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Preface

This master thesis is written during the spring semester of 2013 in Reliability, Availability, Main-

tainability, and Safety (RAMS) at the Department of Production and Quality Engineering (IPK),

and it is carried out in cooperation with Norconsult. The master thesis is the final step of the

study program Mechanical Engineering at the Norwegian University of Science and Technology,

and it will give me the degree Master of Science. The work has been performed in Trondheim at

the facilities of IPK and at Norconsult’s headquarter in Sandvika, and the workload is equal to a

semester.

Because this master thesis is written in cooperation with Norconsult, it is written for my

future colleagues. They have knowledge about the concept of reliability and are familiar with
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well. However, knowledge about IEC 61508 is not a necessity for enjoying this master thesis.

Trondheim, 2013-06-10
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Summary and Conclusions

Technical systems that comprise at least one electrical, electronic, or programmable electronic

device and perform safety functions are called safety instrumented systems. Safety instrumented

systems are used to reduce the risk related to hazardous events that may result in undesired con-

sequences to humans, the environment, and assets, and the reliability of such systems is there-

fore important. The international standard IEC 61508 can be used to ensure safe and reliable

safety instrumented systems, and it applies to all types of safety instrumented systems. Based

on IEC 61508, the process industry and the machinery industry have developed their own ver-

sions called IEC 61511 and IEC 62061, respectively.

IEC 61508 includes requirements for all activities necessary for achieving reliable safety in-

strumented systems throughout their whole lifecycle, and the standard introduces concepts and

terminology that can be challenging to understand. Some basic concepts and terminology in

IEC 61508 are clarified in this master thesis.

A safety function, performed by a safety instrumented system, may be demanded from sel-

dom to continuously. IEC 61508 distinguishes between safety functions that are demanded less

frequent and more frequent than once per year, and these two modes of operation are called

low-demand and high-demand, respectively. Furthermore, the standard requires that different

reliability measures are used for demonstrating the reliability of the safety instrumented systems

performing low-demand and high-demand safety functions. In two examples, the two reliabil-

ity measures are used, and the calculated results show that there is an inconsistency with the

classification of safety functions in IEC 61508. This inconsistency is, however, not experienced

with the classification in IEC 61511, and the approach in IEC 61511 seems better.

Other differences between low-demand and high-demand safety functions are not well ex-

plained in IEC 61508. Because IEC 61511 considers mainly low-demand safety functions and

IEC 62061 considers only high-demand safety functions, specific requirements in these two

standards are compared to reveal possible differences between low-demand and high-demand.

It is concluded that there are essentially no differences between the compared requirements.

Based on the event, loss of control, in an accident scenario, it is proposed a new approach

for classifying safety functions. A definition of loss of control is suggested and it distinguishes
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between safety control functions and safety protection functions. These two functions are fur-

ther related to two additional events in an accident scenario, and a model that illustrates the

proposed classification in relation to the three events in an accident scenario is developed. The

proposed classification is neither based on frequency of demands nor does it prescribe use of a

specific reliability measure, and the classification is thus different from the classification in IEC

61508. The proposed classification is more similar to the classification in IEC 61511.

Safety instrumented systems are used in the hydropower industry, but IEC 61508 is essen-

tially not yet applied. The Machinery Directive requires machine manufacturers to meet the

essential health and safety requirements, and some of these requirements can, for safety instru-

mented systems in machines, be met by complying with IEC 62061. Because IEC 62061 is based

on IEC 61508, this is a relationship between IEC 61508 and the hydropower industry.

From the perspective of a typical company operating hydropower plants in the Norwegian

hydropower industry, some benefits and challenges related to implementation and use of IEC

61508 are discussed. IEC 61508 provides a rigorous, risk-based approach for achieving reliable

safety instrumented systems and many of the concepts in the standard could be very useful

in the hydropower industry. However, the standard is comprehensive and extensive resources

and competence are prerequisites for successful implementation and use. It is concluded that

IEC 61508 may not be what the hydropower industry needs, but a joint project for developing a

unified approach for ensuring reliable safety instrumented systems may be a better option.
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Chapter 1

Introduction

1.1 Background

Electrical/electronic/programmable electronic (E/E/PE) safety-related systems, often referred

to as safety instrumented systems, are used in many different applications to protect humans,

the environment, and assets from hazardous events. Failures of E/E/PE safety-related systems

may lead to undesired consequences, and ensuring the reliability of such systems is therefore

important. The international standard IEC 61508, Functional safety of E/E/PE safety-related sys-

tems, is widely accepted as best practice for achieving safe and reliable E/E/PE safety-related

systems. In addition to being a stand-alone standard, IEC 61508 can be used to develop application-

specific standards, such as IEC 61511 for the process industry and IEC 62061 for machinery.

IEC 61508 is comprehensive and includes requirements for design, installation, operation,

and maintenance of E/E/PE safety-related systems. If an end-user shall acquire an E/E/PE

safety-related system in accordance with the standard, the end-user is required to prepare a de-

tailed document stating what the system is required to do and how well the system is required

to perform. This document is referred to as a safety requirements specification (SRS), and it

is the specification basis for the designer of the E/E/PE safety-related system. To demonstrate

that the performance of an E/E/PE safety-related system meets the performance specified in

the SRS, the designer is required to quantify the reliability of the hardware and comply with the

architectural constraints. The latter is requirements for the hardware layout and they ensure a

sufficiently robust architecture for E/E/PE safety-related systems.

1
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IEC 61508 distinguishes between two modes of operation for E/E/PE safety-related systems

based on frequency of demands. An E/E/PE safety-related system may be classified as low-

demand mode of operation or high-demand or continuous mode of operation, depending on

whether demands occur with a frequency of less or more than once per year, respectively. Fur-

thermore, IEC 61508 requires that the average probability of dangerous failures on demand

(PFDavg) is used as the reliability measure for E/E/PE safety-related systems operating in low-

demand mode, and for E/E/PE safety-related systems operating in high-demand or continuous

mode, IEC 61508 requires that the average frequency of dangerous failure per hour (PFH) is used

as reliability measure.

Several research projects on the suitability of the required reliability measures in IEC 61508

have been conducted (e.g., Bukowski, 2006; Hauge et al., 2013; Innal, 2008; Innal et al., 2009;

Jin et al., 2011; Liu and Rausand, 2011; Misumi and Sato, 1999), and many of these research

projects question the classification of E/E/PE safety-related systems as low-demand mode of

operation and high-demand or continuous mode of operation and the applicability of the re-

liability measures in the borderline region of the classification. The existing research focuses

on the reliability characteristics of the E/E/PE safety-related system hardware in the different

operational modes, but other potential differences are essentially not covered. In particular,

no agreed explanation of differences between safety functions implemented by E/E/PE safety-

related systems operating in different operational modes are provided in the literature.

Misumi and Sato (1999) propose a new classification of modes of operation with respect

to demand frequencies and demand durations for non-demand-state-at-proof-test systems and

constant-demand-frequency systems using fault tree analysis. According to Innal (2008), Markov

methods are most suitable for modeling the reliability of E/E/PE safety-related systems, and sev-

eral authors apply Markov methods to model the reliability by incorporating demand rates (e.g.,

Bukowski, 2006; Innal, 2008; Innal et al., 2009; Jin et al., 2011; Liu and Rausand, 2011). Bukowski

(2006) models an E/E/PE safety-related system with Markov methods and observes that the re-

liability of an E/E/PE safety-related system is affected by frequency of demands. According to

Bukowski (2006), the distinction between low-demand mode of operation and high-demand or

continuous mode of operation in IEC 61508 (2010) is insufficient and incorporating demands is

necessary when analyzing the reliability of E/E/PE safety-related systems.



CHAPTER 1. INTRODUCTION 3

Jin et al. (2011) and Liu and Rausand (2011) apply Markov models to analyze the reliabil-

ity of E/E/PE safety-related systems with changing demand rates and demand durations. Liu

and Rausand (2011) show that the reliability characteristics of E/E/PE safety-related systems

operating in low-demand mode and high-demand or continuous mode are different and claim

that demand durations should be considered when classifying E/E/PE safety-related systems.

Jin et al. (2011) verify the accuracy of a Markov model for a single pressure transmitter in both

low-demand mode of operation and high-demand or continuous mode of operation by a com-

parison with a developed scenario-based formula for the hazardous event frequency (HEF).

Hauge et al. (2013) discuss the classification of E/E/PE safety-related systems as low-demand

mode of operation and high-demand or continuous mode of operation in IEC 61508 and argue

that the classification should be split into low-demand mode of operation, high-demand mode

of operation, and continuous mode of operation. IEC 62061 (2012) addresses only high-demand

or continuous mode of operation, and IEC 61511 (2003) distinguishes between demand mode

of operation and continuous mode of operation.

Although the existing research covers and discusses the reliability of E/E/PE safety-related

systems and differences between low-demand mode of operation and high-demand or contin-

uous mode of operation, an important issue is still unclear. E/E/PE safety-related systems im-

plement safety functions, and safety functions operate in low-demand mode and high-demand

or continuous mode, but possible differences between safety functions in the different demand

modes are not agreed upon in the literature. It is neither obvious what a safety function operat-

ing in high-demand or continuous mode do nor is the difference between safety functions and

control functions clear. For example, a fly-by-wire system is, according to Bukowski (2006), an

E/E/PE safety-related system that operates in continuous or high-demand mode.

E/E/PE safety-related systems are used in the hydropower industry, but IEC 61508 is essen-

tially not yet applied. The design specifications of some new hydropower plants require that all

E/E/PE safety-related systems are in accordance with IEC 61508. This is problematic because

there is a lack of knowledge about how compliance is achieved, and benefits and challenges

related to implementation of IEC 61508 in the hydropower industry are not explored.
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1.2 Objectives

The main objectives of this master thesis are:

1. Clarify basic concepts and terminology in IEC 61508.

2. Identify and discuss possible differences between low-demand mode of operation and

high-demand or continuous mode of operation by:

• Comparing the requirements in IEC 61511 and IEC 62061 for the safety requirements

specifications and the architectural constraints.

• Comparing PFDavg and PFH.

3. Develop and propose a new approach for classifying safety functions and describe the

classification with examples.

4. Discuss the implementation of IEC 61508 in the hydropower industry. (Is it possible? Nec-

essary? What should be the focus: security, safety, economy, or production?)

5. Identify and discuss challenges related to implementation of IEC 61508 and relevant application-

specific standards in the hydropower industry, for which further research is needed.

Remark: In agreement with the supervisors, the objectives of this master thesis are changed,

and the objectives stated above apply.

1.3 Limitations

The main topics in this master thesis are E/E/PE safety-related systems, safety functions, IEC

61508 in the hydropower industry, and differences between low-demand mode of operation and

high-demand or continuous mode of operation within the context of IEC 61508, IEC 61511, and

IEC 62061. Concepts and terms are mainly based on IEC 61508. In this master thesis, software,

human and organizational factors, and the effects of common cause failures are not considered.
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1.4 Structure of the Master Thesis

The rest of this master thesis is structured as follows. Chapter 2 presents basic concepts and ter-

minology in IEC 61508. In Chapter 3, comparisons of the requirements for safety requirements

specifications in IEC 61511 and IEC 62061, PFDavg and PFH, and the architectural constraints in

IEC 61511 and IEC 62061 are presented and possible differences between low-demand mode of

operation and high-demand or continuous mode of operation are discussed. A new approach

for classifying safety functions, a model, and two examples are described in Chapter 4. Dis-

cussions about benefits and challenges related to implementation and use of IEC 61508 and

implementation of IEC 61508 in the hydropower industry are given in Chapter 5. Chapter 6

summarizes and concludes this master thesis, and gives recommendations for further work.

The acronyms used throughout this master thesis are listed in Appendix A.





Chapter 2

E/E/PE Safety-related Systems and

IEC 61508

All processes and activities performed in any industry involve risks, because there is no such

thing as "zero risk" (HSE, 1992). In a hydropower plant, one of the main hazards is the kinetic

energy in the water flow, and if it is not controlled, it may cause harm to assets (e.g., humans,

the environment, and equipment). For some types of failures in the turbine, there are safety

systems that automatically stop the flow of water, which prevents further escalation of undesired

consequences. These safety systems monitor operational variables in the turbine, and if these

exceed a preset limit, a logic solver sends signals to the actuating elements and they stop the

flow of water. Such systems are E/E/PE safety-related systems.

This chapter gives an introduction to some fundamental concepts and terminology in IEC

61508, and it is partly based on the author’s project thesis Stette (2012).

7
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2.1 E/E/PE Safety-related Systems

An electrical/electronic/programmable electronic (E/E/PE) safety-related system is a system

comprising input elements, logic solvers, and actuating elements (Rausand, 2011), as illustrated

in Figure 2.1. The main purpose of an E/E/PE safety-related system is to prevent and/or mitigate

hazardous events introduced by an equipment under control (EUC) (IEC 61508, 2010). An EUC

is equipment, machinery, apparatus, or plant that is used for various activities. In most cases,

the EUC also has an EUC control system. The EUC control system monitors and controls the

EUC and ensures that it operates in the desired manner (IEC 61508, 2010).

içÖáÅ=ëçäîÉê=

fåéìí=ÉäÉãÉåíë= ^Åíì~íáåÖ=ÉäÉãÉåíë=

Figure 2.1: E/E/PE safety-related system elements (reproduced from Rausand, 2011).

Safety Function

An E/E/PE safety-related system is a physical system that performs one or more safety functions.

If an EUC introduces a specific process demand, the safety functions should maintain or achieve

a safe state. A process demand is a deviation in the EUC. The safety functions are determined

from a hazard and risk analysis.

A safety function may fail in two different ways. The safety function may be unable to per-

form its required function upon a specific process demand in the EUC, or it is performed with-

out a specific process demand. The former failure mode is called fail-to-function and the latter

is called spurious activation or spurious trip (Rausand, 2011).
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Failure Classification

IEC 61508 distinguishes between random hardware failures and systematic failures for E/E/PE

safety-related systems. Random hardware failures are failures in the hardware of E/E/PE safety-

related systems that occur at random times, and they are caused by degradation mechanisms

(IEC 61508, 2010). The system failure rates for random hardware failures "... can be predicted

with reasonable accuracy ..." (IEC 61508, 2010). Systematic failures are, according to IEC 61508

(2010), failures that cannot be quantified because their occurrence can not be predicted, and

such failures may occur from design, implementation, installation, or maintenance and opera-

tion errors. Systematic failures are further explained in Section 2.3.

In addition, IEC 61508 distinguishes between dangerous and safe failures, and these are clas-

sified into four categories:

• Dangerous (D) failures are failures that prevent the SIS from performing its required SIF

upon a demand. These failures may be further categorized in to:

– Dangerous detected (DD) failures are dangerous failures detected immediately after

they occur.

– Dangerous undetected (DU) failures are dangerous failures that only are revealed

upon a demand or during testing.

• Safe (S) failures are non-dangerous failures. These failures may be further categorized in

to:

– Safe detected (SD) failures are safe failures detected immediately after they occur.

– Safe undetected (SU) failures are safe failures that are not detected.

Configuration of E/E/PE Safety-related Systems

The configuration, or architecture, of an E/E/PE safety-related system affects the reliability, and

if redundant elements are implemented, the reliability increases. To denote redundancy, the

configuration of an E/E/PE safety-related system is called k-out-of-n (koon), where at least k

elements in a subsystem comprising n elements must be functioning for the subsystem to be
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functioning. For example, the E/E/PE safety-related system in Figure 2.1 is only functioning if

at least 1-out-of-3 (1oo3) input elements are functioning, or in other words, two input elements

may fail and the system is still functioning. The configuration of the logic solver subsystem is

without redundancy, and at least 1oo1 element must be functioning.

2.2 IEC 61508

IEC 61508 is a generic standard for E/E/PE safety-related systems. The standard is risk-based

and applies to all types of E/E/PE safety-related systems irrespectively of the application (IEC

61508, 2010). IEC 61508 is a performance-based standard, which means that it does not pre-

scribe how compliance can be achieved, but instead, it presents different methods that may be

used to comply with the requirements.

One of the main applications of IEC 61508 is to assist vendors in the development of new,

safe, and reliable E/E/PE safety-related systems (Lundteigen, 2009). The standard also enables

industries to develop their own sector-specific standards. The international standards IEC 62061

(2012) and IEC 61511 (2003) are developed within the framework of IEC 61508 for the machine

sector and the process industry, respectively. These standards are further introduced in Chapter

3.

The overall safety lifecycle and safety integrity levels (SILs) are two fundamental concepts in

IEC 61508. The overall safety lifecycle is the technical framework and an overview model of all

the activities, from concept to decommissioning, that need to be carried out in order to claim

compliance for an E/E/PE safety-related system. The safety lifecycle is reproduced from IEC

61508 in Figure 2.2.

Safety integrity is the performance-measure for safety functions, and is defined in IEC 61508

(2010) as:

Z Safety integrity: Probability of an E/E/PE safety-related system satisfactorily performing the

specified safety functions under all the stated conditions within a stated period of time.

IEC 61508 distinguishes between four discrete SILs for safety functions implemented by
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Figure 2.2: The overall safety lifecycle (reproduced from IEC 61508, 2010).

E/E/PE safety-related systems. SIL 1 is the lowest and least reliable, and SIL 4 is the highest

and most reliable. The SILs are presented in Table 2.1.

Table 2.1: SIL table (adapted from IEC 61508, 2010).

SIL Low-demand (PFDavg) High-demand or continuous (PFH)

4 ∏ 10°5 to < 10°4 ∏ 10°9 to < 10°8

3 ∏ 10°4 to < 10°3 ∏ 10°8 to < 10°7

2 ∏ 10°3 to < 10°2 ∏ 10°7 to < 10°6

1 ∏ 10°2 to < 10°1 ∏ 10°6 to < 10°5

The quantitative reliability measure for the probability of a safety function performing sat-

isfactorily depends on how often demands for the safety function occur. The frequency of de-

mands a safety function must respond to, in order to keep the EUC in a safe state, differ from

almost never to continuously. IEC 61508 (2010) distinguishes between three modes of operation

for safety functions performed by E/E/PE safety-related systems:



CHAPTER 2. E/E/PE SAFETY-RELATED SYSTEMS AND IEC 61508 12

• Low-demand mode: Is when a safety function is only performed on demand, and the

frequency of demands are once per year or less.

• High-demand mode: Is when a safety function is only performed on demand, and the

frequency of demands are once per year or greater.

• Continuous mode: Is when the safety function is performed continuously during normal

operation.

The reliability measure for safety functions operating in a low-demand mode is the average

probability of dangerous failure on demand (PFDavg). The reliability measure for safety func-

tions operating in high-demand or continuous mode is the average frequency of dangerous fail-

ures per hour (PFH). These reliability measures are further explained in the following sections.

Note that IEC 61508 differentiates between three modes of operation, but the standard only dis-

tinguishes between low-demand mode of operation and high-demand or continuous mode of

operation for most purposes.

Probability of Failure on Demand

If a DU failure occurs in an element of an E/E/PE safety-related system, the system is unavailable

upon a demand and the safety function will be unable to perform its required function. This is

the safety unavailability of the safety element, which is referred to as probability of failure on

demand (PFD). PFD is the quantitative measure for E/E/PE safety-related systems operating in

low-demand mode, and it only considers DU failures (Rausand, 2011). The PFD of an E/E/PE

safety-related system element at time t , with a constant failure rate ∏DU, is given by:

PFD(t ) = Pr(TDU ∑ t ) = 1°e°∏DUt (2.1)

The E/E/PE safety-related system element is proof-tested at time ø. It is assumed perfect

testing for the element, which means that all failures are revealed and repaired to a state con-

sidered "as good as new". The time consumed during these activities and the test itself is, under

the assumption of perfect testing, considered negligible (Rausand, 2011). Under these assump-

tions the PFD of the element will have the same stochastic properties in all test intervals, (0, ø],
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(ø, 2ø], ... (Rausand, 2011).

The average value of PFD is a measure used in IEC 61508, and it is derived as:

PFDavg =
1
ø

Zø

0

≥
1°e°∏DUt

¥
d t = 1° 1

∏DUø

≥
1°e°∏DUø

¥
(2.2)

According to Rausand (2011), the result of equation 2.2 can be approximated by:

PFDavg º
∏DUø

2
(2.3)

The approximation in equation 2.3 can be applied for a single element (i.e., a 1oo1 archi-

tecture) with periodically testing and the initial assumptions (Rausand, 2011). The PFDavg is

used in the determination of SIL for a safety function operating in low-demand mode, and the

connection is presented in Table 2.1. In addition to the safety unavailability caused by a DU

failure, IEC 61508 includes the safety unavailability caused by mean repair time (MRT) after a

DU failure is revealed upon a test and mean time to restoration (MTTR) after the occurrence of

a DD failure. These contributions are included because it is assumed that the EUC is operating

continuously, and a demand for the safety function may occur during repair. According to IEC

61508 (2010), the PFDavg for a single element is:

PFDavg =∏DU(
ø

2
+MRT)+∏DD ·MTTR (2.4)
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Average Frequency of Dangerous Failures per Hour

The average frequency of dangerous failures per hour (PFH) is the quantitative measure for

safety functions operating in high-demand or continuous mode. According to IEC 61508 (2010),

PFH is the average unconditional failure intensity, or the average rate of occurrence of failures

(ROCOF), and it is defined as:

PFH(T ) = 1
T

ZT

0
w(t )d t (2.5)

In Equation 2.5, w(t ) is (Rausand and Høyland, 2004):

w(t ) =W 0(t ) = d
d t

E(N (t )) = lim
¢t!0

E(N (t +¢t )°N (t ))
¢t

(2.6)

In Equation 2.6, W (t ) = E(N (t )) is the mean number of failures in the interval (0, t ], and if we

assume constant failure rate for a single element and that ¢t is small, w(t ) can be estimated as:

ŵ(t ) = Number of failures in(t , t +¢t ]
¢t

º ∏ ·¢t
¢t

=∏ (2.7)

Note that the estimation in Equation 2.7 is only valid for a single element. If an E/E/PE

safety-related system puts the EUC in a safe state upon DD failures, the PFH of a single element

is (IEC 61508, 2010):

PFH =∏DU (2.8)
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2.3 Other Requirements for the Achievable SIL

Even though a SIL is defined as range of either PFDavg or PFH, it is not enough to show that

a safety function fulfills the target failure measure to achieve a specific SIL. In addition, IEC

61508 requires that architectural constraints and avoidance and control of systematic failures

are accounted for.

Architectural Constraints

In addition to the quantitative requirements for random hardware failure, IEC 61508 requires

that an E/E/PE safety-related system, implementing a safety function, must comply with the ar-

chitectural constraints before a specific SIL can be claimed for the safety function. Architectural

constraints limits the maximum allowable SIL that can be claimed for a safety function. Accord-

ing to IEC 61508 (2010), there are two possible routes to achieve the architectural constraints

requirements. The first route limits the achievable SIL based on the hardware fault tolerance

(HFT) and the safe failure fraction (SFF). The HFT applies to the architecture of the subsystems

in an E/E/PE safety-related system, and an HFT of N means that at least N +1 faults must occur

before the safety function is unavailable (IEC 61508, 2010). In other words, a subsystem with

identical elements and a koon-configuration would have an HFT of n ° k (e.g., HFT= 1 for a

1oo2-configuration).

The SFF is a property of an element, and it is defined in IEC 61508 (2010) by the ratio of the

sum of S-failure rates and DD-failure rates and the sum of all the failure rates for the element.

Given that the failure rates are constant, the SFF is:

SFF =
P
∏S +

P
∏DDP

∏S +
P
∏DD +P

∏DU
(2.9)

When determining the architectural constraints, IEC 61508 distinguishes between type A

and type B elements. An element is considered as type A if the element complies with all three

requirements (IEC 61508, 2010):

1. The failure modes for all components in the element are well defined.

2. The behavior of the components under fault conditions is well determined.
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3. The claimed failure rates are confirmed by sufficient dependable failure data.

If not all three requirements are fulfilled, the element is considered as type B. Both type A and

type B elements and subsystems can achieve SIL 4, but the requirements for achieving SIL 4 for

type B elements and subsystems are more restrictive than for type A elements and subsystems.

The achievable SIL for type A and type B elements and subsystems are presented in the Tables

2.2(a) and 2.2(b), respectively.

Table 2.2: Architectural constraints for type A and type B elements or subsystems (adapted from
IEC 61508, 2010).

(a) Type A element or subsystem

SFF HFT
0 1 2

< 60% SIL 1 SIL 2 SIL 3
60%°< 90% SIL 2 SIL 3 SIL 4
90%°< 99% SIL 3 SIL 4 SIL 4

∏ 99% SIL 4 SIL 4 SIL 4

(b) Type B element or subsystem

SFF HFT
0 1 2

< 60% Not allowed SIL 1 SIL 2
60%°< 90% SIL 1 SIL 2 SIL 3
90%°< 99% SIL 2 SIL 3 SIL 4

∏ 99% SIL 3 SIL 4 SIL 4

The second route that may be chosen to achieve the architectural constraints requirements

is to show that the hardware is "proven in use". This means that if the reliability data is based

on a sufficient amount of recorded data from the field and high confidence in the data can be

demonstrated, IEC 61508 requires a minimum HFT for a safety function with a specified SIL. The

minimum HFT for all SILs according to the requirements for the second route to compliance

with the architectural constraints in IEC 61508 is presented in Table 2.3.

Table 2.3: Minimum HFT for safety functions according to the second route to compliance with
the architectural constraints.

The SIL of a safety function Operational mode Minimum HFT

SIL 1 Low-demand 0
SIL 1 High-demand or continuous 0
SIL 2 Low-demand 0
SIL 2 High-demand or continuous 1
SIL 3 Low-demand 1
SIL 3 High-demand or continuous 1
SIL 4 Low-demand 2
SIL 4 High-demand or continuous 2
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Avoidance and Control of Systematic Failures

In addition to the quantitative requirements and the architectural constraints for random hard-

ware failures, IEC 61508 requires measures for avoidance and control of systematic failures. A

systematic failure is defined in IEC 61508 (2010) as:

Z Systematic failure: Failure, related in a deterministic way to a certain cause, which can only

be eliminated by a modification of the design or of the manufacturing process, operational pro-

cedures, documentation or other relevant factors.

Whereas random hardware failures are precisely defined and only caused by degradation

mechanisms in the hardware, the definition of systematic failures is comprehensive and not

precise. According to IEC 61508 (2010), all failures are either systematic failures or random hard-

ware failures, and points out that the failure rates for random hardware failures can be predicted,

but not for systematic failures. Thus, a possible way of interpreting the difference is to say that

systematic failures are a collective term for all failures that are not random hardware failures.

Examples of systematic failures include software failures, detectors installed in the wrong

place, and wrongly calibrated sensors. Such failures are difficult to predict, and they are often

caused by design errors that are latent when the E/E/PE safety-related system is put in to op-

eration. Furthermore, systematic failures may also be introduced during maintenance, testing,

repair, and by environmental stresses in the operational phase.

IEC 61508 requires measures and techniques to avoid the introduction of systematic failures

in the design phase, which include the control of complexity, formalization of maintenance re-

quirements, and planning of tests. In addition to the required measures for avoiding systematic

failures, the standard requires that E/E/PE safety-related systems are designed to tolerate, or

control, systematic failures in the operational phase, such as environmental stresses and fore-

seeable human errors.





Chapter 3

Differences In Different Operational Modes

A safety function implemented by an E/E/PE safety-related system operates, according to IEC

61508 (2010), in either low-demand mode or high-demand or continuous mode. In continuous

mode, the safety function continuously prevents the occurrence of a specific hazardous event,

and a failure in the E/E/PE safety-related system will immediately result in a hazardous event.

PFH is a sensible measure for the reliability of the E/E/PE safety-related system operating in

continuous mode (Hauge et al., 2013).

PFDavg is a meaningful reliability measure for safety functions operating in low-demand

mode (Jin et al., 2011), which is supported by extensive research on the calculation and mod-

eling of PFDavg (e.g., Bukowski, 2006; Innal, 2008; Hauge et al., 2013; Lundteigen and Rausand,

2009). However, when a safety function is demanded more than once per year, the reliability

measure shifts to PFH, and it is by IEC 61508 (2010) classified as a high-demand or continuous

mode of operation. The distinction between low-demand mode of operation and high-demand

or continuous mode of operation at exactly one demand per year is precise, but it is not well ex-

plained or argued in IEC 61508. Furthermore, this distinction indicates that there are differences

between the safety functions operating in low-demand mode and high-demand or continuous

mode.

In addition to the evident difference between calculating the reliability for low-demand mode

of operation and high-demand or continuous mode of operation (i.e., PFDavg and PFH), other

possible differences between the two modes of operation are discussed in this chapter.

19
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3.1 Relevant Standards

IEC 61508 is generic for all E/E/PE safety-related systems and does not provide a clear expla-

nation of the differences in low-demand mode of operation and high-demand or continuous

mode of operation. So, in order to get two perspectives for the different modes of operation, the

application-specific standards IEC 61511 and IEC 62061 are considered.

IEC 61511

IEC 61511 is the sector-specific standard for E/E/PE safety-related systems in the process indus-

try, and it is based on IEC 61508. Whereas IEC 61508 is directed at manufacturers and suppliers,

IEC 61511 is directed at designers, integrators, and users.

Because of different terminology in the process sector, E/E/PE safety-related systems is re-

ferred to as safety instrumented systems (SISs), and the safety function performed by a SIS is

referred to as a safety instrumented function (SIF). According to IEC 61511 (2003), a SIF is either

a safety instrumented protection function or a safety instrumented control function. The latter

operates in a continuous mode and is rare in the process industry (IEC 61511, 2003).

IEC 61511 addresses all safety lifecycle activities for SISs. However, in some situations, the

standard does not apply and refers back to IEC 61508. According to IEC 61511 (2003), these

situations are:

• When manufacturers want to claim new devices suited for SISs.

• When manufacturers, SIS designers, integrators, and users want to develop system soft-

ware and full variability language.

• When a SIF should have a SIL 4.

Unlike IEC 61508, IEC 61511 only distinguishes between SIFs operating in demand mode

and continuous mode, and the standard is most relevant for SIFs operating on demand.

IEC 62061

IEC 62061 is based on IEC 61508 and is specific for machinery. The standard applies to safety-

related electrical, electronic, programmable electronic control systems (SRECSs), and it provides
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requirements for the design, integration, and validation of SRECSs (IEC 62061, 2012). IEC 62061

is only applicable for SRECSs in machines that are not portable by hand. SRECSs perform safety-

related control functions (SRCFs), and these functions operate in high-demand or continuous

mode. IEC 62061 considers low-demand mode of operation not relevant for SRCFs, and focuses

on the opposite mode of operation compared to IEC 61511.

E/E/PE Safety-related System, SIS, and SRECS

Three different standards are introduced, and each standard applies to either E/E/PE safety-

related systems, SISs, or SRECSs. Note that these terms are used for the same type of safety

system. The only difference between them is that SISs mainly implement safety functions oper-

ating in low-demand mode, SRECSs only implement safety functions operating in high-demand

or continuous mode, and E/E/PE safety-related systems implement safety functions with all

modes of operation. Furthermore, a SIS implements SIFs, a SRECS implements SRCFs, and an

E/E/PE safety-related system implements safety functions. The reason for this confusing use of

terminology is uncertain, but it may be because of different terminology in the industries.

Table 3.1: Terminology for the different operational modes.

Operational mode E/E/PE safety-related system Safety function

Low-demand SIS SIF
High-demand or continuous SRECS SRCF

It is necessary to specify the terminology used in this master thesis to avoid confusion. The

term E/E/PE safety-related system is from here on used as the collective term for the system

that implements safety functions operating in all modes. Furthermore, it is from here on distin-

guished between SIF and SRCF, which are assumed to only operate in low-demand mode and

high-demand or continuous mode, respectively. The terminology for the different operational

modes is presented in Table 3.1.
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3.2 Comparison of Safety Requirements Specifications

To investigate differences between SIFs and SRCFs, the requirements for the safety requirements

specifications (SRSs) in IEC 61511 (2003) and IEC 62061 (2012) are compared.

A SRS is developed in phase 9 of the safety lifecycle presented in Figure 2.2. This is an impor-

tant and comprehensive document that the end-user prepares if a safety function, implemented

by an E/E/PE safety-related system, is required, and it includes functional requirements and

safety integrity requirements for the safety function. In other words, the SRS specifies what the

safety function is required to do and how well it is required to perform.

The purpose of a SRS is to provide a detailed specification of a safety function and its perfor-

mance so that the designer and producer can make an E/E/PE safety-related system that comply

with the end-user’s requirements. In addition, the SRS is used for the validation of the E/E/PE

safety-related system prior to operation.

Functional Requirements

The objectives of the functional requirements for a safety function are to provide a detailed de-

scription of what the safety function is required to do and to include all relevant information for

the functionality of the safety function. To enable a safe and reliable design of the E/E/PE safety-

related system implementing a safety function, the functional requirements should, according

to IEC 61508 (2010), include information about:

• Operational modes of the EUC (e.g., start-up, normal, maintenance, foreseeable abnormal

conditions, and shut-down).

• Operational mode of the safety function.

• Response time performance for the safety function.

• The interfaces between the E/E/PE safety-related system and operators and other sys-

tems.

• All modes of behavior of the E/E/PE safety-related system, and especially the behavior

upon a failure.
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A comparison of the functional requirements in IEC 61511 and IEC 62061 shows that they

are essentially the same, but they are different in one aspect. IEC 62061 (2012) requires a priori-

tization of functions, including SRCFs, that can be activated simultaneously to avoid conflicting

actions. This requirement is not included in IEC 61511 (2003), and there may be many reasons

for this. However, this exclusion seems, in the author’s opinion, to indicate that SIFs are inde-

pendent of the EUC and its control system, because prioritizing functions is irrelevant if SIFs are

independent of other functions (e.g., control functions). For SRCFs, the requirement indicates

that they are not necessarily independent of the EUC and its control system.

Safety Integrity Requirements

The safety integrity requirements require that each safety function shall be expressed as a SIL,

and the SIL is determined by the necessary risk reduction derived from the risk assessment. The

safety integrity requirements for SIFs and SRCFs are both expressed as a SIL. Thus, there are no

differences for specifying the performance of SIFs and SRCFs.

However, the SILs for SIFs are defined as intervals of PFDavg and the SILs for SRCFs are de-

fined as intervals of PFH. When developers of E/E/PE safety-related systems shall demonstrate

that the specified SIL is achieved, they must prove this through the calculation of either PFDavg

or PFH. The difference is discussed in the following section.

3.3 Realization of SISs and SRECSs

The realization of an E/E/PE safety-related system includes design and engineering of the phys-

ical system that shall perform the safety function specified in the SRS, and this is performed in

phase 10 of the safety lifecycle in Figure 2.2. The developer of the E/E/PE safety-related system

must demonstrate that the system complies with the SIL specified by the end-user in the SRS.

To do this, the developer must quantify the effects of random hardware failures (i.e., calculating

PFDavg or PFH) and account for the architectural constraints, systematic failures, and testing.
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PFDavg versus PFH

PFDavg is the quantitative reliability measure for SISs and PFH is the quantitative reliability mea-

sure for SRECSs. The main difference is that PFDavg is a probability and PFH is a rate. To explain

the relationship between the reliability measures, the simplified formulas in Hauge et al. (2013)

are described, and the formulas are applied in two examples.

Consider a single E/E/PE safety-related system element with a constant failure rate. The

element is part of a system that is immediately put in a safe state upon a DD failure, which

means that only DU failures contribute to safety unavailability. Furthermore, the assumptions

claimed in Chapter 2 for PFDavg apply and safety unavailability contributions caused by repair

and testing are excluded. The PFDavg and PFH of the E/E/PE safety-related system element are

(Hauge et al., 2013):

PFDavg º
∏DU ·ø

2
(3.1)

PFH =∏DU (3.2)

A main challenge with the distinction between SIS and SRECS at exactly one demand per

year in IEC 61508 is the inconsistency experienced when the reliability of E/E/PE safety-related

systems is calculated. By applying the formulas in Equation 3.1 and Equation 3.2, the inconsis-

tency in IEC 61508 becomes evident. Assume that an E/E/PE safety-related system element:

• has a constant failure rate of 0.5 ·10°4 per hour, which is a failure rate used in the calcula-

tion examples in IEC 61508;

• is proof-tested with a proof test interval of two months (i.e., ø= 1460 hours);

• is demanded once per year, which is the limit between SIS and SRECS.

By applying the simplified formulas in Equation 3.3 and Equation 3.4 and the assumptions

stated above, PFDavg and PFH of the E/E/PE safety-related system element are:

PFDavg,1oo1 º
∏DU ·ø

2
= 0.5 ·10°6 ·1460

2
= 3.65 ·10°4 (3.3)



CHAPTER 3. DIFFERENCES IN DIFFERENT OPERATIONAL MODES 25

PFH1oo1 =∏DU = 0.5 ·10°6 = 5 ·10°7 (3.4)

By comparing the calculated values for PFDavg and PFH in Equation 3.3 and Equation 3.4,

respectively, with the SIL table in Table 2.1, the PFDavg and the PFH correspond to SIL 3 and

SIL 2, respectively. Hence, the element achieves, according to the distinction between SIS and

SRECS in IEC 61508, a lower risk reduction as part of an E/E/PE safety-related system that is

classified as a SRECS than as part of an E/E/PE safety-related system that is classified as a SIS.

This cannot be right, because the element is the same irrespective of what E/E/PE safety-related

system it is a part of.

The inconsistency in IEC 61508 is also evident for subsystems. Consider a subsystem with

two independent elements with a constant failure rate of 25 ·10°6 per hour. The subsystem is

proof-tested with a proof test interval of six months (i.e., ø= 4380 hours). Note that the param-

eters are derived from the reliability calculation examples in IEC 61508 (2010). By applying the

simplified formulas in Hauge et al. (2013), PFDavg and PFH of the subsystem are:

PFDind.
avg,1oo2 º

(∏DU ·ø)2

3
= (25 ·10°6 ·4380)2

3
= 4.00 ·10°3 (3.5)

PFHind.
1oo2 º (∏DU)2 ·ø= (25 ·10°6)2 ·4380 = 2.74 ·10°6 (3.6)

By comparing the results in Equation 3.5 and Equation 3.6 with the SIL table in Table 2.1, the

PFDavg and the PFH correspond to SIL 2 and SIL 1, respectively.

Assume now that the subsystem is demanded once every 10 months. If an E/E/PE safety-

related system developer chooses to comply with IEC 62061, the subsystem achieves a SIL 1.

If, on the other hand, an E/E/PE safety-related system developer chooses to comply with IEC

61511, the subsystem can achieve a SIL 2. This is possible because IEC 61511 only distinguishes

between continuous mode and demand mode, and in demand mode of operation, either PFDavg

or PFH can, according to IEC 61511 (2003), be chosen as reliability measure.
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Architectural Constraints

The architectural constraints for programmable electronic (PE) logic solvers in IEC 61511 (2003)

are almost the same as the architectural constraints in IEC 61508 for type B subsystems pre-

sented in Table 2.2(b). The differences are that IEC 61511 does not treat SIL 4 subsystems and

that no extra credit is given for subsystems with SFF ∏ 99%. The architectural constraints for

all subsystems (e.g., sensors, actuating elements), except PE logic solvers, in IEC 61511 are pre-

sented in Table 3.2.

Table 3.2: Architectural constraints in IEC 61511 for all subsystems, except PE logic solvers
(adapted from IEC 61511, 2003).

SIL Minimum HFT
1 0
2 1
3 2
4 Reference to IEC 61508.

According to IEC 61511 (2003), the required minimum HFT for all subsystems except PE logic

solvers does not explicitly depend on SFF, which can be observed in Table 3.2. It is, however,

required that "... the dominant failure mode is to the safe state or dangerous failures are detected

...", and if this requirement is not met, the minimum HFTs in Table 3.2 are increased by one (IEC

61511, 2003). On the other hand, if a subsystem is demonstrated "proven in use" in accordance

with the requirements in IEC 61511, the minimum HFTs in Table 3.2 can be reduced by one

(IEC 61511, 2003). For differences and challenges related to the demonstration of "proven in

use" subsystems in accordance with IEC 61508 and IEC 61511, see Amkreutz and van Beurden

(2004).

In IEC 62061, the architectural constraints are nearly the same as the architectural con-

straints in IEC 61508 for type B subsystems presented in Table 2.2(b). The only difference is that

IEC 62061 does not account for SIL 4. Thus, a comparison with the architectural constraints in

IEC 61511 shows that IEC 62061 gives extra credit to subsystems with an HFT equal to zero and

a SFF ∏ 99%. On the contrary, the architectural constraints in IEC 62061 are more restrictive, be-

cause the standard does not allow demonstration of "proven in use" subsystems, which means

that the required minimum HFT in IEC 62061 cannot be reduced. The only exception is that
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electromechanical subsystems with an HFT equal to zero and a SFF < 60%, can achieve a SIL 1

if they are "proven in use" (IEC 62061, 2012).

Systematic Failures

Systematic failures contribute to safety unavailability of an E/E/PE safety-related system, and

such failures are either errors introduced during the specification, design, and realization phase

of the safety lifecycle, that are not detected during the safety validation phase, or errors intro-

duced during the operational phase. Hauge et al. (2013) suggest five categories of systematic

failures:

• Software

• Design related

• Installation

• Excessive stress

• Operational failures

The first category is software faults, which can be caused by, for example, programming er-

rors. Software is outside the scope of this master thesis. However, it seems unlikely that there

are any significant differences related to software faults for SIFs and SRCFs.

Design related failures are introduced during the specification, design, and manufacturing

phase. If these phases are performed in accordance with requirements in IEC 61511 (2003) or

IEC 62061 (2012), there are no differences for SISs and SRECSs.

Installation failures are introduced during installation or commissioning. If such failures are

not revealed in the validation phase of the safety lifecycle in Figure 2.2, they may be inherent

until a demand occurs.

In some situations, not all stresses or conditions are considered in the design specification,

which may cause excessive stress failures. Distinguishing between random hardware failures

and excessive stress failures can be challenging (Hauge et al., 2013), and a brief discussion about

this is given in Hokstad and Corneliussen (2004).
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Humans interact with the equipment during maintenance, operation, and testing in the op-

erational phase, and human errors in this phase introduce operational failures. Human interac-

tions, different work practices, and various procedures are factors that may contribute to oper-

ational failures.

There are many factors that must be considered when the possibility of systematic failures

is assessed, such as the complexity of the E/E/PE safety-related system, the EUC, and the EUC

control system; the operational environment; and the usage. These factors vary greatly from

industry to industry and from case to case, and it is challenging to highlight any differences

for SISs and SRECSs from a generic point of view. For example, a SIS that closes a valve in the

process industry may be rather simple compared to a SIS that shuts down a well (e.g., blowout

preventer) in the oil and gas industry. Moreover, one could expect a higher frequency of human

interactions (e.g., testing) for SRECSs compared to SISs, but some SRECSs operate so frequently

that human interactions becomes unfeasible.

Testing

A safety function becomes unavailable when sufficient dangerous failures occur in the E/E/PE

safety-related system, and such failures are detected by testing. For an E/E/PE safety-related

system to be reliable, it is important that the design makes it possible to reveal all dangerous

failures upon testing. There are three types of testing for E/E/PE safety-related systems:

• Diagnostic testing

• Proof testing

• Demands serving as testing

Diagnostic testing, or automatic self-testing, is usually integrated with the logic solver and

is carried out online, which means during normal operation. The logic solver sends signals

to other elements (e.g., actuating elements) and their response are compared with predefined

values (Rausand, 2011). The signals from the logic solver are sent frequently, and detection of a

DD failure is almost immediate. The ratio between DD failures and total dangerous failures is

called the diagnostic coverage.
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Proof testing is carried out with intervals of length ø, and the objective is to reveal all DU

failures, which are failures that diagnostic tests do not reveal. To ensure that a safety function

performs as required, a proof test should preferably be as realistic as possible. However, realistic

proof tests are not always feasible. For example, it is impractical to start a fire to test the smoke

detectors. The fraction of dangerous failures detected by proof testing is referred to as the proof

test coverage (Jin et al., 2011).

For some E/E/PE safety-related systems, demands may serve as testing. Data about acti-

vated elements, whether the activation was successful for all elements, and response times can

be recorded during operation and utilized for testing (Hauge et al., 2013). Because a demand

requires the E/E/PE safety-related system to perform its safety function, a demand is the "ulti-

mate" proof test, and demands serving as testing may therefore potentially replace proof testing.

A challenge with using demands as a means for testing is that demands are random events that

cannot be predicted (Hauge et al., 2013), which means that a safety function may, in periods,

not experience demands as frequent as the required proof test interval. This may however be

solved by conducting a proof test when the time between two demands exceeds the proof test

interval.

Diagnostic testing is basically the same for SISs and SRECSs. Whether SISs or SRECSs are

capable of performing diagnostic testing depends on the chosen hardware and its functionality.

The reliability of SISs depends on the proof test coverage and the proof test interval. The

PFD decreases with more frequent proof testing (i.e., shorter test intervals), and a high proof

test coverage contributes to higher reliability for the SIS. However, when the PFDavg is calculated

from the formulas in IEC 61511 (2003) and IEC 61508 (2010) it is assumed perfect proof testing,

and thus, the effect of the proof test coverage is not accounted for. Hauge et al. (2013) have

recognized this shortcoming, and claim that either the probability of a test independent failure

(PTIF) or the proof test coverage should be incorporated into the PFDavg.

Proof testing is not relevant for SRECSs that operate continuously, because a DU failure will

immediately result in a hazardous event. SRECSs that operate in high demand mode will in

practice experience higher reliability with proof testing. However, the PFH in IEC 62061 (2012)

does not account for proof testing, and consequently, the calculated reliability is not increased

by reduced proof test intervals.
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If demands shall serve as testing, a sufficient frequency of demands is required. It would,

for example, be unreasonable to replace a proof test conducted every six months with demands

serving as testing when the safety function experiences demands once every 10 years. Using

demands as testing is therefore most relevant for SRECSs.

3.4 Other Characteristics of SISs and SRECSs

In the process industry, a barrier is referred to as a protection layer (PL), and a SIS is often clas-

sified as an independent protection layer (IPL) (CCPS, 2007), which is defined in CCPS (1993)

as:

Z Independent protection layer: A device, system, or action which is capable of preventing a

scenario from proceeding to its undesired consequence independent of the initiating event or

the action of any other layer of protection associated with the scenario. The effectiveness and

independence of an IPL must be auditable.

For a SIS to be independent it should not be affected by the condition or the state of the

surrounding equipment, such as the EUC and its control system (CCPS, 2007). The SIS should

be physically separated to avoid that a failure in the EUC affects the performance of the SIF. For

example, a fire extinguishing system that detects fire and activates sprinklers is an independent

SIS, and it should not be affected by an explosion. That a SIS is independent is considered as

one of its main characteristics (CCPS, 2007).

For machinery, it is seldom that a SRECS is completely independent of the EUC (i.e., the

machine) and its control system. Instead of physical separation, a SRCF should be functionally

independent of other control functions (Macdonald, 2004). An interlock guard, that stops the

operation of the EUC when it is opened, can, for example, be operated with priority or by a

dedicated logic solver within the control system.
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3.5 Summary and Discussion

The requirements for SRSs for SIFs and SRCFs in IEC 61511 (2003) and IEC 62061 (2012) are

compared, and the comparison shows that there are essentially no differences. Overall, the re-

quirements and the informative parts in IEC 61511 (2003) and IEC 62061 (2012) do not provide a

better understanding of the different operational modes. In the author’s opinion, the standards

are too generic, even though they are supposed to be application-specific.

The realization of SISs and SRECSs includes demonstrating the reliability through the cal-

culation of PFDavg or PFH and ensuring that architectural constraints, systematic failures, and

testing are accounted for. The inconsistency of obtaining different SILs because of the distinc-

tion between SISs and SRECSs in IEC 61508 is demonstrated. In the author’s opinion, the option

to choose reliability measure in demand mode of operation in IEC 61511 seems like a better

solution, because choosing reliability measure in demand mode resolves the inconsistency ex-

perienced in IEC 61508.

The architectural constraints in IEC 62061 are more restrictive than both the architectural

constraints in IEC 61511 and IEC 61508. IEC 62061 (2012) states that the demonstration of

"proven in use" subsystems and elements are not suitable for machinery, but no further ex-

planation or reason for this is provided in the standard.

According to IEC 61508 (2010), a safety function should maintain or achieve a safe state for

the EUC, and the safety function operates in either low-demand mode or high-demand or con-

tinuous mode. However, no further classification is developed. Seeing as the existing classifi-

cation of safety functions based on frequency of demands is questioned in the literature (e.g.,

Hauge et al., 2013), a new approach for classifying safety functions is proposed in the following

chapter.





Chapter 4

A New Approach for Classifying Safety

Functions

Several research projects on the reliability calculation of E/E/PE safety-related systems and the

classification of safety functions as low-demand mode of operation and high-demand or con-

tinuous mode of operation have been conducted. Bukowski (2006), Jin et al. (2011), and Liu and

Rausand (2011) analyze the reliability of E/E/PE safety-related systems using Markov models

without distinguishing between low-demand mode of operation and high-demand or continu-

ous mode of operation, and instead, they incorporate the demand rate.

Bukowski (2006) calculates the probability of being in a state where both a DU failure and a

demand has occurred (i.e., a hazardous event). Liu and Rausand (2011) investigate the PFD and

the visit frequency of the hazardous state with changing demand rate and demand duration,

and Jin et al. (2011) calculate the hazardous event frequency (HEF) for changing demand rate

and demand duration, calculate the HEF for a developed scenario-based formula, and compare

the results.

According to Liu and Rausand (2011), E/E/PE safety-related systems operating close to the

borderline between low-demand mode and high-demand or continuous mode should be treated

as a separate group, because the formulas in IEC 61508 (2010) are not adequate for the systems

operating in a "medium-demand" mode.

There is disagreement about the clear borderline between low-demand mode of operation

33
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and high-demand or continuous mode of operation in IEC 61508 (2010). The PDS 1 method

handbook (Hauge et al., 2013) suggests that we should distinguish between low-demand, high-

demand, and continuous mode of operation for E/E/PE safety-related systems. Furthermore,

the handbook recommends using PFD as a measure for both low-demand and high-demand

mode of operation, and PFH as a measure for continuous mode of operation.

Based on this research discussion and the discussion about differences in different opera-

tional modes in Chapter 3, a new approach for classifying safety functions is proposed in this

chapter.

4.1 A New Approach for Classifying Safety Functions

In the author’s opinion, the main objective of distinguishing between low-demand and high-

demand or continuous mode of operation for E/E/PE safety-related systems in IEC 61508 (2010)

is to define when to use PFDavg or PFH. However, as discussed in the previous section, some

disagree with this clear split based on frequency of demands. Consequently, the author has

suggested a generic classification of safety functions implemented by E/E/PE safety-related sys-

tems.

The proposed classification in the following section is based on a distinction made in IEC

61511 (2003). According to IEC 61511 (2003), a SIF is either a safety instrumented control function

(SICF) or a safety instrumented protection function (SIPF). A SICF operates in continuous mode

(IEC 61511, 2003), and the mode of operation of SIPFs is not specified, but they are assumed to

operate on demand. The distinction between SICF and SIPF is adopted, modified, and the more

generic terms safety control function (SCF) and safety protection function (SPF) are introduced.

It is stressed that the suggested classification of safety functions as SCFs and SPFs is pragmatic,

and the intention is to give a different perspective on safety functions.

1PDS is a Norwegian acronym for "reliability of computer based safety systems".
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Safety Control Functions and Safety Protection Functions

The suggested classification of safety functions as SCFs and SPFs is based on the event loss of

control. However, there is no agreed definition of loss of control in the literature (e.g., Kjellén,

2000). Consequently, the author has suggested the following definition:

Z Loss of control: The event where no measures are able to manage the performance of the

EUC in a desired manner, and one or more hazards are unintentionally released.

The event loss of control causes a persistent change in the state of the EUC from a controlled

state to an uncontrolled state. In an uncontrolled state, no measures can change, direct, regu-

late, or influence the performance of the EUC in a desired manner. After loss of control in an

accident scenario, only the hazards that are released can potentially be managed by measures,

but the feasibility of this depends on the properties and characteristics of the hazards. Note that

the definition of loss of control is from a system perspective and it is developed for the purpose

of distinguishing between SCFs and SPFs.
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Figure 4.1: Classification of safety functions as SCFs and SPFs in relation to loss of control.

A control function operates frequently, manages the performance of the EUC, and main-

tains the EUC within some predefined limits, called normal operation. A failure or degraded

functioning of a control function results in a deviation from normal operation, which is referred

to as lack of control. Some control functions keep the EUC in a safe state with respect to hazards,

and degraded functioning or failures of these will, therefore, lead to increased risk. In this case,

lack of control is the first event in an accident scenario. For example, a deviation from normal
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operation in a car’s brake-by-wire system (e.g., leakage of brake fluid) will, unless a corrective

action is carried out, lead to a failure of the brakes and the event loss of control.

Those control functions, implemented by an E/E/PE safety-related system, that upon failure

or degraded functioning can lead to loss of control with respect to a specific hazard introduced

by the EUC is, by the author, regarded as SCFs. A SCF is proactive in relation to loss of control,

which means that it should "... prevent or reduce the probability ..." of loss of control (Rausand,

2011). In relation to the first deviation from normal operation (i.e., lack of control), a SCF is

either proactive or reactive.

At the point of loss of control in an accident scenario, one or more hazards are released and a

hazardous event occurs unless a PL is installed to prevent it. If this PL is an E/E/PE safety-related

system, it implements a SPF. A SPF is reactive in relation to loss of control, which means that it

should "... avoid or reduce the consequences ..." of loss of control (Rausand, 2011).

The classification of safety functions as SCFs and SPFs in relation to loss of control is illus-

trated in Figure 4.1.

4.2 A Model for Classifying Safety Functions

Safety functions are determined from a hazard and risk analysis, and accident models are the

basis for the hazard and risk analysis (Leveson, 2004). In relation to PLs, a commonly used

accident model is the energy model, which was first introduced by Gibson (1961) and further

developed by Haddon (1980). The principle of the model is that hazards are physical energies

(e.g., mechanical or electrical) that can be built up, and if these energies are released, they can

harm assets. The PLs in the energy model should separate the hazards from the assets.

Other accident models focus on the sequence of discrete events, such as the layer of protec-

tion analysis (LOPA) (CCPS, 2001; IEC 61511, 2003). These models are referred to as event se-

quence models (Rausand, 2011) or process models (Kjellén and Larsson, 1981; Kjellén, 2000). Of-

ten, process models describe the phases from normal operation to the hazardous event graphi-

cally, and give a rather simple representation of how the PLs may prevent the progression of the

accident scenario.

According to the Occupational Accident Research Unit (OARU) process model (Kjellén and
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Larsson, 1981; Kjellén, 2000), an accident scenario has an initial phase, a concluding phase, and

an injury phase. The initial phase is initiated by the first deviation from normal operation, and

the concluding phase starts when an "... energy is inadvertently released ..." (Kjellén and Larsson,

1981). The injury phase of the accident scenario is when the energy harms assets and undesired

consequences occur.

Based on a combination of the accident models described, a model for classifying safety

functions implemented by E/E/PE safety-related systems as SCFs and SPFs is developed in Fig-

ure 4.2, and it is inspired by the model in Sklet (2006). In the model, SCFs and SPFs are illustrated

in relation to the phases in the OARU-model. The SCFs and SPFs are proactive and reactive PLs

in relation to three events in a generic accident scenario. These three events are based on the

OARU-model (Kjellén and Larsson, 1981; Kjellén, 2000), and are:

1. Lack of control: The first deviation from normal operation and first event in an accident

scenario.

2. Loss of control: The event where no measures are able to manage the performance of the

EUC in a desired manner, and one or more hazards are unintentionally released.

3. Energy exposure: The event where undesired consequences occur because of the unin-

tentionally released hazards.

The arrows between the EUC, the SCFs, the SPFs, and the hazardous event in Figure 4.2

represent demands from the EUC, and the demands will progress to the hazardous event unless

the PLs prevent it.

The first PL in the model in Figure 4.2 is E/E/PE safety-related systems that perform SCFs

during normal operation, and the SCFs should maintain a safe state for the EUC. In relation to

lack of control and loss of control, these SCFs are proactive. Failures or degraded functioning of

SCFs operating in normal operation lead to lack of control and demands for the following PLs.

The next PL in the model in Figure 4.2 is also E/E/PE safety-related systems that perform

SCFs, but these SCFs operate on demand in the initial phase of an accident scenario. These

functions are reactive in relation to lack of control, and they should achieve a safe state for the

EUC upon demands.
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Figure 4.2: SCFs and SPFs in relation to the phases in the OARU-model (inspired by Sklet, 2006).

If all SCFs fail to fully prevent the progression of an accident scenario, loss of control occurs

and one or more hazards are unintentionally released. Loss of control initiates the concluding

phase in the model in Figure 4.2, and if E/E/PE safety-related systems that can protect assets

by managing the hazards (e.g., fire detection and alarm system) are installed, these perform

SPFs. These functions should stop the release of hazards, and they are reactive in relation to

loss of control and proactive in relation to energy exposure. If these SPFs fail to fully prevent the

progression of the accident scenario, energy exposure occurs.

The event energy exposure initiates the hazardous event and the injury phase in the model in

Figure 4.2. If E/E/PE safety-related systems are installed to mitigate the undesired consequences

of the hazardous event, these systems also perform SPFs. These SPFs are reactive in relation to

both loss of control and energy exposure.

Note that the model in Figure 4.2 adopts a simplistic view on accident scenarios because it is

intended to aid the classification of safety functions as SCFs and SPFs in relation to the sequence

of events.
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4.3 Examples

To further explain how safety functions can be classified as SCFs and SPFs and the usage of

developed model in Figure 4.2, two examples are given in the following two sections.

Car Crash Example

Consider a modern car that is driving on an icy road. The car is the EUC, and the hazardous

event is "crashing into an object", which may results in severe injury or death of the driver.

In this example, only those PLs that are E/E/PE safety-related systems are considered. Loss of

control is therefore the event where no safety functions are able to manage the performance of

the car in a desired manner. The initiating event in the accident scenario leading to "crashing

into an object" is "too high speed".

During normal operation of the car, the speed almost continuously demands the function

of the brake-by-wire system. We can classify the function of the brake-by-wire as a SCF, because

the function should maintain the speed within the limits of normal operation.
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Figure 4.3: The SCFs and SPFs in the car crash example.

The car approaches a turn too fast, and the driver applies the brakes. However, the road is

slippery, and the car loses traction and starts to skid. This event is lack of control, because it is
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assumed that traction is required during normal operation.

The car has an electronic stability program (ESP) and an anti-lock braking system (ABS), and

both these systems are, in this case, demanded when lack of control occurs. The ESP performs a

safety function that should prevent skidding, and the ABS performs a safety function that should

regain traction. Both functions should achieve a safe state for the car, and are proactive in re-

lation to loss of control and reactive in relation to lack of control. Hence, the functions are

classified as SCFs.

The ESP and the ABS are functioning, but the initial speed is too high, and neither the ESP

nor the ABS are capable of achieving a safe state for the car. Since neither skidding is sufficiently

reduced nor traction is regained, the car will skid out of the road. This event is loss of control,

because none of the measures are able to manage the performance in a way that keeps the car

on the road.

After loss of control, the car skids out of the road, the energy is released, and the car will crash

into an object (i.e., the hazardous event) unless a PL prevents it. The car does not have any safety

functions that can prevent the hazardous event, and the car crashes into an object, which is the

energy exposure. Fortunately, the car has airbags that mitigate the impact for the driver, and

thus mitigate the undesired consequences of the hazardous event. The airbags perform safety

functions that can be classified as SPFs, and they are reactive in relation to both loss of control

and energy exposure.

The safety functions classified as SCFs and SPFs in the car crash example are summarized in

Figure 4.3.
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Fluid and Gas Separator Example

Consider the simple fluid and gas separator illustrated in Figure 4.4. A mixture of fluid and gas is

led through the inlet and into the separator. In the separator, the fluid and gas are separated and

led out through the fluid outlet and gas outlet, respectively. Note that this example and the sys-

tems described are not realistic but constructed for the purpose of explaining the classification

of safety functions.
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Figure 4.4: A simple fluid and gas separator with three E/E/PE safety-related systems.

A rupture disc is installed on top of the fluid and gas separator, and if the pressure in the

separator is too high, the rupture disc opens and gas flows out. To simplify this example, the

rupture disc is regarded as a part of the EUC together with the pipelines and the separator, even

though the rupture disc can be a safety measure with respect to explosion of the separator. The

EUC is illustrated with black color in Figure 4.4.

During normal operation, pressure transmitter high (PTH) and pressure transmitter low

(PTL) monitor and detect high or low pressure in the separator, respectively, and continuously

send this information to a logic solver. The logic solver compares the pressure with the predeter-
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mined values for normal operation, and continuously regulates the flow from the inlet pipeline

by signaling the control valves (CVs) to alter their positions accordingly. In this way, the pres-

sure in the separator is maintained within the predetermined limits of normal operation. This

system is an E/E/PE safety-related system and it is referred to as the control system. The control

system is illustrated with green color in Figure 4.4.

Pressure transmitter high-high (PTHH) and pressure transmitter low-low (PTLL) continu-

ously monitor and detect too high or too low pressure in the separator, respectively, and send

this information to a dedicated logic solver. If the pressure in the separator exceeds the normal

operation limits, the logic solver sends activation signals to the shutdown valves (SDVs). Upon

activation, the SDVs should stop the flow in the inlet pipeline, thus preventing further increase

of the pressure in the separator. The SDVs are passive during normal operation. This system

is an E/E/PE safety-related system and it is referred to as the shutdown system. The shutdown

system is illustrated with blue color in Figure 4.4.

Next to the separator, gas detectors are installed. Upon detection of gas, the gas detectors

send signals to the logic solver. The logic solver then signals the ventilation fans to activate and

extract the gas away from the area. The ventilation fans are passive during normal operation.

This system is an E/E/PE safety-related system and it is referred to as the ventilation system. The

ventilation system is illustrated with red color in Figure 4.4.

In this example, we consider an accident scenario where the hazardous event is "accumula-

tion of gas in the area". If accumulated gas in the area is ignited, an explosion occurs and the

consequences may be multiple fatalities. The initiating event in the accident scenario is "gas

outlet blocked". Loss of control is the event where no measures are able to manage the perfor-

mance of the fluid and gas separator in a desired manner and gas leaks out of the separator.

First, the initiating event "gas outlet blocked" causes the pressure in the separator to in-

crease. Consequently, the control system should maintain the pressure within normal opera-

tion limits by closing the CVs, and thus reducing the flow into the separator. However, the PTH

is failed and does not detect the increasing pressure in the separator. This is the first safety func-

tion in the accident scenario, and it is classified as a SCF, because it should maintain a safe state

for the EUC and it is proactive in relation to lack of control.

The pressure in the separator exceeds the limits of normal operation, and the accident sce-
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Figure 4.5: The SCFs and SPFs in the fluid and gas separator example.

nario progresses beyond lack of control. Next, the pressure reaches the point where the shut-

down system is demanded, and it should completely stop the flow from the inlet into the sep-

arator by closing the SDVs. The PTHH detects too high pressure and the logic solver activates

the SDVs successfully. However, the SDVs are unable to fully close because of corrosion, and the

pressure still increases even though the flow is reduced. This is the second safety function in the

accident scenario, and it is classified as a SCF, because it should achieve a safe state for the EUC

and it is proactive in relation to loss of control.

Further, no other measures are able to manage the performance of the EUC in a desired

manner, and the pressure increases to the point where the rupture disc opens. Gas flows out

of the separator and the ventilation system is demanded. The ventilation system extracts gas

from the area successfully, but the capacity of the ventilation fans is too low to fully prevent the

"accumulation of gas in the area". This is the third safety function, and it is classified as a SPF,

because it should prevent the hazardous event and it is reactive in relation to loss of control.

The safety functions classified as SCFs and SPFs in the fluid and gas separator example are

summarized in Figure 4.5.
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4.4 Summary and Discussion

It is proposed a pragmatic and generic approach for classifying safety functions as SCFs and

SPFs. The classification is further explained through the developed model in Figure 4.2. In ad-

dition, the classification and the model is applied in a car crash example and a fluid and gas

separator example in Section 4.3.

The approach for classifying safety functions as SCFs and SPFs is intended to provide a dif-

ferent perspective on safety functions implemented by E/E/PE safety-related systems, and it

may contribute to a better understanding of different types of safety functions and their wide

range of applications. The classification is generic, which leaves room for expert judgement and

individual assessment. Consequently, it may, together with the developed model in Figure 4.2,

be used in decision-making about safety functions and E/E/PE safety-related systems.

Opposed to the classification of safety functions as low-demand mode of operation and

high-demand or continuous mode of operation in IEC 61508, the classification of safety func-

tions as SCFs and SPFs is not based on frequency of demands, and it does not prescribe use

of PFDavg or PFH, which is the intention. Instead, the proposed classification focuses on what

safety functions should do in an accident scenario, and where in the sequence of events safety

functions are performed. As a result, the information can be used for assessment and arguments

for the most suitable reliability measure.

The proposed classification is more similar to the classification of safety functions operating

in demand mode and continuous mode in IEC 61511. SCFs that should maintain a safe state

for the EUC and prevent lack of control correspond to safety functions operating in continuous

mode in IEC 61511, and PFH may thus be most suitable. SCFs that should achieve a safe state for

the EUC and are reactive in relation to lack of control and SPFs correspond to safety functions

operating in demand mode in IEC 61511, and choosing either PFH or PFDavg may thus be the

best option for these safety functions.



Chapter 5

IEC 61508 in the Hydropower Industry

One of main objectives of implementing IEC 61508 is to ensure that E/E/PE safety-related sys-

tems are safe and reliable throughout their whole lifecycle. The popularity of IEC 61508 is in-

creasing, and especially in the oil and gas industry. The hydropower industry does not follow

this trend, and the presence of the standard is almost non-existent.

Despite the absence of the standard, the design specifications of some hydropower plants

require that all E/E/PE safety-related systems are in accordance with the requirements of IEC

61508. This is challenging, because there is a lack of knowledge about the standard in the indus-

try.

In this chapter, some benefits and challenges regarding the implementation and use of IEC

61508 are discussed in relation to a typical company operating in the hydropower industry. Be-

cause the standard is not yet implemented, some of the benefits and challenges related to the

implementation and use of the standard are based on experience from other industries (e.g., the

oil and gas industry).

A valuable source of reference for this chapter is the visit to Norsk Hydro’s hydropower plant

at Tyin including a guided tour given by Odd Jarle Jørgensen.

45
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A Relationship Between IEC 61508 and the Hydropower Industry

Machinery is present in hydropower plants, and most machines are required to comply with the

Machinery Directive (2006). According to the Machinery Directive (2006), machinery is defined

as:

Z Machinery: An assembly, fitted with or intended to be fitted with a drive system other than

directly applied human or animal effort, consisting of linked parts or components, at least one

of which moves, and are joined together for a specific application.

The Machinery Directive presents essential health and safety requirements (EHSRs) that are

mandatory for manufacturers of machinery that intend to put machines on the European Union

(EU) market (Murthy et al., 2010). The main objectives of the Machinery Directive are to pro-

mote free movement of machinery within the EU and to guarantee protection to workers and

citizens in the EU (Murthy et al., 2010). Member states of the EU are required to transpose the

Machinery Directive into national laws.

In the Machinery Directive, the EHSRs are stated as results that manufacturers must attain

when designing and building machines, but no technical solutions for achieving the EHSRs

are provided. Conforming with the EHSRs can thus be challenging, and to help manufacturers

achieve conformity with the EHSRs, the European Commission has mandated several harmo-

nized standards. Harmonized standards provide technical solutions and guidance on how the

EHSRs can be achieved, and it is voluntary to comply with such standards (Murthy et al., 2010).

However, if a manufacturer chooses to comply with a harmonized standard, conformance with

some or all, depending on the standard, of the EHSRs in the Machinery Directive is achieved.

IEC 62061 is adopted by the European Committee for Electrotechnical Standardization and

they have published the standard as an European Standard (EN), referred to as EN 62061. The

content of EN 62061 is the same as in IEC 62061, and the only difference is that EN 62061 is

officially harmonized with the Machinery Directive. Because EN 62061 is based on IEC 61508,

this concludes the relationship between IEC 61508 and the hydropower industry, through the

Machinery Directive.
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The Starting Point

In the Norwegian hydropower industry, the authorities and the companies that own hydropower

plants have great influence. The authorities have the power to influence the industry through

laws, regulations, and licenses. Before a company can build new or refurbish old hydropower

plants, the company must apply to the Norwegian water resource and energy directorate and/or

the Norwegian ministry of petroleum and energy for a license. This license is a document that

includes permissions and constraints regarding the development and operation of a plant and

its effects on the environment. It is therefore obvious that the authorities have the power to

mandate the implementation of the IEC 61508 in the hydropower industry.

The majority of the companies (e.g., Statkraft Energi AS, Norsk Hydro ASA, and Lyse Energi

AS) that own the plants also operate them. When these companies get licenses to build new

plants or refurbish old plants, these jobs are often outsourced to subcontractors responsible for

the construction and the delivery of equipment (e.g., turbines and generators). If the companies

that own the plants decide to implement IEC 61508, the subcontractors would consequently

have to deliver E/E/PE safety-related systems in accordance with the standard in order to fulfill

the contracts. Since the companies that own the plants also operate them, they have the unique

position to implement the standard throughout the whole safety lifecycle.

Considering the absence of IEC 61508 in the hydropower industry, a starting point is that

one company, that owns hydropower plants, implements the standard, which may cause other

companies and the authorities to follow. This starting point is assumed to be most relevant

for the discussion about the implementation of IEC 61508 in the hydropower industry. The

perspective of the discussion is from a company that owns and operates plants, and engineers

new and refurbishes old plants by outsourcing to subcontractors. This company is from here on

referred to as [company].
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5.1 Benefits and Challenges with IEC 61508

In the following two sections, some benefits and challenges related to implementation and use

of IEC 61508 are discussed.

Benefits

As a consequence of the increasing use of computer-based technology, systems are growing

more complex. Alongside this technological advancement, ensuring the performance and the

dependability (e.g., availability, reliability, and maintainability) of such systems is important

(IEC 60300-3-15, 2009), and this can, for E/E/PE safety-related systems, be done by using IEC

61508.

One of the benefits of IEC 61508 is that not only technical requirements for engineering hard-

ware and software are provided. In addition to requirements about assessment, design, oper-

ation, and maintenance of E/E/PE safety-related systems, the standard includes requirements

for management of E/E/PE safety-related systems throughout the whole safety lifecycle. This

management system is referred to as management of functional safety (IEC 61508, 2010). An

objective of the management system is to ensure that safe and reliable E/E/PE safety-related

systems are achieved and maintained throughout the safety lifecycle by ensuring that "... the

right people are in the right place with the right tools doing the right things at the right time."

(Houtermans et al., 2003). Together, the combination of requirements for engineering and man-

agement of E/E/PE safety-related systems provides a complete procedure and framework for

managing risks and achieving safety in a plant. The framework of the standard can also be used

for other risk reduction measures even though no specific requirements are provided for these

(IEC 61508, 2010).

According to Summers (2006), companies have applied the required management system

in IEC 61511 (2003) for all PLs and experienced economic benefits. Note that the management

system in IEC 61511 (2003) is essentially the same as the one in IEC 61508 (2010). This means

that IEC 61508 is not yet another prescriptive standard where rules for E/E/PE safety-related

systems must be followed, but a standard that introduces a rigorous approach for reducing risks

with E/E/PE safety-related system and other risk reduction measures.
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According to Timms (2003), a misconception of IEC 61508 is that determining SILs for ex-

isting E/E/PE safety-related systems in a plant will reveal systems that require re-engineering,

which makes it a costly process. The reality is that determining SILs for safety functions identi-

fies those functions that are safety-critical, which may contribute to cost savings as appropriate

resources are allocated to each function.

Another advantage of IEC 61508 is that maintenance and testing of E/E/PE safety-related

systems are required to be considered at an early phase of the safety lifecycle, which makes

it possible to optimize the design for maintenance and testing. This is primarily required for

achieving reliable E/E/PE safety-related systems, but another consequence may be reduced

costs because of more effective and better planned maintenance work and testing (Timms,

2003).

Lastly, IEC 61508 is a basic safety publication, which means that it can be used for devel-

oping application-specific standards (e.g., IEC 61511) and it influences therefore the develop-

ment of E/E/PE safety-related systems across industries. In the Norwegian oil and gas industry,

the Petroleum Safety Authority (PSA) guidelines (e.g., PSA, 2012) recommends that IEC 61508

is used to comply with regulations. National authorities consider the standard as best practice

for E/E/PE safety-related systems and it is widely accepted internationally in the oil and gas

industry.

Challenges

IEC 61508 is comprehensive and there are some challenges related to implementation and use of

the standard. Some authors (e.g., Faller, 2004; Timms, 2003) suggest that the standard is difficult

to read and leaves too much room for interpretation. Consequently, competent personnel is

required in order to successfully implement and use the standard.

IEC 61508 requires that all persons responsible for any phase or activity in the safety lifecycle

of an E/E/PE safety-related system have the appropriate competence. The standard emphasizes

competence because E/E/PE safety-related systems can be complex and failures can lead to un-

desired consequences. Considering the extent of the standard and the safety lifecycle, ensuring

competent personnel can be challenging. Health and Safety Executive (HSE) has recognized the

challenges of managing competence and issued the guideline HSE (2007). In relation to the
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competence requirements in IEC 61508 (2010), HSE (2007) is referenced as an example.

As mentioned in the previous section, the required management system in IEC 61508 is im-

portant in all safety lifecycle phases. However, experiences in Houtermans et al. (2003) show that

few of the companies that have implemented the standard have adapted their existing manage-

ment system in accordance with IEC 61508. According to Houtermans et al. (2003), the failure to

implement the management system required in IEC 61508 is mainly caused by too much focus

on the technical requirements and lack of commitment from top management.

In all phases of the safety lifecycle, sufficient documented information is required so sub-

sequent phases can be performed effectively (IEC 61508, 2010). Considering the scope and the

amount of requirements in the standard, a lot of documentation is usually generated, such as

quantitative risk analysis and SRS. In addition, much documentation is generated because the

standard is performance-based, which means that arguments for the chosen methods and solu-

tions must be demonstrated and documented. Some companies create the documents strictly

for the purpose of compliance, but do not maintain and use the documents as intended (Brom-

bacher, 1999). Consequently, neither reliable E/E/PE safety-related systems are ensured nor is

compliance with IEC 61508 maintained.

Throughout the whole operational phase, the reliability of E/E/PE safety-related systems

must be maintained, and some related challenges are briefly discussed in the following section.

Follow-up of E/E/PE Safety-related Systems In The Operational Phase

According to IEC 61508 (2010), the specified SIL of a safety function and the required perfor-

mance of an E/E/PE safety-related system must be maintained throughout the whole opera-

tional phase. The main activities during follow-up of E/E/PE safety-related systems are opera-

tion, maintenance, monitoring, and modification (CCPS, 2007; IEC 61508, 2010; OLF-070, 2004),

and more specific, the following activities are important (Hauge and Lundteigen, 2008, 2009):

1. Detect, correct, and avoid introducing failures in the E/E/PE safety-related system.

2. Verify that the initial assumptions stated in the SRS are valid during the operational phase.

3. Collect data to verify that the requirements in the SRS are met.
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4. Take corrective actions if the performance of the E/E/PE safety-related system deviates

from the specified performance.

5. Ensure that all modifications are performed in accordance with the requirements in the

appropriate safety lifecycle phase.

An objective of verifying the SIL of a safety function in the operational phase is to ensure that

the predicted PFDavg or PFH is correct (Hauge and Lundteigen, 2009). The predicted PFDavg or

PFH is specified by the supplier of an E/E/PE safety-related system, and the predicted reliability

measures are often based on data from generic data sources (e.g., OREDA (2009) in the oil and

gas industry). It is important that the predicted PFDavg or PFH is correct because a tolerable risk

level is not achieved if the actual PFDavg or PFH is higher than predicted.

To verify the PFDavg or PFH, operational data about tests, failures, maintenance, successful

activations, process demands, and spurious trips for the E/E/PE safety-related systems must be

collected. Such data is referred to as plant specific data (Hauge and Lundteigen, 2009). The

plant specific data should be used to estimate the PFDavg or PFH. The estimated PFDavg or PFH

is compared to the predicted PFDavg or PFH, and if there are any undesired deviations, corrective

actions on the E/E/PE safety-related system are required.

According to Hauge and Lundteigen (2009), experiences in the oil and gas industry show that

collecting plant specific data can be challenging. The systems where data is recorded are not

always flexible enough to be adapted for the failure classification required in IEC 61508. Con-

sequently, classifying failures correctly is difficult, and the persons responsible for estimating

PFDavg or PFH during operation must read failure reports and classify or reclassify the failures

in accordance with the standard, which can be very time consuming.

In addition to suitable data registration systems, personnel recording plant specific data for

E/E/PE safety-related systems (e.g., maintenance and testing personnel, operators) must have

the right competence to avoid incorrect failure classifications and recordings, because incorrect

failure classifications may lead to wrongfully increased proof test intervals or incorrectly esti-

mated PFDavg or PFH. To ensure appropriate competence for the personnel involved in follow-

up of an E/E/PE safety-related system, training should be provided, and personnel should be

motivated to understand the benefits of detailed failure recordings (Hauge and Lundteigen,
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2009).

5.2 Implementation of IEC 61508 in the Hydropower Industry

The benefits and the challenges related to implementation and use of IEC 61508, discussed in

Section 5.1, apply to [company]. [company] is the operator, and challenges related to follow-up

of E/E/PE safety-related systems in the operational phase are especially important for successful

implementation of IEC 61508.

Subcontractors delivering machines in the hydropower industry are required to conform

with the Machinery Directive, and some of these may design and build E/E/PE safety-related

systems that are part of machinery in accordance with IEC 62061. In addition, some of the

subcontractors delivering E/E/PE safety-related systems also deliver such systems to other in-

dustries where IEC 61508 is applied (e.g., oil and gas industry). [company] may therefore pur-

chase E/E/PE safety-related systems that comply with IEC 61508 rather easily. However, acquir-

ing E/E/PE safety-related systems that comply with IEC 61508 requires that [company] speci-

fies the required SILs of safety functions and prepares SRSs. From project experience with IEC

61508, some companies do not specify the SIL in the SRS, which makes the suppliers’ job diffi-

cult and an important concept of the standard is discarded (Reeve, 2009). Because [company] is

project and plant owner during engineering and construction of new hydropower plants, deci-

sions about risks and E/E/PE safety-related systems must be made throughout the whole safety

lifecycle. This means that even though the operational phase of E/E/PE safety-related systems

is the most relevant phase, [company] needs to acquire knowledge about the whole standard.

The reliability policy in a hydropower plant is often characterized by over-engineering and

redundancy. This is, for example, reflected in the standard EN 62270 (2004), which addresses

application, design, and implementation of computer-based control systems in hydropower

plants. EN 62270 (2004) suggests that backup, or redundancy, should be provided for essen-

tial functions, and the standard gives little attention to reliability aspects such as eliminating

failure modes and reducing failure rates. IEC 61508 requires analysis and careful consideration

of E/E/PE safety-related systems’ behavior upon failure, failure rates, failure modes, and several

other factors affecting the reliability of E/E/PE safety-related systems. Furthermore, IEC 61508
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adopts a risk-based approach, which means that the required performance of an E/E/PE safety-

related system is derived from a thorough hazard and risk analysis of an EUC. The risk-based

approach provides a basis for decision-making about risks, and if [company] defines clear eval-

uation criteria in line with overall business policies, appropriate resources may be allocated to

E/E/PE safety-related systems that contribute to [company]’s goals. Consequently, an imple-

mentation of IEC 61508 may alter the way [company] deals with risks and reliability charac-

teristics of E/E/PE safety-related systems, which can both reveal necessary improvements and

potential cost savings.

IEC 61508 is primarily concerned with undesired consequences to humans and the envi-

ronment, but recognizes that economic losses may be incentives for reducing risks as well.

Since hydropower plants are increasingly operated remotely and automatically, consequences

to humans are possibly less relevant, and reducing risks of economic losses, such as damage on

equipment and production downtime, may be more relevant for [company].

5.3 Summary and Discussion

In this chapter, the relationship between the IEC 61508 and the hydropower industry, through

the Machinery Directive, is explained, and benefits and challenges related to implementation

and use of IEC 61508 are discussed. Some of the concepts in IEC 61508 that are benefits are also

challenges (e.g., management system), and there is no doubt that competence and knowledge

about the standard are prerequisites for successful implementation and use.

IEC 61508 is a comprehensive standard with a large amount of requirements, and successful

implementation of IEC 61508 requires extensive resources and commitment across [company]’s

organization. A challenge that [company] may face is the evaluation of benefits gained from

implementing the standard against the amount of resources an implementation requires. Com-

pared to the oil and gas industry, the hydropower industry comprises a relatively simple process

with fewer hazards, it has existed for a longer time, and there are fewer technological changes.

Thus, a comprehensive, rigorous approach for designing, implementing, operating, maintain-

ing, and managing E/E/PE safety-related systems that is developed with a rapidly developing

technology in mind may not be what the hydropower industry needs.
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On the other hand, many of the concepts in IEC 61508 are versatile and applicable for E/E/PE

safety-related systems in a hydropower plant. For example, to identify safety functions and de-

termine their reliability by calculating PFDavg or PFH of the E/E/PE safety-related systems pro-

vide a solid basis for decision-making. Identifying safety functions may, for example, be done

with the approach for classifying safety functions presented in Chapter 4 and the model in Fig-

ure 4.2.

The Norwegian Oil and Gas Association financed a project where operators and suppliers in

the oil and gas industry collaborated to identify common safety functions and to determine the

minimum SIL by applying the formulas in the PDS handbook (Hauge et al., 2013), and the result

of the project is the guideline OLF-070 (2004). The purpose of the guideline is to simplify and

adapt the application of the IEC 61508 and IEC 61511 (OLF-070, 2004). A similar project in the

hydropower industry may be of great value for [company]. Such a project can, for example, be

conducted to identify safety functions and to develop a unified approach for ensuring reliable

E/E/PE safety-related systems in the hydropower industry. Eventually, this project may be the

basis for the development of an application-specific version of IEC 61508 in the hydropower

industry.



Chapter 6

Summary and Recommendations for

Further Work

6.1 Summary and Conclusions

E/E/PE safety-related systems are used to reduce the risk related to hazardous events, and IEC

61508 can be used to ensure safe and reliable E/E/PE safety-related systems. IEC 61508 is com-

prehensive, and knowledge about concepts and terminology in the standard is necessary for

achieving successful compliance. To clarify basic concepts and terminology in IEC 61508 is the

first objective of this master thesis. This is done and E/E/PE safety-related systems, safety func-

tions, PFDavg, PFH, architectural constraints, and systematic failures are clarified and explained

in Chapter 2.

The second objective is to identify and discuss possible differences between low-demand

mode of operation and high-demand or continuous mode of operation, and this is addressed in

Chapter 3. To identify possible differences, the requirements for the SRSs, including the func-

tional requirements and the safety integrity requirements, in IEC 61511 and IEC 62061 are com-

pared, and it can be concluded that there are essentially no differences between them.

The realization of E/E/PE safety-related systems includes design and engineering of the

physical systems performing safety functions. To achieve the specified SILs for the safety func-

tions, developers of E/E/PE safety-related systems must demonstrate the PFDavg and/or the

PFH, account for architectural constraints and testing, and ensure measures for avoidance and

55
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control of systematic failures. These issues are, in relation to possible differences between safety

instrumented systems and safety-related electrical, electronic, and programmable electronic

control systems, discussed in Section 3.3.

A comparison of the architectural constraints in IEC 61511 and IEC 62061 shows that the

architectural constraints in IEC 62061 are more restrictive. IEC 62061 states that demonstration

of "proven in use" subsystems and elements are not suitable for machinery, but no reasons for

this are provided in the standard.

The PFDavg and the PFH are calculated for an element and a subsystem operating on de-

mand and the parameters used are derived from IEC 61508. The results correspond to different

SILs for both the element and the subsystem under consideration depending on whether use

of PFDavg or PFH is required. Inconsistency can be experienced by complying with IEC 61508.

However, complying with IEC 61511 allows E/E/PE safety-related systems developers choose re-

liability measure in demand mode of operation, which resolves the inconsistency experienced

in IEC 61508. The approach in IEC 61511 seems better.

The third objective is to develop and propose a new approach for classifying safety functions

and describe the classification with examples. A new approach for classifying safety functions

is developed, proposed, and presented in Chapter 4. The event, loss of control, in an accident

scenario is the basis for the classification of safety functions as safety control functions (SCFs)

and safety protection functions (SPFs), and a definition of loss of control is suggested and given

in Section 4.1. SCFs and SPFs are furthermore related to the events lack of control and energy

exposure, respectively. The classification of safety functions as SCFs and SPFs is neither based

on frequency of demands nor does it prescribe use of PFDavg or PFH, and the classification is

thus different from the classification in IEC 61508. The proposed classification is more similar

to the classification of safety functions in IEC 61511. It is suggested that PFH is suitable for SCFs

that maintain the EUC in a safe state and prevents lack of control. SCFs that are reactive in

relation to lack of control and SPFs correspond to demand mode of operation in IEC 61511 and

it is therefore suggested that either PFDavg or PFH should be chosen for these safety functions.

To aid the understanding of where SCFs and SPFs operate in relation to lack of control, loss of

control, and energy exposure, a model is developed and illustrated in Figure 4.2. The model and

the proposed classification of safety functions are applied in two examples that are described in
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Section 4.3.

The fourth and fifth objective of this master thesis are addressed in Chapter 5. The rela-

tionship between IEC 61508 and the hydropower industry, through the Machinery Directive, is

explained. From the perspective of a typical company operating in the hydropower industry,

some benefits and challenges of implementing IEC 61508 are discussed. It is concluded that

implementing IEC 61508 is not what the hydropower industry needs, but many of the concepts

in the standard are useful and applicable if they are adapted. In addition, a joint project between

companies in the hydropower industry for developing a unified approach for ensuring reliable

E/E/PE safety-related systems may be beneficial. Such a project may also be the basis for the

development of an application-specific version of IEC 61508 in the hydropower industry.

6.2 Recommendations for Further Work

Based on the work conducted during the preparation of this master thesis, some topics recom-

mended for further work are:

• Investigate how information from successfully handled demands can be exploited to in-

crease the reliability of E/E/PE safety-related systems by serving as testing and develop

a method for determining the ratio between the demand rate and the proof test interval

that is necessary for considering demands as testing.

• Test the applicability of the proposed classification of safety functions as SCFs and SPFs

in practice by, for example, identifying safety functions in an existing plant with respect to

various hazardous events. This could reveal whether the proposed classification provides

a better understanding of differences between safety functions and whether the classifica-

tion can aid the identification process. In addition, applying the proposed classification

in practice could reveal whether arguments for choosing either PFDavg or PFH for each

safety function can be found.

• Further develop the model in Figure 4.2 to include other PLs and PFDavg and PFH for the

safety functions. For example, if the failure of a SCF that maintains the EUC in a safe state

is assumed to give a demand for the following safety function with a frequency equal to
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PFH and every following safety function and other PLs have a PFDavg, it could be possible

to calculate the frequency of the hazardous event. Because the frequency of a hazardous

event often is used when tolerable risk is stated, this could be very useful.



Appendix A

Acronyms

ABS Anti-lock braking system

CCPS Center for Chemical Process Safety

CV Control valve

DD Dangerous detected (failure)

DU Dangerous undetected (failure)

E/E/PE Electrical/electronic/programmable electronic

EHSR Essential health and safety requirement

EN European Standard

ESP Electronic stability program

EU European Union

EUC Equipment under control

HEF Hazardous event frequency

HFT Hardware fault tolerance

HSE Health and Safety Executive (UK)
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IEC International Electrotechnical Commission

IPK Department of Production and Quality Engineering (Norwegian abbreviation for "Institutt

for produksjons- og kvalitetsteknikk")

IPL Independent protection layer

LOPA Layer of protection analysis

MRT Mean repair time

MTTR Mean time to restoration

OARU Occupational Accident Research Unit

PDS Reliability of computer-based safety systems (Norwegian acronym)

PE Programmable electronic

PFD Probability of failure on demand

PFH Frequency of dangerous failures per hour

PL Protection layer

PSA Petroleum Safety Authority

PTH Pressure transmitter high

PTHH Pressure transmitter high-high

PTL Pressure transmitter low

PTLL Pressure transmitter low-low

RAMS Reliability, availability, maintainability, and safety

ROCOF Rate of occurrence of failures

SCF Safety control function
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SD Safe detected (failure)

SDV Shutdown valve

SFF Safe failure fraction

SICF Safety instrumented control function

SIF Safety instrumented function

SIL Safety integrity level

SIPF Safety instrumented protection function

SIS Safety instrumented system

SPF Safety protection function

SRECS Safety-related electrical, electronic, programmable electronic control system

SRCF Safety-related control function

SRS Safety requirements specification

SU Safe undetected (failure)
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