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Abstract

We study the large thermoelectric e�ects arising as a result of strongly coupled spin,
heat and charge currents in superconducting hybrids theoretically. Two new frame-
works for calculating thermoelectric coe�cients are presented, one including the possi-
bility of spin-dependent bias application to homogeneously magnetized materials, and
the other utilizing the quasiclassical framework allowing for spin-splitting polarizations
along more than one axis. The thermoelectric coe�cient α governing pure thermal spin
currents, the Seebeck coe�cient S and the thermoelectric �gure of merit ZT are all
maximized when tunneling is considered to be across an insulating barrier between two
Zeeman-split superconducting reservoirs. The disadvantage of such a con�guration is
the large external magnetic �elds which need be applied for the thermoelectric e�ects to
arise. Therefore, we here present results indicating large thermoelectric e�ects of similar
orders of magnitude arising in superconducting hybrids wherein the particle-hole sym-
metry is broken without the use of large external magnetic �elds. Within the low-�eld
material systems studied, all tunneling occurs from the middle of the central layer in a
Josephson junction into a normal-metal electrode. The central nanowire in the Joseph-
son junction (i) contains spatially varying magnetization, (ii) is coupled to spin-active
interfaces (such as magnetic insulators) or (iii) has intrinsic spin-orbit interaction of
Rashba type.





Sammendrag

I denne masteroppgaven granskes de store termoelektriske e�ektene som oppstår som et
resultat av sterkt koblede strømmer av spinn, ladning og varme i superledende hybrid-
strukturer teoretisk. To nye rammeverk for beregning av termoelektriske koe�sienter
presenteres. Det ene tar høyde for muligheten for spinn-avhengige spenninger og tem-
peraturgradienter i materialer med homogen magnetisering, og det andre utnytter det
kvasiklassiske rammeverket for å studere brutte spinn-avhengige partikkel-hull symme-
trier langs mer enn en akse. Den termoelektriske koe�sienten α som styrer termiske
spinnstrømmer, Seebeck-koe�sienten S og den termoelektriske graderingsfaktoren ZT
er alle maksimert når tunneleringstrømmer betraktes over en isolerende barriere mel-
lom to Zeeman-splittede superledende reservoarer. Ulempen ved et slikt oppsett er
de sterke magnetiske feltene som må påføres de superledende materialene for å oppmå
store termoelektriske e�ekter. Derfor presenterer vi her i tillegg resultater som indikerer
tilsvarende store termoelektriske e�ekter i superledende hybrider der partikkel-hull sym-
metrien kan brytes uten at sterke magnetiske felt behøves. I disse materialsystemene
forekommer tunnelering mellom den sentrale delen av en Josephson junction og en elek-
trode av et normalt metall. Den sentrale nanotråden (i) innehar romlig varierende
magnetisering, (ii) er koblet til spinn-aktive grensesjikter (som magnetiske isolatorer)
eller (iii) innehar spinn-bane kobling.
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Chapter 1

Introduction

1.1 Background

Since the �rst observation of superconductivity by Kamerlingh Onnes in 1911 [1], it has
been the subject of extensive research. The possible application areas for materials with
zero DC electrical resistivity seem endless, and have fascinated scientists and laymen
alike for more than a century. The celebrated BCS theory [2] greatly simpli�ed calcu-
lations and predictions, as it provided a comprehensive explanation for the underlying
physics of conventional superconductors. Discoveries such as the Meissner e�ect, where
magnetic �ux lines are expelled from superconducting materials [3], and the proximity
e�ect allowing for leakage of superconducting currents into adjacent materials [4], only
contributed to enhancing the interest. When so-called high-temperature superconduc-
tivity was discovered in 1986 [5], the expected radical breakthrough seemed imminent.
However, as the critical temperatures of the high-TC superconductors are still fairly low
compared to room-temperature, they can not be found in all everyday applications as
of yet. Even though superconductors are today used for several di�erent purposes, such
as magnetic resonance imaging (MRI) [6], �oating trains [7], superconducting quantum
interference devices (SQUIDs) [8] and are proposed for use as qubits in quantum com-
puting [9], one may argue that there is still a way to go for the major application areas
to be found. The highest critical superconducting temperature reported as of yet was
found in H2S just last year [10], and reported at 203 K at high pressures. Even though
this is most certainly a step in the right direction, room-temperature superconductivity
will probably not be readily available anytime soon. Nonetheless, there are some ap-
plication areas which seem so promising that they may call for even low-temperature
superconductivity.

For years, the continued increase in computational power has been predicted by what
has become known as Moore's law concerning reduction of transistor size [11]. As the
silicon-based metal oxide semiconductor �eld e�ect transistors (MOSFETs) [12] ap-
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CHAPTER 1 1.1. BACKGROUND

proach the limit of what is possible to achieve, the �eld of spintronics has emerged to
attempt to solve the problem. Charge currents traveling through semiconductor mate-
rials meet with resistance generating heat dissipation, causing a decrease in e�ciency.
Utilizing the electron spin degree of freedom instead of or in addition to the charge
poses a possible solution, as it could minimize heat dissipation e�ects and increase
computational power. This comprises the ultimate goal of the �eld of spintronics [13].
Logic devices based on the spin degree of freedom instead of the charge, such as spin
�eld e�ect transistors [14][15], magnon wave transistors [16] and devices based on the
spin transfer torque [17][18][19] have been proposed and show much promise. A major
result of spintronics research in use today is the giant magnetoresistance (GMR) e�ect,
which has seen great use in the reading and storing of information [20]. In order to fur-
ther brighten the prospects of spintronics as the gateway to increasing computational
power, superconductors have been proposed as a key element in several devices [21].
Major reasons include spin lifetimes being long in superconductors due to a signi�cant
increase in spin �ip relaxation time compared to the normal state [22][23], the size of the
magnetoresistance induced by internal exchange �elds in superconductors can approach
in�nity [24], and spin-transfer torques in superconductor/ferromagnet structures can
become very large [25]. Superconducting hybrids have also been suggested for use as
bipolar spin �lters [26].

The superconducting proximity e�ect may present an elegant solution for generating
and exploiting spin-polarized supercurrents. The superconducting entities known as
Cooper pairs [27] can exit a superconductor and enter an adjacent material if they are
grown in good contact. If the sizes of the superconductor and adjacent material are sim-
ilar, and there is large interface transparency, this can be considered as a depletion of
Cooper pairs from the superconducting side and is accompanied by a reduction in super-
conducting critical temperature, the temperature below which a material may become
superconducting. This is known as the inverse proximity e�ect. When the supercon-
ductors are large compared to the adjacent material and interface transparencies are
su�ciently low, this e�ect can be disregarded. The inverse proximity e�ect will therefore
be neglected throughout this thesis. If a superconductor is coupled to some magnetic
material, the �eld emanating from this material may alter the spin-polarization of the
Cooper pairs through a process known as spin-mixing. When considering conventional
BCS superconductors, as will be done herein, the Cooper pairs exiting a superconduc-
tor will be spin neutral. Such entities are known as spin-singlet Cooper pairs and are
not spin-polarized. If they are made to interact with a magnetic material upon leaving
the superconductor they may undergo a phase shift and become triplet Cooper pairs
[28][29]. Following this process the Cooper pairs will still not be uniquely spin-polarized
along a speci�c axis. If they enter a ferromagnetic material they will be readily ripped
apart and destroyed by the magnetic exchange �eld. In order for Cooper pairs to sur-
vive over large length scales in ferromagnets they must reside in the so-called long range
triplet state. In long-range triplet Cooper pairs, both electrons reside in the same spin
state, which must be aligned with the magnetization. Such spin-polarized supercur-
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rents have been seen to survive over relatively long distances in half metals, where all
spins are aligned along the same axis [30][31][32]. In order to obtain such spin-polarized
supercurrents one can utilize spin-active barrier elements at the interface between su-
perconductors and other materials [33][34], couple superconductors to inhomogeneous
ferromagnets with spatially varying magnetization such as conical ferromagnets [35] or
ferromagnet/half metal bilayers [36], or grow superconducting materials adjacently to
materials containing spin-orbit coupling [37][38][39][40]. Generating spin-polarized cur-
rents from spin-orbit coupled materials is a feat which also falls under the scope of the
�eld known as spin orbitronics [41].

In addition to being hosts to the tantalizing possibility that is spin-polarized super-
currents, superconducting hybrids containing spin-active interfaces, magnetic inhomo-
geneities and spin orbit coupling may exhibit sizable electron-hole asymmetries. This
e�ect is key to generating what is known as thermoelectric e�ects, where temperature
gradients can result in electric currents and vice versa. Thermoelectric materials cur-
rently undergo extensive research as their ability to generate usable electric currents
from waste heat is a desirable property in order to obtain more e�cient energy usage
[42]. As semiconductors contain the desired asymmetry and are readily available they
probably constitute the main focus of thermoelectric research [43]. Moreover, super-
conductors were up to recently believed to be poor hosts for thermoelectric e�ects [44].
However, within the �eld of spin caloritronics [45], it has now been shown that super-
conductors o�er vast possibilities. Spin caloritronics focuses on the interplay between
currents of spin and heat. Superconductors are known to enhance central spintronics ef-
fect as well as enable spin-polarized supercurrents. When the proximity e�ect between
superconducting and magnetically active materials is exploited to break the perfect
particle-hole symmetry of superconducting materials, giant thermoelectric e�ects may
arise. This has been shown for the case of a ferromagnet coupled to a superconductor
via a tunneling interface, both theoretically [46][47] and recently also experimentally
[48]. Here, the desired asymmetry was induces by applying an external Zeeman-�eld.
Thermoelectric �gures of merit ZT and Seebeck coe�cients S of sizes comparable to,
and even exceeding, the best bulk semiconducting thermoelectric materials at room tem-
peratures proved attainable. Moreover, the generation of pure spin currents as a result
of an applied temperature gradient was predicted. Large superconductivity-mediated
thermoelectric e�ects have also been found in more complex Zeeman-split hybrids [49],
in superconductors doped with magnetic impurities [50], di�usive superconducting bi-
layers with magnetic interfaces [51], and in three-terminal superconductor-ferromagnet
devices [52]. As a particle-hole asymmetry is key to obtaining these thermoelectric ef-
fects, merging superconducting spintronics with spin caloritronics and spin orbitronics
could result in giant thermoelectric e�ects arising even at low applied magnetic �eld
strengths.

Room temperature superconductors are not experimentally feasible as of yet. Con-
sequently, application areas for the giant thermoelectric e�ects observed in spin-split
superconducting hybrids currently need to allow for cryogenic temperatures. An appli-
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cation area for such structures is as building blocks in phase-coherent thermal circuits
[53]. Thermal nanovalves [54] and thermal transistors [55] based on di�erent con�gura-
tions of superconductors and normal metals exposed to magnetic �elds have also been
proposed. Thermoelectric superconducting hybrids could also be used as microcoolers
for cooling to cryogenic temperatures on a chip [56], and for electron refrigeration [57].
A di�erent major application area for the kind of device proposed in these articles is
for thermal sensing and ultra-sensitive radiation detection [58].

A common denominator for all the superconducting hybrids which have so far been
shown to exhibit large thermoelectric e�ects is their requirement for large externally
applied magnetic �elds of size order a of approximately 1 T. When considering potential
practical application areas, this could pose a challenge. Consequently, it would be
desirable to obtain comparable thermoelectric e�ects without the requirement of strong
magnetic �elds. This, along with maximizing the thermoelectric e�ects in Zeeman-split
superconducting hybrids, will be the main focus area of this thesis.

1.2 Objective and thesis organization

The goal of this thesis is the understanding and quanti�cation of the giant thermoelec-
tric e�ects arising through tunneling in superconducting hybrids. We investigate the
electronic properties necessary to achieving the particle-hole asymmetry allowing for
thermoelectric phenomena to arise, and attempt to �nd the con�gurations maximiz-
ing said e�ects. We study the pure spin currents arising in spin-split superconducting
hybrids upon applying temperature gradients, and study the thermoelectric �gure of
merit and Seebeck coe�cient in order to compare our results to existing thermoelec-
tric materials. As thermoelectric e�ects have already been discovered and o�ered much
consideration in the case of Zeeman-split superconducting hybrids, we have chosen two
major new routes which as of yet remain unexplored. The �rst is the application of
spin-dependent biases and the e�ect this has on thermoelectric e�ects. We study which
thermoelectric currents can arise upon allowing spin-up and spin-down particles to have
di�erent temperatures and chemical potentials, and quantify said e�ects using numerical
methods. We apply this framework, which is an extension of an already existing frame-
work, to di�erent material con�gurations than the ones that have already been studied.
Secondly, we want to consider thermoelectric e�ects arising in materials with more ex-
otic spin con�gurations than a homogeneous ferromagnet polarized along one direction,
and derive a new mathematical framework based on quasiclassical theory and matrix
currents for this purpose. This is then applied to experimentally achievable super-
conducting hybrid structures. A major theme throughout all these considerations and
calculations has been replicating the giant thermoelectric e�ects found in Zeeman-split
superconducting hybrid structures using materials which do not require large applied
magnetic �elds. Application areas could be much easier to identify if external �elds
could be omitted. Therefore, superconducting material systems in which only very low

Page 4



1.2. OBJECTIVE AND THESIS ORGANIZATION CHAPTER 1

or even no magnetic �elds need to be applied are studied, and subsequently compared
to the Zeeman-split systems. This is the primary goal of this work.

The structure of the thesis re�ects the steps taken to achieve these goals. First we
consider the fundamental theory crucial for understanding the physics and mathemat-
ics used in achieving the results. This will very brie�y cover BCS superconductors,
spin-orbit coupling and ferromagnets, along with providing a brief introduction to qua-
siclassical theory and the Keldysh formalism. Next, superconducting tunneling and
thermoelectric currents will be described, followed by a motivation for the assumption
of possible spin-dependent bias application. When the fundamental concepts have been
covered, we will move on to deriving a complete framework for thermoelectric e�ects
in superconducting hybrids with homogeneous magnetization. This framework will in-
clude the possibility of spin-dependent applied voltage and temperature biases, and the
derivations will culminate in a 4�4 Onsager response matrix. The following chapter will
seek to apply this framework to spin-split hybrid structures such as Zeeman-split super-
conducting bilayers and trilayers, superconductor/ferromagnet/superconductor (S/F/S)
Josephson junctions with ferromagnetic domain walls and superconductor/ normal
metal /superconductor (S/N/S) Josephson junctions with spin-active interfaces polar-
ized homogeneously along the same axis. The focus point of this consideration will
be upon maximizing the thermoelectric �gure of merit ZT and Seebeck coe�cient S,
along with maximizing the pure spin currents arising upon the application of a tem-
perature gradient even in the absence of a polarized tunneling barrier. This is achieved
through applying quasiclassical theory to the more complex structures to obtain values
for the density of energy states, which is numerically integrated to obtain values for
the thermoelectric coe�cients. As this framework is not applicable to materials with
more complex spin con�gurations, we also derive a framework for thermoelectric e�ects
based on matrix currents and quasiclassical theory. Spin-dependent bias application
will not be included here, but the e�ects of voltage and temperature biases upon spin,
heat and charge currents are studied extensively. This framework is then applied to
superconducting hybrid S/X/S structures with more complex spin polarization con�g-
urations such as conical ferromagnetism, spin-active interfaces with polarizations which
may rotate in a plane and spin-orbit coupling. Once again, thermoelectric coe�cients
and �gures of merit are quanti�ed using numerical methods. Along with considerations
of all speci�c structural con�gurations, an experimental discussion rooted in state of the
art fabrication methods is included herein. The material parameters chosen are based
on realistic values found for existing elements. Finally, the results will be summarized
and conclusions presented. The more extensive analytical derivations can be found in
the Appendices along with a thorough description of the numerical procedure.
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Chapter 2

Fundamental theory

2.1 Notation conventions

This thesis will to a large degree employ mathematical notation conventions regularly
used in physics. Rationalized natural units or Heaviside-Lorentz units [59][60] are chosen
in order to simplify the calculations and considerations, and the most commonly used
physical constants are de�ned to equal one. Accordingly,

h̄ � c � kB � 4πG � ε0 � µ0 � 1, (2.1)

where h̄ is the Planck constant h{2π, c is the speed of light in vacuum, kB is the Boltz-
mann constant, 4πG is the Newton gravitational constant, ε0 is the vacuum permittivity
and µ0 is the vacuum permeability.

Vectors and matrices in three dimensions will throughout this thesis be written in a
bold font. Hence, the Cartesian unit vectors are written as x, y and z. Matrices in
2 � 2 spin space are written with an underline, such as A. Consequently, the Pauli
matrices in spin space are

σx �
�

0 1
1 0



, σy �

�
0 �i
i 0



, σz �

�
1 0
0 �1



. (2.2)

The three-dimensional Pauli matrix vector thus becomes

σ � σxx� σyy � σzz. (2.3)

Matrices in the 4 � 4 particle-hole or Nambu space are written with a hat, as Â or pA.
The Pauli matrices in Nambu space are
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σ̂ν � diagpσν , σ�νq, (2.4)

where ν � tx, y, zu. Finally, we will need to consider these matrices in 8 � 8 Keldysh
space, where matrices are speci�ed using a check, as Ǎ and qA. When the Pauli matrices
need to be used in Keldysh space, they become σ̌ν � diagpσ̂ν , σ̂νq. A last matrix worth
noting is the 4� 4 generalization of σz,

ρ̂3 �

����
1 0 0 0
0 1 0 0
0 0 �1 0
0 0 0 �1

���. (2.5)

As is already evident, an asterisk� is used to denote complex conjugation. A dagger: rep-
resents the Hermitian conjugate, and a TT the matrix transpose. The partial derivative
is written as Bx � B{Bx, rA,Bs � AB�BA is the commutator and tA,Bu � AB�BA
the anticommutator.

2.2 Superconductivity

The celebrated BCS theory [2] explains superconductivity as a phonon-mediated attrac-
tive electron-electron interaction. The two electrons experiencing the mutual attraction
reside in opposite spin states in conventional superconductors, and are known as a
singlet Cooper pair [27]. The mean-�eld BCS Hamiltonian is [61] [62]

H �
»

d3r
�
∆:pr, tqψÓpr, tqψÒpr, tq �∆pr, tqψ:Òpr, tqψ:Ópr, tq

�
, (2.6)

with the mean �eld superconducting gap parameter de�ned as

∆pr, tq � λprqxψÓpr, tqψÒpr, tqy, ∆:pr, tq � λprqxψ:Ópr, tqψ:Òpr, tqy. (2.7)

λprq encompasses the attractive interaction between electrons, and is modeled as a con-
stant potential. The operator ψ:σpr, tq creates a quasiparticle with spin σ at a given
position and time, while ψσpr, tq destroys such a particle, or conversely creates a quasi-
hole. The complex gap parameter ∆ � |∆|eiθ contains the size of the superconducting
energy gap in |∆|, while θ describes the superconducting phase. The ratio ∆0

kBTc
� 1.76

is used throughout this thesis, as it is correct for several low-Tc BCS superconductors
[63] [64, p. 89]. Unless the temperature is close to absolute zero, the superconducting
gap ∆ � ∆0, which is the gap at zero temperature and magnetic �eld. A very good
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approximation for the temperature dependence of the superconducting order parameter
is

∆ � ∆0 tanh

�
1.74

c
Tc,0
T

� 1

�
. (2.8)

0 0.1 0.2 0.3 0.4 0.5
T/T

c0

0

0.2

0.4

0.6

0.8

1

∆
/∆

0

Figure 2.1: Temperature dependency of the superconducting gap ∆.

The temperature evolution of the superconducting energy gap ∆ according to this equa-
tion is represented graphically in Figure 2.1. The temperature dependency is quite weak,
and practically negligible up to around T � 0.4Tc,0. When a superconductor is sub-
jected to a strong external magnetic �eld, the superconducting gap ∆ depends on the
external �eld hS in addition to the temperature T according to the self-consistency
relation [65]

1� c

2

» ω0

�ω0

dε
1� f rEÒpεqs � f r�EÓpεqs?

ε2 �∆2
� 0, (2.9)

where c is the weak-coupling constant and Eσ � σp?ε2 �∆2 � hq. The self-consistent
solution for the superconducting order parameter in Zeeman-split superconductors can
be found in Figure 2.2 for chosen values of c and ω0.

A distinguishing feature of superconducting materials is discovered upon comparing
their densities of states to the normal-state situation. The density of states (DOS) for
a conventional superconductor (SC) is given by

DSCpEq
N0pEq �

∣∣∣∣∣Re

#
E � iΓa

pE � iΓq2 �∆2

+∣∣∣∣∣, (2.10)

where the normal state density of states N0pEq is considered featureless and approxi-
mated as N0pEq � 1 in the quasiclassical framework. This is done because the quasipar-
ticle energy is much smaller than the Fermi energy, and the normal state DOS therefore
hardly changes at all. Figure 2.3 shows the superconducting DOS at T � 0 K, with
Γ � 0 and ∆ � ∆0 � 1 meV. Γ represents the Dynes parameter modeling inelastic
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0.8
0
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0.9∆
/∆
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Figure 2.2: Self-consistent solution for ∆ in a Zeeman-split superconductor. The weak-coupling
constant is c � 0.2 and ω0 � 0.5∆0e

1{c.

scattering [66]. The Dynes model is here used to include the e�ect of subgap states on
quasiparticle tunneling. The superconducting density of states exhibits several features
separating the superconducting state from the normal state worth noticing. There is
a gap in the DOS for |E|   ∆, along with asymptotic behavior at the gap edges. As
the energies become larger and E " ∆, the superconducting DOS approaches the fea-
tureless normal-state DOS. When a superconductor is subjected to a strong external
magnetic �eld, the BCS density of states is split into a spin-up and a spin-down part
separated in energy [67], and

DσpEq �
∣∣∣∣∣Re

#
E � σhS � iΓa

pE � σhS � iΓq2 �∆2

+∣∣∣∣∣ (2.11)

where hS denotes the applied exchange �eld. Figure 2.3 shows the density of states in
a conventional BCS superconductor and the e�ect of exchange-splitting on the super-
conducting DOS, which also has been observed experimentally [68], is shown in Figures
2.4b and 2.4a.

The conventional BCS superconducting density of states exhibits a characteristic energy
gap about zero energy up to the gap edges E � �∆. This gap re�ects the properties of
spin neutral so-called singlet superconductivity. When a superconductor is subjected
to a spin-splitting Zeeman-�eld there is a great impact on the superconducting density
of states as seen in Figure 2.4. Figure 2.4a shows the symmetric total density of states
in a Zeeman-split superconductor D0

ZSpEq � 0.5pDÒ�DÓq while Figure 2.4b shows the

spin-polarized DÒ
ZSpEq in red and DÓ

ZSpEq in blue. The di�erence in the Zeeman-split
spin-dependent density of states Dz

ZSpEq � DÒ�DÓ becomes antisymmetric about the
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Figure 2.3: Density of energy states in a conventional BCS superconductor. ∆0 � 1 meV and
inelastic scattering is neglected.
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(a) Total density of states in a Zeeman-split
superconductor.
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(b) Spin-split density of states in a Zeeman-
split superconductor.

Figure 2.4: Total density of states in a Zeeman-split BCS superconductor and spin-dependent
DOS in a Zeeman-split supercodnuctor, respectively. ∆0 � 1 meV and hS � 0.3∆0. Inelastic
scattering is neglected.

quasiparticle energy E � 0. The energy gap no longer occurs symmetrically about E � 0
and the peaks are no longer situated at the gap edges E � �∆0, but are instead shifted
with the exchange energy hS . In the total Zeeman-split density of states in Figure 2.4a
extra peaks arise, adding additional features to the superconducting density of states.
In certain structures a zero-energy peak can arise, indicating the presence of triplet
Cooper pairs and accordingly the possibility of spin-polarized supercurrents.

Page 11



CHAPTER 2 2.3. FERROMAGNETISM

2.3 Ferromagnetism

Ferromagnetic materials can hold a permanent magnetic moment, known as a saturation
moment, even in the absence of a magnetic �eld [69]. Such materials are normally
organized in domains in order to reduce the energy cost of establishing and maintaining
a net magnetic �eld [70]. Ferromagnetic spin ordering is favorable only as a result of the
Pauli principle working in conjunction with the Coulomb repulsion. The Pauli principle
demands that fermions occupy di�erent quantum mechanical states, while Coulomb
repulsion prevents electrons from occupying the same place in real space. Consequently,
in some cases, electrons being of the same spin state while occupying di�erent molecular
orbitals is the energetically favorable electronic con�guration [71]. Within a mean-�eld
approximation ferromagnetic order can be described as

H � �h � σ, (2.12)

where the exchange �eld h encompasses the magnetic properties of the material and σ
is the vector of Pauli matrices. Applying the second quantization formalism, the result
is [72]

H � �
»

d3r
¸
σσ1

ψ:σpr, tqrhpr, tq � σsσσ1ψσ1pr, tq. (2.13)

2.4 Spin-orbit coupling

When an electron moves in an electric �eld, it experiences an e�ective magnetic �eld
which gives rise to a momentum-induced Zeeman-energy known as spin-orbit (SO) cou-
pling, which is a relativistic e�ect [73]. The Hamiltonian for Rashba spin-orbit coupling
is [74]

HR � � h̄

4m2
oc

2
σ � p� p∇V0q, (2.14)

which in our consideration becomes HR � � β
mpσ � kq � ẑ, where β is the Rashba

coe�cient. This is commonly denoted α, but as α is used for the thermoelectric coe�-
cient we will employ β instead. We will use the linearized single-particle Hamiltonian
[38][39]

HR � �p �A
m

, (2.15)

where A is the spin-orbit �eld. This �eld is a vector in real space, as A � Axx �
Ayy �Azz, while Aν are 2� 2 matrices in spin space. The Rashba spin-orbit coupling
Hamiltonian is included in the total Hamiltonian for the system to be considered as an
e�ective background �eld by rede�ning the covariant derivative as [75] ∇̃p�q � ∇p�q �
irÂ, �s, where Â � diagpA,�A�q.
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2.5 Proximity e�ect

The proximity e�ect is the induction of the characteristic properties of one material
in an adjacent material, if the systems are grown together and in good contact [4].
When considering a normal metal in contact with a superconductor, the proximity
e�ect manifests itself through the leakage of Cooper pairs into the normal metal. In
the normal metal, this is noticed as the emergence of superconducting order, while on
the other side of the interface there is a reduction in superconductivity. This is known
as the inverse proximity e�ect, and can be neglected when the interface transparency is
low and the superconductors are su�ciently large compared to the other material. This
approximation will be made throughout this thesis. Moreover, proximity e�ects will
be considered solely in superconductor/ unknown material/ superconductor (S/X/S)
Josephson junctions, where X is non-superconducting.

A robust approach to detecting the proximity e�ect in a system is through considering
how the density of states in each material is altered as a consequence of the contact. If
we once again consider the case of a normal metal and a superconductor, the proximity
e�ect can be measured experimentally through considering the tunneling charge current
[64]

I � 2π

h̄

»
dED0

LpE � µLqD0
RpEqrfLpE � µLq � fRpEqs, (2.16)

which arises as a result of applying di�erent temperatures and voltage biases to the
left (L) and right (R) sides of an interface with low transparency, a so-called tunneling
interface. D0

j pEq is the density of energy states, fjpE � µjq is the Fermi-Dirac distri-
bution function, and µj is the chemical potential. If the left-hand material is a bulk
normal metal with a featureless density of states, measuring the tunneling current gives
a direct impression of the density of states of the right-hand-side material [76] which can
be a complex proximity-coupled structure. This procedure essentially is the opposite
of what we aim to achieve throughout this thesis. By obtaining exact measures for the
densities of states of di�erent proximity-coupled systems we are able to consider the
resulting tunneling currents into other materials, along with the thermoelectric e�ects
arising as a consequence.

One of the most famous superconducting hybrid structures relying on the proximity
e�ect is the S/X/S Josephson junction mentioned above [77][78]. Such structures consist
of two superconductors separated by a di�erent material. The central layer can be for
instance an insulator, a normal metal or a ferromagnet. What is observed in this case
is a supercurrent traversing the central layer. When assuming the central material
is not merely a tunneling barrier, this supercurrent is seen to modify the density of
states of this material [79][80][81]. This current, and also the density of states in the
central material, is greatly a�ected by both the superconducting phase di�erence and
the interface transparency [82].
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(a) (b)

Figure 2.5: Density of states in the middle of the normal metal in a S/N/S Josephson junction
for LN � 15 nm and LN � 30 nm, respectively. ζ � 3 represents interface tunneling, ξ � 30
nm is the superconducting coherence length, Γ{∆0 � 0.005 represents inelastic scattering and
the temperature is T {Tc,0 � 0.2.

Figure 2.5 shows the density of states at the center of the normal metal in a super-
conductor/ normal metal/ superconductor (S/N/S) Josephson junction. The interfaces
have low transparencies, as determined by ζ � 3. Figure 2.5a shows the DOS for a
normal metal length of 15 nm, and �gure 2.5b for LN � 30 nm. A distinguishing fea-
ture here is the zero-energy gap in the normal-metal density of states, signifying the
emergence of superconducting order throughout the non-superconducting material. The
superconducting phase di�erence ∆θ � θL� θR is the driving force for the transport of
Cooper pairs. The superconducting gap persists for all energies and phase di�erences
except for ∆θ � π. At this point, the Cooper pairs all have the same phase, and no net
supercurrent traverses the system. For larger energies far from the gap edges, the DOS
in the normal metal approaches the featureless normal-metal DOS. Moreover, when the
superconducting phase di�erence ∆θ � π, the supercurrent passing through the normal
metal is suppressed. The external tuning of the superconducting phase di�erence can
be achieved experimentally by applying magnetic �elds or passing currents through the
system. Consequently, the Josephson current can be switched on and o� by external
means, in analogy to a �eld e�ect transistor (FET) [12].

When regular tunneling interfaces are situated between the normal metal and the
superconductor, only spin-neutral singlet Cooper pairs with S � 0 and ψsinglet �b

1
2

�
|ÒÓy � |ÓÒy � exist in the system when conventional BCS superconductors are con-

sidered. However, a process known as spin-mixing can occur at the interface between
superconducting and magnetic materials. The Cooper pair wavefunction can oscillate

between the singlet and the spinless triplet state, ψtriplet �
b

1
2

�
|ÒÓy � |ÓÒy �, at the

interface. These triplet Cooper pairs would, however, still be destroyed readily in a
fully polarized ferromagnetic material such as a half metal. Long range triplet Cooper
pairs ψlong � |ÒÒy and ψlong � |ÓÓy with Sz � 1 are generated through a process known
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as spin rotation, which can occur when spin-splitting mechanisms such as inhomoge-
neous magnetic interfaces [33], spatially varying magnetic materials [83] and spin-orbit
coupled materials [39] are employed.

Figure 2.6: Density of states in an S/F/S Josephson junction, for LF � 15 nm. ζ � 4 repre-
sents interface tunneling, ξ � 30 nm is the superconducting coherence length, Γ{∆0 � 0.005
represents inelastic scattering, T {Tc,0 � 0.2 and h{∆0 � 3. The ferromagnet polarization is
aligned along the z-axis. Instead of a superconducting gap at energies E   ∆, the DOS is now
enhanced above its normal-state, a feature characteristic of odd-frequency triplet Cooper pairs.

Figure 2.6 shows the density of states in the middle of a superconductor/ ferromagnet/
superconductor (S/F/S) Josephson junction in comparison. There is no minigap about
E � 0 but rather two gaps close to the gap edges.

Triplet superconductivity can be observed in the same manner as the singlet proximity
e�ect, namely via the density of states within the material adjacent to a supercon-
ductor. Figure 2.7 shows the density of states at the middle of the normal metal in
a Zeeman-split superconductor/normal metal/Zeeman-split superconductor (ZS/N/ZS)
Josephson junction. Each �gure displays the e�ect of a di�erent value of the externally
applied exchange �eld. For a certain value of the superconducting phase di�erence,
the normal-metal density of states changes from having a zero-energy gap to instead
containing a zero-energy peak. This peak signi�es the switch from singlet to triplet su-
perconductivity. A feature to be noticed concerns the fact that the stronger the applied
magnetic �eld is, the smaller the superconducting phase di�erence needs to be for the
singlet to triplet conversion to occur.

2.6 Quasiclassical theory

The Green function formalism is commonly employed when considering condensed mat-
ter physics phenomena. Green functions can be interpreted as propagators for the par-
ticle state, thus providing a measure of how much is left of the original particle state
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(a) (b)

(c) (d)

Figure 2.7: Density of states in a ZS/N/ZS Josephson junction, for LN � 15 nm, ζ � 3
represents interface tunneling, ξ � 30 nm is the superconducting coherence length, Γ{∆0 �
0.005 represents inelastic scattering and T {Tc,0 � 0.2. The spin-splitting exchange �eld is
h{∆0 � 0.12, 0.30, 0.43 and 0.50, respectively.

[61][ch. 2]. This thesis is based on the Keldysh real-time Green function formalism,
which he used to derive kinetic equations for electrons interacting with phonons [84][85].
Here, we only brie�y outline the main steps of this theory and refer the reader to Refs.
[86][87][88][89][90] for an in-depth review. The fermionic Green functions are

GRσσ1pr1, t1; r2, t2q � �i@ ψσpr1, t1q, ψ:σ1pr2, t2q
(D

Θpt1 � t2q (2.17)

GAσσ1pr1, t1; r2, t2q � �i@ ψσpr1, t1q, ψ:σ1pr2, t2q
(D

Θpt1 � t2q (2.18)

GRσσ1pr1, t1; r2, t2q � �i@�ψσpr1, t1q, ψ:σ1pr2, t2q
�D
, (2.19)

whereas their anomalous counterparts are
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FRσσ1pr1, t1; r2, t2q � �i@ ψσpr1, t1q, ψσ1pr2, t2q
(D

Θpt1 � t2q (2.20)

FAσσ1pr1, t1; r2, t2q � �i@ ψσpr1, t1q, ψσ1pr2, t2q
(D

Θpt1 � t2q (2.21)

FRσσ1pr1, t1; r2, t2q � �i@�ψσpr1, t1q, ψσ1pr2, t2q
�D
. (2.22)

The retarded (R) and advanced (A) Green functions describe quantum transport of
electrons and holes, respectively, as they are composed of sums of products of creation
and annihilation operators. The dynamics of the Cooper pairs are thus encompassed
by the anomalous Green functions FR, FA and FK . The retarded and advanced Green
functions in both cases only contain equilibrium information, while the Keldysh com-
ponents describe non-equilibrium transport. The propagators can now be combined to
form 2� 2 matrices in spin space,

GR �
�
GRÒÒ GRÒÓ
GRÓÒ GRÓÓ



GA �

�
GAÒÒ GAÒÓ
GAÓÒ GAÓÓ



GK �

�
GKÒÒ GKÒÓ
GKÓÒ GKÓÓ



(2.23)

FR �
�
FRÒÒ FRÒÓ
FRÓÒ FRÓÓ



FA �

�
FAÒÒ FAÒÓ
FAÓÒ FAÓÓ



FK �

�
FKÒÒ FKÒÓ
FKÓÒ FKÓÓ



, (2.24)

4� 4 matrices in particle-hole or Nambu space,

pGR �
�
GR FRrFR rGR

� pGA �
�
GA FArFA rGA

� pGK �
�
GK FK

�rFK �rGK

�
, (2.25)

and �nally the 8� 8 matrix in Keldysh space

qG �
�pGR pGK

0 pGA

�
. (2.26)

The tilde-conjugation is interpreted as rG � G�pr,�εq when G depends on both the
position and energy coordinate. The diagonal elements of GR, GA and GK contain
information regarding particle and hole dynamics while the anti-diagonal elements de-
scribe spin-�ip scattering processes. The density of states of a system is consequently
contained in these two diagonal elements ofGR. The motion of spin-singlet Cooper pairs
is encompassed by the anti-diagonal elements of FR, FA and FK , with the long-range
triplets being described by the diagonal elements of the same matrices.

Switching to the mixed coordinate or Wigner representation simpli�es �nding exact
solutions for the Green functions. Finding such solutions has been a main objective of
the work, as the Green functions contain information regarding the density of states.
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As we need the DOS to quantify the thermoelectric e�ects, obtaining good approxima-
tions for the Green function presents itself as the �rst major obstacle to be overcome.
The switch to the Wigner representation involves switching from speci�c coordinates
pr1,2, t1,2q to center of mass coordinates pr, tq and di�erence coordinates pR, T q. Next,
the dependence of the Green functions on the relative coordinate |r1 � r2| is integrated
out. The Green functions �uctuate with respect to this coordinate, but the rate of
variation is on the scale of the Fermi wavelength λF , which is much smaller than char-
acteristic length scales in superconducting systems. Moreover, the approximation relies
on assuming that only particles near the Fermi surface contribute to transport in ad-
dition to a nearly non-directional or isotropic Green functions matrix. Applying the
approximation and performing a Fourier transform results in the quasiclassical Green
functions becoming

ǧpr,pF , ε, tq �
i

π

»
dξ qGpr,p, ε, tq, (2.27)

where ξ � p2

2m �µ is the kinetic energy with respect to the chemical potential, or Fermi
level, µ. Throughout this thesis, we also make the approximation of equilibrium or
steady-state transport. Within the quasiclassical regime, we obtain the normalization
condition ǧǧ � 1̌ and the Green function matrices in Nambu space become

ĝR �
�
gR fR

�f̃R �g̃R



ĝA �
�
gA fA

�f̃A �g̃A



ĝK �
�
gK fK

f̃K g̃K



. (2.28)

The advanced quasiclassical Green function matrix depends on ĝR according to

ĝA � �ρ̂3ĝ
R:ρ̂3. (2.29)

Non-equilibrium properties are, as mentioned, encompassed by the Keldysh compo-
nent

ĝK � ĝRĥ� ĥĝA (2.30)

with ĥ being the non-equilibrium matrix. When equilibrium conditions can be assumed,
this becomes

ĝK � tanh

�
βε

2



pĝR � ĝAq, (2.31)

and all information regarding system dynamics resides within ĝR, which also obeys the
normalization condition ĝRĝR � 1̂. The density of states of a system is de�ned as
[91]

Dpε, rq � 1

2
Re

 
TrtgRpε, rqu(. (2.32)

Page 18



2.6. QUASICLASSICAL THEORY CHAPTER 2

The next step thus concerns developing a matrix equation describing the system dynam-
ics, and upon solving this equation we are able to quantify the Green function matrices
with the goal of determining the density of states. This is achieved through applying
the Heisenberg equation to the �eld operators,

iBtψσpr, tq � rψσpr, tq,Hs (2.33)

iBtψ:σpr, tq � rψ:σpr, tq,Hs, (2.34)

where H is the total system Hamiltonian, in this case including superconductivity, ferro-
magnetism and spin-orbit coupling. Applying the anticommutation relation of fermionic
�eld operators [61], di�erentiating the retarded Green function with respect to time and
employing the quasiclassical approximation results in the Usadel equation

D∇̃pǧs∇̃ǧsq � �irερ̌3 � ∆̌� h � σ̌, ǧss. (2.35)

A complete derivation can be found in for instance [92] or [72]. D � 1
3τ0v

2
F is the dif-

fusion coe�cient, ∆̌ is the superconducting gap matrix, h describes the exchange �eld
and ∇̃ contains the spin-orbit �eld. As the inverse proximity e�ect is not considered in
this thesis, the superconducting gap matrix will be neglected throughout. The Usadel
equation is valid in the dirty or di�usive limit where impurity-scattering dominates and
particles behave as if they are following a random walk. The subscript ǧs will be ne-
glected throughout the rest of this thesis, as all Green function matrices are assumed to
be isotropic. One-dimensional transport in the x-direction will be assumed throughout
the rest of this thesis. Moreover, we will be able to assume equilibrium conditions for
all cases in which the Usadel equation needs to be solved throughout this thesis, and
consequently only need to consider the retarded Green function matrix,

D∇̃pĝR∇̃ĝRq � �irερ̂3 � pΣ, ĝRs, (2.36)

where pΣ contains the self-energy terms describing all material-speci�c parameters. In
order to solve this equation, boundary conditions must be employed. Three di�erent
sets of boundary conditions are used, depending on the application. For regular tunnel-
ing interfaces with low transparency we can employ the Kuprianov-Lukichev tunneling
boundary conditions [93]

2ζnǧnBxǧn � rǧL, ǧRs, (2.37)

n � tL,Ru referring to the left (L) and right (R) side of the interface. When the
interface barrier is weakly spin polarized, we instead use Cottet's boundary conditions
[94]
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2dζLǧLBxǧL � rǧL, ǧRs �GMR

�
ǧL,

 xM , ǧR
(�� iGLφ rǧL, xM s (2.38)

2dζRǧRBxǧR � rǧL, ǧRs �GMR

�
ǧR,

 xM , ǧL
(�� iGRφ rǧR, xM s. (2.39)

The matrix xM contains the orientation and strength of the interface magnetization,
and Gφ describes spin-dependent interface scattering. This parameter consequently is
the key to spin mixing, as it determines the mechanism for how quasiparticles re�ecting
o� magnetic interfaces acquire spin-dependent phase shifts. Thus, Cooper pairs may
be converted from the singlet to the triplet state. The parameter ζ represents interface
transparency, and is de�ned as ζn � RB{Rn, whereRB is is the resistance of the interface
and Rn the bulk resistance of material n. For Cottet's boundary conditions to be valid,
we require GMR ! 1, where GMR is directly proportional to the polarization. The most
general boundary conditions currently available are valid for a tunneling interface and
any polarization [95], and are

ǧRBxǧR � 1

4e2N0DA
rG0ǧL �GMRtκ̌, ǧLu �G1κ̌ǧLκ̌� iGφRκ̌

1, ǧRs (2.40)

ǧLBxǧL � � 1

4e2N0DA
rG0ǧR �GMRtκ̌, ǧRu �G1κ̌ǧRκ̌� iGφRκ̌

1, ǧLs. (2.41)

The boundary conditions are very similar to the ones de�ned in Equation 2.38, the only
di�erence being the extra correction term including the prefactor G1. The interface
parameters are de�ned as

G0 � Gq
¸
nl

τnl
�
1�

b
1� P 2

nl

�
, G1 � Gq

¸
nl

τnl
�
1�

b
1� P 2

nl

�
(2.42)

GMR � Gq
¸
nl

τnlPnl, Gφ � 2Gq
¸
n

θnn, (2.43)

where Gq � e2

h is the conductance quantum. When a channel-diagonal scattering matrix
is assumed, as will be done throughout this thesis, n � l, τnl � τ , Pnl � P and
κ̌1 � κ̌. κ̌ and Â describe the magnetization of the interface, P is the polarization
and τ is the tunneling probability. When τ ! 1, it describes a highly non-transparent
interface.

Upon initial consideration, the boundary conditions may seem unequal, but the bound-
ary condition for generally polarized interfaces in Equation 2.40 reduces to the condition
for weakly polarized interfaces de�ned in Eq. 2.38 in the limit where the polarization
P � 0. In this limit, GMR � G1 � 0 while G0 becomes independent of interface po-
larization. The interface parameters τ and ζ are both dimensionless, and the inverse
of each other. The dimension of the left-hand-side of Eq. 2.40 is m�1, and the same
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2.6. QUASICLASSICAL THEORY CHAPTER 2

should be the case for the right-hand-side for the two sets of boundary conditions to be
equal. The prefactor to the right-hand-side of Eq. 2.40 is

Gq
e2N0DA

� Gq
σA

, (2.44)

where σ here denotes the conductivity per spin and A the contact area. The unit of
the conductivity σ is A2s3

m3kg
, the unit of the conductance Gq is

A2s3

m2kg
, and the unit of the

area is m2. Consequently, the unit of the right-hand-side is also m�1, and both sets of
boundary conditions for polarized interfaces are dimensionless. The di�erence between
the two sets of boundary conditions, when P � 0, can thereby be found within the
de�nition of the interface parameter τ in relation to ζ .

All three sets of boundary conditions described here will be used throughout this thesis,
depending on the application. When the Usadel equation is solved for non-spin active
interfaces, the Kuprianov-Lukichev tunneling boundary conditions are used. When spin-
active interfaces are assumed, we apply the boundary conditions for weak polarization
with GMR ! 1. The most general boundary conditions, accepting tunneling interfaces
but any polarization, will be used only upon consideration of matrix currents of the
form

I � N0eDA

4

» 8

�8
dE Tr

!
ρ̂3rǧpBxǧqsK

)
(2.45)

Iνs �
N0DA

8

» 8

�8
dE Tr

!
ρ̂3τ̂νrǧpBxǧqsK

)
(2.46)

9Q � N0DA

4

» 8

�8
dEpE � µqTr

!
rǧLpBxǧLqsK

)
, (2.47)

where I is the charge current in a material, 9Q is the heat current in a material and Iνs
represents the spin current in each of the directions ν � tx, y, zu. These currents can be
calculated directly from the boundary conditions, without solving the Usadel equation
[96][97]. In the cases where the Usadel equation does have to be solved, it would be
bene�cial to not have to consider a 4 � 4 matrix equation. By employing the Riccati
parametrization [98]

ĝR �
�
Np1� γÐÝγ̃q 2Nγ

�2Ñ γ̃ �Ñp1� γ̃γq

�
(2.48)

where N � p1� γγ̃q�1 and Ñ � p1� γ̃γq�1, the retarded Green function matrix can be
expressed in terms of 2 � 2 matrices. Employing this formalism, the complete Riccati-
parametrized Usadel equation, including ferromagnetism and spin-orbit coupling while
excluding superconductivity, is [72][75][39]
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DrB2
xγ � 2BxγÑ γ̃Bxγs � �2iεγ � ihpσγ � γσ�q

�DrAAγ � γA�A� � 2pAγ � γA�qÑpA� � γ̃Aγqs
�2iDrBxγÑpA�

x � γ̃Axγq � pAx � γA�
xγ̃qNBxγs,

(2.49)

where we have de�ned A � Axx � Ayy � Azz to be the spin-orbit �eld vector and h
contains the magnetization. We do not consider the inverse proximity e�ect here, as
we assume bulk superconductors and tunneling S/X interfaces. If no exchange �eld is
present, a spin-orbit �eld within the material X is unable to couple the singlet and triplet
anomalous Green functions to lowest order in a di�usive structure. Consequently, the
spin-orbit coupling cannot host a transformation from singlet to triplet superconductiv-
ity. The parametrization of the boundary conditions for tunneling interfaces including
spin-orbit coupling results in [72]

Bxγ1 � 1

Lζ1
p1� γ1γ̃2qN2pγ2 � γ1q � iAxγ1 � iγ1A

�
x (2.50)

Bxγ2 � 1

Lζ2
p1� γ2γ̃1qN1pγ2 � γ1q � iAxγ2 � iγ2A

�
x (2.51)

for the left (1) and right (2) side of the interface, respectively, while the complete
boundary conditions when considering weakly spin-polarized interfaces are [99]

4Lζ1Bxγ1 � p1� γ1γ̃2qN2pγ2 � γ1q � 2iGφ1 rγ1pm � σ�q � pm � σqγ1s
�4 coshpΘqGMRrpm � σqγ1 � γ1pm � σ�qs (2.52)

4Lζ2Bxγ2 � p1� γ2γ̃1qN1pγ2 � γ1q � 2iGφ2 rγ2pm � σ�q � pm � σqγ2s
�4 coshpΘqGMRrpm � σqγ2 � γ2pm � σ�qs, (2.53)

when t1, 2u means tL,Ru, one side of the interface is a BCS superconductor, Θ �
tanh�1

�
∆
ε

�
and ∆ is the temperature-dependent superconducting gap. Within this

framework, the density of states becomes

Dpεq � 1

2
Re

 
TrtNp1� γγ̃qu(. (2.54)

This is in reality a local quantity, as γ is position dependent. However, we will neglect
this speci�cation, as the density of states is always calculated at the center of the
material in question. In the limit of weak superconductivity, the zero-energy DOS
is

Dp0q � 1� 1

2

∣∣fRs p0q∣∣2 � 1

2

∣∣fRt p0q∣∣2, (2.55)
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where fRs describes singlet Cooper pairs and fRt the triplet pairs. Thus, when no Cooper
pairs are present the DOS equals the normal-state value represented by 1 constantly.
Singlet Cooper pairs are accompanied by a zero-energy gap in the density of states, and
triplet pairs give rise to a zero-energy peak.

2.7 Thermoelectric e�ects

The main focus of this thesis will be on spin-dependent thermoelectric e�ects associ-
ated with tunneling currents in superconducting hybrids. The system to be considered
consists of two materials separated by an insulating polarizable barrier such as a fer-
romagnetic insulator. A temperature gradient or voltage bias is applied across this
barrier. Proximity e�ects do not play a role when considering the thermoelectric e�ects
speci�cally, as quasiparticle tunneling and not supercurrent tunneling is the main con-
tributor. Moreover, we neglect the possibility of Josephson tunneling of Cooper pairs
when calculating the thermoelectric e�ects. Quasiparticle tunneling in superconducting
hybrid structures arises when a quasiparticle leaves an allowed state on the left side of an
insulating barrier, tunnels through the interface and enters an allowed state on the other
side [61][64]. If large-scale particle exchange across the barrier exists, and an external
bias is applied to the system, net currents of charge and heat may arise. When consid-
ering single-particle tunneling only, the quasiparticle charge current between material
X and material Y can be described by [64]

IqXIY � 2π

h̄
|Tn|2

» 8

�8
DLpEqDRpE � eV qrfLpEq � fRpE � eV qsdE, (2.56)

where

fjpE � eVjq � 1

1� epE�eVjq{kBTj
(2.57)

is the Fermi-Dirac distribution function and DjpEq represents the density of energy
states on each side of the junction. The superscript q is present in order to ensure
that only single quasiparticles, not Cooper pairs, are counted. When no voltage or
temperature bias is applied fLpEq � fRpEq � 0, and the net current is zero.

Thermoelectric e�ects, such as the conversion of heat into electricity known as the
Seebeck e�ect [100] [101] along with the opposite Peltier e�ect [102], have been known
for a long time. This �eld of research shows great promise, as e�ective thermoelectric
devices would allow for the conversion of useless waste heat into readily accessible
electricity. The basis for large thermoelectric e�ects can be found in asymmetries in
the electron-hole distribution. This can be visualized through considering a material in
which there is a temperature gradient. The "hot" electrons and holes di�use down the
gradient, generating a heat current from the hot to the cold reservoir. When the material
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in question contains perfect particle-hole symmetry, these currents will be equally large,
resulting in zero net charge current [45]. Breaking the symmetry between electrons and
holes is consequently a way in which one can enhance thermoelectric e�ects greatly [103].
For this reason, semiconducting materials often exhibit large thermoelectric e�ects [43]
[104]. The phase transition from the normal to the superconducting state, on the
other hand, is typically accompanied by a reduction in the thermoelectric properties of
the material. As a temperature gradient is applied to a bulk superconductor, both a
normal current and a supercurrent arise, which cancel each other out [105]. Regular
BCS superconductors exhibit perfect particle hole symmetry in their density of states, as
shown in Figure 2.3, and therefore cannot host thermoelectric phenomena [44]. However,
if this symmetry can be broken, the asymptotic behavior of the superconducting density
of states could contribute to large, even giant, thermoelectric e�ects.

There are several ways in which to break electron-hole symmetry when superconducting
hybrids are used. One such method, which has been shown to result in giant thermo-
electric e�ects when quasiparticle tunneling was studied [46] [52], involves applying a
spin-splitting �eld to a conventional superconductor by coupling it to a spin polarized
system, e�ectively breaking the electron-hole symmetry for each spin state [37]. An ex-
ample of this is seen in �gure 2.4a and 2.4b, showing �rst the total density of states and
then the spin-split density of states for a Zeeman-split superconductor. Quasiparticle
tunneling from a Zeeman-split superconductor (ZS) into for instance a normal metal
(NM) will therefore give rise to large thermoelectric e�ects, and constitute one method
for the achievement of superconducting thermoelectric e�ects. These are quanti�ed
through considering the spin-dependent heat and charge currents arising as a result of
applied biases,

Iσcharge �
Gσ
e

» 8

�8
dEDσ

LpE � µLqDσ
RpE � µRqF pEq (2.58)

Iσheat �
Gσ
e2

» 8

�8
dEpE � µLqDσ

LpE � µLqDσ
RpE � µRqF pEq, (2.59)

where F pEq � fLpE�µLq�fRpE�µRq and the heat current is de�ned from the left to
the right electrode. A derivation of the expression for the heat current can be found in
Ref. [106]. The total charge, spin, heat and spin heat currents driven by temperature
and voltage biases are de�ned by

Iq � IÒcharge � IÓcharge (2.60)

Is � IÒcharge � IÓcharge (2.61)

9Q � IÒheat � IÓheat (2.62)

9Qs � IÒheat � IÓheat. (2.63)

In order to simplify further calculations and decouple the voltage and temperature

Page 24



2.7. THERMOELECTRIC EFFECTS CHAPTER 2

contributions to the thermoelectric e�ects, these biases can be Taylor expanded to
linear order to obtain the Onsager response matrices [46][49]

�
Iq
9Q



�

�
L11 L12

L12 L22


�
V

∆T {T



(2.64)

and �
Is
9Qs



�

�
L111 L112

L112 L122


�
V

∆T {T


, (2.65)

which obey the Onsager reciprocal relations [107] [108]. When considering thermo-
electric coe�cients, the Seebeck coe�cient S and dimensionless �gure of merit ZT are
commonly considered accurate measures of thermoelectric e�ects. The Seebeck coef-
�cient is de�ned as the potential di�erence developed per unit temperature di�erence
when Icharge � 0 [109], and the �gure of merit ZT is considered a measure of how e�-
ciently a system generates thermoelectric power. In this case, the coe�cients are given
by [110]

S � � L12

L11T
(2.66)

and

ZT �
�L11L22

L2
12

� 1
	�1

. (2.67)

These parameters will be calculated at several points herein in order to allow for com-
parison to existing state-of-the-art thermoelectric materials. A major result of previous
studies into superconducting thermoelectric e�ects, which will be expanded upon in this
thesis, concerns the Onsager matrix for charge, spin and heat currents in hybrid struc-
tures consisting of a normal metal on the left side and a Zeeman-split superconductor
on the right separated by a polarized insulating barrier [46]:

�
Iq
9Q



�

�
G Pα
Pα GQ


�
V

∆T {T



(2.68)

�
Is
9Qs



�

�
PG α
α PGQ


�
V

∆T {T



(2.69)

where P is the polarization and
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α � GT
2e

» 8

�8

EDz
RpEq

4kBT cosh2
�

E
2kBT

	dE (2.70)

G � GT

» 8

�8

D0
RpEq

4kBT cosh2
�

E
2kBT

	dE (2.71)

GQ � GT
e2

» 8

�8
E2 D0

RpEq
4kBT cosh2

�
E

2kBT

	dE. (2.72)

D0
j pEq � 0.5pDÒ

j pEq �DÓ
j pEqq and Dz

j pEq � DÒ
j pEq �DÓ

j pEq. A feature which quickly
becomes evident is the possibility of a spin current Is � α∆T {T arising as a consequence
of an applied temperature gradient regardless of barrier polarization.

A major assumption underlying this derivation, however, concerns the polarization of
the spins. All spins are here assumed to be polarized along the same axis, from here
on out considered to be the �z-axis. This does not constitute a valid framework in
all systems. A di�erent approach to obtaining spin-split density of states while still
exploiting the asymptotic behavior of the superconducting density of states is mediated
by the proximity e�ect. By coupling two superconducting reservoirs to a nanowire,
resulting in an S/X/S Josephson junction, a whole range of material parameters can be
made to interfere with superconductivity. If the center of this nanowire is coupled to
a normal metal electrode via a ferromagnetic insulator, a whole range of thermoelec-
tric e�ects can be observed. The cases to be considered herein include materials with
spatially varying magnetization, for example conical ferromagnetism and domain walls
[83], spin-active interfaces with an alterable magnetization direction [33] and spin-orbit
coupled semiconductor nanowires [39]. As superconducting Cooper pairs leak into these
materials and undergo spin mixing and spin rotation, the resulting spin polarization for
the quasiparticles is not necessarily uniaxial. Therefore, considering tunneling currents
solely along one axis can result in loss of information, and two frameworks will be used
when studying thermoelectric e�ects throughout this thesis. The �rst follows the ap-
proach outlined in this section, where the homogeneous spin-dependent density of states
for each material is the starting point for our calculations. The hybrid structures con-
sidered within this line of thought are systems consisting of one or more Zeeman-split
superconductors, Josephson junctions with spin-active interfaces aligned in the same
direction coupled to normal metal electrodes, and ferromagnetic domain wall nanowires
which are uniaxially polarized at x � 0.5LF . The second framework is based upon
the idea hinted upon with the matrix currents de�ned in equations 2.45 - 2.47. Here,
no particular spin-polarization is assumed, which enables us to consider spin-orbit cou-
pled materials, conical ferromagnetism and changeable direction of the magnetization
associated with the spin-active interfaces.
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2.8 Spin-dependent bias

Hitherto, spin-dependency has been included only in the tunneling probabilities and
densities of states. Throughout the recent years, the possibility of spin-dependent tem-
peratures and voltages has been studied and reported. Non-equilibrium chemical poten-
tials, di�erent chemical potentials for di�erent spin states, have become known under
the name of spin accumulation and has been shown to be greatly enhanced in the su-
perconducting state compared to the normal state [111]. Such a nonequilibrium spin
accumulation can be induced in superconductors and normal metals through tunneling
from ferromagnets in close proximity [112][113][114]. In addition to spin accumulation,
ferromagnet tunneling has been predicted to induce spin heat accumulation, a spin-
dependent temperature di�erence [115][116][117]. In Ref. [118] a spin-dependent heat
conductance was measured in F {N{F nanopillars. This was assumed to be caused by
a spin-dependent heat di�erence, and based on this assumption they were able to ex-
tract a di�erence in e�ective spin temperature of up to 350 mK. The same e�ect was
observed by Ref. [119] more recently, and the authors accepted the possibility of the
heat conductance arising as a result of spin heat accumulation, but were more reluctant
in coming to the certain conclusion.

As the evidence supports the possibility of spin-dependent voltages and temperature
gradients we will henceforth allow for the application of spin-dependent biases. In the
next chapter, a framework will be developed in which thermoelectric e�ects can arise
from the application of spin-dependent biases.

Page 27



CHAPTER 2 2.8. SPIN-DEPENDENT BIAS

Page 28



Chapter 3

Thermoelectric Onsager matrix for
homogeneously magnetized
systems

In the following chapter we will present the �rst part of the analytical results obtained
throughout the course of this work. The main goal has been the understanding and
quanti�cation of the giant thermoelectric e�ects arising within spin-split superconduct-
ing hybrids. This chapter focuses on the derivation of expressions for tunneling currents
across barriers between two materials, along with the transformation of these currents
into thermoelectric Onsager response matrices through Taylor expansion. We consider
tunneling across a junction of the form X/I/Y, where I denotes an insulating material.
The materials X and Y can be bulk materials, nanomaterials or more complex structures
as long as at least one exhibits a particle-hole asymmetry capable of hosting thermoelec-
tric phenomena. The material I can have some kind of polarization in addition to being
a tunneling barrier. First we will derive complete expressions for the tunneling spin,
heat, charge and spin heat currents, prior to performing a Taylor expansion to decouple
the bias-dependent responses of the di�erent currents. The novel part of this derivation
concerns the generalization to include spin-dependent bias voltages and temperature
gradients, which previously have not been found in Onsager response matrices. As the
algebra performed here in some cases becomes rather extensive, only the primary results
will be presented within this chapter. A more complete step-by-step methodology can
be found in Appendix A.

In this chapter and the next we will limit our focus to material systems within which
the spin-polarization exists homogeneously along one axis. Accordingly, we can employ
the density of states-based approach outlined in Section 2.7, where the assumption of
spin-polarization existing only along one axis is inherently made. The results in this
chapter are presented in the form of mathematical expressions and matrix equations. A
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discussion of the results will be included alongside the results themselves. The frame-
work derived herein will be applied to experimentally realizable systems in the next
chapter, Chapter 4. At the end of this chapter a discussion of possible material choices
and realistic experimental procedures is included.

3.1 Tunneling currents

The currents for spin-σ quasiparticles are given by

Iσcharge �
Gσ

e

» 8

�8
dEDσ

LpE � µσLqDσ
RpE � µσRq

�
fσLpE � µσLq � fσRpE � µσRq

�
(3.1)

for the charge current and

Iσheat �
Gσ

e2

» 8

�8
dEpE�µσLqDσ

LpE�µσLqDσ
RpE�µσRq

�
fσLpE�µσLq� fσRpE�µσRq

�
(3.2)

for the heat current traveling from the left to the right electrode. The heat current is
not the same in both directions, and it therefore matters greatly in which direction and
on which side of the barrier it is de�ned. The heat current traveling out of a material is
determined by the energy of the moving particles in relation to the chemical potential
on the originating side of the barrier. The heat current ILÑR

heat is determined by pE�µLq,
while the heat current in the opposite direction, IRÑL

heat , is determined by �pE � µRq.
The quasiparticle energy E is de�ned to be the energy in relation to the Fermi energy.
The total charge and heat currents are

I � IÒcharge � IÓcharge (3.3)

9Q � IÒheat � IÓheat (3.4)

with the corresponding spin and spin heat currents being

Is � IÒcharge � IÓcharge (3.5)

9Qs � IÒheat � IÓheat. (3.6)

The spin currents considered here do not in fact describe the movement of the spin
degree of freedom alone, but rather signi�es migration of the spin polarization carried
by the quasiparticle charge current. While the charge current describes the transport
of all quasiparticles traversing the tunneling barrier regardless of their spin state, the
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spin current only exists if more quasiparticles residing in one spin state than the other
crosses the junction. Similarly the spin heat current is not the heat current carried by
a pure spin current but rather the net spin polarization of the heat current. Through-
out the rest of this thesis,

�
fσLpE � µσLq � fσRpE � µσRq

�
will be denoted by F σ and

represents the spin-dependent distribution function. Dσ
j pE � µσj q will be shortened to

Dσ
j where j � tL,Ru and pE � µσLq is written as εσ. The main di�erence from previ-

ous di�erentiations, such as in [46] and [49], can be found in these factors. Here, all
temperatures and bias voltages on both sides of the junction are assumed to be spin
dependent. This greatly a�ects the Fermi-Dirac distribution functions. The main ef-
fect this has on the derivation of the Onsager response matrix is the fact that each of
the current expressions needs to be di�erentiated with respect eight di�erent variables
(T ÒL, T

Ò
R, V

Ò
L , V

Ò
R, T

Ó
L, T

Ó
R, V

Ó
L , V

Ó
R). First, we will construct general current expressions

while retaining the spin-dependencies. The total charge current is

I � 1

e

» 8

�8
dE

�
GÒDÒ

LD
Ò
RF

Ò �GÓDÓ
LD

Ó
RF

Ó
�
. (3.7)

We now want to express the charge current in terms of symmetric and antisymmetric
expressions which are both easy to de�ne for di�erent material systems but also provide
ease of di�erentiation in the next step. As we integrate over all energies, we are able
to make certain simpli�cations by allowing all asymmetric terms within the integrals
to equal zero. Consequently we expand the charge current in terms of symmetric and
antisymmetric components as

I � 1

2e

» 8

�8
dE

#�
pGÒ �GÓqpF Ò � F Óq � pGÒ �GÓqpF Ò � F Óq

��
D0
LD

0
R �

1

4
Dz
LD

z
R



�

1

2

�
pGÒ �GÓqpF Ò � F Óq � pGÒ �GÓqpF Ò � F Óq

��
D0
LD

z
R �Dz

LD
0
R


+
.

(3.8)

The expression can now be further compressed according to

I � 1

e

» 8

�8
dE

#�
GTF

0 � GTP

2
F z

	�
D0
LD

0
R �

1

4
Dz
LD

z
R

	
�1

2

�1

2
GTF

z �GTPF
0
	�
D0
LD

z
R �Dz

LD
0
R

	+ (3.9)
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by de�ning

GT � GÒ �GÓ, P � GÒ �GÓ

GÒ �GÓ
(3.10)

F 0 � F Ò � F Ó

2
, F z � F Ò � F Ó (3.11)

D0
j �

DÒ
j �DÓ

j

2
, Dz

j � DÒ
j �DÓ

j . (3.12)

GT is the normal-state conductance of the tunnel junction and P is the polarization
providing the possibility of spin �ltering if there are di�ering tunneling probabilities for
the spin species. The charge current can now be seen to consist of sums of products of
symmetric pD0

j pEqq and antisymmetric pDz
j pEqq components multiplied by the Fermi-

Dirac distribution functions. The corresponding heat current leaving the left electrode
and entering the right is

9Q � 1

e2

» 8

�8
dE

�
εÒGÒF ÒDÒ

LD
Ò
R � εÓGÓF ÓDÓ

LD
Ó
R

�
, (3.13)

which can be written as

9Q � 1

e2

» 8

�8
dE

#
1

2

�
εÒ � εÓ

2

�pGÒ �GÓqpF Ò � F Óq � pGÒ �GÓqpF Ò � F Óq��
εÒ � εÓ

2

�pGÒ �GÓqpF Ò � F Óq � pGÒ �GÓqpF Ò � F Óq���D0
LD

0
R �

1

4
Dz
LD

z
R



�

1
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or

Page 32



3.1. TUNNELING CURRENTS CHAPTER 3

9Q � 1

e2

» 8

�8
dE

#�
ε0

�
GTF

0 � GTP

2
F z



� εz

2

�
GTF

z

2
�GTPF

0


�
�
�
D0
LD

0
R �

Dz
LD

z
R

4



� 1

2

�
ε0

�
GTF

z

2
�GTPF

0



� εz

2

�
GTF

0 � GTP

2
F z


�
�
�
D0
LD

z
R �Dz

LD
0
R


+
,

(3.15)

where

ε0 � εÒ � εÓ

2
(3.16)

εz � εÒ � εÓ. (3.17)

The spin current becomes

Is � IÒ � IÓ (3.18)

� 1

e

» 8

�8
dE

�
GÒDÒ

LD
Ò
RF

Ò �GÓDÓ
LD

Ó
RF

Ó
�
. (3.19)

This can be expanded and then compressed in the same manner as the charge current
according to
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and �nally
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The spin heat current, which can be considered as the spin-polarization carried by the
energy current in the same manner as the spin current is the polarization carried by the
quasiparticle charge current, is de�ned by

9Qs � 9QÒ � 9QÓ (3.22)
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As previously shown, this expression can be expanded as
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and subsequently expressed in terms of the parameters GT , P , F
0 and F z as
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(3.25)

We now have complete expressions for all four currents which depend almost exclu-
sively on symmetric and antisymmetric components. The primary unknowns are the
spin-dependent Fermi-Dirac distribution functions F 0pEq and F zpEq. Accordingly, the
next stage in the procedure will be to assume a small voltage bias V on one side of
the junction or a small temperature di�erence ∆T across the barrier and perform a
Taylor expansion to linear order about a certain point. This has several functions, as
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it simpli�es consideration of thermoelectric e�ects in di�erent systems, yields a better
grasp of the size of the thermoelectric e�ects through ease of quanti�cation, and allows
us to decouple the spin-dependent bias responses of the di�erent currents.

3.2 Taylor expansion

The bias voltage and temperature gradients can be assumed to be very small. In this
approximation, the expressions for the currents can be Taylor expanded up to linear
order in ∆V , ∆Vs, ∆T {T and ∆Ts{T . The goal is to express the currents in terms of
Onsager coe�cients as follows:

����
I
9Q
Is
9Qs

����

����
L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

���
����

∆V
∆T
∆Vs
∆Ts

���. (3.26)

In analogy to the 2 � 2 Onsager response matrices we have seen previously we expect
perfect diagonal symmetry. As outlined in the theory section (2.7), we can quantify the
thermoelectric e�ects arising through considering the individual coe�cients or parame-
ters commonly used when comparing the e�ciency of thermoelectric materials such as
the Seebeck coe�cient

S � � L12

L11T
(3.27)

and the thermoelectric �gure of merit

ZT �
�L11L22

L2
12

� 1
	�1

. (3.28)

In order to quantify the thermoelectric e�ects in superconducting tunneling hybrids and
obtain the 4�4 Onsager response matrix we �rst need to assume a small applied voltage
or temperature bias and perform a Taylor expansion to the �rst order according to the
formula

fpxq � fpaq � f 1paq
1!

px� aq � f2paq
2!

px� aq2 � ... (3.29)

In order to maintain the generality of the consideration, we will start with assuming
spin-dependent temperatures and voltages on both sides of the junction. The currents
are denoted J � tI, 9Q, Is, 9Qsu and depend on V σ

j and T σj , where j � tL,Ru refers to
whether the left (L) or right (R) side of the tunneling junction is being considered. Each
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of the currents is Taylor expanded with regard to each of the eight variables V σ
j and T σj

in the following manner:
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(3.30)

The Taylor coe�cients will be evaluated in a speci�c point pV σ
j,0, T

σ
j,0q � pV0, T0q �

pV, T q. A dominant feature existing in all four currents is the Fermi-Dirac function

F σ � fσLpE � eV σ
L q � fσRpE � eV σ

R q (3.31)
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. (3.32)

As is apparent from this expression, when di�erentiating the expressions for the currents
about pV, T q only F σ needs to be di�erentiated. The reason for this is that F σ � 0
when V σ

j � V and T σj � T . Consequently, the 0th-order term equals zero, and we will

only di�erentiate F 0 � F Ò�F Ó

2 and F z � F Ò�F Ó. The results of di�erentiating F σ and
thereafter allowing pV σ

j , T
σ
j q � pV σ

j,0, T
σ
j,0q � pV, T q are

dF σ

dV σ
R

� � e

4kBT cosh2
�
E�eV
2kBT

	 (3.33)

dF σ

dV σ
L

� e

4kBT cosh2
�
E�eV
2kBT

	 (3.34)

dF σ

dV �σ
j

� 0. (3.35)

and
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dF σ

dV �σ
j

� 0. (3.38)

Combining these into the relevant sums F 0
j pEq and F zj pEq, we are left with
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and
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where σ � tÒ, Óu � �1 and the temperature T is de�ned as

T � TL � TR
2

� T ÒL � T ÓL � T ÒR � T ÓR
4

. (3.43)

Now that all di�erentiations have been performed, we can allow one further simpli�-
cation. In order to more easily apply the resulting expressions to actual systems, we
de�ne

V σ
j,0 � V � 0, (3.44)

causing the point about which we perform the Taylor expansion, pV, T q, to become
p0, T q. Consequently, pE � eV q � pEq in the expressions above. This is to a large
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part done in order to allow for symmetry considerations to be applied to the current
expressions in the following sections.

The charge, heat, spin and spin heat currents are now Taylor expanded to the �rst order
in terms of each of the eight variables while employing the di�erentiations presented
in equations 3.39-3.42. As the computations are rather extensive, only the results are
presented here. The reader is referred to Appendix A for a more complete derivation
procedure. The main steps involve di�erentiating each current with respect to each of
the eight variables, allowing pV σ

j , T
σ
j q � p0, T q and employing symmetry arguments to

simplify expressions. The products of dF 0,z{dpT, V qσj and D0
j pEq and Dz

j pEq are either
symmetric or antisymmetric, and as the integral from �8 to 8 of an antisymmetric ar-
gument equals zero this consideration simpli�es the expressions rather drastically.

Upon di�erentiating the charge current with respect to each of the variables and allowing
pV σ
j,0, T

σ
j,0q � pV, T q � p0, T q we observe that its dependency upon pT σj,0, V σ

j,0q disappears
and the total charge current becomes
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(3.45)

Thermoelectric e�ects are the collective denotation of phenomena where charge currents
arise due to applied temperature gradients and heat currents due to applied voltages.
This can be generalized to include spin thermoelectric e�ects, where spin currents arise
due to temperature gradients and spin heat currents due to voltage bias. The thermal
response of the charge current is, according to Equation 3.45, encompassed by the
coe�cients
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and
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L12 governs the charge current response to an applied temperature bias across the junc-
tion while L14 controls the charge current arising as a result of an applied temperature
di�erence for the spin species. A common feature of these two coe�cients is the need for
an asymmetry in the density of states on one side of the junction for them to be unequal
to zero. This is dictated by the factors Dz

L � DÒ
L � DÓ

L and Dz
R � DÒ

R � DÓ
R. If the

density of states on both sides of the insulating barrier are equal for both spin up and
spin down, the result will be Dz

R � Dz
L � 0 and L12 � L14 � 0. Consequently, no ther-

moelectric e�ects will arise in the system. A charge current is only able to arise across
the barrier as a direct result of an applied temperature gradient, either spin dependent
or otherwise, if a particle-hole asymmetry can be found. This can be understood from
the description of thermoelectric e�ects in Section 2.7. When a temperature gradient is
applied, electrons and holes from the warmer region will migrate towards the colder. If
an equal amount of electrons and holes are in motion the net charge current will amount
to zero. This describes the situation in conventional superconductors where there is per-
fect particle-hole symmetry around the Fermi level at E � 0 and thermoelectric e�ects
to not occur. Applying an in-plane magnetic �eld or utilizing Josephson junctions with
exotic spin con�gurations allows us to break the particle-hole symmetry for each spin
separately, resulting in the possibility of thermoelectric transport. However, charge neu-
trality remains conserved, and if there is no spin-dependent di�erence in probability for
tunneling across the barrier the total charge current will still equal zero. If the interface
barrier is polarized with P � 0 and the tunneling probability di�ers for the spin species,
charge currents are able to arise upon the application of a thermal gradient. If primarily
one spin species is allowed through the barrier, and the particle-hole asymmetry for this
spin is broken, the net amount of electrons passing through may di�er from the net
amount of holes and a nonzero charge current can exist. A feature worth noticing is the
lack of polarization dependency in the response of the charge current to the application
of a spin-dependent temperature gradient. If we consider a case where T ÒR � T ÓR the

spin gradient can be written as ∆Ts � T ÒL � T ÓL. Even if no temperature di�erence
exists across the barrier a polarization-independent charge current can arise as a result
of applying di�erent temperatures to the spin-up and spin-down particles on the left.
This can result in a larger amount of temperature-driven migration of one spin species
than the other, and when the particle-hole symmetry is broken for this spin species net
nonzero charge currents are able to arise.

The voltage responses of the charge current,
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and
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can be nonzero when no particle-hole asymmetry exists on either side of the junction.
If a voltage bias ∆V is applied across the junction a net current will arise. This is
due to the particles and holes moving in opposite directions in response to a voltage
bias as opposed to in the case of a temperature bias, where both positive and negative
charge particles move from the hot to the cold region. What is worth noticing in this
case is the fact that a charge current can arise from applying a spin-dependent voltage
bias on one side of the junction while keeping the total bias across the junction equal
to zero. However, the polarization must be unequal to zero for this e�ect to arise.
When a spin-dependent voltage bias is applied the spin species will move in opposite
directions in response to the bias. As the symmetry breaking is equal and opposite
for each spin species, the net current will disappear. If, however, a spin-dependent
tunneling probability is present, ∆Vs � 0 can result in a net charge current crossing the
junction.

The heat current traversing the barrier from the left-hand-side to the right-hand-side
electrode can be Taylor expanded in the same manner. Allowing T σj � T and V σ

j �
V � 0 following the di�erentiation of F σj causes

ε0 � E � E

2
� E (3.50)

εz � E � E � 0 (3.51)
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(3.52)

One should note the extra asymmetric factor E, as this a�ects which parts of the
expressions end up equaling zero. De�ning pV σ

j,0, T
σ
j,0q � p0, T q results in the �nal heat

current becoming
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(3.53)

Heat currents arise when there is a temperature di�erence across the system, as heat
�ows from a hot to a cold reservoir. This e�ect will exist regardless of barrier polar-
ization, as is evident from L22 being independent of polarization. The heat current is
associated with quasiparticle transport. The heat current associated with transport of
particles equals the heat transported by holes, and net heat currents arise when tem-
perature gradients are applied regardless of barrier polarization. This occurs regardless
of whether particle-hole asymmetries exist or not. If the temperature gradients applied
are spin-dependent, and we consider for instance ∆Ts � T ÒL � T ÓL � 0, the movement
of spin up and spin down species can be opposite. If there is no barrier polarization
present the net energy current consequently equals zero.

Applying a voltage di�erence to the junction results in zero net energy current if there
is no interface polarization. The particles and holes move in opposite directions due
to the voltage bias and their energy current components cancel each other out. If the
particle-hole symmetry is broken for each spin species and polarization is present, the
voltage di�erence can generate a net heat current. If the voltage bias only exists for
di�erent spin species and not across the junction a particle-hole asymmetry for each
spin species allows for a di�erent number of quasiparticles moving in each direction,
resulting in a net energy current.

The spin current can be treated in the same manner. Performing the di�erentiations
and applying the same assumptions to the spin current along with de�ning pV σ

j,0, T
σ
j,0q �

p0, T q yields
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(3.54)

Interestingly, the bias-speci�c polarization dependency for the spin current is opposite
from the charge current case. Applying a voltage bias to the junction can generate
a charge current in the absence of interface polarization, but this is not the case for
the spin current. A particle-hole asymmetry is not necessary for spin currents to arise
upon the application of a voltage bias, but barrier polarization must be present. As the
voltage bias is applied the particle and hole currents move in opposite directions across
the interface. If the same number of each spin species is allowed to pass through, the
net spin current carried by the quasiparticles and quasiholes equals zero. If, however,
di�ering probabilities for spin-dependent tunneling exist, a net spin tunneling current
may arise. If the voltage bias applied only exists for the spin species and not across
the barrier unequal numbers of spin-up and spin-down particles may cross the barrier
regardless of whether the particle-hole asymmetry is broken or not, resulting in net spin
currents.

If no particle-hole asymmetry exists on either side of the junction, applying a tempera-
ture gradient does not e�ect the spin or charge currents crossing the tunneling barrier.
If there however is a particle-hole asymmetry present on one side of the junction, and
the density of states of spin one spin state does not always equal that of the other,
tunneling across the barrier can result in a spin current even in the absence of barrier
polarization. Even though the net charge current resulting from the application of a
temperature gradient equals zero, the broken particle-hole asymmetry may result in a
net spin polarization passing through the system even in the absence of barrier polariza-
tion. If only a spin-dependent temperature gradient is applied there must be an unequal
probability for spin-dependent tunneling present for the spin current to exist.

We can now, �nally, di�erentiate the spin heat current with respect to each of the
variables T σj and V σ

j , followed by allowing T σj,0 � T and V σ
j,0 � V � 0. Once again
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ε0 � E and εz � 0, and
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(3.55)

One should again note the extra asymmetric factor E, as this a�ects which parts of the
expressions end up equaling zero. Performing the expansion and applying pV σ

j,0, T
σ
j,0q �

p0, T q yields

9Qs � GT
4e

» 8

�8

EpD0
LD

z
R �Dz

LD
0
Rq

4kBT cosh2
�

E
2kBT

	 dErpV Ò
L � V Ó

L q � pV Ò
R � V Ó

Rqs

�GTP
2e2

» 8

�8

E2

�
D0
LD

0
R � DzLD

z
R

4



4kBT cosh2

�
E

2kBT

	 dE
rpT ÒL � T ÓLq � pT ÒR � T ÓRqs

T

�GTP
4e

» 8

�8

EpD0
LD

z
R �Dz

LR
0
Rq

4kBT cosh2
�

E
2kBT

	 dErpV Ò
L � V Ó

L q � pV Ò
R � V Ó

Rqs

�GT
2e2

» 8

�8

E2

�
D0
LD

0
R � DzLD

z
R

4



4kBT cosh2

�
E

2kBT

	 dE
rpT ÒL � T ÓLq � pT ÒR � T ÓRqs

T
.

(3.56)

3.3 Onsager matrix

As is evident from the expressions for the currents, they can now be grouped together
in the following Onsager matrix for bias response:

����
I
9Q
Is
9Qs

����

����
L11 L12 L13 L14

L21 L22 L23 L24

L31 L32 L33 L34

L41 L42 L43 L44

���
����

∆V
∆T
T

∆Vs
∆Ts
T

���. (3.57)

When the matrix is assembled in this manner, there is perfect symmetry about the
diagonal. This corresponds perfectly with what we would expect for Onsager coe�cients
such as these. The complete current expressions to linear order are
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����
I
9Q
Is
9Qs

����

����
G Pα PG α
Pα GQ α PGQ
PG α G Pα
α PGQ Pα GQ

���
����

∆V
∆T {T
∆Vs{2

∆Ts{2T

���. (3.58)

We have de�ned the biases as

∆V � V Ò
L � V Ó

L

2
� V Ò

R � V Ó
R

2
(3.59)

∆T � T ÒL � T ÓL
2

� T ÒR � T ÓR
2

(3.60)

∆Vs � pV Ò
L � V Ó

L q � pV Ò
R � V Ó

Rq (3.61)

∆Ts � pT ÒL � T ÓLq � pT ÒR � T ÓRq, (3.62)

and the thermoelectric coe�cients are
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4kBT cosh2p E
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Here, G represents the conductance, α is the thermoelectric coe�cient and GQ is the
heat conductance. The temperature is de�ned as

T � TL � TR
2

� T ÒL � T ÓL � T ÒR � T ÓR
4

. (3.66)

The derivation of the Onsager matrix is completely general until the assumption pV, T q �
p0, T q is made. The matrix describes the response of the charge, spin, heat and spin
heat currents to both spin-dependent and spin-independent voltage and temperature
biases. Moreover, the derived framework allows for particle-hole asymmetries to exist
on either one or both sides of the tunneling junction, granting further �exibility.
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Equations 3.58 - 3.65 are the central analytical results of the �rst part of this the-
sis.

All the thermoelectric coe�cients in the Onsager matrix are in some way proportional
to α and equation 3.64. This is persistent with previous results, such as Ref. [46]. The
thermoelectric coe�cient α therefore governs the temperature response of the charge
and spin currents, as I � Pα∆T {T and Is � α∆T {T when ∆V � ∆Vs � ∆Ts � 0,
along with the voltage bias response of the heat and spin heat currents. α is only unequal
to zero when there is a particle-hole asymmetry on at least one side of the tunneling
barrier. This can, for the cases studied in the following chapter, be achieved by applying
strong external magnetic �elds to superconducting materials [37], or proximity-coupling
superconductors to ferromagnetic insulators [120][24][121][122] or thin ferromagnetic
metallic layers [30][123]. The magnetic exchange �eld should be applied in-plane of
the superconductor and perpendicularly to the transport direction, to minimize the
destructive e�ect of the �eld on superconducting order [67].

Structures containing particle-hole asymmetries will constitute the focus point of the
subsequent chapter. In Chapter 4, the framework presented herein will be used to
study the thermoelectric e�ects arising in spin-split superconducting hybrids. The sys-
tems considered contain Zeeman-split superconductors, ferromagnetic domain walls and
Josephson junctions with spin-active interfaces. Numerical methods and MATLAB are
applied when quantifying the thermoelectric e�ects arising. See Appendix C for further
details. As the thermoelectric coe�cient α is shown to govern thermoelectric response
even when spin-dependent biases are applied, this coe�cient will dominate a large num-
ber of the considerations made. We therefore limit our concern to this coe�cient along
with the Seebeck coe�cient

S � Pα

GT
(3.67)

and the thermoelectric �gure of merit

ZT �
� GQG
pPαq2 � 1

	�1
. (3.68)

The main limitation of the framework presented herein is the fact that spin-polarization
existing homogeneously along only one axis is inherently assumed. Therefore, only ma-
terials exhibiting such spin con�gurations can be studied using the expressions presented
here. The consideration within the next chapter is consequently devoted to structures
ful�lling these demands. This problem is solved in Chapter 5, where we present a
framework allowing for the quanti�cation of thermoelectric e�ects in superconducting
hybrids with arbitrary spin-dependent �elds.
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Chapter 4

Thermoelectric e�ects in
homogeneously magnetized
systems

In this chapter we explore the plethora of thermoelectric e�ects arising in superconduct-
ing tunneling junctions consisting of homogeneously magnetized spin-split materials.
Consequently, we can employ the framework derived in Chapter 3 when quantifying
these e�ects. We will study the thermoelectric �gure of merit and Seebeck coe�cient
for easy comparison to more common thermoelectric materials, but also bestow great
focus upon the thermoelectric coe�cient α. This coe�cient governs the generation of
charge currents and spin currents from applied temperature gradients, along with the
induction of heat and spin heat currents as a result of applied voltage biases. As shown
when deriving the 4� 4 Onsager matrix in the preceding chapter, the consistency in α
governing thermoelectric e�ects persists also when the applied biases exist for di�erent
spin species and not across the tunneling junction.

The material systems studied in this chapter can be divided into two categories: Zeeman-
split superconducting hybrids and normal metal/insulator/(SXS) structures. The su-
perconductor/X/superconductor (S/X/S) Josephson junctions exhibit a homogeneous
particle-hole asymmetry for each spin species. The two Josephson junctions consid-
ered within this chapter are a superconductor/normal metal/superconductor Josephson
junction with spin-active interfaces polarized along the same axis, and a superconduc-
tor/ferromagnet/superconductor Josephson junction with a head-to-head domain wall
structure within the ferromagnetic nanowire.

An important thing to note with regard to all the results in this chapter is the validity of
the model as the temperature is reduced. When considering heat transport in tunneling
junctions consisting of superconducting materials we have made a crucial assumption
concerning the heat only being carried by the quasiparticles tunneling across the barrier
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interfaces. As heat supercurrents do not exist, and Cooper pairs do not carry heat, this
assumption is not valid for low temperatures. When the temperature is close to 0 K,
practically all the electrons in a superconductor are bound in Cooper pairs. Conse-
quently, the amount of Cooper pairs which can contribute to heat transport diminishes
as the temperature is lowered. When this occurs, the phonon contribution will domi-
nate heat transport. As this contribution has been neglected in all the considerations
so far, low temperatures lowers the validity of our model. Therefore, in this chapter,
we will mainly consider temperatures above T � 0.2Tc,0, where our models prove good
approximations. The results which show current responses for temperatures lower than
T � 0.2Tc,0 should therefore be accepted as somewhat uncertain.

The primary goal of the numerical calculations performed herein is to determine and
quantify the thermoelectric e�ects arising in homogeneously polarized spin-split super-
conducting tunneling junctions. Within this chapter and Chapter 6 we study di�erent
hybrid systems in order to maximize the thermoelectric phenomena arising. We study
the thermoelectric coe�cient α governing pure thermal spin currents along with the See-
beck coe�cient S and thermoelectric �gure of merit ZT which both allow us to compare
the thermoelectric e�ects arising here to the best bulk thermoelectric materials presently
available. We �rst study di�erent con�gurations of Zeeman-split superconducting mate-
rials, which have previously been shown to give rise to giant thermoelectric e�ects [46],
before switching our focus to various con�gurations of Josephson junctions spin-split
along one axis requiring no or low applied magnetic �elds to generate thermoelectric
phenomena.

All results within this chapter are presented in the form of three-dimensional MATLAB
surf -plots. In order to simplify reading this thesis, we have implemented a color-coding
for the di�erent material systems. The color systems used so far for the density of
states and superconducting gap parameter in Chapter 2 will not be employed for the
thermoelectric e�ects, but only for density of states. The color coding commenced
here will be continued also in the next chapter studying numerical results, Chapter 6.
In this chapter, thermoelectric coe�cients connected to Zeeman-split bilayers will be
presented in light purple and blue, Zeeman-split Josephson junction hybrids in pink,
S/F/S junctions with ferromagnetic domain walls in copper, and S/N/S Josephson
junctions with magnetic interfaces in pink and yellow.

4.1 Zeeman-split hybrids

Applying in-plane magnetic �elds to conventional BCS superconductors has, as pre-
viously mentioned, been seen to lift the superconducting particle-hole asymmetry for
each spin and allow such materials to host giant thermoelectric e�ects. Particularly nor-
mal metal/polarized insulator/Zeeman-split superconductor bilayers have been studied.
Within this section, we apply the framework presented in Chapter 3 to di�erent hy-
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brid structures containing Zeeman-split superconductors with the goal of quantifying
the thermoelectric phenomena arising. Approximate analytic formulas for the spin-
dependent densities of states exist for all the Zeeman-split systems considered. and
numerical integration in MATLAB is therefore applied to the expressions for the ther-
moelectric e�ects. The Zeeman-�elds considered are all de�ned to be applied in-plane
and not in the transport direction. Otherwise, superconductivity would be more readily
destroyed due to orbital depairing. The thermoelectric coe�cient

α � GT
2e

» 8

�8
dE

EpD0
LD

z
R �Dz

LD
0
Rq

4kBT cosh2p E
2kBT

q (4.1)

has been shown to be the main governing factor for thermoelectric e�ects in X/I/Y
junctions, both when spin-dependent biases are present and when they are not. A
necessary feature for such junctions to exhibit thermoelectric e�ects is a particle-hole
asymmetry on at least one side of the junction. Aside form this, no assumptions have
been made regarding the nature of the junction. Polarization at the isolator interfaces
can be present, but this is not necessary in order to observe thermoelectric e�ects. For
instance, a spin-dependent temperature gradient can induce a charge current across the
junction even when P � 0, as evident from

I � α
∆Ts
2T

(4.2)

when ∆V � ∆T � ∆Vs � 0. The thermoelectric coe�cient α de�nes the size of the
charge current if ∆Ts is assumed constant. Moreover, α governs the existence of a
similar spin-polarized tunneling current when ∆Ts � ∆V � ∆Vs � 0, as

Is � α
∆T

T
. (4.3)

Additionally, the thermal response of the tunneling charge current is

I � Pα
∆T

T
. (4.4)

In this subsection, analytical expressions for the density of states will be employed for
the considerations of thermal spin currents and the thermoelectric coe�cient α. Con-
sequently, the right-hand-side structure will contain Zeeman-split superconductors, and
therefore display a particle-hole asymmetry in the density of states. The thermoelectric
coe�cient is calculated through using a MATLAB function for numerical integration
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called integral. For a more rigorous description of the numerical methods employed for
the calculations, see Appendix C. The structures to be considered analytically can be
divided into two categories: superconducting bilayer structures and more complicated
systems containing Josephson junctions. Both these cases where also brie�y discussed
in an article recently published, Ref. [49], included in Appendix D.

4.1.1 Zeeman-split bilayers

This section will focus on thermal spin currents and thermoelectric e�ects in general
in Zeeman split superconducting bilayers. The three systems considered here are normal
metal/insulator/Zeeman-split superconductor (N/I/ZS), superconductor/insulator/Zeeman-
split superconductor (S/I/ZS) and Zeeman-split superconductor/insulator/Zeeman-split
superconductor (ZS/I/ZS) bilayers. The setup is shown in Figure 4.1.

ZS

X

x

I

Figure 4.1: Schematic of the experimental setup considered. A tunneling barrier (I) separates
a normal metal (N), superconductor (S) or Zeeman-split superconductor (ZS), denoted X, on
the left-hand-side from a Zeeman-split superconductor (ZS) on the right. Tunneling takes place
across the barrier in the x-direction.

The parameters to be considered are the thermoelectric coe�cient α, the Seebeck co-
e�cient S and the dimensionless �gure of merit ZT . De�ned in terms of the Onsager
matrix in equation 3.58, the last two are de�ned as

S � �Pα
GT

(4.5)

and

ZT �
� GQG
pPαq2 � 1

	�1
. (4.6)

The coe�cients S and ZT are commonly used when characterizing the size of thermo-
electric e�ects and allow us to compare our results to existing state-of-the-art thermo-
electric materials. The coe�cients considered are, as before,
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with the densities of states being de�ned as

D0
j �

DÒ
j �DÓ

j

2
(4.10)

Dz
j � DÒ

j �DÓ
j . (4.11)

For a conventional BCS superconductor the density of states becomes

D0
SC �

∣∣∣∣∣Re

#
E � iΓa

pE � iΓq2 �∆2

+∣∣∣∣∣ (4.12)

Dz
SC � 0, (4.13)

where ∆ � ∆pT q is the temperature-dependent superconducting gap. Γ represents
inelastic scattering and is in all cases throughout this thesis de�ned as Γ � 0.005∆0,
while ∆0 is the superconducting gap parameter when hS � T � 0. This is de�ned as
∆0 � 1 meV herein. The value choice for the superconducting gap parameter was made
without a speci�c material in mind, but is not unreasonable as it takes the values 0.18,
1.35 and 1.50 meV for Al, Pb and Nb, respectively [124, p. 79]. The density of states
for each spin species σ in a Zeeman-split superconductor is de�ned by

Dσ
ZS �

∣∣∣∣∣Re

#
E � σhS � iΓa

pE � σhS � iΓq2 �∆2

+∣∣∣∣∣, (4.14)

where hS is the induced Zeeman-�eld in the superconductor and the superconducting
gap ∆ � ∆phS , T q depends on the �eld and the temperature [37] according to the gap
equation 2.9. The self-consistent solution for the superconducting order parameter in
Zeeman-split superconductors can be found in Figure 2.2.

Figure 4.2 shows the thermoelectric coe�cient α for the three structures N/I/ZS, S/I/ZS
and ZS/I/ZS, while Figure 4.3 shows the Seebeck coe�cient and thermoelectric �gure
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Figure 4.2: Dimensionless thermoelectric coe�cient αe{pGT∆0q in (a) normal metal/I/ZS, (b)
superconductor/I/ZS and (c) Zeeman-split superconductor/I/ZS bilayers. Inelastic scattering
is governed by Γ � 0.005∆0 where ∆0 � 1 meV is the superconducting energy gap. The
polarization of the tunneling interface is de�ned as P � 97%.

of merit for the same systems. The parameters chosen are ∆0 � 1 meV for the super-
conducting energy gap, Γ � 0.005∆0 represents inelastic scattering and P � 97% is
the interface polarization. This value was chosen as similar polarizations are attainable
in ferromagnetic insulators such as at GdN 3 K [68]. Interestingly, having a particle-
hole asymmetry on both sides of the junction is seen to maximize all the e�ects being
considered when the Zeeman-split superconductors are identical. The largest Seebeck
coe�cient, thermoelectric coe�cient and thermoelectric �gure of merit can be found
for the case of ZS/I/ZS. This trend is maintained also when other parameters than the
ones displayed here are used. When hS � 0 no asymmetry exists, and no thermoelectric
e�ects arise. This is as we expect, and α, S and ZT � 0 in all cases when this is true.
As soon as the temperature and �elds are increased somewhat α no longer identically
equals zero, but is still very small compared to the maximum value. Because S and ZT
are governed by the relationships between α and the other thermoelectric coe�cients,
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Figure 4.3: Seebeck coe�cient S (�rst column) and thermoelectric �gure of merit ZT (second
column) in X/I/ZS bilayers. The left hand side is occupied by a (a)-(b) normal metal, (c)-(d)
superconductor and (e)-(f) Zeeman-split superconductor. Inelastic scattering is governed by
Γ � 0.005∆0 where ∆0 � 1 meV, and the polarization is P � 97%.
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theys tart to increase rapidly as soon as phS , T q � p0, 0q and α � 0.

A notable trend in Figure 4.2 concerns the temperature dependency of α. The thermo-
electric coe�cient increases along with the temperature and the applied exchange �eld.
This can be understood in terms of the distribution function within the expression for

α, CpEq � r4kBT cosh2
�

E
2kBT

	
s�1. This factor functions as a weight upon the densities

of states on each side of the barrier and determines the probability for an available
energy state actually being occupied.
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Figure 4.4: The �gures show CpEq � r4kBT cosh2
�

E
2kBT

	
s�1 for (a) T � 0.2Tc,0 and (b)

T � 0.4Tc,0.

Figure 4.4 shows the distribution function C(E) for (a) T � 0.2Tc,0 and (b) T � 0.4Tc,0.
The peak broadens as the temperature increases, allowing for a larger number of energies
to be accompanied by occupied states. Accordingly, when the temperature is higher,
the thermoelectric coe�cient increases in size. When the temperature approaches zero
very few energies aside from the Fermi energy (represented by E � 0) are accompanied
by occupied states. If the density of states on either side of the tunneling barrier
were to exhibit a zero-energy peak this could accordingly contribute to enhancing the
thermoelectric coe�cient signi�cantly, even at lower temperatures. This has previously
been stated to indicate triplet Cooper pairs being present instead of singlet Cooper pairs.
This weighting function also holds an explanation for why the larger exchange �elds are
accompanied by a larger corresponding α. The smaller the exchange �eld is, the closer
will the extra Zeeman-split peaks in the superconducting density of states be to the BCS
coherence peak at the gap edges. This will be far away from the weighting function,
and small �elds accordingly do not give rise to thermoelectric e�ects. When the �elds
become larger, the Zeeman-split peaks will approach E � 0 and consequently interfere
with the probability function C(E). If the temperature increases at the same time these
will enhance each other, resulting in very large pure thermal spin currents Is � α∆T {T .
It is important to note, however, that this temperature dependency may not continue
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for even larger temperatures than the once shown in Figure 4.2, where the maximum
temperature studied is T � 0.5Tc,0. As the temperature increases the distribution
function broadens, and more energies have a probability of having occupied states,
but the weight upon each energy state becomes smaller. For this reason, once some
threshold temperature is passed the thermoelectric coe�cient may begin to decrease as
the temperature is further increased. The evolution of S and ZT with temperature is
quite di�erent as these depend on G and GQ in addition to α. These coe�cients depend
on the temperature in the same manner as α, but evolve di�erently with respect to the
quasiparticle energy. This results in the temperature dependency of S and ZT not
being as readily determinable as for α. Moreover, S 9 T�1, and should therefore not
be largest for large temperatures.

When considering Figure 4.2b, we notice that using a superconductor rather than an-
other material on the left side of the barrier reduces the size of the spin current governed
by Is � α∆T {T . The smallest values for α are consistently found in the case of S/I/ZS
rather than N/I/ZS. Mathematically this can be explained as a result of destructive
interference between D0

j pEq and Dz
j pEq in the expression for α. The density of states

for the superconductor and Zeeman-split superconductor used in these bilayer consid-
erations are shown in Figure 4.5 for hS � 0.3∆0.

When the left hand side material is a normal metal or a conventional non-split supercon-
ductor, Dz

L � 0. Therefore, how D0
L and Dz

R a�ect each other as the temperature and
�eld are altered governs the thermoelectric response of the system. The giant thermo-
electric e�ects seen in the cases of N/I/ZS and ZS/I/ZS are made possible through the
asymptotic nature of the superconducting density of states, shown for a Zeeman-split
superconductor in Figure 4.5b. When considering N/I/ZS the normal-state density of
states is neglected, and therefore cannot in�uence the eventual size and shape of α.
When S/I/ZS is considered, the asymptotic nature of the superconducting density of
states on one side of the barrier can be suppressed by the superconducting energy gap
on the other side of the tunneling junction, as seen when comparing Figures 4.5a and
4.5c. The larger the amount of energies for which the DOS equals zero on one side of
the junction is, the smaller α will be. The superconducting density of states, which does
not change much qualitatively with temperature, is shown in Figure 2.3. The di�erence
in spin-up and spin-down density of states for a Zeeman-split superconductor, which is
not greatly a�ected by temperature either, is shown in Figure 4.5c for hS{∆0 � 0.3.
When Dz

ZSpEq displays its largest absolute values, at |E|   �1, the superconducting
DOS equals zero. Consequently, the largest peaks in Dz

ZSpEq cannot contribute to
α. Moreover, Dz

ZSpEq is fairly small at E � �1 where D0
SCpEq displays asymptotic

behavior, and D0
SCpEq � 1 for |E| ¡ 1 where Dz

ZSpEq is again large. Accordingly,
the largest values of the density of states on each side of the junction are suppressed
when considering tunneling between a conventional BCS superconductor and a Zeeman-
split superconductor. This trend persists also for other values of the exchange �eld. The
largest maximum values for α are attained for the doubly Zeeman-split bilayer. The two
Zeeman-split superconductors used are equal, and the peaks in the density of states at
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Figure 4.5: The �gures show the density of states vs. energy for (a) a normal superconductor,
(b) a Zeeman-split superconductor and (c) the di�erence in the DOS for spin up and spin down
species in a Zeeman-split superconductor when hS � 0.3∆0 and Γ � 0.005∆0.

the gap edges occur at identical energies. Consequently, the peaks enhance each other,
and α can become very large for certain �elds and temperatures. If the superconductors
used did not display the same energy gap the situation could change drastically.

Interestingly, only the thermoelectric coe�cient α is suppressed in this manner in the
case of S/I/ZS. The thermoelectric �gure of merit ZT and the Seebeck coe�cient S are
almost equal both when considering a normal metal and a superconductor to the left of
the barrier. These are governed not only by α, but by the relationship between α and G
and GQ. If these are close in size, S and ZT can become large regardless of the size of
α. Therefore, even when the pure thermal spin currents are suppressed when replacing
the normal metal with a superconductor, the normally considered thermoelectric e�ects
are not. These are still maximized by employing two spin-split superconductors sepa-
rated by a tunneling barrier, but are quite signi�cant also when the asymmetry exists
only in the right hand side material. The best bulk thermoelectric materials, among
others CsBi4Te8 and Bi2Te3, have thermoelectric �gures of merit ZT � 2 and Seebeck
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coe�cients S � 1 meV [42, p. 82]. Figure 4.3 shows that this is far surpassed in the
Zeeman-split bilayers for the thermoelectric �gure of merit, particularly in the case of
double asymmetry. The doubly Zeeman-split bilayer can match the Seebeck coe�cient
of the best thermoelectric semiconductors.

4.1.2 Zeeman-split Josephson junction

Exchanging one of the materials in the bilayer considered so far for a Josephson junction
allows for a whole new element of control over the tunneling thermoelectric e�ects arising
in the system, and results in new phenomena previously not observed. A schematic of
the setup is shown in Figure 4.6. The new control parameter is the superconducting
phase di�erence. As this can be controlled by applying external magnetic �elds or
passing currents through the system we now have an additional method for tuning the
thermoelectric e�ects. The density of states for each spin species in the normal metal
part of a Zeeman-split Josephson junction (ZS/N/ZS) is given by

Dσ
ZS{N{ZS �

∣∣∣∣∣∣Re

$&% E � σhS � iΓb
pE � σhS � iΓq2 �∆2 cos2

�
∆θ
2

�
,.-
∣∣∣∣∣∣, (4.15)

where ∆θ is the superconducting phase di�erence found in the Josephson junction. This
model is valid to a good approximation when LN ! ξ, with ξ being the superconducting
coherence length. When this is true the density of states hardly changes throughout
the normal metal nanowire.

X

NM(Z)S (Z)S

Figure 4.6: Schematic of the experimental setup considered, where a tunneling barrier (I)
separates a normal metal, superconductor or Zeeman-split superconductor (X) on the left-
hand-side from a Zeeman-split (ZS/NM/ZS) or normal superconductor (S/NM/S) Josephson
junction on the right.

We begin by considering the e�ect of adding one Josephson junction to the bilayer
structure. Figure 4.7 shows α in the case of tunneling between a normal metal, a super-
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Figure 4.7: The �gures show the thermoelectric coe�cient αe{pGT∆0q arising in X/I/ZSNZS
structures. Inelastic scattering is governed by Γ � 0.005∆0 where ∆0 � 1 meV, T � 0.2Tc,0
and the polarization is P � 97%. The �gures show (a) a normal metal, (b) a superconductor
and (c) a Zeeman-split superconductor occupying the left hand side of the interface. The right
side of the barrier is occupied by a ZS/N/ZS Josephson junction where LNM ! ξ.

conductor or a Zeeman-split superconductor and the normal metal part of a Zeeman-
split superconductor/normal metal/Zeeman-split superconducor (ZS/N/ZS) Josephson
junction. In stark contrast to the bilayer case, the qualitative change in the thermo-
electric coe�cient is immense as the material to the left of the interface is changed.
Where α was maximized for approximately the same parameters in the bilayer case,
the extra element of control that is the superconducting phase di�erence results in the
thermoelectric coe�cient having radically di�erent shapes depending on which material
is on the left. As before the case of a conventional BCS superconductor minimizes α
signi�cantly when compared to the other two cases. Now, however, α is largest when
a normal metal is on the left. This is however only true at the given temperature,
and changes as the temperature is increased. When T � 0.4Tc,0, for instance, α is
signi�cantly larger in the X = ZS case than in the X = NM or the X = SC cases. As
the temperature is increased, α increases and ZT and S decrease. The temperature
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evolution of α, S and ZT along with the fact that α � 0 when hS � 0 can be explained
in the same manner as before.

A new feature to be noticed concerns α � 0 when ∆θ � π in the cases X = NM and
X = SC. In both these cases the particle-hole asymmetry only exists in the Josephson
junction to the right of the tunneling barrier. The thermoelectric coe�cient therefore
only exists if Dz

RpEq � 0. When ∆θ � π, the factor ∆2 cos2
�

∆θ
2

� � 0 from Eq. 4.15.
The spin-dependent density of states in the normal-metal part of the Zeeman-split
Josephson junction is

Dσ
ZS{N{ZS �

∣∣∣∣∣Re

#
E � σhS � iΓa

pE � σhS � iΓq2 � 0

+∣∣∣∣∣ (4.16)

�
∣∣∣∣Re

"
E � σhS � iΓ

E � σhS � iΓ

*∣∣∣∣ (4.17)

� 1 (4.18)

when the superconducting phase di�erence equals π, causing

Dz
RpEq � Dz

ZS{N{ZSpEq � 1� 1 � 0 (4.19)

for all values of hS and T . Accordingly, α � S � ZT � 0 whenever ∆θ � π if a particle-
hole asymmetry exists on only one side of the junction. If a particle-hole asymmetry is
present also to the left of the barrier, as in the case of a Zeeman-split superconductor
on the left, α � 0 when the superconducting phase di�erence on the right equals π.
Accordingly, neither α nor S and ZT equal zero at ∆θ � π if the di�erence in spin-
dependent density of states to the left of the barrier is unequal to zero.

Another feature to notice can be found in Figure 4.7b. The sign of the thermoelectric
coe�cient can be switched upon tuning the magnetic exchange �eld and the supercon-
ducting phase di�erence. This was not possible without the Josephson junction, and
also does not happen when the material to the left of the barrier was a normal metal
or a Zeeman-split Josephson junction for the parameters chosen. The structure choice
of superconductor/tunneling barrier/Zeeman-split Josephson junction, however, can re-
sult in pure thermal spin currents in which the dominating polarization direction can
be changed by altering the superconducting phase di�erence. These spin currents are
de�ned by Is � IÒcharge � IÓcharge � α∆T {T when no other biases are applied, and if
∆T and T are kept constant the entire spin current is governed by α. If the sign of α
changes so does the sign of Is, and accordingly so does the spin current polarization.
Mathematically, this can be explained by the integrand of α. The superconducting
DOS is able to enhance the negative aspects of the product of the factor E and Dz

ZSpEq
su�ciently for α to be able to become negative. Dz

ZSpEq is shown in Figure 4.8b for
hS{∆0 � 0.15.
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The thermoelectric coe�cient governs the pure thermal spin current. As the density of
states is unequal for the particles of each spin, the migration of species at the application
of a thermal bias may be accompanied by a �nite spin polarization. The amount of
particles with enough energy to traverse the barrier with spin up may be greater or
smaller than the particles with the same energies and the opposite spin state. Even
though the charge current equals zero when the tunneling barrier is unpolarized, a spin
current may exist. The fascinating feature studied here concerns the exchange �eld and
superconducting phase di�erence being able to control the dominating polarization of
the spin current. Both these parameters a�ect the density of states for each spin directly,
and accordingly are able to control which spin species has the largest probability of
occupation. This e�ect is not limited to the case of superconductor/insulator/Zeeman-
split normal metal Josephson junction, as will be shown later on.

(a) (b)

Figure 4.8: (a) Density of states D0pEq and (b) di�erence in spin-dependent density of
states DzpEq in a Zeeman-split superconductor/normal metal/Zeeman-split superconductor
(ZS/N/ZS) Josephson junction where L ! ξ, T {Tc0 � 0.2, Γ{∆0 � 0.005 representns inelastic
scattering and hS{∆0 � 0.15 is the Zeeman �eld.

Figure 4.8 shows the (a) density of states and (b) di�erence in spin-dependent di�er-
ence in the density of states within the normal metal of a Zeeman-split superconduc-
tor/normal metal/Zeeman-split superconductor Josephson junction with hS � 0.15∆0,
as de�ned by Eq. 4.15. When the assumption is made that LN ! ξ, the density of
states is assumed to be constant throughout the entirety of the normal metal nanowire.
There is an asymmetry in the density of states which persists for all parameter choices
until ∆θ � π, and at approximately ∆θ � 0.9π a peak occurs, indicating triplet su-
perconductivity within the normal metal nanowire. This is shown in Figure 4.8a. The
interference of Dz

ZSpEq, shown in Figure 4.8b, with D0
LpEq, E and CpEq can result in

the sign of α changing with varying exchange �eld and phase di�erence.

Figure 4.9 shows S and ZT resulting from thermoelectric currents through tunneling
from a doubly Zeeman-split Josephson junction to a material X, where X is (a)-(b)
a normal metal, (c)-(d) a superconductor or (e)-(f) a Zeeman-split superconductor.
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Figure 4.9: Seebeck coe�cient S (�rst column) and thermoelectric �gure of merit ZT (second
column) in X/I/ZSNZS junction where X denotes (a)-(b) a normal metal, (c)-(d) a superconduc-
tor or (e)-(f) a Zeeman-split superconductor. Inelastic scattering is governed by Γ � 0.005∆0

where ∆0 � 1 meV, T � 0.2Tc,0 and the polarization is P � 97%.
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When the Josephson junction is included, including spin-splitting on both sides of the
tunneling barrier does not maximize all e�ects at the given temperature. At higher
temperatures, assuming Zeeman-splitting on both sides of the junction does increase the
thermoelectric e�ects when compared to considering normal metals or superconductors
to the left of the barrier. At the temperature considered here, however, α is largest
when the material on the left is a normal metal, S is largest when it is a superconductor
and ZT is largest when a Zeeman-split superconductor is used.

The sizes of the thermoelectric e�ects arising in the hybrid structures containing Joseph-
son junctions are remarkably large when considering the complexity of the systems. The
thermoelectric �gure of merit approaches 10 and the Seebeck coe�cient is close to �0.6
meV in Figure 4.9f at zero superconducting phase di�erence, which approaches the
maximum values of ZT � 13 and S � �0.8 meV found in the doubly Zeeman-split
superconducting bilayer. However, as the largest thermoelectric e�ects are still to be
found in the doubly-split superconducting bilayer the primary advantage to adding
Josephson junctions to the mix would be the possibility of switching the polarization
of a spin current in situ through tuning the exchange �eld or superconducting phase
di�erence. Unfortunately αmax � 10�3 at T � 0.2Tc,0 in the case where this occurs,
with a superconductor to the left, which might not be su�cient to be useful.

4.1.3 Double Josephson junction

Following the consideration of the addition of one Josephson junction to the tunneling
regime, we wanted to consider the e�ect of adding two. We therefore studied the e�ect of
tunneling between the normal metal in a superconductor/normal metal/superconductor
(S/N/S) Josephson junction and the normal metal in a Zeeman-split superconduc-
tor/normal metal/Zeeman-split superconductor (ZS/N/ZS) Josephson junction. A graph-
ical visualization of the double Josephson junction structure can be found in Figure
4.10. The tunneling is supposed to occur in the purple area, where the centers of the
normal metal parts of each Josephson junction are separated by an insulating mate-
rial which can be polarized. The actual tunneling junction is accordingly a normal
metal/insulator/normal metal (N/I/N) junction. The superconductors should not be
in contact. We acknowledge that the experimental realization of such structures may
result in signi�cant challenges, but we nonetheless include the results due to their in-
teresting nature. The density of states in a regular S/N/S Josephson junction is similar
to the DOS in a Zeeman-split Josephson junction and given by

Dσ
S{N{S �

∣∣∣∣∣∣Re

$&% E � iΓb
pE � iΓq2 �∆2 cos2

�
∆θ
2

�
,.-
∣∣∣∣∣∣. (4.20)

This is valid when the normal metal length LN is much smaller than the superconducting
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coherence length ξ, and the density of states can be assumed constant across the entire
length of the normal metal.

NM

NM

(Z)S

(Z)S

N/I/N NMNM ZSZS

Figure 4.10: Schematic of the experimental setup considered, where a tunneling barrier (I)
separates the normal metal parts of two Josephson junctions, at least one of which containing
Zeeman-split superconductors.

Figure 4.11 shows (a)-(b) the thermoelectric coe�cient, (c)-(d) the Seebeck coe�cient
and (e)-(f) the thermoelectric �gure of merit resulting from quasiparticle tunneling be-
tween two Josephson junctions. The �rst column shows the case where the left-side
junction is a superconductor/normal metal/superconductor (S/N/S) Josephson junc-
tion, while the right column shows the case where both structures are Zeeman-split
normal-metal Josephson junctions. The results are qualitatively the same for di�erent
values of the exchange �eld hS and the temperature T , and therefore only one set of
�gures is included. The thermoelectric e�ects arising are seen to be almost equally
large in both cases, surpassing the best semiconducting thermoelectric materials avail-
able and rivaling the Zeeman-split superconducting bilayers studied in the preceding
section.

In addition to providing an extra element of control to the system the superconducting
phase di�erence is shown to singlehandedly control both the size, shape and sign of
the thermal spin currents arising as a result of tunneling across the junction between
the two central normal metals. This phenomenon is quantitatively almost identical
regardless of whether a S/N/S or ZS/N/ZS Josephson junction is situated to the right
of the tunneling barrier and α varies between approximately the same values in both
cases. Qualitatively, on the other hand, the e�ects vary radically. When tunneling
between two Zeeman-split Josephson junctions is being considered, α is maximized
when ∆θL � ∆θR � π{2. The Seebeck coe�cient S and thermoelectric �gure of merit
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Figure 4.11: (a)-(b) Thermoelectric coe�cient αe{pGT∆0q, (c)-(d) Seebeck coe�cient S and (e)-
(f) thermoelectric �gure of merit ZT for tunneling between (�rst column) a S/N/S Josephson
junction and a ZS/N/ZS Josephson junction separated by a tunneling barrier between the
normal metals and (second coulmn) two Zeeman-split ZS/N/ZS Josephson junctions where the
normal metal nanowires are separated by a tunneling barrier. Inelastic scattering is governed
by Γ � 0.005∆0 where ∆0 � 1 meV and the polarization is P � 97%. LN ! ξ on both sides of
the tunneling barrier. For the situation where only one Josephson junction contains Zeeman-
split supercondcutors T � 0.4Tc,0 and hS � 0.5∆0, while in the other case T � 0.3Tc,0 and
hS � 0.4∆0.
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ZT reach their maximum values when the superconducting phase di�erence equals zero
on both sides of the insulating barrier.

As we would expect with respect to previous discussions the thermoelectric coe�cient α
equals zero when the superconducting phase di�erence on the right equals π in the case
of a S/N/S Josephson junction being present to the left of the barrier. When particle-
hole asymmetry exists on both sides of the junction the thermoelectric coe�cient is
never identically equal to zero for all other parameters when one phase di�erence is set
to π.

4.2 Low-�eld considerations

The substantial thermoelectric e�ects studied so far all require the application of large
magnetic �elds to arise. In light of possible application areas this is not desirable. Con-
sequently, a goal of this work has been attempting to replicate the phenomena observed
within Zeeman-split systems using other superconducting hybrid structures not requir-
ing large applied �elds. Thus, other ways of lifting the particle-hole symmetry for each
spin had to be found. Within this section we will apply the framework for thermoelectric
e�ects arising in systems with homogeneous magnetization derived in Chapter 3, and
consider superconductor/normal metal/superconductor (S/N/S) Josephson junctions
with aligned spin-active interfaces and superconductor/ferromagnet/superconductor (S/F/S)
Josephson junctions where the ferromagnet has a head-to-head domain wall struc-
ture.

Analytical expressions for the superconducting density of states could be inserted di-
rectly into the formulas for the thermoelectric coe�cients in order to obtain the results
presented in the previous section. Here, we will consider thermoelectric phenomena in
more complex hybrids with features that cannot be as simply described. The Keldysh
Green function formalism outlined in Section 2.6 was employed when solving the Ric-
cati parametrized Usadel equation in the middle of the normal metal or ferromagnet
nanowire. The resulting values for the density of states were subsequently numerically
integrated in order to quantify the thermoelectric parameters.

This section will focus on tunneling currents between normal metals on the one side
of a tunneling barrier and more complex S/X/S Josephson junctions on the other as
shown in Figure 4.12. Similar realized experimental setups can be found in Refs. [125]
[126] [127]. The �rst step made when studying the thermoelectric response of com-
plex superconducting hybrids is de�ning material parameters and boundary conditions
at the S/X/S interfaces. Next, the Riccati-parametrized Usadel equation is solved in
the middle of the central material. Following the calculation of the density of states
at x � 0.5LX , numerical integration in MATLAB was used to calculate the relevant
thermoelectric coe�cients. Accordingly, the results for the tunneling coe�cients are
primarily valid in the middle of the central Josephson junction material (X). Ideally,
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the normal metal contact should be centered at x � 0.5LX and only be a few nanome-
ters wide for the results presented herein to be as valid as possible. We realize that
this may cause experimental concern, as metallic contacts of 5 � 6 nm size are hard
to achieve even using cutting-edge electron beam lithography technology. This will be
discussed further at the end of this section. For a more thorough qualitative description
of the numerical methods employed, see Appendix C.

Normal metal electrode

z

Superconductor Superconductor

x

N

X

Figure 4.12: Schematic of the experimental setup considered whenever low-�eld thermoelec-
tric e�ects are studied within this thesis. There is a tunneling barrier, which can be fully
polarized, between the normal metal electrode N and the nanowire X centered between two
superconducting reservoirs.

4.2.1 Josephson junction with spin-active interfaces

Superconductor/normal metal/superconductor Josephson junctions with magnetic or
spin-active interfaces have been shown to give rise to particle-hole asymmetries, with
densities of states which di�er for the spin species [33][51][99]. The S/N interfaces are
herein considered to be occupied by weakly polarized ferromagnetic insulators which are
both polarized along the �z-axis. The Usadel equation was solved numerically using
MATLAB to procure the density of states in the middle of the normal metal, utilizing
the Kuprianov-Lukichev tunneling boundary conditions along with Cottet's boundary
conditions for weakly polarized interfaces. To ful�ll the demand of weakly polarized
spin-active interfaces the parameters GMR � 0.1 and ζ � 3 were chosen to describe
the magnetic tunneling interface. Moreover, the superconducting coherence length was
de�ned as ξ � 30 nm. A schematic showing the spin-polarized Josephson junction and
highlighting the polarization at the interfaces is presented in Figure 4.13.

The primary reason for using the boundary conditions for weakly polarized interfaces
can be attributed to reducing the computation time. In order to ensure accuracy in
the numerical integration, the Usadel equation was solved for 3500 energies and 24
phase di�erences for every single value of Gϕ. Using the complete boundary conditions
would have increased the computation time signi�cantly, as the whole system would
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Bulk SCBulk SC
Normal metal nanowire

z

x

y

Figure 4.13: Schematic of a superconductor/normal metal/superconductor (S{N{S) Josephson
junction with z-polarized spin-active interfaces. The superconductors are in reality very large
when compared to the normal metal nanowire.

have become much more complex to solve numerically. The interface across which we
consider the actual tunneling current can be completely polarized with P � 100%, and
we therefore do not consider the choice of weakly polarized interfaces to be a major
limitation to the generality of the work.
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Figure 4.14: Thermoelectric coe�cient α in a N/I/SNS structure where the Josephson junction
has LN � 15 nm and spin active interfaces, both aligned in the �z-direction. (a) shows
T � 0.2Tc,0, and (b) T � 0.4Tc,0. We have also used ζ � 3, ξ � 30 nm, P � 97% for the N/I/N
tunneling and GMR � 0.1 for the S/N/S-tunneling.

Using numerical integration, the thermoelectric coe�cients, Seebeck coe�cient and
thermoelectric �gure of merit were calculated for various parameters. The thermo-
electric coe�cient α is presented for di�erent temperatures in Figure 4.14, with (a)
showing T {Tc,0 � 0.2 and (b) showing T {Tc,0 � 0.4. Here, the size of the thermoelec-
tric coe�cient α can become as large as �0.2 when T � 0.4Tc,0. This approaches the
value attained in the N{I{ZS-bilayer, as shown in Figure 4.2a. However, when spin
active interfaces in normal metal Josephson junctions are used, external magnetic �elds
need not be applied. This would be highly bene�cial in light of possible application
areas. Moreover, the superconducting phase di�erence provides an additional means of
external control.
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Figure 4.15: Di�erence in spin-dependent density of states, DzpEq, in the middle of the normal
metal of a S/N/S Josephson junction with spin-active interfaces. LN � 15 nm, ζ � 3, Γ �
0.005∆0 The spin-dependent phase-shifts at the interfaces are governed by (a) Gφ � 0.55, (b)
Gφ � 0.8 (c) Gφ � 1.05 and (d) Gφ � 1.55.

The thermoelectric coe�cient varies with the superconducting phase di�erence and Gφ,
which represents the spin-dependency of the phase shifts arising due to scattering at
the interfaces. This is not an ideal parameter to vary, as it is material speci�c and
cannot be altered in situ or during operation. However, how α varies with Gφ is quite
interesting. There seems to be an ideal value of Gφ where |α| is maximized, and this
occurs at Gφ � 0.8 and ∆θ � 0. When there is no superconducting phase di�erence,
the supercurrents exiting both superconductors seem to enhance each other, generating
large thermal spin currents or charge currents when P � 0. Once again, α is seen to
increase with temperature as the distribution function broadens. The maximum value
of α occurring at approximately Gφ � 0.8 can be understood from considering the
di�erence in the spin-dependent density of states, DzpEq, in the middle of the normal
metal. This is due to the thermoelectric coe�cient becoming

Page 68



4.2. LOW-FIELD CONSIDERATIONS CHAPTER 4

α � GT
2e

» 8

�8
dEEDz

LpEqCpEq (4.21)

when the right-side electrode is a normal metal, and Dz
LpEq is shown in Figure 4.15.

The �gure displays the di�erence in the density of states for the spin species at x �
0.5LN from E � �3.5∆0 to E � 0, where Dz

LpEq is antisymmetric about the zero-
energy point. The thermoelectric coe�cients are largest for zero superconducting phase
di�erence because this is where the superconducting order in the normal metal is the
strongest. As Gφ is increased from 0.55 in Fig. 4.15a to 0.8 in Fig. 4.15b, the asymptotic
peaks approach E � 0 when ∆θ � 0. Consequently, the peaks become more likely to
be encompassed by the distribution function CpEq when Gφ � 0.8 than when Gφ �
0.55. As Gφ is increased further the zero-energy gap closes and is replaced by a zero-
energy peak for all phase di�erences, indicating the presence of triplet superconductivity
within the normal metal. Here, however, only one asymptotic peak contributes to the
thermoelectric e�ects, and DzpEq � 0 when the quasiparticle energy is just slightly
greater than E � 0. Moreover, the actual size of the peaks is seen to decrease as Gφ
is increased, and consequently make a smaller contribution to the total thermoelectric
coe�cient. At higher temperatures the distribution function is broader and able to
encompass more and larger asymptotic peaks also for smaller and greater values of Gφ
than 0.8, causing a larger maximum value for α persisting over a broader region of Gφ.
The densities of states do not change much as the temperature is increased, and are
therefore only shown here for one temperature, T � 0.2Tc,0.

The size of the thermoelectric e�ects are further studied in Figure 4.16, which shows
the (a)-(b) Seebeck coe�cient and (c)-(d) thermoelectric coe�cient at di�erent tem-
peratures. When T � 0.2Tc,0 ZT can approach 2.5 and S � 0.25 meV. This rivals the
capabilities of the best bulk room-temperature thermoelectrics presently available. As
the temperature is further increased, these e�ects are once again diminished even as
the thermal spin currents are enhanced. If the normal metal electrode is replaced by a
superconducting electrode the sign of α can be altered through changing Gφ and the su-
perconducting phase di�erence in the spin-active Josephson junction when T � 0.2Tc,0
and the remaining parameters are set as in Figure 4.14. This e�ect is however extremely
small, and αe

GT∆0
� 10�3 at best. Consequently this plot has not been included, but

the e�ect should nonetheless be noted. The maximum values of S and ZT occur ap-
proximately at the same values of Gφ and ∆θ as the maximum values of α. As the
thermoelectric coe�cient vanishes when Gφ � 0, Gφ � 2 and ∆θ � π, so does S and
ZT .

At very small and very large values of Gφ, the thermoelectric coe�cient α approaches
zero. This e�ect also occurs when ∆θ � π. As both these parameters are modi�ed on
the right-hand-side, the spin-active interface Josephson junction must be responsible.
As D0

NM pEq � 1 and does not equal zero in either of these cases, this implies Dz
RpEq �

Dz
SNSpEq � 0 when Gφ � 0, Gφ � 2 and ∆θ � π. Consequently, in these cases,
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Figure 4.16: Seebeck coe�cient S in the �rst row and thermoelectric �gure of merit ZT in the
second in a N/I/SNS structure where the Josephson junction has spin active interfaces, both
aligned in the �z-direction, and LN � 15 nm. The �rst column shows T {Tc,0 � 0.2 and the
second T {Tc,0 � 0.4. We have also used ζ � 3, ξ � 30 nm, P � 97% for the N/I/N tunneling
and GMR � 0.1 for the S/N/S-tunneling.

DÒ
SNS � DÓ

SNS whenever these conditions are met. This could either mean that no
supercurrent exists in the Josephson junction, as is the case when the interfaces are not
spin-active, or simply that the particle-hole asymmetry necessary for thermoelectric
e�ects to arise is suppressed at these values for the phase di�erence and the spin-
dependent phase shifts. Figure 4.15 indicates that the features in the densities of states
become vanishingly small at all four values of Gφ considered when the superconducting
phase di�erence equals π. Accordingly, the corresponding features in α become minute
when compared to the maximum values. When Gφ � 0 and Gφ � 2 there are no
features within the scope of the distribution function CpEq capable of contributing to
the thermoelectric e�ects.
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4.2.2 Spatially varying magnetization

Spatially varying magnetization within a superconductor/ferromagnet/superconductor
Josephson junction should be capable of lifting the superconducting particle-hole sym-
metry and generating thermoelectric e�ects. The possible thermoelectric e�ects arising
are however not necessarily expected to be very large, as the ferromagnetic exchange
�eld is known to reduce or even destroy superconducting order leaking through the S/F
interfaces. The magnetization in the ferromagnet nanowire varies spatially, and is in
the shape of a head-to-head domain wall. Head-to-head domain wall ferromagnetism
exists in, among others, magnetic strips of Ni80Fe20 [128] and Co rings [129]. We have
chosen LF � 15 nm as the ferromagnet nanowire length, ζ � 3 to denote a tunneling
interface and ξ � 30 nm as the superconducting coherence length. The domain wall is
situated at x0 � LF {2 � 7.5 nm and the thickness of the domain wall is λ � LF {2 � 7.5
nm. When considering thermoelectric phenomena in S/F/S Josephson junctions, the
Usadel equation including ferromagnetic order was solved in the middle of the ferro-
magnetic nanowire. Regular Kuprianov-Lukichev tunneling boundary conditions were
applied. The thermoelectric coe�cient were subsequently calculated using numerical
integration. Inverse proximity e�ects are once again disregarded.

x

z
y

Figure 4.17: Schematic of the polarization in the ferromagnetic nanowire, where the shape
of the polarization is that of a head-to-head domain wall. The length of the domain wall is
λ � LF {2.

The head-to-head domain wall is assumed to permeate the entire material, also in the
y-direction, and is shown in Figure 4.17. The magnetization vector describing head-to-
head domain wall ferromagnetism is de�ned by [83]

hh2h � hxx� hyy � hzz (4.22)

hx � h tanh

�
x� x0

λ



, hy � 0, hz � h sech

�
x� x0

λ



. (4.23)

Solving the Usadel equation in the middle of the ferromagnetic nanowire and applying
the framework for thermoelectric tunneling currents in systems with homogeneous mag-
netization derived in Chapter 3 results in quanti�ed thermoelectric coe�cients. Figure
4.18 shows α for the head-to-head domain wall shown in Figure 4.17. The thermoelec-
tric coe�cient is essentially calculated at x � 0.5LF . The maximum values for the
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Figure 4.18: Thermoelectric coe�cient α in a N{I{SFS setup where (a) T � 0.2Tc,0 and (b)
T � 0.4Tc,0. The ferromagnet nanowire contains a head to head domain wall where λ � LF {2,
x0 � LF {2, Γ � 0.005∆0, and LF � 15 nm.

thermoelectric coe�cients can be found when the ferromagnetic exchange �eld strength
if as small as possible. This is intuitively understandable from the pair-breaking e�ect
of the ferromagnetic exchange �eld. Once again, increasing the temperature is seen
to increase the size of α. What is more, increasing the temperature actually changes
the sign of α and consequently also of the thermal spin currents which can arise. As
an increase in temperature from 0.2Tc,0 to 0.4Tc,0 does not alter the superconduct-
ing energy gap much, this is attributed to the in�uence of the distribution function

CpEq � r4kBT cosh2
�

E
2kBT

	
s�1 on the spin-dependent density of states.
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Figure 4.19: Di�erence in spin-dependent density of states DzpEq in the middle of the ferromag-
net in a superconductor/ferromagnet/superconductor Josephson junction. The ferromagnetic
exchange �eld is (a) h � 3∆0 and (b) h � 5.75∆0. The ferromagnet nanowire contains a head
to head domain wall where λ � LF {2, x0 � LF {2, Γ � 0.005∆0, T � 0.2Tc,0 and LF � 15 nm.

Figure 4.19 shows the di�erence in spin-dependent density of states DzpEq in the mid-
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dle of the head-to-head domain wall ferromagnet in the superconductor/ ferromagnet/
superconductor Josephson junction. Figure 4.19a shows DzpEq when the ferromagnetic
exchange �eld is at its lowest, h � 3∆0, and Figure 4.19b shows the spin-dependent
di�erence in density of states for the strongest ferromagnetic exchange �eld consid-
ered in this case, h � 5.75∆0. The �gures depict the densities of states, which are
antisymmetric about E � 0, between the quasiparticle energies �3.5∆0 and 0. The
superconducting order within the ferromagnet is seen to decrease as the exchange �eld
strength increases. The thermoelectric coe�cient α depends on the spin-dependent
di�erence in density of states as α � GT

2e

³8
�8 dEEDz

LpEqCpEq, and consequently is re-
duced along with the reduction in DzpEq. As the superconducting peaks within DzpEq
become smaller with increasing exchange �eld, so does α. Moreover, the peaks are seen
to occur further from the zero energy point as the �eld becomes larger. Accordingly,
they are encompassed by the distribution function CpEq to a lesser degree, leading to
smaller thermoelectric e�ects. The thermoelectric coe�cient does not vanish entirely
when h � 5.75∆0 as long as the superconducting phase di�erence is small, but is seen
to equal zero at phase di�erence π for both temperatures considered. As the tempera-
ture is increased from 0.2Tc,0 to 0.4Tc,0 the distribution function widens, encompassing
more of the superconducting peaks in the densities of states, allowing the thermoelectric
coe�cient to increase with temperature.

When ∆θ � 0, the thermoelectric coe�cient reaches its maximum value as supercon-
ducting order in the middle of the ferromagnetic nanowire is at its strongest. When
the superconducting phase di�erence equals π, however, the thermoelectric coe�cient
is seen to vanish and α � 0. If we were to consider a case where the left-hand-side
material contained a particle-hole asymmetry this would not necessarily be the case,
as Dz

SFSpEq � 0 at ∆θ � π is probably the explanation for the vanishing thermo-
electric e�ects at this particular superconducting phase di�erence. However, this could
signi�cantly increase the complexity of the problem if for instance another Josephson
junction was to be added. One could of course exchange the normal metal or super-
conducting electrode for a Zeeman-split superconductor, but this would require large
applied magnetic �elds and completely negate the purpose of considering Josephson
junctions containing ferromagnetic domain wall nanowires in the �rst place.

The value of the exchange �eld h greatly a�ects the thermoelectric coe�cient. This is
to a large degree as expected as a large ferromagnetic exchange �eld can tear the su-
perconducting Cooper pairs leaking into the ferromagnetic nanowire apart, and thereby
greatly diminish the proximity e�ect. As the existence of giant thermoelectric e�ects
is largely dependent on the asymptotic nature of the superconducting density of states
being present and su�ciently large, the ferromagnetic destruction of the supercurrent
should be expected to result in fairly minute thermoelectric e�ects. The ferromagnetic
exchange �eld strengths considered within this section range between 3∆0 and 5.75∆0.
The end point was chosen as beyond this the thermoelectric features become vanishing.
The starting point, on the other hand, could have been chosen to be smaller. This
might have contributed to the thermoelectric e�ects becoming greater. However, the
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choice was made to only consider �elds greater than 3∆0 as this seems reasonable with
what has shown to be experimentally feasible, exempli�ed by Ref. [130].
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Figure 4.20: Dimensionless thermoelectric �gure of merit ZT in a N{I{SFS setup where (a)
T � 0.2Tc,0 and (b) T � 0.4Tc,0. The ferromagnetic nanowire contains a head to head domain
wall where λ � LF {2. Γ � 0.005∆0 models the inelastic scattering, P � 97% and LF � 15 nm.
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Figure 4.21: Seebeck coe�cient S for tunneling across the interface in a S{I{SFS structure.
The ferromagnet has a head-to-head domain wall structure with λ � LF {2, LF � 15 nm,
Γ � 0.005∆0, T � 0.4Tc,0 and P � 97%.

Figure 4.20 shows the thermoelectric �gure of merit ZT for the same temperatures as
α. These are extremely small, just like α, and the structures considered do not seem
to be good hosts for thermoelectric phenomena. The largest values for the Seebeck
coe�cient are found when the normal metal is exchanged for a superconductor and the
temperature is T � 0.4Tc,0, as shown in Figure 4.21. The Seebeck coe�cients attained
are not negligible, in contradiction to α and ZT , but are still not as prominent as we
would like. The sizes of both α, S and ZT are small enough for the structures considered
to not be directly utilizable for practical applications. However, the results included
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herein show how a ferromagnetic domain wall is able to generate an asymmetry for spin
up and spin down particles. Di�erent material parameters and magnetic con�gurations
could counteract the pair-breaking e�ect of the ferromagnetic exchange �eld to a larger
degree and contribute to enhancing the thermoelectric e�ects arising even further.

The reason for choosing the particular type of domain wall portrayed above concerns
the nature of the expressions for the thermoelectric coe�cients used in this chapter.
As homogeneously polarization along only one is assumed, we need to consider struc-
tures where we can assume the polarization to be aligned in a certain direction, here
de�ned as the z-direction, at x � 0.5LF , the point at which the Usadel equation is
solved numerically. The head-to-head domain wall satis�es these conditions. If we pos-
sessed a framework capable of describing thermoelectric e�ects within material systems
having di�erent and more complicated polarization con�gurations, we could study ther-
moelectric e�ects arising in Josephson junctions with even more exotic spatially varying
magnetization structures, such as for instance conical ferromagnetism. This is done in
Chapter 6, using the framework to be derived in Chapter 5.

4.3 Experimental considerations

This section provides a brief consideration of possible fabrication methods for the struc-
tures examined herein as well as a summary of the parameter choices made in the nu-
merical calculations for the thermoelectric coe�cients. The values used for the material-
speci�c parameters such as the superconducting coherence length and energy gap are
motivated by the corresponding parameters obtainable in existing materials.

Electron beam lithography (EBL) is commonly used when fabricating nanostructures.
There are limits to how good the resolution can be in all nanofabrication methods,
and EBL is no exception. The exact physical principles governing the EBL resolution
limit are not thoroughly understood as of yet [131], but vast studies into this area are
being conducted with the goal of pushing EBL resolution limits toward the sub-5 nm
scale. Already in the year 2000 resolution of writing in the resist as small as 3 nm was
possible, but actual practical resolution was limited by exposure, pattern transfer and
development. 2 nm isolated featured sizes in the resist were obtained in 2013 [132].
Normal metal electrode widths of 3 � 5 nm therefore seem to be extremely di�cult
to achieve, but not necessarily entirely impossible. Another possibility seems to be
Extreme Ultraviolet Lithography (EUVL), where resolutions of 7 nm with possibilities
of smaller nodes towards 2.5 nm were recently reported [133].

The structures considered within the �rst part of this chapter demand LN ! ξ when
Josephson junctions are considered. If materials with long superconducting coherence
lengths are used, so LNM ! ξ even when the normal metal length is around 15 nm,
we believe most of the structures proposed to be achievable. The main problem is
the right-hand-side normal metal electrode, as the tunneling currents are calculated at
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x � 0.5LNM . The density of states in the normal metals seems to be fairly consistent
over a range of a few nanometers, but this electrode should ideally not be much wider
than 5 nm in order to obtain good coherence between theory and experiment.

The thermoelectric e�ects predicted herein can easily be compared to the best values
for S and ZT shown for state-of-the-art bulk thermoelectric materials. The best bulk
thermoelectric materials, among others CsBi4Te8 and Bi2Te3, have thermoelectric �g-
ures of merit ZT � 2 [42, p. 82]. Figure 4.3 shows that this is far surpassed in the
Zeeman-split bilayers, particularly in the case of double asymmetry, even when the
Dynes parameter [66] Γ � 0.005∆0 and inelastic scattering occurs at a fairly large rate.
The use of such a large scattering rate could simplify the experimental realization of the
e�ects theoretically shown, as it opens for a much broader range of possible materials
than using for instance Γ � 10�6∆0 would. The choice of Γ � 0.005∆0 for the Dynes
parameter modeling inelastic scattering is quite large, and results in fairly heavy sup-
pression of the BCS coherence peaks. However, this choice allows for a wider range of
possible materials to choose from for experimental realization. The Dynes parameter in
Al, for instance, is often modeled as Γ � 10�4∆0. The superconducting gap parameter
is chosen as ∆0 � 1 meV for all calculations within this thesis. The value choice for
the superconducting gap parameter was made without a speci�c material in mind, but
is not unreasonable as it takes the values 0.18, 1.35 and 1.50 meV for Al, Pb and Nb,
respectively [124, p. 79].

The superconducting coherence length ξ plays an important role when choosing super-
conductors for possible experimental realization of the various setups suggested through-
out this thesis. This is particularly true in Sections 4.1.2 and 4.1.3, where a number
of the structures considered consist of Josephson junctions with LN ! ξ. If ξ � 30
nm, which is close to the coherence length of Niobium (Nb) with ξ0 � 35 nm [63],
the accurate realization of the theories presented requires LN � 2 nm. This may pose
signi�cant problems from a fabrication perspective. However, if one chooses a material
with a larger ξ, this problem is diminished. Possible material choices, which are still
type I superconductors and adhere to the BCS theory of superconductivity, are for in-
stance aluminum (Al) with ξ0 � 1600 nm, and lead (Pb) with ξ0 � 90 nm [124, p. 79].
ξ0 is the bulk superconducting coherence length at zero temperature, and depends on
temperature [134] and thickness if the superconductor is a thin �lm [24]. For thin �lm
Al, coherence lengths are typically around ξ � 100 nm [135].

When considering S/N/S Josephson junctions with spin-active interfaces in Section
4.2.1 the superconducting coherence length was de�ned as ξ � 30 nm in analogy with
NbN. Magnetic insulators such as EuS [24] or EuO [136] could be used at the S/N
interfaces. The superconducting critical temperature of NbN is Tc � 14 K, which
is easier to achieve experimentally than when using for instance Al, which has Tc �
1.2 K. The tunneling from the center of the normal metal nanowire in the Josephson
junction and into the normal metal electrode is governed by P � 97% as the interface
polarization, when we consider P � 0. This value was chosen as similar polarizations

Page 76



4.4. SUMMARY AND DISCUSSION CHAPTER 4

are attainable in ferromagnetic insulators such as GdN at 3 K [68]. This is well within
the superconducting critical temperature of NbN with Tc � 14K. As we primarily
consider T � 0.2Tc0 � 2.8 K for NbN, the achievement of P � 97%, T � 0.2Tc,0 and
ξ � 30 nm at the same time does not seem impossible. This is, of course, dependent on
the growth compatibility of the materials chosen.

From en experimental perspective, the temperature gradient crucial to attaining the
thermoelectric e�ects which are the focus point of this chapter can be applied through
shining a laser onto the material on one side of the tunneling interface. For instance,
in the case of a normal metal on the right-hand-side and an S/X/S structure on the
left-hand-side as shown in Figure 4.12, the normal metal can be heated through using a
laser while the more complex S/X/S structure is kept at a constant temperature. The
possible application of spin-dependent biases complicates matters greatly. In addition
to already considering a fairly complicated N/I/SXS-structure, ferromagnetic materials
need to be added to the normal metal electrode and subsequently heated to di�erent
temperatures. This could, understandably, induce signi�cant concern for the possibility
of experimental realization.

4.4 Summary and discussion

The goal of this chapter was to study the thermoelectric e�ects arising in homogeneously
magnetized superconducting tunneling hybrids in which the particle-hole symmetry is
broken. The framework used for the relevant thermoelectric coe�cient was presented
and derived in Chapter 3. The tunneling junctions can be divided into two categories,
one including Zeeman-split superconductors and one focusing on low-�eld thermoelectric
e�ects. The Zeeman-split hybrids were all described using analytical expressions for the
densities of states. The low-�eld hybrids studied herein were considered using numerical
methods, and include superconductor/ferromagnet/superconductor Josephson junctions
coupled to a normal-metal electrode where the ferromagnet has a head-to-head domain
wall structure, and superconductor/normal metal/superconductor Josephson junctions
coupled to a normal-metal electrode where magnetic insulators, weakly polarized along
the same axis, are situated at the superconductor/normal metal interfaces.

The largest thermoelectric e�ects are seen to arise in doubly Zeeman-split supercon-
ducting bilayers, where two Zeeman-split superconductors are separated by a polarized
tunneling interface (ZS/I/ZS). The thermoelectric coe�cient is in this case able to
reach values of αe{pGT∆0q � 0.6, whereas the normal metal/insulator/Zeeman-split
superconductor (N/I/ZS) thermoelectric coe�cient can approach αe{pGT∆0q � 0.25.
This coe�cient is able to govern the thermal spin currents Is � α∆T {T . In order to
compare the thermoelectric e�ciency of the Zeeman-split bilayers to state-of-the-art
thermoelectric materials the Seebeck coe�cient and thermoelectric �gure of merit are
studied, which can reach S � �0.8 meV and ZT � 15 in the Zeeman-split ZS/I/ZS
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bilayer, and S � �0.3 meV and ZT � 5 in the N/I/ZS bilayer. The thermoelectric
e�ects in both these bilayer con�gurations are seen to rival or surpass those achievable
in state-of-the-art bulk thermoelectric materials at room temperature.

Adding Zeeman-split Josephson junctions (ZS/N/ZS) to the mix allows for the addi-
tional element of control which is the superconducting phase di�erence while retaining
large Seebeck coe�cients and thermoelectric �gures of merit. The most interesting
e�ect of this addition is the possibility of switching the sign of the thermoelectric coef-
�cient α, and thereby also of the thermal spin current, by altering the superconducting
phase di�erence. This is seen to be possible for tunneling between a superconductor and
the normal metal in a ZS/N/ZS Josephson junction, between a S/N/S and a ZS/N/ZS
Josephson junction and between the normal metals of two ZS/N/ZS Josephson junc-
tions.

Other notable trends throughout include the thermoelectric coe�cient increasing and
the Seebeck coe�cient and thermoelectric �gure of merit decreasing as the temperature
is raised. This was attributed to the broadening of the distribution function CpEq �
r4kBT cosh2

�
E

2kBT

	
s�1 as the temperature is increased. Additionally, when Josephson

junctions are considered, the thermoelectric e�ects disappear when the superconducting
phase di�erence equals π if the particle-hole asymmetry exists on only one side of the
tunneling interface. This should be true as long as triplet superconductivity does not
arise when ∆θ � π, which is not observed within this chapter.

The main drawback to using Zeeman-splitting to obtain the large thermoelectric ef-
fects observed herein is related to the large magnetic �elds which must be applied
for the necessary particle-hole asymmetry to arise. Consequently, structures contain-
ing spin-active Josephson junction interfaces and spatially varying magnetization were
studied with the goal of obtaining large thermoelectric e�ects. The superconduc-
tor/ferromagnet/superconductor Josephson junction with a head-to-head domain wall
centered in the middle of the ferromagnetic nanowire did display small thermoelectric
e�ects, but they are far away from the desired size. Spatially varying magnetization
shows promise, but the ferromagnetic exchange �eld destroys superconducting order too
rapidly for large thermoelectric e�ects to arise in the domain wall con�guration. Spin-
active interfaces in superconductor/normal metal/superconductor Josephson junctions,
however, display large thermoelectric e�ects. When the temperature is T � 0.4Tc,0
the thermoelectric coe�cient can reach the value αmax � �0.2 for a spin-dependent
interface phase shift parameter choice of Gφ � 0.8. At this temperature the Seebeck
coe�cient and thermoelectric �gure of merit are not very large, but when T � 0.2Tc,0
they can reach S � 0.25 meV and ZT � 3. This rivals what is achievable in the nor-
mal metal/insulator/Zeeman-split superconductor (N/I/ZS) con�guration, and is close
to surpassing e�ects in existing state-of-the-art thermoelectric materials. Of the two
control parameters for the Josephson junction with spin-active interfaces Gφ and ∆θ,
only the superconducting phase di�erence can be altered in situ. Accordingly, we have
only one element of experimental control as Gφ is a material parameter. However, the
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superconducting phase di�erence is able to cause large changes in the thermoelectric
e�ects, as large variations are seen upon tuning the phase di�erence between 0 and
π. What is more, the suppression of the thermoelectric e�ects at the superconducting
phase di�erence of π allows us to turn the large thermal charge and spin currents on and
o� merely through tuning the superconducting phase di�erence. As mentioned brie�y
previously, this can be compared to the working principle of a transistor. Especially
the con�guration of a normal metal coupled via a tunneling interface to the middle
of the normal metal in a superconductor/normal metal/superconductor Josephson jun-
tion with spin-active interfaces, harbors the potential of functioning as a spin transistor
driven by a thermal bias and controlled by the superconducting phase di�erence.

Within this chapter, we have only studied Josephson junctions where the lengths of
the central material either is much smaller than the superconducting coherence length,
or where the length of the central material equals 15 nm. The latter choice was made
in order to remain closer to what is experimentally achievable, as was discussed in
the previous section. If smaller central nanowire lengths than 15 nm were to be used,
however, the thermoelectric e�ects calculated for the S/F/S domain wall Josephson
junction and the S/N/S Josephson junction with spin-active interfaces are expected to
increase signi�cantly. Consequently, there is a chance that the thermoelectric e�ects in
structures with critical dimensions approaching the sub-5 nm regime may surpass even
those achievable in the doubly Zeeman-split ZS/I/ZS bilayers.
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Chapter 5

Quasiclassical approach to
thermoelectric e�ects for arbitrary
spin-dependent �elds

The method outlined in Chapter 3 depends on a very important assumption. Through-
out the entire derivation, all spins have been assumed to be polarized along the same
axis. When considering materials such as conical ferromagnets or nanowires exhibiting
spin-orbit coupling, this course of action will not yield accurate results as the spin po-
larization must here be considered along more than one axis. Therefore, it is desirable
to consider tunneling currents of spin, heat and charge without needing to consider
the spin-dependent density of states explicitly. We have therefore applied the approach
suggested in Refs. [96] and [137]. The tunneling charge, spin and heat currents are here
expressed in terms of the quasiclassical Green function matrices presented in Section
2.6 instead of in terms of the densities of states. The currents are subsequently Taylor
expanded to the �rst order with the goal of obtaining expressions for the thermoelectric
coe�cients, Seebeck coe�cient and the thermoelectric �gure of merit. The resulting
expressions will be applied to theoretical material systems in Chapter 6.

The material systems to be considered are tunneling hybrids, where an electrode on the
right is separated from a superconductor/X/superconductor Josephson junction on the
left via an insulating barrier. This barrier has a transparency in the tunneling limit, and
any interface polarization. We therefore apply Eschrig's boundary conditions, derived
in Ref. [95] and presented in Equation 2.40. The thermoelectric coe�cients derived will
�rst be presented as generally as possible, where nothing is assumed about the left or
right side materials. Thereafter, the right hand side electrode will be assumed to be a
normal metal. This simpli�es the expressions a great deal, and is done as these are the
material systems to be considered in Chapter 6.
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5.1 Initial de�nitions

The charge, spin and heat currents to be considered are de�ned by

Iq � N0eDA

4

» 8

�8
dE Tr

!
ρ̂3rǧRpBxǧRqsK

)
(5.1)

Iνs �
N0DA

8

» 8

�8
dE Tr

!
ρ̂3τ̂νrǧRpBxǧRqsK

)
(5.2)

9Q � N0DA

4

» 8

�8
dEpE � µLqTr

!
rǧLpBxǧLqsK

)
. (5.3)

Iq is the charge current within the electrode to the right of the barrier and Iνs represents
the spin current in each of the directions ν � tx, y, zu within the electrode to the right
of the barrier. The energy or heat current 9Q is de�ned as traveling from the left to the
right side of the barrier. The spin currents described herein are not the same currents
as the ones studied in Chapters 3 and 4. The tunneling spin currents studied within
the framework for homogeneously magnetized systems encompassed the net spin polar-
ization accompanying the tunneling quasiparticle charge current. Within this section,
the starting point for the charge and spin thermoelectric coe�cients is not the same, as
seen from equations 5.1-5.3. Accordingly, the prefactors of the charge and spin thermo-
electric coe�cients are expected to di�er. In order to be able to describe even strongly
spin-polarized tunneling interfaces, we will use Eschrig's boundary conditions:

ǧRBxǧR � 1

4e2N0DA
rG0ǧL �GMRtκ̌, ǧLu �G1κ̌ǧLκ̌� iGφκ̌

1, ǧRs (5.4)

ǧLBxǧL � � 1

4e2N0DA
rG0ǧR �GMRtκ̌, ǧRu �G1κ̌ǧRκ̌� iGφκ̌

1, ǧLs. (5.5)

This is done as the Usadel equation does not need to be solved in this case, and therefore
the complexity of the expression does not pose a problem. The charge, spin and heat
currents thus become

Iq � 1

16e

» 8

�8
dE Trtρ̂3rG0ǧL �GMRtκ̌, ǧLu �G1κ̌ǧLκ̌� iGφκ̌

1, ǧRsKu (5.6)

Iνs �
1

32e2

» 8

�8
dE Trtρ̂3τ̂νrG0ǧL �GMRtκ̌, ǧLu �G1κ̌ǧLκ̌� iGφκ̌

1, ǧRsKu (5.7)

9Q � � 1

16e2

» 8

�8
dEE TrtrG0ǧR �GMRtκ̌, ǧRu �G1κ̌ǧRκ̌� iGφRκ̌

1, ǧLsKu. (5.8)
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The interface parameters are de�ned as

G0 � Gq

Ņ

nl

τnlp1�
b

1� P 2
nlq, G1 � Gq

Ņ

nl

τnlp1�
b

1� P 2
nlq (5.9)

GMR � Gq

Ņ

nl

τnlPnl, Gφ � 2Gq

Ņ

n

θnn (5.10)

where Gq � e2{h is the conductance quantum. By assuming a channel-diagonal scat-
tering matrix, where the scattering is equal for all channels and n � l, κ1 � κ. Conse-
quently, we only have to consider

G0 � NGqτp1�
a

1� P 2q, G1 � NGqτp1�
a

1� P 2q (5.11)

GMR � NGqτP, Gφ � 2Gq

Ņ

n

θnn. (5.12)

The procedure to be used when obtaining expressions for the thermoelectric coe�cients
within this section is identical to the one used in the previous section. The currents
J � tIq, Iνs , 9Qu will be Taylor expanded to linear order as

J � dJ

dVR
pVR � VR,0q � dJ

dVL
pVL � VL,0q � dJ

dTR
pTR � TR,0q � dJ

dTL
pTL � TL,0q (5.13)

� dJ

dVR

���
pV0,T0q

pVRq � dJ

dTR

���
pV0,T0q

pTR � T q � dJ

dTL

���
pV0,T0q

pTL � T q (5.14)

about the point pVj,0, Tj,0q � pV0, T0q � p0, T q. Spin dependent biases are not regarded
within this section. Accordingly, as a 4�4 Onsager response matrix will not be derived
regardless, the spin heat current is not considered within this framework. The spin heat
current is not essential when considering thermoelectric e�ects, and is not needed when
deriving the thermoelectric coe�cients.

The 8� 8 Green function matrices ǧj are de�ned as

ǧj �
�
ĝRj ĝKj
0̂ ĝAj



, (5.15)

where j � tL,Ru. We are considering the case of non-equilibrium tunneling across a
barrier. Therefore, the 4 � 4 Green function matrices must be expressed in terms of
each other as

ĝAj � �ρ̂3ĝ
R:
j ρ̂3 (5.16)
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and

ĝKj � ĝRj ĥj � ĥj ĝAj . (5.17)

First, each of the currents will be expressed in therms of the retarded Green function
matrices ĝR. This procedure is rather extensive, and can be found in Appendix B.
Thereafter, a Taylor expansion in each of the four variables pVj , Tjq will be performed
about the point p0, T q in order to obtain the new thermoelectric coe�cients. The form
of ĥL and ĥR depends on the electronic structure of the material to be considered.
Prior to di�erentiation, the voltage biases are de�ned as

µL � 0, µR � eVR. (5.18)

The left-hand-side bias is de�ned to be zero for reference due to the fact that we do
not know the electronic structure of this material. Furthermore, local thermal equilib-
rium on each side of the tunneling barrier is assumed. Consequently, ĥL becomes the
equilibrium matrix

ĥL � tanh

�
E

2kBTL



1̂ � tanh

�
βLE

2



1̂. (5.19)

The right-hand-side material, a normal metal electrode in Chapter 6, is described by
the non-equilibrium matrix

ĥR �
��tanh

�
βR
2 pE � eV q

	
1̄ 0̄

0̄ tanh
�
βR
2 pE � eV q

	
1̄

�. (5.20)

The framework derived can be applied to all material systems which can be described
by these two matrices. The polarization matrix of the interface I between the electrode
and the S/X/S Josephson junction, κ̌, is de�ned as

κ̌ � ~m~̌σ. (5.21)

~̌σ is the Pauli vector in 8� 8 Keldysh space, ~̌σ � ~̂σ1̌ and

~̂σ �
�
~σ 0̄
0̄ ~σ�



. (5.22)

De�ning the magnetization vector ~m of the barrier to be aligned in the z-direction, the
polarization matrix κ̌ in 8� 8 Keldysh space becomes
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κ̌ �

����
σz 0̄ 0̄ 0̄
0̄ σz 0̄ 0̄
0̄ 0̄ σz 0̄
0̄ 0̄ 0̄ σz

���. (5.23)

5.2 Charge current

5.2.1 Thermoelectric coe�cients

As the commutators contain a lot of terms, most of the derivation of the matrix cur-
rent coe�cients is moved to Appendix B, and only the results can be found here. The
procedure involves expressing each of the commutators in terms of the retarded Green
function matrices on both sides of the interface barrier. This is done through employing
the relations 5.16 and 5.17, and di�erentiating with respect to the voltage and temper-
ature on both sides of the junction about the point pV0, T0q � p0, T q. In this point,
ĥL � ĥR � tanhpE{2kBT q. All current terms become zero in this case, and the zeroth
order term of the Taylor expansion therefore disappears. The only factors which depend
on the temperature and voltage are ĥL and ĥR, and therefore only these factors are
di�erentiated. Di�erentiating the non-equilibrium matrices with respect to temperature
yields

dhj
dTj

� � E

2kBT 2 cosh2
�

E
2kBT

	 1̂ (5.24)

dhL,R
dTR,L

� 0. (5.25)

When Taylor expanding in voltage we only need to focus on VR, as the term containing
VL becomes zero as VL � 0. Moreover, only ĥR depends on voltage, and

dĥR
dVR

� e

2kBT cosh2
�

E
2kBT

	 ρ̂3. (5.26)

The complete conductance coe�cient, prior to assuming the right-hand material to be
a normal metal and de�ning ĝR � ρ̂3, is

Page 85



CHAPTER 5 5.2. CHARGE CURRENT

G1 � dIq
dVR

� GqNτ

4

» 8

�8

dE

4kBT cosh2
�

E
2kBT

	 Tr

#
p1�

a
1� P 2qRe

!
ĝLĝR � ĝLĝ:R

)
�P Re

!
σ̂zĝLĝR � σ̂zĝRĝL � σ̂zĝLĝ

:
R � σ̂zĝ

:
RĝL

)
�p1�

a
1� P 2qRe

!
σ̂zĝLσ̂zĝR � σ̂zĝLσ̂zĝ

:
R

)+
.

(5.27)

The non-equilibrium matrices ĥL and ĥR must behave according to Equations 5.19 and
5.20, but otherwise no assumptions regarding ĝL and ĝR have been made. The complete
expressions for the thermoelectric coe�cients prior to allowing the right-side electrode
to become a normal metal are

α11 � T
dIq
dTL

� GqNτ

4e

» 8

�8

EdE

4kBT cosh2
�

E
2kBT

	 Tr

#
p1�

a
1� P 2q

�
Retρ̂3ĝRĝLu

�Re
!
ρ̂3ĝ

:
RĝL

)	
� P Re

!
ρ̂3σ̂zĝRĝL � ρ̂3σ̂zĝ

:
RĝL � ρ̂3ĝRσ̂zĝL � ρ̂3ĝ

:
Rσ̂zĝL

)
�p1�

a
1� P 2qRe

!
ρ̂3σ̂zĝRσ̂zĝL � ρ̂3σ̂zĝ

:
Rσ̂zĝL

)+
(5.28)

and

α12 � T
dIq
dTR

� �GqNτ
4e

» 8

�8

EdE

4kBT cosh2
�

E
2kBT

	 Tr

#
p1�

a
1� P 2q

�
Retρ̂3ĝLĝRu

�Re
!
ρ̂3ĝ

:
RĝL

)	
� P Re

!
ρ̂3σ̂zĝLĝR � ρ̂3σ̂zĝ

:
RĝL � ρ̂3ĝLσ̂zĝ

:
R � ρ̂3ĝ

:
Rσ̂zĝL

)
�p1�

a
1� P 2qRe

!
ρ̂3σ̂zĝLσ̂zĝR � ρ̂3σ̂zĝ

:
Rσ̂zĝL

)+
.

(5.29)

The three expressions for thermoelectric coe�cients de�ned here, for G1, α11 and α
1
2, are

completely general and should be applicable to a wide range of systems. Depending
on the material included as the electrode to the right of the barrier, the entirety of
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the Green function matrix could now contribute to the tunneling thermoelectric e�ects.
Previously, only the diagonal elements in the 2� 2 retarded Green function matrix gR

contributed to the tunneling currents. This matrix is encompassed by the 4�4 retarded
Green function matrix as

ĝR �
�
gR fR

�f̃R �g̃R


, (5.30)

and contributes to the tunneling currents studied in Chapter 3 via the density of states
de�nition

D0pEq � 1

2
Tr Re

 
gR

(
. (5.31)

Within the new framework, however, the entire retarded Green function matrix can
contribute to the arising thermoelectric e�ects. Consequently, it is not only the z-
polarized elements which determine system dynamics. This, however, depends greatly
upon the choice of materials. If one of the materials is a normal metal, only the diagonal
elements of the Green function matrices play a role, and the expressions derived for
the charge current quickly reduce to including traces over the retarded Green function
matrices on one side of the junction, which is very similar to the integrals over the
densities of states de�ning the thermoelectric coe�cients derived in Chapter 3. When
ĝR � ĝNM � ρ̂3 the di�erentiated charge current with respect to the voltage can be
written as

dIq
dVR

� GqNτ

» 8

�8

dE

4kBT cosh2
�

E
2kBT

	 Tr
!

Re

"
1

2
p1�

a
1� P 2qρ̂3ĝL

*

�Re

"
P ρ̂3σ̂zĝL �

1

2
p1�

a
1� P 2qρ̂3ĝL

*)
,

(5.32)

and the conductance coe�cient for tunneling in a unknown material(X)/ insulator(I)/
normal metal(N) structure becomes

G1 � dIq
dVR

� GqNτ

» 8

�8

dE

4kBT cosh2
�

E
2kBT

	 Tr
!

Retρ̂3ĝL � P ρ̂3σ̂zĝLu
)
.

(5.33)

This does not equal the conductance coe�cient G derived in Section 3 in all cases, and
the superscript in G1 is included to highlight this fact. When P � 0, G1 9 G as de�ned
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in Equation 3.63. This is due to Trtρ̂3ĝLu becoming equal to D0pEq, the total density
of states for all spin species. However, when the polarization does not equal zero, other
e�ects may arise depending on the content of ĝL. In several approximate cases, however,
Trtρ̂3σ̂zĝLu � 0, and equation 5.33 for G1 reduces to the expression for the conductance
coe�cient G. The only case for which these are not identical, is when Trtρ̂3σ̂zĝLu � 0.
If this occurs, the additional correction term accounts for increased or reduced tunneling
probability depending on the spin species. When allowing ĝR � ρ̂3 and considering the
thermal response of the charge current, it becomes evident that

dIq
dTR

� � dI

dTL
(5.34)

and

dIq
dTL

� GqNτ

e

» 8

�8

EdE

4kBT 2 cosh2
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E
2kBT

	 Tr

#�
Re

"
1

2
p1�

a
1� P 2qĝL

*

�Re

"
Pσ̂zĝL �

1

2
p1�

a
1� P 2qĝL

*�+
.

(5.35)

Consequently, the thermoelectric coe�cient for the charge current becomes

α1 � T
dIq
dTL

� GqNτ

e

» 8

�8

EdE

4kBT cosh2
�

E
2kBT

	 Tr
!

RetĝL � Pσ̂zĝLu
)
. (5.36)

TrtĝLu � 0 due to charge conservation. Accordingly, the expression for α1 should
reduce to the expression for the previously derived thermoelectric coe�cient α (Eq.
3.64). When P � 0, the result is α1 � α � 0, as we would expect for the temperature-
driven total charge current. Moreover, we observe that α is merely the integral over
P Trtσ̂zĝLu, which is the di�erence between the z-polarized spin up and spin down
density of states, or DzpEq. Consequently, unless Trtρ̂3σ̂zĝLu � 0, not much new
information is gained through the quasiclassical thermoelectric consideration of the
charge current when the material to the right of the tunneling barrier is a normal
metal.

Two tests for the quasiclassical conductance and thermoelectric charge current coef-
�cients are included, considering both the case where the right-hand-side material is
a normal metal as well as when it is not. When using materials for which there are
analytic expressions for the retarded Green function matrix available the expressions
derived for α1 and G1 should reduce to the expressions derived in Chapter 3.
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5.2.2 Test for non-polarized S/I/ZS tunneling

When considering P � 0, only the expression for G1 should be unequal to zero. Here,
the structure considered is a superconductor/insulator/Zeeman-split superconductor
bilayer. The right-hand-side material is consequently not a normal metal, but the
expressions for ĥL and ĥR remain valid. When no polarization is present, G1 � GMR �
0. Therefore, only the term preceded by G0 survives. Additionally, we do not need
to consider the polarization matrix at it is not involved in the �rst term, and the
conductance coe�cient becomes

G1 � dIq
dVR

� G0

4

» 8

�8

dE

4kBT cosh2
�

E
2kBT

	 Tr

#
Re

!
ĝRLpĝRR � ĝR:R q

)+
. (5.37)

Using the old expression for G,

G � GT

» 8

�8

D0
LD

0
R � DzLD

z
R

4

4kBT cosh2
�

E
2kBT

	dE, (5.38)

the result for the conductance coe�cient should be

G � GT
2

» 8

�8

dE

4kBT cosh2
�

E
2kBT

	 Re

"
E?

E2 �∆2

*

�Re

#
E � ha

pE � hq2 �∆2
� E � ha

pE � hq2 �∆2

+
.

(5.39)

The retarded Green function matrix for a conventional BCS superconductor is de�ned
as

ĝSC � ĝL �

����
c 0 0 s
0 c s 0
0 �s �c 0
�s 0 0 �c

���, (5.40)

where c � coshpΘq, s � sinhpΘq and Θ � tanh�1
�

∆
E

�
. This causes c � |E|{?E2 �∆2.

Furthermore, the retarded Green function matrix for a Zeeman-split BCS superconduc-
tor is [138]
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ĝZS � ĝR �

����
c Ò 0 0 s Ò
0 c Ó s Ó 0
0 �s Ó �c Ó 0

�s Ò 0 0 �c Ò

���. (5.41)

Calculating the Hermitian transpose

ĝ:R �

����
c Ò� 0 0 �s Ò�

0 c Ó� �s Ó� 0
0 s Ó� �c Ó� 0
s Ò� 0 0 �c Ò�

���, (5.42)

where cσ � pE � σhq{
a
pE � σhq2 �∆2, we can now compute

ĝR � ĝ:R � 2

����
Retc Òu 0 0 i Imts Òu

0 Retc Óu i Imts Óu 0
0 �i Imts Óu �Retc Óu 0

�i Imts Òu 0 0 �Retc Òu

��� (5.43)

and

Re
!
ĝLpĝR � ĝ:Rq

)
� 2

����
cRetc Òu 0 0 �sRetc Òu

0 cRetc Óu �sRetc Óu 0
0 �sRetc Óu cRetc Óu 0

�sRetc Òu 0 0 cRetc Òu

���. (5.44)

Inserting this into the expression for the quasiclassical conductance coe�cient results
in

G1 � G0

4

» 8

�8

dE

4kBT cosh2
�

E
2kBT

	2 RetcRetc Ò �c Ó �c Ó �c Òuu (5.45)

� G0

» 8

�8

dE

4kBT cosh2
�

E
2kBT

	 RetcRetc Ò �c Óuu. (5.46)

Considering RetABu � RetAuRetBu � ImtAu ImtBu, this becomes

RetcRetc Ò �c Óuu � RetcuRetRetc Ò �c Óuu � Imtcu ImtRetc Ò �c Óuu (5.47)

� RetcuRetRetc Ò �c Óuu (5.48)

� RetcuRetc Ò �c Óu. (5.49)
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Inserting the identities for c and cσ yields
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+
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(5.50)

which by de�ning 2G0 � GT is exactly equal to equation 5.39. Considering the ther-
moelectric coe�cient,

α11 �
G0
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and
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� �G0
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4kBT cosh2
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E
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	2pc Ò Retcu � c Ó Retcu � c Ó Retcu � c Ò Retcuq

(5.55)

� 0, (5.56)

as is to be expected when the polarization P � 0.

5.2.3 Test for fully polarized ZS/I/N tunneling

The second test performed is for a Zeeman-split superconductor/insulator/normal metal
bilayer when the interface is fully polarized and P � 1. Inserting P � 1 and the
expression for the retarded Green function matrix of a Zeeman-split superconductor to
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the expression for the quasiclassical thermoelectric coe�cient when the right-hand-side
material is a normal metal results in

α1 � GqNτ
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4kBT cosh2
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E
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	 Tr

#
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(5.57)
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(5.58)
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+
.

(5.59)

Moreover, the conductance coe�cient becomes

G1 � 4GqNτ
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4kBT cosh2
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E
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	 Retc Ò �c Óu (5.60)
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E
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#
E � ha

pE � hq2 �∆2
� E � ha

pE � hq2 �∆2

+
.

(5.61)

This is identical to what we expect for this material system when applying the frame-
work assuming homogeneously magnetized materials derived in Chapter 3, and the new
expressions are seen to reduce to the old ones in the required limiting cases.

5.3 Spin current

Taylor expanding the expression for the spin current on the right side of the interface
barrier to the �rst order about the point p0, T q results in the complete expressions for
the thermoelectric spin current coe�cients becoming
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:
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:
Rĝ
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:
Lĝ
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(5.64)

prior to assuming the right hand side to be a normal metal. When the right hand
material is a normal metal, these become
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αsν � T
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�ρ̂3ĝ
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:
Lρ̂3σ̂zq

�+
.

(5.66)

The thermoelectric spin coe�cient in each of the three directions is
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TrtĝLu � 0 as a consequence of charge conservation. Therefore, the z-polarized ther-
moelectric spin coe�cient αzs, which is does not depend on the polarization strength
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of the barrier, becomes proportional to the charge current thermoelectric coe�cient α1.
When the tunneling interface is polarized in the z-direction, as is assumed here, the
z-polarized spin current Izs � αzs∆T {T is proportional to the homogeneously polarized
spin current derived previously,

Is � α
∆T

T
� GT

2e

EpD0
LD

z
R �Dz

LD
0
Rq

4kBT cosh2
�

E
2kBT

	 ∆T

T
, (5.72)

but now with a di�erent prefactor. The di�erence in prefactor can be attributed to the
di�ering natures of the spin current considered in Chapter 3 and the one considered
herein. The direction-dependent spin conductance coe�cients are
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	 Tr
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. (5.75)

Where the charge current thermoelectric coe�cients for the case of N/I/X-structures
did not necessarily o�er new information regarding the thermoelectric currents travel-
ing through the system, these expressions do. The expressions allow for a treatment
of thermoelectric e�ects yielding spin currents also when spin polarization is not nec-
essarily homogeneous along one axis. This is a generalization which enables a broader
consideration, and allows us to consider structures we could not envision using the old
framework. We now have two frameworks which together enable us to describe a whole
range of thermoelectric systems and materials. The primary limitation of the framework
derived within this chapter concerns the prerequisite that the materials used abide by
the de�nitions of ĥL and ĥR. Aside from this the materials considered can have all
kinds of properties, and the tunneling interface can have any polarization.

Some of the assumptions made herein prevent the application of spin-dependent biases
to these systems. If ĥR is de�ned as above, spin-dependent biases can only be applied
in the z-direction. This would negate the purpose of the whole derivation, which was
done in order to describe di�erent spin polarizations. Consequently, we will not perform
a derivation for spin-polarized biases here.

The new information attained as a consequence of performing a quasiclassical derivation
so far, when a normal metal is assumed on the right, can mainly be found within the
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coe�cients Gsx, G
s
y, α

s
x and α

s
y. In the cases where these are non-zero, we are now able

to consider spin currents we could not calculate previously, according to

Isν � Gsν∆V � αsν
∆T

T
. (5.76)

As the tunneling interface is polarized in the �z-direction, these coe�cients in the x-
and y-directions equal zero when P � 1, as seen from the prefactor

?
1� P 2. When

there is a 100% probability of z-polarized spin tunneling, there is no probability of
tunneling of quasiparticles polarized along other axes. Consequently, these tunneling
spin currents disappear. Consequently, when P � 1, only the z-component of the spin
current survives, and only

Isz � Gsz∆V � αsz
∆T

T
(5.77)

remains. Comparing Gsz to G
1, we can again �nd the correction term TrtRetρ̂3σ̂zĝLuu.

From the density of states consideration, we found that a spin-current can only arise
as a result of an applied voltage if the interface polarization is P � 0. Here, however,
there might be cases in which spin currents can arise as a result of an applied voltage
bias even when no barrier polarization is present.

5.4 Heat current

The heat current to be considered is the one arising to the left of the barrier. The
heat current must be Taylor expanded to the �rst order for us to be able to consider
the thermoelectric �gure of merit, ZT . This is due to this property depending on the
thermal heat conductance coe�cient G1

Q. The complete heat conductance coe�cients
are

G1
Q � T
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)+ (5.78)

and
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The complete thermoelectric coe�cient becomes
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When the right side is a normal metal, the quasiclassically derived heat conductance
coe�cient is

G1
Q � 1

2e2

» 8

�8

E2dE

4kBT cosh2
�

E
2kBT

	 Tr

#
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The result for the correspondingly derived thermoelectric coe�cient is
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which is identical to the thermoelectric coe�cient obtained when di�erentiating the
quasiclassical charge current with respect to the temperature. Therefore, the heat and
charge current coe�cients can be gathered together in a 2� 2 Onsager response matrix
in the next section.

A consideration of the spin heat current is not included herein, as the consideration
of this parameter does not contribute information which we will use throughout the
remainder of this thesis. The coe�cients derived from Taylor expanding the spin heat
current are not considered on their own, and do not contribute when computing the
Seebeck coe�cient or thermoelectric �gure of merit. Accordingly, such a consideration
is disregarded.

5.5 Onsager matrix

The �rst set of results obtained in this section can be grouped together into a 2 � 2
Onsager matrix

�
Iq
9Q



�

�
L11 L12

L12 L22


�
V

∆T



(5.84)

when the right-hand-side material is a normal metal with ĝR � ρ̂3. Spin-dependent
biases are not considered. Grouping the expressions together, this becomes

�
Iq
9Q
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α1 G1
Q


�
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, (5.85)

where the coe�cients are

α1 � GqNτ
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Retρ̂3ĝL � P ρ̂3σ̂zĝLu
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. (5.88)

This is comparable to the 2�2 Onsager matrix derived in Refs. [46] and [49]. When the
right hand side is a normal metal, using the quasiclassical Green function formalism to

Page 98



5.5. ONSAGER MATRIX CHAPTER 5

derive the thermoelectric coe�cients does not seem to provide new information for the
charge and heat current. It does, however, when ĝR is allowed to remain general. The
new information obtainable using this framework which will be employed in the next
chapter resides within the direction-dependent thermal spin coe�cients, given by
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)
. (5.91)

The thermoelectric characterization parameters S, the Seebeck coe�cient, and ZT , the
thermoelectric �gure of merit, are de�ned in the same manner as in Chapter 3. The
Seebeck coe�cient is

S � � α1

G1T
, (5.92)

and the thermoelectric �gure of merit is

ZT �
�G1G1

Q

pα1q2 � 1
	�1

. (5.93)

We have now presented a complete framework for calculating thermoelectric coe�cients
in tunneling hybrid structures which reside in the quasiclassical regime. The materials
to which these expressions are applied to do not in fact need to be superconducting, but
do need to be describable by the Keldysh Green function formalism as well as contain
some inherent particle-hole asymmetry. Otherwise, large thermoelectric e�ects will not
be predictable using this procedure. The framework presented is completely general in
so far as the materials can be described by the equilibrium matrix

ĥL � tanh

�
βLE

2



1̂ (5.94)

on the left hand side and

ĥR �
��tanh

�
βLpE�eVRq

2

	
1 0

0 tanh
�
βLpE�eVRq

2

	
1

� (5.95)
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on the right, with the chemical potential on the left µL � 0 for reference. If these
conditions are met, the most general expressions should be applicable to any material
system. This allows us to retain information which the albeit simpler methodology for
homogeneously polarized asymmetries cannot describe.

Page 100



Chapter 6

Thermoelectric response in hybrids
with arbitrary spin-dependent
�elds

This section will focus on employing the framework for thermoelectric e�ects derived in
Chapter 5. Consequently, we are able to consider hybrid systems which are not necessar-
ily homogeneously spin-polarized. The total system considered is as shown graphically
in Figure 4.12, which is repeated below. We consider tunneling currents from the middle
of the central nanowire in a superconductor/unknown material/superconductor Joseph-
son junction and into a normal metal electrode. The nanowire of the unknown material
is separated from the normal metal electrode by an interface barrier which can have
any interface polarization and interface transparency in the tunneling limit. As the
unknown material can contain arbitrary spin-dependent �elds, tunneling from a conical
ferromagnet, a spin-orbit-coupled semiconductor and a normal-metal Josephson junc-
tion with spatially varying spin-active interfaces can now be studied. The main focus
areas of this section will be the arising heat and charge thermoelectric e�ects quanti�ed
by the thermoelectric coe�cient α1, the Seebeck coe�cient S and the thermoelectric
�gure of merit ZT , as well as the thermal direction-dependent spin currents described
by the newly derived thermoelectric spin coe�cient ανs .

The results are obtained in the same manner as before. The Usadel equation is solved in
the middle of a nanowire squeezed between two superconducting reservoirs. The di�er-
ence from previous sections is the parameter saved, which now is the γ-matrices instead
of the density of states. The quasiclassical framework for randomly polarized thermo-
electric e�ects is then applied to the di�erent structures to be considered in order to
quantify the thermoelectric e�ects arising through tunneling across an interface barrier
with changeable polarization. The thermoelectric coe�cient α1 derived in Chapter 5,
which will be considered throughout this chapter, need not always be identical to the

101



CHAPTER 6 6.1. ABSENCE OF JOSEPHSON SPIN SUPERCURRENT

Normal metal electrode

z

Superconductor Superconductor

x

N

X

Figure 6.1: Schematic of the experimental setup considered in both sections considering nu-
merical results. There is a tunneling barrier, which can be fully polarized, between the normal
metal electrode N and the nanowire X centered between two superconducting reservoirs.

thermoelectric coe�cient α discussed in Chapters 3 and 4. Nonetheless, for reasons of
simplicity, the notation α will be employed throughout this chapter as well.

The material systems studied are conical ferromagnetism, spin-orbit coupled semicon-
ductor nanowires and superconductor/normal metal/superconductor Josephson junc-
tions with spin-active interfaces. Thermoelectric coe�cients connected to spin-orbit
coupled semiconductor nanowires will be presented in black and red, conical ferromag-
nets will be shown in green and yellow and spin-active interfaces in pink and yellow for
simplicity in reading. Figures showing the density of states will be presented in blue
and green as before.

The goal of the calculations performed herein is to determine and quantify the ther-
moelectric e�ects arising in generally polarized spin-split superconducting tunneling
junctions. Di�erent hybrid systems are studied in order to maximize the thermoelec-
tric e�ects arising. In addition to spin-polarization not having to be along only one
axis, the main advantage of the material systems considered within this chapter is the
absence of the need to apply large magnetic �elds of size order � 1 T for the thermoelec-
tric phenomena to occur. Other means than the Zeeman-splitting of superconductors
are utilized to obtain the desired particle-hole asymmetry necessary for achieving large
thermoelectric e�ects.

6.1 Absence of Josephson spin supercurrent

Josephson junctions are well known for the charge supercurrent traversing the central
layer as a result of a superconducting phase di�erence. First in this section, we will
apply the quasiclassical current expressions de�ned in Equations 5.6-5.8 to a super-
conductor/insulator/superconductor (S/I/S) Josephson junction. The expressions for
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thermoelectric coe�cients are not applied in this case, as the goal is to discern whether
a temperature di�erence applied across the interface barrier is able to generate a spin
supercurrent traversing the junction. A thermal spin supercurrent is therefore studied
directly, instead of via a thermoelectric coe�cient. For this particular study the po-
tential of Josephson tunneling due to a superconducting phase di�erence is considered,
which is neglected throughout the other parts of this thesis. This consideration is per-
formed in order to discern whether a superconducting phase di�erence, along with a
temperature gradient, is capable of generating a spin supercurrent. The case of a bar-
rier fully polarized in the z-direction is considered, and only the spin current polarized
along this axis should therefore be able to exist. On the right hand side of the interface
barrier, this spin current is de�ned by

Izs �
N0DA

8

» 8

�8
dE Tr

!
ρ̂3σ̂zrǧRpBxǧRqsK

)
. (6.1)

Utilizing the complete boundary conditions

pǧRBxǧRqK � 1

4e2N0DA
rG0ǧL �GMRtκ̌, ǧLu �G1κ̌ǧLκ̌� iGφκ̌

1, ǧRsK , (6.2)

the case of TL � TR can be studied numerically using MATLAB. The Green function
matrices are

ǧj �
�
ĝRj ĝKj
0 ĝAj



(6.3)

ĝAj � �ρ̂3ĝ
R:
j ρ̂3 (6.4)

ĝKj � tanh

�
βjE

2



pĝRj � ĝAj q, (6.5)

where the superconducting retarded Green function matrix is ĝRj is de�ned as

ĝRj �

����
cj 0 0 sje

iθj

0 cj sje
iθj 0

0 �sje�iθj �cj 0
�sje�iθj 0 0 �cj

���. (6.6)

Here, θL � 0, cj � coshpΘjq, sinhpΘjq, Θj � tanh�1
�

∆j

ε

	
and
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Figure 6.2: z-polarized spin supercurrent on the right hand side of the interface in a S/I/S
Josephson junction as a function of the polarization and superconducting phase di�erence. The
temperatures and interface parameters used are TL � 0.1Tc,0, TR � 0.5Tc,0, τ � 0.1 for a
tunneling consideration and Gϕ � 1.05 in order to ensure triplet superconductivity.

∆j � ∆j,0 tanh

�
1.74

d
Tc0,j
Tj

� 1

�
. (6.7)

The two superconductors are assumed identical in all but the phase and tempera-
ture. The resulting z-polarized spin supercurrent is shown in Figure 6.2. As seen
from Figure 6.2, the thermally induced spin supercurrent is numerically equal to zero
and accordingly does not exist. This is as could be expected for this situation when
considering quasiparticle tunneling, as the coe�cient governing the thermal response
for spin currents depends on there being a particle-hole asymmetry in the density of
states on at least one side of the junction. A temperature gradient over a supercon-
ductor/insulator/superconductor Josephson junction can result in a heat current, and a
charge supercurrent is generated by the superconducting phase di�erence, but no spin
current is seen to arise. This result is consistent with what one could expect when
considering quasiparticle tunneling and the accompanying thermoelectric e�ects, as no
particle-hole asymmetry is present in the S/I/S Josephson junction. The only possibility
of an existing spin current would be if the superconducting phase di�erence, neglected
for quasiparticle tunneling, was capable of generating the spin supercurrent. This is,
however, not the case. The negative result is included herein for completeness.

6.2 Spin-active interfaces

Chapter 4 was devoted to both maximizing the thermoelectric e�ects arising in Zeeman-
split superconducting hybrids, and studying the novel e�ects which may arise when
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more complex structures and materials are employed. The last part of the chapter
was focused on determining whether material systems encompassing non-Zeeman split
superconductors were capable of generating comparable thermoelectric e�ects. This
was seen to be quite promising, particularly when studying superconductor/normal
metal/superconductor (S/N/S) Josephson junctions where the S/N-interfaced are spin-
polarized along the z-axis. Consequently, the framework presented in Section 5 al-
lowing for the study of thermoelectric e�ects in materials where spin-polarization can
exist along more than only one axis was developed. Within this section, the super-
conductor/normal metal/superconductor (S/N/S) Josephson junction with spin-active
interfaces is once again considered. Now, however, the magnetization direction of the
magnetic insulator at the right interface is locked in the �z-direction while the left one
is not. The left-hand magnetic isolator is allowed to be polarized in varying directions
in the yz-plane, and the e�ect of changing this angle on the thermoelectric response of
the system is the main focus point of the study. The magnetization matrices for each
S/N interface are de�ned by

xMR � diagpσz, σzq (6.8)xML � cospφqdiagpσz, σzq � sinpφq sinpαqdiagpσy, σ�y q � sinpφq cospαqdiagpσx, σxq.
(6.9)

In order to only vary the magnetization direction in the yz-plane we have de�ned
α � π{2, causing the σx-dependency to disappear. A schematic showing the spin-
polarized Josephson junction and highlighting the polarization at the interfaces is shown
in Figure 6.3. The thermoelectric e�ects considered arise due to quasiparticle tunneling
from the middle of the normal metal shown in this �gure, across a polarized tunneling
barrier and into a normal metal electrode. The latter two features are not shown in
Figure 6.3, but can be found in Figure 6.1.

The numerical procedure used when obtaining the results presented herein includes solv-
ing the Usadel equation, obtaining the γ-matrices in the middle of the normal metal
nanowire and calculating the various thermoelectric coe�cients using a numerical Rie-
mann sum. The products of these calculations will be presented as three-dimensional
MATLAB plots. The coe�cients studied are the thermal charge current coe�cient
α, the Seebeck coe�cient S, the thermoelectric �gure of merit ZT and the thermal
spin current coe�cient ανs . The superscript ν denotes each of the three spatial direc-
tions tx, y, zu. The thermal spin coe�cient in the z-direction, αzs, is expected to be
qualitatively identical to the thermal charge coe�cient α, as α is proportional to the
polarization and αzs is independent of polarization. Accordingly, when the tunneling
barrier is non-polarized and P � 0 the thermoelectric coe�cient α vanishes along with
the Seebeck coe�cient S and the thermoelectric �gure of merit ZT . The thermal spin
coe�cients in the x- and y-directions are expected to vary a great deal with the po-
larization, as they are proportional to

?
1� P 2. When the spin-dependent tunneling
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x

y

z

SC SCNM

Figure 6.3: Schematic of a superconductor/normal metal/superconductor (S/N/S) Josephson
junction with spin-active interfaces. The polarization at the interfaces can be made to vary
in the yz-plane. φ � 0 represents polarization along the �z-axis, when φ � π{2 the polar-
ization is along the �y-axis and when φ � π the polarization is parallel to the �z-axis. The
superconductors are in reality very large when compared to the normal metal nanowire.

probability P of the z-polarized interface equals 1, no x- and y- polarized species are
able to pass through. Consequently, αxs and αys are studied only for the case of a non-
polarized barrier with P � 0. We expect αxs to be close to zero in all cases, as there
should be few quasiparticles polarized in the x-direction when the ferromagnetic bar-
rier polarization varies in the yz-plane. The more traditional thermoelectric e�ects,
quanti�ed by α, S and ZT , are presented for the case when the polarization equals
P � 97%. This value is chosen as polarizations of that size have been reported for the
ferromagnetic insulator GdN at 3 K [68].

The new thermoelectric coe�cients are plotted in a non-dimensional manner, as αe
Gτ∆0

where Gτ � GqNτ . Gq is the conductance quantum, N the number of tunneling
channels and τ represents interface transparency. The parameter Gτ governs tunneling
from the center of the normal metal nanowire to the normal metal electrode. From
the test of charge current expressions in Chapter 5 it would seem that G0 � GqNτ �
GT
2 , at least in the case when P � 0. Accordingly, when comparing α herein to the
thermoelectric coe�cient α from Chapters 3 and 4, one should note that an extra
factor of 1

2 might have to be added to the coe�cients. As the same factor is added to
all coe�cients, this does not make an impact when considering the Seebeck coe�cient
S and the thermoelectric �gure of merit ZT , and these will be directly comparable to
the results obtained with the z-polarized framework. This remains true throughout the
remainder of this section.

In contrast to Chapter 4, the angle of the magnetization at the interfaces is here varied
instead of Gφ. This is due to ease of experimental consideration, as Gφ cannot be easily
changed in situ. Consequently the thermoelectric parameters are studied in terms of
the superconducting phase di�erence and the angle of magnetization in the yz-plane
at the S/N interfaces, which both are alterable through for instance external �elds and
currents. It should be possible to keep these small enough to maintain the low-�eld
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advantage when comparing to thermoelectric e�ects in Zeeman-split superconducting
hybrids. The S/N interfaces are weakly polarized, and the interface polarization within
the Josephson junction is again set to GMR � 0.1. The normal metal length is LN � 15
nm, ζ � 4, ξ � 30 nm and T � 0.2Tc,0. The di�erent values to be considered for the
parameter governing the spin-dependent phase shifts at the magnetic S/N interfaces are
Gφ � 0.5, Gφ � 1.05 and Gφ � 1.55.
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Figure 6.4: (a) Seebeck coe�cient S, (b) thermoelectric �gure of merit ZT and (c) thermo-
electric coe�cient αe{pGτ∆0q for tunneling from x � LN{2 in a S/N/S josephson junction
with magnetic interfaces to a normal metal electrode. T � 0.2Tc,0, LN � 15 nm, GMR � 0.1,
Gφ � 0.5 and the polarization of the tunneling interface is P � 97%.

Figure 6.4 shows the (a) Seebeck coe�cient, (b) thermoelectric �gure of merit and (c)
thermoelectric coe�cient α for a S/N/S Josephson junction with spin-active interfaces,
the left-hand one variable in the yz-plane. A key parameter in this case is Gφ � 0.5.
The thermoelectric e�ects are seen to be able to match the observations made in Section
4 where both of the spin-active S/N interfaces were polarized along the z-axis. Both
ZT � 2 and S � 0.2 meV are comparable to the N/I/ZS case, and so is αmax � 0.4.
The major advantage to the system considered here concerns the fact that only small
applied magnetic �elds are necessary to obtaining the e�ects presented in Figure 6.4.
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The thermoelectric coe�cient α is here actually quite a lot larger than in the N/I/ZS
case, but Gτ is not directly comparable to the conductance GT � GÒ � GÓ employed
in the framework assuming only homogeneously magnetized systems. In relation to
the discussion in Chapter 5 concerning the S/N/S Josephson junction with z-polarized
spin-active interfaces, the value for the spin-dependent interfacial phase shifts used to
obtain the results presented in Figure 6.4, Gφ � 0.5, is smaller than the value providing
the maximum thermoelectric e�ects in the z-polarized case.

Figure 6.5 shows the (a)-(b) Seebeck coe�cient, (c)-(d) thermoelectric �gure of merit
and (e)-(f) thermoelectric coe�cient versus the interface magnetization angle and super-
conducting phase di�erence for the same S/N/S Josephson junction with spin active in-
terfaces. The di�erence concerns the spin-dependent phase shifts at the S/N-interfaces,
which is Gφ � 1.05 in the left column and Gφ � 1.55 in the column on the right. The
Seebeck coe�cient, the thermoelectric �gure of merit and the thermal charge current
coe�cient α are seen to decrease with increasing values of Gφ. This can be explained
as in Chapter 4, where the features in the densities of states encompassed by the dis-

tribution function CpEq � r4kBT cosh2
�

E
2kBT

	
s�1 are smaller for the largest values of

Gφ. This can be seen from Figure 4.15, which shows the di�erence in spin-dependent
density of states for the S/N/S Josephson junction with z-polarized interfaces versus
the energy and the phase di�erence for Gφ � (a) 0.55, (b) 0.8, (c) 1.05 and (d) 1.55.
The �gures show the case of φ � 0. This is also where the maximum values of α, S and
ZT are found when Gφ � 0.5, as seen in Figure 6.4.

Interestingly, the largest thermoelectric e�ects do not occur when both interfaces are
z-polarized, represented by φ � 0, for all values of Gφ. When Gφ � 0 the maximum
values of α, S and ZT occur when φ � 0. When Gφ � 1.05 and Gφ � 1.55, however,
these parameters seem to be maximized when φ � π{2. When this occurs, the left S/N
interface is polarized in the y-direction. More intuitively, the interface angle φ � π
is accompanied by very small thermoelectric e�ects, as the S/N interfaces will now be
polarized in opposite directions.

The thermoelectric e�ects considered so far do not di�er greatly from the ones that
could be studied using the framework derived in Chapter 3, apart from the new element
of control that is the interface magnetization angle. The most interesting novel e�ects
which can only be studied using the framework presented in Chapter 5 are encompassed
by the thermal spin current coe�cients ανs , which are presented in Figure 6.6 for the
phase-shift parameter Gφ � 0.5. As expected, the thermoelectric coe�cient in the x-
direction is very small. It does, however, exhibit the fascinating property of sign change.
This occurs as a result of altering the superconducting phase di�erence, and not the
magnetization angle at the S/N-interfaces. The same behavior of αxs can also be found
for Gφ � 1.05 and Gφ � 1.55. In spite of this interesting behavior we will neglect the
spin current in this direction throughout the rest of this particular consideration as αxs
is very small, and not useful in real applications.

Page 108



6.2. SPIN-ACTIVE INTERFACES CHAPTER 6

-5
0

0

1

S 
[V

/K
]

×10-5

5

φ/π

0.5

∆θ/π

10

0.5
1 0

(a)

-2
0

0

2

1

×10-5

4

φ/π

0.5

∆θ/π

6

0.5
1 0

(b)

0
0

0.2

1

Z
T

0.4

φ/π

0.5

∆θ/π

0.6

0.5
1 0

(c)

0
0

0.05

1

0.1

φ/π

0.5

∆θ/π

0.15

0.5
1 0

(d)

-0.6
0

-0.4

-0.2

1

α
  e

 / 
(G

τ ∆
0)

0

φ/π

0.5

∆θ/π

0.2

0.5

1 0

(e)

-0.3
0

-0.2

1

-0.1

0

φ/π

0.5

∆θ/π

0.1

0.5

1 0

(f)

Figure 6.5: (a)-(b) Seebeck coe�cient S, (c)-(d) thermoelectric �gure of merit ZT and (e)-(f)
thermoelectric coe�cient α for tunneling from x � LN{2 in a S/N/S josephson junction with
magnetic interfaces to a normal metal electrode. T � 0.2Tc,0, LN � 15 nm, GMR � 0.1 and the
polarization is P � 97%. The �rst column shows Gφ � 1.05 and the second shows Gφ � 1.55.
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Figure 6.6: Thermoelectric spin-current coe�cient ανse
2{pGτ∆0q in the (a) x-direction, (b) y-

direction and (c) z-direction for tunneling from x � LN{2 in a S/N/S josephson junction with
spin-active interfaces to a normal metal electrode. T � 0.2Tc,0, LN � 15 nm, GMR � 0.1,
Gφ � 0.5 and the polarization is P � 0 for maximized spin currents.

The maximum values of the thermal spin currents, Iνs � ανs∆T {T , can be found for the
expected magnetization angles in the y- and z-directions. The maximum value for αys
is found when the magnetization angle of the left S/N interface is φ � π{2 denoting
magnetization in the y-direction, and αzs is maximized when φ � 0. The thermal
spin coe�cients in the x- and y-directions disappear when the polarization of the z-
polarized interface between the center of the normal metal nanowire and the normal
metal electrode is P � 100%.

There seems to be a trend for certain parameters were the coe�cients always equal zero.
Both ∆θ � π and φ � π seem to consistently result in vanishing thermoelectric e�ects.
For the case of the left side being aligned with φ � π the vanishing thermoelectric
e�ects can be explained from the expressions for the magnetization matrices. When
φ � π we see that xMR � σ̂z while xML � �σ̂z. As the interfaces are otherwise equal
the spin-splitting in�icted upon the normal metal by each interface cancel each other
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out, resulting in the tunneling thermoelectric e�ects becoming minute and seemingly
vanishing.
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Figure 6.7: Thermoelectric spin-current coe�cient ανs in the (�rst column) y-direction and
(second column) z-direction for tunneling from x � LN{2 in a S/N/S josephson junction with
spin-active interfaces to a normal metal electrode. T � 0.2Tc,0, LN � 15 nm, GMR � 0.1, and
the polarization is P � 0 for maximized spin currents. The interfacial phase shifts are governed
by (a)-(b) Gφ � 1.05 and (c)-(d) Gφ � 1.55.

Figure 6.7 shows the thermal spin coe�cients in the y- and z-directions, αys (left column)
and αzs (right column), when (a) Gφ � 1.05 and (b) Gφ � 1.55 represent the spin-
dependent phase shifts born from scattering at the S/N-interfaces. The thermoelectric
spin coe�cient in the z-direction is seen to qualitatively identical to α, only di�ering
by a factor of 1{2P . The maximum value of αzs shifts from φ � 0 to φ � π{2 as Gφ
increases, and the maximum value of the coe�cient is seen to decrease with increasing
Gφ. The thermoelectric spin coe�cient in the y-direction, however, actually increases
with increasingGφ. Moreover, whenGφ � 1.55, the maximum value of αys is shifted from
occurring at the S/N magnetization angle φ � π{2, the y-axis, to approximately φ �
0.6π. Stronger degrees of spin-dependent phase shifts at both interfaces seem to allow
for more species polarized in the y-direction, allowing for larger thermal spin currents
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in this direction to arise. The e�ect is opposite in the z-direction, where larger values of
Gφ results in smaller BCS peaks being encompassed by the distribution function CpEq.
When the superconducting Cooper pairs within the normal metal nanowire experience
large phase shifts, more species become polarized along the y-axis than along the z-
axis. The spin-dependent di�erences in the density of states in the middle of the normal
metal nanowire in the Josephson junction, DypEq and DzpEq, evolve with Gφ and the
magnetization angle φ as expected. This is shown in Figure 6.8. The di�erence in
z-polarized density of states, DzpEq, for instance, is larger when φ � 0 and Gφ � 0.5,
than when Gφ � 1.55 and φ � 0.5π.

(a) (b)

Figure 6.8: (a) DypEq and DzpEq (identical) when φ � 0.5π and (b) DypEq when φ � 0.6π
in the middle of the normal metal in a S/N/S Josephson junction with spin-active interfaces.
T � 0.2Tc,0, LN � 15 nm, GMR � 0.1, Gφ � 1.55 and the polarization is P � 0.

As before, we observe that the thermoelectric coe�cients vanish when the supercon-
ducting phase di�erence approaches π. Triplet supercurrents could exist for this phase
di�erence in the structures considered here and accordingly result in thermoelectric
e�ects, but do not seem to do so here. The spin-dependent di�erence in the density
of states in the middle of the normal metal nanowire vanishes as the phase di�erence
approaches π, and accordingly the thermoelectric spin coe�cients practically equal zero
when this occurs. This can also be seen from Figure 6.8, where no discernible features
are seen when the superconducting phase di�erence equals π.

6.3 Conical ferromagnet

Spatially varying magnetism in ferromagnetic nanowires was shown in Chapter 4 to
result in notable, albeit small, tunneling thermoelectric e�ects in superconducting hy-
brids. As this magnetic con�guration showed promise but did not quite yield the results
we had hoped, the more exotic magnetization texture of conical ferromagnetism was ex-
plored. One of the most well-known conical ferromagnets is Holmium [139][140], and
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material parameters experimentally veri�ed for this elements are applied herein. The
vector describing the direction-dependency of the magnetism in a conical ferromagnet,
such as Holmium, can be given by

~hHo � hxx̂� hyŷ � hz ẑ (6.10)

and

hx � h cospφq, hy � h sinpφq sin

�
θx

a



, hz � h sinpφq cos

�
θx

a



, (6.11)

where φ, a and θ are material-speci�c constants. As an analogy to Holmium is consid-
ered, these are chosen as φ � 4π

9 , θ � π
6 and a � 0.526 nm [141][83]. The additional

material parameters used for ferromagnetic tunneling in this case are LF � 15 nm for
the ferromagnet length, T � 0.2Tc,0 for temperature, ζ � 4 represents S/F tunneling,
Γ � 0.005∆0 represents inelastic scattering and ξ � 30 nm is the superconducting
coherence length. The e�ect of varying the ferromagnetic exchange �eld h on the ther-
moelectric e�ects is considered. As the magnetization in Holmium has been reported
to vary drastically, a wide range of magnetic �eld strengths are included to consider all
eventualities. A schematic of the magnetic texture of the conical ferromagnetic nanowire
in the S/F/S Josephson junction can be found in Figure 6.9.

SC SC

z FM

y

a

x
SC

θα

Figure 6.9: Graphical representation of the magnetization structure in a superconduc-
tor/ferromagnet/superconductor (S/F/S) Josephson junction with a conical magnetization
structure in the ferromagnet.

As the direction of the ferromagnetic exchange �eld varies greatly in all three spatial
directions we are led to expect the possibility of spin currents polarized in more than
one direction. We consider the charge current I � α∆T {T which depends on the

polarization, the thermoelectric parameters S � �α{pG1T q and ZT � pG
1G1Q
pαq2

� 1q�1

and the direction-dependent pure spin currents Iνs � ανs∆T {T . The parameters α, G1

and G1
Q are not exactly equal to α, G and GQ considered in Chapter 3, but seem to di�er

by only a factor of 1{2 which is encompassed by the conductance parameter Gτ .
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The thermoelectric coe�cients depend greatly on the interface polarization governing
tunneling from x � 0.5LF in the conical ferromagnet to a normal-metal electrode as
shown in Figure 6.1. If P � 0, α � 0 along with S and ZT . These three parameters
are maximized when the barrier is fully polarized and P � 1. This is in analogy to
what was observed in Chapters 3 and 4. The thermoelectric coe�cients governing
the thermal spin current according to Is � ανs∆T {T , react to altering P in quite the
opposite manner. As we have chosen the polarization of the tunneling interface to be
aligned in the �z-direction, the thermal spin currents in the other two directions are
maximized when P � 0. When P � 1, the thermal spin coe�cients in the x- and
y-directions are αxs � αys � 0. The spin current in the z-direction on the other hand,
which is governed by αzs, is independent of the polarization in likeness to the z-polarized
framework. Moreover, the thermal spin coe�cient di�ers from the charge thermoelectric
coe�cient by only a factor of 1{2P .
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Figure 6.10: (a) Seebeck coe�cient S, (b) thermoelectric �gure of merit ZT and (c) thermo-
electric coe�cient α for tunneling from x � LF {2 in a S/F/S josephson junction to a normal
metal electrode. The ferromagnetic nanowire has the conical magnetic structure of Holmium.
T � 0.2Tc,0, LF � 15 nm, and the polarization is P � 97%.
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Figure 6.10 shows the quasiclassical thermoelectric coe�cient α, the corresponding See-
beck coe�cient and the thermoelectric �gure of merit for tunneling from x � LF {2 in
an superconductor/conical ferromagnet/superconductor Josephson junction to a nor-
mal metal electrode at a temperature T � 0.2Tc,0. The thermoelectric �gure of merit
and Seebeck coe�cient are almost identical in maximum size to the best cases when we
considered a ferromagnetic domain wall nanowire in Section 4. These are not very large,
even when comparing to realizable bulk thermoelectric materials. What should be no-
ticed here, however, is the size of α. This is several orders of magnitude larger than what
was to be found in the domain wall case. The coe�cients describing the thermal spin
currents in the x-, y- and z-directions can be found in Figure 6.11. Here, the existence
of pure spin currents which can be generated purely through the application of a tem-
perature gradient is observed in all directions for a non-polarized tunneling interface.
For the conical ferromagnet nanowire considered here the largest e�ects actually occur
in the x-direction, with αzs being smaller than both αxs and αys . The thermoelectric
coe�cient in the z-direction does however not depend on the polarization at all, and is
proportional to α.

When the tunneling interface is fully polarized and the polarization P � 1, the thermal
spin current coe�cients in the x- and y-directions, αxs and αys , identically equal zero.
When P � 0.97, however, they do exist to a small degree. As the e�ects become
very small in all three spatial directions this is not shown here. The thermal spin
currents depicted in Figure 6.11 are of sizes comparable to what is possible in normal
metal/insulator/Zeeman-split superconductor tunneling bilayers, but primarily in the y-
direction. As the magnetization direction in Holmium varies spatially, the pair-breaking
e�ect of the ferromagnetic exchange �eld is less pronounced than in the domain wall case.
Not as many z-polarized quasiparticles exist to tunnel into the normal metal electrode as
in the other two directions, but the thermoelectric e�ects in this direction are still several
orders of magnitude greater than in the case of the domain wall ferromagnet.

All the thermoelectric coe�cients seem to equal zero when the superconducting phase
di�erence equals π. It may appear like the same is true for the thermoelectric coe�cients
α for large values of h, but this actually never occurs entirely until ∆θ � π. Even at
this point the thermoelectric coe�cients do not necessarily identically equal zero but
appear to do so in comparison with the large thermoelectric e�ects arising at other
phase di�erences. This can be understood through considering Figure 6.12.

Figure 6.12a shows the density of states in the middle of the conical ferromagnet
nanowire in the S/F/S Josephson junction when the superconducting phase di�erence
is ∆θ � π. At the quasiparticle energy E � 0, which represents the Fermi level, there is
a peak in the density of states. This indicates triplet superconductivity instead of sin-
glet superconductivity within the ferromagnet. This zero-energy peak is, as one could
expect, accompanied by an asymmetry in the density of states DνpEq � Tr Re

 
σνg

R
(

where ν � tx, y, zu. These are shown in Figure 6.12d for DxpEq, Figure 6.12c for DypEq
and 6.12b for DzpEq. However, both the zero-energy peak and these asymmetries are
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Figure 6.11: Thermoelectric spin-current coe�cient ανs in the (a) x-direction, (b) y-direction
and (c) z-direction for tunneling from x � LF {2 in a S/F/S josephson junction to a normal
metal electrode. The tunneling polarization is P � 0, the ferromagnetic nanowire has the
conical magnetic structure of Holmium, T � 0.2Tc,0 and LF � 15 nm.

minute. Consequently, the resulting bias-induced thermoelectric e�ects become vanish-
ingly small. At other values for the ferromagnetic exchange �eld or di�erent material
parameters than the ones applied for Holmium this could be di�erent and thermoelec-
tric e�ects could be observable even at a superconducting phase di�erence of π. An
interesting feature to notice at the phase di�erence π is the increase in both the zero-
energy peak as well as in the asymmetric peaks of DνpEq as the exchange �eld strength
is increased. The triplet Cooper pair peak at zero energy is accompanied by asym-
metries in each of the direction-dependent densities of states, and the e�ect increases
with the �eld. The stronger the �eld gets at this particular phase di�erence, the larger
the asymmetry becomes. This is in direct contradiction to the response in the density
of states to increasing the �eld at other phase di�erences. Regardless of the increase
with exchange �eld, however, neither the zero-energy peak nor the asymmetries in the
densities of states ever become su�ciently large to generate noticeable thermoelectric
e�ects for the remainder of parameters considered.
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Figure 6.12: (a)D0pEq, (b)DzpEq, (c)DypEq and (d)DxpEq versus the ferromagnetic exchange
�eld h{∆0 and the quasiparticle energy E{∆ at x � 0.5LF in a superconductor/conical ferro-
magnet/superconductor Josephson junction for a superconducting phase di�erence of ∆θ � π.
The ferromagnetic nanowire has the conical magnetic structure of Holmium, T � 0.2Tc,0, ζ � 4,
Γ � 0.005∆0 and LF � 15 nm.

The features in the densities of states crucial to obtaining sizable thermoelectric e�ects
are seen to actually increase with the ferromagnetic exchange �eld strength when the
superconducting phase di�erence equals π. Figure 6.13 shows the density of states
and direction-dependent spin-dependent di�erence in the density of states, DνpEq, for
the superconducting phase di�erence ∆θ � 0. The observed trends are here quite
di�erent. The largest peaks in the densities of states are situated at much smaller
values for the ferromagnetic exchange �elds and decrease with increasing �eld strength.
The largest peaks seem to occur around h � 3∆0, consistent with the maximum values
for ανs , α, S and ZT . The fact that the di�erence in x-polarized density of states is
signi�cantly greater than in the corresponding two directions also provides a reasonable
explanation for why the thermoelectric spin coe�cient αxs is larger than both αys and
αzs. The superconducting peaks in the densities of states are however quite sizable,
and spin-polarizations are generated in all three spatial directions through the rotating
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Figure 6.13: (a)D0pEq, (b)DzpEq, (c)DypEq and (d)DxpEq versus the ferromagnetic exchange
�eld h{∆0 and the quasiparticle energy E{∆ at x � 0.5LF in a superconductor/conical ferro-
magnet/superconductor Josephson junction for a superconducting phase di�erence of ∆θ � 0.
The ferromagnetic nanowire has the conical magnetic structure of Holmium, T � 0.2Tc,0, ζ � 4,
Γ � 0.005∆0 and LF � 15 nm.

magnetism of the conical ferromagnet.

The thermoelectric e�ects arising due to tunneling from the superconductor/conical
ferromagnet/superconductor Josephson junction into a normal-metal electrode are large
enough to be noticeable. The thermoelectric �gure of merit and Seebeck coe�cient
are not much larger than what was obtainable for the domain wall case. The pair-
breaking e�ect of the ferromagnetic exchange �eld could be responsible for this. The
thermoelectric charge coe�cient α is also somewhat smaller than in the case of the
Josephson junctions with spin-active interfaces, but still several orders of magnitude
larger than the thermoelectric coe�cient in the domain wall Josephson junction. The
most notable result within this section concerns the spin thermoelectric coe�cients αxs
and αys , which indicate large amounts of x- and y-polarized quasiparticles tunneling into
the normal metal electrode. The sizes of the thermal spin currents which are described
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by these coe�cients can rival those of the thermal spin currents observed in the case
of the normal metal/insulator/Zeeman-split superconductor bilayer when the tunneling
barrier is non-polarized.

6.4 Spin-orbit coupling

The e�ect of spin orbit coupling on thermoelectric response has not been previously
studied. Josephson junctions with spin-orbit coupled materials as the central layers
have been shown to be able to generate long-range triplet supercurrents even when the
superconducting phase di�erence equals π [40], but so far thermoelectric e�ects have
not been an area of focus for this class of superconducting hybrids. As particle-hole
asymmetries do arise in such junctions, spin-orbit coupled Josephson junctions seem
promising as generators of large thermoelectric currents. The uncertainty concerns
whether they o�er the possibility of thermoelectric e�ects being present when the super-
conducting phase di�erence equals π. The systems considered in Ref. [40] do generate
large zero-energy peaks at π phase di�erence, but this peak is actually not accompanied
by a notable spin-dependent particle-hole asymmetry. This section studies tunneling
from the middle of the central layer in a superconductor/spin-orbit coupled semicon-
ductor/superconductor Josephson junction into a normal metal electrode. Spin-orbit
coupling dynamics are governed by the modi�ed Usadel equation presented in Chapter
2, Equation 2.49. The Keldysh-Usadel tunneling boundary conditions modi�ed to in-
clude the spin-orbit �eld de�ned in Equations 2.50 and 2.51 are used. The spin-orbit
�eld vector is de�ned as

A � Axx�Ayy �Azz (6.12)

Ax � β sinpϕqσz � β cospϕqσy, Ay � 0, Az � 0 (6.13)

within this section. Here, ϕ � 0 denotes the �y-axis, ϕ � π the �y-axis and ϕ �
π{2 the �z-axis. Without a magnetic exchange �eld applied, the singlet and triplet
components of the Green function matrices are not coupled and triplet supercurrents
do not arise in the semiconducting nanowire. If no particle-hole asymmetry exists,
thermoelectric e�ects do not arise. Thus, a magnetic �eld is applied according to

h � p0, 0, hq. (6.14)

The primary goal for utilizing spin-orbit coupled Josephson junctions instead of Zeeman-
split superconductors concerns the possibility of applying very weak magnetic �elds
instead of the 1 T �elds. The choice of material for this purpose is crucial. As some
semiconducting materials have Lande g-factors much larger than what is common in
superconductors, much lower magnetic �elds need be applied in order to obtain h �
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Figure 6.14: αys (�rst column) and αzs (second column) in a superoncudctor/ spin-orbit coupled
semiconductor/ superconductor Josephson junction with a semiconductor length of 15 nm,
interface transparancy ζ � 4, ξ � 30 nm, T {Tc,0 � 0.2, tunneling polarization P � 0 and
exchange �eld strength h � 0.5∆0. The spin-orbit coupling strength is (a)-(b) βLsc � 0.1,
(c)-(d) βLsc � 1 and (e)-(f) βLsc � 3.
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0.5∆0 within the semiconductor. A more thorough discussion of this can be found in
the next section, Section 6.5.

The spin-singlet Cooper pairs leaking from the superconducting reservoir into the spin-
orbit couplet semiconductor nanowire interact with the spin-orbit coupling in the semi-
conducting nanowire. Instead of being in the separate spin up and spin down states,
the spin states are now separated in �-bands. Consequently, the framework assuming
homogeneously magnetized systems derived in Chapter 3 cannot be used when study-
ing spin-orbit coupled thermoelectric e�ects. The quasiclassical framework presented in
Chapter 5 is instead employed, as this allows for arbitrary spin-dependent �elds.

Transport in the semiconducting nanowire is assumed to be along the x-direction, and
this is also the direction of the spin-orbit coupling. The angle of the spin-orbit �eld is
therefore varied in the yz-plane. For this reason, the spin current in the x-direction
is expected to be be markedly smaller than the corresponding currents in the y- and
z-directions. This is veri�ed in the numerical results, with αxs � 10�6. This is of little
interest when compared to the very large thermoelectric e�ects arising in the other
two directions. Consequently, no results for the thermal spin current coe�cient in the
x-direction are presented herein.

Figure 6.14 shows the thermoelectric spin coe�cients in the x- and y- directions for
the exchange �eld strength h � 0.5∆0 and spin-orbit �eld strengths (a)-(b) βLsc �
0.1, (c)-(d) βLsc � 1 and (e)-(d) βLsc � 3. The thermal spin coe�cient in the z-
direction is very large, where αzs,max � 0.2 for all values of the spin orbit �eld strength.
The y-directional thermal spin-coe�cient, however, is minute for small spin-orbit �eld
strengths and increases radically with increasing values of β. The values of αzs remain
rather unchanged. The variation of αzs with the direction of the spin-orbit �eld is non-
existent when β � 0.1, rather small when β � 1 and large when β � 3. These trends
seem to persist for all the values for the spin orbit �eld and the magnetic exchange �eld
considered.

The thermal spin coe�cient in the y-direction is seen to switch sign upon altering
the external control parameters which are the spin-orbit �eld alignment angle ϕ and
the superconducting phase di�erence ∆θ. Unfortunately, this sign change does not
occur upon tuning the superconducting phase di�erence as was possible in the case of a
Zeeman-split Josephson junction. The sign change of α in the superconductor/domain
wall ferromagnet/superconductor con�guration was not induced by the superconducting
phase di�erence either, but rather by an increase in temperature. In this case, changing
the alignment angle of the spin-orbit �eld in the yz-plane switches the sign of of αys , and
thereby the polarization of the accompanying thermal spin current. This is, however,
understandable from what these angles signify. The area within the �gures between the
angles ϕ � 0 and ϕ � π{2 signi�es considering �elds aligned in the plane between the
�y- and �z-axes, while the area between ϕ � π{2 and ϕ � π signi�es �elds aligned
in the plane between the �z- and the �y-axes. It is not all that surprising that the
thermoelectric e�ects arising in these opposite planes are equal, but opposite in sign.
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When the spin-orbit �eld is aligned exactly along the axes �y and z, the thermal spin
current coe�cient in the y-direction αys equals zero. At these alignment angles no y-
polarized spin species are allowed to tunnel into the normal metal electrode on account
of an applied temperature gradient.

In Figure 6.14, the pure thermal spin current in the y-direction is smaller than the one in
the z-direction, but exhibits a sinusoidal behavior allowing for tuning of the spin current
polarization with the largest amplitude we have yet seen in the case where β � 3. As
β increases so does αys . In contrast to αzs, the y-directional thermal spin coe�cients
retains the same qualitative shape as the spin-orbit �eld strength is increased when
h � 0.5∆0. In the z-direction, the quantitative change in αs is very small and exhibits
a slight decrease. Qualitatively, the e�ect is rather more drastic. This coe�cient is not
seen to be accompanied by a sign change in the thermal spin current like αys is. The
thermal spin coe�cient along the z-axis is not a�ected by the spin-orbit �eld when the
�eld strength β is small. Here, the e�ect from the exchange �eld h dominates over the
impact of the spin-orbit �eld, and the �eld angle is irrelevant for the thermoelectric
coe�cient observed. As the spin-orbit coupling is increased in strength, its impact
on the thermal spin current becomes increasingly pronounced. As the exchange �eld
h � hz is imposed in the z-direction, the thermoelectric e�ects arising are large even for
low spin-orbit coupling strengths. The z-directional thermal spin currents are actually
seen to be larger in this case, as the particle-hole asymmetry only exists for z-polarized
spins when only a magnetic �eld is applied in this direction. As the strength of spin-
orbit coupling increases a growing number of quasiparticles achieve spin states polarized
closer to the y-axis. Accordingly, αys grows with β even as αzs decreases. When the spin-
orbit coupling is dominant and βLsc � 3, tuning the direction of the spin-orbit �eld is
able to a�ect the thermal z-polarized spin current greatly. From Figure 6.14f it becomes
evident that the maximum value of the thermal z-polarized spin current coe�cient αzs
can be found when the spin-orbit �eld alignment angle ϕ � π{2. As mentioned above,
at this angle the spin-orbit �eld is aligned in the z-direction alongside the magnetic
exchange �eld h. From this, it is logical that this angle should be accompanied by the
maximum z-polarized thermal spin current.

The e�ect of maximum z-polarized thermoelectric e�ects at the alignment angle ϕ � π{2
can be discovered also in Figure 6.15. The �gure shows the (a)-(b) thermoelectric coe�-
cient, (c)-(d) Seebeck coe�cient and (e)-(f) thermoelectric �gure of merit for tunneling
from the spin-orbit coupled semicondutor nanowire Josephson junction when the spin-
orbit coupling is βLsc � 3. The magnetic exchange �eld strength is 0.4∆0 in the left
column and 0.5∆0 in the one to the right. As can be seen, the e�ect of lowering the
magnetic exchange �eld from h � 0.5∆0 to h � 0.4∆0 is not large when the Rashba
spin-orbit coupling strength is βLsc � 3. This is also the case when the spin-orbit
�eld is weaker, and βLsc � 0.1.For this reason, the thermoelectric coe�cient, Seebeck
coe�cient and thermoelectric �gure of merit will not be presented herein for these pa-
rameter choices. The parameter combination h � 0.4∆0 and βLsc � 1 is accompanied
by some rather fascinating e�ects, and will be discussed in greater detail below. When
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Figure 6.15: (a)-(b) αe{pGτ∆0q, (c)-(d) S and (e)-(f) ZT in a superoncudctor/ spin-orbit
coupled semiconductor/ superconductor Josephson junction with a semiconductor length of 15
nm, interface transparancy ζ � 4, ξ � 30 nm, T {Tc,0 � 0.2 and tunneling polarization P � 97%.
In the �rst column h � 0.4∆0 and in the second h � 0.5∆0. The spin-orbit coupling strength
is βLsc � 3.
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studying α, S and ZT when βLsc � 3, however, the trend is very similar to what was
observed for the z-polarized thermal spin current coe�cient αzs. The expressions for
the thermoelectric coe�cients rely on traces over products between the retarded Green
function matrix and either ρ̂3 or σ̂z. Accordingly, only the z-polarized quasiparticles
are capable of contributing to the tunneling charge thermoelectric e�ects across the
z-polarized interface into the normal metal electrode. Hence, the e�ect is maximized
for the largest z-aligned magnetic �elds at the alignment angle signifying spin-orbit
coupling along the z-axis, ϕ � π{2. The Seebeck coe�cient, thermoelectric coe�cient
and thermoelectric �gure of merit are seen to become quite large, and rival what was
achieved in the normal metal/ Zeeman-split superconductor tunneling bilayer.
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Figure 6.16: (a) αys and (b) αzs in a superconductor/ spin-orbit coupled semiconductor/ super-
conductor Josephson junction with a semiconductor length of 15 nm, interface transparancy
ζ � 4, ξ � 30 nm, T {Tc,0 � 0.2, tunneling polarization P � 0 and exchange �eld strength
h � 0.4∆0. The spin-orbit coupling strength is βLsc � 1.

The thermoelectric spin coe�cients are qualitatively identical in the case where h �
0.3∆0 to the case where h � 0.5∆0. As the maximum values for ανs are smaller when
h � 0.3∆0 than when h � 0.5∆0, these results do not provide new information and
are therefore not included here. This is also true for the charge current thermoelectric
parameters α and ZT , and these results will not be presented herein either. The Seebeck
coe�cient S on the other hand attains its maximum values when h � 0.3∆0 and β � 0.1
and β � 3. As the largest value is only marginally greater than the maximum Seebeck
coe�cients for the �eld strengths h � 0.4∆0 and h � 0.5∆0, and the qualitative behavior
of S is identical to the e�ect in these cases, the results for S when h � 0.3∆0 are not
included herein either.

Both the qualitative and quantitative behaviors of αzs and α
y
s do not change much when

tuning the exchange �eld from h � 0.5∆0 to h � 0.4∆0 when the spin-orbit coupling
equals 0.1 or 3, and these results are therefore not included here. The exception from this
trend occurs when βLsc � 1 and h � 0.4∆0. The thermoelectric coe�cients governing
the creation of pure thermal spin currents arising when h � 0.4∆0 and βLsc � 1 can be
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Figure 6.17: (a)-(b) α, (c)-(d) S and (e)-(f) ZT in a superconductor/ spin-orbit coupled semi-
conductor/ superconductor Josephson junction with a semiconductor length of 15 nm, interface
transparancy ζ � 4, ξ � 30 nm, T {Tc,0 � 0.2 and tunneling polarization P � 97%. In the �rst
column h � 0.4∆0 and in the second h � 0.5∆0. The spin-orbit coupling strength is βLsc � 1.
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Figure 6.18: (a) αe{pGτ∆0q, (b) ZT and (c) S in a superconductor/ spin-orbit coupled semi-
conductor/ superconductor Josephson junction with a semiconductor length of 15 nm, interface
transparancy ζ � 4, ξ � 30 nm, T {Tc,0 � 0.2 and tunneling polarization P � 97%. The mag-
netic exchange �eld aligned in the z-direction is h � 0.5∆0. The spin-orbit coupling strength
is βLsc � 0.1.

found in Figure 6.16, where (a) shows αys and (b) shows αzs. The very abrupt changes
in the thermoelectric coe�cients seen here persist also when considering the Seebeck
coe�cient S and the thermoelectric �gure of merit ZT , as seen in Figures 6.17c and
6.17e.

The (a)-(b) thermoelectric coe�cient α, (c)-(d) Seebeck coe�cient S and (e)-(f) ther-
moelectric �gure of merit ZT are presented in the case of spin-orbit coupling strength
βLsc � 1 and exchange �elds 0.4∆0 (left column) and 0.5∆0 (right column) in Figure
6.17. As could be expected from the consideration of conical ferromagnetism and spin-
active interfaces, these thermoelectric e�ects follow the qualitatively identical evolution
of the z-directed thermal spin current coe�cient αzs for the same parameters. The pre-
viously noted sinusoidal behavior of αys is seen to remain also when h � 0.4∆0 and
βLsc � 1, but is decidedly less smooth. There seems, in this case, to be an abrupt dip
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in all the thermoelectric e�ects studied, α, S, ZT and ανs , for certain alignment angles
ϕ � �π{4. This abrupt change could be attributed to some �aw in the calculations
for these particular values, but why such a fault should be present for the parameters
in question is not obvious. The corresponding e�ects for exchange �eld h � 0.5∆0

and the same spin-orbit coupling does not exhibit the same abrupt behavior. Nor is
such behavior present when h � 0.5∆0 and βLsc � 0.1, shown in Figure 6.18. Here,
the thermoelectric coe�cients are almost constant upon changing the spin-orbit �eld
alignment angle. For this reason, the abrupt behavior of the thermoelectric coe�cients
upon changing the alignment angle for the particular parameter set of h � 0.4∆0 and
βLsc � 1 is somewhat unexpected. The alignment angles causing the dips, at which S,
ZT , α and αzs approach zero, seem to be situated about halfway between the z-axis and
the �y-axes. For this particular spin-orbit coupling strength and magnetic exchange
�eld, the thermoelectric e�ects are suppressed when the spin-orbit �eld is aligned along
ϕ � �π{4.
When the spin-orbit �eld is large and β � 3, the z-directional thermoelectric e�ects
quanti�ed by α, S, ZT and αzs approach zero when the spin-orbit �eld is aligned along
the �y-axis, and ϕ � π or ϕ � 0. This does not occur for smaller spin-orbit �elds,
as the magnetic exchange �eld dominates over the spin-orbit coupling in these cases.
The thermoelectric coe�cients do not identically equal zero for the angles ϕ � 0 and
ϕ � π, but become small, as is logical. More interesting is the fact that the y-polarized
thermal spin current, quanti�ed by αys , equals zero whenever ϕ � 0 or ϕ � π. It
would seem that the stark contrast between the z-polarization of the exchange �eld
and the y-polarized spin orbit �eld is too large for y-polarized species to exist, and
tunnel through to the normal metal electrode. Not all z-polarized species need lose
their polarization direction, and so some thermoelectric e�ects can arise, but they will
be rather small. When the spin-orbit coupling is too weak to have any e�ect on the
spin-polarization of the quasiparticles, the z-directional thermoelectric e�ects do not
depend on the spin-orbit �eld alignment angle at all, and αys is negligibly small. The
e�ect of the z-directional coe�cients not varying with the spin-orbit alignment angle
for weak spin-orbit coupling is particularly clear in for example Figure 6.18, showing α,
S and ZT for h � 0.5∆0 and βLsc � 0.1.

A common feature throughout the consideration is α � 0, S � 0, ZT � 0 and ανs �
0 when the superconducting phase di�erence ∆θ � π. At such a superconducting
phase di�erence, singlet superconductivity is suppressed. If nonzero thermoelectric
e�ects were to be observed at a superconducting phase di�erence π, this could be
attributed to the di�erence in the spin-dependent density of states not being zero. This
could be expected to manifest itself through a zero-energy peak at ∆θ � π, indicating
triplet superconducting order. Such a zero-energy peak at ∆θ � π arising in spin-
orbit coupled Josephson junctions was noted in Ref. [40] for pure Rashba spin-orbit
coupling. Here, however, our reproduction of this system does not indicate the presence
of a spin-dependent di�erence in the density of states when the superconducting phase
di�erence equals π. Consequently, the pure triplet peak is not necessarily accompanied
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(a) (b)

(c) (d)

Figure 6.19: Density of states in the middle of the semiconductor nanowire of a superconductor/
spin-orbit coupled semiconductor/ superconductor Josephson junction with Lsc � 15 nm, T �
0.2Tc,0, Γ � 0.005∆0, ∆0 � 1 meV, ζ � 4 and spin-orbit coupling (�rst column) βLsc � 0.1
and (second column) βLsc � 3. The magnetic exchange �eld strengths are (a)-(b) h � 0.4∆0

and (c)-(d) 0.5∆0. The density of states varies with quasiparticle energy and the alignment of
the spin-orbit �eld in the yz-plane.

by the particle-hole asymmetry necessary to observing thermoelectric e�ects in these
structures.

The densities of states in the middle of the semiconductor nanowire (x � 0.5Lsc) versus
the spin-orbit �eld alignment angle and quasiparticle energy are shown in Figure 6.19
for the superconducting phase di�erence ∆θ � π. The exchange �eld strengths (a)-
(b) h � 0.4∆0 and (c)-(d) h � 0.5∆0 are used. The spin-orbit coupling strengths are
βLsc � 0.1 in the �rst column and βLsc � 3 in the second. A zero energy peak does
exist for several �eld angles, but is in all cases very small. The direction-dependent
di�erences in the densities of states in the middle of the nanowire for the same phase
di�erence, βLsc � 3 and h � 0.5∆0, are shown in Figure 6.20, where (a) shows DxpEq,
(b) shows DypEq and (c) shows DzpEq. In contradiction to what has been observed
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for the thermal spin coe�cient ανs so far, the asymmetry in the x-direction, DxpEq, is
actually the largest when the superconducting phase di�erence equals π.

(a) (b)

(c)

Figure 6.20: (a) DxpEq, (b) DypEq and (c) DzpEq in the middle of the semiconductor nanowire
of a superconductor/ spin-orbit coupled semiconductor/ superconductor Josephson junction
with Lsc � 15 nm, T � 0.2Tc,0, Γ � 0.005∆0, ∆0 � 1 meV, ζ � 4, magnetic exchange �eld
strength h � 0.5∆0 and spin-orbit coupling βLsc � 3.

The zero-energy peaks in the densities of states shown in Figure 6.19 are symmetric
about the SO �eld alignment angle ϕ � 0.5π. This alignment angle signi�es spin-
orbit coupling along the z-axis, parallel to the magnetic exchange �eld vector, h � hz.
At this alignment angle, the zero-energy triplet peaks disappear. Instead, the peaks
are maximized for alignment angles along the �y-axis, where ϕ � π and ϕ � 0 This is
somewhat contradictory to the trends seen previously, where thermoelectric e�ects were
suppressed at these angles for large spin-orbit �elds. It would however seem that triplet
superconductivity is more likely to arise when the spin-orbit �eld is aligned along these
axes when the superconducting phase di�erence equals π. For this e�ect to actually have
an impact, however, it would seem that larger magnetic exchange �elds would need to
be applied. As applying larger �elds would negate the purpose of utilizing spin-orbit
coupled Josephson junctions instead of merely Zeeman-split superconducting bilayers,
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which still exhibit the largest thermoelectric e�ects, this is not considered herein. Large
thermoelectric e�ects arise in the spin-orbit con�guration regardless, and are not needed
to be present for all superconducting phase di�erences. On the contrary, it might be
bene�cial to be able to switch the thermal charge and spin currents on and o� using
external means.

In contradiction to what was discovered regarding the pure triplet peak from Ref. [40],
the small triplet peaks in Figure 6.19 are seen to be accompanied by tiny spin-dependent
asymmetries in the density of states, shown in Figure 6.20. The arising asymmetries
are very small, and seem to be maximized for the same �eld alignment angles as the
peaks. The minute sizes of the di�erences in density of states seen here are not expected
to be able to contribute to the thermoelectric coe�cients on a large scale. Nonethe-
less, the coe�cients do not necessarily numerically equal zero for this phase di�erence,
but disappear when compared to the large maximum values. The clear trends in the
asymmetries in the densities of states along with the fact that the features in especially
DxpEq are not that much smaller than some of the results for the Seebeck coe�cient
S, could indicate that for some variable choices larger asymmetries could arise for the
superconducting phase di�erence π. Both the strengths of the magnetic exchange �eld
and the spin-orbit �eld seem important, but Figure 6.20 indicates the alignment angle
of the spin-orbit �eld as a crucial impact factor. Certain parameter choices should exist
which would allow for large thermoelectric e�ects even when the superconducting phase
di�erence equals π. It is even possible that in some cases the maximum thermoelectric
e�ects arise at this phase di�erence. This has not been shown so far, however, and the
large thermoelectric e�ects shown herein nonetheless rival those of the normal metal/
insulator/ Zeeman-split superconductor bilayer con�guration.

6.5 Experimental considerations

The superconducting reservoirs are modeled with a superconducting gap of ∆0 � 1 meV,
and a superconducting coherence length ξ � 30 nm. The material choices made for the
superconducting reservoirs �t quite well with NbN. This material has a superconducting
coherence length close to 30 nm, which we have considered, an energy gap close to 1
meV, and a superconducting critical temperature Tc � 14 K. The temperature chosen to
consider throughout this section, T � 0.2Tc,0, becomes 0.2 �14 K � 2.8 K for the case of
NbN. This would also greatly support the choice of GdN as the ferromagnetic insulator
between the nanowire X (normal metal with spin-active interfaces, conical ferromagnet
or spin-orbit coupled semiconductor) and the normal metal electrode, as we have chosen
P � 97% in our calculations. This has been reported to be the polarization of GdN at
3 K [68]. There is also a strong possibility that these two materials, NbN and GdN,
would be compatible to grow together.

Holmium is a spiral conical ferromagnet below T � 19 K [142]. Again, the tempera-
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ture at which we operate (0.2Tc,0) is well below this limit for several superconducting
materials, for instance NbN. The values considered for the exchange �eld in the conical
ferromagnet are chosen to span a rather large range due to the experimental observa-
tions being quite varying. Values for the exchange �eld in Holmium of h{∆ � 1 [143],
h{∆ � 3 [35], h{∆ � 15 [144] and even h{∆ � 18 [145] have been reported. Accordingly,
we allow for consideration of the thermoelectric e�ects over a large range of di�erent
ferromagnetic exchange �elds in the conical ferromagnet Ho. We realize that this is not
a parameter which may be easily altered in situ, but the possibility of tuning the super-
conducting phase di�erence and the impact this has upon the thermoelectric response
of the system should allow for a large enough degree of experimental control.

A major advantage of the thermoelectric e�ects predicted throughout this section con-
cerns the absence of strong magnetic �elds. When Zeeman split superconductors are
used, magnetic �elds of the order of 1 T need to be applied for the exchange �elds
within the superconductors to reach h � 0.5∆0. This can be attributed to the Lande
g-factor within superconducting materials. The Lande g-factor is a central quality for
characterizing the response of an electron or hole spin to an applied magnetic �eld
[146], and often takes values close to g � 2 in superconducting materials such as Al
[147]. In semiconducting nanowires containing strong spin-orbit coupling, however,
the Lande g-factor can become much larger and take on values of g � 15 in bulk
InAs [146], g � 50 in bulk InSb [148], g � 9 in spin-orbit coupled InAs nanowires
[149] and even approach g � 70 in InSb nanowire quantum dots [150]. Using struc-
tures containing such materials would reduce the size of the external �elds necessary to
achieving exchange �elds of h � 0.5∆0 greatly. Therefore, we have studied supercon-
ductor/semiconducting nanowire/superconductor Josephson junctions where the central
semiconducting nanowire exhibits strong spin-orbit coupling capable of generating the
spin-splitting e�ect we desire for giant thermoelectric e�ects to arise.

6.6 Summary and discussion

The goal of this section was to study the thermoelectric e�ects arising in superconduct-
ing tunneling hybrids in which the particle-hole symmetry for each spin can be broken
along more than one axis. The framework used for the relevant thermoelectric coef-
�cients was presented and derived in Chapter 5. The tunneling junctions considered
concern tunneling from the middle of the central layer in a Josephson junction into a
normal metal electrode. The tunneling barrier can have any interface transparency and
any polarization due the boundary conditions used in the derivation of the framework.
The bene�t of the tunneling hybrids used herein in contrast to the Zeeman-split hybrids
studied in the �rst part of Chapter 4 is once again the low externally applied magnetic
�elds required for operation.

The three material systems which underwent extensive scrutiny in this chapter are
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Josephson junctions were the central layers are normal metals with spin-active interfaces
to the superconductors, conical ferromagnets with the magnetic structure of Holmium
and semiconductor nanowires with strong spin-orbit coupling. The common denomi-
nator of the Josephson junctions studied herein is the possibility of varying the �elds
spatially. This provides an additional element of external control in addition to the
superconducting phase di�erence.

The novel e�ect studied in this chapter is the direction-dependent thermal spin currents
governed by Iνs � ανs∆T {T . These were derived from the quasiclassical framework in
Chapter 5, and are seen to o�er a plethora of new e�ects. The spin polarization of the
spin current in the y-direction can for instance be switched by altering the alignment
of the spin-orbit �eld in the yz-plane, which could potentially be quite useful.

Within this chapter, only Josephson junctions within which the length of the cen-
tral material is set to 15 nm have been studied for reasons of experimental repro-
ducibility. If smaller central nanowire lengths than 15 nm were to be used, how-
ever, the thermoelectric e�ects calculated for the superconductor/conical ferromag-
net/superconductor Josephson junction, the superconductor/spin-orbit coupled semi-
conductor/superconductor Josephson junction and the S/N/S Josephson junction with
spin-active interfaces are expected to increase signi�cantly. Consequently, there is a
chance that the thermoelectric e�ects in structures with critical dimensions approach-
ing the sub-5 nm regime may surpass even those achievable in the Zeeman-split bilayers
studied in Chapter 4.

The thermoelectric e�ects arising are seen to rival those of the normal metal/ insulator/
Zeeman-split bilayer con�guration in all the three cases studied. This is very interest-
ing, as even though the con�gurations presented here are somewhat more complex to
fabricate they do not require large magnetic �elds to operate. The elements of external
control are here many, and include both the temperature and superconducting phase
di�erence in addition to the direction of the magnetic spin active interface in the yz-
plane, the alignment angle of the spin-orbit �eld and the exchange �eld in the spin-orbit
couple semiconductor. Other control parameters which are not as easily changed in situ
include the spin-dependent scattering at the spin-active interfaces, the strength of the
exchange �eld in the conical ferromagnet, and the strength of the spin-orbit coupling.
Once again we can notice the same e�ect as in Chapter 4, where the thermal charge and
spin currents arising can be switched on and o� using only the external control param-
eters such as the �eld alignment angles and superconducting phase di�erence.
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Conclusions and outlook

We have studied the thermoelectric e�ects arising in both high-�eld and low-�eld su-
perconducting hybrids as a result of Zeeman-splitting, spin-active interfaces, spatially
varying magnetization and spin-orbit coupling. Two new frameworks for calculating
thermoelectric coe�cients, including both the possibility of spin-dependent bias ap-
plication and arbitrary spin-dependent �elds, have been presented. Even though the
largest thermoelectric e�ects are to be found in the case of tunneling between two
Zeeman-split superconductors separated by an insulating barrier, the corresponding
e�ects discovered in the low-�eld hybrids are not far behind. As not all material pa-
rameters or spin-splitting con�gurations have been studied, nor Josephson junctions
with sub-5 nm central layer lengths, there is a possibility that the giant high-�eld ther-
moelectric e�ects may even be surpassed.

Even though a vast array of thermoelectric e�ects have been studied herein, there are
many directions left to explore. It would be very interesting to discern whether any low-
�eld superconducting hybrids such as the ones studied in the second part of Chapter
4 and Chapter 6 are able to surpass the thermoelectric e�ects obtainable in Zeeman-
split hybrids. Furthermore, the general quasiclassical framework derived in Chapter 5
could be applied to more complex systems, where normal metal electrodes need not be
assumed. This framework could moreover be expanded to include the possibility of spin-
dependent biases, as argued for in Chapter 3. If these biases were direction-dependent
in the same manner as the spin and spin heat currents this could result in a plethora of
new e�ects. Another possibility o�ering large potential is the study of thermoelectric
e�ects arising in non-conventional superconducting hybrids [151].
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Appendix A

Thermoelectric Onsager matrix for
homogeneously magnetized
systems

Chapter 3 contains the results of deriving a 4�4 Onsager matrix describing thermoelec-
tric e�ects arising in superconducting hybrids spin-split homogeneously along one axis
when including the possibility of spin-dependent biases. This appendix contains the
essence of the calculations performed in order to obtain this matrix. The calculations
are included here instead of in Chapter 3 due to their extensive nature.

A.1 Charge current

The total charge current when assuming the density of states, temperatures and voltage
biases to depend on spin becomes
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The charge current is subsequently Taylor expanded to the �rst order in each of the
eight variables pV σ

j , T
σ
j q. Di�erentiating with respect to the �rst variable and applying

the results for dF 0,z{dpT, V qσj derived in Chapter 3 yields
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with respect to E from �8 to 8 therefore equals zero. Now,
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Similarly, using the same symmetry arguments and expressions for the derivatives of
F 0 and F z, we can calculate
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When di�erentiating with respect to T σj it is important to notice the asymmetry of
dF 0,z

dTσj
. The resulting Taylor components of the total charge current are

Page 150



A.2. HEAT CURRENT CHAPTER A

dI

dT ÒL

pT ÒL � T ÒL,0q �

» 8
�8

dE

�
GT

4e

EpD0
LD

z
R �DzLD

0
Rq

4kBT 2 cosh2
�

E
2kBT

	 �
GTP

4e

EpD0
LD

z
R �DzLD

0
Rq

4kBT 2 cosh2
�

E
2kBT

	
�
pT ÒL � T ÒL,0q (A.10)

dI

dT ÓL

pT ÓL � T ÓL,0q �

» 8
�8

dE

�
�
GT

4e

EpD0
LD

z
R �DzLD

0
Rq

4kBT 2 cosh2
�

E
2kBT

	 �
GTP

4e

EpD0
LD

z
R �DzLD

0
Rq

4kBT 2 cosh2
�

E
2kBT

	
�
pT ÓL � T ÓL,0q (A.11)

dI

dT ÒR

pT ÒR � T ÒR,0q �

» 8
�8

dE

�
�
GT

4e

EpD0
LD

z
R �DzLD

0
Rq

4kBT 2 cosh2
�

E
2kBT

	 �
GTP

4e

EpD0
LD

z
R �DzLD

0
Rq

4kBT 2 cosh2
�

E
2kBT

	
�
pT ÒR � T ÒR,0q (A.12)

dI

dT ÓR

pT ÓR � T ÓR,0q �

» 8
�8

dE

�
GT

4e

EpD0
LD

z
R �DzLD

0
Rq

4kBT 2 cosh2
�

E
2kBT

	 �
GTP

4e

EpD0
LD

z
R �DzLD

0
Rq

4kBT 2 cosh2
�

E
2kBT

	
�
pT ÓR � T ÓR,0q. (A.13)

De�ning

pV σ
j,0, T

σ
j,0q � pV, T q � p0, T q (A.14)

allows all the factors in front of pT σj,0, V σ
j,0q to disappear and the total charge current to

become
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A.2 Heat current

The heat current crosses the barrier from the left-hand-side to the right-hand-side
electrode. Allowing T σj � T and V σ

j � V � 0 following the di�erentiation of F σj
causes

ε0 � E � E

2
� E (A.16)

εz � E � E � 0, (A.17)
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One should note the extra asymmetric factor E, as this a�ects which parts of the
expressions end up equaling zero. Performing the expansion yields
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De�ning pV σ
j,0, T

σ
j,0q � p0, T q results in the �nal heat current becoming
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A.3 Spin current

Performing the di�erentiations and applying the same assumptions to the spin current
yields
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and
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De�ning pV σ
j,0, T

σ
j,0q � p0, T q, the spin current becomes
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A.4 Spin heat current

Now we can di�erentiate the spin heat current with respect to each of the variables T σj
and V σ

j , followed by allowing T σj,0 � T and V σ
j,0 � V � 0. Once again,

ε0 � E (A.37)

εz � 0, (A.38)

and
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One should again note the extra asymmetric factor E, as this a�ects which parts of the
expressions end up equaling zero. Performing the expansion yields
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and
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Upon applying pV σ
j,0, T

σ
j,0q � p0, T q, we obtain
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for the spin heat current.
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Appendix B

Quasiclassical approach to
thermoelectric e�ects for arbitrary
spin-dependent �elds

Deriving the quasiclassical thermoelectric coe�cients for tunneling in spin-split super-
conducting hybrids with general polarization structures is an extensive process. Con-
sequently, the main outline of this derivation can be found here instead of in the main
thesis body. What is included here is not the Taylor expansions, but the complete
expressions for the commutator terms of all the currents. The Taylor expansions are
directly extracted from these.

B.1 Charge current

The charge current to the right of a fully polarized barrier is

Iq � 1

16e

» 8

�8
dE Trtρ̂3rG0ǧL �GMRtκ̌, ǧLu �G1κ̌ǧLκ̌� iGφκ̌

1, ǧRsKu, (B.1)

where the interface parameters are de�ned by

G0 � NGqτp1�
a

1� P 2q, G1 � NGqτp1�
a

1� P 2q (B.2)

GMR � NGqτP, Gφ � 2Gq

Ņ

n

θnn. (B.3)
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First term

The �rst commutator term is

IBC1 � G0
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where

rǧL, ǧRsK � ĝRL ĝKR � ĝKL ĝAR � ĝRRĝKL � ĝKR ĝAL . (B.5)

Using the relations 5.16 and 5.17 we can consider the �rst term of the charge cur-
rent
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(B.6)

or

IBC1 � G0
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(B.7)

Choosing ĥL � tanh
�
βLE

2

	
1̂, assuming a normal metal electrode on the right by de�n-

ing ĝR � ĝNM � ρ̂3, and using the cyclical property of the trace along with ρ̂3ρ̂3 � 1̂,
this simpli�es to

IBC1 � G0

16e

» 8

�8
dE Tr

#
ĥRrρ̂3pĝL � ĝ:Lqρ̂3 � ĝL � ĝ:Ls � 2 tanh

�
βLE

2



pĝL � ĝ:Lq

+
.

(B.8)

When the tunneling barrier is non-polarized, and P � 0, this term determines the entire
charge current as the other three commutator terms disappear.
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Second term

The second term in the boundary condition equation for the charge current is

Tr

#
ρ̂3GMR

�
tκ̌, ǧLu, ǧR

�K+
� GMR Tr

#
ρ̂3pκ̌ǧLǧR � ǧLκ̌ǧR � ǧRκ̌ǧL � ǧRǧLκ̌qK

+
,

(B.9)

which becomes

Tr

#
ρ̂3GMR

�
tκ̌, ǧLu, ǧR

�K+
� GMR Tr

#
ρ̂3

�
σ̂zĝ

R
L ĝ

K
R � σ̂zĝ

K
L ĝ

A
R � ĝRL σ̂zĝKR � ĝKL σ̂zĝAR

�ĝRRσ̂zĝKL � ĝKR σ̂zĝAL � ĝRRĝKL σ̂z � ĝKR ĝAL σ̂z
	+

.

(B.10)

Now, the general second current term becomes

IBC2 � GMR

16e

» 8

�8
dE Tr

#
ĥR

�
ρ̂3σ̂zĝLĝR � ρ̂3ĝ

:
Rσ̂zĝL � ρ̂3ĝLσ̂zĝR � ρ̂3ĝ

:
RĝLσ̂z

�σ̂zρ̂3ĝ
:
LĝR � ρ̂3ĝ

:
Rσ̂zĝ

:
L � ρ̂3ĝ

:
Lσ̂zĝR � ρ̂3ĝ

:
Rĝ

:
Lσ̂z

	
�ĥL

�
ρ̂3ĝ

:
Rσ̂zĝL � ρ̂3ĝ

:
Lĝ

:
Rσ̂z � σ̂zρ̂3ĝ

:
RĝL � ρ̂3ĝ

:
Lσ̂zĝ

:
R

�ρ̂3ĝRσ̂zĝL � ρ̂3ĝ
:
LĝRσ̂z � σ̂zρ̂3ĝRĝL � ρ̂3ĝ

:
Lσ̂zĝR

	+
.

(B.11)

Applying the de�nitions, we arrive at

IBC2 � GMR

16e

» 8

�8
dE Tr

#
ĥR

�
σ̂zpĝL � ĝ:Lq � pĝL � ĝ:Lqσ̂z � ρ̂3pσ̂zĝL � ĝLσ̂z � ĝ:Lσ̂zqρ̂3

�σ̂zρ̂3ĝ
:
Lρ̂3

�
� 4 tanh

�
βLE

2


�
σ̂zpĝL � ĝ:Lq

�+
.

(B.12)
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Third term

The third commutator term is

G1rκ̌ǧLκ̌, ǧRsK , (B.13)

where

κ̌ǧLκ̌ �
�
σ̂zĝ

R
L σ̂z σ̂zĝ

K
L σ̂z

0 σ̂zĝ
A
L σ̂z



. (B.14)

Now,

G1 Tr

#
ρ̂3rκ̌ǧLκ̌, ǧRsK

+
� G1 Tr

#
ρ̂3

�
σ̂zĝ

R
L σ̂zĝ

K
R � σ̂zĝ

K
L σ̂zĝ

A
R

�ĝRRσ̂zĝKL σ̂z � ĝKR σ̂zĝAL σ̂z
	+

,

(B.15)

which �nally results in

IBC3 � G1

16e

» 8

�8
dE Tr

#
ĥR

�
ρ̂3σ̂zĝLσ̂zĝR � ρ̂3ĝ

:
Rσ̂zĝLσ̂z � σ̂zρ̂3ĝ

:
Lσ̂zĝR � ρ̂3ĝ

:
Rσ̂zĝ

:
Lσ̂z

	
�ĥL

�
σ̂zρ̂3ĝ

:
Rσ̂zĝL � ρ̂3ĝ

:
Lσ̂zĝ

:
Rσ̂z � σ̂zρ̂3ĝRσ̂zĝL � ρ̂3ĝ

:
Lσ̂zĝRσ̂z

	+
.

(B.16)

Assuming a normal metal on the right and using ρ̂3σ̂z � σ̂zρ̂3, the third commutator
term for the quasiparticle charge current is

IBC3 � G1

16e

» 8

�8
dE Tr

#
ĥR

�
σ̂zpĝL � ĝ:Lqσ̂z � ρ̂3σ̂zpĝL � ĝ:Lqσ̂zρ̂3

�
�2 tanh

�
βLE

2


�
ĝL � ĝ:L

�+
.

(B.17)

Fourth term

The fourth and last term in the boundary condition is

� iGφrκ̌, ǧRsK . (B.18)
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We consider

Trtρ̂3rκ̌, ǧRsKu � Trtρ̂3pσ̂zĝKR � ĝKR σ̂zqu (B.19)

� Trtρ̂3σ̂zĝ
K
R � ρ̂3ĝ

K
R σ̂zu (B.20)

� Trtρ̂3σ̂zĝ
K
R � σ̂zρ̂3ĝ

K
R u (B.21)

� 0 (B.22)

as ρ̂3σ̂z � σ̂zρ̂3. Consequently, this term does not contribute to the charge current when
the tunneling barrier is polarized in the �z-direction.

B.2 Spin current

The spin current to the right of the tunneling barrier is de�ned by

Iνs �
h̄

32e2

» 8

�8
dE Trtρ̂3τ̂νrG0ǧL �GMRtκ̌, ǧLu �G1κ̌ǧLκ̌� iGφκ̌

1, ǧRsKu. (B.23)

First term

The �rst commutator term in the spin current boundary condition is

G0rǧL, ǧRsK , (B.24)

so the �rst spin current term is

Iνs |BC1 � G0h̄

32e2

» 8

�8
dE Tr

#
ρ̂3τ̂ν

�
ĝLĝRĥR � ĝLĥRρ̂3ĝ

:
Rρ̂3 � ĝRĥRρ̂3ĝ

:
Lρ̂3 � ĥRρ̂3ĝ

:
Rĝ

:
Lρ̂3

�
�
ĝLĥLρ̂3ĝ

:
Rρ̂3 � ĥLρ̂3ĝ

:
Lĝ

:
Rρ̂3 � ĝRĝLĥL � ĝRĥLρ̂3ĝ

:
Lρ̂3

	�+
.

(B.25)

Approximating,

Iνs |BC1 � G0h̄

32e2

» 8

�8
dE Tr

#
ρ̂3τ̂ν

�
ĝLρ̂3ĥR � ĝLĥRρ̂3 � ρ̂3ĥRρ̂3ĝ

:
Lρ̂3 � ĥRĝ:Lρ̂3

� tanh

�
βLE

2


�
ĝLρ̂3 � ρ̂3ĝ

:
L � ρ̂3ĝL � ĝ:Lρ̂3

	�+
.

(B.26)
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Second term

The second term in the boundary condition is

GMRrtκ̌, ǧLu, ǧRsK , (B.27)

so the second spin current term is

Iνs |BC2 � GMRh̄

32e2

» 8

�8
dE Tr

!
ρ̂3τ̂ν

�
σ̂zĝLĝRĥR � σ̂zĝLĥRρ̂3ĝ

:
Rρ̂3 � ĝLσ̂zĝRĥR

�ĝLσ̂zĥRρ̂3ĝ
:
Rρ̂3 � ĝRĥRσ̂zρ̂3ĝ

:
Lρ̂3 � ĥRρ̂3ĝ

:
Rσ̂zĝ

:
Lρ̂3 � ĝRĥRρ̂3ĝ

:
Lρ̂3σ̂z

�ĥRρ̂3ĝ
:
Rĝ

:
Lρ̂3σ̂z �

�
σ̂zĝLĥLρ̂3ĝ

:
Rρ̂3 � σ̂zĥLρ̂3ĝ

:
Lĝ

:
Rρ̂3 � ĝLĥLσ̂zρ̂3ĝ

:
Rρ̂3

�ĥLρ̂3ĝ
:
Lσ̂zĝ

:
Rρ̂3 � ĝRσ̂zĝLĥL � ĝRσ̂zĥLρ̂3ĝ

:
Lρ̂3 � ĝRĝLĥLσ̂z � ĝRĥLρ̂3ĝ

:
Lρ̂3σ̂z

	�)
.

(B.28)

Applying the de�nitions for ĥL and ĝR outlined above leaves us with

Iνs |BC2 � GMRh̄

32e2

» 8

�8
dE Tr

!
ρ̂3τ̂ν

�
σ̂zĝLρ̂3ĥR � σ̂zĝLĥRρ̂3 � ĝLσ̂zρ̂3ĥR � ĝLσ̂zĥRρ̂3

�ρ̂3ĥRσ̂zρ̂3ĝ
:
Lρ̂3 � ĥRσ̂zĝ:Lρ̂3 � ρ̂3ĥRρ̂3ĝ

:
Lρ̂3σ̂z � ĥRĝ:Lρ̂3σ̂z

� tanh

�
βLE

2


�
σ̂zĝLρ̂3 � σ̂zρ̂3ĝ

:
L � ĝLσ̂zρ̂3 � ρ̂3ĝ

:
Lσ̂z

�ρ̂3σ̂zĝL � σ̂zĝ
:
Lρ̂3 � ρ̂3ĝLσ̂z � ĝ:Lρ̂3σ̂z

	�)
.

(B.29)

Third term

The third commutator term of the spin current is

Iνs |BC3 � h̄G1

32e2

» 8

�8
dE Tr

!
ρ̂3τ̂νrκ̌ǧLκ̌, ǧRsK

)
(B.30)

� h̄G1

32e2

» 8

�8
dE Tr

!
ρ̂3τ̂νrσ̂zĝRL σ̂zĝKR � σ̂zĝ

K
L σ̂zĝ

A
R � ĝRRσ̂zĝKL σ̂z � ĝKR σ̂zĝAL σ̂zs

)
,

(B.31)
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which becomes

Iνs |BC3 � h̄G1

32e2

» 8

�8
dE Tr

#
ρ̂3τ̂ν

�
σ̂zĝLσ̂zĝRĥR � σ̂zĝLσ̂zĥRρ̂3ĝ

:
Rρ̂3

�ĝRĥRσ̂zρ̂3ĝ
:
Lρ̂3σ̂z � ĥRρ̂3ĝ

:
Rσ̂zĝ

:
Lρ̂3σ̂z

�pσ̂zĝLĥLσ̂zρ̂3ĝ
:
Rρ̂3 � σ̂zĥLρ̂3ĝ

:
Lσ̂zĝ

:
Rρ̂3 � ĝRσ̂zĝLĥLσ̂z � ĝRσ̂zĥLρ̂3ĝ

:
Lρ̂3σ̂zq

�+
.

(B.32)

When ĥL � tanh
�
βLE

2

	
and ĝR � ρ̂3,

Iνs |BC3 � h̄G1

32e2

» 8

�8
dE Tr

#
ρ̂3τ̂ν

�
σ̂zĝLσ̂zρ̂3ĥR � σ̂zĝLσ̂zĥRρ̂3 � ρ̂3ĥRσ̂zρ̂3ĝ

:
Lρ̂3σ̂z

�ĥRσ̂zĝ:Lρ̂3σ̂z � tanh

�
βLE

2



pσ̂zĝLσ̂zρ̂3 � σ̂zρ̂3ĝ

:
Lσ̂z � ρ̂3σ̂zĝLσ̂z � σ̂zĝ

:
Lρ̂3σ̂zq

�+
.

(B.33)

The x-directional component of the third spin current commutator term is

Ixs |BC3 � h̄G1

32e2

» 8

�8
dE Tr

#
ĥR

�
ρ̂3σ̂xσ̂zĝLσ̂zĝR � ρ̂3ĝ

:
Rσ̂xσ̂zĝLσ̂z

�σ̂zρ̂3ĝ
:
Lσ̂zσ̂xĝR � ρ̂3ĝ

:
Rσ̂zĝ

:
Lσ̂zσ̂x

�
� tanh

�
βLE

2


�
σ̂xσ̂zĝLσ̂zρ̂3ĝ

:
R � σ̂zρ̂3σ̂xĝRσ̂zĝL

�σ̂xσ̂zρ̂3ĝ
:
Lσ̂zĝ

:
R � σ̂zσ̂xĝRσ̂zρ̂3ĝ

:
L

�+
,

(B.34)

becoming

Ixs |BC3 � h̄G1

32e2

» 8

�8
dE Tr

#
ĥR

�
ρ̂3σ̂xσ̂zĝLσ̂zρ̂3 � σ̂xσ̂zĝLσ̂z � σ̂zρ̂3ĝ

:
Lσ̂zσ̂xρ̂3 � σ̂zĝ

:
Lσ̂zσ̂x

�
�2 tanh

�
βLE

2


�
σ̂xĝL � σ̂xĝ

:
L

�+
.

(B.35)
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In the other two directions, we get

Iys |BC3 � h̄G1

32e2

» 8

�8
dE Tr

#
ĥR

�
ρ̂3σ̂yσ̂zĝLσ̂zĝR � ρ̂3ĝ

:
Rσ̂yσ̂zĝLσ̂z

�σ̂zρ̂3ĝ
:
Lσ̂zσ̂yĝR � ρ̂3ĝ

:
Rσ̂zĝ

:
Lσ̂zσ̂y

�
� tanh

�
βLE

2


�
σ̂yσ̂zĝLσ̂zρ̂3ĝ

:
R � σ̂zρ̂3σ̂yĝRσ̂zĝL

�σ̂yσ̂zρ̂3ĝ
:
Lσ̂zĝ

:
R � σ̂zσ̂yĝRσ̂zρ̂3ĝ

:
L

�+
,

(B.36)

Iys |BC3 � h̄G1

32e2

» 8

�8
dE Tr

#
ĥR

�
ρ̂3σ̂yσ̂zĝLσ̂zρ̂3 � σ̂yσ̂zĝLσ̂z � σ̂zρ̂3ĝ

:
Lσ̂zσ̂yρ̂3 � σ̂zĝ

:
Lσ̂zσ̂y

�
�2 tanh

�
βLE

2


�
σ̂yĝL � σ̂yĝ

:
L

�+
,

(B.37)

Izs |BC3 � h̄G1

32e2

» 8

�8
dE Tr

#
ĥR

�
ρ̂3ĝLσ̂zĝR � ρ̂3ĝ

:
RĝLσ̂z � σ̂zρ̂3ĝ

:
LĝR � ρ̂3ĝ

:
Rσ̂zĝ

:
L

�
� tanh

�
βLE

2


�
σ̂zρ̂3ĝ

:
RĝL � ρ̂3ĝRσ̂zĝL � ĝ:Lσ̂zĝ:Rρ̂3 � σ̂zρ̂3ĝ

:
LĝR

�+
,

(B.38)

and

Izs |BC3 � h̄G1

32e2

» 8

�8
dE Tr

#
ĥR

�
ρ̂3ĝLσ̂zρ̂3 � ĝLσ̂z � σ̂zρ̂3ĝ

:
Lρ̂3 � σ̂zĝ

:
L

�
�2 tanh

�
βLE

2


�
σ̂zĝL � ĝ:Lσ̂z

�+
.

(B.39)

Fourth term

The fourth spin current commutator term is

� riGφκ̌, ǧRsK � �iGφpσ̂zĝKR � ĝKR σ̂zq, (B.40)
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so

Iνs,R|BC4 � �iGϕ h̄

32e2

» 8

�8
dE Trtρ̂3τ̂νrκ̌, ǧRsKu (B.41)

� �iGϕ h̄

32e2

» 8

�8
dE Trtρ̂3τ̂νpσ̂zĝKR � ĝKR σ̂zqu (B.42)

� �iGϕ h̄

32e2

» 8

�8
dE Tr

!
ρ̂3τ̂ν

�
σ̂zĝ

R
RĥR � σ̂zĥRρ̂3ĝ

R:
R ρ̂3 � ĝRRĥRσ̂z � ĥRρ̂3ĝ

R:
R ρ̂3σ̂z

	)
.

(B.43)

Applying the simpli�cation ĝR � ρ̂3, this becomes

Iνs,R|BC4 � �iGϕ h̄

32e2

» 8

�8
dE Tr

!
ρ̂3τ̂ν

�
σ̂zρ̂3ĥR � σ̂zĥRρ̂3 � ρ̂3ĥRσ̂z � ĥRρ̂3σ̂z

	)
.

(B.44)

The general components of the spin current vector are

Ixs,R|BC4 � �iGϕ h̄

32e2

» 8

�8
dE Trtρ̂3σ̂xrκ̌, ǧRsKu (B.45)

� �iGϕ h̄

16e2

» 8

�8
dE Trtρ̂3σ̂xσ̂zĝ

R
RĥR � σ̂xσ̂zĥRρ̂3ĝ

R:
R u (B.46)

Iys,R|BC4 � �iGϕ h̄

32e2

» 8

�8
dE Trtρ̂3σ̂yrκ̌, ǧRsKu (B.47)

� �iGϕ h̄

16e2

» 8

�8
dE Trtρ̂3σ̂yσ̂zĝ

R
RĥR � σ̂yσ̂zĥRρ̂3ĝ

R:
R u (B.48)

Izs,R|BC4 � �iGϕ h̄

32e2

» 8

�8
dE Trtρ̂3σ̂zrκ̌, ǧRsKu (B.49)

� �iGϕ h̄

32e2

» 8

�8
dE Trtρ̂3ĝ

R
RĥR � ĥRρ̂3ĝ

R:
R � ρ̂3ĝ

R
RĥR � ĥRρ̂3ĝ

R:
R u � 0,

(B.50)

leaving the end result when the right side is occupied by a normal metal to be

Ixs,R|BC4 � �iGϕ h̄

16e2

» 8

�8
dE2 Trtσ̂xσ̂zĥRu � 0 (B.51)

Iys,R|BC4 � �iGϕ h̄

16e2

» 8

�8
dE Trtσ̂yσ̂zĥRu � 0 (B.52)

Izs,R|BC4 � 0. (B.53)
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B.3 Heat current

When µL � 0, the heat current to the left of the barrier is de�ned by

9QL � � 1

16e2

» 8

�8
dEE Tr

!
rG0ǧR �GMRtκ̌, ǧRu �G1κ̌ǧRκ̌� iGφκ̌

1, ǧLsK
)
. (B.54)

The heat current commutator terms are

9Q|BC1 � �G0h̄

16e2

» 8

�8
dEE Tr

#
ĝRĝLĥL � ĝRĥLρ̂3ĝ

:
Lρ̂3 � ĝLĥLρ̂3ĝ

:
Rρ̂3 � ĥLρ̂3ĝ

:
Lĝ

:
Rρ̂3

�
�
ĝRĥRρ̂3ĝ

:
Lρ̂3 � ĥRρ̂3ĝ

:
Rĝ

:
Lρ̂3 � ĝLĝRĥR � ĝLĥRρ̂3ĝ

:
Rρ̂3

	+
,

(B.55)

9Q|BC2 � �GMRh̄

16e2

» 8

�8
dEE Tr

!
σ̂zĝRĝLĥL � σ̂zĝRĥLρ̂3ĝ

:
Lρ̂3 � ĝRσ̂zĝLĥL

�ĝRσ̂zĥLρ̂3ĝ
:
Lρ̂3 � ĝLĥLσ̂zρ̂3ĝ

:
Rρ̂3 � ĥLρ̂3ĝ

:
Lσ̂zĝ

:
Rρ̂3 � ĝLĥLρ̂3ĝ

:
Rρ̂3σ̂z

�ĥLρ̂3ĝ
:
Lĝ

:
Rρ̂3σ̂z �

�
σ̂zĝRĥRρ̂3ĝ

:
Lρ̂3 � σ̂zĥRρ̂3ĝ

:
Rĝ

:
Lρ̂3 � ĝRĥRσ̂zρ̂3ĝ

:
Lρ̂3

�ĥRρ̂3ĝ
:
Rσ̂zĝ

:
Lρ̂3 � ĝLσ̂zĝRĥR � ĝLσ̂zĥRρ̂3ĝ

:
Rρ̂3 � ĝLĝRĥRσ̂z � ĝLĥRρ̂3ĝ

:
Rρ̂3σ̂z

	)
,

(B.56)

9Q|BC3 � �G1h̄

16e2

» 8

�8
dEE Tr

#
σ̂zĝRσ̂zĝLĥL � σ̂zĝRσ̂zĥLρ̂3ĝ

:
Lρ̂3 � ĝLĥLσ̂zρ̂3ĝ

:
Rρ̂3σ̂z

�ĥLρ̂3ĝ
:
Lσ̂zĝ

:
Rρ̂3σ̂z � pσ̂zĝRĥRσ̂zρ̂3ĝ

:
Lρ̂3 � σ̂zĥRρ̂3ĝ

:
Rσ̂zĝ

:
Lρ̂3

�ĝLσ̂zĝRĥRσ̂z � ĝLσ̂zĥRρ̂3ĝ
:
Rρ̂3σ̂zq

+
,

(B.57)

and

9Q|BC4 � iGϕ
h̄

16e2

» 8

�8
dEE Tr

!
σ̂zĝLĥL � σ̂zĥLρ̂3ĝ

:
Lρ̂3 � ĝLĥLσ̂z � ĥLρ̂3ĝ

:
Lρ̂3σ̂z

)
� 0.

(B.58)
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Appendix C

Fundamentals of the numerical
procedure

MATLAB was employed to perform several crucial tasks throughout the course of this
work. Every numerical consideration made has depended upon MATLAB. In this chap-
ter, we will outline the methodology and highlight the essential MATLAB functions
used for the completion of this task. Due to the di�erent nature of the MATLAB
programs, this chapter is split into three individual part. These will be presented in
the same order as was employed for the rest of the thesis. First we will highlight the
procedures used when calculating thermoelectric coe�cients using the framework for
homogeneously magnetized materials in the case when analytical expressions for the
densities of states are readily attainable. Secondly, we will embark upon the process
of describing how to quantify the thermoelectric e�ects when the densities of states
are not known. This is the case when more complex structures than bulk materials
are used. The procedure involves solving the Usadel equation for the di�erent material
systems followed by a numerical integration process based on a Riemann sum. The
exact expressions being summed over di�er depending on whether the formalism for
homogeneous or arbitrary polarization is used.

C.1 Analytical thermoelectric coe�cients

The thermoelectric coe�cients derived in Chapter 4 depend on the temperature, the
quasiparticle energy in relation to the Fermi energy, and the spin-dependent densities
of states for the material systems on each side of the junction. For this reason, in
order to quantify thermoelectric e�ects in such structures the temperature must be
de�ned and the densities of states be known. When these are obtainable purely through
analytical expressions, the procedure to procuring the thermoelectric coe�cients is fairly
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straightforward. Throughout this thesis, only the densities of states for normal metals,
superconductors, Zeeman-split superconductors and Josephson junctions of regular and
Zeeman-split superconductors with LN ! ξ have been de�nable analytically. Therefore,
the self-consistent solution for the superconducting gap ∆ de�ned in equation 2.9 must
be implemented for all the Zeeman-split superconductors considered. We have achieved
this by using the MATLAB function fsolve along with the initial guess of ∆phS , T q � ∆0

when hS{∆0 � 0 and T {Tc,0 � 0.01. When one side of the junction is occupied by non-
split conventional superconductors the gap depends only on temperature as in equation
2.8.

First, we consider the bilayers (N/I/ZS, S/I/ZS, and ZS/I/ZS). The material-speci�c
parameters to be de�ned are Γ and the polarization P , along with starting and stop-
ping energies and step lengths for temperature and exchange �eld. As temperature and
applied exchange �eld are the easiest parameters to vary externally when considering a
potential experiment, these are the ones we mainly consider. De�ning vectors for these
parameters, the thermoelectric coe�cients α, G and GQ can now be computed using the
MATLAB function integral(function,xstart,xend). We de�ne the thermoelectric coe�-
cients to depend on energy using function handles, and integrate from Estart � �3.5∆0

to Eend � 3.5∆0. The Seebeck coe�cient S � �Pα{pGT q and thermoelectric �gure of

merit ZT � p GQG
pPαq2

� 1q�1 are calculated from α, G and GQ, and the resulting three-

dimensional MATLAB surf plots can be found in Chapter 4. For the more complex
structures containing at least one Josephson junction, the superconducting phase dif-
ference becomes the main parameter to vary as this is manageable in situ. When only
one Josephson junction is present we choose a value for the temperature T {Tc,0, and
alter the spin-splitting �eld hS{∆0 and the superconducting phase di�erence ∆θ. When
both sides are occupied by a Josephson junction we de�ne the temperature and �eld,
and vary both ∆θL and ∆θR.

C.2 Solving the Usadel equation

There are no analytical expressions su�ciently describing the density of states when
more complex structures are being considered. Therefore we need to solve the Riccati-
parametrized Usadel equation (Eq. 2.49) for γ and γ̃ in order to determine D0pEq
and DzpEq, or ĝR. Depending on which formalism is applicable, either the densities of
states or the Green functions are subsequently integrated to obtain the thermoelectric
coe�cients. This, again, depends on the spin polarization and electronic structure of
the material system under consideration.

The Riccati-parametrized Usadel equation is a 2 � 2 matrix equation. As it is ac-
companied by di�erent boundary conditions depending on interface transparency and
polarization, this constitutes a boundary value problem. As such, we chose to solve
the equation using the MATLAB function bvp4c. The Usadel equation was de�ned
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within a separate function yielding results for each of the γ-matrix components, and the
same was done for the boundary conditions. Depending on which materials were used
(superconductors, normal metals, ferromagnets and spin-orbit coupled semiconducting
nanowires) these take on di�erent forms, as outlined throughout this thesis. Addition-
ally, an initial guess function had to be supplied to the boundary value problem solver.
A zero-vector was supplied as a �rst guess, and the solution from the last iteration was
subsequently fed to the solver. In all cases where the Usadel equation has had to be
solved, an S/X/S Josephson junction has been point of interest. In most of the cases the
Kuprianov-Lukichev tunneling boundary conditions (2.37) have been employed, such as
for all S/F/S structures along with the spin-orbit coupled semiconductor nanowire. The
only case in which di�erent boundary conditions were employed was when spin-active
interfaces were being considered, and Cottet's boundary conditions for weakly polarized
interfaces (2.38) were used.

Solving the Usadel equation yielded a speci�c value for each γ-matrix component for
each energy and superconducting phase di�erence supplied to the program. This solu-
tion value was then saved as either D0pE,∆θq and DzpE,∆θq-matrices in the case of
homogeneously polarized spin-split structures, or as γ

ij
pE,∆θq and γ̃

ij
pE,∆θq-matrices

when the quasiclassical regime was employed. These were subsequently translated into
the retarded Green function matrices which constitute the main body of the matrix
thermoelectric coe�cients. In all cases, the Usadel equation was solved in the middle
of the nanowire X, at x � 0.5LX . Quasiparticle transport across a tunneling barrier
from the middle of the Josephson junction S/X/S to the normal metal electrode N is
therefore always assumed to occur at this point. This is of course a rather dramatic
simpli�cation, but as we have observed the density of states to be quite robust in these
structures when moving away from the center of the nanowire, it should not cause too
much of a deviation from a fairly realistic case.

Solving the Usadel equation can be very time consuming, depending on the step length
employed, number of phase di�erences considered, complexity of the materials used and
interface parameters chosen. Adding spin-orbit coupling, for instance, enhances the
complexity of the problem signi�cantly. Therefore, the task of solving the Usadel equa-
tion has been performed by the cluster computer system Kongull at NTNU. This was
done in order to ensure an energy step length of ∆E � 10�3, which was necessary when
integrating the densities of states and γ-matrices numerically in energy. Moreover, this
allowed us to consider a larger number of phase di�erences, exchange �elds in the case
of Zeeman-split superconductors, magnetization strengths in the case of ferromagnets,
spin-orbit coupling strengths and interface polarizations for spin-active interfaces.
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C.3 Numerical approach for therm. el. coe�cients

Once the Usadel equation was solved for the superconductor/ conical ferromagnet/
superconductor Josephson junction, the superconductor/ spin-orbit coupled semicon-
ductor/ superconductor Josephson junction and the superconductor/ normal metal with
spin-active interfaces/ superconductor Josephson junction, numerical integration had to
be performed in order to quantify the thermoelectric e�ects. First, the saved matrices
for γ and γ̃, or D0 and Dz, versus the energy and the superconducting phase di�erence
were loaded. In all cases, between 12 and 24 matrices with dimensions 24 � 7000 or
24 � 3500 were loaded for each speci�c system, where the di�erent matrices di�ered
in only one property. Next, the necessary helping matrices where de�ned along with
the polarization of the tunneling interface, Pεr0, 1s. Finally, the Riemann sum over
the energy could be performed to approximate the numerical integral. The step length
of dE � 10�3 was used in order for the Riemann sum to approximate the real inte-
gral to a satisfactory degree. Once the thermoelectric coe�cients were calculated, ZT
and S could be determined. In the case of the formalism for structures with arbitrary
spin-dependent �elds, the direction-dependent thermal spin coe�cient ανs is included in
addition to the formerly mentioned α, G and GQ.
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Spin caloritronics with superconductors: Enhanced thermoelectric effects, generalized Onsager
response-matrix, and thermal spin currents
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It has recently been proposed and experimentally demonstrated that it is possible to generate large
thermoelectric effects in ferromagnet/superconductor structures due to a spin-dependent particle-hole asymmetry.
Here, we show theoretically that quasiparticle tunneling between two spin-split superconductors enhances the
thermoelectric response manyfold compared to when only one such superconductor is used, generating Seebeck
coefficients (S > 1 mV/K) and figures of merit (ZT � 40) far exceeding the best bulk thermoelectric materials,
and it also becomes more resilient toward inelastic-scattering processes. We present a generalized Onsager
response-matrix that takes into account spin-dependent voltage and temperature gradients. Moreover, we show
that thermally induced spin currents created in such junctions, even in the absence of a polarized tunneling
barrier, also become largest in the case in which spin-dependent particle-hole asymmetry exists on both sides of
the barrier. We determine how these thermal spin-currents can be tuned both in magnitude and sign by several
parameters, including the external field, the temperature, and the superconducting phase difference.

DOI: 10.1103/PhysRevB.93.224509

I. INTRODUCTION

Merging the phenomena of superconductivity and mag-
netism by creating hybrid structures of materials with these
properties is known to give rise to interesting quantum effects
[1]. In particular, the field of superconducting spintronics [2]
has in recent years gained increasing attention due to the
intriguing prospect of procuring spin transport with little or no
dissipation of energy. In addition to coupling the charge and
spin degrees of freedom in such systems, it has been shown in
recent developments that adding heat transport to the picture
yields surprising new effects [3–10]. A main motivation for
the study of thermoelectricity is that unused waste heat could
be utilized as electric currents, and it is desirable to make this
conversion process as efficient as possible.

It was theoretically proposed in Ref. [3] that by lifting the
spin degeneracy of the density of states in superconductors
(e.g., by proximity to magnetic materials), very large thermo-
electric effects could be achieved. Reference [4] showed that
an electron-hole asymmetry induced by magnetic impurities in
superconductors could lead to sizable thermoelectric currents.
Subsequent works demonstrated how it was possible to achieve
even higher thermoelectric figures of merit ZT and Seebeck
coefficients S by making use of the large accumulation of
quasiparticle states at energies near the gap edge (E � �0)
in superconductors [5,6]. Large thermophases induced in
magnetic Josephson junctions have also been studied [10].
The usage of superconducting elements in low-temperature
thermometry and refrigeration has been studied extensively in
the past [11], but it is only quite recently that the incorporation
of magnetic elements into such structures has sparked consid-
erable interest.

The strong coupling of spin, heat, and charge transport
in superconducting structures allows us to envision a num-
ber of interesting cryogenic thermoelectric devices exceed-
ing the performance of their nonsuperconducting counter-
parts, such as highly sensitive thermal sensors. A recent
preprint [12] reported experimental observation of the large
thermoelectric currents predicted in [5] by utilizing a

normal metal/ferromagnetic barrier/superconductor junction
(Cu/Fe/Al). Upon application of strong in-plane magnetic
fields B ∼ 1 T, Seebeck coefficients |S| up to 0.1 mV/K
were measured. The key to achieving this effect is to create a
spin-dependent particle-hole asymmetry in the superconductor
(Al) by applying an in-plane field. Due to the magnetic barrier
(Fe), tunneling of one spin species is favored compared to
the other, thus effectively probing the energy asymmetry for
each spin σ . This scenario raises a tantalizing question: what
happens if a spin-dependent particle-hole asymmetry exists not
only on one side of the magnetic barrier, but on both sides? One
might expect that creating such an asymmetry in all regions of
the system would strongly enhance thermoelectric effects even
beyond what has been predicted so far for bilayer structures.

In this work, we confirm this hypothesis and show that
quasiparticle tunneling between two spin-split superconduc-
tors not only increases the thermoelectric response of the
system manyfold, but importantly it also displays a robustness
toward inelastic scattering in the system. The latter aspect
is of particular importance with regard to material choice and
possible use of thermoelectric effects in cryogenic devices. For
instance, Al is known to have a weak inelastic-scattering rate
(modeled by, e.g., a Dynes [13] parameter �), but it also has a
very low critical temperature Tc = 1.2 K. By achieving large
thermoelectric effects even at considerable inelastic scattering
�, it becomes possible to use superconductors with much
higher critical temperatures such as NbN featuring Tc = 14 K.
Our results, therefore, provide a way in which robust spin
caloritronics with superconductors can be achieved above the
sub-Kelvin regime, featuring figures of merit up to ZT � 40
and Seebeck coefficients S > 1 mV/K, which far exceed even
the best thermoelectric bulk materials, such as CsBi4Te8 and
Bi2Te3, that have ZT � 2 at room temperature [14].

Previous works [3,5] have considered how voltage and
temperature gradients induce thermoelectric effects in su-
perconducting junctions where spin degeneracy is lifted.
Here, we present a generalized Onsager response-matrix that
takes into account the possibility of having spin-dependent
voltages and temperature biases. The latter scenarios can

2469-9950/2016/93(22)/224509(7) 224509-1 ©2016 American Physical Society
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be realized through tunneling between ferromagnetic and
nonmagnetic materials, as predicted in Refs. [15–17]. In
Ref. [18], spin-dependent heat conductance was observed in
F/N/F spin-valve nanopillars. This was assumed to arise due to
spin heat accumulation, and a difference in the effective spin
temperature of up to 350 mK was reported. The same effect
was also observed in Ref. [19] more recently, but the authors in
that case were more reluctant to conclude that the observation
did in fact prove the existence of spin heat accumulation.

Hybrid structures with spin-split superconductors admit
thermally induced spin currents without requiring any polar-
ized barrier, as noted in Ref. [5], but this phenomenon has
not yet been studied in detail. We demonstrate that these spin
currents are in fact the largest precisely in the case in which a
spin-dependent particle-hole asymmetry exists on both sides
of the barrier. Moreover, we determine how these thermal
spin currents can be tuned, both in magnitude and sign, by
several parameters, including the external field, temperature,
and the superconducting phase difference when incorporating
Josephson junctions into the geometry.

II. THEORY

The system under consideration is shown in Fig. 1(a)
and consists of two spin-split superconductors separated by
a magnetic barrier with an in-plane magnetic field applied.
Possible material choices could be Al/Fe/Al, along the lines of
Ref. [12], but NbN/GdN/NbN might be more beneficial due
to the strong polarization of GdN [20] and high Tc of NbN.
An additional advantage of using a more strongly polarized
ferromagnetic barrier is that it can by itself induce an exchange
field into both of the superconductors [21], necessitating
lower externally applied fields. If desirable, one can substitute
one of the superconducting electrodes with a thin normal
metal in proximity to a superconducting film, in which case
the normal metal mimics a spin-split superconductor in the
presence of an in-plane field B. When the Coulomb blockade
and the supercurrent response are suppressed, quasiparticle
tunneling dominates the transport across the junction [22]. We
seek to establish a spin-dependent particle-hole asymmetry
throughout the system, which is accomplished by using not just
a single spin-split superconductor, as in, e.g., [5,6,12], but two.
In this way, both electrodes SL and SR outlined in Fig. 1(a) host
a large particle-hole asymmetry for spin σ . Because of this, a
crucial effect comes into play: since now the asymmetry exists

External 
 B-field

SC

SC

MB

(   +
 eV, T +   T

)

μ

δ

(   ,T
)μ

FIG. 1. Left panel: quasiparticle tunneling between two thin
superconductors (SCs) SL and SR separated by a magnetic barrier
(MB). A spin-dependent particle-hole asymmetry is induced via an
external in-plane magnetic field. Right panel: self-consistent solution
of the order parameter in a spin-split superconductor as a function of
exchange field hS and temperature T .

on both sides of the junction, an additional term appears in the
thermoelectric currents, as we will show below. We will also
demonstrate that large thermoelectric effects are retained in
the proposed setup even in the presence of substantial inelastic
scattering.

An important point that should be emphasized is the role
of the phonon contribution to the thermal conductance, which
is known to be important for semiconducting thermoelectric
materials. In contrast, in metals the heat transfer by electrons
strongly dominates over the phonon contribution at low tem-
peratures. However, in the superconducting state, the electron
contribution decreases with temperature due to the exponential
decrease in the carrier density, while the phonon contribution
increases due to suppression of the phonon-electron scattering.
Therefore, a model neglecting phonon heat transfer in the
superconducting bulk becomes less applicable as T → 0. For
specific superconducting materials, the model applicability
requires a detailed comparison of electron and phonon thermal
conductivities.

The charge and heat tunneling currents carried by spin
species σ read [23,24]

I σ
heat = Gσ

e2

∫ ∞

−∞
dE(E − μL)Dσ

L(E − μL)Dσ
R(E)F (E),

I σ
charge = Gσ

e

∫ ∞

−∞
dEDσ

L(E − μL)Dσ
R(E)F (E), (1)

where I σ
heat is the heat current flowing out of the left electrode.

Here, the quasiparticle energy E is measured relative to the
Fermi level in the right superconductor, μL is the Fermi level
in the left region (μR = 0 for reference), Dσ

j is the density
of states for spin σ in region j , fj (E) is the distribution
function in region j , and F = fL(E − μL) − fR(E). The
superconducting regions are assumed to have a small thickness
(t ∼ 10–20 nm) as in the experiment of Ref. [12], so that an
externally applied field splits the density of states according to

Dσ =
∣∣∣∣Re

{
E + σhS + i�√

(E + σhS + i�)2 − �2

}∣∣∣∣, (2)

with hS being the induced Zeeman field in S, and � =
�(hS,T ) is the superconducting gap. Its dependence on hS and
T is shown in Fig. 1(b), featuring a first-order phase transition
at (h/�0,T /Tc,0) = (0.52,0.53), where �0 and Tc,0 are the
bulk superconducting gap and the critical temperature in the
absence of the field, respectively. Interfacial spin-flip scattering
would be likely to reduce the net barrier polarization effect due
to the randomization of spin.

III. RESULTS

A. Thermoelectric figure of merit and Seebeck coefficient

In the presence of a voltage difference V or temperature
gradient �T across the bilayer, the Onsager matrix equation
[25] describing the linear response for the total charge
I = I

↑
charge + I

↓
charge and heat current Q̇ = I

↑
heat + I

↓
heat flowing

through the interface reads(
I

Q̇

)
=

(
L11 L12

L12 L22

)(
V

�T/T

)
, (3)
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FIG. 2. Figure of merit ZT in the hS-T plane for a barrier polarization P = 97%. In the top row, �/�0 = 10−3, while in the bottom row the
inelastic scattering is substantial, �/�0 = 0.05. Three bilayer setups separated by a magnetic barrier (MB) are compared: (a) and (d) normal
metal/MB/spin-split superconductor, (b) and (e) superconductor/MB/spin-split superconductor, (c) and (f) spin-split superconductor/MB/spin-
split superconductor. As seen, the thermoelectric response is dramatically enhanced in the last case.

where we have used the fact that L21 = L12 due to sym-
metry (as can also be proven analytically). We defined
here �T/2T = (TL − TR)/(TL + TR). To identify the Onsager
coefficients Lij , one performs an expansion of Eq. (1) to
lowest order in applied voltage V and temperature gradient
�T , which after some algebra yields the result

L11 = GT

∫ ∞

−∞
dE

(
D0

LD0
R + Dz

LDz
R/4

)
C(E),

L22 = GT

e2

∫ ∞

−∞
dE

(
D0

LD0
R + Dz

LDz
R/4

)
E2C(E), (4)

L12 = GT P

2e

∫ ∞

−∞
dE

(
D0

LDz
R + Dz

LD0
R

)
EC(E),

with C(E) = [4kBT cosh2(βE/2)]−1. We have defined here

D0
j = (D↑

j + D
↓
j )/2, Dz

j = D
↑
j − D

↓
j (5)

for side j ∈ {L,R}. In previous proposals, a spin-dependent
particle-hole asymmetry existed only in SR , while a metal
[5] or a superconductor with a tunable gap [6] was used
instead of SL. However, in the present case the asymmetry
of the structure is maximized in the sense that it exists on both
sides of the interface, and, importantly, it generates additional
terms in the Onsager coefficients, as shown in Eq. (4). For
instance, the coefficient L12 responsible for inducing heat flow
due to a voltage gradient (and also an electric current due to
a temperature gradient) now couples the antisymmetric (in
E) component Dz on the left side of the magnetic barrier
to the symmetric component D0 of the right side and vice
versa. This strongly modifies the thermoelectric response of the
system. Of particular interest are the Seebeck coefficientS (the
voltage induced due to a temperature difference after opening
the circuit) and the dimensionless figure of merit ZT (which
quantities the ability of the system to produce thermoelectric

power efficiently) [26]:

S = − L12

L11T
, ZT =

(
L11L22

L2
12

− 1

)−1

. (6)

We now proceed to show that due to the additional spin
splitting in SL (Dz

L 	= 0), the thermoelectric effects are
enhanced manyfold compared to when a metal or conventional
superconductor is used, and that they remain large even in the
presence of substantial inelastic scattering �.

In Figs. 2(a)–2(c), we have plotted the thermoelectric figure
of merit ZT obtained as a function of temperature T/Tc,0

and exchange field hS/�0 upon using a magnetic barrier with
polarization P = 0.97 (as suitable for, e.g., GdN [27]) and
with inelastic scattering �/�0 = 10−3. Extraordinarily large
figures of merit ZT > 15 are obtained when the quasiparticle
tunneling occurs between two spin-split superconductors, as
shown in Fig. 2(c). In comparison, the best thermoelectric
materials at room temperature (CsBi4Te8 and Bi2Te3) reach
ZT � 2. When only one spin-split superconductor is used
[5,6], the thermoelectric response is much smaller, as seen
in Figs. 2(a) and 2(b). For smaller polarization values P , the
figure of merit ZT is suppressed for every type of hybrid
structure but still remains largest for tunneling between two
spin-split superconductors. The precise dependence on the
barrier polarization is shown in Fig. 3(a). As P increases,
ZT becomes colossal and reaches almost 40 in magnitude.
Since the exchange splitting of the density of states in the
superconductors is tunable via an external field, it should be
possible to exert well-defined control over the thermoelectric
response of the system.

To demonstrate the robustness of the results toward inelastic
scattering, we plot in Figs. 2(d)–2(f) the figure of merit ZT for
a 50-times-larger inelastic scattering rate �/�0 = 0.05. This
amounts to quite heavy suppression of the BCS coherence
peaks in the density of states, and it smoothes out the
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FIG. 3. Left panel: Seebeck coefficient S for quasiparticle tunneling between two spin-split superconductors separated by a magnetic
barrier. We set P = 97% and �/�0 = 10−3. The inset shows a bird’s-eye view of the same plot. Right panels: (a) The figure of merit and (b)
the Seebeck coefficient for the same setup as a function of the barrier polarization P . We have set T/Tc,0 = 0.15 and �/�0 = 10−3. Close to
P = 1, figures of merit ZT � 40 are obtained.

spectral features greatly. In spite of this, it is seen that in
the case of quasiparticle tunneling between two spin-split
superconductors, a figure of merit close to ZT > 5 is retained
[Fig. 2(f)], whereas in the other cases ZT is close to an order
of magnitude smaller. Another measure of the efficiency of
thermoelectric effects is the Seebeck coefficient S, and we
plot its behavior in Fig. 3 for the setup shown in Fig. 1(a).
Magnitudes of |S| > 1 mV/K are attainable, which is an
order of magnitude larger than in the experiment of Ref. [12],
where only one spin-split superconductor was used. It should
be noted that a rather weak polarization P � 0.1 was utilized
in Ref. [12], and for larger polarizations S could theoretically
reach the order of 1 mV/K in such a setup as well by fine-tuning
the parameters.

B. Generalized Onsager response-matrix

In addition to applying a voltage or temperature bias, it
is also experimentally feasible to create a spin-dependent
voltage and temperature bias, Vs and �Ts , respectively.
Tunneling between ferromagnetic materials and nonmagnetic
conductors has been predicted to result in spin-dependent
effective temperatures and voltages, and recent experimental
results support these claims [18]. This would allow for the
application of spin-dependent biases through the addition of
ferromagnetic layers to one of the electrodes, and heating these
to different temperatures. In the presence of spin-dependent
gradients, the Onsager response-matrix is generalized to

⎛
⎜⎜⎝

I

Q̇

Is

Q̇s

⎞
⎟⎟⎠ =

⎛
⎜⎝

G Pα PG α

Pα GQ α PGQ

PG α G Pα

α PGQ Pα GQ

⎞
⎟⎠

⎛
⎜⎝

V

�T/T

Vs/2
�Ts/(2T )

⎞
⎟⎠. (7)

Above, we have defined the spin current Is = I
↑
charge − I

↓
charge

and spin heat current Q̇s = I
↑
heat − I

↓
heat. The applied voltage

and temperature biases in the spin-dependent case are

given by

V =
∑

σ

(
V σ

L − V σ
R

)
/2, Vs =

∑
σ

σ
(
V σ

L − V σ
R

)
,

(8)
�T =

∑
σ

(
T σ

L − T σ
R

)
/2, �Ts =

∑
σ

σ
(
T σ

L − T σ
R

)
,

and T = ∑
σ (T σ

R + T σ
L )/4. To simplify the expressions, spin-

dependent biases were assumed to exist only on the left-hand
side of the barrier. Consequently, we have defined T

↑
R =

FIG. 4. Plot of the normalized thermoelectric response coeffi-
cient (αe)/(GT �0) that governs the thermally induced spin current
for bilayer junctions without any polarizing barrier: (a) normal
metal/insulator/spin-split SC, (b) SC/insulator/spin-split SC, and (c)
spin-split SC/insulator/spin-split SC.
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FIG. 5. Plot of the normalized thermoelectric response coefficient (αe)/(GT �0) that governs the thermally induced spin current for three
types of structures. (a) Tunneling between a superconducting electrode and the normal part of a spin-split SC/normal/spin-split SC junction.
We have set T/Tc,0 = 0.5. The sign of α can be changed, inverting the direction of the spin current flow, by tuning hS or the superconducting
phase difference φ. (b) Tunneling between the normal parts of a SC/N/SC and a spin-split SC/N/spin-split SC junction, with T/Tc,0 = 0.4 and
hS/�0 = 0.4. Two arcs with opposite signs cross the φL-φR parameter space, where φL is the phase difference between the SCs and φR is the
phase difference between the spin-split SCs. (c) Tunneling between the normal parts of two spin-split SC/N/spin-split SC junctions, having
set T/Tc,0 = 0.4 and hS/�0 = 0.2. The normal layers are all assumed to be short compared to the penetration depth of the superconducting
correlations, so that they become fully proximitized. We acknowledge the challenge in experimentally realizing tunneling between the weak
links of two Josephson junctions, as in (b) and (c), but we nevertheless include these results to demonstrate the interesting behavior of the
thermal spin current in this scenario.

T
↓
R = TR and V

↑
R = V

↓
R = 0 for reference. The thermoelectric

coefficients in Eq. (7) read G = L11, GQ = L22, and

α = GT

2e

∫ ∞

−∞
dE

(
D0

LDz
R + Dz

LD0
R

)
EC(E). (9)

This reveals some interesting cross-couplings between spin
and heat flow that exist due to the spin-dependent particle-hole
asymmetry induced in the superconductors by an exchange
field. For instance, one can obtain a heat current Q̇ by
applying a spin-dependent voltage Vs . The response-matrix
presented above is general, as it allows for arbitrary voltage,
and temperature differences for each spin.

C. Thermally induced spin currents

Equation (7) shows that even in the absence of any
barrier polarization in the junction (P = 0), a spin current
Is can be induced via a temperature gradient �T without
any accompanying charge flow, according to Is = α�T/T .
This fact was also noted in Ref. [5]. We emphasize that
this thermal spin current will also flow in the bulk of the
superconductor since it is carried by spin-polarized quasipar-
ticles. Up to now, this phenomenon has not been studied in
detail, and we therefore determine in what follows how this
spin current can be controlled both in magnitude and in sign
by using hybrid structures with spin-split superconductors.
The quantity of interest is thus the thermoelectric coefficient
α in Eq. (9), and in what follows we compute it numeri-
cally for several types of hybrid structures, setting �/�0 =
0.005.

We start by comparing in Fig. 4 the thermal spin current
for the same structures as in Fig. 2 (normal/spin-split SC,
SC/spin-split SC, and spin-split SC/spin-split SC), but now
with the absence of any polarizing barrier (P = 0). The
resulting α is by far the largest in case (c), demonstrating
again the advantage in creating a spin-dependent particle-hole
asymmetry on both sides of the interface. By incorporating a

Josephson junction in the geometry, the superconducting phase
difference becomes an additional external control parameter
that can be used to adjust the thermal spin current, similarly
to the setup of Ref. [6]. We find that not only the magnitude
of α, and in turn Is , but also its sign can be changed. This is
shown in Fig. 5, where we plot the normalized thermoelectric
coefficient (αe)/(GT �0) for various types of hybrid structures
incorporating spin-split superconductors. Varying the precise
values of hS and T produces qualitatively similar plots in
all cases, and thus we show only one representative plot
for each type of system in Fig. 5. The thermal spin current
responds to a change in the superconducting phase difference
φ since the proximity-induced minigap �g in the normal
metal region depends on it via �g = �(h,T ) cos(φ/2), where
�(h,T ) is the gap in the bulk superconductors of the Josephson
contact. Figure 5 demonstrates that the thermal spin current
demonstrates a rich variety of qualitative behavior, depending
on the type of structure that is used.

IV. CONCLUDING REMARKS

The above results thus show that spin-dependent ther-
moelectric effects in superconductors are increased when
a spin-dependent particle-hole asymmetry exists in both
adjacent layers to a magnetic tunneling barrier. Coupling spin
and heat transport is the foundation for spin caloritronics
[28], which suggests that highly sensitive thermoelectric
elements can be tailored by using superconductors, leading
to efficiencies far exceeding what is possible in nonsupercon-
ducting materials. An interesting future direction could be to
explore the role of unconventional superconducting pairing
symmetries combined with magnetic elements with regard to
thermoelectric effects [29], such as d-wave pairing of high-Tc

cuprates or p-wave pairing in uranium-based ferromagnetic
superconductors. The study of Josephson junction geometries
is also of interest: by combining such a setup with one
spin-split superconductor so that a proximity-induced super-
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conducting gap can be tuned, the figure of merit can under
ideal circumstances become comparable [6] to the present
case with tunneling between two spin-split superconductors.
Moreover, the existence of strong odd-frequency triplet pairing
in spin-split superconductors was recently highlighted [30],
and it suggests that other systems in which odd-frequency
superconducting pairing is present and renders the electronic
density of states spin-dependent, such as junctions with
magnetic spin valves [31,32], spin-active interfaces [8,33–36],
inhomogeneous magnetization [37,38], or spin-orbit coupling

[39–42], could host large thermoelectric effects as well. We
leave these prospects for forthcoming studies.
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