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Abstract

In this work we perform predictions of annual precipitation and runo� by spatial
interpolation. For this purpose, we utilise both point observations of precipitation and/or
area observations of runo� from several years. We suggest a statistical model for annual

precipitation and runo� consisting of two spatial terms: One spatial term that is common for
all years which models the climatology in the area of interest, and one spatial term for

year-to-year variation. The model is set up as a Bayesian hierarchical model of three levels,
and we use informative priors based on information from the available observations. A

stochastic partial di�erential equation (SPDE) approach to spatial modelling is used to make
inference and predictions less computationally expensive. The model is implemented by
using the R-package R-INLA, and we demonstrate how R-INLA can be used for making
predictions and drawing inference from a model based on both point observations (e.g of

precipitation) and area observations (e.g of runo�). The statistical model is tested through a
case study of catchments located around Voss in Norway and through simulation studies.

The main focus is on the predictive performance. In particular we explore how the predictive
performance is a�ected by having a spatial varying climate e�ect in the model. We �nd that

the spatial predictions of runo� and precipitation often are uncalibrated if the spatial
di�erences in the observed annual precipitation are stable from one year to another. The
consequence of this model property is that an observation design that produces accurate

predictions one year, also will produce accurate predictions other years. Further we compare
the predictive performance for annual runo� when using observation samples consisting of
(1) only observations of runo�, (2) only observations of precipitation and (3) observations of
both runo� and precipitation. The results from the simulation studies did not favour one of
the observation types (runo� and/or precipitation), and both observation types can produce
accurate predictions of annual runo� depending on the underlying climatology. For the real

dataset we saw that observation samples of only runo� produced the most accurate
predictions. Observation samples of only precipitation were not suitable for runo�

predictions for the real dataset and led to large biases between the true observations and the
predicted values.
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Sammendrag

I denne oppgaven utfører vi prediksjoner av årsnedbør og årsavrenning ved bruk av romlig
interpolasjon. Vi benytter vi oss av både punktobservasjoner av nedbør og arealobservasjoner
av avrenning fra �ere år. Vi foreslår en statistisk modell for årsnedbør og avrenning som
består av to romlige e�ekter: En romlig e�ekt som er felles for alle år og som modellerer

klimaet i området, og en romlig e�ekt som forklarer de årlige nedbørsvariasjonene. Modellen
er satt opp som en Bayesiansk hierarkisk modell med tre nivåer og vi bruker informative

priorfordelinger basert på informasjon fra datasettet. En stokastisk partiell di�erensialligning
(SPDE) er brukt for å gjøre modellen mindre beregningskrevende. Modellen er implementert

ved å bruke R-pakken R-INLA, og vi demonstrerer hvordan R-INLA kan brukes for å
gjennomføre prediksjoner og inferens basert på både punktobservasjoner (av for eksempel
nedbør) og arealobservasjoner (av for eksempel avrenning). Den statistiske modellen testes
ved bruk av et ekte datasett fra Vossområdet og gjennom simuleringsstudier. Hovedfokuset i

oppgaven er å vurdere modellens evne til å gjennomføre prediksjoner. Spesielt er vi
interessert i å undersøke hvordan prediksjonene påvirkes av at vi har inkludert en romlig
e�ekt for klima i modellen. Resultatene viser at de romlige prediksjonene av avrenning og

nedbør ofte er ukalibrerte hvis den romlige variasjonen av årsnedbør er stabil fra ett år til et
annet. Konsekvensen av dette er at et observasjonsdesign som produserer gode prediksjoner
ett år, sannsynligvis vil produsere gode prediksjoner for andre år. Videre sammenligner vi
avrenningsprediksjonene som oppnås ved å bruke observasjoner av (1) kun avrenning, (2)

kun nedbør og (3) både avrenning og nedbør. Resultatene fra simuleringsstudiene favoriserer
ikke noen av observasjonstypene (nedbør og/eller avrenning), og begge observasjonstypene
kan føre til gode prediksjoner av årsavrenning avhengig av det underliggende klimaet. For
det ekte datasettet fra Voss så vi at de beste avrenningsprediksjonene oppnås når man kun
benytter seg av avrenningsobservasjoner. Å utføre avrenningsprediksjoner basert på kun

nedbørsobservasjoner fungerte dårlig for de ekte dataene og førte store forskjeller mellom de
ekte observasjonene og de predikerte verdiene.
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1. Introduction

In Norway statistical models for hydrological forecasting are demanded. Approximately 99%
of the electricity generation in Norway comes from hydro-power production (Statkraft, 2016),
and accurate forecasts of precipitation and runo� with uncertainty estimates make it easier
for the hydro-power companies to schedule the hydropower production during the year. Hy-
drological forecasting models also contribute to improved �ood warnings.

For this purpose, it is important to account for the greatest runo� generation that can be
expected in a catchment over a longer or shorter time period. In Benestad et al. (2012) it is
shown that there is a close relationship between the mean amount of precipitation and pre-
cipitation extremes at a speci�c location. Further, it is reasonable to assume that the mean
amount of runo� generated in a catchment during a speci�c time period also is closely related
to greatest amount of runo� generation that can be expected within a time interval. If this is
the case, historical data can help us to gain knowledge of runo� extremes. However, a problem
in hydrology is that in many catchments there are no observations of runo� and/or precipi-
tation. This makes it challenging to gain knowledge of runo� and precipitation amounts in
these areas, and is known as "the problem of ungauged basins" (Blöschl et al., 2013).

Motivated by "the problem of ungauged basins" we here present a statistical model for annual
precipitation and runo�, and demonstrate how both observations of precipitation and/or ob-
servations of runo� can be used for spatial predictions in a catchment where measurements of
runo� and/or precipitation don't exist. By spatial predictions we mean that we perform pre-
dictions in space and not in time. It is common to perform spatial predictions of runo� within
an ungauged basin by interpolation of rainfall data, i.e point observations of precipitation are
interpolated to a continuous surface or area. Here, we explore if also runo� observations can
contribute to improved spatial predictions.

The results presented in the report will be based on a case study of several catchments located
in the western parts of Norway, more speci�c around Voss. We chose to focus the analysis on
data from the Voss area because this area is known to be �ood exposed. In 2014 the Voss
area was hit by a severe �ood which caused damage on infrastructure and property (NRK,
2014). Hydrological forecasting models are therefore of high relevance in the area of interest
and can contribute to better area planning and preventing severe damage on property and
infrastructure in the future.

The starting point of any statistical modelling is to make a realistic model for the process of
interest which at the same time is simple enough to draw inference from with available data.
Precipitation is a complicated process driven by humidity, temperature, the distance from the
ocean and interaction with the topography, and simpli�cations must be made in the modelling.

In Norway the di�erences in annual precipitation are mainly caused by orographic precipi-
tation which occurs when air rises on the windward side of a mountain. This results in large
values of annual precipitation in the western parts of the country and a dryer climate in the
eastern parts. Thus, the amount of annual precipitation depends on the location in space. It
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is also reasonable to assume that locations that are close in space have more in common than
locations far apart. In statistics, such dependency structures can be modelled by a spatial
e�ect. In this work, we suggest a model for precipitation consisting of two spatial e�ects.

The �rst spatial e�ect models the climatic di�erences of annual precipitation in the area
of interest and is referred to as the climatology of the study area. The climatology of an
area is in general de�ned as the weather conditions, here annual precipitation, averaged over
a time period. Thus, the climatic spatial e�ect used in our model will be common for all
years. Further, we assume that it occurs spatial variations of precipitation that can not be
explained by the climatology. The second spatial e�ect is therefore a year dependent e�ect
that models spatial variations within a speci�c year. We also include a year speci�c intercept
in the precipitation model that adjusts the annual level of precipitation

Annual runo� can be regarded as the amount of annual precipitation that �ows over land
as surface water instead of evaporating or being absorbed into ground water (NVE, 2002). In
this work, the annual runo� is modelled as an integral of precipitation over the surface area
of a catchment, minus the annual evaporation. As we see, runo� and precipitation are closely
related. We can regard observations of precipitation as point observations, and runo� as area
observations of the same underlying process.

In our analysis we use precipitation and runo� data from several years to make inference
and predictions. In the same manner as in Ingebrigtsen et al. (2015), each year of data is
regarded as an independent realization of the statistical model. This is called replicates, and
it was shown in Ingebrigtsen et al. that the use of replicates made the parameter estimates
more precise and reduced the estimation bias. The use of replicates is in particular important
in our model because we have a spatial e�ect that is common for all years, i.e the climatology.
Thus, the replicates are needed to gain knowledge of the climatology in the study area. In
this work we use observations from 10 years, i.e 10 replicates to predict annual runo� and
precipitation.

The model for annual precipitation and runo� is set up as a Bayesian hierarchical model
of three levels. As a Bayesian approach is used, the model parameters must be assigned prior
distributions, and we use informative priors based on information about the available obser-
vations.

Drawing inference from a Bayesian hierarchical model is traditionally done by using MCMC-
methods (Gamerman and Lopes, 2006). However, MCMC-methods can be slow. In this work
we will use an alternative to MCMC-methods which is integrated nested Laplace approxima-
tion (INLA) (Rue et al., 2009). INLA can be used for approximate inference and predictions
if the underlying process, i.e the second level of the hierarchical model, has a Gaussian dis-
tribution. As our two spatial e�ects will be modelled by stationary Gaussian random �elds
(GRFs), this requirement is ful�lled.

The drawback of using GRFs to model the spatial e�ects is that models including GRFs
often are slow to draw inference from. To ensure fast computations by using INLA we there-
fore make an additional approximation in the model. In Lindgren and Rue (2011) it is shown
how a stochastic partial di�erential equation (SPDE) can be applied for expressing a GRF as
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a Gaussian Markov random �eld (GMRF). There are computational bene�ts linked to GMRFs
allowing us to make faster inference (Rue and Held, 2005), and we use the SPDE approach to
approximate the two GRFs in our precipitation model.

The INLA methodology and a framework for implementing SPDE models are implemented
in the R-package INLA, and the package is available at www.r-inla.org. One of the main
contributions of this work is to demonstrate that the INLA framework is suitable for making
predictions and inference with a SPDE model based on both point observations (e.g of pre-
cipitation) and area observations (e.g of runo�).

The statistical model for precipitation and runo� is evaluated by exploring its ability to make
accurate predictions in the Voss area, i.e the focus is on the predictive performance of the
model and not on parameter estimation. We leave out observations from our dataset and
reproduce the observations by spatial predictions based on observations from other locations
and catchments. We also test the model on simulated data. In our analysis we will focus on
answering �ve research tasks (RT1 -RT5) which we present now.

In the �rst research task we do some experiments to explore if the spatial variations of annual
precipitation around Voss are mainly explained by climatic di�erences or by annual spatial
variability. We expect that the spatial e�ect that models the climatology is dominating over
the annual spatial e�ect, and explore how this a�ects the spatial predictions. The �rst research
task is formulated as follows:

RT1: How does the climatology of the study area a�ect the spatial predictions of runo�
and precipitation?

The motivation for research task two is to show that predictions of runo� and precipitation are
di�erent from each other. To verify this assumption, we try to �nd an observation design that
is suitable for runo� predictions in a speci�c catchment, but not suitable for predictions of
precipitation in the middle of the catchment. The second research task is formulated as follows:

RT2: If we �nd an observation design suitable for runo� predictions in a speci�c catch-
ment, will the same observation design be suitable for point predictions of precipitation in the
interior of the catchment?

In the next three research tasks, we focus on runo� predictions. These are considered more
important than predictions of precipitation as the work is motivated by "the problem of un-
gauged basins" and runo� extremes.

A large catchment that generates runo� to a large river, can always be divided into smaller
catchments that generate runo� to smaller rivers. The dataset used in this work consists of
catchments of this type, and we say that the catchments overlap. In a preliminary simulation
study we saw that accurate predictions of annual runo� within a larger catchment can be
obtained by using observations of annual runo� from a smaller overlapping catchment. We
are interested in testing if this applies for real data as well. In research task 3, 4 and 5 we
therefore perform spatial predictions of runo� by using observations of precipitation and/or
observations of annual runo� from overlapping catchments. Research tasks 3-5 are formulated



4 CHAPTER 1. INTRODUCTION

as follows:

RT3: Explore how spatial predictions of annual runo� are a�ected by using an observa-
tion sample consisting of observations of runo� from an overlapping catchment.

RT4: Explore how spatial predictions of annual runo� are a�ected by using an observa-
tion sample consisting of observations of precipitation.

RT5: Explore how spatial predictions of annual runo� are a�ected by using an observa-
tion sample consisting of both observations of precipitation and observations of runo� from
an overlapping catchment.

The di�erent observation types used in RT3-RT5 are evaluated and compared. We emphasise
that research task 5 is particularly interesting as we here combine observations of annual runo�
and precipitation. We expect this observation type to produce the most accurate predictions,
because in RT5 we include as much information as possible in the model.

The rest of the report is organized as follows: In Section 2, the dataset is introduced. In
Section 3, we present important background theory needed to construct statistical models for
precipitation and runo�. This includes introductions to GRFs, GMRFs, the SPDE approach to
spatial modelling and INLA. Next, the model for annual precipitation and runo� is presented
in Section 4, before the observation designs and the experiments are explained in Section 5
and 6 respectively. Finally, the results are analysed and discussed in Section 7 and 8. Code
examples from INLA are included in the Appendix.



2. Data
In this section the dataset is introduced. We will not use all of the data available and will
focus on data from the Voss area. However, we present the whole dataset because it illustrates
the forces behind precipitation and runo�, and veri�es the choice of model.

Runo� observations

Annual data for runo� from 1980 to 2013 were provided by the Norwegian Water Resources
and Energy Directorate (NVE). The dataset consists of annual runo� observations from the
9 catchments displayed in Figure 2.1. The catchments are located in the western parts of
Norway, more speci�c in Hordaland, Sogn og Fjordane and Oppland. The area of each catch-
ment and mean values for annual runo� are displayed in Table 2.1. Here, the year 1980 starts
at 1.September 1980 and ends 31.August 1981. This is called a hydrological year, and by
this de�nition of a year me make sure that precipitation that came as snow has melted and
returned to the hydrological cycle.

Data for measurement uncertainty for the runo� observations were also provided by NVE.
Each observation has its own uncertainty, and the mean uncertainty for each catchment is
displayed in Table 2.1. We note that the relative standard deviation is very low, but as the
unit is [108m3/year] we are still dealing with large quantities of water. The method used for
estimating the annual runo� with corresponding observation uncertainty is described in Reitan
and Petersen-Øverleir (2009).

Table 2.1: Area of the catchments [km2], mean value of observed runo� with corresponding
standard deviation [108m3/year], mean runo� per square meter [m/year] and years in which
we have available data.

Catchment nr. Name Area Mean runo� Runo�/m2 Mean sd Data available
1 Målset 7.7 0.15 2.0 0.0018 1980 - 2013
2 Dyrdalsvatn 3.3 0.11 3.2 0.0019 1980-1995, 2001-2013
3 Røykenes 50.1 1.3 2.7 0.027 1980-2013
4 Fjellanger 12.8 0.316 2.4 0.0078 1995-2013
5 Haukåselva 7.4 0.13 1.8 0.0011 2007-2013
6 Svartavatn 72.4 2.2 3.1 0.040 1987-2013
7 Slondalsvatn 41.9 0.99 2.4 0.021 1983 - 2013
8 Kinne 511.4 10 2.0 0.078 1984-2013
9 Bulken 1092.0 22.4 2.1 0.33 1980-2013

5
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Figure 2.1: Nine catchments. The x- and y-axis show distances i meters.

Precipitation observations

Precipitation data for the same time period and area were downloaded from www.eklima.no

which is a web site operated by the Norwegian Meteorological Institute. Only monthly ob-
servations were available, and the annual data are obtained by adding the monthly values.
Data from 79 locations are available for years between 1980 and 2013, and mean values of
precipitation in this time period are shown in Figure 2.2. Be aware that only some of the
locations have annual data from the whole time period from 1980 to 2013. The 79 locations
shown in Figure 2.2 have at least one measurement of annual precipitation between 1980 and
2013.

In Figure 2.2 we see that the highest measurements of annual precipitation are registered
around a vertical line drawn from Kvamskogen to Takle. The annual values decrease as we
move east or west from this line. West, close to the coast, the annual values of precipitation are
high, but not as high as around Kvamskogen. East, around Reimegrend, moderate values are
registered, and around Geilo we �nd low values of annual precipitation. This spatial pattern
is apparent for all years. This can be seen in Figure 2.3 which shows the annual observa-
tions of precipitation from �ve locations with di�erent climatic conditions: Bergen, Øvstedal,
Brandset, Geilo and Voss. The ranking between the locations, from the highest amount of
precipitation to the lowest is always Øvstedal, Bergen, Brandset, Voss and Geilo.

The spatial pattern in Figure 2.2 is caused by the topography of the area of interest. Hu-
mid oceanic winds from west hit the coast of Norway, and the mountains in the area force the
air to elevate. This phenomenon is called orographic precipitation and results in large values
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Figure 2.2: The mean annual precipitation from 1980 to 2013 at 79 locations. The x- and
y-axis show distances i meters.

of annual precipitation on the windward side of the mountains, i.e in the western parts of
Figure 2.2 (Ingebrigtsen et al., 2015). On the other side of the mountains we receive a dryer
climate which can be observed as we move eastwards in Figure 2.2. The orographic precipita-
tion de�nes the climatic di�erences in the area of interest, and a spatial e�ect common for all
years seem to be suitable in the precipitation model.

In Figure 2.4 boxplots for annual precipitation for all locations are displayed for each year
from 1980 to 2013. Recall that not all locations have observations from the whole time period.
Thus, the 34 boxplots are not based on measurements from the same locations and might be
misleading. However, the boxplots indicate that the median changes from year to year and
suggest that the mean values of precipitation are year dependent. This is supported by what
we observe in Figure 2.3: In 1988 we �nd larger values of precipitation for all locations except
Geilo, while in 1990 we �nd lower values of precipitation everywhere. Thus, both Figures 2.3
and 2.4 suggest that some years in general are dryer than others and motivates for using a
year dependent intercept in the precipitation model.

The boxplots also show that the variance within a year typically is larger for a year with
a large median value (1988, 1989, 1991) than within a year with a low median value (1982,
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2000, 2009). This suggests that there exist spatial variations that can not be explained by
climatology, but by annual spatial variations. Based on this, we include a year dependent
spatial e�ect in the precipitation model.

The measurement uncertainty for precipitation is unknown. According to Wol� et al. (2015)
it is in general di�cult to obtain accurate measurements of precipitation. Precipitation is
typically measured by letting rain or snow fall into a bucket, but in windy areas biases in the
measurements occur due to under-catch and turbulence. The rain or the snow simply blows
away from the measurement bucket, and this is in particular a problem in the winter as snow
is lighter than rain. We therefore assume that the measurement uncertainty for precipitation
is large for our observations as they originate from a cold, mountainous, wind exposed area
where a large proportion of the annual precipitation comes as snow.

Figure 2.3: Observed annual precipitation from �ve di�erent locations from 1984 to 1993.

Figure 2.4: Boxplot of annual precipitation from 1980 to 2013 for all locations.
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Evaporation data

Annual precipitation contributes to evaporation and runo�, and daily evaporation data for the
nine catchments in Figure 2.1 were provided by NVE. The evaporation data are taken from
the MOD16 Global Terrestrial Evapotranspiration Data Set, and the evaporation is derived
by using satellite remote sensing data. See Mu et al. (2007a) and Mu et al. (2007b) for more
information about the dataset.

The evaporation data received were daily evaporation values for 1 square kilometre for each
of the catchments in Figure 2.1. Annual values for each catchment were obtained by adding
the daily values and multiplying the result with the catchment area.

Evaporation data are available for all years from 1980 to 2013, and the mean values of annual
evaporation for each catchment are displayed in Table 2.2. In Norway, the amount of evap-
oration is low because of the cold climate, and the mean amount of evaporation is 11% for
our dataset. In Table 2.2 we also note that the correlation between the runo� data and the
evaporation data is negative for the majority of the catchments: In years with high values of
annual runo�, the evaporation is low. Evaporation in Norway is mainly driven by tempera-
ture as it is always humidity available. Typically, the temperature is lower for years with large
annual values of precipitation and runo�, explaining the negative correlation between runo�
and evaporation.

The estimation uncertainty for evaporation is unknown. According to Kolbjørn Engeland
at NVE, the uncertainty is large, and it was suggested that the uncertainty was 20% of the
provided evaporation value.

Table 2.2: Mean annual evaporation [108m3/year], evaporation per square meter [m/year] and
the Pearson's correlation between evaporation and runo� for each catchment.

Catchment nr. Mean evaporation Evaporation/m2 Corr(Runo�,Evaporation)
1 0.010 0.13 -0.48
2 0.015 0.45 0.11
3 0.30 0.60 0.34
4 0.026 0.20 -0.58
5 0.052 0.70 0.89
6 0.19 0.27 -0.23
7 0.061 0.15 -0.45
8 1.28 0.25 -0.37
9 3.1 0.28 -0.32
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3. Background
In this section we present important background theory needed to construct a statistical model
for annual precipitation and runo�. We start by an introduction to Gaussian random �elds
(GRFs) and Gaussian Markov random �elds (GMRFs), and explain how these can be linked
to each other through a Stochastic Partial Di�erential Equation (SPDE) formulation of the
spatial �eld. Further, Latent Gaussian Models (LGMs) are presented, and we give an overview
of how Integrated Nested Laplace approximation (INLA) can be used to make fast inference
and predictions on such models.

3.1 Gaussian random �elds

Tobler's �rst law of geography is the foundation of spatial statistics. It says that near things
are more related than distant things (Tobler, 1970). This property is maintained by Gaussian
random �elds (GRFs) and is the motivation for using GRFs for modelling precipitation and
runo�. In this section an introduction to Gaussian random �elds is given. For details, we refer
to Cressie (1993).

A Gaussian process is a process where the observations occur in a continuous domain, and
where every �nite collection of random variables from the process has a multivariate normal
distribution. If the continuous domain is in space, the �nite collection of random variables
de�nes a Gaussian random �eld (GRF). For example, let D ⊂ Rd be a spatial domain of
interest where d typically is 2 or 3. The random �eld {x(s) : s ∈ D ⊂ Rd} is a Gaussian
random �eld if for each �nite set of locations {s1, ..., sn} in D it holds that

(x(s1), ..., x(sn)) ∼ Nn(µ,Σ),

where Nn is the n-variate normal distribution with mean µ = (µ(s1), ..., µ(sn)), covariance
matrix Σ and n ≥ 1. The covariance between the observations at locations i and j is given by
element (i,j) of the covariance matrix, i.e Σij = Cov{x(si), x(sj)}.

A random �eld is stationary if it is translation invariant. This means that (x(s1), ..., x(sn))
has the same distribution as (x(s1 + t), ..., x(sn + t)) where t = (t1, ..., td). The �eld is also
second-order stationary if the mean and the variance of the �eld do not depend on location,
and if the correlation between two points only depends on the distance between them, i.e

E{x(si)} = µ

Var{x(si)} = σ2

Corr{x(si), x(sj)} = ρ(sj − si)

for any i and j. If we add the requirement that Corr{x(si), x(sj)} = ρ(|sj − si|) the �eld
is isotropic. The covariance matrix of a GRF speci�es the dependency structure of the �eld
and is constructed from a covariance function. We will use a stationary and isotropic Matérn
covariance function which is given by

Cov{x(si), x(sj)} =
σ2

Γ(λ)2λ−1
(κ||si − sj ||)λKλ(κ||si − sj ||). (3.1)

11
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Here, σ2 is the marginal variance of the spatial �eld, Kλ is the modi�ed Bessel function of
the second kind and order λ > 0, and ||si − sj || is the Euclidean distance between the two
locations si and sj . The parameter κ is a scale parameter.

The range of the �eld tells us at which distance the correlation between two points in the
�eld is approximately zero. It is shown empirically in Lindgren and Rue (2011) that the range
of the Matérn covariance function is

ρ =
√

8λ/κ. (3.2)

At this distance the spatial correlation is approximately 0.1.

3.2 Gaussian Markov random �elds

Sometimes a spatial domain is discrete, for example if we consider pixels in an image. Gaussian
Markov random �elds (GMRFs) are useful in such situations and are de�ned as GRFs with
a precision matrix Q = Σ−1 characterized by a conditional independence structure. Let
x =(x1, ..., xi, .., xn) be a GMRF, and let x−i be the vector x without element number i. The
neighbourhood of element i in x is denoted xne(i), and can for example be the pixels in an
image that share a border with element i. See Figure 3.1 for an example. For a GMRF the
conditional distribution of xi given x−i can be expressed as the conditional distribution of xi
given its neighbours:

π(xi|x−i) = π(xi|xne(i)).

This is the conditional independence structure of the GMRF, also known as the Markov
property, and it is re�ected in the precision matrix of the GMRF. For element i 6= j it holds
that

i /∈ ne(j) =⇒ Qij = 0.

Thus, the precision matrix Q is sparse as it contains many zero elements.

Making inference and predictions with a spatial model require inversions and factorizations of
the covariance matrix Σ. The covariance matrix of a GRF is typically dense, and the computa-
tional cost for matrix operations on dense matrices has order O(n3) where n is the dimension
of the matrix. However, if the precision matrix Q has the conditional independence structure
which is typical for a GMRF, the computational cost of matrix operations can be reduced to
O(n

3
2 ). For this reason, GMRFs are easier to work with than GRFs allowing us to make faster

inference and predictions.

We refer to Rue and Held (2005) for details on GMRFs and fast algorithms for sparse-matrix
calculations.
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Figure 3.1: A discrete spatial �eld x = (x1, ..., xi, .., x16). The gray pixels are an
example of a neighbourhood system of pixel 7 and is collected in vector xne(7) =
(x2, x3, x4, x6, x8, x10, x11, x12). If the discrete spatial �eld de�nes a GMRF, then π(x7|x) =
π(x7|xne(7)).

3.3 The SPDE approach to spatial modelling

In Lindgren and Rue (2011) a new approach to spatial modelling is presented. In this paper
it is shown that a GRF with a Matérn covariance matrix can be expressed as a solution to the
following stochastic partial di�erential equation (SPDE):

(κ2 −∆)
α
2 (τx(s)) =W(s). (3.3)

Here, x(s) is a GRF, W(s) is spatial Gaussian white noise, α is a smoothness parameter, τ is
a parameter controlling the variance of the GRF and κ > 0 is a scale parameter. The two di-
mensional Laplacian ∆ is de�ned as

∑d
i=1

∂2

∂xi
where d is the dimension of our spatial domainD.

The scale parameter κ in the SPDE (3.3) is the same κ as in Equation (3.1), and the pa-
rameter λ of the Matérn covariance function (3.1) is related to the SPDE through

λ = α− d

2
. (3.4)

Further, the marginal variance σ2 of Equation (3.1) is related to the SPDE through

σ2 =
Γ(λ)

Γ(α)(4π)
d
2κ2λτ2

. (3.5)

An approximate solution of the SPDE (3.3) can be found by using a �nite element method.
This can be done by dividing the spatial domain D into a set of non-intersecting triangles. This
leads to a triangulation mesh with m nodes and m basis functions ξk, where basis function
ξk has value 1 at vertex k and value 0 at the other vertices. See Figure 3.2 for an example mesh .

The �nite element method and the basis functions make it possible to express the GRF x(s)
through the basis function representation

x(s) = Σm
k=1ξk(s)wk, (3.6)
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where wk are weights with w = (w1, ..., wm) ∼ N(0,Q−1(τ, κ)). The weights are chosen to
approximate the solution x(s) of the SPDE in the mesh nodes, and the basis functions trans-
form the approximation of the GRF x(s) from the mesh nodes to the locations of interest s
through equation (3.6). Linear interpolation is used to determine the values in the interior of
a triangle in the mesh.

The precision matrix of the weights w is de�ned as

Q(τ, κ) = τ2(κ4C + 2κ2G+GC−1G),

where Cii =
∫
ξi(s)ds and Cij =0 when i 6= j, and where Gij =

∫
∇ξi(s)∇ξj(s)ds with

i = 1, ...,m and j = 1, ...,m. Often the precision matrix is parametrised as Q(θτ , θκ) where
θτ = log(τ) and θκ = log(κ), i.e:

Q(θτ , θκ) = exp(2θτ ){exp(4θκ)C + 2exp(2θκ)G+GC−1G}. (3.7)

This parametrisation will be used throughout the text.

The precision matrix Q(θτ , θκ) is sparse as opposed to the original precision matrix of the
GRF x(s). In fact Q(θτ , θκ) de�nes a GMRF and is equipped with the conditional indepen-
dence structure described in Section 3.2. In practice, we have now expressed the original GRF
x(s) as a GMRF through Equation (3.6). This allows us to reduce the computational cost of
matrix operations. The computational cost is O(n3) for matrix operations on a GRF evaluated
at n locations, while the computational cost for the corresponding GMRF approximation is
only O(m3/2) where m is the number of mesh nodes in the triangulation. Thus, we can make
a coarser mesh to increase the computational speed of matrix inversions and factorizations.
However, the accuracy of the GMRF approximation decreases with decreasing mesh density.
In Figure 3.3 an example is shown giving an impression of how the GMRF approximation may
look like for a speci�c triangulation mesh.

The SPDE approach has other advantages than computational bene�ts. It makes it possible
to introduce non-stationary parameters in the covariance matrix of a GRF without thinking
about the positive de�niteness of the covariance matrix. This is because the SPDE approach
allows us to regard the model parameters as parameters of the SPDE and not as building
blocks of a covariance matrix. The SPDE approach is relatively new, and an overview of the
current state of spatial modelling with systems of SPDEs can be found in Hu and Steinsland
(2016). Interesting topics for further research are also suggested in this article.
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Figure 3.2: Example mesh with m = 131 nodes (red). We approximate the GRF x(s) in the
131 mesh nodes by the GMRF w. Further, we use the basis functions ξk(s) to interpolate the
spatial �eld from the 131 mesh nodes to the 4 locations of interest (green).

Figure 3.3: A smooth surface (left) can be approximated by using a basis function repre-
sentation with piecewise linear basis functions de�ned on a triangulation mesh (right). The
illustration is copied with permission from Hu and Steinsland (2016).

3.4 Bayesian hierarchical models and Latent Gaussian models

In this work the model for precipitation and runo� will be expressed as a hierarchical model
of three levels. Hierarchical models are used to model complicated processes as a hierarchy of
relatively simple statistical models (Hu and Steinsland, 2016). The �rst level of a hierarchical
model is the observation model or observation likelihood π(y|θ1,ψ) =

∏n
i=1 π(yi|θ1,ψ) where

y is a vector of n observations. The observation likelihood depends on a unobserved process
ψ and some parameters θ1.

The second stage of a hierarchical model is a model that describes the distribution of the
unobserved process ψ. This is called the process model or the latent model and is often a
linear model of �xed and random e�ects. For example

ψ = Xβ + x(s) (3.8)

where Xβ is a �xed e�ect with design matrix X and coe�cients β, and where x(s) is a GRF.
The unobserved process ψ is then given a distribution π(ψ|θ2) where θ2 is a vector of related
parameters. For the above example, β and the parameters of the GRF x(s) will be included
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in θ2.

If we use a Bayesian approach to statistics, the parameters θ = (θ1,θ2) must be assigned
a prior distribution π(θ). Thus, we have a Bayesian hierarchical model where the third stage
is the prior distribution of the model parameters π(θ). The parameters θ are often called
hyperparameters.

If the unobserved process ψ is Gaussian distributed given the parameters θ2, we have a latent
Gaussian model (LGM). Latent Gaussian models are a special case of Bayesian hierarchical
models, and will be used for modelling precipitation and runo� in this work.

3.5 Integrated nested Laplace approximation (INLA)

Assume we have a Bayesian hierarchical model as described above. The objective of a Bayesian
analysis is to gain knowledge about the unknown parameters θ and the distribution of the
unknown process ψ based on a set of observations y. Thus, we need to calculate the posterior
marginal distribution π(ψi|y) of each element i = 1, ...,m of the latent model ψ and the poste-
rior marginal distribution π(θj |y) of each element j = 1, ..., n of the hyperparameter vector θ.
Traditionally, posterior marginals are computed by using Markov Chain Monte Carlo-methods
(MCMC), but as m can be very large, typically larger than 100, MCMC-methods can be slow.

In Rue et al. (2009) an alternative to MCMC-methods is presented called Integrated Nested
Laplace approximation (INLA). This is a methodology for doing approximate Bayesian infer-
ence on LGMs, and it enables fast computations of the posterior marginals. The approxima-
tions are very accurate and sometimes even long MCMC-runs are not able to detect the errors
in the approximations.

The LGM must satisfy some requirements to ensure fast computations in INLA: (1) Sparse
matrix algorithms are used to provide fast inference and predictions. For this reason, the
latent Gaussian �eld ψ should be given a GMRF prior. (2) The number of hyperparameters θ
should not be too large as we need to perform numerical integration over the hyperparameter
space.

We now give a short overview of how INLA works based on Chapter 4.7 in Blangiardo and
Cameletti (2015). In INLA, the following integrals are used to compute the posterior marginals:

π(ψi|y) =

∫
π(ψi,θ|y)dθ =

∫
π(ψi|θ,y)π(θ|y)dθ, (3.9)

π(θj |y) =

∫
π(θ|y)dθ−j , (3.10)

where θ−j denotes vector θ without element j. To solve the integrals, we �rst need to compute
the joint posterior distribution of the hyperparameters π(θ|y). In general, INLA utilises that

π(θ|y) =
π(ψ,θ|y)

π(ψ|θ,y)
=
π(y|ψ,θ)π(ψ|θ)π(θ)

π(ψ|θ,y)π(y)
∝ π(y|ψ,θ)π(ψ|θ)π(θ)

π(ψ|θ,y)
≈ π(y|ψ,θ)π(ψ|θ)π(θ)

π̃(ψ|θ,y)

∣∣∣∣
ψ=ψ∗(θ)

(3.11)
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where π̃(ψ|θ,y) is the Gaussian approximation of π(ψ|θ,y) at its mode ψ∗(θ) for a given θ.

Further, we need to compute π(ψi|θ,y) in order to �nd the posterior marginal of the latent
�eld (3.9). One of the options is to use a Gaussian approximation again

π(ψi|θ,y) =
π((ψi,ψ−i)|θ,y)

π(ψ−i|ψi,θ,y)
=

π(ψ,θ|y)

π(θ|y)π(ψ−i|ψi,θ,y)

∝ π(ψ,θ|y)

π(ψ−i|ψi,θ,y)
≈ π(ψ,θ|y)

π̃(ψ−i|ψi,θ,y)

∣∣∣∣
ψ−i=ψ

∗
−i(ψi,θ)

,
(3.12)

where ψ−i denotes the vector ψ without element i, and π̃(ψ−i|ψi,θ,y) is the Gaussian ap-
proximation of π(ψ−i|ψi,θ,y) at its mode ψ∗−i(ψi,θ) for a given θ and ψi.

When π(θ|y) and π(ψi|θ,y) are approximated as outlined above, the next step in the INLA-
methodology is to solve the integrals (3.9) and (3.10) numerically. If the observation likelihood
of the LGM is Gaussian, the Gaussian approximations in Equations (3.11) and (3.12) are ex-
act and can be omitted. This will be the case for our model for precipitation and runo�. In
such cases, the accuracy of INLA is determined by the accuracy of the numerical integration
scheme used for solving (3.9) and (3.10). We refer to Rue et al. (2009) for a description of the
numerical methods used in INLA.
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4. Statistical model for precipitation and

runo�
The SPDE approach to spatial modelling is now used to construct a Latent Gaussian model
for annual precipitation and runo� which is suitable for fast computations by using the INLA
methodology.

4.1 Observation model for annual precipitation and runo�

Let D ⊂ R2 be a spatial domain representing an area, e.g the whole area displayed in Figure
2.2, and let the true annual precipitation in year j at location s ∈ D be denoted by ηj(s)
where j = 1, ..., r.We assume that the annual precipitation in year j at location si is observed
with measurement uncertainty εij where i = 1, ..., n. The observation model for the annual
precipitation yij at location si can then be written as

yij = ηj(si) + εij , (4.1)

where εj = (ε1j , .., εij , ..., εnj)
T is assumed to be N (0, τ−1

p diag(fj)I), and where εij is inde-
pendent of ηj(si). The vector fj = (f1j , ..., fij , ..., fnj) is a vector of �xed scales allowing each
observation to have its own variance. This is an important part of the model because the
uncertainty typically is large for a large observation and smaller for a smaller observation.

Let Dl for l = 1, ..., N be N catchments of interest located in our spatial domain D. The
annual runo� within catchment Dl in year j is denoted ζj(Dl), while the annual evapora-
tion in catchment l is denoted Elj . As for precipitation, the runo� and evaporation within
catchment Dl in year j are observed with measurement uncertainty. Recall that precipitation
contributes to runo� and evaporation. Precipitation can thus be regarded as the sum of runo�
and evaporation in a catchment. We use this quantity, the sum of runo� and evaporation, for
constructing a second observation model.

Let elj denote the measurement uncertainty for the sum of annual runo� and evaporation
in catchment Dl, year j. The observed sum of runo� and evaporation within catchment Dl is
denoted by zlj and can be written as

zlj = ζj(Dl) + Elj + elj , (4.2)

where ej = (e1j , ..., elj , ..., eNj)
T is assumed to be N (0, τ−1

r diag(vj)I). As for the precipitation
model, vj = (v1j , ..., vlj , ..., vNj) is a vector of �xed scales making it possible to have a unique
variance for each observation zlj .

4.2 Process model for annual precipitation and runo�

We assume that the true level of annual precipitation can be modelled by three components:
A year speci�c intercept (βj) and two stationary and isotropic GRFs, one that is common

19
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for all years (c(s)) and one that is year speci�c (xj(s)). The GRF c(s) expresses the spatial
variations that can be explained by climatic di�erences between locations, and we call this
the climatology of the area of interest. The spatial �eld xj(s) expresses the annual spatial
variations of precipitation and we call this the annual spatial variability. This leads to the
following process model for the true annual precipitation in year j:

ηj(s) = βj + xj(s) + c(s). (4.3)

Further, it is assumed that xj(s) for j = 1, ..., r represents r independent realizations of the
spatial �eld. This is called replicates.

The model for precipitation in Equation (4.3) will be called Model 1 for further reference.
We will also use a simpler model where the annual spatial variability is removed from the
model. This will be referred to as Model 2:

ηj(s) = βj + c(s). (4.4)

Model 1 is used unless otherwise speci�ed.

The annual precipitation contributes to evaporation and runo�. Thus, the true amount of
runo� in catchment Dl of year j can be modelled as the integral of the precipitation over the
area of Dl minus the evaporation Elj in catchment l:

ζj(Dl) =

∫
s∈Dl

ηj(s)ds− Elj . (4.5)

We simplify the computations by discretising the catchment Dl into a regular grid denoted by
LDl . For each grid node in LDl it is assumed that the annual precipitation is either estimated or
known. The true runo� in year j in Dl can now be approximated by summing the precipitation
in the grid nodes inside the catchment of interest, and multiplying with an area element ∆l.
The area ∆l is the area of catchment Dl divided by the number of grid nodes in LDl . Thus,
we replace the integral with an sum, and get the following model for the annual runo� in year
j within catchment Dl:

ζj(Dl) = ∆l

∑
si∈LDl

ηj(si)− Elj . (4.6)

Figure 4.1 shows how we discretise the catchments from Figure 2.1. For example, the discreti-
sation of Catchment 6 (green) consists of 69 grid nodes, and Catchment 6 covers an area of
72.4 km2 giving ∆l = (72.4/69) km2. The runo� within catchment 6 is then approximated by
summing the annual precipitation in the 69 grid nodes and multiplying with ∆l.
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Figure 4.1: Regular grid used for computing or predicting the runo� within the catchments in
Figure 2.1. Catchment 6 is marked with green.

4.3 The SPDE approach used on our model

We now use the SPDE approach introduced in Section 3.3 to express the GRFs c(s) and xj(s)
from Equation (4.3) as GMRFs to get a model that ensures fast computations in INLA. First,
a triangulation mesh is constructed with basis functions ξk where k = 1, ...,m and m is the
total number of vertices in the triangulation mesh. The spatial variability xj(s) of year j can
then be expressed as

xj(s) = Σm
k=1ξk(s)wkj ,

where wkj is an approximation of xj(s) in the m mesh nodes. Note that we use the same
triangulation mesh for all years. The basis functions ξk are therefore not indexed by year.
The weights wkj however di�er between years as the spatial �eld is di�erent for each j. The
weights wkj are given a normal distribution with precision matrix Q(·, ·) given by (3.7):

wj = (w1j , ..., wkj , ..., wmj)
T ∼ N (0,Q−1(θτ,w, θκ,w))

with θτ,w = log(τw) and θκ,w = log(κw), and with range ρw and marginal variance σ2
w. Thus,

wj de�nes a GMRF.

In the same manner, we approximate the climatology c(s) by a �nite basis function repre-
sentation as well

c(s) = Σm
k=1ξk(s)uk,

where uk is the GRF c(s) approximated in the m mesh nodes of the triangulation. The
same triangulation mesh and basis functions are used as for the annual variability xj(s). The
weights uk de�ne a new GMRF with precision matrix given by (3.7):

u = (u1, ..., uk, ..., um)T ∼ N (0,Q−1(θτ,u, θκ,u))
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with θτ,u = log(τu) and θκ,u = log(κu), and with range ρu and marginal variance σ2
u.

The process model for precipitation from Equation (4.3) can now be written as

ηj(s) = βj + Σm
k=1ξk(s)(wkj + uk). (4.7)

We assume that we observe the process at n locations {s1, ..., si, ..., sn} in space, and the
same n locations are observed for all replicates. The true precipitation at these locations in
year j can then be written in vector notation as

ηj = 1βj +Ap(wj + u) = Ap(1βj +wj + u), (4.8)

with ηj = (ηj(s1), ..., ηj(si), ..., ηj(sn))T, and where Ap is a n×m matrix where element (i, k)
is given by Ap(i,k) = ξk(si). The last equality in (4.8) is possible because the row sums of Ap
are 1. This is because we use piece-wise linear basis functions that sum to 1 at each location
(Rue and Lindgren, 2015).

By using the SPDE approach, the process model for runo� from Equation (4.6) can be written
in vector form as well. Say, we observe the runo� within N of the catchments in Figure 2.1.
The process model for runo� then becomes

ζj = AΣηj −Ej = AΣ(Ap(1βj +wj + u))−Ej = Ar(1βj +wj + u)−Ej , (4.9)

where ζj = (ζj(D1), ..., ζj(Dl), ..., ζj(DN ))T and Ej = (E1j , ...Elj , ..., ENj)
T. The variable AΣ

is a matrix that sums the precipitation in the correct grid nodes in Figure 4.1, and multiplies
the resulting sum with the correct area element ∆l.

4.4 Latent Gaussian model for annual precipitation and runo�
suitable for INLA

The models (4.1) and (4.2) de�ne the observation likelihoods and the �rst level of the LGM
for precipitation and runo�. Because εj and ej are Gaussian with precisions τp and τr, the
observation likelihoods are Gaussian given wj , u, β0, τp and τr i.e:

yj |(wj ,u, τp, βj) ∼ N (ηj , τ
−1
p diag(fj)I) (4.10)

zj |(wj ,u, τr, βj) ∼ N (ζj +Ej , τ
−1
r diag(vj)I) (4.11)

with yj = (y1j , ..., yij , ..., ynj)
T and zj = (z1j , ..., zlj , ..., zNj)

T. The expected values of yj and
zj are now given by:

E{yj |(wj ,u, τp, βj)} = ηj = Ap(1βj +wj + u)

E{zj |(wj ,u, τr, βj)} = ζj +Ej = Ar(1βj +wj + u),
(4.12)

and we note that the two means have the same form. The only di�erence is the projection
matrices Ap and Ar. Having the means on the same form is convenient in the implementation
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of the model (see Appendix B.4) because yj and zj now can be regarded as observations of
the same process. The observations yj can be seen as point observations of precipitation while
the observations zj can be seen as area observations of precipitation. This is the reason why
the observed sum of runo� and evaporation is used to construct the observation likelihood
instead of using only the observed runo� which is the quantity of interest.

The observation likelihoods (4.10) and (4.11) depend on the unobserved, latent components:
wj for j = 1, .., r, and u. In the INLA framework, the intercept βj is regarded as a part of
the unobserved spatial �eld and not as a hyperparameter (Blangiardo and Cameletti, 2015).
We gather the latent components in the vector ψ = {w1, ...,wj , ...,wr, β1, ..., βj , ..., βr,u}.
Because the SPDE approach is used, the latent components wj and u are both GMRFs with
precision matrices given by (3.7). Further, we give the intercepts βj a Gaussian prior. This
implies that the latent components all are Gaussian given the hyperparameters:

wj |(θτ,w, θκ,w) ∼ N (0,Q−1(θτ,w, θκ,w)) (4.13)

u|(θτ,u, θκ,u) ∼ N (0,Q−1(θτ,u, θκ,u)) (4.14)

βj ∼ N (·, ·) (4.15)

for j=1,..r. The latent components are also jointly Gaussian because wj , u and βj all are
Gaussian and independent of each other, i.e ψ ∼ N (·, ·). This implies that we have a LGM
as described in Section 3.4. Because wj and u also are GMRFs, the model is suitable for fast
computations in INLA.

The models for precipitation and runo� have 6 hyperparameters in total collected in the
vector θ = (τp, τr, θκ,w, θτ,w, θκ,u, θτ,u). The joint distribution of the hyperparameters is

π(θ) = π(τp)π(τr)π(θκ,w)π(θτ,w)π(θκ,u)π(θτ,u)

where π(·) is the prior distribution of its argument. This is the third level of the LGM in our
Bayesian model for annual precipitation and runo�.

4.5 Speci�cation of parameter values and prior distributions

Before we start analysing the model, we need to specify the parameter values of the model
and assign prior distributions to the model parameters.

Parameter values

Data for standard deviation for the observations of precipitation are not available, and as
mentioned in Section 2 measurements of precipitation are known to be uncertain. We assume
a priori that the standard deviation is 10% of the observed value which is a relatively large
amount. Thus,

V ar(yij) = (0.1yij)
2.
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The standard deviation of the evaporation data is also unknown, and we assume a priori
that this is a even more uncertain quantity. We assume that the standard deviation of the
evaporation data is 20% of the observed value. The variance of the runo� observations are
given by NVE, and the variance of a runo� observation from catchment Dl in year j is denoted
Var(ζ∗lj). Because we observe the sum of evaporation and runo�, i.e zlj = ζj(Dl) + Elj + elj ,
the variance of the observation zlj is given by

V ar(zlj) = V ar(ζ∗lj) + (0.2Elj)
2 + 2× (0.2Elj)×

√
V ar(ζ∗lj)× Corr(ζ

∗, E),

where Corr(ζ∗, E) is the Pearson's correlation between all the observations of runo� and
evaporation from all years. The correlations between annual runo� and evaporation for all
catchments are shown in Table 2.2.

We choose α = 2 as the smoothness parameter in Equation (3.3), because this choice is
supported by INLA. As the analysis domain is in R2, we have d = 2 in Equation (3.4), leading
to λ = 1. Thus, α = 2, d = 1 and λ = 1 for both the SPDE representing xj(s) and the SPDE
representing c(s).

Prior distributions

All of the hyperparameters θ = (θκ,w, θτ,w, θκ,u, θτ,u, τp, τr) and (β1, ..., βr) are now assigned a
prior distribution. We use informative priors based on the information given by the dataset.

The intercepts (β1, ..., βr) which are a part of the latent component of the LGM, are all given
the same Gaussian prior. The prior mean is set to 2 m/year because the observed annual
precipitation typically lies around this value (see Figure 2.2). The prior variance is chosen to
be 12. This gives the prior distribution N (22, 12) for βj for j = 1, ..., r.

The hyperparameters θκ = log(κ) and θτ = log(τ) originating from the SPDE (3.3) have
no direct physical interpretation which makes it challenging to choose prior distributions for
these parameters. In Fuglstad et al. (2015) this problem is discussed, and practically and useful
priors are constructed for the range and the variance for both stationary and non-stationary
Matérn GRFs. In this work however, we choose an easier approach. The approach is taken
from Ingebrigtsen et al. (2015), and we apply that the SPDE parameters τ and κ are linked
to the range and the marginal variance of the spatial �eld through Equations (3.2) and (3.5).
The relations are restated here

ρ =
√

8/κ (4.16)

σ2 = 1/
√

4πτκ, (4.17)

where we use that λ = 1, α = 1 and d = 2.

We �rst assign the following priors to the SPDE parameters: θτ ∼ N (µτ , σ
2
τ ) and θκ ∼
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N (µκ, σ
2
κ) where the prior means µτ and µκ, and variances σ2

τ and σ
2
κ are unknown. Our task

is now to �nd suitable values for these parameters. Using equations (4.16) and (4.17), and
that θτ = log(τ) and θκ = log(κ), it can be shown that

ρ ∼ logN (log(
√

8)− µκ, σ2
κ)

σ ∼ logN (−log(
√

4π)− µτ − µκ, σ2
τ + σ2

κ),

where log N (·, ·) is the log-normal distribution. This implies that the p-quantiles of ρ and σ
are

ρ(p) =
√

8exp(−µκ + σκΦ−1(p)) (4.18)

σ(p) =
1√
4π

exp
(
−µτ − µκ +

√
σ2
τ + σ2

κΦ−1(p)
)
, (4.19)

where Φ−1(p) is the cumulative distribution for the standard normal distribution and 0 < p <
1. We can now choose two quantiles, for example p =0.5 and p =0.9 with corresponding ρ(p)
and σ(p) and solve Equations (4.18) and (4.19) to �nd µτ , µκ, σ2

τ and σ
2
κ.

The above approach is now used to assign prior distributions to the SPDE parameters θκ,u
and θτ,u related to the climatology c(s), and to θκ,w and θτ,w related to the spatial annual
variability xj(s). To get an idea of the magnitude of the spatial variations in the dataset, we
compute the standard deviation of the mean values displayed in Figure 2.2. This is 0.85 m. It is
hard to see from the dataset if this variation is mainly caused by a climatic e�ect or by annual
variations. For this reason, θκ,u and θτ,u are given the same priors as θκ,w and θτ,w respectively.

The value 0.85 m is chosen as the 0.5-quantile for σ(p) in Equation (4.19). The 0.9-quantile
is chosen to be 2 m. The whole area in Figure 2.2 is of size approximately 200 km × 110 km.
We choose the range 110 km as the 0.9-quantile in Equation (4.18) and one third of this, 33
km, as the 0.5-quantile. Inserting these four quantiles into Equations (4.18) and (4.19) and
solving for µκ, µτ , σ2

τ and σ
2
κ, gives the following priors for the SPDE parameters

θτ,w ∼ N (1.41, 0.612) (4.20)

θκ,w ∼ N (−2.46, 0.942) (4.21)

and

θτ,u ∼ N (1.41, 0.612) (4.22)

θκ,u ∼ N (−2.46, 0.942) (4.23)

where θτ,w and θκ,w are related to the annual variability xj(s), and θτ,u and θκ,u are related
to the climatology c(s).

Finally, we have to assign prior distributions to the precisions τp and τr of the observations
yj and zj . We use the same prior distribution for τp and τr:

τp ∼ gamma(10, 10)

τr ∼ gamma(10, 10),
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where the shape and rate parameters are both set to 10. This gives an expected prior mean
of 1 and an expected prior variance of 0.1 for τp and τr.

The scales fj from Equation (4.10) are then given by (f1j , ..., fij , ..., fnj) where

fij = τp · var(yij) = var(yij).

The precision τp is in the last equality replaced with its prior mean 1. Recall that yij is the
observed precipitation at location i in year j and that the scales fj allow each observation to
have its own measurement uncertainty.

The scales vj for runo� and evaporation are likewise given by (v1j , ..., vlj , ..., vNj) where

vlj = τr · var(zlj) = var(zlj).

The precision τr is in the last equality replaced with its prior mean 1. Recall that zlj is the
sum of observed runo� and evaporation in Catchment l in year j and that the scales vj allow
each observation to have its own uncertainty.



5. Inference and evaluation

5.1 Implementation in R-INLA

We observe the annual precipitation at n chosen locations from Figure 2.2, and the runo�
and evaporation within N catchments for r years. The observations are collected in the vec-
tor y = (y1, ...,yr, z1, ...,zr). Thus, we have the observations y, the latent Gaussian �eld
ψ = (w1, ...,wr, β1, ..., βr,u) and the hyperparameters θ = (τr, τp, θκ,w, θτ,w, θκ,u, θτ,u). The
observations are used to compute the posterior marginal distributions of the latent �eld and
the hyperparameters, making predictions of precipitation at n∗ locations and predictions of
runo� within N∗ catchments. The INLA methodology described in Section 3.5 is used for this
purpose.

In Appendix B code examples are included showing how we make inference and predictions
with our model by using R-INLA. We refer to Blangiardo and Cameletti (2015) and Krainski
et al. (2016) for more examples and tutorials describing how R-INLA can be used for spatial
modelling.

5.2 Parameter estimators and predictions

The posterior distribution is the probability distribution of a parameter of interest given the
observations y, but sometimes we are interested in point estimators instead of a distribution.
The minimum mean square error (MMSE) estimator will be used as point estimator in this
study (Kay, 1993). The MMSE estimator is de�ned as the mean of the posterior distribution
of the parameter of interest, i.e the MMSE estimator β̂1 of parameter β1 is given by

β̂1 =

∫
β1π(β1|y)dβ1 = E{β1|y}. (5.1)

We can replace β1 by a vector containing one or several of the parameters in ψ or θ to �nd
its MMSE estimator. Often we call β̂1 the posterior mean of β1.

Further, the MMSE estimator is used for making predictions of annual precipitation and
runo�. We use Equation (4.7) for true precipitation and replace the parameters by the cor-
responding MMSE estimators. The predicted annual precipitation in year j at location si is
then given by

η̂j(si) = β̂j + Σm
k=1ξk(si)(ŵkj + ûk) = β̂j + ĉ(si) + x̂j(si) (5.2)

The predicted amount of runo� in year j in the unobserved catchment Dl is likewise given by

ζ̂j(Dl) = ∆l

∑
si∈LDl

η̂j(si)− Elj . (5.3)
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Note that we need to compute the posterior mean of precipitation η̂j(si) in all of the grid
nodes of the discretisation of the catchment LDl to make a runo� prediction. Also note that
the annual evaporation Elj is not estimated by the MMSE estimator. We regard Elj as a �xed
quantity which is given by NVE. However, its uncertainty is taken into account in the scales
vj as explained in Section 4.5.

5.3 Evaluation of the predictive performance

When analysing the LGM for precipitation and runo� we explore its ability to make accurate
predictions in space. We leave out observations of runo� and precipitation from locations of
interest, and use observations from other locations to reproduce the observations left out by
using Equations (5.2) and (5.3).

To evaluate the predictive performance of (5.2) and (5.3), two criterion are used: The root-
mean-square error (RMSE) and the continuous ranked probability score (CRPS).

The RMSE is de�ned as

RMSEj =

√√√√ 1

n∗

n∗∑
i=1

(η̂j(si)− yij)2,

where yij and η̂j(si) are the observed and the predicted precipitation at location i in year j.
The variable n∗ is the number of locations at which we predict precipitation and is the same
for all years or replicates. Similarly, the RMSE for runo� is

RMSEj =

√√√√ 1

N∗

N∗∑
l=1

(ζ̂j(Dl)− (zlj − Elj))2 =

√√√√ 1

N∗

N∗∑
l=1

(ζ̂j(Dl)− ζ∗lj)2,

with ζ̂j(Dl) and ζ∗lj being the predicted and the observed runo�, and N∗ being the number of
catchments in which we predict the annual runo�.

Finally, we use the mean of all years r of either precipitation or runo� as a measurement
of the predictive performance

RMSE =
1

r

r∑
j=1

RMSEj ,

and denote them as RMSEprecip and RMSErunoff respectively.

The second criterion used to evaluate the predictive performance, is the CRPS which in general
is de�ned as

CRPS(F, o) =

∫ ∞
−∞

(F (u)− 1{o ≤ u})2du,

where F is the predictive cumulative distribution function and o is the observed value of ei-
ther yij for precipitation or ζ∗lj for runo� (Gneiting and Raftery, 2007). As opposed to the
RMSE, the CRPS criterion takes the whole posterior predictive distribution into account. The
R-function crps() included in the package verification is used to compute the CRPS. In
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this function it is assumed that the posterior distribution F is Gaussian with the posterior
mean and the posterior standard deviation of precipitation or runo� as parameters.

The mean of the CRPS for all years of either precipitation or runo� is used as a measurement
of the predictive performance

CRPSprecip =
1

r

r∑
j=1

1

n∗

n∗∑
i=1

CRPS(Fij , yij)

CRPSrunoff =
1

r

r∑
j=1

1

N∗

N∗∑
l=1

CRPS(Flj , ζ
∗
lj).

A low value of RMSE or CRPS indicates an accurate prediction.
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6. Observation designs and experimen-

tal set-up
As mentioned before, we will not use the whole dataset presented in Section 2 to test the
statistical model for annual precipitation and runo�. We focus on observations from the area
around Voss, and use them to answer the �ve research tasks presented in the introduction. In
this section we present the observation designs and the experiments performed to answer the
research tasks.

Observation design

Figure 6.1 shows all of the observations that will be used for spatial predictions. To answer
research tasks 1-5 we use di�erent combinations of the observations displayed here. For most
experiments, we predict the runo� within Catchment 9 and/or the precipitation at Reimegrend
by using Equations (5.2) and (5.3). The predictive performance is evaluated by the RMSE
and the CRPS criterion.

We use observations from 1984 to 1993 and perform spatial predictions for the same time
period, i.e we have 10 replicates. These 10 years are chosen because observations of annual
runo�, evaporation and precipitation for most of the locations and catchments in Figure 6.1
are available for these years. Only one observation is missing and that is the annual precipi-
tation at Reimegrend in 1989.

In addition to the observations shown in Figure 6.1, we construct three arti�cial catchments
by using combinations of Catchments 7, 8 and 9. These are named Catchment (9-8), (9-7)
and (8-7) and are shown in Figure 6.2. The runo� within Catchment (9-8) is for example
computed by subtracting the observed runo� within Catchment 8 from the observed runo�
within Catchment 9. The evaporation of Catchment (9-8) is likewise computed by subtracting
the observed evaporation of Catchment 8 from the observed evaporation within Catchment 9.
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Figure 6.1: Observations used for inference and predictions. There are observations of precip-
itation from 15 locations, and observations of runo� from 3 catchments from 10 years.

(a) Catchment (9-8) (b) Catchment (9-7) (c) Catchment (8-7)

Figure 6.2: Combinations of Catchments 7, 8 and 9 are used to make three arti�cial catchments
labelled (9-8), (9-7) and (8-7). The new catchments are marked in yellow.

RT1: The climatology

Research task 1 was to explore how the climatology of the study area a�ects the spatial predic-
tions of annual runo� and precipitation. The properties of the climatology c(s) are explored by
predicting the runo� and the annual precipitation within Catchment 9 by using two di�erent
observation samples:

Observation sample 1: Annual precipitation from 12 locations. These are Granvin, Voss,
Reimegrend, Bulken, Nedre Ålvik, Øvstedal, Brekkhus, Fjellanger, Eksingedal, Gullbrå, Aur-
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land and Brandset.
Observation sample 2: Annual runo� and evaporation from Catchment 8.

We plot the posterior means of the climatology c(s) and the annual part of the model xj(s)+βj
within Catchment 9, and consider the spatial patterns obtained from the predictions. These
experiments are done by using the full precipitation model, i.e Model 1 from Equation (4.3)
and we use real data. We also redo the predictions by using Model 2 from Equation (4.4), i.e
we omit xj(s) from the model to see if the predictive performance changes.

To further explore the importance of the climatology, we perform a calibration test. A model
is said to be calibrated if 20%, 40%, 60% and 95% of the true observations of precipitation or
runo� lie inside 20%, 40%, 60% and 95% posterior prediction intervals. In the calibration test
we predict the runo� within Catchment 8 and the precipitation at Reimegrend. Two di�erent
observation samples are used for this purpose:

Observation sample 3: Annual precipitation from all 14 locations in Figure 6.1 except
Reimegrend.
Observation sample 4: Annual runo� and evaporation from Catchment 7.

For the calibration test we use simulated values of precipitation and runo�. We simulate
3 di�erent climatologies c(s). For each of the 3 climatologies we sample 150 replicates of xj(s)
and βj . The calibration test is then performed three times on the model, one time for each of
the three climatologies. Ten and ten replicates are processed at the time.

The parameter values used for simulation are the posterior means obtained when making
inference by using point and area observations originating from the same area. Thus, the
parameter values used for simulation are realistic, and they are included in Appendix A.1.

RT2: Observation designs for points or areas

Research task 2 was: If we �nd an observation design suitable for runo� predictions in a speci�c
catchment, will the same observation design be suitable for point predictions of precipitation
in the interior of the catchment? To answer this question, we consider the results from the
calibration test from RT1. We search for examples of an observation design that produces
calibrated predictions of runo�, but uncalibrated predictions of precipitation, or opposite.

RT3: Observing the runo� within an overlapping catchment

Research task 3 was to explore how runo� predictions are a�ected by using observations of
runo� from an overlapping catchment. To do this, we predict the runo� within Catchment
9 by using observations of runo� from one of the overlapping catchments in Figure 6.1 or
6.2, i.e Catchment 7, (8-7), 8, (9-8) or (9-7). Observations from only one of the overlapping
catchments are used at the time, but we use observations from 10 years.

In this experiment we do the above experiment both by using real data and simulated datasets.
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We make 9 simulated datasets, each with 10 replicates. Thus, we have 9 realizations of the
climatology c(s) and for each climatology there are 10 replicates of xj(s) and βj just as for
the real dataset.

In the presentation of the results, the predictive performance of runo� will be plotted against
the coverage percent of the observed overlapping catchment. The coverage percent of Catch-
ment 8 is for example 46.8% which means that the area of Catchment 8 covers 46.8 % of the
area of Catchment 9. The coverage percent of Catchments 7, (8-7), (9-8) and (9-7) are 3.8 %,
43 %, 53.2 % and 96.2 %, respectively. See Table 2.1 for areas for all of the catchments.

RT4: Observing precipitation

Research task 4 was to explore how runo� predictions are a�ected by using observations of
precipitation. To answer this, we predict the runo� within Catchment 9 by using observations
of precipitation from 12 of the locations in Figure 6.1 from 10 years. These are: Reimegrend,
Granvin, Brandset, Voss, Bulken, Nedre Ålvik, Brekkhus, Øvstedal, Fjellanger, Eksingedal,
Gullbrå and Aurland.

We �rst perform the predictions by using the real dataset. Further, we redo the experiment
by using the simulated datasets generated in the previous experiment (RT3). We compare the
results from the real and the simulated datasets to see if they give similar results.

RT5: Observing precipitation and runo�

Research task 5 was to explore how runo� predictions are a�ected by using an observation
sample consisting of both observations of annual runo� and precipitation. We predict the
annual runo� within Catchment 9 as before, by using observations of precipitation from 11
locations: Granvin, Brandset, Voss, Bulken, Nedre Ålvik, Brekkhus, Øvstedal, Fjellanger,
Eksingedal, Aurland and Gullbrå. The observations of precipitation are combined with obser-
vations of runo� from one of the overlapping catchments, i.e Catchment 7, (8-7), 8, (9-8) or
(9-7). Observations from 10 years are used.

First, the experiment is performed by using the real dataset. We compare the predictive per-
formance obtained when using only observations of precipitation, only observations of runo�
and when combining the two observation types.

Further, we redo the experiment by using three of the ten simulated datasets from RT3 and
RT4. This means that we redo the experiment for 3 simulated climatologies, each with 10
replicates of xj(s) and βj .

For completeness of the results, we do the same experiment for predictions of precipitation
at Reimegrend which is located in the middle of Catchment 9. These results are included
in Appendix A.2. For RT5 we also include plots of the posterior distributions of the SPDE
parameters θτ,w, θκ,w, θτ,u, θκ,u, the precisions τp and τr and the intercepts for the di�er-
ent observation types when using real data. As the main focus of this report is on spatial
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predictions, these plots are included in Appendix A.3.

Prior sensitivity

Finally, a simple analysis of the prior sensitivity of the parameters is done by trying 6 di�erent
priors for the parameters θτ,w, θκ,w, θτ,u and θκ,u. Recall that θτ,w and θκ,w are related to the
annual spatial variability xj(s), while θτ,u and θκ,u are related to the climatology c(s).

The 6 priors used are displayed in Table 6.1. Prior 1 is the prior used in the rest of the
experiments, and was chosen by choosing 33 km and 110 km as the 0.5- and 0.9- quantiles for
the range of the spatial �elds, and 0.8 m/year and 2 m/year as the 0.5- and 0.9-quantiles for
the spatial standard deviations in Equations (4.18) and (4.19). The �ve remaining priors are
chosen by changing these quantiles, and the quantiles are displayed in Table 6.1.

We explore how the priors change the posterior distributions for all model parameters by
making inference based on observations of runo� from Catchment 8 and observations of pre-
cipitation from the following 11 locations: Brandset, Aurland, Granvin, Voss, Nedre Ålvik,
Bulken, Øvstedal, Brekkhus, Fjellanger, Eksingedal and Gullbrå.

The runo� within Catchment 9 and the precipitation at Reimegrend are also predicted to
see if the resulting predictions are a�ected by the choice of prior.

Table 6.1: Six di�erent prior distributions for the SPDE parameters.

Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

θτ,u N (1.4, 0.612) N (0.91, 0.472) N (2.1, 0.612) N (2.3, 0.672) N (1.6, 0.472) N (2.3, 0.672)
θκ,u N (−2.5, 0.942) N (−2.0, 0.862) N (−2.5, 0.942) N (−3.3, 0.252) N (−1.96, 0.862) N (−3.3, 0.252)
θτ,w N (1.4, 0.612) N (0.91, 0.472) N (2.1, 0.612) N (2.3, 0.672) N (2.3, 0.672) N (1.6, 0.472)
θτ,w N (−2.5, 0.942) N (−2.0, 0.862) N (−2.5, 0.942) N (−3.3, 0.252) N (−3.3, 0.252) N (−1.96, 0.862)

Table 6.2: Quantiles used for assigning six di�erent priors to the SPDE parameters as explained
in Section 4.5. The unit of ρ(·) is km and the unit of σ(·) is m/year.

GRF Quantiles Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

c(s) ρ(0.5) 33 20 33 80 20 80
ρ(0.9) 110 60 110 110 60 110
σ(0.5) 0.8 0.8 0.4 0.8 0.4 0.8
σ(0.9) 2 2 1 2 1 2

xj(s) ρ(0.5) 33 20 33 80 80 20
ρ(0.9) 110 60 110 110 110 60
σ(0.5) 0.8 0.8 0.4 0.8 0.8 0.4
σ(0.9) 2 2 1 2 2 1
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7. Analysis of the results

RT1: The climatology

Research task 1 was to explore how the climatology of the study area a�ects the spatial pre-
dictions of runo� and precipitation. To answer research task 1 we �rst consider the posterior
climatology within Catchment 9 for observation sample 1 where the observation sample con-
sists of real observations of precipitation from 12 locations from 10 years. The climatology is
shown in Figure 7.1. We compare this spatial pattern with the spatial pattern in Figure 7.2
which shows the posterior annual precipitation within Catchment 9 for 1984, 1988 and 1993.
The spatial patterns in Figure 7.1 and 7.2 are very similar. Thus, the climatology c(s) seems
to be dominating over the annual spatial variability xj(s) in Catchment 9.

This is veri�ed by Figure 7.3 where the posterior annual spatial variability for the same three
years is shown. We see that the annual spatial variability is very low in 1993 and only deter-
mined by the annual intercept βj . In 1984 we see more annual spatial variation, while in 1988
the annual spatial variations are quite large. The di�erence from the smallest to the largest
value of the posterior annual variability in 1988 is approximately 0.6 m/year. The posterior
marginal standard deviation of the GRFs xj(s) and c(s) were σ̂w = 0.19 m/year and σ̂c = 0.72
m/year respectively. Thus, the climatology is the dominating GRF, but small annual spatial
variations are also present within Catchment 9.

The results can be understood by considering the observation sample used (observation sample
1) which is displayed in Figure 7.4. The ranking between the locations, from the location with
most precipitation to the location with least precipitation is the same from year to year with
some exceptions. The lines are almost parallel as well. These tendencies will be explained
by the climatology c(s) and the lines show that the spatial variations of precipitation around
Voss are quite stable. However, the plot also shows annual di�erences, but these are not that
prominent. For example we see that in years with a lot of precipitation (1988, 1989) the
di�erence between the smallest and the largest value in the observation sample is larger than
in years with less precipitation (1984, 1993). The year 1988 is the most extreme year in the
observation sample, and also the year in which the spatial annual variations were largest in
Figure 7.3.

Further, we consider the posterior means for observation sample 2 which only consists of
runo� observations from Catchment 8 from 10 years. Figure 7.5 shows the posterior clima-
tology, Figure 7.6 shows the posterior annual precipitation for three years and Figure 7.7
shows the corresponding spatial annual variability added with the intercept. Again the annual
spatial variability is low, close to non-existing. The di�erence from the previous observation
design is that when the observation sample only consists of runo� observations from one catch-
ment, the spatial variations explained by the climatology also are small as shown in Figure 7.5.

The images of the posterior means indicate that the climatology c(s) dominates over the
annual spatial variability. This is veri�ed by considering the posterior prediction intervals
in Figure 7.8. We see that the posterior quantiles are approximately equal whether xj(s) is
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(a) Posterior climatology. (b) Posterior standard deviation.

Figure 7.1: Posterior climatology ĉ(s) in Catchment 9 and its posterior standard deviation
when the observation sample consists of observations of precipitation from 12 locations from
10 years.

(a) 1984 (b) 1988 (c) 1993

Figure 7.2: Posterior mean for precipitation η̂j(s) = ĉ(s)+ x̂j(s)+ β̂j in Catchment 9 when the
observation sample consists of observations of precipitation from 12 locations from 10 years.
Note that the scale is di�erent in the plots, but the di�erence between the lowest and the
largest value in the colorbar is 1.4 m/year.

(a) 1984 (b) 1988 (c) 1993

Figure 7.3: Posterior mean for the year dependent part of the precipitation model, β̂j + x̂j(s),
in Catchment 9 for observation sample 1. The observation sample consists of observations of
precipitation from 12 locations from 10 years. Note that the scale is di�erent in the plots, but
the di�erence between the lowest and the largest value in the colorbar is 0.6 m/year.
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Figure 7.4: Observation sample 1: Observations of precipitation from 12 locations from 10
years. Each line corresponds to a location.

(a) Posterior climatology. (b) Posterior standard deviation.

Figure 7.5: Posterior climatology ĉ(s) in Catchment 9 and its posterior standard deviation
when the observation sample consists of runo� observations from Catchment 8 from 10 years.

(a) 1984 (b) 1988 (c) 1993

Figure 7.6: Posterior mean for precipitation η̂j(s) = ĉ(s) + x̂j(s) + β̂j in Catchment 9 when
the observation sample consists of runo� observations from Catchment 8 from 10 years. Note
that the scale is di�erent in the three plots, but the di�erence between the smallest and the
largest value in the colorbar is 0.2 m/year for all scalings.
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(a) 1984 (b) 1988 (c) 1993

Figure 7.7: Posterior mean for the year dependent part of the precipitation model, β̂j+x̂j(s), in
Catchment 9 for observation sample 2. The observation sample consists of runo� observations
from Catchment 8 from 10 years. Note that the scale is di�erent in the three plots, but the
di�erence between the smallest and the largest value in the colorbar is 0.2 m/year for all
scalings.

included in the model (Model 1) or not (Model 2). The largest di�erences between Model 1
and Model 2 are observed in Figure 7.8a in 1988 and 1989 which were the most extreme years
in the observation sample.

The results from the experiments on the real dataset indicate that the spatial variations
of precipitation in Voss are quite stable from one year to another. As the annual spatial
variations are close to zero, the only annual variation of importance is the intercept βj which
adjusts the annual level of precipitation.

(a) Observation sample 1: Observations
of precipitation from 12 locations.

(b) Observation sample 2: Runo� obser-
vations from Catchment 8.

Figure 7.8: 95% posterior prediction intervals for annual runo� within Catchment 9 when
using Model 1 (black) and Model 2 (blue). Posterior mean for Model 1 (red), posterior mean
for Model 2 (blue) and true observations (green). Real data are used.

The importance of the climatology is further explored by using simulated values of precipita-
tion and runo�, and the results from the calibration tests are displayed in Figures 7.9 and 7.10.
The results show that the predictions of annual precipitation and runo� often are uncalibrated
as long as the climatology is constant. This yields both when only using point observations
(Figure 7.9) and when only using runo� observations from one small catchment (Figure 7.10).
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For example for Climatology 2 in Figure 7.10a we see that the coverage of the prediction in-
tervals of precipitation tends to be larger than expected, while for Climatology 1 the coverage
of the prediction intervals in general is low with less than 10% of the true values within a
60% posterior prediction interval. In Figure 7.10b the model is close to calibrated for Clima-
tology 1 and 2, but for Climatology 3 the coverage of the prediction intervals is in general poor.

From a statistical point of view it is intuitive that the predictions are uncalibrated as long as
the climatology is constant. Because the annual spatial variability xj(s) is close to zero, an
accurate spatial prediction relies on an accurate prediction of c(s), and as long as the climate
is constant, we predict the same replicate of c(s) again and again, from one year to the next.
The predictions of runo� and precipitation would probably be calibrated if a new realization
of the climatology c(s) was drawn each time we performed a prediction.

The calibration tests emphasise that the underlying climatology has a large impact on the
predictions of runo� and precipitation in areas like Voss where the spatial di�erences in pre-
cipitation are stable from one year to another. If an observation design produces biased
predictions for one of the replicates, it is likely that poor predictions will be obtained for the
remaining replicates as long as the same observation design is used. As long as the climatol-
ogy is constant, we do the same systematic mistake in the predictions from one year to the next.

This model property is very important if we would like to use our model to produce �ood
warnings or hydrological forecasts in the Voss area. If we �nd a suitable observation design
for past events based on available data, this observation design will also produce an accu-
rate representation of the underlying climatology c(s). As the climatology was shown to be
the dominant component of the model, we therefore obtain a lot of information of future events.
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(a) Predictions of precipitation

(b) Predictions of runo�

Figure 7.9: The amount of the true observations of precipitation that lies inside posterior
prediction intervals of di�erent sizes for the simulation study. Three simulated climatologies
c(s) are used and for each climatology there are 150 replicates of xj(s) and βj . The observation
sample consists of observations of precipitation from 14 locations.
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(a) Predictions of precipitation

(b) Predictions of runo�

Figure 7.10: The amount of the true observations of precipitation that lies inside posterior
prediction intervals of di�erent sizes for the simulation study. Three simulated climatologies
c(s) are used and for each climatology there are 150 replicates of xj(s) and βj . The observation
sample consists of observations of runo� and evaporation from Catchment 7.
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RT2: Observation designs for points or areas

The second research task was: If we �nd an observation design suitable for runo� predictions
in a speci�c catchment, will the same observation design be suitable for point predictions of
precipitation in the interior of the catchment? Already in the previous section we saw that
the answer of research task 2 is no. The clearest proof is shown by comparing Figure 7.10a
and 7.10b for Climatology 1, and we display the �gures of interest again in Figure 7.11. Here,
observations of runo� from Catchment 7 are used to predict the precipitation at Reimegrend
and the runo� within Catchment 8. While this observation design provides calibrated pre-
dictions of the runo� within Catchment 8, the same observation design provides poor and
biased predictions of annual precipitation at Reimegrend, although Reimegrend is located in
the middle of Catchment 8.

To understand this, we consider Figure 7.1 where the simulated Climatology 1 is shown. We
see that Catchment 7 is a catchment in which the annual precipitation is in general medium
or low. Although there are areas with larger values of precipitation within Catchment 8, the
annual precipitation within Catchment 7 is representative for the mean annual precipitation
within Catchment 8. Thus, we obtain calibrated predictions of runo� for this observation
design.

Further, we see that the annual precipitation at Reimegrend is very high compared to the
annual precipitation within Catchment 7. Thus, we obtain uncalibrated and biased predic-
tions of precipitation at Reimegrend for the same observation design.

(a) Predicted precipitation at
Reimegrend.

(b) Predicted runo� in Catchment
8.

Figure 7.11: The amount of the true observations of precipitation that lies inside posterior
prediction intervals of di�erent sizes for the simulation study. Observations of runo� and
evaporation from Catchment 7 are used to predict the runo� within Catchment 8 and the
precipitation at Reimegrend.
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Figure 7.12: Simulated climatology (Climatology 1). Runo� observations from Catchment
7 (dashed) are used to predict precipitation at Reimegrend (black) and the runo� within
Catchment 8 (black).

RT3: Observing the runo� within an overlapping catchment

Research task 3 was to explore how runo� predictions are a�ected by using an observation
sample of runo� originating from an overlapping catchment. We �rst consider Figure 7.13
which shows the predictions obtained for annual runo� within Catchment 9 with correspond-
ing 95 % posterior prediction intervals when using real data. The observation samples consist
of runo� observations from one of the overlapping catchments from 10 years.

We note that the posterior prediction intervals become more and more narrow when the
coverage percent of the overlapping observed catchment increases. This can be understood by
considering Figure 7.14 which shows the distribution of the posterior standard deviation of
precipitation within Catchment 9 for one of the replicates (1988).

In Figure 7.15 the RMSE and the CRPS for the real dataset are shown. The results are
not as expected because we obtain a better prediction when using runo� observations from
Catchment 7 than we get when using runo� observations from Catchment 8 or (8-7) according
to the RMSE. However, using runo� observations from Catchment (9-7) results in very accu-
rate predictions with RMSE and CRPS close to 0. This is as expected because Catchment
(9-7) covers 96.2 % of Catchment 9, and the posterior standard deviation of precipitation
becomes low in a larger area as seen in Figure 7.14. We saw in Figure 7.13 that this results
in a narrow posterior prediction interval, where the true observations and the predicted ones
are almost identical.

We now consider the results from the simulations to see if these correspond to the results from
the real data. Figure 7.16 shows the CRPS for the simulated datasets when predicting the
runo� within Catchment 9 by using observations from one of the overlapping catchments. The
RMSE criterion shows the same tendency and is omitted. The plots in Figure 7.16 show that
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Figure 7.13: Posterior 95 % prediction interval for the runo� within Catchment 9 when the
observation sample consists of runo� observations from an overlapping catchment. Real data
from 10 years are used.

the predictions typically get more and more accurate as the coverage percent increases. Ob-
serving the runo� within Catchment (9-7) always gives a prediction that is signi�cantly better
than the prediction obtained when observing the runo� within Catchment 7, and for most
of the simulations, runo� observations from Catchment (8-7), 8 or (9-8) provide lower CRPS
values than runo� observations from Catchment 7. However, exceptions exist. In Simulation 8
in Figure 7.16 we see that runo� observations from Catchment 7 and (9-8) are approximately
equally good. This simulation result corresponds to the results obtained when using real data.

In Figure 7.17 we display the 95% posterior prediction intervals for annual runo� within Catch-
ment 9 when using observations of runo� from Catchment 7 for the simulated datasets. We
chose to plot the prediction intervals when using observations from Catchment 7 because this
catchment typically is the one giving the poorest predictions. In spite of this, Figure 7.17 shows
that all of the true values lie within their 95% posterior prediction interval for all simulations.
However we see that the predictions often are either over- or underestimated compared to the
true value (Simulation 2, 3 and 8), but for some simulations the predictions are very accurate
(Simulation 1, 4 and 7).

For some climatologies the annual precipitation within Catchment 7 is representative for the
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(a) Catchment 7 (b) Catchment (8-7) (c) Catchment 8

(d) Catchment (9-8) (e) Catchment (9-7)

Figure 7.14: Posterior standard deviation for precipitation [m/year] in Catchment 9 in 1988
when the observation sample consists of only runo� observations from one of the overlapping
catchments. Real data from 10 years are used.

annual precipitation within Catchment 9. This leads to accurate predictions as we saw for
Simulation 1, 4 and 7 in Figure 7.17. For other climatologies the annual precipitation in Catch-
ment 7 is not representative for the annual precipitation within Catchment 9. This leads to
poor predictions as we saw for Simulation 2, 3 and 8 in Figure 7.17. Thus, it is di�cult to know
whether observations of runo� from a small overlapping catchment will provide good or poor
predictions for a speci�c climatology. The results indicate that we can be lucky or unlucky
with the observation sample. This is in particular important when the coverage percent of the
overlapping catchment is small, because as the coverage percent increases we become more
and more certain about the annual precipitation and runo� within the catchment of interest.

The objective of research task 3 was to explore how runo� predictions are a�ected by us-
ing observations of runo� from an overlapping catchment. Both the real dataset and the
simulated ones showed that the true values of runo� within Catchment 9 typically are covered
by the 95% posterior prediction intervals. Further, the experiments showed that the predicted
value often is biased compared to the true value, but the bias decreases with increasing cov-
erage percent. The results also showed that we can sometimes be lucky or unlucky with the
observations, leading to unexpected results. This happened for the real dataset as the predic-
tive performance was about equally good when using observations from Catchment 7 and 8,
even though the coverage percentages were 3.8% and 46.8% respectively.
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Figure 7.15: The predictive performance for the real dataset. The annual runo� within catch-
ment 9 is predicted by using runo� observations from one of the overlapping catchments from
10 years.
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Figure 7.16: The predictive performance (CRPS) for the 9 simulated datasets. The runo�
within Catchment 9 is predicted by using runo� observations from one of the overlapping
catchments from 10 years.
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Figure 7.17: 95 % posterior prediction intervals for runo� within Catchment 9 when the
observation sample consists of runo� observations from Catchment 7 from 10 years. The
coverage percent of Catchment 7 is only 3.8 %. Simulated data are used.
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RT4: Observing precipitation

Research task 4 was to explore how runo� predictions are a�ected by using an observation
sample consisting of observations of precipitation. The predictive performance obtained when
using observations of precipitation from 12 locations to predict the runo� within Catchment
9 were

RMSErunoff = 8.3

CRPSrunoff = 7.4

for the real dataset. These values are more than twice as large than any of the RMSE or
CRPS values obtained for the real dataset in Figure 7.15, and indicate that point observations
are not suitable for runo� predictions within Catchment 9 for the climatology in Voss.

This is supported by Figure 7.18 which shows the corresponding 95% posterior prediction
interval for the real dataset. The prediction interval shows that the predicted runo� within
Catchment 9 is underestimated every year. The biases are large compared to the true obser-
vations, and the true observations are far outside the 95% posterior prediction interval.

The predicted runo� within Catchment 9 is most a�ected by the closest observations of pre-
cipitation. These are the observations from Gullbrå, Bulken, Reimegrend, Voss, Brandset,
Granvin and Nedre Ålvik. These observations are displayed in Figure 7.19 along with the
mean annual precipitation within Catchment 9. The �gure shows that 6 of the locations pro-
vide values for annual precipitation that are lower than the mean annual precipitation within
Catchment 9. We also see that the observations from the only two locations located in the
interior of Catchment 9 are the ones giving the lowest annual values of precipitation. This
explains why the point observations lead to an underestimation of the annual runo� within
Catchment 9 for the real dataset.

Further, we consider the results from the simulation tests to see if other climatologies provide
better results. Table 7.1 shows the predictive performance for the 10 simulated datasets. We

Table 7.1: Predictive performance when 12 point observations are used to predict the runo�
within Catchment 9 for the simulated datasets.

Simulation RMSErunoff CRPSrunoff

1 0.39 0.43
2 0.62 0.59
3 3.3 2.2
4 1.9 1.9
5 2.8 1.8
6 3.8 2.8
7 0.55 0.46
8 2.5 1.6
9 5.8 4.8
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Figure 7.18: 95% prediction interval for real data when precipitation from 12 locations and 10
years are used to predict the runo� within Catchment 9.

see both low values (Simulation 1, 2, 7) and high values (Simulation 3, 6, 9) for RMSErunoff

and CRPSrunoff .

In Figure 7.20 we show the mean annual precipitation in Catchment 9 (red) and the mean
values of the observations from Gullbrå, Bulken, Reimegrend, Voss, Brandset, Granvin and
Nedre Ålvik for the simulated datasets (yellow). These locations are chosen because they are
located closest to Catchment 9. Comparing Figure 7.20 with the values in Table 7.1 we see
that low RMSE and CRPS values typically correspond to closeness between the yellow and
the red points in Figure 7.20. Thus, the mean values of the closest observations have a large
impact on the resulting runo� prediction. We can both be unlucky or lucky with these mean
values.

In Figure 7.21 the 95% posterior prediction intervals for the simulated datasets are shown.
The posterior prediction intervals are quite narrow compared to the ones obtained when using
observations of runo� from an overlapping catchment (Figure 7.13). Still, most of the true
values are within the 95% posterior prediction intervals. Exceptions exists, e.g Simulation 6
and 9, but these predictions are less biased than the predictions obtained for the real dataset
(Figure 7.18).

Research task 4 was to explore how runo� predictions are a�ected by using observations of
precipitation. The simulation study shows that point observations of annual precipitation are
suitable for runo� predictions for many climatologies. Under- and overestimations of runo�
occur, and the biases are closely related to the mean values of the observations. Thus, we can
be lucky or unlucky with the observation design.

The predictive performance obtained for the real dataset does not correspond to the simu-
lation study because the predictions obtained for the real dataset were far more biased than
any of the predictions from the simulation study.
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Figure 7.19: Black: The mean annual precipitation in each point in Catchment 9., i.e the
(observed Runo� + evaporation)/(Catchment area) for Catchment 9. Green: Observations
from Brandset, Nedre Ålvik, Gullbrå, Granvin and Bulken. Red: Reimegrend and Voss. These
are inside Catchment 9 and are therefore marked in another color.
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Figure 7.20: Red points: (Observed Runo� + evaporation)/(Catchment area) for Catchment
9. This is the mean annual precipitation in each point of Catchment 9. Yellow points: Mean
values of annual precipitation for the 7 obervations located closest to Catchment 9. These are:
Reimegrend, Brandset, Nedre Ålvik, Voss, Gullbrå, Granvin and Bulken.
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Figure 7.21: Posterior 95 % prediction interval for the simulated datasets when observations
of precipitation at 12 locations are used to predict the runo� within Catchment 9.
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RT5: Observing precipitation and runo�

Research task 5 was to explore how spatial predictions of runo� are a�ected by using an obser-
vation sample consisting of observations of both precipitation and observations of runo� from
an overlapping catchment. Figure 7.22 shows the predictive performance when combining
observations of runo� and precipitation for the real dataset. The observation samples consist-
ing of only runo� observations perform better or approximately equally good as observation
samples consisting of both runo� and precipitation for the real dataset: All of the red points
in Figure 7.22 are below or at the same level as the corresponding blue point.

Figure 7.22: Predictive performance for runo� for the real dataset when the observation sample
consists of runo� observations from an overlapping catchment.

Figure 7.23 shows posterior predictions intervals when the observation sample consists of an-
nual runo� from one of the overlapping catchments for the real dataset. These prediction
intervals are compared to the posterior prediction intervals obtained when using observations
of runo� from an overlapping catchment and precipitation from 11 locations. When observa-
tions of precipitation are included in the observation sample, the posterior prediction intervals
become narrow, and the majority of the true values of annual runo� within Catchment 9 fall
outside the 95% prediction intervals. By adding point observations to an observation sam-
ple of only runo� observations, the resulting predictions both become more biased and the
posterior standard deviation does not re�ect the true uncertainty of the predictions. The con-
clusion from the real dataset is that combining observations of runo� and precipitation does
not increase the predictive performance. From RT3 we know that point observations were
not suitable for runo� predictions for the real dataset. This is probably the reason why an
observation sample of only runo� observations performed better than an observation sample
of both precipitation and runo�.

We now consider the results from the simulated datasets. In Figure 7.24 the predictive per-
formance for runo� within Catchment 9 is shown for three simulations (with three di�erent
climatologies). For Simulation 1, the predictive performance is good when only using obser-
vations of precipitation (dashed line). For this dataset, the predictive performance is slightly
increased when using both point and area observations.

For Simulation 8, the predictive performance is in most cases largest for an observation sample
of only precipitation. An observation sample that combines observations of runo� and precip-
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Figure 7.23: Posterior mean (red) with 95 % prediction intervals (black) for the runo� within
Catchment 9 when the observation sample only consists of runo� observations from an overlap-
ping catchment, and posterior mean with 95 % prediction intervals (blue) when the observation
sample consists of runo� observations from an overlapping catchment and precipitation from
11 locations. Real data are used.
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Figure 7.24: Predictive performance for annual runo� in Catchment 9 when the observation
sample consists of runo� observations from an overlapping catchment and/or observations of
precipitation from 11 locations. Simulated data are used.

itation performs better than an observation sample of only runo�.

For Simulation 9, the predictive performance is largest when only using runo� observations.
For this simulation, we see that the predictive performance is poor when only using observa-
tions of precipitation (dashed line). This is similar to what we obtained for the real dataset
in Figure 7.22.

In Figure 7.25 we display some of the 95% con�dence intervals for the runo� within Catchment
9 when using observations of runo� and/or precipitation for Simulation 1, 8 and 9. As for the
real dataset, the prediction intervals become more narrow when observations of precipitation
are included. For the simulated datasets, the true values are still covered by the prediction
interval, except for Simulation 9 which was the dataset that provided the poorest predictions
for the observation sample with both observations of runo� and precipitation. However, the
biases for Simulation 9 are smaller than the biases observed for the real dataset when using a
observation sample of both precipitation and runo� (Figure 7.23).

The conclusion from the experiments performed on the simulated datasets is the same as
for the real dataset: From Figure 7.24 we see that including both observations of runo� and
precipitation doesn't necessarily increase the predictive performance. In most cases an ob-
servation sample consisting of only runo� observations or only observations of precipitation
performs better or equally good compared to an observation sample consisting of both obser-
vations of runo� and precipitation. However, the results from both the simulated datasets and
the real dataset show that we never know which of the observation types that will produce
the most accurate predictions for a speci�c climatology. Sometimes point observations per-
form better than runo� observations (Simulation 1) and sometimes it is the other way around
(Simulation 9). This indicates that we in general will pro�t from combining observations of
runo� and precipitation when making runo� predictions.
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(a) Runo� observations from Catchment 7

(b) Runo� observations from Catchment 8

Figure 7.25: Posterior mean (red) with 95 % prediction intervals (black) for the runo� within
Catchment 9 when the observation sample only consists of runo� observations from either
Catchment 7 or 8, and posterior mean with 95 % prediction intervals (blue) when the obser-
vation sample consists of runo� observations from Catchment 7 or 8 and precipitation from
11 locations. Simulated data are used with 10 replicates.
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Prior sensitivity

In Appendix A.4, the 0.025-, 0.5- and 0.975-quantiles for the posterior distribution of βj are
included when 6 di�erent priors for the SPDE parameters are used. The parameter βj is not
sensitive to changes in the priors for θτ,w, θκ,w, θτ,u and θκ,u, and the posterior distributions
are approximately equal for all priors.

Table 7.2 shows the posterior 0.025-, 0.5- and 0.975-quantiles for the remaining parameters
when using prior 1 to 6 for the SPDE parameters. We see that θτ,w, θκ,w, θτ,u and θκ,u are
stable with respect to the choice of prior. The exception is the results from using prior 2
where we see posterior quantiles that are quite di�erent from the other quantiles. The pos-
terior means of θκ,u and θκ,w move towards the prior mean -2 which correspond to a lower
range. Prior 2 also make an impact on the posterior quantiles of the precision τp, while τr is
stable. Prior 2 is the prior where the strongest restrictions were set on the prior quantiles for
the range for both c(s) and xj(s), and the results show that this lead to an adjustment of the
posterior distributions for several of the parameters.

Figure 7.26 shows posterior prediction intervals for runo� in Catchment 8 and posterior predic-
tion intervals for precipitation at Reimegrend in two selected years: 1984 and 1988. Although
prior 2 makes a large impact on the parameter values, this is not prominent in the resulting
posterior mean of precipitation and runo�. However, the widths of the posterior prediction
intervals vary more from prior to prior. For example in 1984 the width of the posterior pre-
diction interval for runo� varies from 4.1 ·108 m3/year for prior 4 to 6.1 ·108 m3/year for prior
2. This is an increase of 50%. For precipitation the corresponding increase is from 1.0 m/year
for prior 4 to 1.6 m/year for prior 2, i.e an increase of 60%.

(a) Precipitation 1984 (b) Precipitation 1988

(c) Runo� 1988 (d) Runo� 1988

Figure 7.26: Predictions of precipitation at Reimegrend and runo� in Catchment 9 in 1984 and
1988 (red) with 95% posterior prediction intervals (black). The observation sample consists
of precipitation from 11 locations and runo� from Catchment 8.
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Table 7.2: Quantiles for the posterior distributions of the precisions τp and τr and the SPDE
parameters for 6 di�erent priors. Recall that θτ,u and θκ,u are related to the climatology c(s)
while θτ,w and θκ,w are related to the annual variability xj(s).

Quantiles Prior 1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

θτ,u 0.025 0.73 0.27 1.1 1.5 0.84 1.5
0.5 1.5 1.1 1.7 1.9 1.5 1.9
0.975 2.1 1.9 2.2 2.3 2.1 2.3

θκ,u 0.025 -3.2 -2.9 -3.4 -3.7 -3.2 -3.7
0.5 -2.4 -2.0 -2.7 -3.2 -2.4 -3.2
0.975 -1.5 -1.0 -1.8 -2.8 -1.6 -2.8

θτ,w 0.025 2.8 0.56 3.0 3.3 3.3 2.3
0.5 3.4 1.5 3.5 3.7 3.7 3.0
0.975 3.9 2.4 4.1 4.1 4.1 3.6

θκ,w 0.025 -3.6 -1.7 -3.7 -3.7 -3.7 -3.3
0.5 -3.0 -0.92 -3.1 -3.3 -3.3 -2.6
0.975 -2.3 -0.18 -2.5 -2.9 -2.9 -1.6

τp 0.025 1.5 1.1 1.5 1.5 1.4 1.5
0.5 2.1 1.6 2.1 2.1 2.1 2.1
0.975 3.0 2.4 3.0 2.9 2.9 3.0

τr 0.025 0.50 0.50 0.50 0.47 0.47 0.51
0.50 0.95 0.96 0.95 0.92 0.92 0.97
0.98 1.7 1.7 1.7 1.7 1.7 1.7
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8. Discussion
In this work we have shown how we can construct a Bayesian statistical model for precipitation
and runo� in R-INLA by using the SPDE approach to spatial modelling. The implementation
supports both point observations of precipitation and area observations of runo� and evapo-
ration, and the model was tested on catchments located around Voss both through real and
simulated data. The focus of the experiments were on answering �ve research tasks to gain
knowledge of the properties of the model.

The �rst research task was about exploring the importance of the climatology c(s) which
was modelled by a GRF common for all years. The experiments done by using real data from
the Voss area showed that the climatology c(s) was the dominating GRF of the model. The
year dependent GRF xj(s) was neglected from the model without seeing signi�cantly changes
in the CRPS and RMSE. This indicates that the spatial variations in annual precipitation
around Voss are quite stable from one year to another.

The consequence of this model property is that an accurate prediction of runo� or precip-
itation implies an accurate representation of the underlying climatology and the intercept βj .
In particular the climatology was shown to be important. The calibration tests based on
simulated values suggested that as long as the underlying climatology is constant, the spatial
predictions are not calibrated. Thus, an observation design that produces accurate predictions
for one year will typically produce accurate predictions for other years.

Likewise will an observation design that produces poor spatial predictions for one year, pro-
duce poor predictions for other years. This is because we do the same systematic error in the
predictions for a speci�c observation design as long as the spatial variations of precipitation in
the area of interest are stable from year to year. Thus, if historical data show that a particular
observation design produces poor predictions, we should try to change the observation design
as we can't do anything about the climatology of an area in real life.

This conclusion applies for the area around Catchment 9 and probably for other areas where
the climatic di�erences are similar from one year to another. In larger areas with more extreme
weather, the annual spatial variability xj(s) might be of larger importance. The largest e�ect
on the annual spatial variability xj(s) was seen in the posterior mean from 1988, and this was
the most extreme year in our dataset.

In research task 2 we asked: If we �nd an observation design suitable for predicting runo�,
will the same observation design be suitable for point predictions in the interior of the catch-
ment? The calibration test based on simulated data showed that the answer on this question
is no. This result illustrates that a runo� prediction and a prediction of precipitation are quite
di�erent from each other. When predicting the runo� within a catchment we �rst need to
predict the annual precipitation in each point within the catchment of interest. To receive an
accurate runo� prediction these predictions must be representative for the true climatic con-
ditions within the catchment. When predicting the annual precipitation at a speci�c location,
we only need to hit right at one point in space and not for many points.

63



64 CHAPTER 8. DISCUSSION

In research task 3 we explored how runo� predictions are a�ected by using an observation
sample consisting of runo� observations from an overlapping catchment. The real and the
simulated datasets gave similar results and showed that the bias of the predictions decreases
when the coverage percent of the observed catchment increases. The results from the simula-
tions also showed that unexpected results can occur for some climatologies if we are unlucky
or lucky with the observations.

In research task 4 we explored how runo� predictions are a�ected by using an observation
sample consisting of observations of precipitation. For the real dataset, we saw that an ob-
servation sample of precipitation from 12 locations led to predictions that underestimated the
true observations of runo� in Catchment 9. The prediction bias was large: The di�erence
between the true and the predicted values were approximately twice as large as the width of
the corresponding 95% prediction interval. This did not correspond to the simulation study.
For some of the simulated climatologies we saw that point observations were suitable for runo�
predictions, but for other climatologies biased predictions were obtained. However, the biases
were not nearly as large as the biases obtained for the real dataset.

This result suggests that the correspondence between the observations of precipitation and the
observations of runo� and evaporation was low for the real dataset. The low correspondence
might be explained by the challenges related to measurements of precipitation in wind-exposed
areas as reported in Wol� et al. (2015). In wind-exposed areas measurements of precipitation
are often biased due to under-catch, and in RT4 we saw that almost all of the observations of
annual precipitation were lower than what we would expect from the runo� observations from
Catchment 9.

Another known problem in hydrology is that catchments of interest often are located at a
higher elevation than the closest precipitation gauges. The reason for this is that it is chal-
lenging to build and maintain precipitation gauges in mountainous areas. As the precipitation
gauges often are located at a lower elevation than the catchment of interest, it is common that
the observations of precipitation are not representative for the true climatic conditions within
the catchment of interest (Ingebrigtsen et al., 2013). This may be another explanation for the
low correspondence between the observations of runo� and precipitation for the real dataset.

It is also possible that the predictive performance for runo� would have been better if more
point observations within Catchment 9 were available. For our experiment, only 2 out of 12
observations of precipitation were located inside Catchment 9. In Engeland et al. (2016) it was
shown that large di�erences in the posterior distribution of precipitation are obtained when
one of the closest measuring stations are taken out of the dataset. This shows that missing
data have a large impact on the resulting predictions. However, the simulated dataset gave
more reasonable results than the real dataset, so the problem seems to lie in the data or in
the precipitation model. The precipitation model can for example be improved by including a
linear e�ect of elevation as precipitation is known to be a�ected by topography, or by replac-
ing the stationary GRFs by non-stationary spatial �elds as in Ingebrigtsen et al. (2013) and
Ingebrigtsen et al. (2015).

In research task 5 we combined point observations of precipitation and area observations
of runo� and used these for runo� predictions. For the real dataset we saw that the predictive



CHAPTER 8. DISCUSSION 65

performance decreased when observations of precipitation and runo� were combined compared
to an observation sample of only runo� observations. For most of the 95% posterior prediction
intervals, the true observations fell outside the prediction interval when the observation sample
consisted of both precipitation and runo� observations. The biases were quite large, and the
poor predictive performance was caused by the point observations.

The work presented in this report was based on the idea that we should include as much
information as possible in the statistical model to obtain accurate predictions. For most of the
simulation experiments performed in research task 5, the predictive performance was better
or equally good when using only one observation type (runo� or precipitation) compared to
using both observation types (runo� and precipitation). Thus, including more information in
the model, i.e more observations, did in most cases not lead to improved predictions, neither
for the real dataset nor for the simulated ones.

However, the results from the simulation study did not favour one of the observation types
(runo� or precipitation). For some simulations observation samples of only runo� performed
better than observations samples of only precipitation. For other simulations, observations of
precipitation produced the most accurate predictions. This indicates that we in average will
pro�t from combining observations of runo� and precipitation, but we cannot be sure as this
is based on results from only three simulated datasets and three climatologies.
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A. Additional results

A.1 Parameters used for simulation

Some of the results in the main text are based on simulated values of precipitation and runo�.
Table A.1 shows the parameter values used in the simulations. The values used for the SPDE
parameters are the posterior means obtained when making inference based on an observation
sample consisting of observations of precipitation from Aurland, Granvin, Reimegrend, Voss,
Brandset, Nedre Ålvik, Gullbrå, Eksingedal, Fjellanger, Brekkhus, Bulken, Øvstedal and area
observations from Catchments 1, 6, 8, 7 and 9 from 1984 to 1994 (see Figures 2.1 and 2.2).
Thus, the SPDE parameter values chosen for simulations are realistic for our dataset. The year
dependent intercepts βj are sampled from a normal distribution with mean 2 and standard
deviation 0.2.

The standard deviation of the observations of precipitation is set to 10% of the simulated
value, and the standard deviation of the runo� observations is set to 3% of the simulated
runo� value. The amount of evaporation is set to 10% of the simulated runo� value.

The prior distributions used in the simulation study, are the same as the ones presented
in Section 4.5.

Table A.1: Parameter values used for simulation.

Parameter Value

θτ,w 3.28
θκ,w -3.10
θτ,u 0.79
θκ,u -1.87
τp 1
τr 1

A.2 Predictions of precipitation

In the main text, the main focus was on runo� predictions. For completeness of the results, we
give a brief overview of how predictions of precipitation are a�ected by observing runo� and/or
precipitation. We observe the runo� within Catchment 7, (8-7), 8, (9-8) or (9-7) and/or pre-
cipitation at 11 locations for 10 years. The observations are used to predict the precipitation
at Reimegrend. Thus, this is an equivalent experiment to the one performed for research task
5. The only di�erence is that we now predict precipitation and not runo�.

Figures A.1 and A.2 show the predictive performance obtained for predictions of precipitation
at Reimegrend by using observations of precipitation and/or runo�. Reimegrend is located in
the middle of Catchment (8-7), (9-8) and 8, and outside Catchments 7 and (9-8), but we don't
see a clear correspondence between the predictive performance and the size and/or location

67
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Figure A.1: Predictive performance for precipitation (CRPS) when the observation sample
consists of runo� observations from an overlapping catchment and/or observations of precipi-
tation from 11 locations. Real data are used.

Figure A.2: Predictive performance for precipitation (CRPS) when the observation sample
consists of runo� observations from an overlapping catchment and/or observations of precipi-
tation from 11 locations. Simulated datasets are used.

of the catchment in which runo� is observed.

Further we notice that an observation sample consisting of observations of precipitation from
11 catchments (dashed line) provides a lower or approximately equally low CRPS compared
to an observation sample consisting of only runo� observations (red points) both in Figure
A.1 and A.2. This indicates that point observations from several locations are more suitable
for making point predictions than area observations from one catchment.

However, we note that the CRPS values in general are close to zero for Simulation 1, showing
that runo� observations from only one catchment can provide accurate point predictions of
precipitation. This happens when the annual precipitation at Reimegrend is representative
for the mean runo� within the observed catchment.

For Simulation 8 combining observations of runo� and precipitation gives the best predic-
tions of precipitation at Reimegrend. For the other simulations, and for the real dataset, the
predictive performance is largest when using an observations sample of only precipitation.
Thus, combining the observation types did not lead to improved predictions for most of the
experiments.
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Figure A.3: Posterior mean (red) with 95 % prediction intervals (black) for the precipitation at
Reimegrend when the observation sample only consists of runo� observations from an overlap-
ping catchment, and posterior mean with 95 % prediction intervals (blue) when the observation
sample consists of runo� observations from an overlapping catchment and precipitation at 11
locations. Real data are used.
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(a) Runo� observations from Catchment 8

(b) Runo� observations from Catchment (9-8)

Figure A.4: Posterior mean (red) with 95 % prediction intervals (black) for the precipitation at
Reimegrend when the observation sample only consists of runo� observations from an either
Catchment 8 or (9-8), and posterior mean with 95 % prediction intervals (blue) when the
observation sample consists of runo� observations from Catchment 8 or (9-8) and precipitation
at 11 locations. Simulated datasets are used.

In Figure A.3 the posterior prediction intervals for the precipitation at Reimegrend for the
real dataset are displayed. We see that the intervals are more narrow when the observation
sample consists of runo� observations from either Catchment (8-7), 8 or (9-7). This is intuitive
because the location of interest, Reimegrend, is located in the middle of these catchments and
outside the remaining two catchments. In the middle of the observed catchment, the uncer-
tainty is at its lowest as we saw in Figure 7.14 in the main text. Further, we observe that the
prediction intervals become more narrow when point observations of precipitation are added
to the observation sample. The true observations are still inside the 95% prediction interval.

In Figure A.4 we see some of the 95% posterior prediction intervals for the simulated datasets.
The predicted values get closer to the true observation when point observations of precip-
itation are included in the observation sample. Especially when runo� is observed within
Catchment (9-8). The location of interest, Reimegrend, is located outside this catchment and
inside Catchment 8 so this is intuitive. Overall, the predictions are very accurate as long as
point observations are included in the observation sample. We saw the same for the posterior
prediction intervals for the real dataset.
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A.3 Posterior distributions of the hyperparameters

The main focus of this work has been on spatial predictions. Here include plots of the posterior
distributions of the hyperparameters based on some of the di�erent observation samples from
the main text. Real data from 10 years are used to compute the posterior distributions.

Figure A.5 shows posterior distributions of the SPDE parameters. We note that the poste-
rior distributions obtained when the observation sample includes observations of precipitation
in general are more narrow than the posterior distributions obtained when the observation
sample only consists of runo� observations. Further, the posterior distributions originating
from an observation sample of both runo� and precipitation (gray) have more in common with
the posterior distributions originating from an observation sample of only point observations
(blue) than an observation sample of only runo� observations (yellow, green, red). This indi-
cates that the observations of precipitation dominate over the observations of runo�.

The posterior distributions in Figure A.5 shows that the parameter estimates obtained are
very di�erent from one observation sample to another. Especially for θτ,w and θκ,w we see a
large di�erence in the posterior mean when point observations are included in the observation
sample or not.

Figure A.6 shows posterior distributions for the intercept for di�erent observation samples.
The standard deviation of the posterior distributions are approximately equal for all observa-
tion types, and the posterior means are also approximately equal.

Figure A.7 shows posterior distributions for the precisions τp and τr. When no observations
of precipitation are used, the posterior distribution of τp is equal to its prior distribution. Lik-
weise, when no runo� observations are used, the posterior distribution of τr is equal to its prior
distribution. The posterior distribution of τp indicates that the observations of precipitation
are more certain than we assumed when the prior standard deviation of precipitation was set
to 10% of the observed value.

The posterior distribution of τr is approximately equal to its prior distribution regardless
of which catchment in which we observe runo�. This can be explained by the prior assump-
tions for the runo� uncertainty. The relative standard deviation for the runo� observations
provided by NVE (Table 2.1) were in general low, so the prior assumptions were strict.

Analysing how the parameter estimates a�ect the spatial predictions has been outside the
scope of this work.
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(a) Posterior distributions of the parameters θτ,w (left) and θκ,w (right) related to the spatial annual variability
xj(s).

(b) Posterior distributions of the parameters θτ,u (left) and θκ,u (right) related to the climatology c(s).

Figure A.5: Posterior distributions of the SPDE parameters. The plots are based on real data
from 10 years. The observations of precipitation are observed at the same 11 locations as in
RT5. In addition we use observations of runo� from Catchment 7, 8 or (9-7).
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Figure A.6: Posterior distributions of βj from 1984 to 1989. The distributions from 1990-1993
are omitted. The plots are based on real data from 10 years. The observations of precipitation
are observed at the same 11 locations as in RT5. In addition we use observations of runo�
from Catchment 7, 8 or (9-7).

Figure A.7: Posterior distributions of precisions τp (left) and τr (right). The plots are based
on real data from 10 years. The observations of precipitation are observed at the same 11
locations as in RT5. In addition we use observations of runo� from Catchment 7, 8 or (9-7).
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A.4 Prior sensitivity for βj

Table A.2 shows the posterior quantiles for the intercept βj when 6 di�erent priors for θτ,w,
θκ,w, θτ,u and θκ,u are used. We see that the parameter βj is not sensitive to the choice of
prior for the SPDE parameters.

Table A.2: Quantiles for the posterior distribution of βj for 6 di�erent priors.

Quantiles Prior1 Prior 2 Prior 3 Prior 4 Prior 5 Prior 6

β1 0.025 1.1 1.2 1.0 0.92 1.0 0.98

0.5 1.7 1.7 1.7 1.6 1.7 1.6

0.975 2.3 2.1 2.3 2.4 2.3 2.3

β2 0.025 1.1 1.3 1.0 0.92 1.0 0.99

0.5 1.7 1.7 1.7 1.6 1.7 1.6

0.975 2.3 2.2 2.3 2.4 2.2 2.3

β3 0.025 1.3 1.4 1.2 1.1 1.2 1.2

0.5 1.9 1.9 1.9 1.8 1.9 1.8

0.975 2.5 2.3 2.5 2.6 2.5 2.5

β4 0.025 1.0 1.2 0.97 0.88 0.99 0.94

0.5 1.5 1.7 1.6 1.6 1.6 1.6

0.975 2.2 2.1 2.3 2.3 2.3 2.2

β5 0.025 2.2 2.3 2.1 2.0 2.1 2.1

0.5 2.8 2.8 2.7 2.7 2.8 2.7

0.975 3.4 3.2 3.4 3.4 3.4 3.4

β6 0.025 2.1 2.4 2.0 1.9 2.1 2.1

0.5 2.7 2.8 2.7 2.7 2.7 2.7

0.975 3.3 3.3 3.4 3.4 3.3 3.3

β7 0.025 1.2 1.3 1.1 1.0 1.2 1.1

0.5 1.8 1.8. 1.8 1.8 1.8 1.8

0.975 2.4 2.2 2.4 2.5 2.4 2.4

β8 0.025 1.8 2.0 1.8 1.7 1.8 1.8

0.5 2.4 2.4 2.4 2.4 2.4 2.4

0.975 3.0 2.9 3.0 3.1 3.1 3.0

β9 0.025 1.5 1.7 1.5 1.4 1.5 1.5

0.5 2.2 2.2 2.2 2.1 2.2 2.1

0.975 2.8 2.6 2.8 2.8 2.8 2.8

β10 0.025 1.2 1.4 1.1 1.0 1.2 1.1

0.5 1.8 1.8 1.8 1.8 1.8 1.7

0.975 2.4 2.2 2.4 2.5 2.4 2.4



B. Implementation in R-INLA
Important aspects with the implementation in R-INLA is presented in this section. We will
show a toy example where we are interested in making inference based on two observations of
precipitation from two locations that are shown in Figure B.1, Brekkhus and Bulken. We also
observe the runo� within Catchment 6.

Based on these observations, we estimate the runo� within Catchment 4 and the precipi-
tation at Gullbrå.

We use 2 replicates, i.e r = 2, and use observations from 1995 and 1996.

For details regarding the functions used, we refer to (Krainski et al., 2016) and (Blangia-
rdo and Cameletti, 2015).

Figure B.1: Observations of precipitation from Brekkhus and Bulken (green) and runo� ob-
servations from Catchment 6 (green) are used to predict the precipitation at Gullbrå and the
runo� within catchment 4 (red) in 1995 and 1996.

B.1 Data input in INLA

We gather the coordinates of the observed locations Bulken (20.8, 6755) and Brekkhus (17.96,
6766) in the matrix point.obs.coords, and the observed values of precipitation in the vector
y.obs.

print(point.obs.coords)

[,1] [,2]

[1,] 20.83835 6755.341

[2,] 17.95662 6765.988

75
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print(y.obs)

[1] 1.4742 1.8817 1.9509 2.5889

The �rst replicate from 1995 is located in the �rst two elements of the vector, i.e, y.obs[1]
and y.obs[2] contain the precipitation in 1995 in Bulken and Brekkhus respectively, while
y.obs[3] and y.obs[4] contain the precipitation in Bulken and Brekkhus in 1996.

We also need to store the coordinates of the 69 grid nodes of Catchment 6 from Figure B.1.
These are stored in the matrix catch6.coords. In vector z.obs the sum of observed runo�
and evaporation from 1995 and 1996 is stored:

print(catch6.coords)

V1 V2

1 3.069280 6759.022

2 4.085079 6759.022

... ...

... ...

68 14.243063 6768.164

69 15.258861 6768.164

#The observed evaporation within Catchment 6 in 1995 and 1996.

print(evaporation6)

[1] 0.224 0.169

#The observed runoff within Catchment 6 in 1995 and 1996.

print(runoff6)

[1] 1.26 2.12

#z.obs is the sum of observed runoff and evaporation in 1995 and 1996.

z.obs=runoff6+evaporation6

print(z.obs)

[1] 1.484 2.289

Later, we will need the coordinates of the 12 grid nodes of Catchment 4, and the coordinates
of Gullbrå (25.9,6775), the location at which we want to predict precipitation. We store the
grid coordinates in the matrix catch4.coords and the coordinates of Gullbrå in the vector
point.pred.coords:

print(catch4.coords)

V1 V2

1 14.24306 6774.259

2 15.25886 6774.259

... ...

... ...

11 18.30626 6777.306

12 18.30626 6778.322
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print(point.pred.coords)

[,1] [,2]

[1,] 25.87003 6775.334

B.2 Using the SPDE approach to make the GMRFs wj and u

Recall that the responses of precipitation and (runo�+evaporation) are given by

E{yj |(wj ,u, τp, βj)} = ηj = Ap(1βj +wj + u)

E{zj |(wj ,u, τr, βj)} = ζj +Ej = Ar(1βj +wj + u)

with wj ∼ N (0,Q−1(θτ,w, θκ,w)) and u ∼ N (0,Q−1(θτ,u,θκ,u)).

We use the coordinates of the grid nodes of both Catchment 4 and 6, and the coordinates
of the points of interest to make the triangulation mesh shown in Figure B.1. Then, we assign
prior means and variances for the SPDE-parameters θτ,w, θκ,w, θτ,u and θκ,u. The priors and
the mesh are used for constructing two spde-objects spde and spde.c, one representing the
annual spatial variability wj , and one representing the climatology u:

#Specifying the properties of the mesh:

max.edge=c(0.2*25,0.5*35); offset=c(0.15,0.2)*45; cutoff=0.1*25

#We store all the coordinates that will be needed for

#predictions and inference in all_coords:

all_coords=rbind(catch6.coords,catch4.coords,point.obs.coords,point.pred.coords)

#Making the mesh:

mesh=inla.mesh.2d(loc.domain=all_coords,cutoff=cutoff,max.edge=max.edge,offset=offset)

#Specifying the properties of the year dependent GMRF w_j:

priors= list(sig_k=0.939465, mu_k= -2.456787, sig_t=0.6094179, mu_t=1.414418)

spde=inla.spde2.matern(mesh,B.tau=matrix(c(0,1,0),nrow=1,ncol=3),

B.kappa=matrix(c(0,0,1),nrow=1,ncol=3),

theta.prior.mean=c(priors$mu_t,priors$mu_k),

theta.prior.prec=c(1/priors$sig_t^2,1/priors$sig_k^2))

#Specifying the properties of the climatology GMRF u:

priors.c=priors #We use the same priors as for the year dependent SPDE.

spde.c=inla.spde2.matern(mesh,B.tau=matrix(c(0,1,0),nrow=1,ncol=3),

B.kappa=matrix(c(0,0,1),nrow=1,ncol=3),

theta.prior.mean=c(priors.c$mu_t,priors.c$mu_k),

theta.prior.prec=c(1/priors.c$sig_t^2,1/priors.c$sig_k^2))

The resulting mesh is displayed in Figure B.1 and has 177 mesh nodes, i.e m = 177. Each of
these nodes are now given a index by using the function inla.spde.make.index(). We make
one set of indices for wj and one set for indices for u.
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In the function inla.spde.make.index() we also specify the number of replicates of the
GMRFs wj and u. The object spde has 2 replicates because this object represents the annual
spatial variability wj . The object spde.c has no replicates (or 1 replicate) as this represents
the climatology u which is common for all years. This is how this is speci�ed in INLA:

n.replic=2 #We have 2 replicates.

#Index for the annual SPDE-object. Two replicates:

s.index=inla.spde.make.index(name="field",n.spde=spde$n.spde,n.repl=n.replic)

#Index for the climatic SPDE-object. No replicates:

s.index.c=list()

s.index.c$field.c=rep(c(1:177),times=2)

s.index.c$field.c.repl=rep(1,length(s.index$field.repl))

s.index.c$field.c.group=rep(1,length(s.index$field.repl))

We now demonstrate the di�erence between s.index and s.index.c. The �rst vector of
s.index and s.index.c is common. This vector contains the numbers from 1 to 177 repeated
2 times because m = 177 and r = 2.

print(s.index$field)

[1] 1 2 ... 176 177 1 2 ... 176 177

print(s.index.c$field.c)

[1] 1 2 ... 176 177 1 2 ... 176 177

The second vector group is also common. This contains m× r ones, and is not relevant in this
model.

In the last vector repl there is a di�erence between s.index and s.index.c. For the in-
dices of the annual variability wj we have that

s.index$field.repl=rep(c(1,2),each=177)

print(s.index$field.repl)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 ... 1 1 2 2 2 ... 2 2

This vector speci�es that the �rst m = 177 indices of s.index$field belong to the �rst
replicate (j = 1) and that the next m = 177 indices of s.index$field belong to the second
replicate (j = 2) of wj .

For the indices of the GMRF u representing the climatology, we have

print(s.index.c$field.c.repl)

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1....1 1

This is a vector of m× r ones. This way we mark that the GMRF u is common for all years
and that we don't have replicates. All of the indices in s.index.c$field.c represent the same
realization of the �eld.
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B.3 Generating the projection matrices for inference

We now generate the projection matrix Ap from Equation (4.8) for precipitation which is
straight forward with the function inla.spde.make.A():

n.loc.obs=2 #We observe the precipitation at 2 locations, Bulken and Brekkhus.

#Projection matrix for precipitation

A.p=inla.spde.make.A(mesh,loc=as.matrix(point.obs.coords),

index=rep(1:n.loc.obs,times=n.replic),

repl=rep(1:n.replic,each=(n.loc.obs)))

This projection matrix projects the GMRFs wj and c from the 177 mesh nodes to the loca-
tions at which we observe precipitation, Bulken and Brekkhus.

The projection matrix for runo� Ar from Equation (4.9) is more tricky. We �rst make the
vector group.obs:

group.obs=rep(c(1,2),each=69)

Recall that the observed catchment, Catchment 6, consists of 69 grid nodes. Elements 1 to
69 of group.obs are 1's. This indicate that we want to sum the precipitation in all of the 69
grid nodes of replicate 1. Elements 70 through 138 of group.obs are 2's indicating that we
want to sum the precipitation in all of the 69 grid nodes of replicate 2. We are now able to
construct the projection matrix A.r:

n.obsblock=69 #Number of grid nodes in Catchment 6.

Area6=72350713 #Area of Catchment 6 in meters.

#Projection matrix interpolating from mesh nodes to grid nodes in Catchment 6:

A.sum=inla.spde.make.A(mesh,loc=as.matrix(catch6.coords),

index=rep(1:(n.obsblock),times=n.replic),repl=rep(1:n.replic,each=(n.obsblock)));

#Projection matrix for summing the precipitation in the grid nodes of Catchment 6:

A.r=inla.spde.make.block.A(A.sum,group.obs)

#We multiply A.r with an area element and scale the matrix

#to get the unit [m^3/year *10^{8}]

Delta6=(Area6/n.obsblock) * (10^-8)

A.r=A.r*Delta6

B.4 Drawing inference based on the observations

We further use the stack functionality in INLA. In stack.p we include all of the components of
the response of precipitation. Precipitation is given by ηj = Ap(1βj +wj +u). Thus stack.p
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includes the observations of precipitation and the projection matrix Ap. In stack.p we also
include s.index, s.index.c and intercept as these represent wj , u and βj respectively.
The sum of observed runo� and evaporation is given by ζj +Ej = Ar(1βj +wj + u). Thus,
stack.r includes the observations of runo�, the projection matrix Ar, s.index, s.index.c
and intercept:

#Year specific intercept is specified as a factor.

intercept=rep(1:n.replic,each=spde$n.spde)

#Here, spde$n is the number of mesh nodes, which is 177.

#Observation stacks:

#Precipitation:

stack.p=inla.stack(data=list(y=cbind(y.obs,NA)),

effects=list(c(s.index,s.index.c,

intercept=list(factor(intercept)))),A=list(A.p),tag="est.p")

#Runoff+evaporation

stack.r=inla.stack(data=list(y=cbind(NA,as.matrix(z.obs))),

effects=list(c(s.index,s.index.c,

intercept=list(factor(intercept)))),A=list(A.r),tag="est.r")

#We add the two observation stacks together

join.stack <- inla.stack(stack.p, stack.r)

Note that the data is added to the stacks as:

print(cbind(y.obs,NA))

y.obs

[1,] 1.4742 NA

[2,] 1.8817 NA

[3,] 1.9509 NA

[4,] 2.5889 NA

cbind(NA,z.obs)

z.obs

[1,] NA 1.486081

[2,] NA 2.289478

In INLA we need to specify the data with one column for each observation likelihood. In
this case we have two observation types, precipitation and runo�, i.e we have two likelihoods.
Thus, the data input need to have two columns. We add NA to the second column of y.obs
specifying that y.obs comes from the �rst likelihood. Likewise, we add NA to the �rst column
of z.obs specifying that z.obs comes from the second likelihood.

We specify the prior mean and precision for βj , assign priors for the precisions τp and τr,
and calculate the scales fj and vj allowing each observation to have its own uncertainty:

y.sd=(y.obs*0.1) #Standard deviation for y.obs. 10% of the observed value.
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tau.p=1 #Prior mean for precision.

y.scale=(1/y.sd^2)*(tau.p^{-1}) #Scaled likelihood.

z.sd=c(0.0155,0.0112) #Standard deviation for z.obs. These are numbers given by NVE.

tau.r=1 #Prior mean for precision.

z.scale=(1/z.sd^2)*(tau.r^{-1}) #Scaled likelihood.

#Prior specification for tau.p:

precprior.p <- list(theta=list(param=c(shape=10,rate=10)))

#Prior specification for tau.r:

precprior.r=precprior.p

#Prior mean and precision for the intercepts:

prior.beta0=c(2,1/1^2)

The responses of precipitation and runo� from Equation (4.12), are speci�ed in formula. Here,
it is apparent why we chose to use (runo�+evaporation) as input: This way the responses of
precipitation and runo� have the same form and can be speci�ed through the same formula

in INLA.

When the formula is speci�ed, we can make inference by using the inla() function:

formula <- y~ -1 +intercept+f(field, model=spde,replicate=field.repl)

+f(field.c,model=spde.c)

#Note that we remove the default intercept by typing "-1" as we

#have specified the intercept manually in stack.p and stack.r.

#Making inference:

#The distributions of the two likelihoods are specified in the family-argument.

output=inla(formula,family=c("gaussian","gaussian"),

data=inla.stack.data(join.stack),

control.predictor=list(A=inla.stack.A(join.stack),compute=FALSE),

control.family=list(list(hyper=precprior.p,prior="loggamma"),

list(hyper=precprior.r,prior="loggamma")),scale=c(y.scale,z.scale),

control.fixed=list(mean=prior.beta0[1],prec=prior.beta0[2]))

The object output consists the marginal posterior distributions of the SPDE parameters θτ,w,
θκ,w, θτ,u and θκ,u, the posterior marginals of the intercepts β1 and β2, and the posterior
marginals of the precisions τp and τr.

B.5 Making predictions

We now show how we can predict the runo� within Catchment 4 and the precipitation at
Gullbrå in 1995 and 1996. To make predictions, we need to make new projection matrices A′p
and A′r that projects the GMRFs wj and c from the m mesh nodes of the triangulation, to
Gullbrå and to the grid nodes of Catchment 4. We use the same approach for making A′p and
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A′r as we did for making Ap and Ar. The only di�erence is that we now have new coordinates
in the loc argument in inla.spde.make.A().

n.loc.pred=1 #The number of locations

at which we want to estimate the annual precipitation.

#Projection matrix for precipitation

Apred.p=inla.spde.make.A(mesh,loc=as.matrix(point.pred.coords),index=rep(1:(n.loc.pred),

times=n.replic),repl=rep(1:n.replic,each=(n.loc.pred)));

n.predblock=12 #The number of grid nodes in Catchment 4.

#Vector that indicates which grid nodes we should sum:

group.pred=rep(c(1,2),each=n.predblock)

#Projection matrix interpolating from mesh nodes to grid nodes in Catchment 4:

Apred.sum=inla.spde.make.A(mesh,loc=as.matrix(catch4.coords),

index=rep(1:(n.predblock),times=n.replic),repl=rep(1:n.replic,each=(n.predblock)));

#Projection matrix for summing the precipitation in the grid nodes of Catchment 4:

Apred.r=inla.spde.make.block.A(Apred.sum,group.pred)

#We multiply Apred.r with an area element and scale the matrix

#to get the unit [m^3/year *10^{8}]

Area4=12828906 #Area of Catchment 4.

Delta4=(Area4/n.predblock)*10^{-8}

Apred.r=Apred.r*Delta4

We now make two new stacks, one for precipitation (pred.response.y) and one for runo�+evaporation
(pred.response.z). The stacks don't contain data, only NAs. The NAs indicate that we want
to predict the response. As before, the data input has two columns because we have two
observation types.

After making the new stacks, we add the prediction stacks with the stack we used for making
inference join.stack. Finally we use the inla() function to compute the predictions:

N=1 #The number of catchments in which we predict runoff.

#We are only interested in predicting the runoff within Catchment 4.

pred.response.y=inla.stack(data=list(y=matrix(NA,(n.loc.pred)*n.replic,2)),

A=list(Apred.p),

effects=list(c(s.index,s.index.c,intercept=list(factor(intercept)))),

tag="pred.res.y")

pred.response.z=inla.stack(data=list(y=matrix(NA,N*n.replic,2)),

A=list(Apred.r),

effects=list(c(s.index,s.index.c,intercept=list(factor(intercept)))),

tag="pred.res.z")

#Add the prediction stacks and the inference stack.
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join.stack.pred=inla.stack(join.stack,pred.response.y,pred.response.z)

#Make predictions:

output.pred=inla(formula,family=c("gaussian","gaussian"),

data=inla.stack.data(join.stack.pred),

control.predictor=list(A=inla.stack.A(join.stack.pred),compute=TRUE),

scale=c(y.scale,z.scale,rep(1,dim(join.stack.pred

$A)[1]-(n.loc.obs+N)*n.replic)),

control.family=list(list(hyper=precprior.p),list(hyper=precprior.r)),

control.fixed = list(expand.factor.strategy = "inla",mean=prior.beta0[1],

prec=prior.beta0[2]))

We extract the results by using the inla.stack.index() function.

index.z.pred=inla.stack.index(join.stack.pred,tag="pred.res.z")$data

index.y.pred=inla.stack.index(join.stack.pred,tag="pred.res.y")$data

#Posterior mean and standard deviation for precipitation at Gullbrå:

pred=output.pred$summary.fitted.values[index.y.pred,"mean"]

sd=output.pred$summary.fitted.values[index.y.pred,"sd"]

#Posterior mean and standard deviation for (runoff+evaporation) within Catchment 4:

pred.z=output.pred$summary.fitted.values[index.z.pred,"mean"]

sd.z=output.pred$summary.fitted.values[index.z.pred,"sd"]

#The observed evaporation within Catchment 4:

print(evaporation4)

[1] 0.0323 0.0229

#We subtract the evaporation of Catchment 4 from the posterior mean of runoff:

pred.z=pred.z-evaporation4

Note that we need to subtract the evaporation of Catchment 4 from the posterior mean pred.z.
Otherwise, the output would be (annual runo� + annual evaporation). We are mainly inter-
ested in annual runo�.

Finally we compare the predicted values with the "true", observed values. The results are
displayed in Table B.1, and we see that the predictions are relatively close to the observed
values.
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Table B.1: The observed values of precipitation (y) at Gullbrå and the observed runo� (ζ∗)
within Catchment 4 compared to the predicted values η̂ and ζ̂ with posterior standard devia-
tions.

1995 1996 Unit
y 1.6 2.1 [m/year]
η̂ 1.8 2.6 [m/year]
Posterior sd 0.81 0.82 [m/year]

ζ∗ 0.19 0.31 [·108m3/year]

ζ̂ 0.22 0.34 [·108m3/year]
Posterior sd 0.088 0.089 [·108m3/year]
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