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Summary and Conclusions

The Norwegian Railway Administration (JBV) uses a measuring car to measure track perfor-

mance. From a safety point of view, special attention needs to be paid to spots on the line where

failure propagation is out of control, and critical failures could develop in between measure-

ments typically carried out twice a year. A challenge in the modelling is that we are dealing with

so-called line objects, where there are an almost infinite number of places a failure can occur.

This is complicated by the fact that the measuring car reports the position of failures with some

uncertainty, making it difficult to compare results across different measurements series.

This report presents the result of an analysis of propagation of spot failures on track geome-

try. The analysis is based on ten inspections performed on the railway line between Eidsvoll and

Hamar in the period 2006 to 2012. The data for the analysis is obtained from JBV’s databases.

Follow up of track performance is regulated by laws and regulations. JBV uses maintenance and

renewal to improve track performance.

To analyse deterioration of the track performance it is applied statistical methods. There

exist several methods that deals with trend modelling, and a literature survey is performed to

cover relevant methods for this project.

Because of uncertainties in the obtained data a comprehensive work is performed to format

data. This is done to understand what is included in the data and how the data can be used

to analyse track performance. Two important parts of this work are to adjust the position of

measurements and use the measurements to create time series for individual spots on the line.

The adapted statistical methods are used to analyse the time series. The result of the analysis

is a model that can predict the probability of failure development. The accuracy of the model is

related to the accuracy of the obtained data and the methods used in the analysis. The intention

of this model is to adapt inspection intervals and maintenance strategies that can reduce the

probability of critical failures. This may in addition be used to increase safety on the railway.

The accuracy of future data series can be considerably improved by using a better system to

accurately position the location of measurements. This is also in accordance with plans in JBV

to implement GPS as part of the measurements.
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Chapter 1

Introduction

1.1 Background

Failures on railway tracks are critical errors that can have fatal consequences. There are several

different failures that can occur on a railway track and several ways to measure track perfor-

mance before failure occurs. Track geometry is a term that describes the geometrical position of

tracks position in all three-dimensions and an important measurement for track performance.

There have been several occasions where failure on track geometry was the primary cause of an

accident (RAIB, 2011; SHT, 2011).

In Norway it is the Norwegian Railway Administration (JBV) that is responsible for both the

construction and maintenance of the railway infrastructure. An inspection car called Roger 1000

is used to measure deviations on different track geometry variables, typically twice a year on

most lines.

Deterioration of the track geometry is a continuous process. Several researchers have looked

into this problem to analyses the speed of deterioration. It is suggested several different models

to describe the deterioration of track geometry. It is important to understand how failures de-

velops in order to minimise the risk of critical failures in the period between inspections and to

set the right criteria for when to implement maintenance.

However, most of the researchers have divided the track in sections and only looked at the

average deterioration or key performance indicators of each section. To estimate deterioration

the quality of each section is based on several spots. This means that there can be one or more

2



CHAPTER 1. INTRODUCTION 3

critical spots on the track, even though the general condition of the section is within the limits.

The Norwegian Railway Authority (Norwegian: Statens Jernbane Tilsyn), which is the control

and supervisory authority for rail traffic in Norway, also want some documentation regarding

this issue (SJT, 2013). They are responsible for ensuring that JBV meet the conditions and re-

quirements that govern the traffic through rail legislation. Thus it is important that JBV can doc-

ument that the inspection interval is sufficient for the authority (Ministery of Transport, 2013).

A good model to describe propagation of failures can also be used for maintenance optimisation

and renewal strategies.

1.2 Literature Survey

1.2.1 Deterioration Models

In Norway there has been performed a research on track deterioration on several lines in the

Norwegian railway network. It is done by dividing the track into sections with similar character-

istics and using key performance indicators to measure track performance. The resulting model

is a combination of two different exponential functions, where it is assumed that the deterio-

ration can be divided into two different phases. The first phase starts straight after the mainte-

nance activity tamping is performed, and the second phase is found to start when between 100

000 to 200 000 tons of train have passed on the track (Lyngby, 2007)

In the Netherlands a similar research has been performed, where a linear model is found

to describe the deterioration (Westgeest et al., 2012). There have also been several other re-

searchers that have investigated models to describe deterioration of track geometry. Dahlberg

(2001) has performed a research where several different models are included. It gives a descrip-

tion on what these models are based on and how they can be applied in practice. This report

gives several examples of models that is used to describe deterioration of track geometry, (e.g.

logarithmic, exponential, linear or polynomial models). In most models deterioration acceler-

ates over time, if maintenance is not implemented. Most models expresses deterioration as a

function of loading cycles or tonnage.



CHAPTER 1. INTRODUCTION 4

1.2.2 Maintenance

Maintenance is performed to increase the lifetime and improve the condition of a track. Most of

the research performed on this area suggests that track deterioration with maintenance can be

described as a Lévy process with gamma distributed increments (Quiroga and Schnieder, 2011;

Meier-Hirmer et al., 2009a). When the maintenance tamping is performed, the condition of the

track is restored to a reachable quality (figure 1.1). The reachable quality decreases with age of

the track until a point where ballast cleaning or renewal is necessary. This is also in accordance

with maintenance philosophies in other industries (Ghosh and Sandip).

Figure 1.1: Gamma process for ageing (adapted from Quiroga and Schnieder, 2011)

1.2.3 Explanatory Variables

The deterioration process and the lifetime of a track can be affected by different explanatory

variables. Lyngby (2007) found that several variables influence the deterioration of track ge-

ometry (e.g. steel used in rails, axle load and sleeper type). Other researcher that have looked

into models describing deterioration of track geometry have found other significant explana-

tory variables. These variables can vary from type of rail and subgrade to usage and climate

(Westgeest et al., 2012).
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What Remains to be Done?

The literature study have described different models to predict track deterioration and mainte-

nance activities to cope with it. It is suggested several different models that look into different

track geometry variables or functions to calculate key performance indicators based on track

geometry variables. Despite this, very limited information on deterioration of spot failures is

found.

An analysis that looks at deterioration of spot failures over time, can give more information

regarding this issue and be used to find out if there is necessary to look further into the subject.

Thus, it remains to find a model that can describe how spot failures develop for all different track

geometry variables. Spot failures might follow different deterioration models than deterioration

of sections, but the information found in the literature on deterioration of sections, might be

used as a basis to start the analysis.

In order to do this type of analysis, track geometry measurements must be obtained together

with factors that can affect the deterioration rate. Depending on the obtained data, different sta-

tistical methods can be used for analysis. A study of different methods is necessary in order to

implement a method that can predict how different explanatory variables are affecting deterio-

ration of spot failures.

1.3 Objectives

The main objectives of this project are

1. Choose a railway line and collect data for a case study

2. Calibrate and format data to be used in analysing spot failures

3. Perform a study on statistical methods used for trend modelling

4. Perform a statistical analysis on the formatted data and find a deterioration model based

on explanatory variables

5. Interpret the model and illustrate how the model can be used inspection purposes
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1.4 Limitations

This report will be based on data gathered from a line in the Norwegian railway network. The

quality of the result will be limited to the accuracy of the obtained data and how much data that

can be obtained.

It will be assumed that the chosen lines is representative for finding a model that can be used

to predict deterioration on several other railway lines.

Because of limitations in time and resources the finished model will not be tested in practice.

The assumptions used to adapt the statistical methods to the data, might cause some uncertain-

ties in the result and limitations in implementing the result.

1.5 Approach

A literature survey is performed to evaluate the available research within this subject and to find

relevant statistical methods and tools. Data will be obtained manually from JBV’s databases.

There will also be performed manual inspections of the data in order to understand how this

data can be calibrated and formatted to a useful format. Railway experts will be used to make

the right assumptions regarding the data in order to adapt the right statistical methods. The sta-

tistical analysis is based on known methods, and methods obtained through a limited literature

survey. To adapt the methods to the data, it might necessary to have a pragmatic approach to

keep up progress of the research. This is done in order to have a steady progress. If there is some

uncertainties related to using this approach, assumptions will be made that states what the re-

search is based on. MATLAB and Excel will be used as tools to format and analyse the obtained

data.

1.6 Structure of the Report

Chapter 1 gives an introduction to the report and the result of the literature study. It also in-

cludes the objectives of this project and the approach used to reach the objective. Chapter 2

explains what track deterioration is, and how this can be analysed. Chapter 3 describes how all

the data used in the analysis is obtained. Chapter 4 explains how the data is calibrated and for-



CHAPTER 1. INTRODUCTION 7

matted. Chapter 5 introduces statistical methods and tools that is relevant to analyse the data.

How the analysis is performed is described in chapter 6. Chapter 7 will explain how the model

can be used to estimate deterioration of spot failures. Chapter 8 is the summary, conclusion,

discussion and recommendations for further work.



Chapter 2

Track Deterioration

Deterioration of railway track geometry is a continuous process. To be able to model this process

it is helpful to understand what is happening in practical terms. This chapter explains what

track geometry is and what is done to prevent track geometry failures. It also describes how

track geometry is measured in Norway, and how these measurements can be used in analysis.

2.1 Track Geometry Variables

Five different variables are used to measure track geometry. These five are vertical levelling (a),

cant (b), gauge (c) and horizontal levelling (d), which can be seen in figure 2.1, and the last

one is twist. In the figure variable a and b is viewed from the side and c and d is viewed from

above. Twist can be explained as the vertical difference in height between two cross sections

for the track measured with a specified distance apart (CEN, 2008). In practical terms twist is a

measure of the amplitude for longitudinal waves on the track.

2.2 Deviation and Maintenance

Track geometry is deteriorating when train passes on a track. This causes vibrations in the track

and ballast and can make the track geometry get out of position. After some loading cycles

this might lead to some gaps in the ballast which makes the sleepers have less support, leading

to heavier vibrations. Each track geometry variable have different limits specified to indicate

8
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Figure 2.1: Track geometry variables; vertical levelling (a), cant (b), gauge (c), horizontal levelling
(d) (Meier-Hirmer et al., 2009b)

when it is necessary to implement maintenance. These limits are specified in JBV’s technical

regulations, and varies with the speed limit on the track (JBV, 2013). The different limits are

Newly Maintained Track Limit (NMTL; Measurements should not exceed this limit right after

maintenance), Intervention Limit (IL; Limit for when maintenance should be planned and im-

plemented) and an Immediate Action Limit (IAL; Immediate action must be implemented when

this limit is exceeded). A measurement that exceeds the NMTL is called a deviation. Figure 2.2

shows six hypothetical measurements of twist 2 meter. It includes all the different limits, ex-

planations to how different measurements are defined and which action that is required when

different limits are exceeded. It is important to notice that the limits can differ depending on

speed limit and radius. The IL and IAL is based on the standard EN 13848 (Railway applica-

tions level-Track geometry quality). These limits are there to reduce the risk of derailment to an

acceptable level based on both theoretical data and experience (CEN, 2008).

A deviation is not necessarily a sign of failure, but if it develops further it might lead to an

unacceptable condition. When this happen, tamping is the main maintenance activity that

is implemented to restore the track to an acceptable condition. Tamping is performed with

a tamping machine that uses claws to vibrate the ballast under the sleepers and restore the

support of the sleepers (Lander and Petterson, 2012).

If the interval for when tamping is reduced a lot, this might be a sign that there is a problem

with the track or subgrade. Two factors that can affect this is; worn out rails, which can be

fixed by grinding or milling the rails, or worn out and polluted ballast. For the latter, ballast

cleaning can be used to restore the condition of the track. In some cases renewal of different
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Figure 2.2: Hypothetical measurements of twist 2 meter, with explanations

track elements can also be necessary. Ballast cleaning changes the worn ballast and removes

impurities before laying new ballast back around the sleepers. It requires more resources than

tamping and is performed only when tamping is insufficient and a test shows worn out and/or

polluted ballast. Ballast cleaning can increase the lifetime of a track significantly. (Teigen, 2013)

The mentioned maintenance activities above are used to deal with deviations related to ver-

tical levelling, cant, horizontal levelling and twist. Deviations related to gauge is most com-

monly connected to worn out sleepers and rail-fastening, which usually is fixed by changing the

components. (Teigen, 2013)

Explanatory variables are factors that can affect the deterioration process for track geometry.

In statistics explanatory variables can be called independent variables or covariates. Further in

the report the term covariates is used to describe explanatory variables. To model deterioration

of track geometry these covariates can be connected to both the track and usage, but also to ex-

ternal conditions like climate, weather, geography and soil. To reduce the influence of covariates

that have a negative impact on deterioration, different measures can be used, both when tracks

are built and during maintenance. Still, it is difficult to reduce the influence by these covariates

totally.
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2.2.1 Measuring Track Geometry

Nowadays inspection cars are used to measure track geometry variables. In Norway, JBV uses

an inspection car called Roger 1000 to perform all the measurements. It is done using a combi-

nation of laser technology, cameras and special sensors. The car can also measure several other

parameters that are not related to track geometry (e.g. radius of track or failure in the overhead

line). Measurements are registered every half meter. (Mermec, 2013b)

Snow and water affect the accuracy of the sensors on the equipment and can cause big errors

in the measurements. The first inspections is done in the spring when the snow has melted.

Before the first inspection every year the equipment is calibrated to make the measurements

as accurate as possible (Ingvaldsen, 2013). This causes and error in the reproducibility. Some

uncertainty is also caused by the resolution of the equipment, but this is a much smaller fraction

than the error caused by reproducibility. (Mermec, 2013a)

Another type of error is linked to the position of the measured deviation. The position of

the inspection vehicle is set by manually entering starting position and a trip meter is used to

estimate the position. Wear of the wheel, wheel spinning and manual adjustment of position in

the inspection car are causes of displacement (Lyngby, 2007). Because of this, the position can

also be adjusted manually when the vehicle is passing known positions.

2.3 Time Series

To be able to follow the deterioration of spot failure, a deviation must be followed over a period

of time. If the same deviations is found in several inspections the deviations are matched. The

best parameter that can be used to match deviations is the measured position. Several devia-

tions that are matched together represents a time series. A time series shows how a deviation is

developing over time and can be used to find the deterioration trend.

Since there is some uncertainty in the position of deviations, a match made just by compar-

ing position can cause a high possibility of mismatch. To cope with this, other parameters like

size and length of the deviation, can also be used to find similarities between deviations that

confirms a correct match.



Chapter 3

Obtaining Data

For the analysis in this report the line between Eidsvoll and Hamar is chosen. This line is a part

of "Dovrebanen" in Norway. The line have km markings from 68.9 to 126.9, measured from Oslo

Central-station. This is a single track line and is chosen because some parts runs along water,

and because it has a steady traffic flow per time unit. This chapter explains how relevant data

for the Eidsvoll to Hamar line is obtained. The data that is needed for the analysis is stored in

different databases and some of the information might be difficult to get hold of. This chapter

also describes which data that is applied in the study.

3.1 Inspection Data

Measurements from ten inspections performed between October 2006 and September 2012 is

used in the analysis. Track geometrical variables between Eidsvoll and Hamar is measured two

times a year. In two of the inspections from this period, the data was collected differently and the

data from these two are not a part of the analysis. The inspections performed in May 2001 was

done during rain, which might have caused a higher error rate, but since there was not found

any signs that indicated a problem with the measurements, these data are also used.

Data from all inspections are stored in a database and the program InOffice is used to export

data sets. The exported files contains information on length, size, start position and position of

maximum impact on all measured deviations. The twist variable is measured for both two and

nine meter waves, which means that in total there is six different track geometry variables. All

12



CHAPTER 3. OBTAINING DATA 13

deviations are measured in millimetre.

In addition to information about all deviations, the radius measured every half meter is also

exported from InOffice. The radius is used to adjust the position of deviations.

3.2 Theoretical Curvature

Theoretical curvature is a measure of the radius on a railway line. The theoretical curvature is

based on how the railway line should have been built and it may differ from the true curvature

of the line. This information is stored in the data base BaneData. BaneData is a internal data

base for JBV and contains information regarding all tracks in the Norwegian railway network.

The theoretical curvature is used as a reference to improve the position of measurements by

comparing the theoretical curvature to the measured radius.

3.3 Covariates

Earlier research have suggested different covariates that affect deterioration of track geometry.

Based on this research and suggestions from railway experts, a selection of different covariates

is tested to see if they affect the deterioration rate of spot failures. Table 3.1 gives a short descrip-

tion of the covariates that is tested in this report and how they are obtained. In total there are ten

covariates that each can affect the development of spot failures differently. What is important to

notice is that the covariate super elevation and the track geometry variable cant is connected to

each other. super elevation is a theoretical measure, while cant is measures the deviation from

a the super elevation.

3.4 Maintenance

There is a wide range of maintenance activities that are used on the railway. All these activities

are registered in BaneData. Tamping and ballast cleaning is assumed to be the only mainte-

nance that affects track geometry. Data about these activities is obtained from BaneData. The

data is used in the analysis to describe deterioration as a function of days since maintenance. It
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Table 3.1: Covariates included in the analysis

Covariate Explanation Numerical value Source
Curvature Radius of track - 3630 m to 5730 m BaneData
Culvert Culvert within 10 meters 0 or 1 BaneData
Super elevation Intended super elevation 0 to 150 mm BaneData
Renewal of track Days since renewal of rail 0 to 39 000 days BaneData
Steel quality Type of steel used for rails 0-4 BaneData
Speed limit Classes defined for different

speed
2 to 4 (105 to 120, 75 to 100
and 45 to 70 km/h)

BaneData

Sleepers Wooden or Concrete sleep-
ers

0 to 2 BaneData

Track switch Track switch within 20 me-
ters

0 or 1 BaneData

Water Evaluating if lake/river is
close to the track

0 or 1 Finn.no

is possible that other maintenance activities can affect track geometry in different ways, but this

is disregarded in this project.



Chapter 4

Formatting Data

Before the data obtained in chapter 3 can be analysed, deviations must be matched into time

series and connected to the correct covariates. The data must also be formatted into a suitable

format for analysis. This is done stepwise by using algorithms written in MATLAB.

4.1 Calibrating Position

The position of a deviation is used to match data from different inspections. To match as many

deviations as possible, the error in position must be as small as possible. When the uncertainty

in position increases, the probability of mismatch also increases.

Radius is a continuous variable that have been measured in all inspections. The position of

a deviation is calibrated by adjusting the measured curve to coincide with the theoretical, each

position in an inspection is moved to a common reference point. By doing this it is assumed

that the optimised position is found. Figure 4.1 illustrates the difference between the theoretical

curvature and the radius for one section of the line and for two different inspections. It can be

seen how the difference between the theoretical and measured curve varies. It clearly shows the

manual adjustment of position in the September 2007 inspection. By looking at the inspection

from October 2008 it can be seen that both the position is lagging behind the theoretical curve

and also that the maximum measured radius is lower than the maximum theoretical radius. The

calibration improves the position by minimising these differences.

A customised algorithm is used to adjust the position of each deviation. It is made by man-

15
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Figure 4.1: Measured radius compared to theoretical radius

ually investigating inspection data to find out exactly how accurate the measurements are and

how the manual adjustments are performed. This have made the algorithm optimised to adjust

inspection data based on the theoretical curvature.

The most important steps of the algorithm is listed as:

• Step 1

– Remove manual adjustments

• Step 2

– Divide in line into sections

– Adjust each section by minimising the squared distance between measured and the-

oretical radius

• Step 3

– Find local min/max on measured radius

– Find local min/max on theoretical radius

– Adjust measured radius between local min/max to coincide with theoretical radius
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• Step 4

– Repeat step 2 with adjusted radius

For more details describing how this calibration is performed a recap of the most important

parts of the algorithm that can be found in algorithm 1.
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Data: Data set from Inspections (=Inspect) and theoretical curvature

Do all steps for one inspection at the time;

Step 1: Remove manual adjustment;

n = leng th(Inspect ); xmi n = 105;

for i=1 → n do

if |Position(Inspect(i)-Inspect(i-1))|>0.5 meter then

Position(Inspect(i))=Position(Inspect (i-1)) + 0.5 meter;

end

end

Step 2: Adjust position by dividing in i sections;

for i = Position(Inspect(1))
500meter → Position(Inspect(n))

500meter do

for k=-50 meter → 50 meter do

Optimise fit for section(i) by testing if position + k is a better fit;

Best fit found by minimising difference between theoretical and measured radius ;

x =∑
(Radius Section(i )+k ) - Theoretical radius)2;

if x<xmin then

xmin=x;

Optimal position for Section i = position + k;

end

end

end

Step 3: Adjust radius;

k=0;

for i=1 → n do

if Radius(Inspect(i )) is a local min/max then

Radius(Inspect(i ))=Theoretical radius;

Adjust curvature between Inspect(i ) and Inspect(k) linearly to the theoretical

radius;

k = 1;

end

end

Step 4: Repeat step 2 with adjusted radius;

Algorithm 1: Improve position of inspections
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Table 4.1 shows the sum of squares between the measured and theoretical radius. It demon-

strates how the sum is reduced both after step 2 in the algorithm and after the whole adjustment.

Table 4.1: Change in sum of squares during adjustment

September 2007 October 2008
Sum of squares before adjustment 2.84×10−3

[
1/m2

]
3.95×10−3

[
1/m2

]
Sum of squares after step 2 6.23×10−4

[
1/m2

]
8.18×10−4

[
1/m2

]
Sum of squares after complete adjustment 2.84×10−4

[
1/m2

]
3.10×10−4

[
1/m2

]

Figure 4.2 gives a graphical view of the improvement for the same inspections as earlier,

and gives a strong indication that the position is improved. Because of the uncertainties in

the measurements and because the theoretical curvature is not a perfect representation of the

reality, it is difficult to determine exactly how good the fit is. Thus there are used some biased

indicators that illustrate the improvement. After the adjustment all deviations are updated with

a new position.

Figure 4.2: Improved position and radius during during calibration
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4.2 Matching Deviations

Deviations is measured with a length, size and position. These three factors are used to match

from different inspections. Different boundaries are set for each variable and for each type of

deviation to assure that only the correct deviations are matched. These boundaries are based

on information from JBV’s technical regulations and manual inspection of the data (JBV, 2013).

Because it is better to remove a correct matched time series than to include time series with

mismatch, a filter is used to remove matches with a too high possibility of mismatch (time series

are too close to each other).

The most important steps in matching deviations is listed below, for more algorithm 2 shows

this process in more detail.

• Step 1

– Set boundaries that two deviations must be within in order to be matched

– For one deviation at the time, search through data from all inspection and check for

deviations within the boundaries

• Step 2

– If the average position of two time series are too close, both time series are removed

– Store all time series in a matrix
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Data: Data set from all ten inspections with adjusted position (= Inspect )

Type = type of deviation; Position = position of deviation; Length = length of deviation;

Size = size of deviation; ;

typ=Input(Type);

Step 1: Find matches;

pos =Boundary Position ; l en =Boundary Length; si z =Boundary Size ;

for x=1 → 9 do

for i=1 → length(Inspectx) do

for y=x+1 → 10 do

for j=1 → length(Inspecty ) do
if typ=Type(Inspectx(i )) AND typ=Type(Inspecty ( j )) AND

pos>|Position(Inspectx(i )− Inspecty ( j ))| AND

len>|Length(Inspectx(i )− Inspecty ( j ))| AND

siz>|Size(Inspectx(i )− Inspecty ( j ))| then

Inspectx(i ) and Inspecty ( j ) is a match;

end

end

end

end

end

Step 2: Create time series;

All matches are created into time series;

Time series with a high probability of mismatch deleted;

if Difference in position for two time series < pos then

Delete both time series;

end

Save time series in a matrix;

Algorithm 2: Optimisation of position
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For the variable cant, the measured deviations is measured relative to a horizontal level, and

does also include super elevation. This means that the measure is not the true deviation and that

deviations can be difficult to compare. The intended super elevation is known at every position

and can be subtracted from the deviation cant. Because of some inaccuracies in the position

this might be insufficient for some deviations.

To deal with this problem it is assumed that the super elevation is correct, if the subtracted

cant is between the NMTL and the IAL. In the situations where this is not the case, the average

cant for that time series is said to be the average of all subtracted deviations. The rest of the

deviations in that time series are reduced with the same amount. This is only a problem for

around 10 % of the time series, and it is assumed that adjusting by using the average deviation

is not biased.

4.3 Time Unit

Deterioration of track geometry can best be described as a function of load cycles or tonnage.

This is confidential information that is difficult to obtain. Since only one line is used in this anal-

ysis, it is assumed that the tonnage is constant over the period the inspection data is gathered.

This means that days are proportional to load cycles or tonnage, and can be used as a consistent

parameter. If the model is used on a different line, or the tonnage changes on the analysed line,

the model should be adapted to this new traffic flow.

When tamping or ballast cleaning is implemented on the track, the averaged condition of

the track is restored to a reachable quality. The reachable quality when tamping or cleaning the

ballast can be different, as seen in figure 1.1. The analysis looks only at what happens between

maintenance intervals. This means that some time series must be divided into more time series

if maintenance is implemented on that part of the track. If some of the new time series only

consist of one measurements, the time series is removed. After this filtering the data set consist

of time series with between two and ten measurements.
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4.4 Formatted Data

Matched deviations are linked with the correct covariates according to the principles described

in section 3.3. This gives a matrix that contains matched deviations, position, and covariates in

a format that can be used for statistical analysis. Table 4.2 shows a part of this matrix.

Table 4.2: Example from part of data set used for analysis

Deviation type Position Radius · · · October 2006 · · ·
Deviation Maintenance Rain

Twist 2 m 70.7673 km -767.91 m · · · -3.1 mm 51 days 35.12 mm · · ·
Twist 2 m 71.0326 km 945.16 m · · · 3.8 mm 51 days 35.05 mm · · ·
...

...
...

...
...

...
...

...

4.4.1 Matched Deviations

Out of a total of 115 076 deviations 92 735 is matched with a deviation in a different inspec-

tion. Figure 4.3 shows how many percentage of the measured deviations that is matched with

a deviation in a later inspection, by using algorithm 2. It also shows how many percentage that

have found a match in the consecutive inspection. It can be seen that it only is a small varia-

tion between the deviation types and in average around 60 % have found a match. Even though

some time series are removed because of a high possibility of mismatch, there are a big amount

of data left to be used in the analysis. Table 4.3 shows how many time series there are for the

different deviation types.

Table 4.3: Number of time series for different variables

Track geometry vari-
able

Vertical
levelling

Cant Gauge Horizontal
levelling

Twist 2 m Twist 9 m Total

Number of time series 10642 2466 3006 2692 1323 799 20928
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Figure 4.3: Measurement with match

4.4.2 Covariates

The covariates that are linked to time series are either continuous, binary or categorical. Curva-

ture, super elevation and renewal of track are continuous variables. How the other six covariates

are distributed among the deviations can be seen in figure 4.4. This figure illustrates the distri-

bution of different outcomes for each covariate. For other tracks, different variables and other

outcomes can be relevant.
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Figure 4.4: Different states for categorical covariates



Chapter 5

Statistical Models

Trend modelling is a statistical technique to analyse how time series are developing. There ex-

ists several different tools and methods that for trend modelling. To find the underlying trend

these methods must be adapted to the specific data in the analysis. For complex data several

methods or combination of methods may be used. Based on the assumptions used in the anal-

ysis this can lead to different results. Because of this it is important to understand what the data

represents, what the methods do and which assumptions that are valid. This chapter presents

different methods that can be used in trend modelling and how these can be used to analyse the

formatted data. The methods are found in different statistical literature.

5.1 Time series

The data set consist of multiple time series with different covariates. A structural time series

are a time series that consist of a combination of trend α(t ), cycle ψ(t ), seasonal τ(t ) and error

components ε(t ) for a set of observations y(t ), see equation 5.1 (Harvey and Shephard). j and i

meaning deviation j in time series i .

yi j (t ) =αi j (t )+ψi j (t )+τi j (t )+εi j (t ) (5.1)

Figure 5.1 illustrates how trend, cycle and seasonal changes can occur for track geometry.

This figure can be compared with figure 1.1 to see which effect maintenance may have. For

26
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this analysis both cyclic and seasonal effects are disregarded. Cyclic trends can occur after bal-

last cleaning or renewal, where the quality of the track can be improved significantly. Other

researchers have looked into how maintenance affect the cycle (Quiroga and Schnieder, 2011),

but this is not looked into in this analysis. Thus, it is assumed that the trend in a cycle is con-

stant. As illustrated in figure 5.1 this can be a valid assumption as long as the the trend is not in

the end of a cycle. It is also possible that seasonal changes occur, but with the limited amount

of inspections this is not looked into, and this should not affect the overall trend.

Figure 5.1: Trends, cycles and seasonal effects on track geometry (adapted from Quiroga and
Schnieder, 2011)

5.2 Trend

The trend α(t ) can have several different functional forms. Before analysing the data it can be

difficult to know what kind of function that gives the best fit. Degradation trends for track geom-

etry have in earlier research been suggested to follow different variations of linear, exponential

and logarithmic models, and also combination of these (Lyngby, 2007; Dahlberg, 2001). Based

on this, the five models in table 5.1 is suggested.

λz and βz can further be a function of the covariates, where z1 to zn are numerical values of

covariate 1 to k and γ1 to γk and δ1 to δk are coefficients. ε is the error term.
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Table 5.1: Suggested models to describe deterioration of track geometry

Model Function
Linear α(t ) =λz +βz t
Exponential α(t ) =λzexpβz t

Logarithmic α(t ) =λz +λz l n(βz t )

Exp-log
For t<x Exponential
For t>x Logarithmic

Log-exp
For t<x Logarithmic
For t>x Exponential

x = time when deterioration changes from first to second phase

λ(z) = γ0 +γ1 × z1 . . .γk × zk +ελ (5.2)

β(z) = δ0 +δ1 × z1 . . .δk × zk +εβ (5.3)

To estimate the coefficients in a suggested model, either Maximum Likelihood Estimation

(MLE) or Least Square (LS) estimation could be used. MLE is based on maximising the likelihood

function, see equation 5.4. f (y |w) is the probability density function for the observed data y,

given parameters w. Which in practical terms means to find the parameters w , which gives the

highest likelihood of having observed the data y . (Myung, 2004)

L(w |y) = f (y |w) (5.4)

LS estimation is based on minimising the squared difference between observed and ex-

pected data. yi is the observed value and ŷi the fitted value. From this l s1 is estimated with

equation 5.5. For a linear model parameter estimation can be performed analytically. For non-

linear models a analytical solution to parameter estimation is in some cases not possible, or be

very time consuming. The model can in some cases be transformed into a linear model, but it

is important to understand what happens with the parameters in the transformation. In cases

where this is not beneficial or possible, the parameters can be found numerically. (Van De Geer,

2005)
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l s1 =
n∑

i=1
(yi − ŷi )2 (5.5)

5.3 Multiple Regression

For each time series, both a λz and βz is estimated. These functions depends on the covariates.

Multiple regression can be used to estimate the coefficients in equation 5.2 and equation 5.3.

When using this it is assumed that both the covariates and the covariates are independent of

each other. This means that the value of one covariate does not affect the probability of differ-

ent outcomes for other covariates. Related to time series it means that the deterioration of a

deviation in one time series does not affect the deterioration of a deviation in a different time

series. It is possible that two deviations close to each other on the track can be affected by fac-

tors that not are included in this model, and that this in practice causes a correlation, but this is

disregarded in the study.

Multiple regression models can be based on different functions and the parameters in the

models can be estimated by using both MLE or LS. Like in trend analysis. In Multiple Linear

Regression (MLR) the coefficients can be estimated with matrix operations. This is done by

minimising equation 5.6. Here y is the response vector (size n ×1), X the covariate matrix (size

n×(k+1)) with first column being for the constant term (vector of ones), b the coefficient vector

(size 1×k), and l s2 is the resulting least square sum. The LS solution for the coefficient vector b

is given in equation 5.7 (Walpole et al.).

l s2 = (y −X b)′× (y −X b) (5.6)

b = (X ′X )−1 ×X ′y (5.7)

5.4 Stepwise Regression

In cases with many covariates, it is not always preferable to include all covariates in the model

because this can include covariates that not really are significant for the model. In these cases
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stepwise regression can be used. Stepwise regression is a method to find the best combination of

covariates to describe the model. This can be done by all the time including that covariate which

makes the model able to explain as much of the variation in the data a possible. Every time a

covariate is included in model it is tested if some of the covariates that already were included

have become insignificant. This is done until no more covariates increases the fit of the model

significantly. (Walpole et al.)

R2 is a measure that is used to explain how many percentage of the variation in the data that

the model can explain, and is called coefficient of determination. R2 is estimated by equation

5.8, which in practical terms can be described as the ratio between explained variation and total

variation. R2
ad j is a variation of R2 where it is adjusted for the degrees of freedom in the data,

see equation 5.9. Here, n is the number of observations and k is the number of covariates. R2

is always increasing as covariates is included in the model, but this is not necessarily true for

R2
ad j , which then can be used to analysed how many covariates that should be in the optimised

model. ŷi is the fitted value to observation yi and ȳ the mean value of all observation. (Walpole

et al.)

R2 =
∑n

i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

(5.8)

R2
ad j =

∑n
i=1(ŷi − ȳ)2/(n −k −1)∑n

i=1(yi − ȳ)2/(n −1)
(5.9)

5.5 Residuals

Residuals is the difference between an observed value and a predicted value, see equation 5.10.

It is comparable with the error, ε, in equation 5.1, but differs in the fact that ε is the difference be-

tween the true model and an observed measurement, while residuals are the error (ei ) between

an expected value based on the fitted model (ŷi ) and an observed measurement (yi )

ei = yi − ŷi (5.10)

Residuals can be used to analyse how appropriate the estimated model is for the data. To use
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the model for prediction the residuals for the fitted model should be randomly and normally

distributed (Walpole et al.). That the residuals are randomly and normally distributed can be

checked by plotting residuals chronologically with time and look for a pattern and with a normal

probability plot. A normal probability plot is by sorting the residuals in ascending order and

plotting this against a theoretical normal distributed residuals which is N (0,σ). The points in

the plot should form a straight line if they are normally distributed (Walpole et al.).

Normality can also be tested analytically with different tests. The Anderson-Darling test can

be used to test for normality and give a p-value that represents the probability of having ob-

served at least as extreme values as the one actually observed, given that the data is normally

distributed(NIST/SEMATECH, 2013). If the data is not randomly and normally distributed this

can mean several things and there is several ways that possibly can fix this. Various transforma-

tion of both the response variable, covariates and time variable is one method that can be used

(Walpole et al.).



Chapter 6

Statistical Analysis

Based on the methods described in chapter 5, this chapter explains the process of analysing

the formatted data to find a model that can describe the trend of deterioration. To illustrate

how the analysis is performed, the variable twist 2 meter and the exponential model are used as

examples. The same calculations is performed on combinations of all the other track geometry

variables and models to find the best fitted model for each variable. Track gauge have not been

regarded, because there is not the same deterioration processes that affect the degradation of

this variable. MATLAB is used to perform the analysis.

Figure 6.1: 1000 random deviations for twist 2 meter

32
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6.1 Time Series Parameters

The data set consists of observations yi j , i indicates a time series and j refers to which observa-

tion in time series i . Each time series consists of between two and ten observations. Deviations

can be both positive and negative, and on the right and left side of the track. It is assumed that

for one track geometry variable these deviations follow the same trend and are fitted to the same

model. Figure 6.1 shows 1000 random observations of twist 2 meter. From this figure it is dif-

ficult to see any clear overall trend, but it can be seen that there is not any observations under

two millimetre, which is the lowest limit to register deviations for twist 2 meter.

To find the overall trend explained by covariates, every time series should fit the same model.

Table 5.1 shows the proposed models that the data is fitted to. Figure 6.2 illustrates a possible

forms for all the models. Each model are a possible fit for the trend of each track geometry

variable.

Figure 6.2: Possible forms for the five proposed models

The data is fitted to a model with the parameters λi and βi . The parameters for each time

series are estimated separately. All the parameters are estimated numerically. This is done by

testing different values for λtest ,i and βtest ,i , and then increasing the accuracy of the parameters

in an iteration process. LS is used as a principal to find the best fit. Equation 6.1 shows how l s3

is estimated for the exponential model.
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l s3 =
n∑

i=1

m∑
j=1

(yi j −λtest ,i expβtest ,i t )2 (6.1)

For time series with few measurements the parameters for each model can differ a lot be-

cause of the variance in the data. Figure 6.3 illustrates five random time series from the data

set and the fitted exponential model to each time series. Deviations are only included in the

data set if they are above a specified limit, which is between two to four millimetre for twist 2

meter, depending on speed limit at the given position. The measurements that are included in

the time series as a zero, illustrates deviations that have disappeared in an inspection. These are

not included when the fit of the model is found, making it a conservative fit.

Figure 6.3: Exponential fit to five random time series

For the exp-log and log-exp model it is necessary to find the transition time between first and

second phase. This is done numerically by taking the daily average deviation and optimising the

models by using LS. It is assumed that there is a generic point for all time series and for every

model, where the deterioration process changes from first to second phase. Figure 6.4 shows

this change for twist 2 meter. Table 6.1 shows the time where the deterioration process changes

from the first to second phase for all track geometry variables. From the table it can be seen that

the exp-log model in general have a longer time before the deterioration changes. It can also be

seen that the log-exp model have a change from phase one to phase two after 0 days for some of
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Table 6.1: Transition from first to second phase

Exp-log Log-exp
Deviation type Time [days] Deviation type Time [days]
Vertical levelling 540 Vertical levelling 0
Cant 625 Cant 0
Horizontal levelling 605 Horizontal levelling 0
Twist 2 meter 580 Twist 2 meter 310
Twist 9 meter 535 Twist 9 meter 225

the models, which means that a exponential model definitely is a better fit.

Figure 6.4: Transition from first to second phase

6.2 Stepwise Regression

To include covariates in the model, stepwise regression is used. Linear regression is used to es-

timate the coefficients for λz and βz . The equation to estimate the coefficient of determination

is also based on linear regression (Walpole et al.). But since it is more important that the model

accurately can predict the observations j in each time series i , rather than the λi and βi , R2 and

R2
ad j is not necessarily a good estimate of the fit as it is stated in equation 5.8 and equation 5.9.
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These equations can be adjusted to include each observation, see equation 6.2 and equation

6.3.

R2 =
∑n

i=1

∑m
j=1(ŷi j − ȳi )2∑n

i=1

∑m
j=1(yi j − ȳi )2

(6.2)

R2
ad j =

(∑n
i=1

∑m
j=1(ŷi j−ȳi )2

(
∑n

i=1 mi )−k−1

)
(∑n

i=1

∑m
j=1(yi j−ȳi )2

(
∑n

i=1 mi )−1

) (6.3)

ŷi j is estimated by estimating with the coefficients γ̂ and δ̂ and using these coefficients to

estimate λ̂z and β̂z for each model in table 5.1, see equation 6.4 and equation 6.5, where z1 to

zk is the significant covariates in the model. These equation are the estimated coefficients to

equation 5.2 and equation 5.3. For the exponential model λ̂z and β̂z is estimated as in equation

6.6. λ̂z and β̂z is estimated with stepwise regression. By estimating ŷi j with this method, it is

possible that the estimated value can be far of the observed value yi j . Figure 6.5 illustrates how

the differences between yi j and ȳi , ŷi j and yi j is estimated. If ŷi j is overestimated it means

that the difference between ŷi j and yi j is be large compared to the difference between yi j and

ȳi . This can cause R2 to be above 100 %. Because that the method used is adapted from normal

linear regression this is possible. This can also cause R2 to be incorrect even though it is between

0 and 100 %.

λ̂= γ̂0 + γ̂1 × z1 . . . γ̂k × zk (6.4)

β̂z = δ̂0 + δ̂1 × z1 . . . δ̂k × zk (6.5)

ŷi j = λ̂zi exp β̂zi×ti j (6.6)

To avoid that R2 gives a wrong of how much of the variation in the data the model can ex-

plain, LS is used to estimate the fit. A reduction in l s4, with λ̂ indicates that the fitted model have

improved and is used to determine how many covariates that should be included in the model.

Equation 6.7 shows how l s4 is estimated. Since l s4 should decrease for every included covariate



CHAPTER 6. STATISTICAL ANALYSIS 37

Figure 6.5: Observed and estimated values for a hypothetical time series i

it is set as a limit that l s4 must decrease with at least 2 % in every step for the new covariate to be

significant. To perform the stepwise regression all categorical covariates is changed into one or

several new variables with only two possible states (0-1). Speed limit is the exception, because it

is assumed that deterioration is proportional to the speed limit on the track. All covariates with

numerical values can be found in table 6.2.

l s4 =
n∑

i=1

m∑
j=1

(yi j − ŷi j )2 (6.7)

The coefficients γ̂ and δ̂ are estimated with the matrix operations in equation 5.7, where y

is vector of λi or βi (for i = 1, ·,n), X are the included covariates z and b are the estimated coef-

ficients γ̂ and δ̂. The adapted stepwise regression is then performed by using a algorithm. The

main steps of the algorithm that performs this can also be seen as a pseudo-code in appendix A.

A description of the main steps can also be listed as:

• Include one covariate at the time

• Estimate γ̂ and δ̂ with matrix operations as in equation 5.7

• Estimate λ̂z and β̂z with equation 6.4 and equation 6.5

• Estimate ŷi j using 6.6
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Table 6.2: Covariates with numerical values

Covariate Description Numerical value
z1 Culvert 0 or 1
z2 Curvature -3630 to 5730
z3 Super elevation 0 to 150
z4 Renewal of rail 0 to 39 000
z5 Steel type R260Mn 0 or 1
z6 Steel type R260 0 or 1
z7 Steel type R200 0 or 1
z8 Speed limit 2 to 4
z9 Concrete sleepers 0 or 1
z10 Wooden sleepers 0 or 1
z11 Railroad switch 0 or 1
z12 Water 0 or 1

• Estimate l s4 from equation 6.7

• Compare l s4 for all covariates and chose the covariate that gives the lowest l s4.

• Include another covariate and to the same steps.

• If l s4 is reduced with more than 2 % the covariate is significant.

• Continue until there is no more significant covariates

This algorithm is used on all track geometry variables and all models. The result finds the

type of model that best fits each track geometry variable.

6.3 Fitted Model

For each model, coefficients are estimated and the significant covariates are found together with

coefficients. A comparison of each model for twist 2 meter and a list of which covariates that are

significant can be found in table 6.3. The table also shows the variance, R2 and R2
ad j for each

model. The variance is estimated with equation 6.8, where k is number of significant covariates

included in the model. For comparison, the variance of all the observations is 1.64.
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s2 =
∑n

i=1

∑m
j=1(yi j − ȳi )2

(
∑n

i=1 mi )−1
(6.8)

Table 6.3: Results for twist 2 meters

Model Significant covariates ls4 Variance (s2) R2 R2
adj

Linear z9 4.30×103 1.50 0.16 0.16
Exponential z8and z3 3.67×103 1.28 0.26 0.26
Logarithmic z8 and z4 9.08×103 3.16 1.30 1.31
Exp-log z7, z5 and z6 20.38×103 7.09 43.96 43.98
Log-exp z11 16.21×103 5.64 15.78 15.79

From this the best model is found to be the exponential model with an l s4 of 3.67×103 and a

R2
ad j of 0.26. It can be seen from the table that all the other models except the linear have a R2

ad j

that is above 100 %. Which indicates that by using this method R2
ad j is a bad estimate of fit.

The different models have also found different significant covariates but most are related to

the elements on the track (e.g. steel quality and type of sleepers). The significant covariates for

the exponential model to twist 2 meter are speed limit and super elevation. This model can be

seen in table 6.4.

Table 6.4: Fitted model for twist 2 meters

Fitted model Function Parameters

Exponential λ̂zexp t β̂z
λ̂z = 0.55+1.12z8 +3.6×10−3z3

β̂z = 2.61×10−4 −7.21×10−5z8 +5.17×10−7z3

6.4 Adjusting Model

The stepwise regression is based on λi and βi and not directly on each observation in a time

series. It is possible that the regression model is not the best fit for each time series. To deal with

this and improving the final model, a method that estimates the coefficients γ̂ and δ̂ based on

the time series and not based on λ and β. It is assumed that the same covariates are significant

for this improved model. This is performed numerically and is done with an algorithm. The
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algorithm is time consuming if no initial values are known, this is the reason why this method

is not used to begin with, and the reason why this method is not used to estimate the fit of all

models.

The main steps in the algorithm that performs this improvement can be seen in algorithm 3.



CHAPTER 6. STATISTICAL ANALYSIS 41

Data: Data set and covariates for optimised fitted model

n=Number of time series;

optγ=optimised coefficient vector for γ ;

optδ=optimised coefficient vector for δ ;

m=length(optγ)= length(optδ);

l sopt= Least square estimate based on optγ and optδ

Step 1: Adjust coefficient vector;

Try to adjust all values in optγ and optδ up and down simultaneously;

improved=false;

for i=1 → n do

for l=1 → length(time series i do

l s = l s + (obser vati oni j − ˆobser vati oni j )2 (Based on adjusted coefficient vector

for γ and δ;

end

end

if l s < l sopt then

l sopt = l s;

opt = s;

optγ=adjusted coefficient vector for γ ;

optδ=adjusted coefficient vector for δ ;

improved=true;

end

if i mpr oved = tr ue then

Jump to step 1 and adjust more;

end
Algorithm 3: Improving model
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After this improvement the fitted model for twist 2 meter can be seen in table 6.5. The l s4,

variance, and R2 for the improved model is respectively 3.39×103, 1.18 and 33%. Which indi-

cates the that the model is slightly improved.

Table 6.5: Improved model for twist 2 meters

Fitted model Function Parameters

Exponential λ̂zexp t β̂z
λ̂z = 0.62+1.14z8 +3.2×10−3z3

β̂z = 2.4×10−4 −7.13×10−5z8 +5.17×10−7z3

6.5 Residual Plots

The method used to fit the models are based on MLR of both λi and βi . By doing this it is also

assumed that the residuals are normally and randomly distributed. Even though the method

used is adapted from MLR and improved with a numerical method afterwards, this is important

to test in order to use the model for prediction. Residual plots are used to test this and analyse

the residuals. Even though the model have been improved numerically after the regression,

these assumptions are assumed to be valid.

Figure 6.6 and figure 6.7 shows a residual plot and a normal probability plot for the residuals

for respectively λ̂z and β̂z for the fitted exponential model to the track geometry variable twist

2 meter. In the residual plot in both figures it can not be seen any clear trend, but the residuals

seem to be skewed a bit to the positive side which indicates that the mean of the residuals is not

0. That the residuals is skewed means that the Cumulative Density Function (CDF),F (e) is not

symmetrical (Skymark (2013)). The normal probability plot for λ̂z shows almost a straight line,

but the observed residuals slightly higher than the normality line, which confirms that the mean

could be higher than 0.

In the normal probability plot for β̂z it can be seen that the residuals are not normally dis-

tributed because of the s-shaped form with long tails in both ends. It is skewed on both sides

but especially skewed on the right. This indicates that extreme values are more common than

what would be expected for normally distributed residuals.

The residuals are also estimated based on each observation. These residuals can indicate
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Figure 6.6: Residual plots for λ̂z

Figure 6.7: Residual plots for β̂z

if there is any trend in the residuals over time. By looking at figure 6.8 it can be seen from the

residual plot that there is not any clear trend, which confirms the assumption of randomly dis-

tributed residuals. The normal probability plot does however seem to be skewed to the right

which indicates that the residuals is not normally distributed.

There are different ways to fix the residuals to be in accordance with the assumptions and

still using MLR. One way is to do different transformations of both the parameters λi and βi and

response variable y . For all three the transformations in table 6.6 was tested independently to
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Figure 6.8: Residual plots for all observations

Table 6.6: Transformation of response variable and parameters

Variable/parameter y λi βi

Transformation

ytr an = l n(y) λtr an = l n(λi ) βtr an = ln(βi )
ytr an = 1

y λtr an = 1
λi

βtr an = 1
βi

ytr an =p
y λtr an =

√
λi βtr an =√

βi

ytr an = y2 λtr an =λ2
i βtr an =β2

i

see if the residuals changed. To include additional covariates in the fitted model was also tested

to see if that made the residuals closer to a normal distribution. Neither of the methods did

however make it seem probable that the residuals where normally distributed.

6.6 Model Uncertainty

Even though it is difficult to know the distribution of the residuals, it is necessary to state some

assumptions in order to predict the deterioration rate of the deviations. Thus, it is still assumed

that both the residuals for λ̂z and β̂z are normally and randomly distributed, even though the

residual plots indicated different. It is also assumed that the residuals are independent of the

covariates included in the model. An estimated normal Probability Density Function (PDF),

f (e), is used to find the uncertainty eλ and eβ to λ̂z and β̂z . The PDF is estimated from the mean
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(µ) and standard deviation (σ = p
var i ance) for the residuals, see equation 6.9. The PDF is

then transformed into a discrete probability distribution by dividing the PDF into five intervals

with limits a and b. A mean value for each interval (a-b is estimated from equation 6.10 and

by solving equation 6.9 with respect to e. This gives a discrete probability distribution for the

uncertainty to λ̂z and β̂z . Figure 6.9 illustrates the estimated mean values for each interval and

the probability to get this value. Table 6.7 shows this numerically.

f (e) = 1p
2πσ

exp(− (e −µ)2

2σ2
) (6.9)

f (ē) =
∫ b

a
f (e)

1

b −a
(6.10)

Figure 6.9: PDF for residuals to β̂z and β̂z

Table 6.7: Distributed probability of model uncertainty

Uncertainty
Probability

10 % 20% 40% 20% 10 %
eλ -3.38 -0.96 0.76 2.48 4.89
eβ −1.60×10−3 −6.34×10−4 0.54×10−4 7.43×10−4 1.70×10−3

Based on the estimated uncertainty and the fitted model in equation 6.5, deterioration of

deviations can be estimated for twist 2 meters. This is explained in detail in chapter 7.
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6.7 Fitted Model and Model Uncertainty for All Variables

For the other track geometry variables the best fitted model and the uncertainty to each function

are estimated with the same method as for twist 2 meter. The same assumptions is also valid for

these estimations. Table 6.8 shows the best fitted model for the track geometry variables vertical

levelling, cant, horizontal levelling and twist 9 meter. For all variables it was the exponential

model that gave the best fit.

Table 6.8: Proposed model for twist 2 meters

Track geometry
variable

Function Parameters

Vertical levelling λ̂zexp t β̂z
λ̂z = 3.33−1.90z9 +1.07z8 +0.60×10−3z3

β̂z = 4.80×10−4 −2.48×10−5z9 −5.20×10−5z8 +9.02×10−7z3

Cant λ̂zexp t β̂z
λ̂z = 5.01−0.25z9 +1.05×10−2z3

β̂z = 3.40×10−4 −1.45×10−4z9 −3.11×10−7z3

Horizontal
λ̂zexp t β̂z

λ̂z = 2.87+0.69z8 −1.13z9 −0.35z5 −0.17z6

levelling β̂z = 2.29×10−5 −1.37×10−5z8 +5.16×10−5z9 −2.21×10−5z5 −3.45×10−5z6

Twist 9 meter λ̂zexp t β̂z
λ̂z = 10.48−4.10×10−2z3 +2.70z8 −6.36z9 −3.35z11

β̂z = 1.54×10−4 −2.56×10−7z3 −8.58×10−5z8 +1.78×10−4z9 +2.42×10−4z11

The estimated uncertainty for the λ̂z and β̂z functions combined with the probability of each

uncertainty are found in table 6.9. Appendix B shows the residual plots and PDF plots for the

fitted model for the variables vertical levelling, cant, horizontal levelling and twist 9 meter.
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Table 6.9: Model uncertainty

Track geometry Uncert- Probability
variable ainty 10 % 20% 40% 20% 10 %

Vertical levelling
eλ -6.41 -2.66 4.5×10−3 2.67 6.42
eβ −2.30×10−3 −0.90×10−3 7.01×10−5 1.01×10−3 2.40×10−3

Cant
eλ -7.77 -3.32 -0.16 3.00 7.45
eβ −3.50×10−3 −1.50×10−3 −3.45×10−5 1.40×10−3 3.50×10−3

Horizontal eλ -3.79 -1.42 0.13 1.81 4.18
levelling eβ −1.60×10−3 −6.74×10−3 −1.02×10−5 −6.74×10−4 −1.60×10−3

Twist 9 meter
eλ -12.74 -5.10 0.34 5.78 13.42
eβ −1.40×10−3 −5.60×10−4 4.52×10−6 5.69×10−4 1.40×10−3



Chapter 7

Deterioration Model

This chapter proposes methods to predict deterioration of track geometry based on the fitted

model and model uncertainty. This is illustrated by using laws of probability. Twist 2 meter is

used as an example to illustrate the methods. Deterioration of other track geometry variables

can be predicted using the same methods.

7.1 Probability of Failure

When a deviation deteriorates and exceed the IAL it is defined as a failure. A failure can increase

the risk of derailment. When a inspection of the track geometry is performed all deviation is

assumed to be detected. Thus, it is important that a deviation not develops into a failure be-

tween two inspections. This may cause a situation with an increased risk of derailment without

knowing it. To predict deterioration of deviations it is assumed that two situations are possi-

ble between inspections. Either a deviation has deteriorated above (event A) or below (event B)

the IAL. In the fitted model the probability of each event (P (A) and P (B)) depends on number

of days since maintenance, the covariates at the position of the deviation and the uncertainty

related to λ̂z and β̂z .

It is also possible that the probability of each event depends on the size of the measured

deviation. This correlation is not looked into in the analysis and is disregarded when estimating

the probability of event A.

48
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7.1.1 Estimated Probability of Failure

The numbers found in table 7.1 is related to a twist 2 meter deviation (D). The uncertainty for λ̂z

and β̂z is distributed with a discrete probability distribution with five possible outcomes each.

The sample space to D, consist of all possible combinations of λ̂z and β̂z , which means that

there are 25 possible outcomes. Each of these outcomes are estimated with the coefficient to λ̂z

and β̂z from the fitted model in table 6.5 and adding the uncertainty from table 6.7. The prob-

ability of each outcome is estimated based on the probability of each uncertainty. All values for

λ̂z and β̂z and the probability of each combination can be found in table 7.2. The predicted size

of deviation for all outcomes, at the time of next inspection can also be found in this table. The

deviations are predicted by using the exponential model, λ̂z and β̂z and adding time since main-

tenance and time to next inspection. It can be seen in the table that that the sum of probability

for all outcomes equals to 1, which is in accordance with laws of probability (Walpole et al.).

Table 7.1: Deviation D

Covariates
z8 = 3
z3 = 76mm

Radius 800m
Days since maintenance 300
Days to next inspection 200
Size of deviation 4mm

Table 7.2: Probability of all outcomes for deviation D

Probability 10 % 20 % 40 % 20 % 10 %
λ̂z 0.90 3.32 5.04 6.76 9.17

Probability β̂z Dev.
[mm]

Prob. Dev.
[mm]

Prob. Dev.
[mm]

Prob. Dev.
[mm]

Prob. Dev.
[mm]

Prob.

10 % −1.53×10−3 0.42 0.01 1.54 0.02 2.35 0.04 3.15 0.02 4.27 0.01
20 % −5.69×10−4 0.68 0.02 2.50 0.04 3.79 0.08 5.09 0.04 6.90 0.02
40 % 1.19×10−4 0.95 0.04 3.52 0.08 5.35 0.16 7.17 0.08 9.73 0.04
20 % 8.08×10−4 1.35 0.02 4.97 0.04 7.55 0.08 10.13 0.04 13.73 0.02
10 % 1.77×10−3 1.62 0.01 5.98 0.02 9.08 0.04 12.18 0.02 16.52 0.01

The IAL for twist 2 meter with a radius larger than 400 meters are 12 millimetres. From table
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7.2 it can be seen that there are three outcomes that exceeds this limit (cells in blue). The total

probability for these three outcomes is 5 % (cells in green). This means that it is a 5 % probability

of event A or a 95 % probability event B.

The probability of event A can be estimated the same way for other track geometry vari-

ables. If the probability of event A is known for n deviations, the probability that one of these

deviations exceeds the IAL, P (Atot ) can be estimated with equation 7.1.

P (Atot ) = 1−
n∏

i=1
P (Bi ) (7.1)



Chapter 8

Summary and Recommendations for

Further Work

8.1 Summary and Conclusions

The Norwegian Railway Administration uses a measuring car to measure track performance.

From a safety point of view, special attention needs to be paid to spots on the line where failure

propagation is out of control, and critical failures could develop in between measurements typ-

ically carried out twice a year. A challenge in the modelling is that we are dealing with so-called

line objects, where there are an almost infinite number of places a failure can occur. This is com-

plicated by the fact that the measuring car reports the position of failures with some uncertainty,

making it difficult to compare results across different measurements series.

This report presents the result of an analysis of propagation of spot failures on track geome-

try. The analysis is based on ten inspections performed on the railway line between Eidsvoll and

Hamar in the period 2006 to 2012. The data for the analysis is obtained from JBV’s databases.

Follow up of track performance is regulated by laws and regulations. JBV uses maintenance and

renewal to improve track performance.

To analyse deterioration of the track performance it is applied statistical methods. There

exist several methods that deals with trend modelling, and a literature survey is performed to

cover relevant methods for this project.

Because of uncertainties in the obtained data a comprehensive work is performed to format

51



CHAPTER 8. SUMMARY 52

data. This is done to understand what is included in the data and how the data can be used

to analyse track performance. Two important parts of this work are to adjust the position of

measurements and use the measurements to create time series for individual spots on the line.

The adapted statistical methods are used to analyse the time series. The result of the analysis

is a model that can predict the probability of failure development. The accuracy of the model is

related to the accuracy of the obtained data and the methods used in the analysis.

The proposed model for all track geometry parameters is found in table 6.5 and 6.8 with

uncertainties found in table 6.7 and 6.9. The most common significant covariates is super el-

evation, speed limit and concrete sleepers. The model can be used to predict the probability

that failures occur on the track geometry within a given time. This is showed in chapter 7. Pre-

dicting the probability of failure can be used to set the right inspection interval, or be used to

plan maintenance and renewal. It is also possible to use this information to estimate the risk of

derailment on a specific railway line.

The accuracy of future data series can be considerably improved by using a better system to

accurately position the location of measurements. This is also in accordance with plans in JBV

to implement GPS as part of the measurements.

8.2 Discussion

The measured position for each deviation can cause the wrong deviations to be matched to-

gether. Even though it is used an algorithm to adjust the position, the accuracy of this method

is limited. Equipment that accurately can find the position of a deviation would improve the

accuracy of the result and make it unnecessary to adjust the position of deviations. This will

also improve the efficiency of data analysis.

The proposed model is chosen from five selected models that have been used to describe

deterioration of track geometry in other studies. These studies are based on deterioration of

the average quality of sections, and not for individual spots. All track geometry variables had

the best fit with the exponential model. This indicates that the exponential model is suitable to

predict deterioration of track geometry. It is still possible that a different model would fit spot

failures even better.
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The statistical analysis is performed with a combination of different methods. The MLR that

is used to find the coefficients in the model assumes that the underlying data can be fitted to

a linear model and that the residuals are normally and randomly distributed. It is shown with

residual plots that this assumption probably is not valid. In this case it is possible that a non

linear regression method should be used to fit the model.

The model uses time since maintenance to predict the probability of failure. Both tamping

and ballast cleaning is included as maintenance activities. In the model it is assumed that both

these activities have the same effect on the condition of the track. If the effect of cycle would

be included in the model these activities could be separated. Ballast cleaning could also be

included as a covariate to differentiate between maintenance activities. It could also be possible

that other covariates that are not tested in this study can be significant and could improved the

model.

There are several steps in the process to fit a model that is based on assumptions that can

make the result inaccurate. The probability of failure, estimated with the proposed model, still

seems to be reasonable under the given conditions. To determine the accuracy of the model, it

should be tested in practice.

8.3 Recommendations for Further Work

Based on the discussion there is suggested areas where more research could lead to an improved

model. It is also possible to use the result from this report as a basis for new analysis. Some

recommendations for further work is listed as:

• Perform the same analysis on data from other railway lines

• Use non linear regression for trend modelling

• Suggest other models to estimate deterioration

• Take cycle effects into account when fitting a model

• Test the model in practice



Appendix A

Algorithm for Stepwise Regression

Data: Data set with time series for all track geometry variables

For one variable at the time;

n=Number of time series;

m=Number of models;

k=Number of covariates;

v=vector of ones (size n ×1) ;

Step 1: Estimate parameters;

for i = 1 → n do

for j = 1 → m do

Estimate λi and βi numerically for each time series;

end

end

Step 2: Multiple linear regression;

For one model at the time;

l sopt = 105 (set l sopt to a high number);

Continue on next page
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for r = 1 → k do
l sopt = l sopt ×0.98;
improve=false;
Test all covariates to find the optimal;
for s = 1 → k do

sr =vector of covariate s (size n ×1);

To get coefficient vector for γ: Solve equation 5.7, y = λ̂z (size 1×n),
X = v + s1 +·· ·+ sr (size 1+ r ×n);

To get coefficient vector for δ: Solve equation 5.7, y = β̂z (size 1×n),
X = v + s1 +·· ·+ sr (size 1+ r ×n);
l s = 0;
for i=1 → n do

for j=1 → length(time series i) do
l s = l s + (obser vati oni j − ˆobser vati oni j )2 (Based on coefficient vector
for γ and δ);

end
end
If this covariate decrease l s;
if l s < l sopt then

l sopt = l s;
opt = s;
opt γ=coefficient vector for γ ;
opt δ=coefficient vector for δ ;
improved=true;

end
end
sr = opt if improved=true then

Continue;
else

Significant covariates = r −1;
Jump to step 3;

end
end

Algorithm 4: Stepwise regression



Appendix B

Residual and PDF Plots for All Track

Geometry Variables
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Figure B.1: Residual plots for λ̂z for vertical levelling

Figure B.2: Residual plots for β̂z for vertical levelling
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Figure B.3: PDF for λ̂z and β̂z for vertical levelling

Figure B.4: Residual plots for λ̂z for cant
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Figure B.5: Residual plots for β̂z for cant

Figure B.6: PDF for λ̂z and β̂z for cant
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Figure B.7: Residual plots for λ̂z for horizontal levelling

Figure B.8: Residual plots for β̂z for horizontal levelling
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Figure B.9: PDF for λ̂z and β̂z for horizontal levelling

Figure B.10: Residual plots for λ̂z for twist 9 meter
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Figure B.11: Residual plots for β̂z for twist 9 meter

Figure B.12: PDF for λ̂z and β̂z for twist 9 meter
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