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Abstract 

This article models the risk profile of shipping stocks using the quantile regression approach. 

The method enables calculation and stress testing of Value-at-Risk (VaR) directly from the 

estimated conditional quantiles. Our research serves as an extension to existing research, as 

we are the first to model the relationship between shipping stock returns and a set of 

macroeconomic factors across the distribution of conditional returns. We regress the excess 

return of the portfolios for the container, dry bulk and tanker sectors, on the market portfolio 

excess return, the volatility index, and changes in the oil price, exchange rate and long-term 

interest rate. Our results show that factor effects differ across the conditional quantiles, 

implying that risk exposures vary under different market circumstances. This suggests that the 

standard regression may be inadequate to uncover the risk-return relation for shipping stocks. 

This is especially evident for the volatility index, the market portfolio return, and changes in 

the long-term interest rate. The results have implications for shipping investors who wish to 

add specific return characteristics to their portfolios, and allows for more informed portfolio 

adjustments. Moreover, we contribute to the empirical literature investigating tail risk in 

equity investments, laying the foundation for further research on the area. In the estimation of 

VaR we discover signs of asymmetric tail risk, with a higher exposure in the lower tail. 

Scenario analysis of VaR enables risk managers to consider how changes in macroeconomic 

factors will affect the risk exposure of shipping stocks, and can be helpful in hedging against 

various global factors.  

  



 

 

 

Sammendrag  

Denne artikkelen modellerer risikoprofilen til shippingaksjer ved bruk av kvantilregresjon. 

Metoden gjør det mulig å både beregne og stressteste Value-at-Risk (VaR) direkte fra de 

estimerte betingede kvantilene. Vår studie er en forlengelse av eksisterende forskning, da vi er 

de første til å modellere forholdet mellom avkastningen på shippingaksjer og et sett av 

makroøkonomiske faktorer over hele den betingede avkastningsfordelingen. Vi foretar en 

regresjonsanalyse hvor meravkastningen på porteføljer for container, tørrbulk og tank 

segmentene utgjør våre avhengige variabler. De uavhengige variablene er meravkastningen på 

markedsporteføljen, volatilitetsindeksen, og endringer i oljepris, valutakurs og den langsiktige 

renten. Våre resultater viser at faktoreffekter varierer på tvers av de betingende kvantilene, 

noe som impliserer at risikoeksponering varierer under ulike markedsforhold. Dette tyder 

videre på at klassisk regresjon ikke alltid er tilstrekkelig for å avdekke forholdet mellom 

risiko og avkastning for shippingaksjer. Spesielt er dette synlig i forholdet mellom 

shippingporteføljene og henholdsvis volatilitetsindeksen, avkastning på markedsporteføljen 

og endringer i den langsiktige renten. Resultatene har implikasjoner for investorer som ønsker 

å konstruere porteføljer som utnytter de særegne avkastningsegenskapene til shippingaksjer, 

og gir grunnlag for mer informerte beslutninger ved porteføljeoptimering. I tillegg bidrar vi til 

forskningsfeltet som fokuser på halerisiko i aksjeinvesteringer, og legger dermed grunnlag for 

fremtidige studier. VaR-analysen viser tegn til asymmetrisk halerisiko, hvor det er høyere 

eksponering i nedre hale. Scenarioanalysen av VaR gir grunnlag for bedre risikostyring, da 

den gjør det mulig å hensynta hvordan endringer i makroøkonomiske faktorer vil påvirke 

risikoeksponering til shippingaksjer. Videre vil den kunne være nyttig i hedging av risiko mot 

de ulike globale faktorene. 
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1. Introduction 

The purpose of this article is to model the risk profile of shipping stocks, examining the three 

major shipping sectors: container, dry bulk and tanker. By using the quantile regression 

methodology, this study is the first to identify how a set of pre-specified macroeconomic 

factors influences the entire return distribution of shipping stocks. Additionally, we show how 

the model can be applied in Value-at-Risk (VaR) analysis.   

Risk factors are generally identified through their ability to negatively affect the 

expected cash flow of a company, which in turn will reduce the value of the company 

(Alizadeh and Nomikos, 2009). While the capital asset pricing model (CAPM) postulates that 

there is only one type of systematic risk influencing the equity of the firm (Sharpe, 1964), 

several studies present evidence that stock returns are affected by factors beyond the market 

risk. However, there is no unanimous agreement concerning which risk factors should be 

included in the multifactor models to explain the additional risk influencing stock returns. 

Multifactor extensions of the CAPM include microeconomic factors (see Kavussanos and 

Marcoulis, 1997), portfolio returns (see Fama and French, 1993) and macroeconomic factors 

(see Chen et al., 1986; Berry et al., 1988; Wasserfallen, 1989; Ferson and Harvey, 1994; 

Kavussanos et al., 2002). We follow the latter approach to examine the risk influencing 

shipping stock returns. 

Analysing the shipping industry has long been of interest for academics and 

practitioners alike, due to its rapid growth over the last fifty years caused by: liberalization in 

international trade; discovery of new raw materials; advances in ship building; and the growth 

of the world economy. The industry is responsible for transporting more than 75% of the 

volume of world trade in manufactured goods and commodities, making it impossible to 

conduct international trade without sea freight. Furthermore, the shipping industry possesses 

some distinctive characteristics, with its volatile earnings and perfect competition features. 

The industry is highly capital-intensive, but more importantly very cyclical, where the cycles 

represent an imbalance between supply and demand (Alizadeh and Nomikos, 2009). Stopford 

(2009) presents five separate factors that are believed to affect supply and demand. In the 

demand function he specifies the world economy, seaborne commodity trades, average haul, 

random shocks and transport costs to be important factors. For supply, the five factors are the 

world fleet, fleet productivity, shipbuilding deliveries, scrapping and freight revenues. 

Demand is volatile and quick to respond to shocks while supply is slow to change, making a 

balance between the two a rare observation (Stopford, 2009). Consequently, as 
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macroeconomic factors reflect the economic climate, they are likely to influence the state of 

the global shipping market through their strong impact on demand. The identification of these 

risk factors is crucial, as changes in the supply-demand ratio cause freight rates and stock 

prices to fluctuate. Previous literature presents empirical evidence that macroeconomic factors 

significantly influence shipping stock returns (see e.g. Kavussanos and Marcoulis, 2000; 

Grammenos and Arkoulis, 2002; Westgaard et al., 2007; Drobetz et al., 2010; El-Masry et al., 

2010). However, research on the area is limited. Our study is an extension of previous 

research, and contributes with an increased understanding of the risk profile of shipping 

stocks.  

Existing literature on risk-return modelling in the shipping industry tend to focus on 

the relation at the conditional mean. However, when using the mean as a measure of location, 

we lose information about the tails of the distribution. The quantile regression method, 

developed by Koenker and Bassett (1978), addresses this issue and provides a complete 

picture of the joint distribution of the data. Recently, quantile regression is seen employed in 

the finance literature, for instance, to model dependence between financial variables (see e.g., 

Meligkotsidou et al., 2009; Badshah, 2013; Mensi et al., 2014; Reboredo and Ugolini, 2016) 

and to investigate value at risk (Engle and Manganelli, 2004). Our study is the first to apply 

quantile regression to model the risk profile of shipping stocks. Thereby, filling a gap in the 

shipping literature, we contribute by increasing the understanding of the risk profile and 

attaining results not uncovered by previous econometric models. Ultimately, we seek to detect 

dependence structures between shipping stock returns and macroeconomic risk factors across 

the return distribution, focusing on the three shipping segments separately. 

Shipping is a ‘low-return, high-risk’ business, which distinguishes it from other 

investments (Stopford, 2009). Given this volatile nature of shipping stock returns, it is of 

interest for investors to quantify the relevant tail risk. A widely used risk measure to capture 

tail risk is the VaR analysis, which expresses the loss expected to be exceeded with a given 

probability, over a certain period of time (Alexander, 2009). The quantile regression method 

estimates the conditional probability distribution of a return series, and is an ideal candidate 

for forecasting VaR (Taylor and Timmermann, 2000). The application of quantile regression 

on historical returns can provide accurate estimation of the tail distribution, and the beta 

coefficients from the regression may be directly used as input in the VaR estimation. Hence, 

the need for distributional assumptions is evaded. The use of scenario analysis to stress test 

VaR uncovers how tail risk responds to changes in the risk factors. With the contribution from 

our research, investors and portfolio managers are able to take into consideration the state of 
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the shipping market in their evaluations, as our study shows how the impacts of the selected 

risk factors vary across the distribution of returns. Moreover, the VaR modelling and scenario 

analysis enables risk forecasting, and will be valuable in asset allocation and risk 

management.  

In our empirical analysis, we use a sample of 34 listed shipping companies based on 

the sample of Drobetz et al. (2010), for the period 1st August, 2001 to 31st December, 2015. 

The companies are classified into three market weighted portfolios, representing the major 

sub-sectors of the shipping industry: container, dry bulk and tanker. The excess returns of the 

three portfolios are believed to be influenced by the following five macroeconomic factors: 

excess return on the market portfolio, changes in the oil price, changes in the USD exchange 

rate, changes in the 10-year Treasury Rate, and the CBOE volatility index (VIX). The first 

four macroeconomic factors are selected on the basis of previous empirical evidence (see 

Grammenos and Arkoulis, 2002; Drobetz et al., 2010; El-Masry et al., 2010) and economic 

intuition. To the best of our knowledge, our paper is the first study to include VIX to explain 

the risk-return profile of shipping stocks. We expect VIX to drive shipping stock returns, as 

other studies find market volatility to influence stock returns (see e.g. Fleming et al., 1995; 

Dennis et al., 2006; Chiang and Li, 2012; Badshah, 2013; Mensi et al., 2014). We use both 

ordinary least square (OLS) and quantile regression to analyse the contemporaneous 

relationships between the five macroeconomic factors and shipping stock returns, in the three 

sectors. The beta estimations of the quantile regression are further used to calculate the VaR 

for all three sectors.  

The analysis generates the following results: We find differences in factor effects 

across the quantiles of returns, which suggests that the OLS regression method may be 

inadequate to uncover the risk-return relation for shipping stocks. This is especially evident 

for VIX, where the OLS estimate is insignificant, while quantile regression captures strong tail 

dependence. The VIX negatively affects stock returns below the median, while a positive 

relationship is present above the median. Moreover, the impacts of the market portfolio return and 

the 10-year rate exhibit varying dependence through the distribution. For the former, the positive 

impact is stronger in the upper tail of the distribution. The latter exhibits varying influence on the 

three segments; while the impact is significantly negative in the lower tail for the dry bulk sector, 

it is positive and significant for tanker and container portfolio, in the intermediate and upper 

quantiles, respectively. Oil price changes and exchange rate fluctuations are more stable across 

the quantiles. Changes in the oil price are negatively related to all sectors, where the strongest 

impact is found on the tanker stock returns. Impact of fluctuations in the U.S. exchange rate is 
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significantly negative for all sectors, and has the strongest impact on the container sector, 

followed by the dry bulk and tanker sector. The VaR analysis presents evidence of 

asymmetric tail risk, with a higher exposure in the lower tail. Furthermore, the scenario 

analysis shows that the factor sensitivities deviate between the three segments; particularly 

visible for fluctuations in the interest rate. In the events of extreme values in the risk factors, 

the container and tanker sectors experience higher levels of tail loss than the dry bulk 

portfolio. The results enable investors to consider the impact of global factors in equity 

diversification and hedging strategies.  

The remainder of this article is organised as follows. In Section 2 we review relevant 

literature in order to develop a priori hypotheses for the macroeconomic variables. Section 3 

describes our empirical methodology and Section 4 presents the data set. Section 5 discusses 

our empirical findings. Finally, Section 6 provides a conclusion and highlights the weaknesses 

of our study and outlook for further research.  

2. Literature review and hypotheses development 

The purpose of this section is to view our contribution in the context of existing relevant 

research, in order to develop a priori hypotheses on the relations between shipping stock 

returns and our selected risk factors. We will review some of the key empirical literature 

examining the effect of the market, oil price, exchange rate, volatility index and interest rate 

risk on stock returns, where our main focus is on shipping-related studies. Furthermore, we 

look to empirical literature that utilize quantile regression in the modelling of global stock 

returns, in order to form an expectation about the dependence structure in the tails of the 

distribution.  

According to Sharpe (1964), who among others introduced the capital asset pricing 

model (CAPM), there is only one type of systematic risk influencing the equity of a firm; 

namely the expected return on the market portfolio. Ferson and Harvey (1994) provide 

evidence that equity return is exposed to factors beyond the market risk, when examining a 

multifactor asset pricing model for eighteen national equity markets returns. However, they 

find the world market portfolio to be the most important factor to explain the fluctuation in 

these stock markets. Kavussanos et al. (2002) find similar results in their empirical 

investigation of global risk factors on the excess returns of 38 international industries. The 

return on the world market portfolio significantly affect all industries and is the most 

important factor explaining variations in international industry returns, compared to other 
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factors such as the Treasury Eurodollar spread, oil price, exchange rate risk, industrial 

production, and inflation. 

Kavussanos and Marcoulis (1997) use the Seemingly Unrelated Regression (SUR) 

methodology to estimate the relationship between U.S.-listed water transportation and other 

transport sectors with the stock market and a set of microeconomic factors, over the period 

1984 to 1995. Their study reveals that the water transportation industry exhibits lower 

systemic risk than the market. Drobetz et al. (2010) also find that global shipping stocks 

exhibit a market beta lower than unity when using a SUR model to investigate dependence 

between shipping stock returns and a set of global macroeconomic factors over the period 

from January 1999 to December 2007. However, the results did not support the a priori 

hypothesis, as they expected the shipping industry to exhibit higher systematic risk than the 

market – due to the cyclical and capital-intensive nature of the industry. 

Barnes and Hughes (2002) examine whether the conditional CAPM holds at other 

points of the distribution than only at the mean, by using the quantile regression technique. 

They find that the market beta is significantly negative for underperforming firms and positive 

in the upper tail of the conditional distribution of returns; but insignificant at the median. 

Their results introduce a possible explanation for the conflicting and inconclusive results for 

studies looking at the effect of the market beta on stock returns at the conditional mean. Given 

the previous discussion, we propose the following testable hypothesis: 

 

Hypothesis 1: There is a positive relation between shipping stock return and the return 

on the market portfolio, with a market beta higher than unity. Considering the international 

business of the shipping industry it is clearly influenced by the state of the world economy.  

 

Chen et al. (1986) are the first in a series of studies to examine the undefined factors in 

the arbitrage pricing theory (APT) of Roll and Ross (1980) using pre-specified 

macroeconomic variables. They find a set of economic forces that influences the stock 

market; however, the oil price is not found to have any significant impact on stock returns. 

Elyasiani et al. (2011) investigate the impact of oil return changes and oil return volatility on 

excess stock returns, and return volatilities of thirteen U.S. industry sectors, divided into four 

different industry types. They present evidence that changes in the oil price represent 

systematic risk in nine out of thirteen industries, most prominently in the oil-user and oil-

related sectors.  
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Focusing solely on shipping stocks, Grammenos and Arkoulis (2002) investigate the 

impact of global macroeconomic variables between 1989 and 1998. Oil prices are tested 

alongside industrial production, inflation, changes in exchange rates against the US dollar, 

and laid up tonnage – using the multivariate least square method. They find the change in oil 

prices to negatively affect shipping stock returns. In a similar study, Drobetz et al. (2010) 

hypothesise that oil prices can have both negative and positive influence on shipping stock 

returns. Oil serves as a proxy for the global economic environment, but also represents an 

expenditure for shipping companies as it is the main input in the production of shipping 

services. A significant dependence is found in the container sector only, where the impact is 

positive.  

Poulakidas and Joutz (2009) explain spot tanker rates, and find indications that the 

demand for tanker services is a derivative of the demand for oil. Moreover, since the demand 

for oil is inelastic when demand is high, an increase in the oil price causes tanker freight rates 

to rise. Westgaard et al. (2007) do not find any significant impact of oil price changes, using 

OLS regression to identify financial risk factors that impact tanker shipping stock returns. An 

explanation may be that the positive and negative effects cancel each other out.  

Reboredo and Ugolini (2016) use quantile regression to test the impact of oil price 

movements on the return distribution in BRICS countries and three developed economies 

(U.S., U.K. and European Monetary Union). They find the dependence to be positive and 

asymmetric. Oil is found to have a stronger impact on stock returns in the lower tail, with 

mixed evidence of dependence in the upper tail. Mensi et al. (2014) examine the dependence 

structure between global risk factors and stock returns in BRICS countries between 1997 and 

2013, also using the quantile regression approach. They find that the relationship tends to 

exhibit tail independence. Significant dependence is found around the central and 

intermediate areas of the distribution, though there are differences between the countries. 

Further they show that the dependence significantly increases since the onset of the 2008 

financial crisis. Based on the presented literature we propose the following testable 

hypothesis: 

 

Hypothesis 2: There is a relationship between oil price changes and shipping stock 

returns that is either negative or positive. Oil is a proxy for the world economy, implying a 

positive relationship. However, since oil represents one of the major costs in producing 

shipping services, a negative relationship is also probable.  
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Fleming et al. (1995) investigate the relationship between changes in the CBOE 

Market Volatility Index (VIX) and S&P 100 index returns, over the period 1986 to 1992. 

They present evidence of a strong negative contemporaneous correlation, where the volatility-

return relation exhibits significant asymmetry: Negative stock market returns are followed by 

larger absolute changes in VIX than the positive stock market returns. Badshah (2013) 

empirically tests the leverage hypothesis (see Black, 1976) and the volatility feedback 

hypothesis (see French et al., 1987), using quantile regression. By studying the daily relation 

between stock index returns and changes in VIX, the study provides evidence of a strong 

negative asymmetric return-volatility relationship, where the asymmetry increase from the 0.5 

to the 0.95 quantile. Neither the leverage nor the volatility feedback hypothesis explain the 

asymmetric return-volatility relation. Furthermore, he finds that the OLS regression 

underestimates the relation between the stock index returns and changes in VIX in the upper 

quantiles. 

Chiang and Li (2012) also use the quantile regression methodology when examining 

the risk-return relation between daily volatility and stock index returns for four major stock 

indices in the U.S. market over the period 1997 to 2007. They find the risk-return relationship 

to evolve from negative to positive as the quantiles increase. For quantiles below the median 

the excess return is negatively related to risk, and vice versa. Thus, the least square regression 

provides limited information about the risk-return relation. The finding suggests that during 

optimistic market conditions, investors anticipate that increased volatility will be compensated 

by higher return; while for pessimistic markets, stock prices fall when volatility increases, due 

to increased uncertainty. Similarly, Mensi et al. (2014) find a significantly negative relation 

between changes in VIX and stock returns in four BRICS markets (Brazil, South Africa, 

Russia and China) in the lower quantiles when utilizing the quantile regression. However, in 

contrast to Chiang and Li (2012); for the remaining quantiles they find no significant impact, 

except for in Brazil. Their findings indicate that the effect of changes in implied volatility is 

stronger in bearish than in bullish markets, derived from increased levels of fear and anxiety 

when stock prices fall. From the previous discussion, we present the following testable 

hypothesis: 

 

Hypothesis 3: There is an asymmetric, negative relation between VIX and shipping 

stock returns.  
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Ferson and Harvey (1994) use the trade-weighted U.S. dollar price of the currencies in 

the G10 countries as they investigate the impact of exchange rate risk, among other factors, on 

national equity markets. In ten out of the eighteen countries examined, fluctuations in the 

exchange rate are found to significantly influence stock market returns – where the impact is 

positive in all except the United States. Jorion (1990) documents that the exposure to 

exchange rate risk among U.S. multinational corporations have a positive relation in regard to 

the level of foreign involvement of a company. Similarly, Loudon (1993) finds that exposure 

to currency risk vary across industries, when investigating Australian stock returns between 

1980 and 1991. Specifically, he finds that the value of the Australian dollar has a significant 

positive impact on 30% of Australian industries. Tsai (2012) use quantile regression to 

examine the relationship between the exchange rate and stock price indices in six Asian 

countries. He finds a negative relationship where the dependence is stronger for very high or 

low exchange rates.  

Leggate (1999) measures foreign exchange rate risk in the Norwegian shipping 

market, but points out that the seriousness of the risk is applicable for the entire industry. She 

presents evidence that operating profits can be dramatically affected by a rise or fall in the 

exchange rate. Akatsuka and Leggate (2001) look at the shipping industries in Japan and 

Norway, and conclude that the exchange rate significantly influences the performance of 

shipping companies. Further, they document that the level of exposure is of great importance.  

Grammenos and Arkoulis (2002) and Drobetz (2010) find that the U.S. dollar (USD) 

exchange rate is negatively related to shipping stock returns. They explain that USD 

denominated costs become effectively more expensive as the USD appreciates – and that this 

effect outweighs the alternative; that a stronger USD increases dollar denominated income for 

non-U.S. companies. Based on the presented empirical work, we present a testable hypothesis 

as follows.  

 

 Hypothesis 4: The relationship between changes in the U.S. exchange rate and 

shipping stock returns is either positive or negative. Freight rates are USD denominated, 

which means that for non-U.S. companies a stronger USD represents higher effective 

revenues, also called the direct effect. However, shipping companies may also have costs 

incurring in USD, which counteract this effect. An appreciation of the USD further influences 

the demand for dollar quoted goods, which also speaks for a negative effect – called the 

indirect effect (McConville, 1999). 
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According to Flannery and James (1984) changes in interest rate are correlated with 

the common stock returns for financial institutions. Prasad and Rajan (1995) examine the 

effect of exchange and interest rate fluctuations on the equity markets of Germany, Japan, 

U.K. and U.S. by constructing industry-based portfolios for each market; finding few 

instances of significant interest rate risk exposure. For the U.S. equity market, only Other 

Transport industry and the Utilities group display significant relations to changes in interest 

rate over the period 1981 to 1989. The finding indicates that although banking business 

exhibits a particular interest rate sensitivity, the effect of interest rate changes is also evident 

in non-financial sectors.  

Joseph (2002) investigates the U.K. stock returns relation to changes in interest and 

exchange rates for the period 1988 to 2000. He finds the impact of interest rate changes to be 

significantly related to 34% of all firms in the sample, where the negative effect for both 

interest rate and exchange rate is more evident in the engineering and electrical sectors. His 

finding implies that exchange and interest rate changes affect the domestic and international 

competitiveness of individual firms through their impact on the cash flow, investment, and 

profitability. Mouna and Anis (2016) examine the influence of the market, the exchange rate, 

and the interest rate risk effects on two non-financial sectors returns (technology and industry) 

in eight countries over the period 2006 to 2009 using a AGARCH-M approach. They find that 

the linkage between interest rate changes and stock returns is primarily negative, where the 

link is stronger for long-term horizons at low frequencies than for the shortest scales. This 

finding suggest that investors with long-term perspectives take into account macroeconomic 

fundamentals in their investment decisions.  

El-Masry et al. (2010) examine the effect of exchange rate, interest rate, and oil prices 

on stock returns of 143 shipping companies from 16 countries, over the period 1997 to 2005. 

They find that the exposure to fluctuations in both short- and long-term interest rates is 

evident in 9.79% of all firms in the sample, where the impact is negative for 12 out of 14 

firms. They therefore propose a negative relation between shipping stock returns and changes 

in interest rates. Furthermore, they suggest that an explanation of why so few companies are 

found to have a significant exposure to both exchange and interest rate, may be the successful 

hedging strategies of shipping companies.    

Jareño et al. (2016) uses the quantile regression approach to investigate the 

sensitivities of U.S. companies included in the S&P 500 index to interest rate changes over 

the period 2003 to 2013. By dividing the companies into sector portfolios they find the effect 

of both nominal and real interest rate and inflation to differ across the industrial sectors, 
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where the impact is more evident in extreme market conditions. From the previous discussion, 

we propose the following testable hypothesis: 

 

Hypothesis 5: There is a negative relation between changes in the interest rate and 

shipping stock returns. Since the shipping industry is highly leveraged, an increase in interest 

rate can lead to liquidity problems and variations in future cash flow – particularly during 

depressed shipping markets.  

3.  Empirical methodology 

To examine the risk profile of shipping stocks divided into the sectors: container, dry bulk, 

and tanker, we use a set of pre-specified macroeconomic factors. By utilising the quantile 

regression method, we are able to model the effect of the risk factors on shipping stock returns 

under different market conditions. Furthermore, by using the ordinary least squares (OLS) 

regression as a benchmark for comparison, we accentuate the increased comprehension of the 

risk-return relationship achieved by the use of quantile regression. In the following, we will 

present the models we apply in the empirical analysis.   

The standard multivariate linear model is given by the equation: 

 

𝑟𝑖𝑡 = 𝛼𝑖 + 𝛽𝑖1𝑑𝑊. 𝑟𝑒𝑡𝑡 + 𝛽𝑖2𝑑𝑂𝑖𝑙𝑡 + 𝛽𝑖3𝑉𝐼𝑋𝑡 + 𝛽𝑖4𝑑$𝑒𝑥𝑐ℎ. 𝑟𝑡 + 𝛽𝑖5𝑑10𝑌. 𝑟 + 𝜀𝑖𝑡      (1) 

 

where 𝑟𝑖𝑡 is the excess return on stock portfolio 𝑖 at time 𝑡, 𝛼𝑖 is the intercept and 

𝛽𝑖1, 𝛽𝑖2, … , 𝛽𝑖5 is the sensitivity of risk factor 1,2, … ,5 for portfolio 𝑖. 𝑑𝑊. 𝑟𝑒𝑡𝑡 is the excess 

return of the MSCI All Country World Index at time 𝑡, 𝑑𝑂𝑖𝑙𝑖 is the log change of the WTI 

crude oil price at time 𝑡, 𝑉𝐼𝑋𝑡 is the levels of the CBOE Volatility Index at time 𝑡, 𝑑$𝑒𝑥𝑐ℎ. 𝑟𝑡 

is the log change of Trade-Weighted U.S. Dollar Index: Major currencies at time 𝑡, and 

𝑑10𝑌. 𝑟𝑡 is the log change of the 10-year Treasury Rate at time 𝑡. The errors 𝜖𝑖𝑡 are random 

variables that are independent and identically distributed (i.i.d.) with mean equal to zero.  

The standard linear regression efficiently models the conditional mean and variance of 

the dependent variables, by finding the betas that minimise the sum of the squared residuals 

(Alexander, 2008). Hence, information about the tails of the distribution of the dependent 

variable is lost. For the regression coefficients to be the best linear unbiased estimators 
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(BLUE), the residual assumptions must hold1. If one or more of the classical properties do not 

hold, the beta coefficients are no longer BLUE (Studenmund, 2014). To address this issue, the 

quantile regression method developed by Koenker and Bassett (1978), present a more flexible 

approach giving a complete picture of the joint distribution of the data. The approach is non-

parametric since it requires no distributional assumptions to optimally estimate the 

parameters. The method is far more robust to outliers and non-normality than the OLS 

regression, and provides more accurate and precise estimates (Brooks, 2014).  

We use the following 𝑞th quantile linear regression model to describe the dependence 

between the risk factors and the stock portfolio returns, where the intercept and the regression 

coefficients depends on 𝑞, letting 𝑞 ∈ (0,1): 

 

𝑟𝑖𝑡
(𝑞)

= 𝛼𝑖
(𝑞)

+ 𝛽𝑖1
(𝑞)

𝑑𝑊. 𝑟𝑒𝑡𝑡 + 𝛽𝑖2
(𝑞)

𝑑𝑂𝑖𝑙𝑡 + 𝛽𝑖3
(𝑞)

𝑉𝐼𝑋𝑡 + 𝛽𝑖4
(𝑞)

𝑑$𝑒𝑥𝑐ℎ. 𝑟𝑡 + 𝛽𝑖5
(𝑞)

𝑑10𝑌. 𝑟 + 𝜀𝑖𝑡
(𝑞)

     (2)  

 

where 𝑟𝑖𝑡
(𝑞)

 is the excess return on stock portfolio 𝑖 at time 𝑡 for quantile 𝑞, 𝛼𝑖
(𝑞)

 is the 

intercept for quantile 𝑞 and 𝛽𝑖1
(𝑞)

, 𝛽𝑖2
(𝑞)

, … , 𝛽𝑖5
(𝑞)

 is the sensitivity of risk factor 1,2, … ,5  for 

portfolio 𝑖 for quantile 𝑞. The distribution 𝜀𝑖𝑡
(𝑞)

 is left unspecified2. The quantile regression 

approach models the entire conditional distribution of returns given the associated risk factors, 

by examining the shape of the distribution in addition to location and scale. The method 

minimises the sum of the absolute values of the residuals, and finds the different quantiles by 

weighting the residuals. To obtain the standard errors for the estimated coefficients, we use 

the pairs bootstrapping procedure proposed by Buchinsky (1995). By using this procedure, the 

standard errors are asymptotically valid under heteroscedasticity and misspecifications of the 

quantile regression function. If the intercept and regression coefficients vary with 𝑞, the 

model identifies a form of heteroscedasticity in the conditional return distribution. Hence, 

model presented in equation (2) will add more information about the risk-return profile of the 

shipping stocks, than the conditional mean regression in equation (1). Additionally, deviations 

between the mean and median estimates indicate asymmetry in the error distribution (Brooks, 

2014).   

 By inserting the estimated values for the intercept and regression coefficients for a 

given value of 𝑞, using the last observed values for the risk factors, in equation (2), we can 

                                                 
1 Assumptions for using OLS include: 1. 𝐸(𝑢𝑡) = 0, 2. 𝑣𝑎𝑟(𝑢𝑡) = 𝜎2 < ∞, 3. 𝑐𝑜𝑣(𝑢𝑖 , 𝑢𝑗) = 0 𝑓𝑜𝑟 𝑖 ≠ 𝑗, 4. 

𝑢𝑡~𝑁(0, 𝜎2) (Brooks, 2014).   
2 The distribution of the standard error term is not required to meet the same criteria as those in the OLS 

regression model.  
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calculate VaR for each stock portfolio. VaR is simply a particular conditional quantile on the 

distribution and is a risk measure for the loss level that is expected to be exceeded with 

probability 𝑞 ∈ (0,1) if the portfolio is held over some time (Alexander, 2009).  

4. Data  

The focus in our empirical work is on the container, dry bulk, and tanker sectors as these 

represent the majority of cargo capacity of the global merchant fleet (Alizadeh and Nomikos, 

2009). Our data sample consists of 34 shipping companies, where the sample period ranges 

from from 1st August, 2001 to 31st December, 2015. Four of the companies are included in 

two or three of the sectors. Our portfolios consist of the companies used by Drobetz et al. 

(2010), with the exception of companies that; lack sufficient length of historical data3, is 

acquired by or merged with other companies4, or is excluded for other reasons5. As a result, 

our sample is smaller than the original by Drobetz et al. (2010). There is a possibility that the 

results are driven by sample selection bias. Possible causes for that are; our sample selection 

includes fewer companies, large companies are excluded due to lack of historical data, and 

some of the included companies are involved in other business areas in addition to the 

shipping industry. These aspects could potentially lead to estimation biases, and as a 

consequence the selected macroeconomic factors may not be entirely representative for the 

actual risk facing this industry. However, we believe that our sample is representative for the 

shipping market, as it is based on a prominent source in the area of shipping research. We do 

not regard the issue of having a smaller sample size to be of great importance; for instance, 

Grammenos and Arkoulis (2002) use a sample selection of no more than 36 companies. In the 

Appendix A we present a list of our selected shipping companies in tables A1-A3.  

Daily stock prices for each of the companies are collected from Thomson Reuters 

Datastream, denominated in USD and adjusted for stock splits and dividends. The portfolios 

are constructed by weighting each company in accordance to its market value. We find the 

portfolio weights for the individual companies by dividing the market capitalization of each 

company on the sum of total market capitalization for the companies combined. For each day, 

the portfolio weights are recalculated. Finally, the weights are always positive and sum to one.  

                                                 
3 China Shipping Container Line (CSCL), Euronav, Hanjin Shipping Co., Pacific Basin Shipping, Ship Finance 

Intl., Sinotrans Ltd., Tsakos Energy Navigation and Overseas Shipholding Group (OSG). 
4 Knightsbridge Tankers Ltd., Shinwa Kaiun and Brostrom. 
5 Dampskibsselskabet “Torm” A/S (D/S Torm) (faulted data series), Trailer Bridge Inc. (unable to find), 

Alexander & Baldwin (main industry listed as real estate). 
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We calculate the daily logarithmic excess returns for each portfolio, where the 1-

month U.S. Treasury rate is used as the risk-free rate. That is: 

𝐸𝑅𝑖𝑡 = ln (
𝑃𝑖𝑡

𝑃𝑖( 𝑡−1)

) − 𝑟𝑓     (4)      

where 𝐸𝑅𝑖𝑡 is the excess return of portfolio 𝑖 at time 𝑡, 𝑃𝑖,𝑡 is the price of stock portfolio 𝑖 at 

time 𝑡, 𝑃𝑖,𝑡−1 is the price of stock portfolio 𝑖 at time , 𝑡 − 1, and 𝑟𝑓 is the 1-month U.S. 

Treasury rate. The excess return of each portfolio serves as our dependent variables, denoted; 

‘Container’, ‘Dry Bulk’ and ‘Tanker’.  

The global macroeconomic factors, which serve as our independent variables, are 

expressed as the daily log changes of the data time series, except for the Morgan Stanley 

Capital International (MSCI) All Country World Index (ACWI) and the volatility index. To 

calculate the excess return for the MSCI ACWI we use formula (4). VIX is expressed in 

levels. We use the following formula to calculate the daily log changes: 

𝑐𝑖𝑡 = ln (
𝑉𝑖𝑡

𝑉𝑖(𝑡−1)

)     (5) 

Where 𝑐𝑖𝑡 is the daily log change of variable 𝑖 at time 𝑡, 𝑉𝑖𝑡 is the value of variable 𝑖 at time 𝑡, 

and 𝑉𝑖(𝑡−1) is the value of variable 𝑖 at time 𝑡 − 1.  

As a proxy for the world market portfolio, we use the MSCI ACWI. The index covers 

around 85% of the global investment opportunities and include a sample of large and medium 

capitalisation companies across 23 developed markets and 23 emerging markets countries6. 

The excess return of the variable is denoted ‘𝑑𝑊. 𝑟𝑒𝑡’. The oil price variable is set by the 

West Texas Intermediate (WTI) crude oil spot price, measured in USD per barrel of crude oil. 

The WTI crude oil price is closely related to the bunker fuel price (Alizadeh and Nomikos, 

2009). The daily log change of this variable is denoted ‘𝑑𝑂𝑖𝑙’. Levels of the Chicago Board 

Options Exchange Volatility Index (VIX) is denoted as ‘𝑉𝐼𝑋’7. To capture the exchange rate 

risk, we use the variable Trade-Weighted U.S. Dollar Index, which is a weighted average of 

the foreign exchange value of the USD against major currencies, including the Euro Area, 

                                                 
6 Previous literature investigating the impact of the world return on shipping stock returns use the MSCI World 

Equity Index as a proxy for the world market portfolio (see e.g. Grammenos and Arkoulis, 2002; Drobetz et al., 

2010). However, we believe that the MSCI ACWI serves as a better proxy, as the shipping industry is affected 

by changes in the economy in both developed and emerging countries. Furthermore, the three dependent 

variables exhibit stronger correlations with the MSCI ACWI than the MSCI World Equity Index. For further 

detail on the MSCI ACWI, see the MSCI factsheet: 

https://www.msci.com/resources/factsheets/index_fact_sheet/msci-acwi.pdf 
7 VIX provides an estimate of the expected future realised for the SPX index for 30 calendar days, and is based 

on the bid and ask prices of the cross-section of S&P 500 index options. The index is a widely used measure of 

the level of investor fear in the market. 
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Canada, Japan, United Kingdom, Switzerland, Australia and Sweden. The log change of this 

variable is denoted ‘𝑑$𝑒𝑥𝑐ℎ. 𝑟’. Finally, the long-term rate is given by the 10-Year Constant 

Maturity Treasury Rate, where the log changes of is denoted ‘𝑑10𝑌. 𝑟’. The daily data for the 

independent variables are collected from two sources, over the period 1st August, 2001 to 31st 

December, 2015. We use Thomson Reuters Datastream to obtain data for MSCI ACWI, WTI 

crude oil price and VIX, while Trade-Weighted U.S. Dollar Index, 1-month and 10-year 

Treasury Rates are collected from Federal Reserve Bank of St. Louis (see Appendix A, table 

A4). For missing data points in the time series, i.e. not announced data, we insert the value 

from the previous day.  

4.1 Descriptive statistics 

Table 1 lists the descriptive statistics for the variables under consideration. The mean excess 

returns of the shipping stock portfolios vary across the sectors. The container portfolio 

exhibits a positive average excess return – accompanied by the highest standard deviation, as 

well as the highest maximum and minimum values (measured in absolute values) relative to 

the excess return of the other shipping portfolios and MSCI ACWI. The dry bulk and tanker 

portfolios have negative mean excess returns, where dry bulk exhibits the lowest mean excess 

Table 1: Descriptive statistics 

 Container Dry Bulk Tanker dW.ret dOil VIX d$exch.r d10Y.r 

         

Mean  0.0234 % -0.0002 % -0.0145 % 0.0083 % 0.0086 % 20.314 % -0.0038 % -0.0216 % 

         

Std. Dev. 3.400 % 2.459 % 3.170 % 1.033 % 2.385 % 9.163 % 0.466 % 1.950 % 

         

Max. 39.520 % 14.781 % 24.983 % 8.903 % 21.277 % 80.860 % 2.155 % 8.923 % 

         

Min. -22.144 % -19.542 % -20.882 % -7.371 % -17.217 % 9.890 % -4.107 % -18.497 % 

         

Skewness 0.666 -0.263 0.023 -0.375 -0.003 2.122 -0.243 -0.098 

         

Kurtosis 14.790 8.820 9.027 11.256 8.577 9.487 6.690 7.005 

         

JB 22 063* 5 351* 5 693* 10 770* 4 874* 9 415* 2 170* 2 520* 

         

ADF -63.815* -57.065* -62.077* -42.667* -64.865* -3.634* -62.417* -45.687* 

         

N  3 761   3 761   3 761   3 761   3 761   3 761   3 761   3 761  

         

Note: The table presents descriptive statistics for excess return of the three portfolios and the world return, the VIX and log 

change for the remaining independent variables. Data running from 1st August, 2001 to 31st December, 2015. The table 

includes the test statistic of the Jarque-Bera (JB) test for the normality assumption, and the empirical statistics of the 

Augmented Dickey-Fuller (ADF) unit root test. N is the number of observations. * and ** indicate the rejection of the null 

hypothesis at the 1% and 5% levels, respectively. 
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return of all variables. The mean excess return for the MSCI ACWI is positive. Drobetz et al. 

(2010) find the container, dry bulk and tanker portfolio to all exhibit positive mean excess 

return. Our dissimilar findings may be caused by the selected sample time period. However, 

our results correspond to Drobetz et al. (2010) when addressing variance as a measure of risk, 

namely that the variance for all shipping stock portfolios is higher than the variance of market 

portfolio. During our sample period there has been a rise in the oil price, which leads to a 

positive mean return, in addition to a relatively high standard deviation. Our study covers a 

period of a clearly declining interest rate, which is shown by the highly negative mean change 

in the 10-year Treasury Rate. The mean change in exchange rate is negative and relatively 

low in absolute value, implying that over the period the USD has generally depreciated 

slightly against the currencies included in the currency basket. VIX exhibits the highest 

standard deviation and maximum value compared to the other data series in the sample. VIX 

reached particularly high values in 2008-2009, around the time of the recent financial crisis 

(see Appendix C, figure C2). 

All risk factors exhibit kurtosis, leading to rejection of the Jarque-Bera test of 

normality for the unconditional distribution of all the series. Additionally, all series show 

negative skewness, except the VIX, and the tanker and container portfolio returns – which all 

have positive skewness. This indicates that the quantile regression method will provide more 

accurate parameter estimates than OLS regression, as the method is more robust to outliers 

and non-normality. We test the null hypothesis of a unit root using augmented Dickey and 

Fuller (1979) (ADF) statistics. We let the Schwarz criterion determine the optimum lag length 

(max 30) included in the ADF-test. The results of the ADF-test show that all return series are 

stationary. 

4.2 Correlations  

Table 2 presents the correlation structure of our dependent and independent variables. The 

correlations between the shipping portfolios and the risk factors are varying. The excess 

returns of the shipping portfolios exhibit moderate correlation with the excess return of MSCI 

ACWI, where the correlation is highest for the dry bulk portfolio. Changes in oil price and 

exchange rate show, respectively, weak positive and negative correlation with the shipping 

portfolios. Change in the 10-year Treasury Rate has weak positive correlations with both the 

container and tanker portfolio; while for the dry bulk portfolio there is little, if any, 

correlation. There are barely any correlations between VIX and the three shipping portfolios.  
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The correlations between the independent variables are generally weak. The highest 

correlation (0.369) is measured between the excess return of MSCI ACWI and changes in 10-

year Treasury Rate. With a weak correlation structures between the independent variables, 

and VIF-values below two, multicollinearity does not present a problem in our analysis. The 

absence of multicollinearity is crucial in our search for an understanding of how the various 

variables influence the different shipping portfolio returns. High multicollinearity distorts the 

standard errors, and thus the significance of the findings in regression analysis. 

5. Empirical results and discussion  

Tables 3-5 report the estimates from the OLS and quantile regressions for the regressed 

excess return of the three shipping sectors on the set of pre-specified risk factors. Equation (1) 

estimates the OLS regression, where we use Newey-West standard errors with 

autocorrelation, also called HAC (heteroscedasticity and autocorrelation consistent).8 The 

quantile regression results are given by equation (2). In order to estimate the covariance 

matrix of the parameter estimates, we employ the pairs bootstrapping procedure (Buchinsky, 

1995), with maximum iterations set to 10,000. We present numerical estimates for the 

conditional mean and seven quantiles from 0.05 to 0.95 in table 3-5. Figure 1-3 illustrate 

graphically the results for all the estimated conditional quantiles for each of the portfolio 

excess returns.  

                                                 
8 The assumptions for using the OLS do not hold for any of the sectors, indicating that the beta coefficients are 

no longer BLUE. See Appendix B, tables B1-B3 for specification of the diagnostic tests. 

Table 2: Correlation between dependent and explanatory variables 

 Container Dry 

Bulk 

Tanker dW.ret dOil VIX d$exch.r d10Y.r VIF 

Container 

 
1.000         

Dry Bulk 

 
0.399 1.000        

Tanker 

 
0.398 0.424 1.000       

World 

Return 
0.462 0.495 0.490 1.000      

Oil 0.218 0.222 0.288 0.292 1.000    1.401 

VIX -0.070 -0.093 -0.087 -0.155 -0.066 1.000   1.147 

Exchange 

Rate 
-0.331 -0.322 -0.248 -0.343 -0.256 0.032 1.000  1.026 

10Y Rate 0.184 0.131 0.204 0.369 0.197 -0.069 0.002 1.000 1.203 

Note: The table presents the correlation matrix between the excess return for the three portfolios, the levels for VIX and 

log changes for the remaining independent variables. Data running from 1st August, 2001 to 31st December, 2015. VIF-

values for the independent variables are all below two. 
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Table 3: OLS and quantile regression estimates for the container sector 

 OLS Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) 

         

𝛼 0.000 -0.007** -0.008* -0.001 0.000 0.003 0.010* 0.013* 

 (0.171) (-2.053) (-2.869) (-0.604) (0.172) (1.371) (4.663) (3.504) 

         

𝛽𝑑𝑊.𝑟𝑒𝑡 1.205* 1.213* 1.187* 1.176* 1.172* 1.261* 1.407* 1.266* 

 (15.681) (7.465) (10.826) (13.457) (17.114) (12.893) (14.458) (6.485) 

         

𝛽𝑑𝑂𝑖𝑙  0.078* 0.063 0.097** 0.050*** 0.057* 0.080* 0.073*** 0.023 

 (3.257) (1.536) (2.249) (1.816) (2.522) (3.034) (1.740) (0.324) 

         

𝛽𝑉𝐼𝑋 -0.001 -0.171* -0.115* -0.072* -0.004 0.061* 0.105* 0.146* 

 (-0.085) (-8.796) (-7.234) (-6.940) (-0.540) (5.017) (9.126) (7.997) 

         

𝛽𝑑$𝑒𝑥𝑐ℎ.𝑟 -1.402* -1.029* -1.115* -1.180* -1.280* -1.357* -1.198* -1.343* 

 (-10.608) (-4.292) (-5.900) (-9.075) (-11.630) (-8.649) (-6.127) (-3.331) 

         

𝛽𝑑10𝑌.𝑟  0.066** 0.096 0.076 0.052 0.041 0.079** 0.093*** 0.235* 

 (2.408) (1.414) (1.556) (1.556) (1.560) (2.144) (1.896) (2.564) 

         

R²/ 

Pseudo R² 
0.252 0.239 0.203 0.167 0.143 0.149 0.184 0.195 

Note: This table present OLS and quantile estimates for the container sector given by equitation (1) and (2). For the OLS and 

quantile regressions, the numbers in parentheses are HAC and bootstrap standard errors, respectively. *, ** and *** denotes 

statistical significance at the 1, 5, and 10% levels. 

 

 
Table 4: Quantile regression estimates for the dry bulk sector 

 OLS Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) 

         

α 0.001 -0.014* -0.008* -0.005* 0.001 0.005* 0.010* 0.017* 

 (0.921) (-5.495) (-5.213) (-4.057) (0.851) (3.642) (5.583) (5.721) 

         

βdW.ret 1.040* 1.048* 1.072* 0.957* 0.870* 0.998* 1.262* 1.295* 

 (14.791) (7.836) (11.782) (19.328) (15.788) (16.060) (14.845) (9.368) 

         

βdOil 0.064* 0.077** 0.041*** 0.048* 0.052* 0.037** 0.050** 0.055 

 (3.765) (2.041) (1.802) (2.731) (4.333) (2.232) (1.947) (1.200) 

         

βVIX -0.005 -0.087* -0.075* -0.033* -0.007 0.029* 0.066* 0.080* 

 (-1.003) (-6.856) (-9.308) (-5.101) (-1.278) (4.554) (6.421) (5.544) 

         

βd$exch.r -0.822* -0.740* -0.685* -0.803* -0.879* -0.809* -0.610* -0.833* 

 (-8.631) (-3.367) (-5.276) (-10.278) (-10.407) (-7.136) (-4.337) (-3.739) 

         

βd10Y.r -0.055* -0.110** -0.085** -0.041*** -0.028 -0.015 0.004 -0.044 

 (-8.631) (-2.044) (-2.403) (-1.658) (-1.284) (-0.598) (0.097) (-0.635) 

         

R²/ 

Pseudo R² 
0.276 0.231 0.201 0.156 0.133 0.136 0.158 0.180 

Note: See table 2.  
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Table 5: Quantile regression estimates for the tanker sector 

 OLS Q(0.05) Q(0.10) Q(0.25) Q(0.50) Q(0.75) Q(0.90) Q(0.95) 

         

𝛼 0.000 -0.023* -0.014* -0.002 0.000 0.004* 0.012* 0.024* 

 (0.374) (-7.940) (-5.578) (-1.448) (0.365) (2.889) (4.215) (7.322) 

         

𝛽𝑑𝑊.𝑟𝑒𝑡 1.273* 1.289* 1.177* 1.133* 1.145* 1.190* 1.433* 1.528* 

 (15.281) (8.549) (12.981) (16.092) (17.585) (14.073) (11.030) (10.424) 

         

𝛽𝑑𝑂𝑖𝑙  0.193* 0.146* 0.191* 0.204* 0.166* 0.156* 0.124* 0.192* 

 (7.379) (2.603) (5.379) (9.415) (6.663) (6.102) (2.574) (3.164) 

         

𝛽𝑉𝐼𝑋 -0.003 -0.096* -0.079* -0.063* -0.004 0.046* 0.090* 0.093* 

 (-0.625) (-5.927) (-6.926) (-8.379) (-0.545) (5.935) (6.580) (5.766) 

         

𝛽𝑑$𝑒𝑥𝑐ℎ.𝑟 -0.467* -0.747* -0.376 -0.145 -0.294** -0.546* -0.439*** -0.460 

 (-3.563) (-2.868) (-1.593) (-1.322) (-2.175) (-5.024) (-1.783) (-1.329) 

         

𝛣𝑑10𝑦.𝑟 0.035 0.013 0.055 0.060** 0.061** 0.068** 0.064 -0.021 

 (1.285) (0.162) (0.991) (2.028) (2.153) (2.413) (1.149) (-0.235) 

         

R2/ 

PseudoR2 0.267 0.206 0.188 0.161 0.124 0.125 0.142 0.158 

Note: See table 2. 

 

 

 
Figure 1: Graphical illustration of the OLS and quantile regression estimates for the container sector. 

Note: The figure presents the OLS and quantile regression estimates for the intercept, the world return, the change in oil 

price, the VIX, the change in exchange rate and the change in the 10-year rate. The stippled line represents the beta 

coefficient provided by OLS regression. The solid line represents the beta coefficients given by quantile regression, for 

quantiles between 0 and 1. The grey area is the 90% point-wise confidence band. 
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Figure 2: Graphical illustration of the OLS and quantile regression estimates for the dry bulk sector 

Note: See figure 1. 
 

 

 
Figure 3: Graphical illustration of the OLS and quantile regression estimates for the tanker sector 

Note: See figure 1.  
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5.1 The dependence structure between excess return of shipping stocks and excess return 

of the world market portfolio 

The effect of the world market portfolio, represented by MSCI ACWI, is positive and 

significant at the 1% level for the entire return distribution in all sectors (see tables 3-5). The 

beta coefficient of the OLS regression is significant and greater than one for all sectors, where 

the container and tanker sectors exhibit the highest beta values. The estimated beta 

coefficients from the quantile regression show that the impact of the market return varies 

across quantiles, and is higher than unity for the entire return distribution for both the 

container and tanker sectors. Figure 1 shows a weak increasing trend in the relation between 

market risk and the container portfolio return. This is not the case for dry bulk and tanker 

sectors (see figure 2 and 3). For the dry bulk sector, the impact of the world market portfolio 

return fluctuates across the quantiles, where the effect is smaller than one for the intermediate 

(0.25-0.75) quantiles. In the lower and upper tails, the impact is greater than one, indicating a 

stronger tail dependence. The quantile regression shows that for all the sector alike, the 

dependence is higher in the upper (0.90-0.95) quantiles than the lower (0.05-0.10) and 

intermediate quantiles, indicating that the global economy has a stronger influence in bullish 

than bearish markets. The OLS regression underestimates the sensitivity of market risk at the 

upper quantiles for all sectors. 

The empirical analysis confirms hypothesis 1, as we find that the shipping industry 

exhibit higher systematic risk than the market9, excluding the intermediate quantiles of the dry 

bulk sector. The finding is not in line with the research of Kavussanos and Marcoulis (1997) 

and Drobetz et al. (2010), as they both provide evidence of a beta lower than one for the U.S.-

listed water transportation sector and global shipping stocks, respectively. Nonetheless, these 

results are anticipated considering the capital-intensive nature of the shipping industry –

characterised by business cycles and volatile earnings (Alizadeh and Nomikos, 2009). It is 

reasonable that a well-performing global economy, reflected in higher global equity returns, 

will increase the demand for shipping transportation. A healthy world economy may lead to a 

higher demand for manufactured consumer goods and increased industrial activity, which in 

turn increases the demand for goods and commodities used directly or as energy input in the 

production. Consequently, the demand for both container, dry bulk and tanker transportation 

                                                 
9 Furthermore, when comparing the explanatory power of our five-factor model with a one-factor model 

including only the return of the market portfolio using the OLS regression, we find the market risk to be the most 

important factor in explaining the variations in shipping stock returns. This finding is similar to the research of 

Ferson and Harvey (1994) and Kavussanos et al. (2002). For the one-factor model, R2 for the container, dry bulk 

and tanker portfolio returns are 0.213, 0.245 and 0.240, respectively. 
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increase. Since supply is ponderous and slow to change in the shipping industry (Stopford, 

2009), the increased demand will lead to higher freight rates, resulting in higher shipping 

stock returns. Furthermore, the results from the quantile regression show that the dependence 

between the returns of shipping stocks and the world market portfolio may be asymmetrical; 

making OLS regression inadequate to describe their relation – an observation supported by 

the previous research of Barnes and Hughes (2002).  

5.2  The dependence structure between excess return of shipping stocks and changes in 

the oil price 

The relationship between shipping stock returns and changes in the oil price is positive across 

the entire distribution for all of the three segments. However, the level of dependence varies 

to some degree between quantiles, but more prominently between the segments. Furthermore, 

OLS overestimates the dependence relative to the majority of the quantiles, including the 

median, in all three shipping sectors.   

In both the container and dry bulk segments, beta coefficients are stable throughout the 

distribution, with only small fluctuations between quantiles. Furthermore, both segments 

exhibit signs of tail independence. In the tanker segment, influence is found to be stronger 

than in the other segments, and significant over the entire distribution. There is a vague 

negative trend in the value of the beta coefficients across quantiles, but the decrease does not 

follow a consistent pattern. Nevertheless, as a general trend it may imply that oil price 

fluctuations have slightly less impact on tanker stock returns in bullish than bearish markets.  

In light of hypothesis 2, our results present evidence that the effect of oil price changes 

on shipping stock returns is positive. This finding reflects the study by Drobetz et al. (2010), 

and what Poulakidas and Joutz (2009) find in the tanker segment. It contradicts, however, the 

findings of Grammenos and Arkoulis (2002). The positive relationships given by our results 

imply that the effect of oil as a proxy for the state of the world economy is superior to the 

effect of oil as a major part of transportation costs. Further, the impact of oil price changes 

being stronger on tanker stock returns than in the other two segments is unsurprising, 

considering the explanation of Poulakidas and Joutz (2009) – who find that tanker demand is 

derived from the demand for oil. 

When it comes to the dependence structure, beta values are relatively stable 

throughout the conditional distribution. The container sector exhibits tail independence in 

both the upper and lower quantiles, which supports the findings of Mensi et al. (2014) who 

find the same pattern investigating stock market returns in BRICS countries. The pattern of 

decreasing dependency in the upper tail in the dry bulk sectors is in line with what Reboredo 
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and Ugolini (2016) find in their research. However, an important note is that the 

insignificance may stem from few observations in the outermost quantiles. 

5.3 The dependence structure between excess return of shipping stocks and the volatility 

index (VIX) 

The impact of VIX on shipping stock returns evolves from negative to positive as the 

quantiles increase across the return distribution for all sectors. For container, dry bulk and 

tanker portfolios alike, VIX is negatively related to excess return in the lower tail (0.05-0.25), 

with positive relation in the upper tail (0.75-0.95), where the beta coefficients are significant 

at the 1% level in all quantiles. The impact is insignificant for both the median and the 

conditional mean. A reason for insignificant results in the OLS estimation may be that the 

negative and positive impacts cancel each other out. The absolute value of the beta coefficient 

for the VIX is higher in the 0.05 than the 0.95 quantile for the container sector, whereas for 

dry bulk and tanker the difference is less evident10.  

The results given by our empirical analysis do not completely support hypothesis 3, 

which postulate a negative relationship between VIX and shipping stock returns. We fail to 

find evidence of an asymmetric relation between VIX and the dry bulk and tanker portfolio 

returns. However, there is indication that the asymmetric volatility phenomenon is present in 

the container sector. The postulated negative relation appears in the lower tail for all sectors 

alike, but in the upper tail the relations are positive. Though not in line with our hypothesis, 

this finding is in line with the empirical study of Chiang and Li (2012). Hence, we can use the 

economic explanation provided by their research to describe the changing volatility-return 

relation across quantiles. As the return distribution in the lower quantiles represent pessimistic 

market conditions, the negative relation is caused by increased uncertainty among investors 

when volatility is rising, causing shipping stock prices to fall. Conversely, during an 

optimistic shipping market (upper quantiles), increased volatility levels drive stock prices up, 

as investors expect to be compensated with higher returns.  

5.4  The dependence structure between excess return of shipping stocks and changes in 

the USD exchange rate  

The effect of changes in the exchange rate, represented by the Trade Weighted U.S. Dollar 

Index, is negative for all shipping sectors – implying that an appreciation of the USD has a 

                                                 
10 Using an unconditional quantile regression model, regressing only the return of each shipping stock portfolio 

on the volatility index, we find a more pronounced asymmetric relation. Measured in absolute value, the impact 

of VIX is higher in the lower tail than the upper tail for all sectors – indicating the presence of the asymmetric 

volatility phenomenon. This finding can be explained by the leverage hypothesis of Black (1976) and the 

volatility feedback hypothesis of French et al. (1987).  
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negative effect on stock returns. The OLS regression tends to overestimate the impact of 

exchange rate fluctuations, most prominently in the container segment, where the OLS 

estimate is more negative than what is found in any of the estimated quantiles. 

The impact of changes in the exchange rate on container stock returns is significant at 

the 1%-level in all quantiles. Furthermore, the effect is slightly increasing throughout the 

conditional distribution, with more negative beta values in higher quantiles, i.e. in bullish 

markets. An implication of this is that exchange rate risk may be higher in good market 

conditions. We note, however, that the variations between quantiles are not great. The 

influence of exchange rate fluctuations on dry bulk stock returns does not appear to depend on 

market conditions, as the values of beta remain relatively stable throughout the conditional 

distribution. Also in the dry bulk portfolio the relationship is negative and significant at the 

1%-level across the whole distribution. In the tanker sector we observe fewer significant 

quantiles, and generally lower beta values – implying that changes in the exchange rate have a 

lesser impact on tanker stock returns. The strongest dependence is found in the lowermost 

quantile (0.05), with scattered significance for the rest of the distribution. No obvious trend is 

observable regarding the dependence structure throughout the distribution.  

 Hypothesis 4 states that the effect of exchange rate fluctuations on stock returns can be 

either positive or negative. Our results provide evidence of the latter, as all segments exhibit 

clear negative dependencies, in all conditional quantiles of the distribution. In other words, 

when the USD appreciates, shipping stock returns decrease. This may be explained by higher 

U.S. denominated costs than revenues for non-U.S. companies. Another explanation is that, as 

U.S. quoted goods become more expensive, demand for these goods decrease, i.e. an indirect 

effect (McConville, 1999). Our findings support previous literature in shipping, such as 

Drobetz et al. (2010) and Grammenos and Arkoulis (2002), who also find a negative 

relationship. 

 Although some fluctuations occur, we are unable to detect any clear differences in 

dependence between bullish or bearish markets. We do, however, see that exchange rate 

fluctuations have a stronger influence on stock returns in the container segment than in the 

tanker and dry bulk segments. The container segment carries manufactured goods, and 

consequently goods of higher value (Stopford, 2009). This can explain the stronger impact of 

changes in the USD on container stock returns, through the indirect exchange rate effect 

(McConville, 1999). A USD appreciation increases the price of an expensive good more than 

a cheaper good in units of local currency, consequently decreasing the demand for shipping 
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services of these goods. Additionally, it seems reasonable to assume that the demand for 

manufactured consumer goods are more price elastic than, say, the price of fuel and grain.  

5.5  The dependence between excess return of shipping stocks and changes in the 10-year 

rate 

The effect of the interest rate risk, represented by the 10-year Treasury Rate, differs across 

both the conditional return distribution and the three sectors. For the dry bulk sector, the effect 

of changes in the long-term rate is negative and significant only in the lower tail of the 

distribution. The beta coefficient provided by the OLS estimation is significantly negative, 

and overestimates the dependence relative to the 0.05-0.25 quantile. For the other segments, 

the impact of changes in the interest rate is positive and significant in the upper tail for the 

container portfolio and intermediate quantiles for the tanker sector. The conditional mean 

underestimates the effect of the interest rate relative to the significant quantiles for both 

sectors.  

 The empirical analysis shows that only the dry bulk portfolio return is supported by 

hypothesis 5. The detected negative relation is in line with the study of El-Masry et al. (2010). 

Since the shipping industry is highly leveraged, it is expected that the relation is evident in a 

depressed market as changes in interest rate can lead to severe liquidity problems and 

fluctuations in future cash flow. Jareño et al. (2016) also find the impact of interest rate to be 

more evident in extreme market conditions. Surprisingly, the container and tanker portfolio 

returns are positively related to the interest rate risk. The finding may be explained by the fact 

that one of the drivers behind interest rates is the state of the economy. Rates tend to rise 

during periods of expansions, while they may fall in depressed economic periods. Hence, an 

increase in the interest rate makes riskier investments more favourable, indicating higher 

demand for shipping stocks as the industry is well-known for being a ‘low-return, high-risk’ 

business (Stopford, 2009). It is, however, surprising that this effect is evident for the container 

and tanker sectors, while not for the dry bulk sector. 

5.6  Summary of main results  

The impact of the market portfolio return is significant and positive for all sectors, where the 

dependence is stronger in the upper tail of the return distribution. Changes in oil price have a 

stronger influence on returns in the tanker sector than for the container and dry bulk sectors. 

The impact is positive in all sectors, however, both the dry bulk and container sectors exhibit 

weaker tail dependence than the tanker portfolio. Furthermore, the OLS regression tends to 

overestimate the influence of oil price changes. Regarding VIX, the beta coefficients change 
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signs from negative to positive around the median with increased impact towards the outer 

quantiles, for all sectors. Thus, OLS regression fails to describe the relationship between 

market volatility and shipping stock returns, as the negative and positive impacts in the tails 

cancel each other out. Fluctuations in the U.S. exchange rate are significantly negative for all 

sectors, but have the strongest impact on the container portfolio, followed by dry bulk and 

tanker. OLS overestimates the dependence throughout the entire conditional distribution in 

the container portfolio. Finally, the effect of changes in the 10-year rate is inconsistent 

between the segments. While we find a positive relationship with the container portfolio, the 

impact is found to be negative on tanker and dry bulk portfolio returns. Moreover, the 

dependence is quite weak and only significant in the upper tail for the container portfolio, 

lower tail for the dry bulk portfolio, and intermediate quantiles for the tanker portfolio. The 

explanatory powers of the OLS regressions are similar over the three sectors, with values 

fluctuating around 25%, meaning that large parts of changes in the shipping portfolio returns 

remain unexplained. The pseudo R2 is also low and relatively similar between the segments, 

although slightly higher in the lower tails than in the remainder of the distributions.  

5.7 Value-at-Risk estimation 

In this section we illustrate how the quantile regression estimates can be directly implemented 

in a non-parametric VaR analysis to forecast the next-day level of tail risk. The last 

observations of the five risk factors in our sample period serve as the baseline in our VaR 

analysis for the container, dry bulk and tanker segments (see figure 4-6). Estimated values of 

the intercept and regression coefficients for a given quantile are inserted in equation (2), in 

addition to the last observed values for each of the five risk factors. As it is the tails that are of 

interest for investors in long and short positions, we focus our discussion on the 5% and 95% 

VaR.  

There is a clear sign of risk asymmetry, as the downside risk is clearly higher than the 

upside risk in all segments. In the dry bulk segment, we see that there is a 5% probability that 

an investor in a long position will endure a loss of 3.5% or more over a one-day period. For an 

investor in a short position, however, there is a 5% probability that the loss will exceed 2.2%. 

For the investors in the container portfolio, the losses that may be exceeded with a 5% 

probability is almost twice as high for a long investor than for a short investor, as the 5% VaR 

is -4.9% and the 95% VaR is 2.5%. The 5% VaR in the tanker portfolio is -4.9%, against a 

95% VaR of 3.2%. 
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Figure 4: VaR values for the excess return for the container portfolio 

 

 
Figure 5: VaR values for the excess return of the dry bulk portfolio 

 

 
Figure 6: VaR values for the excess return of the tanker portfolio 
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From table 6, it is clear that the non-parametric VaR estimation calculated directly 

from the quantile regression yields different risk estimates than the parametric VaR11. 

Generally, the parametric VaR appears to overestimate the one-day tail risk. An explanation 

for the deviations between the two approaches is that the parametric VaR relies on several 

assumptions, for instance constant volatility and normal distribution. It is particularly 

vulnerable to high kurtosis. From the statistics presented in table 1, it is apparent that our 

three shipping portfolios exhibit both skewness and high kurtosis, and consequently are not 

normally distributed. As a result, the parametric VaR may overestimate the actual risk present 

in the 5% and 95% quantiles. 

5.8  Scenario analysis 

We use the 5% and 95% VaR estimates to carry out a scenario analysis for each risk factor. 

This allows us to predict the VaR-levels for the next day, given changes in a risk factor, 

ceteris paribus, in the upper and lower tails, based on historical observations. For each risk 

factor we let the value fluctuate between the minimum and maximum observed value in our 

sample period (see table 1). Figures 7-11 show graphs for each risk factor, where the lines 

represent changes in the 5% and 95% VaR for the container, dry bulk, and tanker portfolios 

over a spectre of historically observed values for the given risk factor. 

In figure 7, we see that as the value of the world excess return decreases (increases), 

the minimum loss that is expected with a 5% probability increases for an investor who is long 

(short) in the investment. The 95% VaR in the container and dry bulk portfolios will be 

affected more or less identically by changes in the world excess return. When it comes to the 

5% VaR, there is a slightly bigger deviation between the container and dry bulk portfolios. 

We see that a reduction in world excess return will have a stronger impact on the 5% VaR in 

the container portfolio, implying that the container portfolio becomes riskier than the dry bulk   

portfolio for reduced levels of world excess return. The tanker portfolio is more sensitive to 

                                                 
11 To calculate the parametric VaR, we use the formula: 𝑉𝑎𝑟5% = 𝑉𝑎𝑅95% = 𝑀𝑒𝑎𝑛 − (𝑆𝑡𝑑. 𝐷𝑒𝑣 ∗ 𝑍0.05) 

Table 6: One-day 5% and 95% VaR estimates from the parametric VaR and non-parametric VaR using quantile 

regression estimates 

 Container  Dry Bulk  Tanker 

 Parametric QR  Parametric QR  Parametric QR 

         
𝑉𝑎𝑅5% -5.57% -4.94%  -4.11% -3.53%  -5.28% -4.91% 

         

𝑉𝑎𝑅95% 5.57% 2.49%  4.11% 2.25%  5.28% 3.18% 

         

Note: The table presents the parametric VaR and quantile regression (QR) VaR measures for each shipping 

sector.  
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these changes, reflected by the steeper line. We see that all three portfolios have a 5% VaR of 

0 when the daily world excess return is around 3%. The 95% VaR is 0 when the daily world 

excess return is approximately -3%. 

VaR levels of shipping portfolios are generally less sensitive to changes in oil return 

than they are to the world excess return, illustrated by the flatter lines in figure 8. The tanker 

portfolio stands out, especially for the 95% VaR, where an increased positive change in the oil 

price will increase the risk for a short investment notably more than what is the case for the 

container and dry bulk portfolios. As the daily logarithmic change of oil price goes from 0% 

to 2.5%, the 95% VaR rises from approximately 3% to 8% in the tanker portfolio. The one-

day 95% VaR for the container portfolio remains relatively stable around 2%, while it rises 

from 1% to 3% for the dry bulk portfolio. The container and dry bulk portfolios are more 

sensitive to decreased changes in oil price when it comes to the 5% VaR, although the tanker 

portfolio still exhibits the strongest sensitivity.  

As we saw in the analysis of the quantile regression outputs, VIX has a positive impact 

on shipping returns above the median and a negative impact below the median. This 

connection is also represented by the positive and negative slopes (see figure 9) for the 95% 

and 5% VaR, respectively. The sensitivities are similar in the 5% and 95% VaR, and the 

container portfolio exhibits the strongest sensitivity to changes in VIX, followed by tanker 

and dry bulk. When VIX is 0.8, as it was at the peak around the 2008 financial crisis, the one-

day 5% VaR is approximately -15% for the container portfolio, -11% for the tanker portfolio 

and -8% for the dry bulk portfolio. 

For the exchange rate (see figure 10), the minimum loss that is expected with a 

probability of 5% increases for a long (short) position, as the change in the exchange rate 

increases (decreases). The risk is slightly higher in the short position than in the long position, 

recognised by the higher values of 95% VaR for given values of exchange rate changes. For 

the extreme levels of exchange rate, the highest risk is found in the container segment. This is 

the case both for the 5% and 95% VaR, but the difference from the tanker and dry bulk 

segments is larger in the 95%. Here, if the change in exchange rate is -5%, the one-day 95% 

VaR is almost 10% for container, 7% for dry bulk and 6% for the tanker portfolio.  
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Figure 7: Scenario analysis of change in 5% and 95% VaR in response to changes in the excess return of the world market 
portfolio, ceteris paribus, for all three sectors.  

 

 

 

 

Figure 8: Scenario analysis of change in 5% and 95% VaR in response to changes in oil price return, ceteris paribus, for all 
three sectors. 
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Figure 9: Scenario analysis of change in 5% and 95% VaR in response to changes in VIX, ceteris paribus, for all three 
sectors. 

 

 

 

 

Figure 10: Scenario analysis of change in 5% and 95% VaR in response to changes in USD exchange rate return, ceteris 
paribus, for all three sectors. 
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When it comes to the influence of changes in the 10-year rate on the tail risk in the 

three portfolios, we observe that the reaction is quite different across the sectors (see figure 

11). In the upper tail (95%), the dry bulk and tanker portfolios have negative relationships 

with changes in the interest rate, as we see slightly decreasing curves, indicating a lower tail 

risk for increased changes in the 10-year rate. In great contrast to this, the VaR is rapidly 

increasing for the container portfolio for elevated levels of interest rate changes. When the 

change in interest rate is negative, the dry bulk and tanker segments exhibit a much higher 

risk than the container segment. For positive interest rate changes, however, the container 

portfolio holds higher risk than the other two portfolios. In the lower tail it is the dry bulk 

portfolio that stands out, as the risk increases when the change in interest rate moves from 

negative towards positive. The opposite is true for the container and tanker portfolios, where 

the long position becomes riskier for more negative changes in the 10-year rate. To sum up, 

for the long and short positions alike, the container segment holds the highest risk for both 

negative and positive changes in the interest rate.  

Our analysis shows how the estimation of VaR and the accompanying scenario 

analysis provide a useful comprehension of asymmetry and differences in tail dependency 

across risk factors and shipping segments. By comparing the extreme values of the 5% and 

95% VaR for each macroeconomic variable, we further get an idea of which risk factors have 

the potential to inflict the biggest losses. We find, considering the range of values observed 

throughout our sample period for each risk factor, that the world excess return cause the 

 

Figure 11: Scenario analysis of change in 5% and 95% VaR in response to changes in 10-year Treasury Rate rerun, ceteris 
paribus, for all three sectors. 
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highest one-day VaR-levels in the upper and lower tails, followed by VIX. For extreme values 

the world excess return, the one-day VaR levels are around -14% and 19% in the lower and 

upper tail respectively, compared to -15% and 11% for VIX. The three remaining factors have 

lower impact on tail risk, where changes in the exchange rate and oil follow with quite similar 

impact, and lastly the changes in the 10-year rate affects the least of all.  

The results from the scenario analysis also reveal which of the shipping sectors 

experience the highest levels of tail loss in the event of extreme values in the risk factors. The 

container portfolio is more exposed to both upper and lower tail risk than the two other 

portfolios when it comes to VIX, and the upper tail risk of the exchange rate and the 10-year 

rate. The tanker portfolio is the shipping segment that shows the strongest tail risk, both upper 

and lower, for the world excess return and the oil price. The container and tanker segments 

exhibit similar values of 5% VaR for extreme levels of changes in the exchange rate and 10-

year rate.  

6. Conclusion 

This study models the risk profile of shipping stocks by focusing on market weighted 

portfolios for the container, dry bulk and tanker sectors. We use the quantile regression 

methodology, which enables us to investigate the impact of macroeconomic risk factors 

across the entire conditional return distribution of shipping stock portfolios. The beta 

coefficients from the quantile regression are directly used to calculate Value-at-Risk (VaR); 

an advantageous approach to forecast risk, as no assumption regarding the underlying 

distribution is necessary. The 5% and 95% VaR estimates are further stress tested in a 

scenario analysis for each of the five risk factors, finding how tail risk is expected to respond 

to changes in macroeconomic variables. Our research serves as an extension to existing 

research, as we are the first to apply quantile regression to model the risk profile of shipping 

stocks. In doing so, the risk-return relation is modelled not only at the conditional mean, but 

also in the tails of the distribution.  

The shipping industry is characterised by volatile earnings and business cycles, caused 

by imbalances between supply and demand. Macroeconomic factors will influence the global 

shipping market through their strong impact on demand, as they reflect the current economic 

climate and future economic prospects. As the changes in the supply-demand ratio cause 

freight rates, and consequently stock prices, to fluctuate, it is crucial to identify the risk 

factors that negatively affect the expected cash flow. Based on previous empirical literature 

examining the risk-return profile of shipping stocks, and economic intuition, we investigate 
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how the market risk, the volatility index and the changes in oil price, exchange rate, and 

interest rate will impact shipping stock returns.  

Our empirical findings suggest that the quantile regression method provides a more 

complete picture of the dependence structure between shipping stock returns and the risk 

factors. The impact of the market portfolio return is positive for all sectors and quantiles, 

where the influence is more evident in the upper tails of the distribution. Changes in oil price 

have a stronger influence on the tanker portfolio return than the dry bulk and container 

sectors, and is positive across the entire distribution for all segments. The impact of the VIX 

evolves from negative to positive for increasing conditional quantiles, changing signs at the 

median, for all sectors alike. All segments exhibit a clear negative dependence with changes 

in exchange rate, where the influence is strongest for the container sector, followed by the dry 

bulk and tanker sector. This indicates that a U.S. dollar appreciation causes shipping stock 

returns to decrease. Changes in the long-term interest rate is negatively related to the dry bulk 

sector, whereas for the container and tanker portfolios the impact is positive.  

The VaR analysis shows that all shipping segments exhibit asymmetric risk exposure, 

with a higher risk in the lower tail compared to the upper tail. The scenario analysis shows 

that the three segments respond differently to changes in the five risk factors, and that 

sensitivities might differ between the upper (95%) and the lower (5%) tail. The most evident 

differences in sensitivities are found in the interest rate factor. Here, the VaR levels in the 

container portfolio increase rapidly for higher levels of interest rate changes, most 

prominently in the in the upper tail. The world excess return cause the highest one-day VaR-

levels in both tails, followed by VIX, changes in the exchange rate, changes in the oil price 

and, lastly, changes in the interest rate. Finally, we reveal that for extreme values in the risk 

factors, the container and tanker segments experience the highest levels of tail risk. 

Our findings have implications for investors who want to take into account the state of 

the shipping market in their investment decisions. As we uncover factor sensitivities and how 

these vary between shipping segments and across the return distribution, risk and portfolio 

managers can benefit from the insight provided by our study in asset allocation and portfolio 

optimisation. Our illustration of risk forecasting using VaR can further be used by risk 

managers to meet risk exposure requirements.   

Since the VaR and scenario analyses are based on the beta coefficients from the 

quantile regression, weaknesses in our analysis may occur if parameters are sub-optimally 

estimated. In the case of few observations in the outermost (0.05 and 0.95) quantiles, the beta 

estimations may be inaccurate, leading to an inexact estimation of the 5% and 95% VaR. 
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This, in addition to possible insignificant parameter estimates, will result in incorrect VaR 

measures and consequently bias in our scenario analysis. Possible non-linear relations 

between the portfolios and the risk factors will also make our results unreliable. To extend our 

study, a non-linear quantile regression analysis using copulas may be applied. We use daily 

frequencies in order to gain a sufficient amount of observations for estimation of all quantiles. 

However, the disadvantage is that we exclude macroeconomic factors that only provide data 

at lower frequencies. A natural extension for further research may therefore be to use monthly 

data series, including more risk factors in hope of raising the explanatory power of the model. 

Another strategy for a follow-up study may be to back test the volatility forecast provided by 

the quantile regression methodology, or compare the VaR measures with other estimation 

techniques. 
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Appendix 

A. Companies and independent variables included in the sample 

Table A1: Container companies   

Container companies Marked 
Datastream 

symbol 

   

AP Moeller Maersk B Denmark DK:DSA 

AP Moeller Mearsk A Denmark DK:DSB 

Compania Sud Americana De Vapores S.A. (CSAV) Chile CL:VPR 

Evergreen Marine  Taiwan TW:EVE 

Finnlines  Helsinki M:FINL 

Heung-A Shipping Co. Ltd.  South Korea KO:HHB 

Hyundai Merchant Marine Co. Ltd.  South Korea KO:HMA 

Kawasaki Kisen Kaisha (K-Line) Japan J:KK@N 

MISC Berhad  Malaysia L:MISC 

Mitsui OSK Lines (MOL) Japan J:MO@N 

Neptune Orient Lines (NOL) Singapore T:NOLS 

Nippon Yusen Kabushiki Kaisha (NYK) Japan J:NY@N 

Orient Overseas Intl.  Hong Kong K:OROC 

Regional Container Line (RCL) Thailand Q:RCCT 

Samudera Shipping Line  Singapore T:SAMU 

Wan Hai Lines  Taiwan TW:WHL 

Wilh. Wilhelmsen Holding ASA (WWH) Norway N:WWI 

Yang Ming Marine Transport Corp.  Taiwan TW:YMM 

   

 
Table A2: Dry bulk companies   

Dry bulk companies Marked 
Datastream 

symbol 

   

Cosco Corp.  Singapore T:COSC 

Dampskibsselskabet "NORDEN" A/S (D/S Norden) Denmark DK:DNO 

Golden Ocean Group Ltd.  United States @GOGL 

Great Eastern Shipping  India IN:GES 

Mitsui OSK Lines (MOL) Japan J:MO@N 

Precious Shipping  Thailand Q:PSL 

U-Ming Marine Transport  Taiwan TW:UMM 
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Table A7: Tanker companies   

Tanker companies Marked 
Datastream 

symbol 

   

Concordia Maritime  Sweden W:CNBF 

Dampskibsselskabet "NORDEN" A/S (D/S Norden) Denmark N:FRO 

Frontline Ltd.  Norway N:FRO 

Great Eastern Shipping  India U:NAT 

I.M. Skaugen ASA Norway N:IMSK 

James Fisher & Sons  United Kingdom FSHR 

Jinhui Shipping & Transportation Ltd.  Norway N:JIN 

Mitsui OSK Lines (MOL) Japan J:MO@N 

Neptune Orient Lines (NOL) Singapore T:NOLS 

Nordic American Tanker Shipping  United States U:NAT 

NS United Kaiun Kaisha Japan J:NSUK 

Odfjell "A"  Norway N:ODF 

Stolt Nielsen  Norway N:SIN 

Teekay Corporation  United States U:TK 

   

 
Table A4:Independent variables  

Variables Collected from / Datastream symbol 

  

WTI Crude Oil Spot price Datastream / CRUDOIL 

  

CBOE Volatility Index Datastream : CBOEVIX 

  

MSCI ACWI Datastream : MSACWF$ 

  

10-Month Treasury Constant 

Maturity Rate 
https://research.stlouisfed.org/fred2/series/DGS10# 

   

Trade Weighted U.S. Dollar Index: 

Major Currencies 
https://research.stlouisfed.org/fred2/series/DTWEXM 

   

1-Month Treasury Constant 

Maturity Rate 
https://research.stlouisfed.org/fred2/series/DGS1MO# 
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B. Assumptions for using OLS 

Table B1: Test of assumptions for using OLS – Container sector 

Assumptions  Test Critical values (5%) Test statistic 

    

𝐸(𝑢𝑡) = 0   0 

    

𝑣𝑎𝑟(𝑢𝑡) = 𝜎2 < ∞ White’s test 1.57 4.940 

    

𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 0 for 𝑖 ≠ 𝑗 
Breusch-Godfrey 

test 
1.00 1.381 

    

𝑢𝑡~𝑁(0, 𝜎2) Jarque-Bera test 5.99 47 759 

    
Note: The White’s test, tests for heteroscedasticity in the residuals. 𝐹-version of the test statistic is presented, indicating 

the presence of heteroscedasticity. To test the residuals for autocorrelation, we use the Breusch-Godfrey test with 250 lags 

of the residuals. 𝐹-statistics is presented, indicating the presence of autocorrelation. We use the heteroscedasticity and 

autocorrelation consistent (HAC) standard errors which adjusts standard errors for heteroscedasticity and autocorrelation. 

Jarque-Bera tests for normality in the residuals. The test statistic is 𝜒2 distributed, where 𝐻𝑜 states that the residuals are 

normally distributed.  

 

Table B2: Test of assumptions for using OLS – Dry bulk sector 

Assumptions  Test Critical values (5%) Test statistic 

    

𝐸(𝑢𝑡) = 0   0 

    

𝑣𝑎𝑟(𝑢𝑡) = 𝜎2 < ∞ White’s test 1.57 21.540 

    

𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 0 for 𝑖 ≠ 𝑗 
Breusch-Godfrey 

test 
1.00 1.562 

    

𝑢𝑡~𝑁(0, 𝜎2) Jarque-Bera test 5.99 4 233 

    
Note: See table B1.  

 

Table B3: Test of assumptions for using OLS – Tanker  sector 

Assumptions  Test Critical values (5%) Test statistic 

    

𝐸(𝑢𝑡) = 0   0 

    

𝑣𝑎𝑟(𝑢𝑡) = 𝜎2 < ∞ White’s test 1.57 23.624 

    

𝑐𝑜𝑣(𝑢𝑖, 𝑢𝑗) = 0 for 𝑖 ≠ 𝑗 
Breusch-Godfrey 

test 
1.00 1.219 

    

𝑢𝑡~𝑁(0, 𝜎2) Jarque-Bera test 5.99 2 422 

    
Note: See table B1. 
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C. Graphs of the developments in dependent and independent variables 

 

 
Figure C1: The figure shows the development of the container, dry bulk and tanker stock portfolio, and the MSCI ACWI from 

1st August, 2001 to 31st December, 2015. All the shipping stock portfolios are indexed, August 1st, 2001=1. 

 

 
Figure C2: The figure shows the development of the WTI crude oil price, the volatility index, USD exchange rate and 10-year 

Treasury rate from August 1st, 2001 to December 31st, 2015. The VIX index shows the development in implied volatility, in 

decimals. The USD exchange rate is a trade-weighted index describing the effects of dollar appreciation and deprecation 
against foreign currencies.  


