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Abstract

Hydrodynamic flow around a simplified hull form has been investigated using nu-
merical simulations in OpenFOAM. The flow in question is three-dimensional and
turbulent at a Reynolds number of 26,400. The base geometry is a rectangular
cylinder (or box) with an aspect ratio of 5:1, and flow in longitudinal (x-)direction
(cross-flow width is 1 and in-flow length is 5). The height of the body is 1 in the
z-direction, hence it is quadratic in the y-z plane. Simulations have been run in
parallel on the supercomputer Vilje at NTNU.

Three different cases have been investigated. Two of the cases are concerned with
double-body flow. This means the geometry is ”doubled” (mirrored across the x-y
plane), and fully submerged with fluid on all sides. The difference between these
two cases is the turbulence modelling; one uses Reynolds Averaged Navier-Stokes
(RANS), while the other uses Large Eddy Simulation (LES). The third case is
called the floating body case. This is not a double-body, but a ”single” body next
to a simple free-slip approximated free surface boundary. The floating body case
uses RANS.

Both the RANS and the LES approaches are based on decomposing the field
variables. In RANS, variables are decomposed into a mean and a fluctuating part.
In LES, they are decomposed into a filtered and a residual part based on a filter
width. In short, RANS decomposition is based on statistical averaging, while LES
decomposition is based on spacial filtering. LES is generally much more detailed,
and requires a much finer grid. RANS is relatively simple, and much faster to run.
Increased accuracy from LES must be paid for in increased computational effort.

For both RANS cases, the grid used was the same (only doubled in the double-
body case). Wall functions were applied to reduce cell count near the wall and
hence simulation time. The LES grid was much finer, as is required when the whole
boundary layer is to be resolved. Applied turbulence models were the realizable
k-epsilon model (RANS) and the Smagorinsky sub-grid scale model (LES). These
models proved to be well suited to describe the flow in question.

The results showed some differences between the cases. One difference was higher
force coefficients in the floating body case than in the double-body case. This was
likely caused by the restrictive free-slip free surface boundary in the floating body
case. A grid sensitivity study for the double-body RANS case showed that the
applied grid is fine enough for this application.

Due to limited time and computational resources, the LES case could not be run
long enough to achieve satisfying statistical convergence. Therefore, the com-
parison between RANS and LES in this project has some shortcomings. It was,
however possible to draw some conclusions from it. LES is clearly better at cap-
turing the vortex shedding, and maintaining it further downstream. The RANS
simulations also captured vortex shedding, but not as accurately. Another result
of the comparison was that RANS seemed to under predict the drag coefficient.
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Sammendrag

Hydrodynamisk strømning rundt en forenklet skrogform har blitt undersøkt ved
hjelp av numeriske simuleringer i OpenFOAM. Strømningen er tredimensjonal og
turbulent, med et Reynolds tall p̊a 26.400. Basisgeometrien er en rektangulær
sylinder (eller boks) med aspektforhold p̊a 5:1 og strøm i langsg̊aende (x-)retning
(dimensjonene er 1 p̊a tvers av strømmen og 5 p̊a langs). Høyden p̊a legemet er 1
i z-retningen, slik at det blir kvadratisk i y-z planet. Simuleringene har blitt kjørt
i parallell p̊a superdatamaskinen Vilje p̊a NTNU.

Tre forskjellige caser har blitt undersøkt. To av casene omhandler s̊akalt double-
body strømning. Dette betyr at basisgeometrien er ”doblet” (speilet over x-y
planet), og fullt neddykket med fluid p̊a alle sider. Forskjellen mellom disse
to casene er turbulensmodelleringen; én bruker Raynolds Averaged Navier-Stokes
(RANS), mens den andre bruker Large Eddy Simulation (LES). Den tredje casen
kalles flytende legeme. Dette er ikke et double-body, men et ”enkelt” legeme inntil
en fri-slipp forenklet fri overflate grensebetingelse. Flytende legeme-casen bruker
RANS.

B̊ade RANS og LES er basert p̊a å dekomponere feltvariablene. I RANS blir variab-
lene dekomponert til en midlere og en fluktuerende del. I LES blir de dekomponert
til en filtrert del og en rest basert p̊a en filterbredde. Kort sagt er dekomponeringen
i RANS basert p̊a å ta et statistisk gjennomsnitt, mens dekomponeringen i LES er
basert p̊a filtrering i rommet. LES er generelt mye mer detaljert, og behøver mye
finere grid. RANS er relativt enkelt, og mye raskere å kjøre. Økt nøyaktighet fra
LES må betales i økt antall prosessortimer i simuleringen.

Griddet var det samme for begge RANS-casene (bare doblet for double-body casen).
Veggfunksjoner ble brukt for å redusere antall celler nær veggen og dermed redusere
simuleringstiden. LES-griddet var mye finere. Det trengs n̊ar hele grensesjiktet
skal løses. Turbulensmodellene som ble brukt var realizable k-epsilon modellen
(RANS) og Smagorinsky sub-grid scale modellen (LES). Disse modellene viste seg
å passe bra for å beskrive strømningen her.

Resultatene viste en del forskjeller mellom casene. Én forskjell var høyere kraftko-
effisienter for det flytende legemet enn for double-body. Dette ble sannsynligvis
for̊arsaket av den restriktive fri-slipp fri overflate grensebetingelsen i flytende legeme-
casen. En sensitivitetsstudie for double-body RANS-griddet viste at det var fint
nok for disse simuleringene.

Grunnet begrenset tid og kapasitet p̊a datamaskinen kunne ikke LES-casen bli
kjørt lenge nok til å n̊a tilfredsstillende statistisk konvergens. Derfor har sammen-
likningen mellom RANS og LES i dette prosjektet noen begrensninger. Det var
likevel mulig å dra noen konklusjoner fra den. LES er klart bedre til å fange opp
virvelavløsningen og følge den nedstrøms. RANS simuleringene fanget ogs̊a opp
virvelavløsningen, men ikke like nøyaktig. Et annet resultat av sammenlikningen
var at RANS s̊a ut til å underpredikere drag-koeffisienten.
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1 Introduction

1.1 Background and Motivation

The role of Computational Fluid Dynamics (CFD) is becoming more important
in both research and commercial activities. This is to a large extent due to the
rapid evolution of more powerful computers in the last decades. As more compu-
tational power becomes available to researchers and engineers, the more attractive
it becomes to take advantage of numerical methods in hydrodynamics. Today,
CFD is being used for a wide variety of applications. In hydrodynamic research,
numerical methods are often used to complement experiments for validation pur-
poses. They are also used without experiments in cases where experiments are
too difficult and/or expensive. In the industry, CFD is used for a wide variety of
hydrodynamic applications, from estimation of ship resistance to detailed analysis
of flow around various specialized structures, such as sub-sea modules. It should
also be mentioned that CFD is being used in many different areas; not just in
hydrodynamics.

Reynolds-Averaged Navier-Stokes (RANS) methods have for a long time been the
most widely used approach for simulating turbulent flow. This is due to its low
computational cost and reasonable accuracy for many applications. With improve-
ments in computational power, other more advanced methods, such as Large Eddy
Simulations (LES), are becoming increasingly attractive. It can be expected that
this development will continue in the future. Therefore it is interesting to see how
the different methods can be compared in terms of applicability, accuracy and
computational cost for various hydrodynamic applications.

This master’s thesis is designed to be an introduction to the world of CFD in
hydrodynamics. It consists of a thorough introduction to the background theory
of turbulent flows, a practical introduction to the computational methods used, and
results of simulations of flow around simple geometries using different turbulence
modelling techniques.

There were two main motivations behind this thesis. The first was to make efforts
to be able to simulate flow around a ship hull. The second was to compare different
turbulence modelling techniques, preferably both RANS and LES. The ship hull
case is interesting because it is practically significant in the industry, and because
it would give great experience in modelling flow around complicated geometries.
The comparison of turbulence models is interesting because it would give a better
understanding of both theory and practice regarding the many different models.
This is something that is always of interest in CFD, since choice of turbulence
model can affect results significantly.

As modelling flow around a ship hull proved to be too time consuming within the
scope of this project, it was decided to use simplified geometries instead, and to
focus on comparing different turbulence models and their applicability in this case.
The simplified geometry used was a rectangular cylinder (or box), in both a fully
submerged case and a floating case. The results of interest are the flow field in
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general and the forces on the body. All simulations were run on the supercomputer
Vilje at NTNU.

1.2 Previous Work

Previous to the work presented in this master’s thesis, the author has completed
simulations of flow around even simpler geometries. This previous work served
as a background for what will be presented later in this thesis. The simulations
in question were concerned with flow around rectangular cylinders spanning the
whole fluid domain, first in 2-D and then in 3-D. This was a simpler case, both
in terms of flow complexity and pre-processing. These simulations were compared
to results found in the literature. The 2-D results were compared to the study of
Mannini et al. (2010), and the 3-D results were compared to the studies of Mannini
et al. (2011) and Arslan et al. (2011). As the results corresponded quite well, the
general approach was adopted into the simulations in this master’s project, which
have not been compared to results from the literature. This is because the author
was unable to find suitable comparison studies. Hence, the previous comparison
studies still have some relevance for validation of the results of this master’s thesis.
The work of Rodi (1997) has been used as a reference for the comparison between
RANS and LES.

1.3 Outline of the Thesis

Chapter 2 is a review of the theory behind the applied computational methods.
This includes the governing equations, a description of turbulence, and turbulence
modelling in both RANS and LES. A short description of the finite volume method
is also included. Chapter 3 is a description of the CFD software OpenFOAM. This
includes both its background and practical use. Chapter 4 is an introduction to
pre-processing in CFD. It is mostly concerned with grid generation. The remaining
chapters contain the results of the numerical simulations, discussion of these results
and finally some conclusions based on this.
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2 Background Theory

2.1 Fundamental Equations of Viscous Flow

Numerical simulation of fluid flow is based on solving the fundamental equations
of fluid mechanics. These are conservation of mass (the continuity equation), con-
servation of momentum (the Navier-Stokes equations), and conservation of energy.
It is rarely necessary to solve the energy equation in marine hydrodynamics, since
temperature can be assumed constant.

In fluid dynamics, the Eulerian form of motion is usually used to describe the flow
field. This means that we look at the flow at every fixed point in the fluid as a
function of time. In practice, the fluid domain is divided into control volumes,
and the equations are solved in each of these. The alternative to Eulerian is La-
grangian. With the Lagrangian form of motion, one follows the trajectories of each
individual particle in the flow. The common form of the conservation equations
are Lagrangian in nature. This results in the so-called particle derivative when
we want to describe the flow field using Eulerian formulation and the conservation
equations (White, 2006).

2.1.1 The Continuity Equation

The continuity equation expresses conservation of mass in the entire fluid domain.
In cartesian coordinates, the general compressible form is:

∂ρ

∂t
+
∂(ρu)

∂x
+
∂(ρv)

∂y
+
∂(ρw)

∂z
= 0 (2.1)

In this project, only incompressible flow is considered. Then, the fluid density ρ
can be omitted from the equation:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.2)

This can also be written as:

∂ui
∂xi

= 0 (2.3)

Here, i can be 1, 2 and 3, representing the x-, y- and z-directions respectively.
When i is present more than once in a component of a formula, like in equation
2.3, all three components are added together. This means that ∂ui

∂xi
= ∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
,

or that equation 2.2 is equivalent to equation 2.3. This notation, with both i and
j, will be used throughout this report.
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2.1.2 The Navier-Stokes Equations

The Navier-Stokes equations are derived from Newton’s second law of motion for
a fluid. Written on vector form:

ρ
d~u

dt
= −∇p+ µ∇2~u (2.4)

Here, d
dt

is the so-called particle derivative. It includes derivatives in both time
and space; d

dt
= ∂

∂t
+ (~u ∗ ∇). The background for this is that the conservation

laws are Lagrangian, i.e they apply to fixed systems, or particles (White, 2006).
Written on componential form, equation 2.4 becomes:

ρ(
∂ui
∂t

+ uj
∂ui
∂xj

) =
∂

∂xj
(σij) (2.5)

or:

ρ
dui
dt

= − ∂p

∂xi
+ µ

∂2ui
∂x2

i

(2.6)

Here, σij = −pδij + 2µSij is the stress tensor, and Sij = 1
2
( ∂ui
∂xj

+
∂uj
∂xi

) is the rate

of strain tensor. δij is the Kronecker delta function which is equal to 1 for i=j
and 0 otherwise. µ is the dynamic viscosity of the fluid. The assumptions behind
these formulas are incompressibility, Newtonian fluid and constant fluid properties.
Also, gravity forces have been neglected, which is reasonable when dealing with
plane flows. Newtonian fluid means that the viscous stresses are linearly related
to the strain-rate (White, 2006). The first term on the left side of equation 2.5 is
the time derivative of velocity, which will go away if we assume steady flow. The
second term on the left is the convection term, representing the spatial derivatives
of velocity. The term on the right of equation 2.5 can best be seen by rewriting
into the two terms seen on the right in equation 2.6. The first of these two terms
is the pressure term, and the second is the viscous stress term. This last term is
essential when dealing with turbulent flows.

2.1.3 Boundary Conditions

To solve the fundamental equations above, which are partial differential equations,
boundary conditions are necessary. There are essentially two main categories of
the most commonly used boundary conditions for a fluid, Dirichlet and Neumann
conditions. A Dirichlet condition specifies the value of a variable at the bound-
ary, while a Neumann condition specifies the derivative of the variable. Both are
frequently used in CFD. Initial conditions for a CFD problem is set to specified
values for the whole fluid domain. With the proper conservation equations, and
boundary and initial conditions, the system is solvable. There is, however one phe-
nomena that greatly complicates matters when it comes to fluid dynamics, and
that is turbulence.
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2.2 Principles of Turbulence

Turbulence is a phenomenon that is easy to recognize, but very difficult to define.
Essentially, turbulence is the apparently random behaviour of the flow that causes
it to deviate from its mean. The opposite of turbulent is laminar. Laminar flow is
smooth and ordered, while turbulent flow is chaotic and random-looking.

When doing mathematical computations with turbulence, some characteristic prop-
erties are especially important to be aware of. First of all, turbulence occurs at high
Reynolds numbers. At moderate Reynolds numbers, there is a transition between
laminar and turbulent flow. The nature of the flow is very dependent on where the
flow can be placed on the laminar-to-turbulent scale. At what Reynolds number
a specific flow is fully turbulent depends on its nature. This paper deals with flow
past a rectangular cylinder. For flow past a circular cylinder, fully turbulent flow
occurs for Re > 3.5 ∗ 106 (Pettersen, 2007).

Another important aspect of turbulence is its diffusivity. Turbulence causes in-
creased mixing of the fluid and generates momentum, heat and mass transfer (Ten-
nekes and Lumley, 1972). This is connected to the dissipative nature of turbulent
flows. The turbulent kinetic energy is gradually transformed into heat. Hence, the
turbulence will eventually fade out if there is not a supply of turbulent energy.

Turbulence is always a three-dimensional phenomenon. This is connected to its
rotational nature. Random vorticity fluctuations are important characterizing
aspects of turbulence, and cannot maintain themselves in two-dimensional flow
since the important mechanism of vortex stretching is not present there (Tennekes
and Lumley, 1972). This means that simulation of turbulent flow in 2-D has an
important shortcoming, and is never fully correct physically.

2.3 Reynolds Averaging

In the context of numerical fluid dynamics, it is of course possible to solve the full
Navier-Stokes equations for the entire flow field. This is called direct numerical
simulation (DNS), and is a very demanding process. To do this, one needs very
powerful computers and a lot of time and patience. In practice, modelling of
turbulence is therefore an important field of study. This can save a lot of time
and resources related to the simulations. Simple simulations of flow with modelled
turbulence can be run even on home computers.

To begin modelling of turbulence, one can look at its most important character-
istics; the flow variables are fluctuating around a mean. This means that one can
separate the variables, like velocity, into a mean and a fluctuating component. The
Reynolds Averaged Navier-Stokes (RANS) equations are deduced by two mathe-
matical operations; Reynolds decomposition and averaging. A general reference
for this section can be made to chapter 2 of Tennekes and Lumley (1972).
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If absolute velocity is denoted ûi, the Reynolds decomposition will be:

ûi = Ui + ui (2.7)

Here, Ui is the mean component and ui is the fluctuating component. We can
introduce this in the incompressible continuity equation (equation 2.3), resulting
in equation 2.8.

∂Ui
∂xi

+
∂ui
∂xi

= 0 (2.8)

Looking at equation 2.3 we can say that the mean flow is incompressible:

∂Ui
∂xi

= 0 (2.9)

And hence that the fluctuations must also be incompressible:

∂ui
∂xi

= 0 (2.10)

As for velocity, the corresponding decomposition for pressure will be: p̂ = Pi + pi.
Also, we can write σ̂ij = Σij+σij and Ŝij = Sij+sij, decomposing stress and strain
tensor, respectively. If these decompositions are introduced in the Navier-Stokes
equations without any further simplification, we get:

∂Ui
∂t

+
∂ui
∂t

+ Uj
∂Ui
∂xj

+ uj
∂Ui
∂xj

+ Uj
∂ui
∂xj

+ uj
∂ui
∂xj

=
1

ρ
(
∂

∂xj
Σij +

∂

∂xj
σij) (2.11)

The equation is then simplified by taking the time average of all terms. We then
assume that all fluctuating components oscillate around a zero mean, meaning
that the average of all fluctuating components are zero. The only fluctuating part
of equation 2.11 that will be retained is the last term on the left side. Since this
is the product of two fluctuating components, we cannot say that it averages to
zero. Averaging all terms in equation 2.11 reduces it to:

∂Ui
∂t

+ Uj
∂Ui
∂xj

+ uj
∂ui
∂xj

=
1

ρ

∂

∂xj
(Σij) (2.12)

The overlining denotes a time average. Looking at term number three on the
left side of equation 2.12, which is the fluctuating term, we can decompose it
into: uj

∂ui
∂xj

= ∂
∂xj

(uiuj) − ui ∂uj∂xj
where the second term is zero due to continuity

(equation 2.10). Hence, equation 2.12 reduces to equation 2.13, the unsteady
RANS equation.

∂Ui
∂t

+ Uj
∂Ui
∂xj

=
1

ρ

∂

∂xj
(Σij − ρuiuj) (2.13)

The last term on the right side of equation 2.13 is the so-called Reynolds stress
term, and is often denoted τij. This is the only term that is not present in the
Navier-Stokes equations for non-turbulent flow. From this it is clear that turbu-
lence seems to increase the stresses in the flow.
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2.4 Turbulence Modelling in RANS

Solving the general RANS equation is not straight forward as there are too many
unknowns. To solve it, we will need more equations and assumptions. A general
reference for this section can be made to chapter 3 of Tennekes and Lumley (1972).

To begin, we need a relation between the mean flow and the turbulent stresses.
Such a relation was proposed by J. Boussinesq in 1877 and reads:

−ρuiuj = 2ρνTSij −
2

3
ρkδij (2.14)

The mean flow is here represented by Sij = 1
2
(∂Ui

∂xj
+

∂Uj

∂xi
). The variable k is the

mean turbulent kinetic energy:

k =
1

2
uiui (2.15)

The relation in equation 2.14 implies that the turbulence has a dissipative effect
and that this dissipation can be modelled by a turbulent viscosity term νT (Layton,
2014), also called eddy viscosity. It should be noted that this turbulent viscosity
is not a physical property, but an imaginary variable to help understand the tur-
bulence concept. It is also a flow property, not a fluid property, and will vary in
space and time from flow to flow. The Boussinesq relation is not generally cor-
rect (Layton, 2014), but works well as an approximation as it captures important
physics of turbulence.

If we expand the unsteady RANS equation using Σij = −Pδij + 2µSij we get:

∂Ui
∂t

+ Uj
∂Ui
∂xj

=
1

ρ

∂

∂xj
(−Pδij + 2µSij − ρuiuj) (2.16)

Introducing the Boussinesq relation into equation 2.16 we get:

∂Ui
∂t

+ Uj
∂Ui
∂xj

= − ∂

∂xi
(
P

ρ
+

2

3
k) +

∂

∂xj
(2(ν + νT )Sij) (2.17)

The system of equations would now be solvable if we had knowledge of the tur-
bulent viscosity and mean turbulent kinetic energy. To accomplish this, we can
introduce new equations for them.

A general transport equation for mean turbulent kinetic energy can be written as:

dk

dt
= Dk + Pk − ε (2.18)

Pk is production of mean turbulent kinetic energy. It can be written as:

Pk = −uiuj
∂Ui
∂xj

(2.19)

This implies that production of turbulent kinetic energy comes from interaction
between turbulence and the mean flow. Introducing Boussinesq (equation 2.14)
we can write this as:

Pk = (2νTSij −
2

3
δijk)

∂Ui
∂xj

= 2νTSij
∂Ui
∂xj
− 2

3
δijk

∂Ui
∂xj

(2.20)



8 2 BACKGROUND THEORY

The second term on the right of equation 2.20 becomes zero using continuity of
the mean flow (equation 2.9) and the fact that the Kronecker delta function is zero
when i 6= j. Then, the production term reduces to:

Pk = 2νTSij
∂Ui
∂xj

(2.21)

Dk is diffusive transport of mean turbulent kinetic energy. It can be written as:

Dk =
∂

∂xi
(ui(

P

ρ
+

1

2
uiui)) +

∂

∂xi
(2νuj∆ij) (2.22)

The second term can be neglected since the molecular viscosity ν is small. Using
the gradient diffusion hypothesis −uiθ = γT

∂Θ
∂xi

where γT = νT
σk

and σk is the
turbulent diffusion number or Prandtl number, and neglecting the pressure term,
equation 2.22 reduces to:

Dk =
∂

∂xi
(
νT
σk

∂k

∂xi
) (2.23)

ε is the viscous dissipation of turbulent kinetic energy. It can be written as:

ε = 2νsijsij (2.24)

sij = 1
2
( ∂ui
∂xj

+
∂uj
∂xi

) is the turbulent strain tensor.

Inserting the expressions for production, diffusion and dissipation into the trans-
port equation for turbulent kinetic energy (equation 2.18), it becomes:

dk

dt
= 2νTSij

∂Ui
∂xj

+
∂

∂xi
(
νT
σk

∂k

∂xi
)− 2νsijsij (2.25)

Now, the system of equations is solvable if νT can be specified. To find a relation
for νT , the mixing length model can be used. This was introduced by Ludwig
Prandtl in 1925. The mixing length model states that the turbulent viscosity
is proportional to a turbulent velocity scale U and a turbulent length scale L.
The underlying assumption is that the large scale turbulence is characterized by
velocity and length only, not viscosity. This is reasonable away from the wall
where turbulent effects dominate over viscous effects. In mathematical terms, the
mixing length model is νT = CµUL, where Cµ is an empirical constant that can
be determined from experiments. Then, if the turbulent velocity scale is assumed
to be equal to the square root of mean turbulent kinetic energy, we can write
νT = Cµ

√
kL. Now, the system is solvable if we can specify L. This is not an easy

task, as it is not straight forward to find a length scale for turbulence. This is
where the famous k − ε and k − ω models come into play.

2.4.1 K-Epsilon Model

In the k − ε model, a transport equation for turbulent viscous dissipation ε =
2νsijsij is introduced. The general form is the same as for the turbulent kinetic
energy (equation 2.18). The transport equation for ε can be written as:

dε

dt
=

∂

∂xi
(
νT
σε

∂ε

∂xi
) +

ε

k
(Cε1Pk − Cε2ε) (2.26)
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The first term on the right is diffusion, the second is production and the third
is dissipation. Pk is production of turbulent kinetic energy, and Cε1 and Cε2
are empirical constants. These constants introduce a simplification. To make
the system solvable, we now need a relation between ε and the turbulent length
scale described previously. If we again use the assumption that the large scales of
turbulence are characterized by a velocity scale and a length scale only, the viscous
dissipation will relate to these two scales as ε = CD

k3/2

L
, where CD is an empirical

constant. Solving this for L and inserting it into the mixing length model will
result in νT = CµCD

k2

ε
. If we also use CµCD = C ′µ, we can write:

νT = C ′µ
k2

ε
(2.27)

Using the transport equations for k and ε along with this relation, the system
is now solvable when the constants σk, C

′
µ, σε, Cε1 and Cε2 are specified. It is

common to apply standard values found from experimental results.

2.4.2 K-Omega Model

The principle behind the k − ω model (Wilcox, 1988) is the same as for the k − ε
model, except that a transport equation for turbulent vorticity, ω, is introduced
instead of ε. The quantity ω is also frequently called specific turbulent dissipation
rate or turbulence frequency. With ω instead of ε, the expression for the turbulent
viscosity (equation 2.27) must be rewritten in the form νT ∼ k

ω
to give the same

dimension. The incompressible form of the transport equations for k and ω in
the original k − ω model can be written as in equations 2.28 and 2.29 below
(formulations taken from Menter (1993) and converted to incompressible form).

Dk

Dt
= τij

1

ρ

∂ui
∂xj
− β∗ωk +

∂

∂xj
[(ν + σk1νt)

∂k

∂xj
] (2.28)

Dω

Dt
=

γ1

ρνt
τij
∂ui
∂xj
− β1ω

2 +
∂

∂xj
[(ν + σω1νt)

∂ω

∂xj
] (2.29)

The constants in these equations are β∗, σk1, γ1, β1 and σω1. These are referred to
by Wilcox (1988) as closure coefficients, as they must be determined before the
system of equations can be closed.

2.4.3 K-Omega SST Model

The k−ω SST model was proposed by Menter (1993). It uses a blending function
to switch between the k − ω model in the boundary layer and the k − ε model
in the free stream. In addition, the k − ω SST model accounts for transport of
turbulent shear stress in the boundary layer by reformulating the expression for
νT to include the shear stress (Menter, 1993). The abbreviation SST comes from
this shear stress transport.
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The transport equations for the turbulent quantities in the SST model are derived
by combining the original k−ω model (equations 2.28 and 2.29) with a transformed
k−ε model. This transformed model is obtained by transforming the standard k−ε
into a k − ω formulation. This formulation will have a cross-diffusion term that
is not present in the original k − ω model (Menter, 1993). These two models are
combined by using the blending function F1. The purpose of this blending function
is to effectively switch between the k − ω model in the near-wall region and the
transformed k − ε model in the free stream. The incompressible formulation of
Menter’s model can be seen in equations 2.30 and 2.31 below.

Dk

Dt
= τij

1

ρ

∂ui
∂xj
− β∗ωk +

∂

∂xj
[(ν + σkνt)

∂k

∂xj
] (2.30)

Dω

Dt
=

γ

ρνt
τij
∂ui
∂xj
− βω2 +

∂

∂xj
[(ν + σωνt)

∂ω

∂xj
] + 2(1− F1)σω2

1

ω

∂k

∂xj

∂ω

∂xj
(2.31)

Only the transport equation for ω is different from the original k − ω model. It
can be seen from equation 2.31 that the blending function should be equal to one
near the wall, and go to zero in the free stream.

2.4.4 Realizable K-Epsilon Model

An improvement of the original k − ε model was proposed by Shih et al. (1995).
The idea behind this model is to reformulate the equation for the dissipation rate
ε (equation 2.26), and the eddy viscosity νT (equation 2.27). The new transport
equation for ε is based on the mean-square vorticity fluctuations at high Reynolds
numbers. It is obtained by modelling a dynamic equation for the mean-square
turbulent vorticity ωiωi, and using the relation ε = νωiωi, which is valid at large
Reynolds numbers (Shih et al., 1995). The expression for eddy viscosity is reformu-
lated by making C ′µ a variable instead of a constant, hence making it ”realizable”.

2.4.5 Pros and Cons of the Models

All RANS turbulence models have their strong and weak sides. The k−ε model is
reported to have a lack of sensitivity to adverse pressure gradients, which can be a
disturbing shortcoming. This makes the model overpredict the shear-stress levels
near the wall, and can hence prevent or delay separation (Menter, 1993). Shih
et al. (1995) claims that the original k−ε model ”performs quite well for boundary
layer flows but not for flows with a high mean shear rate or massive separation”.
This means that the k − ε model may not be a good choice for all wall flows, and
especially separated flows.

The k − ω model is designed to overcome the problems of the k − ε model. It
has a significantly better sensitivity to adverse pressure gradients, making it a
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better model for separated wall-flows. One problem with the k − ω model is that
the results strongly depend on the chosen free-stream values of ω (Menter, 1993).
This shortcoming is not present in the k − ε model. The k − ω SST model will
ideally overcome the shortcomings of both the original k − ε and k − ω models,
since it uses k − ω near the wall and k − ε in the free-stream.

A general issue with all k − ω based models is the solid wall boundary condition
of ω. In theory, the value of ω at the wall goes to infinity, which is of course
impossible to impose in practice. This is discussed by e.g., Eça and Hoekstra
(2004). Different empirical formulas are used to prescribe finite values of ω at wall
boundaries.

The realizable k−ε model performs better than the original k−ε model in various
flow types including boundary layer flows. However it is not intended to be applied
very close to the wall (Shih et al., 1995). For separating boundary layer flows, the
k − ω SST model might be a better choice. A way of avoiding the problems of
k − ε models in the near-wall region is to apply wall functions (will be explained
later), as applied by Shih et al. (1995).

2.5 Turbulent Boundary Layers

Turbulent flows around solid bodies are very dependent on the behavior of the
boundary layer. It is therefore important to have some insight into the physics
of turbulent boundary layers when choosing how to model the turbulence. For a
practical introduction to this concept, see e.g., Bredberg (2000).

The boundary layer can be divided into certain layers, where different physical
effects are dominating. To understand why this is the case, we can start by defining
the friction velocity:

u∗ =

√
τw
ρ

(2.32)

Here, τw is the shear stress at the wall. For a two-dimensional case with mean flow
U in x-direction, the shear stress close to the wall can be approximated as:

τ = µ
∂U

∂y
− ρuv (2.33)

The assumption behind this is that the y-dependence of the mean velocity profile
dominates over its x-dependence.

To describe the velocity profile in the boundary layer, we can define dimensionless
variables for velocity and length. Close to a wall, we can assume that the mean
velocity is only dependent on the friction velocity u∗, the distance y from the
wall perpendicular to the mean flow, and the kinematic viscosity ν. The non-
dimensional variables are then:

u+ =
U

u∗
(2.34)

y+ = y
u∗
ν

(2.35)
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Very close to the wall, the velocity fluctuations u and v will be reduced to zero due
to the no-slip condition. Then, the shear stress becomes τ = µ∂U

∂y
. Using equation

2.32, we can then write µ∂U
∂y

= ρu2
∗, integrate this to U = u2∗

ν
y, and reformulate

into U
u∗

= u∗y
ν

. Using the non-dimensional variables, we can write this as:

u+ = y+ (2.36)

Equation 2.36 is valid in the region of the boundary layer where viscous effects are
dominating. It is commonly called the linear or the viscous sublayer.

Further away from the wall, the Reynolds stress −ρuv dominates over the viscous
stress. If we now assume that the mean velocity is only dependent on the friction
velocity u∗ and the distance y from the wall, and not on the viscosity, we can
approximate the velocity gradient as dU

dy
= cu∗

y
. The constant c is commonly

written as 1
κ
. If we integrate this expression in y and use the non-dimensional

variables, we get:

u+ =
1

κ
ln(y+) + constant (2.37)

Equation 2.37 is valid in the region of the boundary layer where Reynolds stresses
are dominating. This region is called the logarithmic layer or the log-layer. Be-
tween the viscous layer and the log-layer, there will be a buffer layer where both
viscous and turbulent effects are significant. References to these derivations can be
made to chapter 5.2 of Tennekes and Lumley (1972) and chapter 3.18 of Newman
(1977).

A graphical representation of the boundary layer can be seen in figure 2.1. As seen
in the figure, the logarithmic layer is also frequently called the inertial sublayer.
The transition between the viscous and the logarithmic layer can be seen to be
somewhere around a y+ range of 5 -30.
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Figure 2.1: The law of the wall, turbulent boundary layer divided into sublayers,
source: Tennekes and Lumley (1972)

2.6 Large Eddy Simulation

The gap between RANS methods and Direct Numerical Simulations (DNS) is po-
tentially very large when it comes to accuracy, reliability and computational effort.
The turbulence modelling in RANS methods are somewhat crude simplifications
that can save a lot of time in the simulations. However, the simplifications are
not always accurate, or reliable. There are many situations where RANS meth-
ods simply are unable to describe the flow accurately enough. Highly separated
flow with large adverse pressure gradients are a documented problem for several
RANS turbulence models, as reported by e.g., Wilcox (1988) and (Menter, 1993).
In these cases, a DNS might be the best approach. However, DNS can be very
demanding, since all of the flow, including the smallest scale motions, have to be
resolved. Turbulent flow contains a large range of motion scales, resulting in a lot
of computational effort in a DNS.

One way to close the gap between RANS and DNS is to use Large Eddy Simulation
(LES). Essentially, LES is like DNS, but with less of the motion scales directly
resolved. The idea behind LES is to use DNS for the large scales of motion
(the large eddies), and model the small scale motion. This potentially saves a
lot of unnecessary computational effort since the small scales are usually not as
important as the large scales (Sagaut, 2006).

The mathematical background of LES and its turbulence modelling is described
by e.g., Pope (2000), Sagaut (2006) and John (2004).
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2.6.1 Filtering

To understand how LES works, one has to start with the concept of filtering. The
scales of the flow has to be filtered, so that the simulation can know what is to be
resolved and what is to be modelled. It is this filtering that allows LES to have a
high degree of accuracy compared to RANS, while saving a considerable amount
of computational effort compared to a full DNS. The concept of filtering in fluid
mechanics is quite similar to the concept of Reynolds decomposition. Like in the
RANS equations, the velocity is decomposed into two terms:

U(x, t) = U(x, t) + u′(x, t) (2.38)

Equation 2.38 is the notation for one dimension. The concept is the same in three
dimensions. The first term U denotes the filtered velocity. This is the term that
is resolved in LES. The second term u′ is called the residual term. This term is
not resolved, but modelled.

The filtering operation can in general be written (in one dimension) as seen in
equation 2.39:

U(x, t) =

∫
G(r, x)U(x− r, t)dr (2.39)

The function G is the so-called filter function, and the integration is over the entire
fluid domain. The filter function integrates to unity over the domain:

∫
G(r, x)dr = 1 (2.40)

There are many different types of filters that can be applied in LES. A graphic
representation of the filtering of the velocity field can be seen in figure 2.2. The bold
line is the filtered velocity. It is essentially a local average of the complete velocity
field. The concept is the same for filtered pressure. All filters can be associated
with a filter width ∆. Essentially, LES filtering will treat all eddies larger than ∆
as large eddies, and all eddies smaller than ∆ as small eddies (Ochoa and Fueyo,
2015).
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Figure 2.2: Graphic demonstration of filtering in LES. Bold line: filtered quantity.
Source: Pope (2000)

It is common to use a filter width in the same order of magnitude as the cell size.
This essentially means that the motion scales smaller than the cells will not be
resolved. One simple way to apply this in practice is to take the cubic root of the
cell volume as the ∆. Whether this method is good or not, depends on the nature
of the flow and the grid size. According to Pope (2000), key mechanisms in the flow
is present in the very close vicinity of a wall (y+ values less than 20). This means
that if the grid is too coarse, the filtering will not capture these mechanisms. The
results is that LES grids have to be very fine close to walls (y+ close to unity is a
commonly used guideline). A way to improve the near wall modelling in LES is to
use other types of ∆ functions. One popular option is to use Van Driest damping,
which reduces the filter width close to the wall to increase resolution. Both the
cubic root of cell volume and the Van Driest approaches, along with several others,
can be applied in OpenFOAM.

2.6.2 Filtered Conservation Equations

When the filtering described above is applied to velocity and pressure and intro-
duced into the conservation equations, it results in the next three equations.

∂U i

∂xi
= 0 (2.41)
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∂u′i
∂xi

= 0 (2.42)

Equation 2.41 is the filtered continuity equation. Both the filtered field and the
residual field are incompressible, seen from equations 2.41 and 2.42.

∂U j

∂t
+
∂UiUj
∂xi

= ν
∂2U j

∂xi∂xi
− 1

ρ

∂p

∂xj
(2.43)

Equation 2.43 is the filtered momentum equation. The difference between this
and the RANS equation is the filtered product term UiUj. This is not the same
as the product of the filtered velocities U iU j (Pope, 2000) in the RANS equation
(equation 2.13). The difference between these terms is called the residual stress
tensor τRij .

τRij = UiUj − U iU j (2.44)

The following three definitions are used for rewriting the filtered momentum equa-
tion (Pope, 2000).

Residual Kinetic energy:

kr ≡
1

2
τRii (2.45)

Anisotropic residual stress tensor:

τ rij ≡ τRij −
2

3
krδij (2.46)

Modified filtered pressure:

pm ≡ p+
2

3
kr (2.47)

Using the definitions of equations 2.45, 2.46 and 2.47, the momentum equation
becomes:

DU j

Dt
= ν

∂2U j

∂xi∂xi
−
∂τ rij
∂xi
− 1

ρ

∂pm
∂xj

(2.48)

This equation is closed by modelling the anisotropic residual-stress tensor τ rij,
which is commonly called the subgrid scale (SGS) stress tensor. There are many
ways of doing this in practice. The model proposed by Smagorinsky (1963) is the
simplest one (Pope, 2000), (John, 2004).
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2.6.3 Smagorinsky Subgrid Scale Model

The Smagorinsky SGS model is based on the simple eddy-viscosity model of Boussi-
nesq described previously in chapter 2.4. In this case it can be written as:

τ rij = −2νrSij (2.49)

Here, νr is the eddy-viscosity of the residual motions (Pope, 2000), also called the
subgrid scale viscosity (sometimes denoted νSGS). This eddy viscosity is modelled
by relating it to the so-called characteristic filtered rate of strain S, through the
Smagorinsky length scale ls.

S =

√
2SijSij (2.50)

ls = CS∆ (2.51)

νr = l2sS = (CS∆)2S (2.52)

Equation 2.52 closes the system of equations if the length scale can be specified. To
specify the length scale, it is related to the filter width ∆ and a constant CS. The
underlying assumption is that the filter width is proportional to the Smagorinsky
length scale. The relation in equation 2.52 is essentially a mixing length model,
with ls analogous to the mixing length of Prandtl (Pope, 2000).

The formulation in equation 2.52 is for a simple type of delta function as described
previously in this chapter (cubic root of volume). If one wants to use other more
advanced functions, the equation will be different. Introducing Van Driest damp-
ing, for example, results in equation 2.53 for the Smagorinsky length scale (where
A+ is a constant).

ls = CS∆[1− exp(−y+/A+)] (2.53)

It can be seen from equation 2.53 that the Van Driest damping will reduce the
effective filter width close to the wall (where y+ is small), compared to the simple
formulation in equation 2.51.

Although the Smagorinsky model is one of the most popular LES models, it has
some drawbacks that should be kept in mind. The constant CS in an a priori input.
This is a simplification that is not necessarily appropriate in various turbulent
flows. Other drawbacks are that the model prevents backscatter of energy and
that it generally introduces too much diffusion in the flow (John, 2004). To avoid
the simplification introduced by the constant CS, a dynamic SGS model can be
used. Such a model will treat CS as a function of space and time, ideally describing
different flow regions more appropriately. Many different dynamic models are in
use today.
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2.7 Finite Volume Method

As already mentioned, the fluid domain is divided into control volumes when
solving the equations for the flow. This is the basic idea behind the Finite Volume
Method (FVM), which is the most commonly used discretisation technique in
CFD (Dejhalla and Prpic-Orsic, 2006). The Finite Volume Method is designed
specifically for fluids. Other possible discretisation techniques are Finite Difference
Method (FDM) and Finite Element Method (FEM). For references on general
FVM, see e.g., Wendt (2009).

2.7.1 Discretisation

In FVM, the control volumes are usually called cells. The grid is the whole fluid
domain divided into cells. The conservation equations are solved for each cell,
giving all cells a specific value of all flow variables. Values at the boundaries can
then be found from interpolation. There are many ways of doing this in practice.
Nodes can be defined in the center of the elements, or somewhere on the sides.
Cells can have many different shapes, and the grid can be of an ordered or dis-
ordered nature. In the following, the Finite Volume Method will be described as
it is applied in OpenFOAM. OpenFOAM is an open source software package that
was developed by CFD Direct, and is maintained by The OpenFOAM Founda-
tion. For references, see the OpenFOAM user guide at cfd.direct (CFD Direct,
2015) and The OpenFOAM Foundation’s description of the numerical methods of
OpenFOAM at openfoam.org (The OpenFOAM Foundation, 2016).

In OpenFOAM, nodes are placed at the centre of each cell and the solution vari-
ables are defined here. The values at the cell faces, or boundaries, are interpolated
from the values at the surrounding cell centres. OpenFOAM gives the user a large
degree of freedom in what interpolation techniques to use. The simplest option is
linear interpolation. Cells can have arbitrary polyhedral shapes in OpenFOAM.
The simplest option is to use quadrilateral cells. This set up can be seen in figure
2.3.

Figure 2.3: Example of orientation of cells, source: Wendt (2009)
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2.7.2 Solution

The principle for solution in FVM is to balance the flux of each flow variable
through the cell boundaries, and possibly the production of the variable inside the
cell. Then the conservation equations will be satisfied within each cell. Gauss’
divergence theorem gives the flux notation for the variables. The general form of
the divergence theorem is:∫ ∫ ∫

V

(∇ · F )dV =

∫ ∫
S

(F · ~n)dS (2.54)

The left side of equation 2.54 is an integral of the divergence of the general quantity
F inside the whole volume V. In other words, it is the sum of sinks and sources of
the variable in question inside the volume. The right side expresses the vector field
integrated over the surface of the volume. This is the flux out of the volume. The
vector ~n is the normal vector out of the surface S. Applying this approach to the
conservation equations will result in the integral form of the equations, which is
the starting point of the FVM. The integral form of the incompressible continuity
equation (equation 2.3) becomes (in vector notation):∫ ∫

S

(~u · ~n)dS = 0 (2.55)

For the incompressible Navier-Stokes equations (equation 2.5), the integral form
becomes (also in vector notation):

∂

∂t

∫ ∫ ∫
V

~udV + ~u

∫ ∫
S

undS =

∫ ∫
S

(~σ · ~n)dS (2.56)

Here, V is the control volume (or cell volume), and S is its surface, while un denotes
the velocity normal to the surface. Positive direction is out of the fluid, so that
the flux represents transport out of the fluid.

Since each cell is assigned a constant value of each flow variable, the volume integral
will simply be the volume times the variable. The area integral (or flux integral)
over a surface will be the sum of the contribution from each face that the surface
consists of. In this context, a face is one side, or boundary, of a three-dimensional
polyhedral cell. The contribution from each boundary face will be its area times
the normal component of the flow variable at that boundary. The number of
faces is dependent on the type of cells and the structure of the grid. The values
of the flow variables at the boundaries are as previously mentioned found from
interpolation between the nodal values inside each cell. This is also the case for
the gradients of the variables.

Establishing partial differential equations for each flow variable in this manner will
result in an equation system that can be solved by the computer. How the equation
system is solved numerically is dependent on the program used. OpenFOAM uses
a segregated, iterative solution. This means that matrix equations are created for
each partial differential equation, and then solved using an iterative sequence.
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3 CFD Software

All numerical simulations in this project have been done using OpenFOAM. As
mentioned previously, OpenFOAM is an open source CFD software package. For
references, see the OpenFOAM user guide (CFD Direct, 2015).

3.1 Structure of OpenFOAM

OpenFOAM is a C++ toolbox without a graphical interface. This means that all
operation of the program is done in the terminal, and all inputs are C++ text files.
The standard structure of an OpenFOAM case is a specific set of folders and files.
There are files describing the grid, the fluid properties, the initial and boundary
conditions, discretisation and interpolation schemes, turbulence models and many
more. The basic directory structure can be seen in figure 3.1.

Figure 3.1: Basic directory structure of OpenFOAM, source: cfd.direct

The polyMesh directory under the constant directory contains all information
about the mesh; cells, nodes, faces and boundary conditions. The mesh can be
created in other programs, such as CAD software or other CFD codes, and trans-
formed into OpenFOAM format. In this project, the mesh generator mega, which
couples well with OpenFOAM, was used. This report will not go into detail about
the files describing the structure of the grid. Only the boundary file will be de-
scribed further in this report, since it contains the type of boundary conditions
used. Files in OpenFOAM are also called dictionaries. Different ”sections” of the
files are called sub-dictionaries.

Other files under the constant directory are the dictionaries describing the fluid and
flow properties. They are denoted xProperties in figure 3.1. The most essential are
transportProperties and turbulenceProperties. The transportProperties dictionary
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contains the kinematic viscosity of the fluid, while turbulenceProperties contains
the type of flow model used. This can be laminar in the simplest case, or a
turbulence model, like a RANS model or various other more advanced turbulence
models like LES.

3.2 Solvers and Numerical Schemes

The system directory contains the files that control the solution of the problem.
In fvSchemes, the numerical schemes for different terms in the equations are set.
There are schemes for interpolation between cell centres and faces, and for deriva-
tives in time and space. An example of an fvSchemes dictionary as used in this
project can be seen below:

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

}

divSchemes

{

default none;

div(phi,U) Gauss limitedLinearV 1;

div(phi,k) Gauss limitedLinear 1;

div(phi,epsilon) Gauss limitedLinear 1;

div(phi,omega) Gauss limitedLinear 1;

div(phi,R) Gauss limitedLinear 1;

div(R) Gauss linear;

div(phi,nuTilda) Gauss limitedLinear 1;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear corrected;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default corrected;

}

fluxRequired

{
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default no;

p ;

}

As it can be seen above, there are several choices of numerical schemes for the
different terms. In this project, Gauss integration and linear interpolation was
used. The sub-dictionary ddtSchemes specifies the discretisation of first order time
derivatives. It can be set to steadyState if the user does not wish to solve for time
derivatives. The gradSchemes sub-dictionary specifies the discretisation scheme for
first order derivatives, and laplacianSchemes for second order. Gauss linear means
that Gauss integration is used with a linear interpolation scheme. Discretisation
of convective terms (or divergence terms) are specified by the divSchemes sub-
dictionary. Here, a discretisation and interpolation scheme is needed for each
term. Gauss integration is the only choice for discretisation of divergence terms,
but there are several choices for interpolation scheme. The snGradSchemes sub-
dictionary specifies the discretisation scheme for surface normal gradients. The
surface normal gradient is the component normal to a cell face, of the gradient in
each cell that is connected at that face. In the fluxRequired sub-dictionary, the
fields that require a calculation of flux are listed. In this case, this is just pressure,
p.

The fvSolution dictionary contains the choice of solvers for each equation, and
some customization such as their tolerance. Most important is the solvers sub-
dictionary. An example from the files used in this project is shown below:

solvers

{

p

{

solver GAMG;

tolerance 1e-06;

relTol 0.1;

smoother GaussSeidel;

nPreSweeps 0;

nPostSweeps 2;

cacheAgglomeration on;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 10;

mergeLevels 1;

}

pFinal

{

$p;

tolerance 1e-06;

relTol 0;

}

"(U|k|epsilon|omega|R|nuTilda)"

{

solver smoothSolver;

smoother GaussSeidel;

tolerance 1e-05;
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relTol 0;

}

}

The solver for each equation is specified in separate sub-dictionaries as seen above.
For the RANS simulations in this project, the GAMG solver was used for pressure,
and the smooth solver was used for all other equations. The GAMG solver is a
geometric-algebraic multi-grid solver. Its main principle is to make the original grid
coarser, find a solution for this grid, and then refine the grid in stages, mapping the
solution for coarser grids onto the finer grids. In other words, the GAMG solver
iterates from solutions of coarser grids in steps to find a solution for the final grid.
The agglomerator, nCellsInCoarsestLevel and mergeLevels keywords specify how
this iteration is done.

PCG and PBiCG (Preconditioned (Bi-)Conjugate Gradient) are other OpenFOAM
solvers. These were used for the LES case in this project, although the GAMG
solver can also be used for LES (Arslan et al., 2011). What solver is the best is
dependent on the case. Generally, the GAMG solver is reported to be the fastest
when the number of processors are relatively low (Rivera and Furlinger, 2011).
Doing a sensitivity study with respect to the choice of solvers was considered to
be outside the scope of this project.

Controlling the convergence of the solution is done using the tolerance and relTol
keywords. As mentioned previously, the OpenFOAM solvers are iterative. For each
iteration, a residual is produced for each equation. The residual is the difference
between the left and right side of the equation, so a lower residual means the
solution is ”more correct”. The tolerance keyword specifies the value that the
residual must be reduced to in order for the iteration to be finished. Hence, a lower
tolerance will result in more iterations and hopefully a more accurate solution. The
relTol keyword specifies the tolerance for ratio between current to initial residual.
If the ratio drops below this value, the iteration will be finished. If the relative
tolerance is set to zero, only the absolute tolerance will control the solution. The
maximum number of iterations can also be specified using the maxIter keyword.
The default value is 1000, but that many iterations should rarely be necessary.

3.3 Boundary Conditions

3.3.1 Prescribing Boundary Conditions

The boundary conditions are specified in the boundary dictionary under the con-
stant/polyMesh directory, and in the dictionaries under the 0 directory. Looking
at figure 3.1, the 0 directory will be located in the time directories group. The
boundary dictionary is a part of the mesh files and specifies the basic type of
boundary for each edge of the fluid domain. An example from this project can be
seen in the following:

cylinder

{
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type wall;

inGroups 1(wall);

nFaces 8800;

startFace 9748950;

}

inlet

{

type patch;

nFaces 13000;

startFace 9757750;

}

outlet

{

type patch;

nFaces 13000;

startFace 9770750;

}

top

{

type cyclic;

inGroups 1(cyclic);

nFaces 25500;

startFace 9783750;

matchTolerance 0.0001;

neighbourPatch bottom;

}

bottom

{

type cyclic;

inGroups 1(cyclic);

nFaces 25500;

startFace 9809250;

matchTolerance 0.0001;

neighbourPatch top;

The boundary types used in this project are wall, patch and cyclic. Which faces
belong to what boundary is specified by the nFaces and startFace keywords. As
the name suggests, the wall type is suitable for solid walls, when a no-slip condition
is wanted. The patch type is a more general boundary without any geometrical
constraints. It can be used for many different specific types, such as free-slip or
fixed value boundaries. The cyclic type specifies periodic boundary conditions.
Use of this condition requires two boundary patches to be connected. Looking
at the example above, the top and bottom boundaries are connected through the
neighbourPatch keyword.

In OpenFOAM, all grids are seen as three-dimensional, as it does not have a 2-D
engine. It is, however possible to solve in 2-D by using the empty type boundary.
This tells OpenFOAM that no solution is required for this boundary, resulting in
a 2-D solution.

While the boundary dictionary sets the basic type of boundaries, dictionaries for
each variable under the 0 directory sets the more specific boundary and initial
conditions. An example of a U dictionary, describing conditions for velocity, can
be seen on the next page. The dimensions keyword sets SI dimensions for the
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variable. The dimension for velocity is here m · s−1.

dimensions [0 1 -1 0 0 0 0];

internalField uniform (1 0 0);

boundaryField

{

cylinder

{

type fixedValue;

value uniform (0 0 0);

}

inlet

{

type fixedValue;

value uniform (1 0 0);

}

outlet

{

type zeroGradient;

}

top

{

type cyclic;

}

bottom

{

type cyclic;

}

As seen above, the boundaryField sub-dictionary has one further sub-dictionary for
each boundary that was specified in the boundary dictionary. Each sub-dictionary
sets the condition for one boundary. The boundary conditions used here are fixed-
Value, zeroGradient and cyclic. Initial conditions for the whole field are set by the
internalField keyword. For the cylinder boundary, which is a solid wall, fixedValue
is used to specify a no-slip condition by setting velocity to zero in all directions.
At the inlet, fixedValue is used to specify the desired far-field velocity, U∞. The
zeroGradient type is used to model free-slip conditions. In mathematical terms,
a zeroGradient condition simply means that the gradient, or spatial derivative, of
the variable in question is set to zero. Again, the cyclic type is used to specify
periodic conditions, and the empty type is used to get a 2-D solution, just as in
the boundary dictionary.
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3.3.2 Wall Functions

When running simulations with turbulence modelling, the variables for turbulence
must also have boundary and initial conditions. As mentioned previously, wall
functions can be used to specify boundary conditions at solid walls for these vari-
ables. An example of the dictionary k, that sets boundary and initial conditions
for mean turbulent kinetic energy, is seen below:

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0.000006;

boundaryField

{

inlet

{

type fixedValue;

value uniform 0.000006;

}

outlet

{

type zeroGradient;

}

cylinder

{

type kqRWallFunction;

value uniform 0.000006;

}

frontAndBack

{

type empty;

}

top

{

type cyclic;

}

bottom

{

type cyclic;

}

}

A kqRWallFunction type boundary specifies a wall function for k at the cylinder
solid wall. A wall function is a way of simplifying the modelling of the near-wall
region. When doing CFD simulations of turbulent flows, a very fine grid in the
near-wall region is needed to capture important mechanisms in the flow such as
separation. With high Reynolds numbers, the boundary layer will be very thin.
This means that the cells near the wall must be very small for the solution to be
able to accurately describe the distribution of the flow variables here. This can
result in a large number of cells and hence long simulation time. The wall function
approach avoids this problem by assigning a distribution of the variables to the
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first cell near the wall. This distribution is taken from experience and experimental
results. There are many kinds of wall functions that can be used in CFD.

When using a wall function, the value in the first cell near the wall will ideally
describe the entire viscous part of the boundary layer, meaning that only one cell is
needed in this region. This greatly simplifies the meshing in the near-wall region,
and can save a lot of computation time. The wall function approach is however
not always valid. As discussed in chapter 2.5, the boundary layer consists of a
viscous and a logarithmic sublayer, with a buffer region between them (see figure
2.1 or Tennekes and Lumley (1972)). Since the wall function approach is meant
to simplify the viscous part of the boundary layer (which is the most complicated
to describe), the height of the first cell near the wall should be specified so that
it is somewhere inside the log-layer. This way, one ensures that the whole viscous
sublayer is contained in the first cell. The log-layer is generally between y+ of 30
to 300 as seen in figure 2.1. By choosing a suitable y+, the height of the first cell
near the body can be calculated from equation 2.35. Note that y+ should not be
higher than the height of the log-layer, as the first cell will then span also outside
the boundary layer.

3.4 Running OpenFOAM

3.4.1 Time Step Control

Controlling an OpenFOAM simulation is done in the controlDict dictionary under
the system directory. The most important controlling feature is the time step.
To ensure stability and convergence of the solution, the time step must be set
sufficiently small. However, the smaller the time step, the longer simulation time,
hence the time step should preferably be set as high as possible while ensuring
stability. If ∆t is the time step and ∆x is the size of a cell, the Courant-Friedrich-
Lewy (CFL) number is defined as:

CFL =
u∆t

∆x
(3.1)

The CFL number is a measure of how far a fluid particle might travel relative to
the cell size. A CFL number of 1.0 means that the particle travels the whole length
of the cell during one time step. Too large CFL will be a problem for the stability
of the solution, as the flow will be ”too fast” to be described correctly by the
grid and the solver. In practice, CFL should be set significantly lower than unity
to ensure stability of the solution. In the author’s experience from this project,
CFL≤ 0.5 is usually a safe choice.

Other important controls in the controlDict dictionary are start and end times,
when to log the field data and the precision of time and the writing. Also, the user
can add various functions to controlDict to make OpenFOAM calculate various
extra results such as forces and average fields. This is a very useful feature. In
this project, calculation of force coefficients simplified the presentation of results,
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and calculation of average velocity and pressure fields was useful as a way to check
that the vortex shedding was stable.

When running OpenFOAM, the program writes some important output data to
the terminal for the user. An example can be seen below:

Time = 0.01

Courant Number mean: 0.0164731 max: 0.449916

smoothSolver: Solving for Ux, Initial residual = 0.014553, Final residual = 5.45318e-07, No
Iterations 2

smoothSolver: Solving for Uy, Initial residual = 0.00104905, Final residual = 1.69027e-06, No
Iterations 2

GAMG: Solving for p, Initial residual = 0.0967255, Final residual = 0.00604559, No Iterations 2

time step continuity errors : sum local = 3.53756e-08, global = -1.00971e-11, cumulative =
2.05232e-09

GAMG: Solving for p, Initial residual = 0.00680829, Final residual = 9.79532e-07, No
Iterations 76

time step continuity errors : sum local = 5.23358e-12, global = -7.31602e-15, cumulative =
2.05231e-09

smoothSolver: Solving for epsilon, Initial residual = 0.000471161, Final residual = 9.15529e-06,
No Iterations 1

smoothSolver: Solving for k, Initial residual = 0.00274485, Final residual = 9.24964e-06, No
Iterations 2

ExecutionTime = 1.55 s ClockTime = 5 s

As it can be seen above, OpenFOAM gives the user the CFL number, and the
residuals and number of iterations for each equation. In other words, this output
tells the user about how the solution is doing. The user can from this see if the
CFL number is too high, or if more or less precision in the residuals is needed.
When something goes wrong, the user can go back in the log to see what happened,
and then try to fix the problem. If the CFL number is too high, the user will have
to either reduce the time step, or make adjustments to the grid. If the number
of iterations is very high, the user might consider adjusting the tolerance of the
residuals.

3.4.2 Choosing Numerical Schemes

The choice of numerical schemes for the solution is also a very important con-
sideration. This affects both stability and accuracy of the results. In general, a
higher order scheme will be more accurate. However, first order schemes can be
used for convective terms and time derivative terms to achieve increased stability if
this is an issue. Higher order schemes are generally more oscillatory and unstable,
which may be a problem in flows that are not. In OpenFOAM, usual time deriva-
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tive discretisation schemes are Euler (first order) and backward (second order).
For convective terms, usual interpolation schemes are linear (second order) and
upwind (first order). It is a common guideline to use first order schemes in the
beginning of the simulation to preserve stability, and then switch to higher order
schemes for increased accuracy (Guerrero, 2015). This may be less important for
unsteady flows, as it was not an issue in this project. Rodi (1997) even argues
that first order upwind schemes should not be used for any vortex shedding flows
because they may damp out the periodic motion. When running LES, first order
accuracy will generally not be sufficient (also argued by Rodi (1997)). That’s why
the backward time scheme was used for the LES case in this project. This was
the only difference from the schemes used in the RANS cases, as second order
interpolation schemes were used in all cases.
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4 Pre-Processing

4.1 Basics of Grid Generation

In the context of CFD, knowledge about good grid generation techniques are very
valuable. A good grid should enable the solution to be as accurate as necessary,
while ensuring that the amount of computational effort can be handled by the
available hardware.

The basic idea behind fluid domain grid generation is to have many small cells
in the areas with the dominating flow mechanisms, and fewer and bigger cells
further away. This is to be able to accurately describe the flow physics in areas of
special interest, like near a solid body, while keeping the number of cells from being
unnecessarily high. The shape of the cells can also be important. As mentioned
previously, it is possible to have arbitrary polyhedral shaped cells in numerical
flow simulations. An ordered quadrilateral structure is the simplest, and has been
used in this project. Such cells do not have to be quadratic, or even rectangular.
The cell sides do not even have to be straight.

Even though the user has a large degree of freedom when it comes to generating
a grid, there are some basic pitfalls to be aware of. It is always important to
be aware of the length of the cells in different directions relative to what flow
mechanisms are present near that cell. For example, if a cell is much longer in
one direction than in the other, the cell might not be able to describe the flow
accurately in both directions. Keeping in mind the CFL number (equation 3.1),
the length of the cell is especially important in the direction of the flow. Having
long cells in an area where the flow is fast, like near the body, may compromise the
stability of the solution, and hence force a smaller time step. Another point to be
aware of is that very different shaped cells next to each other may cause problems.
The reason for this is that they may have different abilities to describe the flow
accurately, resulting in a rapid change in the flow variables across the cells. This
may result in a flow field that is not physically correct. A smoother change in
cell geometry across an area will enable the flow variables to also have a smooth
distribution across the cells. In general, the safest approach is probably to have
simple, straight, quadratic cells. This may be difficult to achieve in practice, but it
is a good starting point for a grid generation. Important learning from this project
is that the more distorted shape of the cells, the more difficulties arise, and that
this is mainly important in the region near the body, where complex mechanisms
like separation are going on.

It is not only the cell structure of the grid that is important in grid generation. The
size of the whole fluid domain can also have significant impacts on the results if it is
not carefully selected. Domains that are too small will be an issue. Domains that
are too large will not be a problem for the results, but might result in unnecessary
computational effort. The reason why too small domains are a problem is that
the far-field boundary conditions should not influence the solution. This principle
is not only related to choice of boundary conditions, but also to the domain size.
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Far-field boundary conditions will always introduce a restriction on the flow. It is
rarely the case that such boundary conditions are 100% correct physically (unless
they are solid walls). For example, a zero-gradient far-field boundary condition will
not be a free-slip condition exactly, but an approximation that imposes additional
restrictions. Therefore, if the domain is too small, the restrictions of the boundary
conditions might be so close that they influence the flow in the region of main
interest, like the cylinder in this case. A sensitivity study with respect to domain
size is a good idea for avoiding this problem.

4.2 Grid Generation Method

4.2.1 General approach

The procedure of generating a grid for CFD should contain some important points.
Planning and refining are keywords here. In order to end up with a good grid, it
is important to take all the important aspects of the flow into account; What flow
mechanisms are present? Are there solid bodies in the way? What is the Reynolds
number? What turbulence model is appropriate? What computational capacities
are available? These are all questions that should be answered as well as possible
before making the grid.

Since this project deals with flow past solid bodies, this will be the focus here.
Other types of flow may require other considerations. When dealing with flow past
bluff bodies, the key is to be able to capture the separation and vortex generation
properly. This will always require a relatively fine grid close to the body. How
fine it needs to be is dependent on many aspects. Most important are Reynolds
number, turbulence model, and near-wall modelling approach.

4.2.2 Planning

A key parameter to be determined before generating the grid is the y+ value
(equation 2.35). As mentioned previously in chapter 2.6, a LES grid needs y+

values around 1.0 to capture the mechanisms near the wall. In RANS simulations,
the required y+ is dependent on the near-wall modelling. Without wall functions,
the grid needs to be as fine as the LES grid close to the wall, for the same reasoning.
As described previously in chapter 3.3.2, wall functions can be used as a simple
near-wall modelling. With this approach, y+ can be increased significantly to make
the first cell extend into the log-layer (see chapter 2.5 about turbulent boundary
layers).

The required size of the domain should also be estimated before making the grid,
as argued in chapter 4.1. This can be done by reviewing previous work by others.

The acceptable number of cells related to the computational capacity should be
taken into account. This is to avoid simulations that are too time consuming.
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4.2.3 Refining

The first estimate of y+ may not be correct after the first simulation. For example,
the flow will be faster over the body than in the free stream, due to blocking effects.
This will increase the y+ value in this region (see equation 2.35). This means that
it might be necessary to refine the grid by changing the y+ value at the body after
the first simulation. OpenFOAM has built-in functions to check the value of y+

during and after the simulations.

As already mentioned, it is a good idea to do a domain size sensitivity study
to determine if the domain size is affecting the solution. This can be done by
making the domain smaller and larger, and see if the results change. If a larger
domain changes the results significantly, the first domain was probably too small.
If a smaller domain does not change the results significantly, the first domain was
probably unnecessarily large.

Capturing the vortex street behind the body requires the grid in the wake to be
fine enough. Looking at the flow after an initial simulation can tell the user if
this is achieved or not. If vortices disappear much quicker than expected from
experiments, the grid may need more cells in the wake, if this is of interest. Also,
if separation is not at all present, even though it is expected, the grid close to the
body may be too coarse to capture this.

4.2.4 OpenFOAM Meshing Utilities

OpenFOAM has built-in meshing utilities that allow the user to generate a grid by
writing simple text files with a specific syntax. The simplest utility is blockMesh,
which generates a grid based on blocks with prescribed size, number of cells and
grading. The other, more advanced option is snappyHexMesh, which is used to
make grids around complex geometries. As snappyHexMesh is not used in this
project, it will not be discussed further here.

The blockMesh approach is based on the following items:

• Defining nodes (x,y,z coordinates).

• Defining 3-D blocks from nodes (8 nodes per block).

• Prescribing each block a number of cells and grading in each direction.

• Defining boundaries from nodes (4 nodes per boundary patch).

• Prescribing boundary conditions to each boundary (like patch, wall or cyclic).

All of the above is written in a file called blockMeshDict, and the mesh is gen-
erated by running the OpenFOAM function blockMesh. Examples from a simple
blockMeshDict file can be seen on the next page. There are three different sub-
dictionaries defining nodes(vertices), blocks and boundaries, respectively. Since
OpenFOAM has no graphic user interface, visualization of the grid has to be done
in third-party software like paraFoam.
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vertices

(

(0 0 0)

(1 0 0)

(1 1 0)

(0 1 0)

(0 0 0.1)

(1 0 0.1)

(1 1 0.1)

(0 1 0.1)

);

blocks

(

hex (0 1 2 3 4 5 6 7) (20 20 1) simpleGrading (1 1 1)

);

boundary

(

movingWall

{

type wall;

faces

(

(3 7 6 2)

);

}

fixedWalls

{

type wall;

faces

(

(0 4 7 3)

(2 6 5 1)

(1 5 4 0)

);

}

frontAndBack

{

type empty;

faces

(

(0 3 2 1)

(4 5 6 7)

);

}

);

OpenFOAMs meshing utilities have both advantages and disadvantages. The big
advantage is that when a blockMeshDict has been written, mesh generation is quick
and small adjustments are easily done. Disadvantages are the lack of a graphic
interface and the amount of time required to write a blockMeshDict for a complex
grid.
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4.2.5 Mega Mesh Generator

Mega is an in-house meshing program for Linux developed at the Institute of Ma-
rine Technology at NTNU. Its graphical interface allows the user to visualize the
grid while it is under construction. This is a huge advantage compared to Open-
FOAMs own utilities. Mega uses the gmsh format, which can be converted to
OpenFOAM format using the built-in OpenFOAM function gmshToFoam. The
combination of a graphic meshing program like Mega and a simple format conver-
sion is a very attractive approach. However, one downside is that the conversion
may take a long time if the grid is very fine, which can make small grid adjustments
annoyingly time consuming.

4.3 Grid Types

4.3.1 Grid Classification

There are three different ways to classify a grid based on cell connectivity. The
classification is described by e.g., CFD Online (2012). The grid can be structured,
unstructured, or hybrid. Hybrid just means it’s a mix of structured and unstruc-
tured. A structured grid has an ordered nature, where the connectivity can be
expressed as a simple array. An unstructured grid has irregular connectivity that
can not be fully described by a simple array. This means that it requires more
storage space than a structured mesh because the connectivity must be described
explicitly for each cell. An advantage of using unstructured grids is that all kinds
of cell geometries can be used, while a structured grid is restricted to using one
specific type. Unstructured grids will not be discussed further as only structured
grids have been applied in this project.

Grids can also be classified based on type of cell geometry and dimension (2-D/3-
D). The most common choices are quadrilaterals (rectangles), triangles, hexahe-
drals (cubes), tetrahedrals or pyramids.

4.3.2 Grid Layout

Some basic types of grid design will be briefly discussed here. The layout that is
easiest to make for structured grids is the so-called H-mesh. A H-mesh basically
consists of boxes with straight edges. If the edges are not straight, the grid is
often called C-mesh or O-mesh, depending on how many of the edges are curved.
Examples of this can be seen in figure 4.1. Only H-type grids have been used in
this project.
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Figure 4.1: Different grid layouts: H-mesh (upper), C-mesh (lower left), O-mesh
(lower right).
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5 Simulation Set-up

The goal of this project was to simulate flow around a rectangular cylinder that is
conceptually a simplified ship hull model, hence floating in the free surface. As the
scope of the project did not include advanced free surface modelling techniques,
other solutions had to be found. The two methods that were within reach are
using a simple free-slip free surface boundary condition, and using a double-body.

In all cases, the body of interest was a 5:1 rectangular cylinder with flow in longi-
tudinal direction. The Reynolds number is 26,400 in all cases, with respect to the
cross-flow width. Turbulence model for all RANS cases is the realizable k-epsilon
model of Shih et al. (1995). The k-omega SST model of Menter (1993) was also
applied in the early stages of the project, but this model did not produce satisfac-
tory results. This will be discussed further in the results section. The Smagorinsky
SGS model (Smagorinsky, 1963) was used in the LES case.

5.1 Double-Body Grid

The concept of a double-body means that the geometry in question is mirrored
over the free surface to create a body that is twice the size, with fluid on all
sides. Hence, the double-body case is essentially a fully submerged box of double
height. The idea behind this is to avoid the issue of the free surface modelling,
and simulate a more realistic flow. Of course, the total resistance will have to be
divided by two to compensate for the double size of the body. Disadvantages of
this method is that it requires more cells, and that it may introduce 3-D effects
that are not necessarily relevant in the real case.

Several grids were created for this case in order to do a grid size sensitivity study.
Doing such a study is vital for validation purposes, and a very common procedure
in CFD. A grid size sensitivity study should include a study of the cell count and
general fineness of the grid, the domain size, and possibly the near wall cell size if
this is of interest.

A short domain size sensitivity study was done by using a grid from previous work,
reducing the lengths of the outer boundaries in steps and seeing if the solution
changed. The resulting domain can be seen in figure 5.1. Incoming flow direction
is positive x-direction. Comparing with the domain of Ong (2012), this domain
should be large enough to avoid far-field effects on the body. Although the case
of Ong (2012) is 2-D, the geometry is similar and it is assumed that with a small
increase in the size (as seen in figure 5.1), it will be sufficient also in 3-D. It should
be noted that the vertical length of the domain (z-direction) was not subject to a
sensitivity study. This was simply due to the need to limit the number of cells in
this direction, as computational capacity was limited. The vertical distance from
body to boundary was chosen to be as large as possible while keeping the number
of cells within reasonable limits.
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Figure 5.1: Double-body fluid domain

The characteristics of the different grids used can be seen in table 5.1 below. All
the grids have the same near-wall cell size and should hence have the same values
of y+ around the body. The theoretical value of y+ is based on free-stream velocity.
The actual value will vary over the body surface because the fluid velocity changes
(see equation 2.35).

Table 5.1: Grids used in sensitivity study

Grid Cell count ∆s
cell count
on body

theoretical y+

Coarse 3,275,000 0.06 m 100x20 43.62

Medium 3,740,000 0.06 m 100x20 43.62

Fine 4,160,000 0.06 m 100x20 43.62

5.2 Floating Body Grid

The floating body case is the simplest one used in this project. The grid simply
ends where the free surface is thought to be, and the body is placed next to this
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boundary (see figure 5.2). This is thought to be a more simplified approach than
the double-body case, so less focus was put onto it. Only one grid was used for this
case, and no grid sensitivity study was performed. This was considered reasonable
because the grid used is the same as the medium grid of the double-body case,
except that it is half the size. It is assumed that this grid would work well also
in this case since it was proven to be sufficient for the double-body case. Grid
properties are summarized in table 5.2. The domain seen in figure 5.2 is the same
as for the double-body in the x-y plane, hence far-field boundary spacing is the
same.

Table 5.2: Floating body grid properties

Cell count ∆s
cell count
on body

theoretical y+

1,870,000 0.06 m 100x20 43.62

Figure 5.2: Floating body fluid domain

5.3 LES Grid

The LES case is a double-body case. No floating body LES was performed, as the
double-body case was considered the main focus. The difference between the LES
and the RANS double-body grid is essentially a much higher cell count and a much
smaller near-wall cell size in the LES grid. No thorough grid sensitivity study was
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performed for this case, simply because the time scope did not allow it. Running
one LES grid took long enough. Instead, the gridding approach was adopted from
Arslan et al. (2011), which case is somewhat similar. It was assumed that making
the grid using the same approach would ensure that the grid is fine enough, as the
results of Arslan et al. (2011) were considered highly trustworthy.

The grid of Arslan et al. (2011) is a hybrid grid, only structured near the wall.
Since only purely structured grids was used in this project, the resulting cell count
of the LES grid was higher than for Arslan et al. (2011). A summary of the key
grid properties can be seen in table 5.3. Domain size is the same as in the RANS
case.

Table 5.3: LES grid (double-body)

Cell count ∆s
cell count
on body

theoretical y+

15,620,000 0.001 m 250x100 0.7269

5.4 Boundary Conditions

Boundaries for the double-body and floating body cases can be seen in figure 5.3
and 5.4, respectively. A more detailed summary for each variable is seen in tables
5.4 and 5.5. When possible, periodic boundary conditions were used for the far
field boundaries. This was considered to be the least restrictive of the possible
choices. Periodic boundary conditions are widely used in similar studies in the
literature, such as Mannini et al. (2010) and Arslan et al. (2011).

Figure 5.3: Double body boundaries
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Figure 5.4: Floating body boundaries

Inlet conditions are prescribed velocity and zero-gradient pressure. Outlet condi-
tions are zero-gradient velocity and prescribed zero pressure. Wall conditions are
prescribed zero velocity and zero-gradient pressure.

Table 5.4: Boundary Conditions: Double-Body Case

Pressure Velocity
k

(RANS only)
epsilon

(RANS only)
νSGS

(LES only)

Inlet zero-gradient constant constant constant zero-gradient

Outlet constant=0 zero-gradient zero-gradient zero-gradient zero-gradient

Body zero-gradient constant=0 wall function wall function zero-gradient

Top/
Bottom

periodic periodic periodic periodic periodic

Front/
Back

periodic periodic periodic periodic periodic

Table 5.5: Boundary Conditions: Floating Body Case
Pressure Velocity k epsilon

Inlet zero-gradient constant constant constant

Outlet constant=0 zero-gradient zero-gradient zero-gradient

Body zero-gradient constant=0 wall function wall function

Top/Bottom periodic periodic periodic periodic

Front/Back zero-gradient zero-gradient zero-gradient zero-gradient

5.5 Numerical Set-up

A summary of applied numerical schemes and solvers can be seen in table 5.6. See
chapter 3.2 for an explanation of the terms. There is a difference between RANS
and LES cases in the time scheme used. This is due to increased need for accuracy
in LES. The first order Euler scheme is sufficiently accurate for RANS simulations,
while the more accurate second order backward scheme is better suited for LES.
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Table 5.6: Numerical Schemes and Solvers
RANS LES

Solver for Pressure GAMG PCG

Solver for Other Variables smoothSolver PBiCG

Time Scheme Euler backward

Gradient Scheme Gauss linear Gauss linear

Convective Schemes
Gauss linear/
limitedLinear

Gauss linear/
limitedLinear

Laplacian Scheme
Gauss linear

corrected
Gauss linear

corrected
Interpolation Scheme linear linear

SN Gradient Scheme corrected corrected

No sensitivity study with respect to the numerical schemes has been carried out.
For the RANS cases, choice of schemes were taken from OpenFOAM tutorials. For
the LES case, choice of a second order time scheme was made on recommenda-
tions of Rodi (1997) and Mannini et al. (2010). Other than the time scheme, the
numerical schemes are the same in RANS and LES.

When dealing with numerical schemes, it is important to note the nature of the
flow. In this case, the flow is unsteady in nature. This may make choice of numer-
ical schemes somewhat easier since one does not have to worry about unwanted
instability. For simulation of steady flows, the use of more stable convective terms
such as first order upwind can be used to ensure stability (Guerrero, 2015). It is
assumed that in this unsteady flow case, the choices made for numerical schemes
are well suited.
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6 Results

In the following chapters, the results of each case will be presented individually.
Only the RANS double-body case includes a grid sensitivity study. There was a
large difference between the RANS and LES cases in the amount of computational
time required. The double-body RANS (medium grid) case was run for about 27
hours on 16 processors. The LES case was run on 64 processors for about 320
hours, and even then it would be preferred to run it a lot longer.

Simulations with the k − ω SST model were unable to capture vortex shedding
for the double-body case. The simulations simply resulted in a steady, symmetric
flow around the body. This is why the realizable k− ε model, which captured the
vortex shedding clearly, was chosen instead.

6.1 RANS Double-Body

6.1.1 Grid Sensitivity Study

A summary of the results of the grid sensitivity study can be seen in table 6.1.
The average value of y+ is taken as a sample at the latest time step, which is at
400 seconds.

Table 6.1: Results of grid sensitivity study
Grid mean Cd stdev Cl St average y+

Coarse 0.8732 0.0815 0.1310 26.8930

Medium 0.8751 0.0799 0.1430 27.0964

Fine 0.8795 0.0837 0.1370 27.1296

The difference from the medium grid to the coarse and fine grids in mean drag
coefficient are 0.2% and 0.5%, respectively. This is a very small difference. For lift
coefficient, the difference is larger. It is 2.0% difference to the coarse and 4.8% to
the fine grid in standard deviation of lift coefficient. The differences in Strouhal
number are also larger than for drag coefficient. It is 8.4% difference to the coarse
grid and 4.2% to the fine grid. The values of average y+ are very close for all
grids. It should, however be noted that the average value does not tell us very
much about the distribution of y+ around the body. Since y+ is dependent on
fluid velocity, it will vary drastically across the wall. A plot of the y+ distribution
around the body in an x-y cutting plane can be seen in figure 6.1. The variation
here is large, with high values of y+ before the separation point, and then much
lower values behind the separation point, until reattachment at the back gives
higher values again. Ideally, the cell sizes at the wall should compensate for this.
It is best to have a more or less uniform distribution of y+ at the wall. This may be
especially important when using wall functions, as this approach is very sensitive
to the boundary layer thickness, as argued earlier in chapter 3.3.2. However,
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making variable cell heights on the wall to compensate for this would be too time
consuming in the scope of this project. The results here are assumed to be accurate
as long as the average value of y+ is reasonable.

Figure 6.1: Distribution of y+ around the body for RANS double-body case

6.1.2 Force Coefficients and Frequency

Plots of drag and lift coefficients, and spectrum of lift fluctuations, can be seen in
figures 6.2, 6.3 and 6.4, respectively. All figures give indications of highly unsteady
and non-harmonic flow. The spectral plot shows that there is a very clear peak in
frequency of oscillations. Some other oscillation frequencies are present, but not
as distinct.

Figure 6.2: Time-history plot of drag coefficient for RANS double-body case
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Figure 6.3: Time-history plot of lift coefficient for RANS double-body case

Figure 6.4: Spectrum of lift fluctuations for RANS double-body case

6.1.3 Flow Variable Plots

Figures 6.5 and 6.6 show snapshots of pressure and velocity, respectively, both in
the x-y plane. The pressure is relative, so the free-stream value is zero. Figure 6.7
shows vorticity in both x-y and x-z planes. This is to illustrate clearly the three-
dimensionality of the flow. The figures show that there is distinct vortex shedding
and reattachment. There looks to be vortex shedding in both planes. Figure 6.8
shows streamlines of the mean flow. It looks to be reasonably symmetrical.
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Figure 6.5: Pressure for RANS double-body (x-y plane)

Figure 6.6: Velocity for RANS double-body (x-y plane)
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Figure 6.7: Vorticity for RANS double-body: x-y (upper) and x-z (lower)
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Figure 6.8: Streamlines of mean flow around RANS double-body (x-y plane)

6.2 RANS Floating Body

6.2.1 Force Coefficients and Frequency

Figures 6.9 and 6.10 give plots of drag and lift coefficients, respectively. Figure 6.11
gives the spectrum of lift fluctuations. It shows several distinct peaks, meaning
that there are several oscillation frequencies present in the data set.

Figure 6.9: Time-history plot of drag coefficient for floating body case
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Figure 6.10: Time-history plot of lift coefficient for floating body case

Figure 6.11: Spectrum of lift fluctuations for floating body case

6.2.2 Flow Variable Plots

In figures 6.12, 6.13 and 6.14, snapshots of the flow field around the floating body
is shown. Clear vortex shedding can be seen also in this case. It can be seen from
figure 6.14, which shows vorticity in both the horisontal and the vertical plane, that
the free-slip boundary next to the body greatly influences the tree-dimensionality
of the flow. Figure 6.15 shows streamlines of the mean flow. This looks similar to
the streamlines from the double-body case.
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Figure 6.12: Pressure for floating body case (x-y plane)

Figure 6.13: Velocity for floating body case (x-y plane)
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Figure 6.14: Vorticity for floating body case: x-y (upper) and x-z (lower)
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Figure 6.15: Streamlines of mean flow around floating body (x-y plane)

6.3 LES Double-Body

6.3.1 Force Coefficients and Frequency

Lift and drag coefficients and spectral analysis of the LES case can be seen in
figures 6.16, 6.17 and 6.18, respectively. It can be seen from the force curves that
the solution does not have full statistical convergence. There was unfortunately
not enough time to continue the LES simulation further. The oscillations in the
drag curve seems to enter a somewhat stabilizing trend around 80-100 seconds.
However, the oscillations of the lift curve does not seem to have stabilized at all,
at least not with respect to the extreme values. The results before 100 seconds
have been omitted when calculating mean drag and standard deviation of lift.

The spectral analysis plot has one dominant peak, meaning there is one domi-
nant oscillation frequency. This can also be argued from the lift coefficient plot.
Comparing the spectral analysis of the LES case with the spectral analysis of the
RANS cases (figure 6.4 and 6.11), it should be noted that the value of the peak
frequency is quite different in the LES case. This is due to that the velocity of the
flow was lowered in the LES case (although the Reynolds number is the same) to
allow larger time steps and hence shorten simulation time.
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Figure 6.16: Time-history plot of drag coefficient for LES double-body case

Figure 6.17: Time-history plot of lift coefficient for LES double-body case
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Figure 6.18: Spectrum of lift fluctuations for LES double-body case

6.3.2 Flow Variable Plots

The figures on the next three pages show the flow field around the double-body in
the LES case. Figure 6.19, 6.20 and 6.21 show snapshots of pressure, velocity and
vorticity, respectively. It is clear from the figures that vortex shedding is captured
by the simulation, and that the flow field is very turbulent and irregular. Figure
6.22 is a plot of the subgrid-scale viscosity νSGS. This was included due to interest
in the LES turbulence model. The subgrid-scale viscosity is the viscosity of the
small scale motions (see chapter 2.6.3). Hence, the field in figure 6.22 tells us
where the small scale motions are present. It can be seen that they are maintained
far behind the body. No streamline plot has been included for the LES case since
the solution had not converged well enough, and the mean flow field would not be
entirely reliable.
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Figure 6.19: Pressure for LES double-body case (x-y plane)

Figure 6.20: Velocity for LES double-body case (x-y plane)



56 6 RESULTS

Figure 6.21: Vorticity for LES double-body case: x-y (upper) and x-z (lower)
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Figure 6.22: Subgrid-scale viscosity for LES double-body case (x-y plane)





59

7 Discussion and Comparison of Results

A summary of the results from all three cases can be seen in table 7.1 below.
When comparing the cases, there are two main focuses. The first is to compare
the double-body case to the floating body case. This is to see what kind of do-
main discretisation is best in this case. Only RANS results are of interest in this
comparison, since no floating body LES was performed.

The second focus is to compare the two double-body cases, RANS and LES. This
is to see the differences from using these two turbulence models. The RANS
model is relatively fast, while the LES model is considerably more demanding.
It is interesting to see the differences in results compared to the differences in
computational effort. It would be valuable to be able to draw conclusions on what
turbulence model is best suited for this case.

Table 7.1: Summary of results of each case
Case mean Cd stdev Cl St average y+

Double-Body
(RANS)

0.8751 0.0799 0.1430 27.0964

Floating Body
(RANS)

1.1841 0.1828 0.1640 27.9287

Double-Body
(LES)

1.0149 0.0331 0.2400 1.08698

7.1 Grid Convergence

There is a relatively large difference in cell count between the three grids used
in the sensitivity study. This probably means that if the results do not deviate
too much, the medium grid is fine enough. How much difference in results can be
tolerated is dependent on the difference between grids and the variable in question.
It is assumed that the differences in force coefficients and shedding frequency here
are acceptable considering the significant difference in fineness of the grids. The
medium grid is therefore used for all final results. It should be noted that this
is a subjective observation. The conclusion depends on what accuracy is needed.
If very high accuracy is needed in finding the force coefficients, then one might
consider expanding the grid sensitivity study, to be even more certain in what grid
to use.

7.2 Double-Body vs. Floating Body

When comparing the two RANS cases, there is one especially distinct difference;
the force coefficients. The standard deviation of lift is increased by almost 130%
in the floating body case compared to the double-body case. Also the mean drag
coefficient is increased, although by a more modest 35%. Arslan et al. (2011) also
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reports higher drag for a similar floating body case compared to a long cylinder.
The main difference between the two cases lies in the distance to the free-slip
boundary, hence this must be used to explain the difference in results. In the
floating body case, the free surface (free-slip) boundary is adjacent to the body.
This is more restrictive on the flow around the body compared to the double-body
case, where the boundaries are further away. It is reasonable to think that these
boundary induced restrictions will force the flow towards the body, since it cannot
move through the boundary. From this, it is reasonable that the close boundary
in the floating body case increases the forces on the body in general, giving the
difference in results seen in table 7.1.

Looking at the Strouhal number, the difference from double-body to floating body
is an increase of 14.7%. This is a notable difference, however it is not critically
large (considerably lower than the differences in force coefficient). This indicates
that the flow field and the vortex shedding in general should not have changed
too much between the two cases. Comparing figures 6.5 and 6.12 for pressure, and
6.6 and 6.13 for velocity, is is obvious that there are some differences. It should,
however be noted that these figure are merely snapshots of the instantaneous flow
field, and it is questionable to use them in a general comparison. The streamline
plots of figure 6.8 and 6.15 are more applicable for comparison since they represent
the mean flow. There are no very distinct differences to spot between these two
figures. This again implies that the general nature of the flow fields in the two
cases may be quite similar. The most notable difference lies in the trailing edge
vortices, although it should be noted that there is some uncertainty related to
the creation of these figures, since the applied software paraFoam required some
manual effort to produce the streamlines. The size of the leading edge vortices on
the streamline figures seem to be very similar in size. The vortices themselves are
not in the figures because they proved too difficult to reproduce in paraFoam.

Comparing the two plots of pressure (figures 6.5 and 6.12) and the streamline plots
(figures 6.8 and 6.15), some other observations can be used to explain the higher
lift coefficient in the floating body case. It may seem that the flow in the double-
body case is ”more separated” than in the floating body case. In the double-body
case, the vortices seem to move further away from the body than in the floating
body case and there is a larger low-pressure region around the vortex shown for
the floating body. Also, the vortices of the floating body case seem slightly larger
when comparing the pressure plots. This is not seen in the streamline plots though.
Looking at the streamline plot of the double-body case, many of the streamlines
from the leading edge never reattach to the body. This is not the case for the
floating body streamlines. All this indicates that the increased lift forces in the
floating body case is due to a ”more attached” flow, that is caused by the restrictive
close boundary which forces the fluid towards the body.

There are also some notable differences between the two cases in the instantaneous
velocity plots (figures 6.6 and 6.13). The double-body field seems more disordered
than the floating body field. This observation may also be seen from the vorticity
plots (figures 6.7 and 6.14), although not as distinct. The more disordered nature of
the flow around the double-body may cause the extreme values of lift coefficient to
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be lowered, because there may be significant flow effects pulling in both directions.
It should again be underlined that the plots of instantaneous flow variables should
be compared with caution, since they don’t represent the mean flow. It is, however
assumed that the their general nature is representative of the flow. Instantaneous
field plots at different time steps have been checked to ensure that the differences
shown here are not random.

Looking at the two spectral analysis plots (figures 6.4 and 6.11), the difference is
quite significant. The double-body flow has one dominant peak in frequency, while
the floating body flow has several peaks of similar magnitude. It is not straight
forward to understand why this is the case. The sample interval is the same in both
cases. Although they don’t explain the phenomenon, a comparison of the pressure
plots may show the same as the spectral analyses. The pressure plot of the floating
body case (figure 6.12) has a trailing edge vortex with similar magnitude as the
leading edge vortex. Both vortices oscillate, but not necessarily with the exact
same frequency. This may explain the additional peaks in the spectral analysis of
the floating body flow. In the double-body flow, the leading edge vortex seems to
be much more significant than the trailing edge vortex (see figure 6.5), explaining
why only one clear peak is seen in the spectral analysis.

7.3 RANS vs. LES

Comparing the results of the two double-body simulations, it is clear that there
are great differences between RANS and LES methods. The pressure and vortic-
ity plots of the LES (figure 6.19 and 6.21) show that the vortices and turbulent
structures are better retained downstream than with RANS (figure 6.5 and 6.7).
It can also be seen that the LES flow field is generally more turbulent than the
RANS flow field, which is more ordered. This is seen especially when comparing
figures 6.6 and 6.20.

Since the LES case has not achieved full statistical convergence, it is not straight
forward to compare the force coefficients and spectral analyses. However, since
the drag coefficient in figure 6.16 seems to be relatively close to statistical con-
vergence, the mean value obtained here is assumed to be accurate enough for a
somewhat reliable comparison. The drag is about 16% higher with LES than with
RANS. Higher drag with LES than with RANS was also reported by Rodi (1997),
which case is similar, although in 2-D. This implies that RANS methods with
wall functions are not always very accurate in predicting the values of integrated
results like force coefficients. Since no RANS simulation without wall functions
was performed in this project, it is somewhat uncertain if the differences in results
are caused mostly by the turbulence models or the near-wall modelling. The as-
sumptions behind wall functions are questionable in separated flow regions (Rodi,
1997), implying that the wall functions may be causing inaccuracies in this case.

The standard deviation of lift is much lower with LES than with RANS. This
contradicts the results of Rodi (1997). Looking at figure 6.17, it is clear that the
standard deviation of lift coefficient in the LES case is increasing with time. It
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can be assumed that the LES lift oscillations will approach the RANS results if
the simulation is continued. It is unfortunate that there was not enough time to
run it as long as the RANS case.

Strouhal number was 68% higher with LES than with RANS. From the results of
Rodi (1997), it was expected that the two results would be closer. Rodi (1997) also
states that the vortex shedding in the LES case is generally less regular than in the
RANS case. This may be backed up comparing the plots of velocity and vorticity
(figures 6.6 and 6.20, and 6.7 and 6.21). However, comparison of the spectral
analyses (figures 6.4 and 6.18) shows that the peak frequency is more dominant
in the LES case, implying that the shedding may be more regular for LES. These
contradictory results again show how the lift and spectral analysis results of the
LES are unsuitable for a realistic comparison to the RANS results.

It was mentioned in chapter 6.3.1 that the velocity in the LES case was lowered
to attempt to reduce simulation time. In hindsight, this was probably not a very
good approach. Lower velocity may allow larger time steps, but the larger the
time step, the more iterations the solver will need at each time step. Also, the
flow will be slower, and hence the total needed simulation time will be longer.
These two effects probably cancel out the effect of larger time step, making the
approach more or less ineffective. It would be easier to just have the same velocity
in all cases, especially for post-processing.
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8 Conclusions

Comparing the two geometric cases, double-body and floating body, it is clear that
there are some noteworthy differences in the resulting flow. The simulations have
shown that the restrictive free surface boundary in the floating body case causes
increased forces on the body. If the double-body case is assumed to be the more
realistic flow, since it is less influenced by restrictive boundaries, the floating body
case may be too inaccurate for calculating forces. When it comes to computational
effort, the floating body approach is of course faster, since the grid is half the size.
Hence, this approach could be preferred for cases where computational capacity
is very limited. The restrictions imposed by the inaccurate free surface modelling
should then be taken into account, or the results will probably be inaccurate to
some degree.

To make a definite conclusion as to which geometric case is the best, a more
accurate floating body case with actual free surface modelling would be required.
It is the impression of the author that such a simulation will be closer to the double-
body case in results, although this cannot be said for sure based on the results
of this project. There are many different methods for more realistic free surface
modelling. Multiphase flow with both air and water is possible in OpenFOAM,
and this would probably be a good idea to implement in further work.

The results of the simulations show that LES is generally better suited for describ-
ing fully turbulent and massively separated flows like the one in question here.
This conclusion is mainly based on the visualization of the flow fields, which show
that LES captures the vortices and turbulent structures better, and is able to fol-
low them further downstream. Unfortunately, the force coefficient and spectral
analysis results of the LES in this project are too inaccurate to compare to the
RANS results with certainty. Therefore, no certain conclusions can be drawn from
this, other than that the RANS approach with wall functions seems to under pre-
dict the mean drag coefficient. It would be interesting to run a RANS simulation
with a finer grid without wall functions to see if this will resemble the LES results
more. This is also recommended as further work.

When choosing between LES and RANS, computational effort has to be taken
into account. It was found from this project that LES is very expensive compared
to RANS, with respect to both computational time and preprocessing. More ad-
vanced gridding techniques like unstructured grids and automatic gridding could
help reduce the effort of LES. The lesson learned here is that for practical engi-
neering purposes, LES should only be chosen over RANS if it is strictly necessary
for accuracy of results. RANS is simple and fast, and probably accurate enough
for most practical applications.

It was interesting to note that the k − ω SST model was not well suited for this
application. This contradicted the authors previous experience with simpler flows.
The realizable k−ε model turned out to be working much better for this problem.
It might seem that the combination of k−ω SST and wall functions is not always
a good choice, although this cannot be concluded purely based on the results of
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this project.

OpenFOAM has proven to be well suited for the simulations in this project. Dif-
ferent turbulence models are relatively easy to implement, and documentation and
support are widely available on the web. The structure and interface of the pro-
gram may be a bit hard to grasp for new users, but it opens up for a thorough
understanding of both inputs and outputs.

This master’s project has laid the ground works for being able to simulate flow
around more complex geometries in the future. The author is now many steps
closer to the ship hull case, which was one of the initial motivations behind this
project. Even though no real ship hull geometry was investigated here, knowledge
about turbulence models and gridding techniques will be very valuable in future
endeavours on this topic.
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