
Coupling of a 2D Boundary Element
Method with a local analytical solution to
deal with geometrical singularities

Einar Biørn-Hansen

Marine Technology

Supervisor: Marilena Greco, IMT

Department of Marine Technology

Submission date: June 2016

Norwegian University of Science and Technology



 



NORWEGIAN UNIVERSITY OF SCIENCE, NTNU

MASTER THESIS IN MARINE TECHNOLOGY

SPRING 2016

Coupling of a 2D Boundary Element Method
with a local analytical solution to deal with

geometrical singularities

Author:

Einar BIØRN-HANSEN

Supervisor:

Prof. Marilena GRECO

June 10, 2016



Abstract

Boundary Element Method, BEM, as a numerical tool to solve boundary values problems, has

been developed and tested. The numerical scheme is coupled with known analytical flow mod-

els for geometrical singularities, and results compared. Both problems in infinite fluid, and free

surface are investigated, and convergence issues addressed. Accuracy and error approximation

of the solver is presented.

As an introduction, the BEM solver is applied to BVPs where analytical solutions are known.

For the case of a circle, double wedge and rounded square in infinite fluid, the added mass is

calculated, and good agreement with analytical solutions are found.

Later, a local flow model is introduced in the presence of geometrical singularities. Both direct

and least square matching of the solutions are used. The solutions sensitivity to the local solu-

tions parameters is investigated. In both cases it is found that a low number of constants and

matching nodes on the boundary of the body, produce the best results. On a late stage in the

work on this thesis, it is found that the reason for the latter, might be that the solver is biased to

produce better results for boundary matching nodes, which is discussed in the thesis. Despite

that a low number of constants (2), is found to give best matching, a higher number of constants

is chosen for the final model. Reason being that using two constants in the local solution, gives

poor matching of the velocity in the intersection between the domains. The results form both

models show good agreement, and the added mass deviates with about 2% from the "sharpest"

rounded square. The order of accuracy is found to be lower than the theoretical order, and the

reason for this should be investigated further. The error bands show convergence.

BVPs including the free surface are analyzed in the last part of the thesis. This is done both
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using "double body" considerations, and by distributing free space Green’s functions over the

body and free surface. For bodies with wall sided boundary conditions, both methods produce

good results, tested for an oscillating half-cylinder. Analyzing the same BVP for a wedge, which

is not orthogonal to the surface, convergence issues in the free surface are experienced for the

latter method. On the body surface the results for both methods agree with with the analytical.

Addressing the convergence issue, a local flow model is introduced in the intersection between

the body and surface. This deals with the convergence issue, but results in deviating values for

the velocity potential, giving to low values of the added mass.

The concluding remarks in the thesis, are that the local solutions used on the square cylinders

give realistic results in terms of the fluid velocity close to the corner apex. For free surface prob-

lems, it found that if only a solution on the boundary of the body is needed, the double body

method is preferred. This both because of its better numerical performance and the unneces-

sary large equation system that has to be solved, using Rankine sources. In the opposite case,

a local flow model should be included in the intersection between the body and free surface, if

the the boundary conditions are not orthogonal.



Sammendrag

I denne oppgaven er Boundary Element Method, studert inngående og har blitt implementert

i Matlab for forskjellige grenseverdi-problem. I tilfeller med geometriske singulariteter, blir en

lokal løsning brukt rundt singulariteten, og den globale løsningen blir koblet med den lokale

ved kreve kontinuitet av løsningene ved en kunstig grensen mellom de to domenene. Løserens

nøyaktighetsgrad, og konvergensegenskaper blir også undersøkt.

For verifikasjon og sammenligning, blir BEM-løseren først anvendt på problemer der den ana-

lytiske løsningen er kjent. For en sirkel, "dobbel kil" og et kvadrat med avrundede hjørner, blir

globale verdier som hydrodynamisk tilleggsmasse beregnet. Det blir her funnet at de numeriske

løsningene stemmer godt med de analytiske.

I tilfeller med geometrisk singularitet, introduseres et lokalt hastighetspotensial. Undersøkelser

av løsningens sensitivitet til de forskjellige variablene i den lokale løsningen, viser at den beste

lokale løsningen, er en der få konstanter blir brukt, og med kontinuitets-noder kun langs over-

flaten av sylinderen. Dette blir blir funnet både når kontinuitets ligningene brukes direkte, og

ved bruk av minste kvadraters metode. Det blir til tross for dette valgt å bruke flere konstan-

ter i den endelige løsningen, for å oppnå bedre samsvar mellom hastighetene i det lokale og

globale domenet. Resultatene fra analysene, viser at hastigheten rundt hjørnene oppfører seg

asymptotisk. Tilleggsmassen funnet med disse modellene er i sammen størrelsesorden som den

analytiske Lewis form-massen, og avviker med rundt 2%.

I siste del av oppgaven blir problemer med fri overflate analysert. Det blir sett nærmere på leg-

emer som oscillerer med uendelig frekvens, og tilleggsmassen beregnet. Dette blir funnet både

ved å bruke kilder som tilfredsstiller fri overflate betingelsen, og Rankine kilder. For tilfeller der
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grensebetingelsene mellom overflaten og legemet er ortogonale, gir begge metodene tilfredstil-

lende løsninger, som stemmer godt overens analytiske verdier.

I tilfellet med en kil som oscillerer i overflaten, oppstår det et konvergens problem når Rankine

kilder brukes, for normalhastigheten i overflaten nær kilen. Til tross for dette oppleves det ikke

noe problem med hastighetspotensialet over overflaten til legemet, og tilleggsmassen kan også

i dette tilfellet beregnes med høy nøyaktighet. For mer realistisk løsning av normalhastigheten i

skjæringen mellom kilen og overflaten, introduseres en analytisk lokal model. Ved å gjøre dette

oppnås konvergens av normalhastigheten. Resultatet blir da at hastighetspotentialet for alle

bunnreisvinkler blir mindre enn tidligere beregnet verdier, noe som resultere i for lav tilleg-

gsmasse. Dette skyldes sannsynligvis problemer med den lokale modellen som er innført, og

burde undersøkes videre i fremtidig arbeid.
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Slamming is a local nonlinear phenomenon connected with liquid-structure impact that can 
have local and global consequences on ships, depending on the vessel geometry and 
operational conditions. Within a strip-theory strategy for slender bodies, the slamming is 
studied as a series of 2D problems in the cross-sectional planes of the ship. A great part of the 
2D analyses examines the slamming for a wedge or a circular cylinder in calm water because 
ship cross-sections are mostly U/V shaped. In head sea conditions, the 2D problems would be 
symmetric with respect to the ship axis, while in oblique sea waves they would be asymmetric 
due to the excitation of roll motion. In this framework, numerical convergence is an issue for 
potential-flow slamming solvers in case of geometrical singularities.  
In the project work, the student examined different 2D Boundary Integral Formulations (BIF) 
and related Boundary Element Methods (BEMs) available in literature and those used within 
local slamming analyses. Both an indirect and direct BIFs were implemented as zero-order 
BEMs. The BEMs were used to investigate a circular and a squared cylinder. In the latter 
case, a local corner-flow solution was incorporated in the BEM but the results were not fully 
satisfactory.   
 
Objective 
Present master thesis aims to solve the problems raised by the project studies and to 
investigate the advantages of incorporating a local-flow solution in a BEM in terms of 
accuracy and numerical convergence.  
 
The work should be carried out in steps as follows: 

1. Summarize major findings/outcomes from the project thesis. 
2. Complement the literature study of the project on BEM formulations and local corner-flow 

solutions.   
3. Investigate the possible implementation errors in the coupled BEM-local solution and 

discuss the matching of the local and global solutions. Compare the results against the full 
BEM solution in the case of a squared cylinder in infinite fluid. Select at least one suitable 
approach to examine the numerical convergence and apply it when the inflow is aligned 
with the body axes and possibly with the diagonal.  

4. Study the case of an almost squared cylinder, i.e. with small radius of curvature at the four 
corners, and discuss the numerical convergence when reducing the radius of curvature. 
Compare the BEM solution with small radius of curvature at the corners with the full BEM 
solution and the BEM-with local solution for the square cylinder.  
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5. Study numerically the case of a half surface-piercing cylinder with infinite-frequency free-
surface boundary condition. Compare the results against those for a circular cylinder in 
infinite fluid.  

6. Assume a surface-piercing wedge with infinite-frequency free-surface boundary condition. 
In this case, the body is not wall-sided at the free surface. Investigate the numerical 
convergence and the possibility of incorporating a local solution at the intersection 
between the body and the free surface. 
   

 
The work may show to be more extensive than anticipated.  Some topics may therefore be left 
out after discussion with the supervisor without any negative influence on the grading. 
 
The candidate should in his report give a personal contribution to the solution of the problem 
formulated in this text.  All assumptions and conclusions must be supported by mathematical 
models and/or references to physical effects in a logical manner. 
 
The candidate should apply all available sources to find relevant literature and information on 
the actual problem.  
 
The thesis should be organised in a rational manner to give a clear presentation of the work in 
terms of exposition of results, assessments, and conclusions. It is important that the text is 
well written and that tables and figures are used to support the verbal presentation.  The thesis 
should be complete, but still as short as possible. In particular, the text should be brief and to 
the point, with a clear language. Telegraphic language should be avoided. 
 
The thesis must contain the following elements:  the text defining the scope (i.e. this text), 
preface (outlining project-work steps and acknowledgements), abstract (providing the 
summary), table of contents, main body of thesis, conclusions with recommendations for 
further work, list of symbols and acronyms, references and (optional) appendices.  All figures, 
tables and equations shall be numerated. 
 
The supervisor may require that the candidate, in an early stage of the work, present a written 
plan for the completion of the work. The plan should include budget for the use of computer 
and laboratory resources that will be charged to the department. Overruns shall be reported to 
the supervisor. 
 
From the thesis it should be possible to identify the work carried out by the candidate and 
what has been found in the available literature.  It is important to give references to the 
original source for theories and experimental results. 
 
Supervisor     :Marilena Greco  
Submitted     :16 January 2016 
Deadline       :10 June 2016 
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Nomenclature

2D Two dimensional

BEM Boundary Element Method

BIE Boundary Integral Equation

BVP Boundary Value Problem

LHS Left hand side

TLC Top left corner

GCI Grid Convergence Index

RHS Right hand side

STD Standard Deviation

α Internal angle

δ Dirac’s delta function

ω Circle frequency [rad/s]

Φ Velocity potential

Φh0 Approximate exact solution

Φl oc Local velocity potential

Φn Normal velocity

Σm Matching boundary between local and global domain
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ΣSB Matching boundary between local and global domain on body surface

ΣSF Matching boundary between local and global domain on free surface

θ Dead rise angle

a Size of local domain

AC Control Area

B Width wedge

C Boundary surface

F Fraction between the refinement factor, p and GCI for three grids

FS Safety factor

g Gravitational acceleration

G Free space Green’s function

Gn Normal derivative of free space Green’s function

h grid spacing

I Identity matrix

NC Number of constants in local solution

n Unitary normal vector

p Order of accuracy

r Grid refinement factor

S0 Sea bottom surface

SB Body surface

SF Free surface

S∞ Vertical control surface

U Current velocity



x

V Velocity

Vn Normal velocity

x Field point

x0 Singular point
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Chapter 1

Introduction

1.1 Motivation

Numerous problems within hydrodynamics, involve problems which are difficult or impossible

to solve analytically. Facing such problems, numerical methods are often necessary. If poten-

tial theory is assumed, one such numerical alternative is the Boundary Element Method, BEM,

which can be used to solve linear partial differential equations, such as the Laplace equation.

One great advantages with using BEM is the efficiency. This is because in BEM, one only has

to discretize the boundary of the domain, instead of the whole domain, as is the case for other

numerical methods. This results in smaller, but dense system matrices to be solved.

1.2 Background

Prior to implementing BEM, an extensive literature study on the Boundary Element Method is

conducted. In addition to this, literature in marine hydrodynamics is reviewed to find suitable

models to describe the various BVPs, and theoretical background on how BEM can be applied

to hydrodynamic applications.

When using numerical tools to approximate the solution of continues problems, one has to

2
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make sure the solution is convergent, prior to making any conclusions. Literature on how to

approximate the observed order of accuracy and errors is therefor also reviewed.

1.3 Scope of Work

The focus of this thesis is to make use of BEM to solve relevant boundary value problems in

hydrodynamics. This includes flow around, and oscillation of smooth bodies and bodies with

geometrical singularities. For the latter an analytical corner flow model is introduced, and cou-

pled with the global solution. The continuity equations are enforced both directly and using the

method of least squares. Lastly BVPs where the free surface is present, is considered, both for

the case of wall sided and non-wall sided boundary conditions between the body and the free

surface.

In the thesis, the work done is presented in the following 7 chapters

• Chapter 2: Findings from the literature study of BEM and relevant hydrodynamic appli-

cations.

• Chapter 3: Numerical aspects of BEM.

• Chapter 4: Comments on implementation.

• Chapter 5: Results form BVPs in infinite fluid.

• Chapter 6: Results from BVPs in free surface.

• Chapter 7: Final comments and concluding. remarks

• Chapter 8: Further work.

Further, details such as mathematical theorems and particular solution details are included in

the appendix.



Chapter 2

Theory

2.1 Boundary Element Method - Direct formulation

The Boundary Element Method, BEM, is a numerical method, which can be used to solve par-

tial differential equations such as the Laplace equation, which will be the focus of this thesis.

Hence it is from here on assumed that all flows are irrotational, incompressible and inviscid.

This results in only one governing equation, namely the Laplace equation.

∇2Φ= 0 (2.1)

Where Φ is an unknown velocity potential. This equation must also satisfy the natural and es-

sential boundary conditions. It is further in this thesis only focused on two dimensional bodies,

yielding the Laplace equation on component form as:

∂2Φ

∂x2
+ ∂2Φ

∂y2
= 0 (2.2)

The idea behind BEM, is to express the solution in terms of a boundary distribution of the fun-

damental solution of the PDE, in this case equation 2.1. The fundamental solutions are Green’s

functions, which expresses the field, in terms of a local source. The densities of the sources are

4
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then computed, by requiring boundary conditions to be satisfied.

In the following, Green’s functions, and Green’s second identity are introduced. Following this

is how the they together can be used to find a Boundary Integral Equation, BIE, for the velocity

potential at the boundary of a body, shown.

2.1.1 Green’s 2nd identity and Green’s functions

To derive a BIE for the unknown Φ or Φn , Green’s second identity is needed. It states that for

any twice differentiable functionΨ, the following holds:

Ψ ·∇2Φ−Φ ·∇2Ψ=∇· (Ψ ·∇Φ−Φ ·∇Ψ) (2.3)

IfΨ also satisfies the Laplace equation, i.e is a harmonic equation 2.3 yields the reciprocal rela-

tionship for harmonic functions.

0 =∇· (Ψ ·∇Φ−Φ ·∇Ψ) (2.4)

The integral form of equation 2.4, can be found by integrating over the solution domain. By

denoting the control area AC , and using the divergence theorem as defined in Appendix A, the

integral is reduced from a surface integral to a line integral, around the closed surface, C. The

normal vector is as defined in figure 2.1, pointing into the fluid domain. This results in:
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Figure 2.1: Example of control area Pozrikidis (2002)

0 =
∫

Ac

∇(Ψ∇Φ−Φ∇Ψ)d A =
∫

C

(
Φ ·∇Ψ−Ψ ·∇Φ

)
·n ·dl (2.5)

A Green’s function, G is the fundamental solution of the PDE. For the Laplace equation, G is a

function which satisfies the Laplace equation everywhere in the domain, except in a point x0,

where it is singular. It can defined as Pozrikidis (2002)

∇2G(x,x0)+δ(x,x0) = 0 (2.6)

Here x is a field point, δ is the Dirac’s delta function, which is zero everywhere, except in x0,

where it is infinity. Bold indicates vector. By substituting ∇2G(x,x0) = −δ(x,x0) into 2.3 for Ψ,

and integrating using the divergence theorem, the following result is obtained:

∫
Ac

Φ(x)δ(x,xo)d Ac (x) =
∫

C

(
Φ(x) ·∇G(x,x0) ·n(x)−G(x,x0) ·∇Φ(x) ·n(x)

)
·dl (x) (2.7)

.
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To be able to solve this system, an expression for G is needed. In addition to satisfying equation

2.6, it should satisfy the boundary conditions of the BVP. In the case of an infinite solution space,

the far-field conditions that the potential and the normal derivative goes to zero, should be sat-

isfied. In the case of an infinite solution space, i.e no interior boundary exists, G can by found

by Fourier transform of equation 2.6, to be Pozrikidis (2002):

G(x,x0) =− 1

2π
l n(r ) (2.8)

Where r, is the radial distance between the field point x, and the singularity x0. I.e r =√
(x −x0)2 + (y − y0)2.

The value of integral on the LHS of equation 2.7, depends on the location of the singular point

x0. There are three different case to consider:

1. The singular point is inside Ac

2. The singular point is on C

3. The singular point is outside Ac .

Figure 2.2: Singular point within control area Faltinsen (1990)

The first case is illustrated in figure 2.2. The surface integral is split into a small circle C1 sur-

rounding the singularity, and C surrounding the rest of the domain. By integrating 2.6, using the
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divergence theorem, for the three different cases, the following is obtained Pozrikidis (2002).

∫
Ac

Φ(x)δ(x,xo)d Ac (x) =


1, When x0 inside Ac

1
2 , When x0 on C

0, When x0 outside Ac

(2.9)

When the singular point is on the boundary, the line integral on the RHS of equation 2.7, is a

principle value integral. These three values, when multiplied with 2π from the Greens function,

are often referred to as angles in the literature. They will from here on be denoted α.

2.1.2 Boundary Element Formulation

Using the findings from the previous section, we are able to formulate equations forΦ andΦn in

the fluid domain. The integral equation 2.7, then reduces to a distribution of Green’s functions

over the boundary of the body.

α ·Φ(x0) =
∫

C

(
Φ(x) ·∇G(x,x0)−G(x,x0) ·∇Φ(x)

)
·n(x) ·dl (x) (2.10)

By using the appropriate interior angle, and substituting G(x,x0) = − 1
2π ln(r ), the following ex-

pression forΦ on the boundary of the body is obtained.

π ·Φ(x0) =
∫

C

(
−Φ(x) ·∇ln(r )+ ln(r ) ·∇Φ(x)

)
·n(x) ·dl (x) (2.11)

.

BEM, is based on that either information of Φ, or Φn on the boundary is known. If the normal

derivative of the velocity potential on the boundary is known, i.e a Neumann boundary, the

equation reduces to a Fredholm integral equation of the second kind, this means that an equation

of the form 2.12, must be solved.

∫
C

l n(r ) ·∇Φ(x) ·n(x) = F (x0) (2.12)
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where

F (x0) =πΦ(x0)+
∫

C
Φ ·∇ln(r ) ·n(x) ·dl (x) (2.13)

In the opposite case, where Φ is known on the boundary, a Dirichlet boundary, the equation to

be solved is a Fredholm integral equation of the first kind, that is

πΦ(x0) =−
∫

C
Φ(x) ·∇ln(r ) ·n(x) ·dl (x)+H(x0) (2.14)

where

H(x0) =
∫

C
ln(r ) ·∇Φ(x) ·n(x)dl (x) (2.15)

2.1.3 Discretization of the boundary and system of equations

To be able to solve equation 2.11 in practice, a boundary discretization is needed. This is done,

by dividing the boundary into a discrete set of boundary elements, as shown in figure 2.3, for

constant elements.
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Figure 2.3: Arbitrary body discretized into N constant elements Pozrikidis (2002)

The elements the body are discretized into, can be of different order. The lowest order of ele-

ments, are constant elements. In this case an element has two endpoints, and the boundary

conditions are satisfied, and the solution found, in the center of the element. By placing the

singular point, x0 in the center of element i, the following equation is produced:

π ·Φi =
N∑

j=1

∫
E j

(
−Φ(x) ·∇ln(r )+ ln(r ) ·∇Φ(x)

)
·n j ·dl (x) (2.16)

.

In the case of constant elements,Φ andΦn are assumed to be constant over each element, yield-

ing

π ·Φi =−
N∑

i=1
Φ j

∫
Ei

n j ·∇ln(r )dl (x)+
N∑

j=1
n j∇Φ j

∫
E j

l n(r )dl (x) (2.17)

This can be written in a compact form as:
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αiΦ(x0) =−
N∑

j=1
H̄i jΦ j +

N∑
j=1

Gi jΦ j (2.18)

where

H̄i j =
∫

E j

∂ln(r )

∂n
dl =

∫
E j

∂

∂n
l n

(√
(xi −x j )2 + (yi − y j )2

)
dl (2.19)

Gi j =
∫

E j

l n(r )d s =
∫

E j

ln
(√

(xi −x j )2 + (yi − y j )2
)
dl (2.20)

By doing this for all elements on the body, an equation system with N equations with N un-

knowns are obtained. By solving the system of equations, the unknown Φ or Φn can be found

on the midpoint on each element. The resulting matrix equation is:

[H ]Φ= [G]Φn (2.21)

Where, by utilizing the identity matrix I:

[H ] = H̄ +π · I (2.22)

In the case of either a pure Dirichlet or Neumann boundary, either the left hand side or right

hand side of equation 2.21 is known, and can be computed into a vector directly, resulting in the

standard matrix equation to be solved. If the BVP is a mixed problem, consisting of both Neu-

mann and Dirichlet boundary conditions, the matrices must be sorted, such that all unknown

quantities is assembled into one matrix, and the known into another.

2.1.4 Local solution

If geometrical singularities are present on the body, BEM does not very well describe the flow

field close to the singularity. To deal with this, several different approaches are possible. One
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is to introduce a local coordinate system in the apex, and then describe the potential in a small

area surrounding the apex, using known analytical corner flow models. In the case of plane

two-dimensional flows, the complex potential is defined as:

F (z) =Φ+ iΨ (2.23)

For the case of a corner, the potential flow can be described by the complex potential F (z) = zm

Newman (1977). By using polar coordinates, z = r e iθ this can be written F (z) = r me i mθ, which

can be fromulated as:

F (z) = r m(cos(mθ)+ i si n(mθ)) (2.24)

To satisfy the impermeability condition, values of m which makes the imaginary part of equa-

tion 2.24 (the streamlines) become zero are necessary. By using the coordinate system defined

in figure 2.4, one can by inspection see that the following values of m satisfies the zero Neumann

condition Liang et al. (2015)

Figure 2.4: Definition of coordinate system for corner Liang et al. (2015)

m = jπ

2π−ψ (2.25)
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Where j is any integer, zero, positive or negative. The negative integers can be excluded by re-

quiring that the fluid velocity flux through a surface with radius r enclosing the apex, approaches

zero as r → 0 Liang et al. (2015). The local solution is meant to be matched with a global solu-

tion for the rest of the domain. Therefor a number of unknown constants are introduced to the

corner potential. Since all the m’s satisfies the zero Neumann condition, the local potential can

be written as the following sum, Liang et al. (2015), changing the variable F(z) toΦloc .

Φloc =C0 +
Nc−1∑
i=1

Ci r mi cos(miθ) (2.26)

Where Nc are the number of terms included in the local solution.

2.1.5 Matching equations

By using a local analytical solution to describe the potential around a corner, new unknowns

have been introduced. The system now consists of N equations, with N +Nc unknowns. Since

this system is underdetermined, artificial matching boundaries, Σm are introduced, at the in-

tersections between the local and global domains. By requiring continuity of Φ or Φn on the

matching boundaries, new equations are produced. Figure 2.5 illustrates a body with 4 corners.

Here matching nodes have been distributed around the corners, and along the boundary of the

body.
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Figure 2.5: Matching nodes distributed around corner, and along boundary

When it comes to the matching equations there are several possibilities. One of which is direct

matching, which means that we state that the global and local solution have to be the same on

the matching nodes, that is:

Φloc =Φ on Σm (2.27)

In this case, the number of nodes on Σm has to be the same as the number of unknown con-

stants, to have an unique system of equations.

Another possibility is the use the method of Least Squares, as described in appendix B. Here,

the constants which minimizes the error committed when approximating a polynomial to the

discrete values of the potential on the matching boundaries, are found. A great advantage by

using this method, is that the number of constants does not have to be the same as the number of

matching nodes. For the local potential described by equation 2.26, this results in Nc equations

of the form:
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∂E
∂C0

= 2
∑N

i=1(Φi − (C0 +∑Nc
j=1 C j r

m j

i )) ·1 = 0
...

∂E
∂C j

= 2
∑N

i=1(Φi − (C0 +∑Nc
j=1 C j r

m j

i )) · (−r
m j

i cos(m jθi )) = 0
...

∂E
∂CNc

= 2
∑N

i=1(Φi − (C0 +∑Nc
j=1 C j r

m j

i )) · (−r
m j
n cos(m jθi )) = 0

(2.28)

A complication occurs, if matching nodes which are not located on the boundary of the body

are used. This is because, in BEM the unknown Φ or Φn is firstly found on the boundary of the

domain, and then in the rest of the fluid domain. By using matching nodes which are not on the

boundary, we thus have to express the potential at these nodes, as a function of the potential at

the boundary nodes. By denoting the potential on Σmi in the outer domain as Φ̄, the potential

at these nodes can be written as

Φ̄Σmi
= f (Φ1, ..,ΦN ,C0, ..,CNc ) (2.29)

Where the function f is the discrete form of equation 2.11 with α = 2π. Φ̄ is then implemented

in equation 2.28, to find the constants which minimizes the error.

2.1.6 Coupled Method

To be able to use the BIF derived using Greens second identity, the integral must be around a

closed surface. Hence the local solution must be coupled with the global, and solved simulta-

neously. By extension of equation 2.18, this yields the following BIF:

αΦ=−
∫

Cg l ob

Φ
∂

∂n
ln(r )dl +

∫
Cg l ob

∂Φ

∂n
ln(r )dl −

∫
Cl oc

Φloc
∂

∂n
l n(r )dl +

∫
Cloc

∂Φi n

∂n
ln(r )dl (2.30)

By discretizing the global part of the boundary, and using the fact that ∂Φl oc
∂n = 0, the BIF can be

written in compact form as:
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αφ(xi , yi ) =−
N∑

j=1
Hi jφ j +

N∑
j=1

Gi jφn j −
∫

Si n

Φl oc
∂

∂n
ln(r )dl (2.31)

If NC constants are used in the local solution, all unknowns can be assembled into a system

matrix with dimension (N + NC )x(N + NC ). Here the N first rows and columns corresponds to

the unknownΦ orΦn at the N global nodes, and the NC last columns to the unknown constants

in the local solution. The last NC equations are the matching equations, either direct or least

square. The RHS of the matrix equation, is a vector b, which N first terms corresponds to the

global domain, and the terms N+1 to N+NC to the matching equations, for the direct case:

bN+i = 0 =Φout −Φloc i = 1, .., NC (2.32)

The system matrix is then solved for the unknown Φ and/or Φn and the unknown constants

C0, ...,CNc

2.1.7 Free surface effects

Numerous problems within hydrodynamics, include problems where the free surface is present

and must be accounted for. This is for instance the case in slamming, where bodies with large

velocities are forced through the free surface. In the following are methods to analyzing 2 di-

mensional bodies oscillating with infinite frequency in free surface outlined. These problems

are relevant for cases such as high frequency ship vibrations.

If linear theory is applied, the free surface condition yields:

−ω2Φ+ g
∂Φ

∂y
= 0 on y = 0 (2.33)

Where ω is the frequency and g the gravitational acceleration. For the case of ω→∞, the fre-

quencies are much larger than g, and the free surface condition simplifies to:
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Φ= 0 on z = 0 (2.34)

This means that there is no velocity in the tangential direction of the surface, only in the normal

direction. Hence no waves are generated.

There are several methods to analyze problems where bodies are oscillating in the free surface.

One of which, is to use Green’s functions which satisfies the free surface condition. For the

infinite frequency case, this can be shown to be: Faltinsen (1990)

g (x, y) = ln(r )− ln(r ′) (2.35)

where

ln(r ) = ln
(√

(x −x0)2 + (y − y0)2
)

(2.36a)

ln(r ′) = ln
(√

(x −x0)2 + (y + y0)2
)

(2.36b)

This is in the literature referred to as solving the double body problem. The reason being that,

sources are distributed over the closed surface, and over an image surface with positive y coor-

dinates. Equation 2.36 represents the source potential as a combination of a source in infinite

fluid, and an image sink above the free surface.

In order to use Green’s second identity, one must integrate over a closed surface. One possible

subdivision of the the surface is illustrated in figure 2.6
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Figure 2.6: Integration surfaces in two dimensions

For deep water, it can be shown that that the integration over the surface S = SB +SF +S0 +S∞

reduces to a integral over the mean wetted surface Faltinsen (1990). This is because other than

at the location of the source (x0, y0), the Green’s function satisfies the Laplace equation every-

where in the fluid domain, and the appropriate boundary conditions. The linear free surface

condition isΦ= 0 on z=0, and hence also G = 0 on z=0. This means that the integral reduces to:

∫
SF

(
− ∂g

∂n
Φ+ ∂Φ

∂n
g
)
= 0 (2.37)

It can also be shown that the integration over S∞ disappears, and if deep water is assumed there

is no contribution from S0. Faltinsen (1990). The result is thatΦ at (x0, y0) can be written as:

Φ(x0, y0) =
∫

SB

(
− ∂g

∂n
Φ+ ∂Φ

∂n
g
)

(2.38)

Another method to solve problems including surface piercing bodies, is to make use of the free
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space Green’s functions. The motivation for doing this, is that in the case of the frequency not

being 0 or ∞, the expression for the Green’s function is very complicated, and not trivial to eval-

uate. In this case regular Rankine sources are distributed over the closed surface. Also here, the

integrals over S∞ and S0 disappears, but integration over the free surface must be done. This

means thatΦ at (x0, y0) equals:

Φ(x0, y0) =
∫

SB+SF

(
− ∂G

∂n
Φ+ ∂Φ

∂n
G

)
(2.39)

It is here important that SF is satisfactory long, such that the effects of S∞ are negligible. To

avoid an unpractical large equation system, one possibility is is here to use grid stretching.

In the latter of the two methods, the BVP to be solved is on a general Robin form, meaning

that there is both Dirichlet and Neumann boundary conditions present. Care must therefor

be shown when solving this problem. For the case of wall sided boundary conditions, which

means that the two boundaries where the boundary condition change from one to the other is

perpendicular to each other, the problem can be solved directly. While if this is not the case,

convergence problems will typically arise in the intersection between the to boundaries.



Chapter 3

Numerical aspects -Error and Convergence

Errors are unavoidable, when using numerical models approximate continues problems. The

reason for this is that we try to solve a continues problem, using discrete equations. The most

important source in error in BEM, is the discretization error, connected with approximating

the physical boundary with a numerical boundary. Other sources of error are round-off errors

and errors due to approximating integrals using numerical techniques. In order to be confidant

that the results obtained from a numerical method are reliable, one must somehow be able

to measure error, and verify that is become smaller, as the number of elements are increased.

When the error becomes smaller than a certain threshold, one can conclude that the solution

has converged.

3.1 Local error, Order of Accuracy and Grid Convergence Index

The most important source of error in BEM is the discretization error, which is defined as the

difference between the exact solution of the governing equation, and the exact solution of the

discrete problem Ferziger and Perić (2002). For the geometry in figure 3.1, this means the dif-

ference between integrating equation 3.1 over the exact boundary, and equation3.2 over the

numerical boundary and approximating the variation of Φ and Φn using shape functions. In

the case of constant elements this means either 1 or 0.

20
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Figure 3.1: Example of Discretized boundary Dijkstra et al. (2011)

α ·Φ(x0) =
∫
Γ

(
Φ(x) ·∇G(x,x0)−G(x,x0) ·∇Φ(x)

)
·n(x) ·dl (x) (3.1)

.

αi ·Φi =
N∑

j=1
Φ j

∫
S j

n j ·∇l n(r )dl (x)−
N∑

j=1
n j∇Φ j

∫
S j

ln(r )dl (x) (3.2)

Since all equations in this thesis are solved in a direct manner, i.e not by using iterations, there

is no iteration error, which on the contrary would necessary to account for. In addition to this,

round-off errors due to the arithmetic limitations of the computer and quadrature errors if the

integrals are evaluated using Gauss quadrature, are important to be aware of.

The truncation error is the error committed when approximating an infinite sum by a finite sum.

In BEM this is related to discretizing the boundary into a finite sum of elements. In error analy-

sis, it differentiated between the local and global error. The local error is the error at a solution

point after one iteration, while the global truncation error is the cumulative error after many

iterations. For problems with smooth boundaries, the quality of an approximation is described

in terms of its order, which relates the truncation error to the grid spacing of some order, p.

Ferziger and Perić (2002). In BEM, the local error will be one order higher than the global error.

For the case of constant elements, p can be shown to be 3 and 2, respectively. Dijkstra et al.
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(2011).

One simple way to estimate the discretization error is based on Richardson’s extrapolation. This

method is used to obtain higher order estimates of the exact continues solution Φexact , form a

series of lower order discrete values. If the solution is approximated with the function Φ(h), the

error may be defined as:

E =Φ(h)−Φexact =C hp +H .O.T (3.3)

Where C is a constant and H.O.T stands for Higher Order Terms. For certain numerical methods

such as BEM, the theoretical order of accuracy is known. The observed numerical order, will

likely be lower, due to boundary conditions, complicated geometries, and the mesh the used in

the solver. If the grid is refined systematically by a factor r, an estimate of the the observed order

of accuracy is: Ferziger and Perić (2002)

p =
log

(
φ2−φ1
φ3−φ2

)
log (r )

(3.4)

Here Φ3 is the solution from coarsest mesh, and Φ1 from the finest. This equation is valid only

if the two finest grids are fine enough. Another way of saying this is that the error, must be

within the asymptotic range of convergence. If a second order solution is assumed, and Φ is

computed on the same node, using two different spacings h1 and h2, Richardson extrapolation

can be used to approximate the continuum solution, Φh0. This is obtained by expanding the

series approximation of the function, for both spacings. The resulting approximation is:

Φh0
∼=Φ1 + Φ1 −Φ2

r p −1
(3.5)

The difference betweenΦh0 andΦ1 is an error estimate. However, this requires detailed consid-

erations of the caveats which lead to it Ferziger and Perić (2002). UsingΦ1 andΦ2, an alternative

error approximation is:
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E1 = ε

r p −1
(3.6)

where

ε= Φ2 −Φ1

Φ1
(3.7)

To check if the solution is within the asymptotic range of convergence, the Grid Convergence

Index, GCI, as suggested by Roache (1998),is used. It is defined as:

GC I = Fs ∗|ε|
r p −1

= |E1| ·Fs (3.8)

Here Fs is a safety factor, which is 1.25 if three or more grids have been used, and 3 if only two

have been used. It is important to note that the GCI is not an error estimate, but Fs time the

error estimator, representing an error band. If the solution is within the asymptotic range of

convergence, equation 3.9 represents the relationship between the three grids. By dividing the

RHS by the LHS of equation 3.9 one gets a fraction F, as in equation 3.10, which should be close

to unity.

GC I21 = r p ·GC I32 (3.9)

F = r p ·GC I32

GC I21
(3.10)

3.2 Sensitivity to parameters in local potential solution

Φl oc as defined in equation 2.26 is a sum, where the constants C0, ..,CNC are unknown and de-

termined by matching with the global solution. How many constants to include, the location of

the matching nodes, and the size of the local domain, have to be set a priori, to conducting an
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analysis. The solutions sensitivity to different combinations of these parameters must hence be

investigated.

One criterion to find the best combination of these variables, is to find the local solution which

best matches the global, at the 10 global nodes closest to the local domain, proposed by Jens

Helmers in DNV GL. To this end, Φloc is calculated at the 10 global nodes, and the standard

deviation, STD between the two solutions is found, using equation 3.11

ST D =
i=N∑
i=1

√
1

N
(Φi −Φloci )2 (3.11)

By doing this for all possible combinations, of NC , a, Nout and NB , and identifying the minimum,

this can be taken to be the best fit solution.



Chapter 4

Comments on computer code

In this thesis, various BVPs using BEM are solved. To this end BEM is implemented in Mat-

lab. Even though all problems are solved uniquely, many of the programs have very similarly

structure and only details such as geometry, boundary conditions, local flow model etc. sepa-

rate them. Therefor only a part of the Matlab code is included in the appendix. What the spe-

cific programs do, and implementation details of some representative programs are described

shortly in the following. For the full code, the reader is referred to appendix E.

To solve a particular BVP, a series of function are made, each solving a specific problem. All the

functions are then run by a main program. The codes presented here, are not from the same

problem, but rather examples of functions used in different BVPS, presented here to give the

reader an idea of the general approach to solve the problems.

4.1 Geometry.m

The function geometry.m discretizes the geometry. Here the end points of all elements are de-

fined, along with the normal and tangential vector and collocation points. Further the size of

the local domain is set, and the location of boundary and outer matching nodes are defined.

Lastly the boundary condition vector at the collocation points are calculated.

25
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4.2 matcalc.m

In function matcal.m, integration over the global domain is preformed. For each element, the

integrated values of the G and Gn are assembled into matrices. Depending on whether Φ or Φn

is known on the collocation point, the matrices are sorted, saving all known elements in one

matrix, and unknown in another.

The integrals evaluated in this function, are solved analytically. For details on how this is done,

the reader is referred to Appendix C.

4.3 Corner.m

In function corner.m integration over the local domain is done. The function is only utilized in

cases where the local corner solution are used. The integrals evaluated here, are very complex

to solve analytically, and are hence solved numerically. Details of this is given in C.

4.4 Leastsquare.m

In function LeastSquare.m least square matching between the local and global solution is pre-

formed.

4.5 Sysmat.m

The function Sysmat.m takes in all the matrices and vectors from the main program, and as-

sembles the system matrix, which is solved for the unknownΦ,Φn and C’s.
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4.6 Sensitivity

To check the solutions sensitivity to the parameters in the local solution, the main program is

looped, and different combinations of NC, a, Nout and NB are tested. For each combination

the STD between the global solution at the 10 nodes closest to the local domain, and the local

solution at these nodes are calculated. The solution with the least STD is chosen.

4.7 Convergence

In the convergence study the main program is looped. For each iteration the grid is refined by

a factor of 2, and Φ and/or Φn are calculated and saved for 5 control nodes on the body surface

and/or the free surface. For the saved values, p, GCI, F and Φh0 are calculated. In the calcula-

tions of the convergence variables, the location of the control nodes are at the same geometrical

location each time.



Chapter 5

Infinite fluid problems

In this chapter, are results for the analysis’s done on 2 dimensional bodies in infinite fluid. Firstly

a square with rounded corners is analyzed. The results here are compared to square with sharp

corners and a circle. Following this, are square cylinders, where a local corner flow model is

introduced. The effect of different number of matching nodes, location of matching boundaries,

and matching the local and global solution directly versus least square method is investigated.

Lastly, an oscillating double wedge is analyzed for different dead rise angles. Results from the

convergence studies are also presented.

5.1 Boundary Value Problem

The Boundary value problem, BVP, for the first part of this chapter is defined in the following.

The problem consists of a 2D cross sectional geometry in infinite fluid. The body is either in a

constant current as shown in figure 5.1 for a circle, or is oscillating.

28
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Figure 5.1: Object in constant current

Assuming ideal fluid, the problem is reduced to one governing equation, namely the Laplace

equation as defined in equation 2.1. For the current problems, the potential is split into two

parts, the current part Ux, and an unknown partΦs giving the total potential as:

Φ=Φs +Ux (5.1)

By requiring the cylinder to impermeable, the problem is reduced to a pure Neumann problem,

with boundary condition:

∂Φs

∂n
=−nxU (5.2)

Where nx is the outward normal derivative in x direction. For all current problems, the cur-

rent velocity is set to U=3. For problems including oscillating cylinders, the problem is some-

what simplified. Here the potential only consists of one term, which is unknown, and the body

boundary condition is ∂Φ
∂n =−nx .
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5.2 Rounded Square

To visualize how Φ changes, going from from a circle geometry to a square, the square cylinder

is modeled as a "rounded square". To model it, a circle with radius less or equal to half of the

length of the square is put into each corner. At the two points in the corner where the circle and

the square intersect, the circle geometry, replaces the sharp corner. By gradually reducing the

circle radius, the corners become "sharper and sharper". An example of the geometry is given in

figure 5.2 for r=0.5. The model have a total length, L=2, and thus a corner radius which is 0<r<1.

The results are compared to regular square with "sharp" corners.

Figure 5.2: Geometry of square with rounded corners with r=0.5 and location of control nodes.

Before any results can be presented, it must be ensured that the solutions is within the asymp-

totic range of convergence. A brief check is here done for the case of r=0.5. 3 different grids are

used, all refined with a factor of 2 for each iteration. GCI and p are calculated at the 5 control

nodes, illustrated in figure 5.2. The coarsest grid has N=160 nodes and the finest 160 ·22 = 640

nodes. The analysis is done for the current problem. The result are given in table 5.1.
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Table 5.1: GCI, p and F for rounded square in constant current

Node p GC I32 GC I21 F
1 2.003 0.0001282 3.199 ·10−5 1.0005
2 2.002 0.0001514 3.778 ·10−5 0.9998
3 1.942 9.177 ·10−5 2.388 ·10−5 1.0002
4 1.99 9.382 ·10−6 2.362 ·10−6 0.9999
5 2.129 6.594 ·10−5 1.508 ·10−5 0.9997

From table 5.1, it is observed that p is satisfactory close to theoretical value of 2, for all control

nodes except node 5, which is higher. All error bands are satisfactory small, and F close to unity.

Hence the solution is concluded to be within the asymptotic range of convergence. The largest

error-band using 160 elements is about 0.015%, this is therefor found to be a fine enough grid to

analyze this problem.

For the current problem, Φ for the rounded square with different corner radii are found, and

presented in figure 5.3. The radius of curvature is varied from a maximum of 0.9 to a minimum

of 0.01. The number of elements, as can be seen in the plots, are in some cases a lot higher than

160. The reason for this is that the size of neighboring elements should not differ much Faltinsen

and Tymocha (2009). A minimum of elements are need to describe the changing geometry of

the circle section the corner. Thus, when the radius of curvature is small, the elements here

becomes small, and because no stretching of the grid is preformed, the result is a high number

of elements. For comparison, Φ for a circle and a square cylinder with sharp corners are also

found, given in figure 5.4.



CHAPTER 5. INFINITE FLUID PROBLEMS 32

Figure 5.3: Velocity potential for rounded square in constant current, U=3.
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Figure 5.4: Velocity potential for square and circle in constant current, U=3.

In figure 5.3 and 5.4 it is observed larger extremes of Φ, going from a geometry of a circle, to a

square. The extremes found for all radii are given in table 5.2. Here, r=1 represents a circle and

r=0, a square with sharp corners.

Table 5.2: Minimum and maximum values ofΦ for different radii of curvature

r 1.0 0.9 0.7 0.5 0.3 0.2 0.1 0.01 0
Φmax 5.998 6.112 6.48 6.693 6.894 6.986 7.06 7.086 7.088
Φmi n -5.998 -6.112 -6.48 -6.693 -6.894 -6.986 -7.06 -7.086 -7.088
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It is of interest to find the added mass of the the cylinder oscillating with infinite frequency.

The added mass is found in the same manner as described in Faltinsen (1990) and compared to

the Lewis form added mass for a circle and square. All values are normalized by ρπ(L/2)2. The

resulting values of the added mass are given in figure 5.5.

Figure 5.5: Normalized added mass of a rounded square for different radii of curvature, circle
and square with sharp corners

From figure 5.5, we see that the added mass increases as the radii of curvature decreases. For

comparison, the numerical values of the added mass found for r=1, r=0.9, r=0.01 and r=0, are

given in table 5.3 with the Lewis form added mass for circle and square. As can be seen, the
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numerical value matches the analytical exactly for the circle, and is slightly overestimated for

the square. It is also observed very little deviation between the rounded square with r=0.01 and

the square with sharp corners.

Table 5.3: Added mass for different radii of curvature

ACi r cle−Lewi s ASquar e−Lewi s Ar=1 Ar=0.9 Ar=0 Ar=0.01

1 1.51 1.0000 1.082 1.5185 1.5145

5.3 Square, direct matching

In the following are the results obtained from analyzing the flow around a square cylinder, using

the analytical corner model, given in equation 2.26 around the corners. The matching between

the global and local velocity potential is done directly. A sensitivity study to the size of the local

domain is conducted, and the effect of using different numbers of matching nodes at different

locations, is looked into.

5.3.1 Sensitivity and convergence

Prior to conducting analysis, the size of the local domain, the number of constants in the local

solution and the location of the matching nodes have to be set. Using direct matching it is

empathized that the number of constants and number of matching node have to be the same.

To find the optimal combination of these, a sensitivity study is conducted. All analysis are done

using 640 elements uniformly distributed over the body surface, expect for when a is varied.

The reason for this, is that the 10 nodes being checked should be at the same distance form the

apex. i.e the increment h, between the global nodes should be the same for all the global nodes.

By setting h, such that 640 elements are used for a = 0.1 the appropriate number of nodes are

found, and the STD are calculated for all cases.

To find the combination of a, Nout , and NB , which gives the best solution, the criterion defined

in chapter3.2 is used. Firstly the number of outer matching nodes are considered. Here a and

NB are kept constant at 0.05 and 2 respectively. Nout is then varied from a minimum of 0 to a
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maximum of 16. The standard deviation at the 10 global nodes closest to the corner is calculated

for each combination, given in table 5.4.

Table 5.4: Standard deviation for different numbers of outer domain matching nodes

Nout = 0 Nout = 2 Nout = 4 Nout = 8 Nout = 16
ST D 0.2736 47.82 161.7 1605.0 2.939 ·105

From table 5.4 one sees that ST D increases, as more terms are added. This is assumed to be

true for all combinations of NB and a. Looking for the best fit solution, Nout is hence set to zero.

For a and NB the covariance is not so clear. Because of this, all possible combinations between

a and NB are tested, presented in table 5.5.

Table 5.5: Standard deviation for different numbers of boundary matching nodes, and local do-
main size.

N a NB = 2 NB = 4 NB = 6
708.0 0.01 2.009 8.568 27.16
700.0 0.02 0.9693 2.615 6.629
692.0 0.03 0.5872 1.195 2.721
688.0 0.04 0.3773 0.652 1.451
680.0 0.05 0.2454 0.4134 0.9432
672.0 0.06 0.1851 0.294 0.6958
664.0 0.07 0.1758 0.2345 0.5605
660.0 0.08 0.184 0.2058 0.4746
652.0 0.09 0.2015 0.1972 0.4241
644.0 0.1 0.2196 0.1989 0.3901

Emphasized in table 5.5, it is found that the solution that gives the smallest standard deviation,

is one where a = 0.07 and NB = 2. In figure 5.6 the local solution at 10 the global nodes is plotted

with the global solution
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Figure 5.6: Φl oc at 10 global nodes closest to the local domain of the top left corner, plotted with
global velocity potential

Before any results can be presented, it has to be made sure that the solution is within the asymp-

totic range of convergence. To this end, p, GCI and F are calculated at the 5 control nodes illus-

trated in figure 5.7. Solutions are computed for 3 different grids, using a refinement factor r=2.

In the coarsest grid, 160 nodes are used and in the finest 160 · 22 = 640 nodes are used. The

numerical values are given in table 5.1. In all calculations a = 0.07, NB = 2 and Nout = 0.
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Figure 5.7: Control nodes for convergence study

Table 5.6: Observed order of accuracy, GCI and approximated true solution for 5 nodes on the
surface on the cylinder

Node p GC I32 GC I21 F
1.0 1.143 0.0006817 0.0003085 1.0004
2.0 1.168 0.000778 0.0003461 1.0004
3.0 1.185 0.0008407 0.0003695 1.0005
4.0 1.162 0.0007539 0.0003369 1.0004
5.0 1.146 0.001267 0.000438 1.0005

From table 5.11, we see that the error bands are satisfactory small for the control nodes, and

that the largest value of GCI is approximately 0.04%, for the finest grid. All values of F are close

to unity, ensuring that the solution is in fact within the asymptotic range of convergence. In

figure 5.8, is the convergence plot for control node 1. Included in the figure is a straight line,

which representsΦh0 for this node.



CHAPTER 5. INFINITE FLUID PROBLEMS 39

Figure 5.8: Convergence plot for control node 1, with approximate true solution

Even though it is found that a=0.07 and NB = 2 gives the least STD, a solution with NB = 4 is

chosen. The local solution with the smallest STD is then one with a=0.09. The reason for this,

will soon be justified, but has to do with the fact that more than one constant is needed in the

derivative of the local solution, to match velocities that are not equal on both sides of a corner.

5.3.2 Results

Using the findings from the convergence and sensitivity study, the results from the analysis are

presented here. All analysis are conducted using 640 elements, a=0.09, Nout = 0 and NB = 4.

Several of the plots are plotted with "Node number" as x-label. The numbering of the elements

are as indicated in figure 5.9 where node 1 is marked, going counter-clock wise. The end of the

global domain, and start of the local domain is also marked in the figure. It is important to note
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that even though the global results from all the nodes are plotted as a continues line, the results

between node N
4 and N

4 + 1, N
2 and N

2 + 1 and so on, are not as described in the plot, but as

described by the local potential.

Figure 5.9: Node numbering, direction of integration and intersection between local and global
domain

In figure 5.10 is a plot of the global potential. By global potential it is meant the potential over

the body, not including the corner potential.
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Figure 5.10: Global velocity potential, NB = 4, a = 0.09

The local potential for the four corners in the square is presented in figure 5.11, here corner 1 is

the top left corner, counting counter-clock wise.
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Figure 5.11: Local velocity potential, NB = 4, a = 0.09

To find the velocity, central difference as defined in appendix D is used for global velocity. The

local velocity is found by differentiating equation 2.26 analytically. For comparison, the global

and local velocity for both the case of NB = 4 is given in figure 5.12 and for NB = 2 in figure

5.13. In the global plots, the end of the global domain in the top left corner, are marked for

comparison of the two solutions.
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(a) Global velocity, NB = 4, a = 0.09

(b) Local velocity, NB = 4, a = 0.09

Figure 5.12: Local and global velocity for NB = 4
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(a) Global velocity, NB = 2, a = 0.07

(b) Local velocity, NB = 2, a = 0.07

Figure 5.13: Local and global velocity for NB = 2
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As can be seen from the figures, using 4 constants in the local potential, gives a local velocity

that much better matches the global velocities, than using 2 constants. The numerical values at

the intersection between the domains are given in table 5.7.

Table 5.7: Global and local velocity in intersection between local and global domain for top left
corner

Side 1 Side 2
NB Vg l ob Vloc Vg l ob Vloc

2 6.5027 6.3811 4.8052 6.3811
4 6.1012 6.2695 4.3863 4.5966

A solution for the full domain is produced by utilizing equation 2.11 for a uniform grid in the

outer domain. In figure 5.14 and 5.15 are the velocity potential and velocity respectively. For the

velocities, a coarser resolution is used than in the velocity potential. The velocities close to the

corners succeed the maximum of 6 displayed by the color bar, this is used as a limit to also be

able to visualize the lower velocities.

Figure 5.14: Velocity potential in surrounding fluid
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Figure 5.15: Velocity of surrounding fluid

For comparison with earlier results, the added mass for the square cylinder oscillating with in-

finite frequency, is calculated. The results are obtained using a=0.09 NB = 4 and Nout = 0, The

resulting added mass is given in table 5.8, along with the Lewis form value and the calculated

value for the square without a local solution. The deviation is between the this model, and the

Lewis form value.

Table 5.8: Added mass of oscillating square cylinder in infinite fluid

ALewi s Anum Ar=0 Deviation
1.51 1.4788 1.5185 0.0207

5.4 Square, Least square matching

For comparison and validation, the same BVP, i.e the flow around a 2D square cylinder, where

the corner flow is described by the corner potential is analyzed again. The only difference is that
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here, least square method is used in the continuity equations.

5.4.1 Sensitivity and convergence

As in the direct matching case, the size of the local domain, the number of constants, and the

location of the matching nodes have to be set a priori. In the case of least square matching, the

number of constants and matching nodes does not have to be the same. Hence, the effect of us-

ing fewer constants than matching nodes is considered. A sensitivity study is firstly carried out,

to find the best fit solution. All analysis where the local domain size is not varied, are conducted

using 640 elements.

Firstly, the effect of different combinations of NB , Nout and NC are investigated. Here, a is kept

constant at 0.1 and the results are assumed to be valid for all a. All the numerical details are not

presented here, but it is found that the best combination is one where NC = 2. Results for the

different combinations of NB and Nout for this case are given in table 5.9.

Table 5.9: Standard deviation for different combinations of NB and Nout , using NC = 2

Nout NB = 2 NB = 4 NB = 6
0 0.2207 0.2232 0.2282

2.0 5.34 3.488 2.614
4.0 7.27 5.393 4.313
8.0 8.963 7.442 6.389

16.0 10.15 9.146 8.354
32.0 10.87 10.29 9.805

From table 5.9, it is clear that the solution which has the least STD, is one with Nout = 0. Further

it is observed that the lowest STD is obtained by NB = 2. Next the effect of different combination

of a and NB and NC are tested. a is varied from 0.01 to 0.1. Seeking to keep the grid density

constant, h is set to the value it has for a=0.1, N=640, which leads to more elements being used

in for smaller a. NB is equal to 2,4 or 6, and Nout is 2,4 or 6. In figure 5.16 are the obtained STD

for all different combinations. The minimum values are marked in the figure, and given in table

5.10.
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Figure 5.16: Standard deviation for all combination of NB and NC

Table 5.10: Minimum standard deviation for different combinations of NC , NB and a.

NC = 2 NC = 4 NC = 6
NB = 2 NB = 4 NB = 6 NB = 4 NB = 6 NB = 6

a 0.07 0.07 0.06 0.09 0.08 0.1
min std 0.1758 0.1844 0.1915 0.1972 0.2087 0.3901

From table 5.10 it is observed that the minimum STD is 0.1758, which is the result from using

NB = 2 and NC = 2. In figure 5.17 is the local potential plotted at the 10 global nodes closest to

the top left corner for this case.
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Figure 5.17: Local solution at 10 global nodes closest to the local domain of the top left corner,
using NB = 2, Nout = 0, NC = 2 a=0.07.

Before presenting any results, it must be ensured that the solution is within the asymptotic range

of convergence. For the same control nodes given in figure 5.7, p, GCI and F are calculated using

3 different grids, all refined by a factor of 2. The coarsest having N=160 elements, and the finest

N = 160 ·22 = 640 elements. a 0.07, NB = 2, Nout = 0 and NC = 2.
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Table 5.11: Observed order of accuracy, GCI and fraction for 5 nodes on the surface on the cylin-
der

Node p GC I32 GC I21 F
1.0 1.143 0.0008521 0.0003857 1.0004
2.0 1.168 0.0009725 0.0004326 1.0004
3.0 1.185 0.001051 0.0004619 1.0005
4.0 1.162 0.0009424 0.0004211 1.0004
5.0 1.137 0.001583 0.0005476 1.0008

From table 5.11, it is taken that the error-band is satisfactory small, with the largest value being

0.055%, for the finest grid. Further the values of the F, ensures us that the solution is indeed

within the asymptotic range of convergence. In figure 5.18 is the convergence plot for the node

1, withΦh0 included.

Figure 5.18: Convergence plot for control node 1, including approximated exact solution



CHAPTER 5. INFINITE FLUID PROBLEMS 51

The best match is found be one where only two constant are used in the local solution. However,

also in this case the velocity on the two sides of a corner are not the same, and to better match

the different velocities, more than one constant is needed in the local velocity. Therefor the

results for the solution with smallest STD using 4 constants are presented in the following. The

parameters used in the local solution is therefor: a=0.09, NB = 4, NC = 4 and Nout = 0.

5.4.2 Results

Using the results form the convergence and sensitivity study, the resulting velocity potentials

and velocities, on the boundary of the body and in the domain is presented. The global velocity

potentials and velocities are plotted against node numbers, which are numbered the same way

as in figure 5.9. All results presented are obtained by using 640 elements on the body surface.

Given in figure 5.19 is the global potential over the surface of the cylinder.
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Figure 5.19: Global velocity potential, NB = NC = 4, a = 0.09

The local potential for the four corners in the square are given in figure 5.11. Corner 1 is the top

left corner, TLC, counting counter-clock wise.
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Figure 5.20: Local velocity potential, NB = NC = 4, a = 0.09

For comparison, the global and local velocity for both the case of NB = NC = 4 are presented in

figure 5.21 and for NB = NC = 2 in 5.22. In the global plots the end of the global domain in the

TLC are marked, for comparison of the two solutions.
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(a) Global velocity, NB = NC = 4, a = 0.09

(b) Local velocity,NB = NC = 4, a = 0.09

Figure 5.21: Global and local velocity for NB = NC = 4
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(a) Global velocity, NB = 2 = NC = 2, a = 0.07

(b) Local velocity, NB = NC = 2, a = 0.07

Figure 5.22: Local and global velocity for NB = NC = 2
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As can be seen form the figures, the local velocity calculated using 4 constants, much better

matches the the global velocity, than for a solution using only 2 constants. The numerical values

at the intersection between the domains are presented in table 5.12.

Table 5.12: Global and local velocity in intersection between local and global domain for top left
corner

Side 1 Side 2
NB Vg l ob Vloc Vg l ob Vloc

2 6.4870 6.4037 4.7855 6.4037
4 6.0898 6.2689 4.3706 4.5936

A solution for the full domain is produced by utilizing equation 2.11 for a uniform grid in the

outer domain. In figure 5.23 and 5.24 are the velocity potential and velocity respectively. A

coarser resolution is used than in the velocity, to better capture the details at lower velocities.

Figure 5.23: Velocity potential in surrounding in fluid



CHAPTER 5. INFINITE FLUID PROBLEMS 57

Figure 5.24: Velocity of surrounding fluid

For comparison, the added mass for the square cylinder, using least square matching is cal-

culated. The resulting added mass in surge, using the the results from the convergence and

sensitivity study is given in the table 5.13

Table 5.13: Added mass of oscillating square cylinder in infinite fluid, analyzed with NB = NC = 4
using least square matching

ALewi s Anum Ar=0 Deviation
1.51 1.4790 1.5185 0.0205

5.5 Oscillating double

The last problem analyzed in infinite fluid, is the case of a wedge, oscillating in heave with in-

finite frequency. The geometry is defined in figure 5.25 a). The added mass in heave is in this

case is analytical known, and given in Faltinsen (2005) as equation 5.3. Because of this, no con-

vergence study is conducted, and the results are merely verified by comparison to the analytical
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solution. In cases where the velocity potential over the body surface is presented, it is plotted

agains node number. The numbering of the nodes and direction of integration is as given in

figure 5.25 b)

(a) Double Wedge (b)

Figure 5.25: Geometry of wedge Liang et al. (2015), and node numbering and direction of inte-
gration

A33 = 2ρ(0.5B t an(θ))

t an(θ)

[ π

si n(θ)

Γ(1.5−θ/π)

Γ2(1.0−θ/π) ·Γ(0.5+θ/π)
−1

]
(5.3)

In figure 5.26 are the resulting added mass in heave for different dead rise angles, θ. The results

are normalized by ρπB 2/8, and plotted with the normalized analytical solution for the same θ.

The results are computed using 160 elements on each side of the wedge, 640 in total. Numerical

data on the largest deviation between the analytical and numerical solution is given in table 5.14
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Figure 5.26: Added mass in heave for double wedge with 20 ° dead rise angle, oscillating in infi-
nite fluid

Table 5.14: Largest deviation between analytical and numerical added mass in heave for double
wedge

Dead rise angle Aana − Anum
Aana−Anum

Aana

2 ° 0.006 0.003

As can be seen from the figure, the results obtained with the BEM solver, agree well with the

analytical solution. For comparison with later solutions, the resulting velocity potential for θ 20

° is given in figure 5.27.
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Figure 5.27: Velocity potential for double wedge with 20 ° dead rise angle, oscillating in infinite
fluid



Chapter 6

Free surface problems

In the last part of this thesis, are results from problems where the free surface is present. Both

the case of wall sided, and non-wall sided boundary conditions are looked into, and their con-

vergence properties are presented. A local corner model is proposed to deal with convergence

issues in the free surface.

6.1 Boundary Value Problem

The BVP for the problems analyzed in this chapter consists of a 2D sectional geometry, oscillat-

ing with infinite frequency in the free surface. With the fluid being ideal, the governing equation

is that of Laplace. The BVP is illustrated in figure 6.1. Here the free surface has Dirichlet condi-

tion and the body is impermeable, yielding a Neumann condition. To compare the results with

the results from the previous chapter, where the case was a constant current in x-direction or

oscillation in surge, the problems are modeled as illustrated below, with the free surface parallel

to the y-axis.

61
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Figure 6.1: Geometrical description of boundary value problem

6.2 Cylinder with draft equal to radius

In this section are results obtained from analyzing a cylinder, oscillating with infinite frequency

in the free surface. The radius of the cylinder is R=1, and the normal vector is positive into the

fluid domain. The analytical solution to this problem is known, and the normalized velocity

potential is given as equation 6.1. The added mass is given in equation 6.2 Faltinsen (1990).

Because of this, no convergence study of the solution is conducted, and the solution is only

verified by comparing with the analytical solution. Both results from the double body problem

and using Rankine sources are presented, and compared.

Φ= R2

r
nx (6.1)

A33 = 0.5ρπR2 (6.2)

For the method where Rankine sources are used, it is important that the free surface is suffi-

ciently long. To this end, grid stretching is used. In table 6.1 are the element data used to solve
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this problem.

Table 6.1: Element data for problem with cylinder in oscillating in free surface, using free space
Green’s functions

No. of Elements Elements on SF Elements on NSB Stretching factor Length FS

520 400 120 1.03 322.44R

The resulting velocity potential and normal derivative are given in figure 6.2.

(a) Velocity potential (b) Normal Velocity

Figure 6.2: Velocity potential and normal velocity of cylinder oscillating with infinite frequency
in the free surface

Below, are the resulting velocity potential for the same problem analyzed using the double body

method. Here only the wetted surface, SB has to be integrated over, and hence only Φ on the

body is found.
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Figure 6.3: Velocity potential for half cylinder oscillating in free surface, found by double body
considerations

To verify that the results are satisfactory close to the analytical value they are compared. This is

done for the velocity potential, where the STD is calculated, given in table 6.2.

Table 6.2: Standard deviation between analytical solution and numerical values obtained using
the double body method and Rankine source distribution

STDΦDoubl ebod y STDΦRanki ne

0.0001455 0.0001122

From table 6.2, we see that the numerical results agree well with the analytical solution. Lastly

the added mass of the cylinder is calculated, given in table 6.3 with the analytical value. The

results are normalized by π ·R2ρ.
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Table 6.3: Added mass of half cylinder oscillating in free surface

Analytical Double body Free space
0.5 0.5001 0.5000

6.3 Wedge oscillating in the free surface

It is of interest to find the velocity potential and added mass of the wedge oscillating in a free

surface. To this end, both the double body method and distributing Rankine sources, are con-

sidered. The wedge considered, is half the wedge in figure 5.25, cut by line through the two hor-

izontal corners, and rotated 90 ° to the left. For the second method, which has a general Robin

boundary, the boundary conditions are not wall sided, as for the cylinder case. This, as will be

shown in the following, leads to convergence issues at the intersection between the surface and

body. Because of this, p, GCI and F are calculated for both methods, and compared.

6.3.1 Convergence and Sensitivty

For both methods p, GCI and F are calculated at 5 control nodes, located at the surface of wedge,

comparing values ofΦ for the different grids. The numerical results for the double body problem

are given in table 6.4. The wedge being analyzed has a dead rise angle of 20 °, and 320, 640 and

1280 elements are used over the body surface. The location and numbering of the control nodes

are given in figure 6.4 a)
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(a) Control nodes (b) Node numbering

Figure 6.4: Control nodes and node numbering

Table 6.4: p, GCI and F for wedge oscillating in the free surface, analyzed using double body

Node p GC I32 GC I21 F
1.0 1.138 0.001426 0.0006479 0.9994
2.0 1.134 0.001148 0.0005234 0.9995
3.0 1.125 0.0006263 0.0002872 0.9997
4.0 1.175 0.0004009 0.0001776 0.9998
5.0 1.152 0.002291 0.001032 0.9990

From table 6.4, it is observed that the GCI is satisfactory small for all control nodes, with the

largest error-band being approximately 0.1%. The fraction F, also indicates that the solution is

within the asymptotic range of convergence. It is therefor taken that the finest grid produces

convergent results.

For the method where Rankine sources are used, p, GCI and F are in addition found at 5 control

nodes on SF , comparing values ofΦn . In table 6.5 are the numerical values, obtained using 320,

640 and 1280 elements on the body surface. On SF 200,400 and 800 elements are used, with a

stretching factor of 1.03.
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Table 6.5: p, GCI and F for wedge oscillating in the free surface, analyzed using Rankine source
distribution.

Node p GC I32 GC I21 F
1.0 1.015 0.005782 0.002867 0.9977
2.0 1.017 0.004499 0.002227 0.9982
3.0 1.025 0.001909 0.0009391 0.9992
4.0 1.021 0.001197 0.0005902 0.9995
5.0 0.9747 0.006195 0.003145 1.002
6.0 0.9781 0.004726 0.002404 0.9981
7.0 1.031 0.01317 0.006476 0.9946
8.0 1.041 0.01525 0.00746 0.9937
9.0 1.063 0.02417 0.01168 0.9899

10.0 -0.4297 -1.435 -1.382 1.398

From table 6.5 it can be seen that the values of GCI are satisfactory small for node 1-5, and the

fraction indicates that the solution here is within the asymptotic range of convergence, even

though results here are poorer than for the double body method. Further, for node 6-10 the

values of GCI and F are less satisfactory moving closer to the the body surface, and the solution

is not be expected to converge here.

6.3.2 Results

In the following, results form the analysis of the oscillating wedge is presented for both the dou-

ble body method and Rankine source distribution. The global quantities, such as Φ and Φn are

plotted using node number as x-label. Here the node numbering is a given in figure 6.4 b)

In figure 6.5, is the resulting velocity potential for the oscillating wedge, using the double body

method. The potential is found to be the same as the first half of the double wedge potential, for

the same dead rise angle.
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Figure 6.5: Velocity potential distribution over wedge surface, for oscillation in free surface, an-
alyzed by double body method

For the method where Rankine sources are used, the convergence study indicates that the solu-

tion will have convergence issues for Φn , in the free surface close to the body surface. In figure

6.6 are the resulting normal velocity on the body and free surface, for the three grids used in the

convergence analysis.
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(a) 520 elements (b) 1040 elements

(c) 2080 elements

Figure 6.6: Normal velocity on SF and SB using Rankine source distribution

As can be seen from figure 6.6, there are two sharp peaks in three plots. These are on the free

surface, increasing as we move closer to the wedge. Also, it is noted that as more elements are

used, the peaks does not converge to towards a finite value, but continue to increase in value.

In figure 6.7, are the resulting velocity potentials for the the same grids. Here we observe that

there is no convergence problem, and that the result match the results form the double body
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analysis.

(a) 540 elements (b) 1040 elements

(c) 2080 elements

Figure 6.7: Velocity potential on the free surface and body of oscillating wedge

Given the fact that there is no convergence issue of the velocity potential, the the results can be

used to find global quantities such as the added mass. For the same dead rise angles as in the

infinite case, the added mass of the oscillating wedge is calculated. In figure 6.8 are the result-

ing added mass from the two methods, are plotted with the corresponding analytical solution,
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which is simply the same as equation 5.3, multiplied by a half.

Figure 6.8: Added mass for oscillating wedge in free surface

From figure 6.8 we see that the resulting added mass for both methods, agree well with the ana-

lytical solution.
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6.4 Local analysis

If a solution for both the normal velocity on the free surface and velocity potential on the surface

of an oscillating body is wanted, the convergence issues in SF have to be addressed. To this end,

a local solution can be implemented in the intersection between the surface and the body. Using

the same local coordinate system as defined in figure 2.4, a very similar local solution for the flow

in the local domain is used. Taking inspiration from Zhao and Faltinsen (1996), the horizontal

velocity (vertical in their case) can be written as:

W =−D · r
1

2−β/π−1

2−β/π
(6.3)

Where β= 2θ. Integrating this, a potential in the local domain is obtained as:

Φloc = D0 +D · r
1

2−β/π (6.4)

Coupling this velocity potential with the global equation as in equation 2.30, one can solve for

the unknown potential and normal velocity. To determined the unknown coefficients, matching

equations are used in the intersection between the local and global domain. They are:

W = ∂Φ

∂n
on ΣSF

Φloc =Φ on ΣSB

(6.5)

6.4.1 Convergence and sensitivity

As previously, a wedge with θ = 20°, is analyzed. To find the size of the local domain, a sensi-

tivity study is conducted. The criteria to decide a, is the solution where the local solution best

matches the global on the 10 nodes closest to the intersection on both SF and SB . Hence the

local potential and the local normal velocity is calculated on the 10 closest nodes on the body

surface and free surface respectively. In the analysis, 160 elements are used on either side of the

wedge, and 200 on the free surface on either side of the wedge, 720 elements in total. The STD
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is then calculated for each domain size, given in table 6.6.

Table 6.6: Standard deviation between local and global solution, for velocity potential and nor-
mal velocity at 10 global nodes closest to intersection

a STD ∂Φ
∂n STDΦ Sum

0.01 0.07594 7.728 7.804
0.02 0.201 5.325 5.526
0.03 0.2635 4.082 4.346
0.04 0.299 3.327 3.626
0.05 0.3206 2.816 3.137
0.06 0.3342 2.446 2.78
0.07 0.3428 2.163 2.506
0.08 0.348 1.94 2.288
0.09 0.3509 1.757 2.108
0.1 0.3522 1.605 1.957

It is observed that the STD of the normal velocity increases as the local domain size increases

and that the opposite is the case for the the velocity potential. The domain size is therefor cho-

sen to be the one that has the least sum of STD, which is a=0.1. In figure 6.9 are the local solution

at the 10 global nodes plotted with the global solution at both intersections

(a) Global and local velocity potential at SB (b) Global and local normal velocity at SF

Figure 6.9: Global and local velocity potential and normal velocity
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Further p, GCI and F are calculated on the same nodes as in figure 6.4. The analysis here is done

using 320, 640 and 1280 elements on the body, and 200,400 and 800 nodes on the free surface.

The obtained values are given in table 6.7

Table 6.7: F, GCI and p at surface boundary and free surface control nodes

Node p GC I32 GC I21 F
1.0 0.9645 0.02374 0.01228 0.9907
2.0 0.9664 0.01892 0.009754 0.9927
3.0 0.9579 0.007838 0.004047 0.9970
4.0 0.9645 0.003072 0.001689 0.9321
5.0 0.9558 0.003666 0.001917 0.9859
6.0 1.044 0.01569 0.007715 0.9863
7.0 1.045 0.02259 0.0142 0.7710
8.0 0.9236 0.01296 0.006866 0.9951
9.0 1.006 0.01493 0.007479 0.9940

10.0 1.131 0.006261 0.002852 1.0024

From table 6.7 it is found a satisfactory low band of error for all control nodes. However, F are

not satisfactory close to unity for all the control nodes. It is also noted that p, is approximately

half of the analytical value for constant element BEM. Despite the questionable numerical per-

formance of the solver, the results form the analysis is presented in next section, using the finest

grid

6.4.2 Results

In the following are the results obtained form analyzing the oscillating wedge, using the local

solution in the intersection between the body and the free surface. The node numbering is

given in figure 6.4 b).

In the figures below are the resulting velocity potential and normal velocity for both the global

and normal solution. It is computed using 1280 elements on the body and 400 on the free sur-

face.



CHAPTER 6. FREE SURFACE PROBLEMS 75

Figure 6.10: Global velocity potential of oscillating wedge, with local solution in the intersection

Figure 6.11: Local velocity potential of oscillating wedge, with local solution in the intersection
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Figure 6.12: Global normal velocity of oscillating wedge, with local solution in the intersection

Figure 6.13: Local normal velocity of oscillating wedge, with local solution in the intersection
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From the figures presented it is noted that the normal velocity in the intersection between the

body and free surface, now is convergent. The matching equations used in the analysis, require

continuity in the normal velocity in the intersection between the local and global domain on SF ,

and in Φ in the intersection on SB . As can be seen in table 6.8 these match well. However, the

local and global solutions does not match at the opposite intersections.

Table 6.8: Global and local velocity potential and normal velocity at the intersections between
the domains

Φ Φloc Φn Φl ocn

Intersection SB 0.2391 0.2391 -0.9397 1.1287
Intersection SF 0 0.2372 1.1287 1.1287

For comparison with the analysis done without the local model, the added mass is calculated for

the the same dead rise angles as previous. The resulting added mass is normalized by ρπB 2/8

given in figure 6.14, plotted with the analytical solution.
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Figure 6.14: Added mass in heave of oscillating wedge, analyzed using with local flow model in
intersection between the free surface and body surface

From figure 6.14 it is clear that the resulting added mass, computed with this model is underes-

timated. The deviation for all dead rise angles is in the range 6-9 %, which is considerable. The

reason for this, and suggestions to how to deal with this problem, with more is discussed in the

following chapter.



Chapter 7

Discussion and Concluding Remarks

In this chapter, the results presented in the previous chapters are discussed, and concluding

arguments are made.

Several problems where the analytical solution is known, are analyzed in this thesis. Analyz-

ing the rounded square in constant current, a clear trend is found, with increasing maximum

and minimum values of Φ as the radius of curvature is decreased. The added mass is found to

gradually go from the analytical value of a circle, towards the analytical value of a square, as the

corners become sharper. GCI, F and p, are only calculated for r=0.5 for the rounded square. The

results show satisfactory low GCI, and the observed order of accuracy is close to analytical value

of 2. This is thought to give credibility to the BEM solver, when applied to other problems.

For the problems involving a square in infinite fluid, the local flow model is introduced. For both

direct and least square matching, the sensitivity studies indicate that the best solution, is one

where 2 constants and matching nodes are used. Despite this, solutions involving 4 constants

are chosen. The reason for this, is that differentiating a local solution with only two constants,

results in a local velocity with only one constant. Since the global velocity is not equal on both

sides of the corners, the local velocity cannot match the global velocity on both sides, using only

two constants. V and Vl oc using 4 constant does not match the global velocity perfectly. The

reason for this may be connected with how the differentiation is preformed. For the intersection

node, the global velocity is found by using forward or backward difference, which has a low order

79
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of accuracy. Better results could likely also be achieved if the differentiation in the intersection

had been done using both the local and global solution. In both the case of 2 and 4 constants,

Φl oc andΦmatch well.

The sensitivity studies, repeatedly found that introducing matching nodes in the outer domain,

gave worse matching between the solutions, while matching nodes on the boundary of the body,

did not change the STD much. The reason for the outer nodes preforming badly, is likely be-

cause of the location of the global nodes, where the STD is calculated. Their location, as indi-

cated in figure 7.1, are on the body boundary, and by matching the solution on nodes which are

off the boundary, the solution at these nodes have gradients which differ from the gradient at

the boundary nodes, giving larger STD. Therefor using outer nodes in the matching equations,

the STD should not only be calculated on the boundary nodes closest to the apex, but also at

global nodes in the outer domain, close to the apex. Because of this, the solution might be said

to be biased to give better results in the sensitivity study for matching nodes on the boundary.

However, solutions that fits the 10 global nodes in the figure 7.1, are found in both cases, with

STD in the range of 0.2-0.25, which is thought to be sufficiently small. The conclusion here is,

that even though the solution is biased to preform better when boundary matching nodes are

used, good local models to describe the corner flow are found.
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Figure 7.1: Location of outer matching nodes and global nodes where STD is calculated.

One of the great advantages with using least square matching over direct matching, is that the

number of constant does not have to be the same as the number of matching nodes. This makes

it possible to preform matching on a large number of nodes, while keeping the number of con-

stants low. However, because of the biased criterion, zero outer nodes are used in the matching

here as well. The number of boundary matching nodes are kept limited. The reason for this, is

that they are located on the intersection or outside the local domain, and it is though that this

exceedance should be limited.

Introducing the local corner flow model, results in the velocity behaving asymptotically close to
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corner, and thus better describing the velocity here, than without the local corner model. The

resulting velocity potential for the current problem, found by both methods agree well and very

little deviation is detected. The deviation would probably be larger, if the least square matching

had been preformed on a larger number of matching nodes. The results from both methods, are

found to be very similar to the potential of the square without a local corner model. The added

mass in both cases are close to the Lewis form added mass, deviating with about 2%.

Solving the free surface problems, both the double body method and distributing Rankine sources

are considered. For the oscillating cylinder with wall sided boundary conditions, both methods

produce near identical results, with negligible deviation. Both agree with the analytical solution

for the half cylinder, in terms of added mass and velocity potential.

For the wedge oscillating in the free surface, the boundary conditions are not wall sided. For

the double body problem, this does not matter, and the results agree well with the analytical

solution. For the latter method, convergence issues are experienced in the free surface. GCI

and p, for control node 10 (in SF close to SB ), are here negative and the value of GCI, large. No

convergence issues are experienced for Φ. The values here agree with those form the double

body solution, and both methods produce added mass which are very close the analytical value.

Comparing the values of GCI, p and F for both methods, we find that the double body method

preforms better. Here the values of p are higher, GCI lower, and the the fraction F closer to unity,

for control nodes 1-5. For the control nodes on SF , it is observed that the GCI gradually becomes

larger and F further from unity, moving closer to the body, indicating an increasing convergence

problem.

Even though both methods produce good results for the added mass, its arguable that the dou-

ble body method should be chosen if only a solution over the body surface is wanted. The first

argument for this, is its better numerical performance. The second concerns the computational

cost. Using Rankine sources over the body and free surface, leads to a larger set of equations to

be solved, which is unnecessary if only a solution over the body is needed.

To address the convergence issue on SF , a local flow model is introduced. Investigating the

solutions sensitivity to the local domain size, the lowest STD is found to be 1.97, which is con-
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siderably higher than for the square cylinders. It must however be noted that 20 nodes instead

of 10 for squares, are used in the calculation. In terms of matching, the local solution does not

match the global at the intersections, where continuity is not required, i.e Φloc 6= Φ on SF and

Vl oc 6=Φn on SB . Because of this poor matching is achieved, and it might be fully or partly the

reason for the results deviating from the analytical.

The results obtained with this model, does not agree well with the analytical results. The distri-

bution of Φ over the wedge surface is found to be lower than for the models without the local

solution, and the added mass for all dead-rise angles are considerable lower. The calculated val-

ues of p, GCI and F show that the numerical performance of this solver is poor, and might not

meet the requirements to conclude that the solution is convergent. On the positive side is the

fact that the model does deal with the convergence issue on SF .

The concluding remark of this model is therefore that the results obtained with it are not reliable,

and the model should be worked further on, to get more satisfactory results.

Throughout the analysis conducted in thesis, it is for several of the problems found very low

estimates of the observed order of accuracy. Some of this deviation can probably be prescribed

to factors such as grid streching, coupled analysis and geometrical singularities. The effects of

all these factors are not known to the author, and should be investigated further. The deviation

can also be due to implementation errors either in the BEM codes or the calculation of p itself.



Chapter 8

Suggestions for further work

In this thesis, a BEM solver has been developed, and several different BVPs solved using it. Sev-

eral of the results show good agreement with our expectations and analytically known solutions,

while others deviate. The work done in this thesis is far form perfect, and there are several as-

pects which should be investigated further.

Firstly, the observed order of accuracy, p are in many cases found to be considerably lower than

the analytical value of 2 for constant BEM. The reason for the low values of p, can be due to

effects such as grid stretching, coupled solvers, geometrical singularities, or implementation

errors. This is something that should be looked further into.

The local flow model, introduced in the intersection between SB and SF has poor matching

with the global solution. The model should therefor be further modified, to better match the

global solution at all intersections. Possible modifications are to introduce more constants in

the solution, and hence enabling more matching equations to be used. It should further be

investigated if the poor results obtained, are due to the limitations of the local model, or if there

are other problems as well.

A very interesting expansion of the work done in this thesis, would be to use the BEM solvers

developed, and implement them to solve initial boundary value problems, IBVPs. This can for

instance be done for practical problems such as slamming, where the effects of the free sur-

face are very important, and the case of geometrical singularities such as the keel of a hull, are
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important to handle correctly. This is something that is left open for a future student to work

with.



Appendix A

Divergence Theorem in the plane

Let Ac be an arbitrary control area in the xy -plane bounded by a closed contour boundary C,

with normal vector n pointing inside the the control area. Then the surface integral over Ac of

the divergence of a two-dimensional differentiable vector function F, can be written as the flow

rate across C.

∫
Ac

∇·Fd A =−
∫

C
F ·ndl (A.1)

Where dl is the arc length of the contour
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Appendix B

Method of Least squares

The Method of Least squares, is a method of minimizing the error committed, when fitting a

curve to a discrete set of values. Given a set of data points (x1, y1), ..., (xn , yn), we can define the

error of saying that the curve which best describes the trend, say y =C0 +∑Nc
i=1 Ci xmi , as:

E(C0, ...,CNc ) =
N∑

i=1
(yn − (C0 +

Nc∑
i=1

Ci xmi )2 (B.1)

Where N is the number of data points, and Nc is the number of constant in the approximation.

Which is just N times the variance of the data set (y1−y(x1)), ..., (yN−y(xN )) To find the constants

which minimizes this error, the following equation system is solved for each unknown constant

Ci ?

∂E
∂C0

= ∑N
i=1(yi − (C0 +∑Nc

j=1 C j x
m j

i )) ·1 = 0
...

∂E
∂Ci

= ∑N
i=1(yi − (C0 +∑Nc

j=1 C j x
m j

i )) · (−x
m j

i ) = 0
...

∂E
∂Cn

= ∑N
i=1(yi − (C0 +∑Nc

j=1 C j x
m j

i )) · (−x
m j
n ) = 0

(B.2)

Where Ci is That is, for each constant, we differentiate with respect to it on solve the equation

for the constant with minimizes the error, namely which is when the differentiated is zero.
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Solution Detailts

In this thesis several different BVPs are solved using BEM. Even though all the problems are

solved uniquely, several of the integrals appear multiple times. In the following, how the differ-

ent integrals are evaluated is presented.

Firstly all geometries are discretized into a finite number of elements. In the simplest case,

where no corners or geometrical singularities are present, there are only two integrals that needs

to be evaluated at each panel, given in equation 2.11, repeated here for convince:

∫
Ei

n j ·∇l n(r )dl (x) (C.1)

∫
E j

l n(r )dl (x) (C.2)

To be able to integrate these along the boundary, a local coordinate system is defined on the

element, with one axis being parallel to it, and the other perpendicular. The local angle of the

element is found by geometrical considerations as, θ = at an((y2− y1)/(x2− x1)). Further the

location of the singularity is calculated relatively to the new coordinate system by:
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x0 = (xs −xm)∗ cos(θ)+ (y s − ym)∗ si n(θ)

y0 = (xs −xm)∗ si n(θ)− (y s − ym)∗ cos(θ)
(C.3)

where xs, ys, xm and ym are the global location of the singularities and element midpoint re-

spectively. In the coordinate system, the new y-axis is perpendicular to the element, and inte-

gration must hence only be preformed in the new x-direction. The limits of integration, (s1, s2)

are (-h/2, h/2), and the y can bebe evaluated analytically as:

∫ s2

s1

ln(r )dl (x) = 1/2 (−s1 +x0) ln
(
s1

2 −2s1 x0+x02 +y02)
+1/2 (s2 −x0) ln

(
s2

2 −2s2 x0+x02 +y02)−y0 arctan

(
s1 −x0

y0

)
+y0 arctan

(
s2 −x0

y0

)
+ s1 − s2

(C.4)

and

∫ s2

s1

∂

∂n
ln(r )dl = arctan

(
s2 −x0

y0

)
−arctan

(
s1 −x0

y0

)
(C.5)

In the case of geometrical singularities, the local corner solution as defined in 2.26, is intro-

duced. In the coupled method in the constant current problems, three new integrals have to be

evaluated in the corner domain. They are:

∫
Cl oc

Ux · ∂ln(r )

∂n
d s (C.6)

∫
Cl oc

[
C0 +

Nc−1∑
i=1

Ci r mi cos(miθ)
]
· ∂ln(r )

∂n
d s (C.7)

and
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∫
Cloc

ln(r ) ·U ∂x

∂n
d s (C.8)

The integrations are preformed around the corners, but instead of using the local coordinate

system as defined in figure.. the integrals are evaluated in the global domain. Two integrations

are preformed for each corner. For each corner, the start and end of the local domain is defined

in global coordinates, and the integration is done from the start to the corner apex, and from

the corner apex to the end of the domain.

The two first integrals have very complicated analytical solutions, and they are therefor inte-

grated numerically, using 16 point adaptive Gauss integration. This is done by defining the x

and y coordinates of the element as:

x = 0.5(x1+x2)+0.5(x2−x1)∗ s

y = 0.5(y1+ y2)+0.5(y2− y1)∗ s
(C.9)

Where x1, x2, y1 and y2 are the endpoints of the elements, and s the integration variable, ranging

from -1 to 1. The radial distance to the corner apex in the local solution, is respected by defining

r in equation C.7 as:

r = 0.5(a − sg n ·a · s); (C.10)

Where sgn is 1 in the first integral and -1 in the second.



Appendix D

Central Difference

Central difference is a numerical technique used to find the derivatives, by approximating the

differential operators constituting the field equation locally Heinzl (2007). If the solution u, is

known at node i+1 and i-1, the derivative can be approximated by using central difference de-

fined as:

∂u

∂x
= ui+1 −ui−1

2h
(D.1)

Further if only the u is known on i and i+1, or i and i-1, the differential operator can be approxi-

mated by forward and backward difference, defined respectivley as:

∂u

∂x
= ui+1 −ui

h
(D.2)

∂u

∂x
= ui −ui−1

h
(D.3)

The central difference schemes have following order of accuracy Heinzl (2007):

• Forward difference: O(h)

• Backward difference:O(h)
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• Central difference: O(h2)

It is hence desirable to use central difference, if possible.



Appendix E

Matlab code

E.1 Geometry

1 % This function discretizes the global part of the geometry, and defines

2 % end and midpoints of the elements, and normal and tangential vector.

3 % Further the location of the matching nodes on the boundary and in the

4 % outer domain is defined

5

6 function ...

[nx,ny,tau_x,tau_y,X_e,Y_e,X_m,Y_m,B,X_out,Y_out,ang_out,ang,Sigma_M,R] ...

= geometry(Nel,U,l,a,Nout,NB)

7

8 % Element length

9 dl = l / Nel*4;

10

11 % One side of sqaure

12 line = l/2:-dl:-l/2;

13

14 L = length(line);

15 One = ones(1,L);

16

17 % End points of element

93



APPENDIX E. MATLAB CODE 94

18 X_e = [line, -One(1:L),-line(1:L),One(1:L)]';

19 Y_e = [One, line(1:L),-One(1:L),-line(1:L)]';

20

21

22 X_m = zeros(4*L-4,1);

23 Y_m = X_m; nx=X_m; ny=nx; tau_x=nx; tau_y=ny;

24

25

26 %Loops throug all endpoints, calculating colloaction points, normal and

27 %tangential vector in x and y direction

28 jj=0;

29 for j =1:4

30 for i = 1:L-1

31

32 %Index

33 h = i +(j-1)*(L-1);

34 I = h +jj;

35

36 %Collocation points

37 X_m(h) = (X_e(I) + X_e(I+1))/2;

38 Y_m(h) = (Y_e(I) + Y_e(I+1))/2;

39

40 %Normal

41 nx(h,1) = (Y_e(I+1) - Y_e(I))/dl;

42 ny(h,1) =-(X_e(I+1) - X_e(I))/dl;

43

44 %Tangent

45 tau_x(h,1) = (X_e(I+1) - X_e(I))/dl;

46 tau_y(h,1) = (Y_e(I+1) - Y_e(I))/dl;

47

48 end

49 jj = jj+1;

50 end

51

52 %Boundary condition

53 B = -U*nx;
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54

55

56 % Matching nodes on boundary

57

58 %Angles of coordinate axis

59 ang1 = 0;

60 ang2 = 3*pi/2;

61 ang = [ang1,ang2; ang2,ang1; ang1,ang2; ang2,ang1];

62

63 % Location of matching nodes on boundary

64 Sigma_M =zeros(1,4*NB);

65 for i = 1:4

66 for j = 1:NB

67 I = j + NB*(i-1);

68 if i==4 && j > NB/2

69 Sigma_M(I) = -(NB/2-j);

70 else

71 Sigma_M(I) = Nel/4*i - (NB/2-j);

72 end

73 end

74 end

75

76

77 %Boundary matching nodes distance form apex

78 D = abs(X_m(1) -X_m(2)); % Distance between to nodes

79 R = zeros(1,NB); % Vector with radial distance to boundary ...

matching nodes

80 for i = 1:NB/2

81 R(i) = a + D*(NB/2-i);

82 end

83 R(NB/2+1:NB) = fliplr(R(1:NB/2));

84

85

86 % Defining outer matching nodes

87

88 if Nout ==0
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89 X_out = 0;

90 Y_out = 0;

91 ang_out = 0;

92 else

93

94 %Pos of matching nodes outside boundary

95 X_pos = zeros(1,Nout);

96 Y_pos = X_pos;

97 angle = X_pos;

98

99 for i =1 : Nout

100 angle(i) = i * 3*pi/2 / (Nout+1);

101

102 % X and Y location of outer nodes around corner 1

103 X_pos(i) = a*cos(angle(i))-1;

104 Y_pos(i) = a*sin(angle(i))+1;

105 end

106

107 % Location of nodes, around corner 1-4

108 X_out = [X_pos,fliplr(X_pos),-X_pos,-fliplr(X_pos)]';

109 Y_out = [Y_pos,-fliplr(Y_pos),-Y_pos,fliplr(Y_pos)]';

110 ang_out=[angle,fliplr(angle),angle,fliplr(angle)];

111 end

112

113 end

E.2 Matcalc.m

1 % This script preformes the integration of the green function and ...

it normal

2 % derivative in the local domain, and sorts the known and unknwon values

3

4 function [BB,b] = Pot_include_local(X_e,Y_e,X_m,Y_m,BCT,BCV,Nel,N_fs,N_w)
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5

6

7

8 % Intgral values of normal derivative of Greens func

9 G = zeros(Nel,Nel);

10

11 % Intgral values of Greens func

12 H = zeros(Nel,Nel);

13

14 % Flips vectors to have right direction of integration

15 X_e = fliplr(X_e);

16 Y_e = fliplr(Y_e);

17 X_m = flipud(X_m);

18 Y_m = flipud(Y_m);

19

20

21 % Loops trhough all elements

22 for j = 1:Nel

23

24 %Singular point

25 xs = X_m(j);

26 ys = Y_m(j);

27

28 jj=0;

29 for i =1:Nel

30

31 %Index

32 if i== N_fs

33 jj=jj+1;

34

35 elseif i==N_fs +N_w

36 jj=jj+1;

37 end

38

39 %Endpoints of element

40 x1 = X_e(i+jj);
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41 x2 = X_e(i+1+jj);

42 y1 = Y_e(i+jj);

43 y2 = Y_e(i+1+jj);

44

45 %Element length

46 dx = x2-x1;

47 dy = y2-y1;

48 ds = sqrt( dx^2 +dy^2);

49

50 % Integration limits new coordinate system

51 s1 =-ds/2;

52 s2 = ds/2;

53

54 angle = atan2(dy,dx); %Of element

55

56 % Midpoints of panels

57 xm = X_m(i);

58 ym = Y_m(i);

59

60 %Distance to source in local coordinate system

61 x0 = (xs-xm)*cos(angle) + (ys-ym)*sin(angle);

62 y0 = (xs-xm)*sin(angle) - (ys-ym)*cos(angle);

63

64 % Integral values for G

65 if y0 ==0;

66 I2 = 1/(4*pi) * log((x0-s2)^2 + y0^2)*(s2-x0) - 1/(2*pi)*s2;

67 I1 = 1/(4*pi) * log((x0-s1)^2 + y0^2)*(s1-x0) - 1/(2*pi)*s1;

68 else

69 I2 = 1/(4*pi) * log((x0-s2)^2 + y0^2)*(s2-x0) - 1/(2*pi)*s2...

70 + 1/(2*pi)*atan((s2-x0)/(y0))*y0;

71

72 I1 = 1/(4*pi) * log((x0-s1)^2 + y0^2)*(s1-x0) - 1/(2*pi)*s1...

73 + 1/(2*pi)*atan((s1-x0)/(y0))*y0;

74 end

75

76 %Integral values of H
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77 if abs(y0) ≤ 10^-10 %Rounding error

78 I = 0;

79 else

80 I = 1/(2*pi)*(atan((x0-s2)/y0)-atan((x0-s1)/y0));

81 end

82

83 % Calculated values are put into the Matrices at appropriate

84 % location

85 G(j,i) = I2-I1;

86 H(j,i) = I;

87

88 end

89 end

90

91 % Adding the loaded elements contribution

92 H = H + 0.5*eye(Nel,Nel);

93

94

95

96

97 %All known values in AA, RHS. Unknown in BB, LHS

98 AA =zeros(Nel,Nel);

99 BB = zeros(Nel,Nel);

100

101 %Loops through the elements

102 for j =1:Nel

103 for i=1:Nel

104 if BCT(i) ==0 % Phi is known

105 AA(j,i) = -H(j,i);

106 BB(j,i) = -G(j,i);

107

108 else % Phi_n is known

109 AA(j,i) = G(j,i);

110 BB(j,i) = H(j,i);

111 end

112 end
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113 end

114

115 %Vector with known values

116 b = AA*BCV;

117

118

119 end

E.3 Corner

1 % This script preforms integration over the local corner domain of the

2 % cylinder. The terms connected with each constant in the local ...

solution is

3 % stored in Coeff1 for matching nodes on the boundary, and the

4 % terms connected with outer nodes are stored in Coeff2. The ...

integration is

5 % prefformed in the global domain, respecting the the local potential

6 % variable ,r, distance to the corner apex. Further, direct matching

7 % between the global and local domain is preformed, where unknown elements

8 % are stored in the matrix L and known values in vector e.

9

10

11 function [m,Coeff1,Coeff2,L,e,b] = ...

Corner(X_m,Y_m,X_out,Y_out,Nel,a,Nout,NC,NB,ang_out,ang,Sigma_M,R,b,U,d)

12

13

14 % m values

15 m = zeros(NC/4 ,1);

16 for i = 1 : NC/4-1

17 m(i+1) = i*pi/(2*pi - pi/2);

18 end

19

20
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21 % Endpoints of local domain in global coordinates

22 aa = [-1+a;-1;-1];

23 bb = [-1;-1;-1+a];

24 XC = [aa , bb , -aa , -bb];

25 YC = [-bb , aa , bb , -aa];

26

27 % Normal vector to elements, two for each corner

28 nx = [0,-1,-1,0,0,1,1,0];

29 ny = [1,0,0,-1,-1,0,0,1];

30

31 % For singularity on boundary

32 Coeff1 = zeros(Nel,NC);

33 for i =1:Nel

34

35 % Singular values

36 x0 = X_m(i);

37 y0 = Y_m(i);

38

39 Sigma =0; % Summation variable

40 jj=0;

41 for j = 1:4 %each corner

42 for k =1:2 %number of integrals

43

44 %Index

45 I = k + (j-1)*2;

46

47 % End coordinates

48 x1 = XC(k,j);

49 x2 = XC(k+1,j);

50 y1 = YC(k,j);

51 y2 = YC(k+1,j);

52

53 % Length of element

54 ds = 0.5*sqrt((x2-x1)^2 + (y1-y2)^2);

55

56 % x and y coordinate
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57 x = @(s) 0.5*(x1+x2) + 0.5*(x2-x1).*s;

58 y = @(s) 0.5*(y1+y2) + 0.5*(y2-y1).*s;

59

60 % Local distance to corner apex

61 sgn = (-1)^(k+1); % Sign, integrating form a to 0 or 0 to a

62 r = @(s) 0.5.*(a - sgn*a.*s);

63

64 %Green's functions

65 g = @(s) ds.*1/(2*pi).* log(sqrt( (x(s)-x0).^2 + ...

(y(s)-y0).^2));

66 g_x = @(s) nx(I).*ds.*1/(2*pi).* (x(s) - x0) ./ ( (x(s) - ...

x0).^2 + (y(s) - y0).^2);

67 g_y = @(s) ny(I).*ds.*1/(2*pi).* (y(s) - y0) ./ ( (x(s) - ...

x0).^2 + (y(s) - y0).^2);

68 g_n = @(s) g_x(s) + g_y(s);

69

70 % Integration terms of known values

71 Int_U = @(s) U.*x(s).*g_n(s);

72 Int_n = @(s) nx(I).*U.*g(s);

73

74 Sigma = Sigma + integral(Int_U,-1,1) - integral(Int_n,-1,1);

75

76 % Looping thourg each constant

77 for c = 1:NC/4 %For each constant in a corner

78 if c == 1

79 Int_C = @(s) g_n(s);

80 else

81 Int_C = @(s) r(s).^(m(c))*cos(m(c)*ang(j,k)) .* g_n(s);

82 end

83

84 % Storing terms in matrix

85 Coeff1(i,c+jj) = Coeff1(i,c+jj) + integral(Int_C,-1,1);

86 end

87 end %for k

88

89 jj = jj + NC/4; %Index
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90 end

91 b(i) = b(i) +Sigma; % Known values

92 end

93

94

95 % For singularities outside the boundary

96 Coeff2 = zeros(4*Nout,NC);

97 for i =1:4*Nout

98

99 %Singular element

100 x0 = X_out(i);

101 y0 = Y_out(i);

102

103 % Summation

104 Sigma =0;

105 jj=0;

106 for j = 1:4 % Each corner

107 for k =1:2 % Number of integrals

108

109 %Index

110 I = k + (j-1)*2;

111

112 % End points

113 x1 = XC(k,j);

114 x2 = XC(k+1,j);

115 y1 = YC(k,j);

116 y2 = YC(k+1,j);

117 ds = 0.5*sqrt((x2-x1)^2 + (y1-y2)^2);

118

119 % x and y variable

120 x = @(s) 0.5*(x1+x2) + 0.5*(x2-x1).*s;

121 y = @(s) 0.5*(y1+y2) + 0.5*(y2-y1).*s;

122

123 % Local distance to corner apex

124 sgn = (-1)^(k+1); % sign

125 r = @(s) 0.5.*(a - sgn*a.*s);
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126

127 %Green's functions

128 g = @(s) ds.*1/(2*pi).* log(sqrt( (x(s)-x0).^2 + ...

(y(s)-y0).^2));

129 g_x = @(s) ds.*1/(2*pi).* (x(s) - x0) ./ ( (x(s) - x0).^2 + ...

(y(s) - y0).^2);

130 g_y = @(s) ds.*1/(2*pi).* (y(s) - y0) ./ ( (x(s) - x0).^2 + ...

(y(s) - y0).^2);

131 g_n = @(s) nx(I).*g_x(s) + ny(I).*g_y(s);

132

133 % Integral terms of known values, added to sigma

134 Int_U = @(s) U.*x(s).*g_n(s);

135 Int_n = @(s) nx(I).*U.*g(s);

136

137 Sigma = Sigma + integral(Int_U,-1,1) -integral(Int_n,-1,1) ;

138

139 % Coefficient terms

140 for c = 1:NC/4 %For each constant in a corner

141 if c == 1

142 Int_C = @(s) g_n(s);

143 else

144 Int_C = @(s) r(s).^(m(c))*cos(m(c)*ang(j,k)) .* g_n(s);

145 end

146

147 Coeff2(i,c+jj) = Coeff2(i,c+jj) + integral(Int_C,-1,1);

148 end

149 end %for k

150

151 jj = jj + NC/4; % Index

152 end

153 % Known values are stores in d

154 d(i) = d(i) + Sigma + U*X_out(i);

155 end

156

157 %Matching equations for outer nodes

158 for i = 1:4 %For each corner
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159 for j = 1:Nout % for each outer nodes in a corner

160

161 I = j +(i-1)*Nout; %row index

162

163 for c = 1:NC/4 % for each constant

164

165 CC = c + (i-1)*NC/4; %Col index

166 if c ==1

167 Coeff2(I,CC) = Coeff2(I,CC)+1;

168 else

169 Coeff2(I,CC) = Coeff2(I,CC)+a^(m(c))*cos(m(c)*ang_out(I));

170 end

171 end

172 end

173 end

174

175

176 %Matching equations for boundary nodes

177 L = zeros(4*NB, Nel+NC);

178 for i =1:4*NB

179 L(i, Sigma_M(i)) = -1;

180 end

181

182

183 for i = 1:4 % for each corner

184 for j =1:NB % for each boundary matching node

185

186 % Row index

187 I = j + (i-1)*NB;

188

189 % Angle of coordinate axis in local domain

190 if j ≤ NB/2

191 theta = ang(i,1);

192 else

193 theta = ang(i,2);

194 end
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195

196 for c = 1:NC/4 % for each constant

197 col = Nel + c + NC/4*(i-1);

198

199 % Local potential

200 if c==1

201 L(I,col) = 1;

202 else

203 L(I,col) = R(j)^m(c)*cos(m(c)*theta);

204 end

205

206 end %for c

207 end

208 end

209

210 % Known values

211 e = U*X_m(Sigma_M)';

212

213 end

E.4 Least Sqaure

1 % Matches the solutions using least sqaures

2

3 function [LS,d] = ...

LeastSquare(a,ang,m,U,X_m,Nel,NB,Nout,NC,K,Coeff2,angle,f,X_out,R)

4

5 %Matching equations for outer nodes

6 LS =zeros(4*NC,Nel+4*NC);

7 d = zeros(4*NC,1);

8

9 % Location of matching nodes on boundary

10 Sigma_M =zeros(1,4*NB);
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11 for i = 1:4 % For each corner

12 for j = 1:NB

13 I = j + NB*(i-1); %Index

14

15 if i==4 && j > NB/2

16 Sigma_M(I) = -(NB/2-j);

17 else

18 Sigma_M(I) = Nel/4*i - (NB/2-j);

19 end

20

21 end

22 end

23

24 % Adding global pot. values

25 for c =1:4 % for each corner

26 if c==2 ||c==4

27 Ang = fliplr(angle);

28 else

29 Ang = angle;

30 end

31

32 for i = 1:NC %For each equation

33 I = i + (c-1)*NC; % Row index

34

35 Start = 1 + (c-1)*Nout;

36 End = Nout + (c-1)*Nout;

37

38

39 %Adding the potential of the outer nodes

40 for j = 1:Nel

41 if i ==1

42 LS(I,j) = sum(K(Start:End,j));

43 else

44 Sigma = 0;

45 for k =1:Nout

46 KK = k +(c-1)*Nout;
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47 Sigma = Sigma + a^(m(i))*cos(m(i)*Ang(k)) * K(KK,j);

48 end

49 LS(I,j) = Sigma;

50 end

51 end

52

53 %Adding potential to boundary nodes

54 for k=1:NB

55 KK = k + (c-1)*NB;

56 if i==1 %if eq 1

57 LS(I,Sigma_M(KK)) = LS(I,Sigma_M(KK)) + 1;

58 else %Not eq 1

59 if k ≤ NB/2

60 AAA = 1;

61 else

62 AAA = 2;

63 end

64 LS(I,Sigma_M(KK)) = LS(I,Sigma_M(KK)) + ...

R(k)^(m(i))*cos(m(i)*ang(c,AAA));

65 end

66 end

67

68 end %for each equation, i

69 end %for each corner, c

70

71

72 %Adding all terms connetet with local sol.

73 for c = 1:4 % for each corner

74 if c==2 || c==4

75 Ang = fliplr(angle);

76 else

77 Ang = angle;

78 end

79

80 for i = 1:NC %For eqaution

81
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82 I =i + (c-1) * NC; %Index for row

83

84 for j =1:NC % for each constant in local solution

85

86 J = j + (c-1)*NC + Nel; %col index, LS

87 JJ =j + (c-1)*NC; %col index Coeff2

88

89 Start = 1+(c-1)*Nout;

90 End = Nout + (c-1)*Nout;

91

92 % Adding terms for outer nodes

93 if i == 1 %eq 1

94 if j ==1 % if C0 term

95 LS(I,J)= -1*Nout + sum(Coeff2(Start:End , JJ));

96 else %not C0 term

97 Sigma =0;

98 for k=1:Nout %for each angle

99 KK = k + (c-1)*Nout;

100 Sigma = Sigma - a^(m(j))*cos(m(j)*Ang(k)) + ...

Coeff2(KK,JJ) ;

101 end

102 LS(I,J) = Sigma;

103 end

104

105 else %if not eq 1

106

107 if j ==1 %if C0 term

108 Sigma =0;

109 for k=1:Nout %for each angle

110 KK = k + (c-1)*Nout;

111 Sigma = Sigma + a^m(i)*cos(m(i)*Ang(k)) * (-1 + ...

Coeff2(KK,JJ) );

112 end

113 LS(I,J) = Sigma;

114 else %not C0 term

115 Sigma =0;
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116 for k =1:Nout

117 KK = k + (c-1)*Nout;

118 Sigma = Sigma + a^(m(i))*cos(m(i)*Ang(k)) * ...

(-a^m(j)*cos(m(j)*Ang(k)) + Coeff2(KK,JJ) );

119 end

120 LS(I,J) = Sigma;

121 end

122 end

123

124 %Adding terms form the boundary nodes

125 if i==1 %if equation 1

126 if j==1 %if C0 term

127 LS(I,J) = LS(I,J) - 1*NB;

128 else %not C0 term

129 Sigma =0;

130 for k =1:NB

131 if k ≤ NB/2

132 AAA = 1;

133 else

134 AAA = 2;

135 end

136 Sigma = Sigma - R(k)^m(j)*cos(m(j)*ang(c,AAA));

137 end

138 LS(I,J) = LS(I,J) + Sigma;

139 end

140 else %not eq 1

141 if j==1 %if C0 term

142 Sigma =0;

143 for k =1:NB

144 if k ≤ NB/2

145 AAA = 1;

146 else

147 AAA = 2;

148 end

149 Sigma = Sigma - R(k)^m(i)*cos(m(i)*ang(c,AAA));

150 end
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151 LS(I,J) = LS(I,J) + Sigma;

152 else % not C0 term

153 Sigma =0;

154 for k =1:NB

155 if k ≤ NB/2

156 AAA = 1;

157 else

158 AAA = 2;

159 end

160 Sigma = Sigma - ...

R(k)^(m(i))*cos(m(i)*ang(c,AAA)) * ...

R(k)^(m(j))*cos(m(j)*ang(c,AAA));

161 end

162 LS(I,J) = LS(I,J) + Sigma;

163 end

164 end %Adding boundary nodes

165

166 end

167 end

168 end %for each corner, c

169

170

171 %Vector d

172

173 %for all outer nodes

174 for c =1:4 %for each corner

175 if c==2 ||c==4

176 Ang = fliplr(angle);

177 else

178 Ang = angle;

179 end

180

181 for i=1:NC %for each equation

182 I = i + (c-1)*NC;

183

184 if i == 1 %if equation 1
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185 Sigma =0;

186 for k = 1:Nout %for all outer nodes

187 KK = k + (c-1)*Nout;

188 Sigma = Sigma - f(KK) - U*(X_out(KK));

189 end

190 d(I) = Sigma;

191 else %Not equation 1

192 Sigma = 0;

193 for k = 1:Nout

194 KK = k + (c-1)*Nout;

195 Sigma = Sigma + a^m(i)*cos(m(i)*Ang(k)) * ( - ...

f(KK)-U*(X_out(KK)));

196 end

197 d(I) = Sigma;

198 end

199 end

200 end

201

202 %For the nodes on the boundary

203 for c=1:4 %for each corner

204 for i=1:NC %For each eqaution

205 I = i + (c-1)*NC;

206

207 if i==1 %if equation 1

208 Sigma =0;

209 for k=1:NB

210 KK = k + (c-1)*NB;

211 Sigma = Sigma + U*X_m(Sigma_M(KK));

212 end

213 d(I) = d(I) - Sigma;

214 else %not eq 1

215 Sigma = 0;

216 for k=1:NB

217 KK = k + (c-1)*NB;

218 if k ≤ NB/2

219 AAA = 1;
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220 else

221 AAA = 2;

222 end

223 Sigma = Sigma + R(k)^m(i)*cos(m(i)*ang(c,AAA)) * ...

U*X_m(Sigma_M(KK));

224 end

225 d(I) = d(I) - Sigma;

226 end

227

228 end

229 end

230

231

232

233 end

E.5 Sysmat

1 %This program assembels and solves the the system matrix. Several ...

places in

2 %the code, somewhat complex calculation are done, in order to put the

3 %values in the tight place in the matrix. The logic behind these will not

4 %be explained, just marked, Index.

5 %Firstly the location of the matching boundary is found and stored. Then

6 %the system matrix if filled up with contribution as follows:

7

8 function [M,C,Phi_s,Phi,G] = SysMat(Nel,Coeff1,H,U,X_m,b,d,NC,LS)

9

10 %System matrix and vector for solving the system

11 M = zeros(Nel + 4*NC,Nel + 4*NC);

12 G = zeros(Nel + 4*NC,1);

13

14 %The H matrix is put into the NxN first elements of M
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15 M(1:Nel,1:Nel) = H;

16 M(1:Nel, Nel+1 : Nel+4*NC) = Coeff1;

17 G(1:Nel) = b;

18

19 % Continuity equations

20 M(Nel+1 : Nel+4*NC , 1 : Nel + 4*NC) = LS;

21 G(Nel+1 : Nel+4*NC) = d;

22

23 % The system matrix is solved for the unknown vector X.

24 X = M\G; % solving matrix equation

25

26 Phi_s = X(1:Nel); % Unknown part of the gloabal vel potential

27 C = X(Nel+1:Nel+4*NC); % Constants in the local potential solution

28

29

30 Phi = Phi_s+ U.*X_m(:,1); %Total velocity potential

31

32 end

E.6 Sensitivity

1 % This script calculates the global and local velocity potential at the 10

2 % global nodes closest to the top left corner on the sqaure cylinder

3

4 function [Phi_loc_TLC_s1] = Loc_Pot_TLC(C,m,NC,X_m,Y_m,Nel)

5

6

7 % Number of nodes

8 Nodes = 10;

9

10 % Vector where loc. pot is saved

11 Phi_loc_TLC_s1 = zeros(Nodes,1);

12
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13 % Angle of local coordinate axis

14 Angle = 0;

15

16 %Global location of top left corner

17 cor = [-1,1];

18

19 %local coordinates

20 xloc = cor(1,1)-X_m(Nel/4 -9: Nel/4);

21 yloc = cor(1,2)-Y_m(Nel/4 -9: Nel/4);

22

23 %Radial distance to nodes from corner

24 r = sqrt(xloc.^2 + yloc.^2);

25 r = flipud(r);

26

27 % Calculates the local potential at the 10 nodes

28 for i = 1:Nodes %for each node

29 sigma =0;

30 for j =1:NC % for eack constant in local sol

31 if j==1

32 sigma = sigma + C(j);

33 else

34 sigma = sigma + C(j)*r(i)^m(j)*cos(m(j)*Angle);

35 end

36 end

37 Phi_loc_TLC_s1(i) = sigma;

38 end

39

40

41 end

E.7 Convergence

1 % This script calculates the location of the control nods for each
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2 % iteration

3

4 function [Phi_CP,P] = Controlnodes(Phi,factor,I,Nel)

5

6 %Control Nodes

7 P = [Nel/10, Nel/16, Nel/20 , Nel/8+Nel/16, Nel/4];

8

9 % Finds the correct indices of the nodes to be controlled

10 if I ==1

11 Phi_CP = Phi(P);

12 else

13 for i = 1:length(P)

14 idx1 = P(i)-factor + factor/2;

15 idx2 = idx1 + 1;

16

17 Phi_CP(i) = (Phi(idx1) + Phi(idx2))/2;

18 end

19 end

20

21 % This script calculates the observed order of accuracy, GCI and

22 % approximated true solution at the control nodes, using the save vales

23 % for Phi or dPhi

24

25 function [p,F_h0, GCI,Fraction] = OrderCheck(ContNodes,I)

26

27

28 r = 2; %Refinement factor

29 Fs =1.25; %Safety factor

30 L = length(ContNodes); %Number of Nodes checked

31

32 %Order of Accuracy

33 for i =1:L

34 for j=1:I-2

35 d1 = ContNodes(i,j) - ContNodes(i,j+1);

36 d2 = ContNodes(i,j+1) - ContNodes(i,j+2);

37
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38 p(i,j) = log(d1/d2) / log(r);

39 end

40 end

41

42 %Approximated exact solution

43 for i =1:L %For each point

44 for j =1:I-2 % for each of the two finest solutions

45 F_h0(i,j) = ContNodes(i,j+2) + ...

(ContNodes(i,j+2)-ContNodes(i,j+1))/(r^p(i,j)-1);

46 end

47 end

48

49

50 %GCI

51 for i =1:L % for each point

52 for j=1:I-2 % for each p

53

54 for k =1:2 %for comparable GCI

55

56 col = k + (j-1)*2; % Index

57 J = j +(k-1); % Index

58

59 eps = abs((ContNodes(i,J) - ...

ContNodes(i,J+1))/(ContNodes(i,J+1)));

60

61 GCI(i,col) = eps/(r^p(i,j)-1)*Fs;

62 end

63

64 end

65 end
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