eq. (8.12) for the perfect deterioration model 
are express from Eq. (8.13) and Eq. (8.14). 

 , 10 & 1, 1ii i iP P i k  (8.13) 

 , 1 10 & ( 1 1), , 1 1ii i i iP P or P i k k n  (8.14) 

For the state of nS  in Eq. (8.12), 1 1nP  and all values of other elements are 0 
which mean that when the state reach nS , CM  has to be performed. These values 
could be a real situation of a manufacturing machine but it is difficult make the 
values reality. To achieve this point, the values of states from 1S  to nS  should be 
adjusted after a number of periods by statistics.  

8.4.1.4 Modelling of Cost Function 

There are many types of costs for each period which are analysed one by one as in 
this section. All the costs calculated in this section are just for only one period. 

Production Cost: it is due to the amount products produced by the manufacturing 
system which means how much money it need cost to produce the amount of 
products. 

 prod tot pieceC Prod C  (8.15) 
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where prodC represents the production cost for a period while pieceC represents the 
cost for producing one piece. 

Maintenance Cost: it is due to the performing PM and CM, which means the how 
much money needed to perform the PM and CM. 

 
1

( )
M

M i ci i pi
i

C CM C PM C  (8.16) 

where iCM represents if the thi machine is under the CM  (0 means no CM  action 
while 1 means under that action). iPM  represents if the thi machine is under the 
PM  (0 means no PM  action while 1 means under that action). ciC and piC
represent the costs of one CM and PM  action respectively for thi machine.  

Total Cost: it is the total cost for one period. 

 tot prod MC C C CI  (8.17) 

where totC is the total cost in one period while CI is the inspection cost. Because in 
this model all machines are inspected for every period, the value of CI is fixed. 

8.4.1.5 Modelling of Profit for the Manufacturing System 

After above analysis, the total profit for one period can be calculated using Eq. 
(8.18). This equation could be an objective function for optimization. The total 
number of produced products in the period should be more than a minimum 
number which can be describe as Eq. (8.19). Furthermore, the number of CM and 
P M have a limitation because of the resources limitation, such as repairers and 
tools limitation. 

 
1

( )

[ ( ) ]

tot tot tot prod M

M

tot tot piece i ci i pi
i

Profit Prod Pr C Prod Pr C C CI

Prod Pr Prod C CM C PM C CI
 (8.18) 

 mintotProd Prod  (8.19) 

 max
1

( )
M

i i
i

CM PM M  (8.20) 

where P r is the price for one piece of product, minProd is the minimum amount 
products limitation of one period, and maxM is a limitation of the maximum 
maintenance action can be performed. In this model, to find the optimal dynamic 
predictive maintenance plan for each period, Eq. (8.18) could be an objective 
function and Eq. (8.19) and Eq. (8.20) could be two constraints. The aim is to make 
PM maintenance scheduling to obtain maximum Profit  with two constraints of Eq. 
(8.19) and Eq. (8.20). 
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8.4.2 Numerical Examples 

In order to investigate the performance of BCA for the condition-based PM 
scheduling problem, a test system comprising 30 machines is used. According to 
the conditions at the start of period, a dynamic PM scheduling is made period by 
period. The case study is described below and implemented in a MATLAB 
environment. In this case, the number of machine is 30, and the machine 
parameters are shown in Table 8.4. In the table, the iProd means the one day 
productivity for thi  machine. The problem of this case could be described as: 
making a PM and CM scheduling decision for 30 machines in a week according to 
the initial state of each machine. 

There is no mathematical method to select the best population size of the BCA. 
However, there are some empirical parameters from experience. In this example, 
the value of population is set to 20. The profit (fitness value) for one period (a 
week) by the change of the number of iteration is shown in Fig. 8.5. The result of 
PM decision and CM decision are shown in Table 8.5. In the table, the values of 
PM are 0 or 1 which mean perform or not perform the PM action. The CM value is 
the same mean as PM. The optimal fitness value of this numerical example is 
3081390. The result shows that BCA can make the dynamic PM scheduling 
optimization very effective and clear with PM model.  

Fig. 8.5 Fitness Value by the Change of Iterations 
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Table 8.4 Machine Parameters  

Machine iProd pieceC Pr CI  iS piC  ciC

M1 200 70 140 200 0.46 4000 10000
M2 200 70 140 200 0.51 4000 10000
M3 200 70 140 200 0.94 4000 10000
M4 200 70 140 200 0.55 4000 10000
M5 200 70 140 200 0.93 4000 10000
M6 200 70 140 100 0.96 6000 12000
M7 200 70 140 100 0.42 6000 12000
M8 200 70 140 100 0.66 6000 12000
M9 200 70 140 100 0.35 6000 12000
M10 200 70 140 100 0.35 6000 12000
M11 300 60 140 210 0.86 6500 16000
M12 300 60 140 210 0.95 5500 12000
M13 300 60 140 210 0.72 7800 16000
M14 300 60 140 210 0.82 8000 15000
M15 300 55 140 150 0.71 9000 17000
M16 300 55 140 150 0.64 6000 13000
M17 300 55 140 180 0.95 7000 15000
M18 300 55 140 180 0.75 8000 16000
M19 300 55 140 170 0.92 8000 16000
M20 300 55 140 170 0.66 8000 16000
M21 400 70 140 220 0.33 9000 20000
M22 400 70 140 220 0.5 10000 17000
M23 400 70 140 220 0.91 7500 20000
M24 400 70 140 220 0.6 10000 16000
M25 400 70 140 220 0.37 8400 20000
M26 400 70 140 220 0.97 10000 18000
M27 400 60 140 200 0.4 9000 18000
M28 400 60 140 200 0.46 9000 17000
M29 400 60 140 200 0.91 9000 18000
M30 400 60 140 200 0.7 9000 16000
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Table 8.5 Results of PM and CM by BCA 

Machine PM CM Machine PM CM Machine PM CM
M1 0 0 M11 1 0 M21 0 0 
M2 0 0 M12 0 1 M22 0 0 
M3 1 0 M13 1 0 M23 1 0 
M4 0 0 M14 1 0 M24 0 0 
M5 1 0 M15 1 0 M25 0 0 
M6 0 1 M16 0 0 M26 0 1 
M7 0 0 M17 0 1 M27 0 0 
M8 0 0 M18 1 0 M28 0 0 
M9 0 0 M19 1 0 M29 1 0 
M10 0 0 M20 0 0 M30 1 0 

8.5 Routing and Scheduling Optimization of Maintenance Flee 
(RSOM) for Offshore Wind Farm 

Wind energy industry has experienced an extensive and worldwide growth during 
the past years. Certain forecasts indicate that the share of wind in Europe’s energy 
production will reach up to 20% in the close future [Krohn et al., 2007]. The 
efficient operation of installed turbines has an increasing significance. Among 
operational decisions, the planning and scheduling of maintenance tasks is decisive 
regarding both turbine availability and operational costs. Considering the spread of 
offshore installations and the fact that their operational costs including specialized 
support resources for offshore operations, such as service vessels and personnel, 
can be estimated to be five to ten times more expensive than that of the onshore 
farms [Bussel & Zaaijer, 2001; Markard & Petersen, 2009], maintenance 
scheduling will receive even more emphasis. Meanwhile, the support resources are 
often restricted by the environmental conditions at the site, and certain operations 
are allowed only in short weather windows. Missing the weather window may lead 
to production interruption and economic loss.  

The Chapter aims to investigate an operational decision problem, i.e. routing and 
scheduling of a maintenance fleet for offshore wind farms which can be used to 
avoid a time-consuming process of manually planning the scheduling and routing 
with a presumably suboptimal outcome. Mathematical model of RSOM is retrieved 
from a literature [Dai, 2014] and  then a swarm intelligence, i.e. Ant Colony 
Optimization (ACO) is modified as Duo-ACO to be applied to solve this problem. 

8.5.1  Mathematical Model of RSOM 

Let there are n  offshore wind turbines (OWTs) indexed by i . Associate to the 
delivery location of OWT i  a node i , and to its pick up location a node n i . Also 
associate to the harbor, nodes 0 and 2   1n . The definitions of the variables can be 
given as following:  
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Sets: 

Z : the set of delivery nodes, Z = 1,2,3, ,n . 

Z : the set of pick up nodes, 1, 2, , 2Z n n n . 

Z Z Z . 
VZ Z : the set of nodes that require the vessel present during the maintenance 

operations. 

N : the set of all the nodes; 0,2 1N Z n . 

V : the set of service vessels. 

T : the set of days in the planning period; 1, 2,T  represents the length of the 
period. 

Constants

vijT : the time (hours) for vessel v  traversing arc ( , )i j . 

vC : the traveling cost of vessel v  per hour. 
M

iT : the time needed for performing the maintenance task on turbine i ; 

0 2 1 0M M
nT T . 

iL : the weight of spare parts and equipment for maintenance on turbine i . 

iP: the required personnel number for maintenance on turbine i . 
MAX

vdT : the maximum working hours on day d  for vessel v , which is used as the 
weather limitation for different vessels. 

MAX
vL : the load capacity of vessel v . 
MAX

vP : the personnel capacity of vessel v . 
LATE

iT : the latest day to perform the maintenance task on turbine i  without incurring 
a penalty cost. 

PE
iC : the penalty cost per day for the delaying maintenance task on turbine i  

beyond LATE
iT . 

Decision variables 

1, vessel  travels from node  to node  on maintenance day 
0, otherwisevijd

v i j d
x   

iy : the number of delayed days for maintenance task on turbine i . 

vidt : the time at which vessel v  visits turbine i  on maintenance day d . 
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vidk : the total load weight on vessel v  just after it leaves node i  on maintenance 
day d . 

vidq : the total personnel number on vessel v  just after it leaves node i  on 
maintenance day d . 

Objective function 

 (2 1)min PE
v v n d i i

v V d T i Z

C t C y   (8.21) 

Constraints

 1, ,vijd
j N v V d T

x i Z   (8.22) 

 0 1, , ,v id
i N

x v V d T   (8.23) 

 , , , ,vjid vijd
j N j N

x x v V d T i N   (8.24) 

 (2 1) 1, , ,vi n d
i N

x v V d T   (8.25) 

 ( ) , , , ,vjid v n i jd
j N j N

x x v V d T i Z   (8.26) 

 ( ) 1, ,V
vi i n d

v V d T
x i Z   (8.27) 

 ( ) , , , ,M
v n i d vid it t T i Z v V d T   (8.28) 

 ( ) , ,LATE
vijd i j

j N v V d T
d x y T i Z   (8.29) 

 ( ) 0, , , , ,vid ij vjd vijdt T t x i j N v V d T   (8.30) 

 , , ,MAX
i ijvd v

j Ni Z

L x L v V d T   (8.31) 

 ( ) 0, , , , ,vid j vjd vijdk L k x i Z j N v V d T   (8.32) 

 ( ) 0, \ , , , ,vid vjd vijdk k x i N Z j N v V d T   (8.33) 

 ( ) 0, , , , ,vid j vjd vijdq P q x i Z j N v V d T   (8.34) 

 ( ) 0, , , , ,vid j vjd vijdq P q x i Z j N v V d T   (8.35) 

 0 , , ,MAX
vid vk L i N v V d T   (8.36) 

 0 , , ,MAX
vid vq P i N v V d T   (8.37) 

 (2 1) , ,MAX
v n vdt T v V d T   (8.38) 

 0 0 , ,v dt v V d T   (8.39) 
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 0,iy i Z   (8.40) 

Constraints - 

1) Eq. (8.22) ensure that each OWT is visited only once for delivery and once 
for pick up. 

2) Eq. (8.23) and (8.25) ensure that each vessel leaves and returns the harbor 
only once every day. 

3) Eq. (8.24) and (8.26) ensure flow conservation at each node. 
4) Eq. (8.27) means that if the vessel needs to present during the maintenance 

operation on one OWT, it will only leave the OWT when the operation is 
completed. 

5) Eq. (8.28) is precedence constraints which force the pickup is not done 
before completing the maintenance operation on the same OWT. 

6) Eq. (8.29) is soft constraints which require that the maintenance task is 
performed within the preferred time. 

7) Eq. (8.30) keeps the travelling time compatibility of each vessel. 
8) Eq. (8.31) ensures the service vessels are not overloaded. 
9) Eq. (8.32) expresses the compatibility requirements between routes and 

vessel loads. 
10) Eq. (8.33) ensures that no extra load added when the vessels pick up from 

OWTs. 
11) Eq. (8.34) and (8.35) describe the compatibility requirements between 

routes and personnel number on the vessels. 
12) Eq. (8.36) and (8.37) guarantee that neither of load or personnel number 

exceeding the vessel limitations. 
13) Eq. (8.38) imposes a maximal working time of the service vessels on each 

day. 
14) Eq. (8.39) means the time is counted from the vessels leaving the harbor. 
15) Eq. (8.40) set the delayed maintenance day to be non-negative. 

8.5.2 Application of Duo-ACO in RSOM Problem 

ACO is a meta-heuristic technique which is inspired by the foraging behavior of 
some ant species [Marco Dorigo et al., 2006]. It is a very good algorithm for 
solving optimization problem typically Travelling Salesman Problem (TSP). In 
classical TSP problem, there are many cities and only one salesman. If there are 
two sales man to travel all these cities and each city can and only can be traveled 
once, how to solve this Duo-TSP problem? The RSOM problem may have two or 
more vessels which is very similar with duo-TSP problem. This section describes 
the principle of Duo-ACO. 

The idea of Duo-ACO is evolved from basic ACO which is introduced in Section 
3.5.1. Duo-ACO has two groups with the same number of ants and each group has 
its own pheromone (group1, group2 and pheromone1, pheromone2 respectively). 
The procedure of the algorithm can be written as: 
Begin 

Initialization 
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While stopping criterion not satisfied do 
Deploy each ant ( k ) in a starting city for group1 
Deploy each ant ( k ) in a starting city for group2 
(The ant with the same sequence ( k ) of two groups cannot in same city) 

For each ant (same sequence ant ( k ) for both group)
Repeat  

Calculate probability of remaining cities selected to be next city for 
group1 
Choose next city according to probability using roulette wheel selection 
algorithm for group1 
 
Calculate probability of remaining cities selected to be next city for 
group2 
Choose next city according to probability using roulette wheel selection 
algorithm for group2 

Until all cities are visited 
Update pheromone1 
Update pheromone2 

End for 
Update the best routes (route1 for group1 while route2 for group2) 

End while 
Record and output the beat routes (solutions) 

End

The implement steps of duo-ACO are shown in Fig. 8.6. In each iteration, the two 
ants with the same index ( k ) in two groups select nodes (cities in TSP problem) 
alternatively according to their probabilities. Accordingly, the pheromones for two 
groups can be updated respectively. After all ants passed all nodes, the iteration 
number increases one by one until maximum iteration. Then the best routes of two 
groups with the same index are recorded as the best solution. Referring to apply 
Duo-ACO in RSOM problem, the solution of each group represents the route of 
corresponding vessel. The ijd  in Eq. (3.21) is replaced by Reciprocal of Eq. (8.21) 
in the case of RSOM problem. 

8.5.3 Numerical Examples 

To examine the effectiveness of Duo-ACO application in RSOM problem, several 
case studies are presented in this section. Fig. 8.7 shows an example of offshore 
wind farm with 64 wind turbines. The states of turbines can be “Replacement”, 
“Repair” and “No service demand” according to the results of condition monitoring 
system especially of fault diagnosis and prognosis. There are two vessels can be 
used as maintenance flee and the parameters of them are shown in Table 8.6. The 
parameters of turbines and the maximum working hours for each day are shown in 
Table 8.7 and Table 8.8 respectively. The maximum working hours in Table 8.8 
can be obtained from weather condition forecasting.  
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Start

Initialize the parameters,
Set The algorithm iteration number NC=0

Compute probabilities of next selected node for all
unvisited nodes for ant1(k) by Eq. (3.21)

Choosing next node according to the probabilities
and roulette wheel selection principle

Place all ants of two groups to the random positions,

Update pheromone1 and pheromone2 by Eq. (3.22)

All ants have visited all nodes?

Reach maximum iteration
(NC=NCmax)

or other termination criterion ?

End
Yes

No

NC=NC+1

Yes

No

k=k+1

All nodes are visited by ant1(k) and
ant2(k) ?

No

Compute probabilities of next selected node for all
unvisited nodes for ant2(k) by Eq. (3.21)

Choosing next node according to the probabilities
and roulette wheel selection principle

Yes

All nodes are visited by ant1(k) and
ant2(k) ?

Yes

NO

Fig. 8.6 The implementation steps of Duo-ACO 
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The process of the program was shown in Fig. 8.6. There are two groups of ants 
and each of them represents a vessel. The routing of ant represents the routing and 
scheduling of maintenance. From the experience, the number of ants in each group 
should be approximately the number of nodes the ants be visited which are 
offshore turbines in this case. Therefore, the parameters of Duo-ACO are set as: 
number of ants of each group is 10, the maximum iteration is 300, important 
coefficient of pheromone  and  are set as 1 and 5 respectively, and the 
pheromone evaporation coefficient is 0.1.  

The results of maintenance scheduling and routing with 8 offshore turbines are 
shown in Table 8.9. Vessel1 and vessel2 visit and maintain 5 turbines and 3 
turbines respectively. The routing number here is the same mean as Table 8.7. The 
result is that the two vessels can visit and maintain these turbines within one day 
(5.4915 and 8.7097 hours respectively) and the objective value of Eq. (8.21) is 
3848.5.  

Fig. 8.7 The offshore wind farm example 
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Table 8.6 Parameters of Maintenance Vessels 

Vessels 
Speed 

( S , km/h) 
Load Capacity

( L , kg) 
Personal Capacity

( P ) 
Cost 

(C, €/h) 
Vessel1 33 1500 12 225 
Vessel2 20 26000 12 300 

Table 8.7 Parameters of 8 Turbines 

Unit Turbines Task type 
Time window 

(day) 
LATE

iT  

Penalty cost 
(euro/day) 

PE
iC  

Required 
load (kg) 

iL  

Required 
personnel 

iP 

Task duration 
(hours) 

M
iT  

1 T12 Repair 2 1600 200 2 3 

2 T19 Replacement 1 3000 200 2 2 

3 T30 Repair 3 1200 100 2 1 

4 T36 Replacement 2 2000 800 5 3 

5 T39 Replacement 3 2000 300 2 2 

6 T42 Repair 4 1000 200 2 2 

7 T52 Replacement 2 2000 800 4 3 

8 T60 Repair 4 1000 500 3 4 

Table 8.8 Mmaximum Working Hours for Each Day 

Time (Day) 
Mmaximum Working Hours 

Vessel1 Vessel2 
Day 1 6 10 
Day 2 6 10 
Day 3 8 12 
Day 4 7 11 
Day 5 7 11 
Day 6 5 8 
Day 7 6 10 
Day 8 6 10 
Day 9 6 10 
Day 10 7 11 
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Table 8.9 Results of Maintenance Routing with 8 Turbines 

Vessels 
No. of 
Visited  
Turbine 

Routing Needed Time 
(hours of each day) 

Objective 
Value 

Vessel1 5 0-1-2-6-3-5-3-2-6-5-1-0 5.4915 
3848.5 

Vessel2 3 0-7-8-4-7-4-8-0 8.7097 

 
Fig. 8.8 Objective Value Changes with Iteration (8 turbines) 

In order to examine the Duo-ACO performance for a large number turbines’ wind 
farm, a new offshore wind farm with 28 turbines are tested. The information of two 
vessels is the same as shown in Table 8.6 and the maximum working hours for 
each day is the same as Table 8.8. The conditions and parameters of 28 turbines are 
shown in Table 8.10. The parameters of Duo-ACO changes because of the 
increasing the number of wind turbine. The number of ants of each group is set as 
30 and the maximum iteration is set as 1000. The results are shown in Table 
8.11Table and Fig. 8.9. The vessel1 and vessel2 visit and repair, inspection or 
replacement 19 turbines and 9 turbines respectively. Vessel1 need four days to visit 
and maintain all these 19 turbines, and it needs 5.859, 5.7938, 6.9541, and 4.8947 
hours for each day which are less than that of the maximum working hours of 
vessel1 in Table 8.8. Vessel2 need 2 days to visit and maintain 9 turbines, and it 
needs 7.4814 and 7.0311 hours for each day which are also less than that of 
maximum working hours of vessels2 in Table 8.8. The objective value of fitness 
function of Eq. (8.21) is 94641.6 as shown in Table 8.11.  

These two numerical examples show how to apply Duo-ACO in scheduling and 
routing of maintenance fleet for offshore wind farms which is a complex non-linear 
problem. Example 1 shown the problem solution with 8 offshore turbines while 
example 2 shows that of 28 offshore turbines and both of examples show the 
effectively of Duo-ACO application of the scheduling and routing problems of 
offshore wind farms.  
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Table 8.10 Parameters of 28 Turbines  

Unit Turbines Task type 

Time 
window 

(day) 
LATE

iT  

Penalty cost 
(euro/day) 

PE
iC  

Required 
load (kg) 

iL  

Required 
personnel 

iP 

Task 
duration 
(hours) 

M
iT  

1 T3 Replacement 3 2000 800 3 3 

2 T4 Repair 6 500 50 2 2 

3 T6 Replacement 4 1500 800 3 3 

4 T11 Inspection 12 0 20 1 1 

5 T12 Repair 4 1600 200 2 3 

6 T13 Replacement 2 2500 500 3 2 

7 T14 Replacement 2 2000 500 3 2 

8 T16 Repair 5 1000 300 3 2 

9 T19 Replacement 1 3000 200 2 2 

10 T21 Repair 7 1000 50 1 2 

11 T23 Inspection 12 0 20 1 1 

12 T25 Inspection 10 0 20 1 1 

13 T27 Replacement 2 2500 500 2 3 

14 T30 Repair 4 1200 100 2 1 

15 T36 Replacement 3 2000 800 5 3 

16 T38 Inspection 12 0 20 1 1 

17 T39 Replacement 4 2000 300 2 2 

18 T42 Repair 5 1000 200 2 2 

19 T44 Inspection 10 0 20 1 1 

20 T45 Repair 8 1000 500 2 2 

21 T49 Replacement 1 3000 800 4 3 

22 T52 Replacement 2 2000 800 4 3 

23 T54 Repair 5 1000 50 1 1 

24 T55 Replacement 3 2000 500 3 2 

25 T58 Inspection 13 0 20 1 1 

26 T60 Repair 6 1000 500 3 4 

27 T61 Repair 7 1000 300 2 3 

28 T62 Inspection 12 0 20 1 1 
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Table 8.11 Results of Maintenance Routing with 28 Turbines 

Vessels 
No. of 
Visited  
Turbine 

Routing 
Needed Time 

(hours of 
each day) 

Objective 
Value 

Vessel1 19 
0-5-4-9-12-21-25-4-12-25-9-5-21-0-22-22-
0-24-23-28-27-26-19-23-28-19-24-27-26-
0-8-11-16-17-20-18-11-16-8-17-20-18-0 

5.859, 
5.7938, 
6.9541, 
4.8947 9641.6 

Vessel2 9 0-2-1-13-15-2-1-13-15-0-3-7-6-10-14-14-
7-6-10-3-0 

7.4814, 
7.0311 

Fig. 8.9 Objective Value Changes with Iteration (28 turbines) 

There is also a drawback of the Duo-ACO to solve this problem. With the 
increasing of turbines, the process to find the solution using Duo-ACO becomes 
time-consuming. However, this problem is not so time sensitive which means the 
key point is to find the optimal solution regardless how much time it using. 
Therefore, the Duo-ACO is a suitable algorithm to solve this non-linear scheduling 
and routing problem. 

8.6 Summary 

This Chapter mainly described the maintenance scheduling optimization based on 
Swarm Intelligence such as PSO, BCA and ACO. For each algorithm, applications 
in industry or numerical examples were described to indicate how the algorithm 
works in maintenance scheduling.  

For algorithm of PSO, the problem of maintenance scheduling of generating units 
for reliable operation of a power system with 32 units were tested. In this case, the 
annual supply reserve ratio was selected as fitness function with constraints of load, 
crew and maintenance window. The maintenance schedule was not based on the 
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condition of machines but based on a fixed period (a year) and so it can be seen as 
preventive maintenance scheduling. PSO was improved with mutation rate  
called improved PSO (IPSO) to apply in generating units maintenance scheduling. 
Both PSO and IPSO can find optimal maintenance schedule of generation units but 
IPSO has better performance with faster convergence speed and better fitness value.  

For application of BCA in predictive scheduling optimization, a model of dynamic 
model of condition based maintenance was established. The dynamic predictive 
maintenance model is based on the condition of machines other than fixed period 
like preventive maintenance. The main effort of predictive maintenance (PM) is to 
avoid unnecessary maintenance action tasks by taking maintenance action just in 
case of detecting any evidence of abnormal performance in physical condition. A 
PM program can significantly decline the maintenance cost by decreasing the 
number of needless scheduled preventive activities. PM program allows the 
maintenance function to do only the right things, at the correct time, minimizing 
spare parts cost, system downtime and time spent on maintenance. Based on the 
model and condition of each machine, a dynamic scheduling of PM and CM can be 
done using BCA. The result obtained from the numerical example confirms the 
trend of successful application using this algorithm in the field of PM, where a 
dynamic approach has a fundamental importance. Although the desired results 
have fully achieved, and the analysis has helped to highlight and solve many 
critical issues, it is clear that more careful analysis should be done when analyzing 
PM maintenance model. In this Chapter, only one single kind condition for each 
machine. However, mostly, more than one parameters get together to determine the 
state of a machine. Therefore, how to get the state of a machine using different 
parameters could be a future research field. Furthermore, the case study in this 
Chapter only consider the one period because the limitation of our resources. In the 
future, the long history period should be considered and the methods for adjusting 
the state ( 1,2, , )iS i n  could be a good topic to research. 

For application of ACO in maintenance scheduling, a model of scheduling and 
routing of maintenance fleet for offshore wind farms was established. ACO was 
varied with two groups of ants which called Duo-ACO. Through the numerical 
examples, Duo-ACO can solve this problem effectively even if the number of 
turbines increasing. The drawback of the methodology is that it is impossible to 
know if the optimal solution found by Duo-ACO is the best one.  
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9 Conclusion and Future Work 

This chapter provides general overall comments and concluding remarks about the 
work presented in this thesis and some suggestions for future work.  

9.1 Summary and Conclusions 

The goals of this thesis are to develop a framework of intelligent Condition based 
Maintenance (CBM) and apply data mining techniques in its phases. CBM is a 
sufficient maintenance strategy which take maintenance action just before the 
failure based on the condition of equipment to increase the reliability and 
availability of the equipment and meanwhile reduce maintenance and operation 
cost. It can also improve the safety for both equipment and operation staff. There 
are mainly two tasks of CBM: the one is fault diagnosis and prognosis for the 
equipment and the other is based on which to optimize the maintenance scheduling.  

Chapter 2 presented framework of Intelligent Fault Diagnosis and Prognosis 
System (IFDPs) for CBM which showed phases of the CBM and data mining 
techniques applied in the system.  

Chapter 3 presented data mining techniques applying in IFDPS, including Artificial 
Neural Network (ANN), Swarm Intelligence (SI) and Association Rules (AR). The 
techniques of ANN and AR are supposed to be applied in fault diagnosis and 
prognosis while the techniques of SI are supposed to be applied in sensor place 
optimization and maintenance optimization. 

Chapter 4 introduced the sensor classification and sensor placement optimization 
techniques. The presented methods sensor placement optimization is combination 
of Finite Element Analysis (FEA) and SI algorithm such as PSO and BCO are 
suitable for component level and machine level of sensor placement optimization. 
However, the system level sensor placement optimization need to be further 
researched. 

Chapter 5 presented methods of signal processing typically for vibration signals 
and feature extraction. The vibration signals can be processed in time domain, 
frequency domain, time-frequency domain and wavelet domain analysis which 
many features (parameters) can be extracted. The parameters extracted from 
signals may be too many to be classified or predicted using data mining techniques 
and thus feature selection techniques need to be used to reduce the dimensionality 
of the parameters. PCA is an unsupervised learning approach for dimensionality 
reduction that uses correlation coefficients of the parameters to combine and 
transform them into a reduced dimensional space. It transforms high 
dimensionality features to lower dimensionality but not select the features from 
original features directly. Therefore, the feature selection directly from original 
features should be researched. 
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Chapter 6 presented the methods of fault diagnosis, i.e. fault detection and 
classification, based on data mining techniques such as BP network, SOM and 
Association Rules. The conclusions have been presented at the end of this chapter. 
When the history data is available but the physical model and mathematical model 
are not available or not accurate, the data-driven techniques can be sufficient 
applied in fault diagnosis.  

Chapter 7 presented fault prognosis based on the indicator prediction of the fault 
using BP network. The traditional methods of data-driven fault prognosis are based 
on statistics of the history data [Lee et al., 2006]. ANN model is supposed to be 
used for multi-component, multi-fault prognosis but the case study for wind turbine 
fault prognosis in this chapter only one component and one fault was used. In the 
future, the multi-component, multi-fault ANN model should be further researched. 

Chapter 8 presented the maintenance optimization based on data mining techniques. 
Three different models and Swarm Intelligence (variants of PSO, BCA and ACO) 
were presented in this Chapter. Generating Unit Maintenance Scheduling is a 
preventive maintenance optimization, while the following two examples are 
predictive maintenance or so-called CBM, and both of which can use data mining 
techniques to solve.  

9.2 Suggestions of Future Work 

The following are proposed for future work: 

Developing sensor placement optimization methods in system level, i.e. more 
than two machines. 
Developing methods of feature selection directly from original features. 
Developing hybrid methods of model-based and data-driven for fault 
diagnosis and prognosis to improve accuracy. 
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