
Investigating the Generality of Deep
Learning

Torgeir Haaland

Master of Science in Computer Science

Supervisor: Keith Downing, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

i

Abstract

This thesis investigates how general the knowledge stored in deep-Q-networks
are. This general knowledge can be used to reduce the training time of deep
neural networks. Recent advances in the field of deep reinforcement learning
have yielded more general solutions than previously possible. Deep architectures
are computationally expensive to train, and general knowledge can be used to
kick-start the training, effectively reducing training time.

We know that the low-level features in deep convolutional neural networks trained
on image recognition tasks tend to be of a somewhat general nature. To inves-
tigate if this is the case for deep reinforcement learning, deep-Q-networks were
implemented and trained on two similar Atari 2600 games; Pong and Breakout.
First, the low-level features between two networks were visually compared. Sec-
ond, the differences between the low-level features were quantified. Third, the
first convolutional layer of a fully trained base network was transferred to a target
network before training. This could determine if the general features in the base
network would give a cutback in training time for the target network.

The results were mixed. Visually, there were few similarities between the two
tasks, and many filters resembled task-specific features. Nevertheless, the quan-
tified difference showed that there were indeed similarities. Using Breakout as
base network and Pong as target network resulted in faster convergence and a
possible cutback in training time. However, using Pong as base task and Break-
out as target task did not. This may be due to the variation in difficulty between
the two tasks.

ii

Sammendrag

Denne avhandlingen undersøker hvor generell kunnskapen i deep-Q-networks
er. Generell kunnskap kan brukes til å redusere treningstiden for dype nevrale
nettverk. Nylige fremskritt innen forskning p̊a dyp reinforcement learning har
resultert i mer generelle løsninger enn tidligere. Dype arkitekturer er beregn-
ingsmessig krevende å trene, og generell kunnskap kan bli brukt til å fremskynde
treningen, noe som kan redusere treningstiden.

Vi vet at lavniv̊a bildetrekk i dype nevrale konvolusjonsnettverk som trenes til
bildegjenkjenningsoppgaver ofte er av generell natur. For å undersøke om dette
ogs̊a stemmer for dyp reinforcement learning, ble deep-Q-networks implementert
og trent p̊a to like Atari 2600 spill; Pong og Breakout. Først ble lavniv̊a bilde-
trekkene mellom de to nettverkene visuelt sammenlignet. Deretter ble forskjellen
mellom lavniv̊a bildetrekkene kvantifisert. Til slutt ble konvolusjonslaget til et
ferdigtrent grunnettverk overført til et m̊alnettverk før det startet treningen.
Dette skulle gi svar p̊a om de generelle bildetrekkene i grunnettverket kunne re-
dusere treningstiden til m̊alnettverket.

Resultatene var varierende. Det var f̊a visuelle likheter mellom de to oppgavene,
og mange filtre virket å være oppgavespesifikke. Den kvantifiserte forskjellen viste
derimot at det var likheter mellom dem. Da Breakout ble brukt som grunnettverk
og Pong som m̊alnettverk, konvergerte treningen tidligere og treningstiden kunne
dermed reduseres. Men, da Pong ble brukt som grunnettverk og Breakout som
m̊alnettverk gjorde den ikke det. Grunnen til dette kan være den store forskjellen
i vanskelighetsgrad mellom de to oppgavene.

iii

Preface

This thesis concludes my Master of Science in Computer Science at the Depart-
ment of Computer and Information Science (IDI) at the Norwegian University
of Science and Technology (NTNU). The supervisor for this thesis was Professor
Keith L. Downing.

I would like to thank my supervisor, Keith, for the opportunity to do this project
and for providing valuable feedback throughout the past months. Furthermore,
I would like to thank my girlfriend, friends and family for their support. Special
thanks to Olav Vatne for proofreading, his insights, and critique.

Torgeir Haaland
Trondheim, June 10, 2016

iv

Acronyms

AGI Artificial General Intelligence.

AI Artificial intelligence.

ANN Artificial neural network.

CNN convolutional neural network.

DNN deep neural network.

DQN deep-Q-network.

GPU graphics processing unit.

MDP Markov Decision Process.

SGD Stochastic Gradient Descent.

v

vi Acronyms

List of Figures

2.1 2D convolution. 8
2.2 Sparse connectivity. 9
2.3 Reinforcement learning. 11
2.4 Yosinski et al. [2014] results. 19

3.1 The Atari game Pong. 26
3.2 The Atari game Breakout. 27
3.3 Activation functions. 29
3.4 DQN model architecture. 30
3.5 Layer transfer. 44

4.1 Pong filters. 49
4.2 Breakout filters. 50
4.3 Pong target results. 59
4.4 Breakout target results. 63

vii

viii LIST OF FIGURES

List of Tables

2.1 Search terms. 14

3.1 Hyperparameters for the DQN . 37
3.2 Experiment overview. 39
3.3 Comparison scheme. 42

4.1 Difference score results. 54
4.2 Difference score results, sparse. 54
4.3 Difference score results, skipping unadjusted filters. 55

ix

x LIST OF TABLES

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Background and Motivation . 1
1.3 Goals and Research Questions . 3
1.4 Research Method . 4
1.5 Thesis Structure . 4

2 Background Theory and Motivation 5
2.1 Overview . 5
2.2 Deep Learning . 5
2.3 Multitask Learning . 10
2.4 Reinforcement Learning . 11
2.5 Structured Literature Review . 13

2.5.1 Identification of Research 13
2.5.2 Screening Process . 14

2.6 Related Work . 15
2.6.1 Human-Level Control Through Deep Reinforcement Learning 15
2.6.2 How Transferable are Features in Deep Neural Networks? . 17
2.6.3 Simultaneous Deep Transfer Across Domains and Tasks . . 18
2.6.4 Actor-Mimic: Deep Multitask and Transfer Reinforcement

Learning . 20
2.6.5 Other Relevant Work . 22

2.7 Background Summary . 23

3 Methodology 25
3.1 Overview . 25
3.2 Atari 2600 . 25
3.3 Deep Q Network . 27

3.3.1 Preprocessing . 28
3.3.2 The Model Architecture . 28

xi

xii CONTENTS

3.3.3 The Algorithm . 30
3.3.4 Training . 34

3.4 Hyperparameters . 35
3.5 Implementation Details . 36
3.6 Experiments . 38

3.6.1 Selection of Tasks . 39
3.6.2 E1 - Low-Level Features - Visual Comparison 40
3.6.3 E1 - Low-Level Features - Difference Score 40
3.6.4 E2 and E3 - Cutback in Training Time 42

3.7 Methodology Summary . 45

4 Results and Analysis 47
4.1 Overview . 47
4.2 E1 - Low-Level Features - Visual Comparison 47

4.2.1 Results . 47
4.2.2 Analysis and Discussion . 48

4.3 E1 - Low-Level Features - Difference Score 53
4.3.1 Results . 53
4.3.2 Analysis and Discussion . 55

4.4 E2 - Cutback in Training Time - Pong as Target 57
4.4.1 Results . 57
4.4.2 Analysis and Discussion . 57

4.5 E3 - Cutback in Training Time - Breakout as Target 61
4.5.1 Results . 61
4.5.2 Analysis and Discussion . 61

4.6 Performance of the DQN . 65
4.7 Results Summary . 66

5 Conclusion 69
5.1 Overview . 69
5.2 Thesis Summary . 69
5.3 Goal Evaluation . 70
5.4 Contributions . 72
5.5 Future Work . 73

Bibliography 75

Appendices 79
A Videos - Agent Training Progression 79
B Source Code - Environment Overview 81
C Source Code - System Overview . 82

Chapter 1

Introduction

1.1 Overview

In this thesis, the state of the art in the field of deep learning and the generality
of deep learning systems has been investigated. Further, the generality of the
knowledge contained in deep-Q-networks has been studied.

This chapter gives an introduction to the thesis. Section 1.2 explains the back-
ground and motivation behind the work in this thesis. Next, Section 1.3 describes
the goal and research questions. The research method used to achieve the goal is
described in Section 1.4. Finally, Section 1.5 gives an overview of the structure
of this.

1.2 Background and Motivation

Artificial intelligence (AI) involves the science and engineering used to make in-
telligent machines, especially intelligent computer programs. One subfield of AI
deals with biological inspired AI, or AI that is inspired by various natural phe-
nomena. The Artificial neural network (ANN) is one particular family of models
in this category. ANNs are inspired by the biological neural networks in animals
which give the brain its computational power. An ANN consists of neurons con-
nected with each other to exchange information. Each connection has a weight
that can be adjusted based on experience. This enables the networks to learn
from different inputs. Although the first experiments with ANNs started in the
40s, it was not until 1974 when the backpropagation algorithm was introduced
that the networks could be trained to compute any function. Hardware limi-
tations and lack of understanding on how to efficiently train an ANN resulted

1

2 CHAPTER 1. INTRODUCTION

in the technique not being widely used in comparison to other machine learn-
ing techniques. This, however, changed when Hinton and Salakhutdinov [2006]
proposed an efficient way of training neural networks with several hidden layers,
introducing the term deep learning.

Today, international companies like Google, Facebook and Microsoft has their
own AI divisions, employing some of the most known researchers within the field
of deep learning. The technology has become part of the state of the art systems
in disciplines spanning from computer vision to speech recognition.

Deep learning systems have provided great results in a range of disciplines. An
example is the contributions from Mnih et al. [2015], a research team in the
Google-owned company DeepMind. They combined reinforcement learning with
a convolutional neural network and trained it on Atari 2600 games using only
the pixel values and the score in the game as inputs. The result was an agent
exceeding human expert level. Because of their results, the publication has re-
ceived a lot of attention. The important thing to take from this publication, is
that they used the same network architecture with the same hyperparameters for
every game they trained on. There was no need to tweak or adapt the network
when training a specific game. This general trait of the network may take us one
step closer towards achieving Artificial General Intelligence (AGI).

Many subfields of specialized “narrow AI” aims to create programs for a spe-
cific task, like playing games or driving cars. AGI, on the other hand, aims to
engineer general intelligence that can learn and be applied across various domains
[Goertzel and Pennachin, 2007]. Ask the average man in the street what he asso-
ciates with AI, and he will most probably mention R2D2, C3PO or other thinking
machines from science fiction. If an academic within the field was asked the same
question, the answer would be different. The AI research today is concerned
with building more narrow and specialized software, far from the motivation that
started the field. One can say that what the average man in the street considers
AI, is the goal of the AGI community.

There is long way until AGI is achieved, but small steps are taken all the time.
Mnih et al. [2015] is an example of this. Personally, I think AGI is an exciting
thought and the result produced by DeepMind made me realize that a general AI
is an attainable goal. It was this work that woke my interest in deep learning, and
it is indeed interesting to see how general these systems can be. The motivation
behind this thesis is just that, to explore how general the knowledge contained
in a deep learning system is. In addition, how can its generality benefit the field
of neural networks? These are some of the questions I seek an answer to when

1.3. GOALS AND RESEARCH QUESTIONS 3

researching the state of the art in this field of AI.

1.3 Goals and Research Questions

This section presents the task description, goal and research questions of this
thesis.

Task description Deep Learning has become an extremely successful (and hence
popular) classification method in AI and Machine Learning over the past
couple of years. Many of the big(gest) computer companies have bought up
top-level neural network gurus to help them take advantage of this technol-
ogy. In this project, the student can suggest a domain to which they would
like to apply deep networks, and then they will use the Theano system to
solve a problem in that domain.

This is the task description as specified by my supervisor. From this description,
goals and research questions were defined.

Goal Investigate how general the information stored in a deep neural network is.

The generality of deep neural networks will be investigated by considering the
research questions below.

Research question 1 Will there be any similarities between the lower level fea-
tures in deep neural networks trained on similar tasks?

We know that there is evidence that low-level features in deep convolutional
neural networks contain somewhat general knowledge. The lower layers often
correspond to known image processing filters for detecting edges and other sim-
ilar low-level traits. This question is necessary to determine because the task
a network is trained to do may affect how features are learned. If lower level
features are similar, it may indicate that the knowledge contained in that part of
the network is of a somewhat general nature, and may be reused and applied to
different tasks.

Research question 2 Will there be a significant cutback on the training time
for a network already trained on a similar task? How significant?

Deep neural networks may require millions of labeled examples to be trained in
a supervised fashion. This may take days with the technology available today.
It is important to find ways of making the training process more effective. If a
network contains general information, this information can perhaps contribute to
reducing the training time of other networks.

4 CHAPTER 1. INTRODUCTION

1.4 Research Method

A deep-Q-network system has been implemented and background reading were
performed, much of it presented in Chapter 2. Experiments were designed ac-
cording to the research questions and applied to the domain of Atari games
utilizing the implemented system. The results have been presented, discussed
and analyzed and finally, conclusions in regards to the research questions were
made.

1.5 Thesis Structure

This thesis is divided into five chapters. This chapter gives a brief introduction
to the thesis in addition to stating its goal and research questions. Chapter 2
contains background theory and a literature review covering relevant studies for
this thesis. Chapter 3 provides a detailed description of the implemented system
as well as experimental setup. In Chapter 4, the results from the experiments
are presented, analyzed and discussed. Finally, Chapter 5 gives a summary of
the results and relates them to the research questions.

Chapter 2

Background Theory and
Motivation

2.1 Overview

This chapter contains background theory and presents research in the field of deep
neural networks and deep-Q-networks. Section 2.2 introduces concepts within
deep learning. Then, Section 2.3 introduces a technique to learn multiple tasks
at the same time. Furthermore, Section 2.4 covers reinforcement learning. Section
2.5 describes the literature review. Then, the related work found by the literature
review is presented in Section 2.6. Finally, Section 2.7 gives a summary of the
studies and how they are connected to the research questions.

2.2 Deep Learning

The term deep learning is believed to originate from the mid 2000s when [Hinton
et al., 2006] and [Hinton and Salakhutdinov, 2006] successfully managed to train
a deep neural network (DNN) within reasonable time. A neural network with
more than one hidden layer can be called a DNN. The additional layers make
deep architectures able to learn representations of data with multiple levels of
abstraction. This have resulted in breakthroughs in areas such as speech recog-
nition and visual object recognition.

Conventional approaches to machine learning are limited in their ability to pro-
cess raw data. For a long time, constructing a conventional machine learning
system would often require specific knowledge of the application domain and

5

6 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

careful engineering to be able to create a system that processed raw data into a
useful internal representation. Deep learning comprises methods that learn rep-
resentations which can be further used to extract features from the data.

An example of this is recognition of objects in images. A deep neural network
takes the raw pixel values as input. For each layer in the network, the representa-
tions are more abstracted. This property exploits the fact that images (together
with other natural signals) are compositional hierarchies where higher-level fea-
tures consist of combinations of lower-level features. In the lower layers, edges are
often detected. In higher layers, more specific patterns are detected. For instance,
in a network trained to detect human faces, the higher layers often highlights the
eyes, mouth or nose. The various layers of representation make deep learning
methods able to learn very complex functions and structures in high-dimensional
data. This has resulted in deep learning methods beating records in image recog-
nition and speech recognition, it has performed better than previous methods at
predicting the activity of potential drug molecules, analyzing particle accelerator
data, reconstructing brain circuits among others [LeCun et al., 2015].

The convolutional neural network (CNN) plays a big role in the history of deep
learning. CNNs performed well before other deep learning approaches were vi-
able. One example is the network developed by AT&T in 1998 which could read
checks [LeCun et al., 1998]. The commercial interest in deep learning in the recent
years started when Krizhevsky et al. [2012] won the ImageNet object recognition
challenge using a CNN.

CNNs take advantage of data that comes in the form of arrays. 1-dimensional
arrays for language signals, 2-dimensional arrays for images and 3-dimensional
arrays for video are examples of data that CNNs have been used on with suc-
cess. They use convolution instead of matrix multiplication in some of its layers.
Convolution is a mathematical operation on two functions, producing a third
function:

s(t) = (x ∗ w)(t) (2.1)

The continuous convolution is defined as:

s(t) =

∫
x(a)w(t− a)da (2.2)

It is the discrete definition of convolution that is used in machine learning:

2.2. DEEP LEARNING 7

s[t] = (x ∗ w)(t) =

∞∑
a=−∞

x[a]w[t− a] (2.3)

In the context of CNNs, x is the input, w is the kernel, or the parameters that
can learn and s is the output, or feature map. Equation 2.3 defines the discrete
convolution for a single dimension, but in machine learning the input and kernel
is often multidimensional arrays called tensors. Each element of the input and
kernel must be explicitly stored separately. For this reason implementation of the
infinite summation often use a sparse approach where the functions are assumed
to be zero everywhere but the finite set of points for which values are stored.
This means that the infinite summation effectively becomes the finite summation
over the number of elements in the array. In addition, the convolution is often
computed over more than one axis at a time. For a two-dimensional image, a
two-dimensional kernel is probably also wanted. The discrete convolution over
two dimensions is:

s[i, j] = (I ∗K)[i, j] =
∑
m

∑
n

I[m,n]K[i−m, j − n] (2.4)

where I is the two-dimensional image and K is the two-dimensional kernel. For
images, convolution can be seen as sliding the kernel over the larger input image.
The pixel values in the output image are calculated by multiplying each value in
the kernel with the corresponding pixel values in the input image, see Figure 2.1.

As Goodfellow et al. [2016] explains, there are several reasons why CNNs gen-
erally performs well on data such as images. One of them is sparse connectivity
where the kernel is smaller than the input. With images, it is not necessary with
a fully connected network. A subset of the pixels is often enough to extract useful
features. This results in fewer operations to compute the output as well as less
memory usage. See Figure 2.2.

In traditional neural networks, the elements of the weight matrix are used once
to compute the output from a layer. However, in CNNs each unit of the kernel is
used for every position of the input. This means that the memory requirements
is reduced as only one set of parameters are learned instead of a separate set of
parameters for every location. This is called parameter sharing. In images, for
example, this is beneficial since low-level features like edges often appear in the
entire image.

8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.1: 2D convolution, figure based on Figure 9.1 in [Goodfellow et al.,
2016]. The outlined part of the output tensor is formed by applying the kernel
to the corresponding region of the input tensor.

Another reason CNNs have good performance on images is pooling. Pooling
replaces the output of a specific location with a statistic summary of the nearby
outputs. An example is max pooling which returns the max output in a neigh-

2.2. DEEP LEARNING 9

Figure 2.2: Figure based on Figure 9.2 in [Goodfellow et al., 2016]. (Left)
When input unit x3 is activated in a sparse CNN with kernel width = 3, only
the highlighted output units s2...4 are affected. (Right) When input unit x3 is
activated in a fully connected network, all output units s1...5 are affected.

borhood. Pooling makes the representation invariant to small translations of the
input. This is convenient when the exact pixel position of a feature is not rele-
vant. In images, it is enough to know that if there is a face in it, there should be
an eye on the left and an eye on the right.

For a CNN the typical stages of a layer is to first perform the convolution on
the input. Second, the resulting function is passed through an activation func-
tion, often a rectifier1. Last, a pooling operation is often performed.

Stochastic Gradient Descent (SGD) is an algorithm used to tune the weights
of a DNN. It works by taking small steps downhill on an error surface defined
by a loss- or objective function. One of the main advantages of SGD is that it
does not need to be run over the full training set, effectively reducing the com-
putational cost of training while still converging relatively fast. In its simplest
form only one training example is used to find and follow the negative gradient
of the objective. However, by introducing minibatches, more than one training
example can be used for each estimate of the gradient. The advantage of this
is that the variance in the estimated gradient is reduced, in addition to taking
advantage of the hierarchical memory organization in computers. SGD is seldom
used in its pure form when training neural networks. There are a number of
different techniques used to speed up convergence, one of them is momentum.
The error surface of deep architectures often has the form of a shallow ravine

1Glorot et al. [2011] showed that the rectified linear unit performed better than previously
used activation functions.

10 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

with steep walls. Dealing with this landscape, SGD has a tendency to oscillate
across the ravine since the gradient will point down the steep walls rather than
towards the minimum. By introducing momentum, the updates are pushed more
quickly along the ravine, resulting in faster convergence. Adjusting the weights
in CNNs during training are done with the backpropagation algorithm [Hecht-
Nielsen, 1989], as with other neural networks.

With the use of deep learning methods, an increase in the available data is not
hard to take advantage of. This is because the engineering needed to apply deep
learning on a task is small compared to techniques where the data representation
must be hand-crafted. It is not unreasonable to think that deep learning will
have many more accomplishments in the coming years.

2.3 Multitask Learning

Traditionally, machine learning techniques has been based on learning from a
single task at the time. Like learning to recognize cats on an image based on
examples of images with or without cats. Humans and animals in the real world
often use information from different domains and tasks when learning new things;
this is what inspired the introduction of multitask learning. Multitask learning
is a method that uses information from domains of related tasks in the training
signal. The idea is to improve the generality of the learned knowledge by learning
similar tasks from different domains in parallel and sharing the representation.
The result is that what is learned for one task may also help to learn other tasks.
Benefits occur due to the extra domain knowledge contained in the extra training
signals.

Caruana [1997] tried using multitask learning combined with simple shallow neu-
ral networks and k-nearest neighbors. He found that multitask learning improved
generalization and that the benefit from using extra tasks can be substantial.
However, he stresses that the results are most promising when not using san-
itized data, as the benefits from the extra information provided are often lost
when engineering features by hand. For this reason, it is interesting to see how
multitask learning provides benefits when being combined with DNNs. We know
that one of the strengths of DNNs is that they do not need handcrafted features,
but learns them.

When Caruana [1997] was published, there was not a lot of situations where
multitask learning would be beneficial to use. He stated that the benefits would
be more clear when the technique is used on problems closer to those encountered
in a real world setting and that the opportunities for the technique will increase.

2.4. REINFORCEMENT LEARNING 11

Multitask learning is used by some research mentioned in the related works (Sec-
tion 2.6). However, because of the amount of computational power needed to
perform experiments involving multitask learning combined with DNNs, the ex-
periments in this thesis will not use it.

2.4 Reinforcement Learning

Reinforcement learning is a machine learning technique biologically inspired by
the basal ganglia, a part of the brain that responds to dopamine. The neurotrans-
mitter dopamine is released as a reward when we experience something positive,
like eating good food or winning the jackpot on a slot machine. In machine learn-
ing, reinforcement learning is concerned with how an agent should take actions
in an environment based on the maximum calculated cumulative reward. Unlike
a supervised learning scheme which needs a correct mapping between each input
and output, a reinforcement learning agent receives feedback at rarer intervals,
which means that a certain feedback signal can not be tied directly to a particular
action. For an agent trained on a video game, the feedback can be the score or
simply if it won the game or not. By repeatedly playing the game, the agent can
learn how it should behave in order to maximize the cumulative reward.

Figure 2.3: Reinforcement learning. An agent performs an action on the environ-
ment. The agent's state representation of the environment changes and a reward
is obtained.

Figure 2.3 shows the general idea of reinforcement learning. The agent per-
forms an action and the environment changes. By observing the changes in the

12 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

environment and by tying it to the reward it is receiving, it can learn to judge if
its behavior is favorable.

For a reinforcement learning agent, it is not enough to always choose the action
which leads to the state with highest cumulative reward. Exploitative behavior
like this will create a greedy agent that seldom finds the optimal solution [Russel
and Norvig, 2010]. This is because the agent has learned a model that most likely
does not correlate with the true environment. Exploring the environment may
improve the agent's model, leading to greater rewards in the future. The agent
must find the balance between exploring and exploiting when deciding what ac-
tion to take. It needs to both maximize its current reward, but at the same
time maximize its long-term welfare. One behavior policy is the ε-greedy policy.
By choosing the greedy option with a probability of 1 − ε, where ε is a value
between 0 and 1, this policy ensures that the agent will explore. One variant of
the ε-greedy policy starts with a high ε-value which decreases over time. This
results in an agent that mainly explores the environment at the start. As time
progresses and the environment is more known, it tends to exploit the choices
that give the highest expected reward.

Many reinforcement learning methods are based on the Bellman equation. The
Bellman equation states that the utility of a state is the immediate reward for
that state plus the expected discounted utility of the next state, assuming the agent
chooses the optimal action (Russel and Norvig [2010]). In other words, the utility
of a state is given by:

U(s) = R(s) + γmaxa∈A(s)

∑
s′

P (s′|s, a)U(s′) (2.5)

where R(s) is the reward in state s, γ is a discount factor, a is the action and s′

is the next state.

Q-learning is a model-free reinforcement learning method. By letting an agent
experience the consequences of its actions, it does not need to map the domain
(Watkins and Dayan [1992]). The agent will try an action at a state and decide
the consequences in terms of the immediate reward (or penalty) it receives. This
is added with the value, or utility, of the state it is taken to. The agent learns
which states are best by trying all actions in all states repeatedly and thereby
judge the long-term discounted reward. Russel and Norvig [2010] defines the
value of a state as its utility, U(s). Further, the value of doing action a in state
s is Q(s, a) and is called the Q-value. Q-learning does not learn the utilities of
the states, but rather the action-utility representation. The relation between the
Q-value and the utility is:

2.5. STRUCTURED LITERATURE REVIEW 13

U(s) = maxaQ(s, a) (2.6)

Since Q-learning does not require a model of the state transitions, only the Q-
values are updated:

Q(s, a)← Q(s, a) + α(R(s) + γmaxa′Q(s′, a′)−Q(s, a)) (2.7)

This is calculated when action a is executed in state s leading to s′. Q(s, a)
is the Q-value for doing action a in state s, α is the learning rate, R(s) is the
reward in state s and γ is the discount factor ensuring immediate rewards are
more valuable than later rewards. It is worth mentioning that Q-learning is an
off-policy method [Sutton and Barto, 1998], meaning that it updates its Q-values
using the next state s′ and the greedy action a′. It estimates the total future
discounted reward assuming a greedy policy was followed, although this is not
the case. This trait makes Q-learning able to explore while still being able to
update its Q-values with the best action available.

Reinforcement learning can be combined with other techniques to create more
sophisticated learning methods. In some problem domains, it can be computa-
tionally unfeasible to use Q-learning directly, especially if the state space becomes
large. Recently, Mnih et al. [2015] has received attention for combining Q-learning
with a CNN. The CNN is used to extract the visual features of the game and
approximate the Q-function. This reduces the computational cost needed to find
the Q-values. Several tricks were incorporated to make the training converge, as
it turns out it is not straight forward to approximate the Q-function with neural
networks. This will be discussed further in Chapter 3.

2.5 Structured Literature Review

The purpose of this structured literature review is to explore what already ex-
ists in the field of deep learning and deep learning combined with reinforcement
learning. The SLR is based on a template by Anders Kofod-Petersen, Adjunct
Professor at the Department of Computer and Information Science at the Nor-
wegian University of Science and Technology.

2.5.1 Identification of Research

Table 2.1 displays various keywords used for the search. The table consists of
groups and terms. The groups are supposed to contain words that have the same

14 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

semantic meaning or words that can be interchanged in a search term. By using
the logical operators OR and AND, a collection of different search terms was
constructed. A combination of all groups produced a too narrow result. Hence,
combinations excluding different groups were also tried. The search engines used
were:

• Google Scholar

• IEEE Xplore

• SpringerLink

• ACM digital library

• arXiv

• NIPS

In addition to the research material found using this search approach, several
papers were found in more informal ways. My supervisor suggested to start with
papers by some leading researchers within deep learning, namely Yoshua Bengio,
Yann LeCunn and Geoffrey Hinton. Furthermore, Mnih et al. [2015] was used as
a starting point.

Table 2.1: Search terms.

Group 1 Group 2 Group 3 Group 4

Term 1 Deep learning Artificial general Reinforcement Transferability

intelligence learning

Term 2 Neural network General intelligence Q-learning General features

Term 3 Deep neural network General Atari Transfer learning

Term 4 Convolutional neural General knowledge

network

Term 5 Machine learning Multitask learning

2.5.2 Screening Process

By using the search terms in the mentioned search engines, 400 papers were
found. A screening process was introduced to reduce the amount of papers to 20.
The papers were either used in the related work section or incorporated into the

2.6. RELATED WORK 15

background theory.

First, duplicates were removed. Second, papers published after 2000 were pre-
ferred as it is only in the last decade or so that deep networks have been success-
fully used. Third, the title was used to filter out papers which was not relevant.
This left a set of papers that could be filtered with respect to quality. The studies
main concern should be on DNNs and preferably focus on the generality of the
network. Studies combining reinforcement learning with DNNs or in some way
consider techniques on how to learn more general knowledge were favorable. In
addition, there should be a clear statement of the aim of the research and the
study should be put into context of other studies and research.

2.6 Related Work

This section is the result of the structured literature review. A subsection for
each of the most relevant studies are included. Other papers are then presented
in Section 2.6.5. Then, in Section 2.7, the related work will be summarized and
viewed in light of the research questions.

2.6.1 Human-Level Control Through Deep Reinforcement
Learning

Humans and animals are good at deriving efficient representations of high-dimens-
ional sensory input. This is important to use reinforcement learning success-
fully in situations approaching real-world complexity. Reinforcement learning
has been used successfully across domains, but has previously been limited to
fully observed domains, domains with handcrafted features or low-dimensional
state spaces. Mnih et al. [2015] uses recent advances in deep neural networks
to develop a novel artificial agent they call a deep-Q-network (DQN). The agent
learns policies directly from high-dimensional sensory inputs using end-to-end
reinforcement learning. The agent was tested on Atari 2600 games and received
only pixels and the game score as input. 49 different Atari games were tested.
The algorithms, network architecture and hyperparameters were kept the same
between each game. The results showed that the agent performed better than
all previous algorithms and achieved a level comparable to a professional game
tester. The paper claims that it is the first artificial agent that is capable of
learning to excel at a diverse array of challenging tasks.

Atari games comprise tasks in which the agent interacts with the environment
through a sequence of observations, actions and rewards. The goal of the agent

16 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

is to maximize the cumulative future reward. To do this, a CNN is used to ap-
proximate the action-value function (see Equation 2.7 in Section 2.4).

Because of the non-linear nature of neural networks, reinforcement learning is
known to be unstable when a neural network is used to represent the action-
value function. This is because of:

• Correlations present in the sequence of observations.

• The fact that small updates to the Q-values may change the policy signifi-
cantly and therefore change the data distribution.

• Correlations between the Q-values and the target values
r + γmaxa′Q(s′, a′).

To battle these instabilities they used a novel variant of Q-learning. First, expe-
rience replay was introduced which averages the behavior distribution over many
of the previous states. This smoothed out learning and helped avoid oscillations
or divergence in the parameters. Second, a target network was used, effectively
adjusting the Q-values towards target values generated by the target network
that are only periodically updated, reducing correlations with the target. The
effect of turning these techniques off was detrimental to the performance of the
agent.

To evaluate the agent, it was trained on the Atari 2600 platform. It was trained
with very little prior knowledge, knowing only that the input data was visual
images and the number of actions available, but not their correspondences. The
method was able to train large neural networks using reinforcement learning in a
stable manner. The agent outperformed existing reinforcement learning methods
on 43 out of 49 games. Furthermore, the paper claimed that the agent performed
at a level comparable to a professional human game tester across the set of 49
games by achieving more than 75% of the human score on more than half of the
games (29 games).

The games were varied in their nature, spanning from side-scrolling shooters
(River Raid) to boxing games (Boxing) and three-dimensional car racing games
(Enduro). In certain games, the agent was able to discover relatively long-term
strategies. For instance, in Breakout, the agent learned the optimal strategy,
which was to dig a tunnel on the side allowing the ball to be sent around the
back and destroy a large number of blocks. Other games that require more tem-
porally extended planning strategies was hard for the DQN agent (Montezuma's
Revenge).

2.6. RELATED WORK 17

2.6.2 How Transferable are Features in Deep Neural Net-
works?

Yosinski et al. [2014] investigates the generality versus specificity of features in
deep neural networks. When training deep neural networks on images, the first
few layers tend to learn features similar to Gabor filters and color blobs. These
features appear to not be specific to a particular task, but general in that they
are applicable to many datasets and tasks. The paper experimentally quantifies
the generality versus specificity of neurons in each layer of a deep CNN. They
found that transferability was negatively affected by two issues:

• The specialization of higher layer neurons to their original task at the ex-
pense of performance on the target task. This was expected.

• Optimization difficulties related to splitting networks between co-adapted
neurons, i.e neurons that has developed unwanted dependencies between
each other. This was not expected.

Other results that was found was:

• The transferability decreases as the distance between the base task and
target task increases, but transferring features from distant tasks are still
better than randomly initialized features.

• Initializing a network with transferred features (from almost any number
of layers) can produce a boost to generalization.

The motivation to quantify generality vs specificity and to find out if the transi-
tion between them occur suddenly or is spread out over several layers is to use the
knowledge in transfer learning [Bengio, 2012]. In addition it can be beneficial to
find out where the transition takes place (near first layer, middle or last layer). In
transfer learning, a network is first trained on a base task. The learned features
are then transferred to a target network to further fine-tune them. This will work
if the features are general, or suitable for both the base task and the target task.
The power of transfer learning appears when a target dataset is too small to train
a network without overfitting. If there is a large base dataset, a network can be
trained on it and transferred to the smaller target set. This reduces overfitting
drastically.

ImageNet was used to conduct the experiment. This dataset contains over 1.2
million labeled training images and 50,000 test images. Each image is labeled
with one of 1,000 classes. Two tasks, A and B were created by splitting the
1,000 ImageNet classes into two random groups containing half the data each.
An 8-layer convolutional neural network was trained on each task, providing the

18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

networks baseA and baseB. A layer n was chosen from {1,2,...,7} to train several
new networks. n = 3 is used in the following example.

To make a control for the next transfer network a selffer network, B3B, was cre-
ated where the first 3 layers are copied from baseB and frozen. The five higher
layers (4-8) were initialized randomly and trained on dataset B. The transfer
network A3B was created by copying the first 3 layers from baseA and frozen.
The five higher layers (4-8) was initialized randomly and trained on dataset B. If
A3B performed as well as baseB, there was evidence that the third-layer features
were general, at least with respect to B. However, if the performance suffered,
the third layer most probably contained features specific to A.

This was repeated for all n in {1,2,...,7}2 in both directions (i.e AnB and BnA).
Tests were the networks were not frozen were also constructed:

• A selffer network B3B+: just like B3B, but where all layers learn.

• A transfer network A3B+: just like A3B, but where all layers learn.

The ImageNet dataset contains clusters of similar classes, for example different
Felidae: tabby cat, tiger cat, Persian cat etc. These classes were distributed as
equally as possible between A and B. To create a split of the ImageNet dataset
that was as semantically different as possible, the hierarchy of parent classes of
the ImageNet dataset was exploited: A containing only man-made entities and
B containing natural entities.

Figure 2.4 illustrates the result of the main experiment. The AnB+ networks,
where layers are transferred and fine-tuned, improved generalization. The BnB
networks seem to suffer from co-adaptation, which means that the features in
the middle layers seem to develop some dependence on each other. The BnB+

networks where layers are fine-tuned, recover the co-adapted features. The per-
formance of AnB networks where layers are transferred and frozen suffers from
both co-adaptation and the specificity of the higher layers.

The findings of Yosinski et al. [2014] were strengthened by Azizpour et al. [2015].
They came to the same conclusion, that there are performance gains to be made
by fine-tuning a pre-trained network towards a target task. Their results are
drawn from a wider range of target tasks than Yosinski et al. [2014].

2.6.3 Simultaneous Deep Transfer Across Domains and Tasks

Picture a manufacturer that trains a robot to visually recognize thousands of
common objects. When the robot is shipped to a customer its performance will

2.6. RELATED WORK 19

Figure 2.4: Figure based on Figure 2 in Yosinski et al. [2014]. Average perfor-
mance of each treatment. AnB+: transfer and fine-tuning improves generaliza-
tion. BnB+: Fine-tuning recovers the co-adapted features. AnB: Performance
drops due to task specialization. BnB: Performance drops due to co-adapted
features. (Best viewed in colors).

be negatively affected due to the new environment and change in domain. By
fine-tuning it in a supervised manner the original performance can be regained.
However, this is hard given the state-of-the-art today. Current CNNs may re-
quire thousands of labeled examples from each category to be fine-tuned, this
is not practical. The motivation behind Tzeng et al. [2015] is to develop an
algorithm that adapts between the source- and target-environments. This can be
done using generic statistics from unlabeled data collected in the target environ-
ment as well as some (human) labeled examples from a subset of the categories
of interest. Previous efforts have shown that CNNs trained on large datasets are
good at reducing dataset bias, but unable to remove it completely. This paper
introduces a novel CNN architecture that works on unlabeled or sparsely labeled
target domain data. This facilitates transfer between domains and optimizes for
domain invariance. The results of this architecture exceed previously published
results on standard visual domain adaptation tasks.

One technique used to be able to transfer domain is domain confusion. This
is done by making the marginal feature distributions of the source and target as
similar as possible. A domain classifier is learned to correctly classify each image

20 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

into the domain from which it came. After this, it attempts to learn a repre-
sentation such that the domain classifier cannot distinguish the two domains in
feature space.

Domain confusion will reduce the distance of the marginal distributions for the
domains, but source and target classes are not yet aligned. The process of align-
ing source and target classes is called task transfer and is done by transferring
empirical category correlations learned on the source to the target domain and
optimize the representation to recreate the structure in the target domain. The
few labeled target examples are used as reference points. First, the soft label is
computed. This is the average output probability distribution over the source
training examples in each category. Second, the model is optimized to match the
target labels to the soft labels. The result is that information is transferred to
categories with no label in the target domain.

Domain confusion and task transfer is solved with a novel CNN architecture.
When a small amount of labeled data is available in each category, supervised
adaptation is performed. When a small amount of data is only available in a
subset of the categories, semi-supervised adaptation is performed.

To evaluate the efficiency, the method is conducted on the Office dataset, which
is a standard benchmark dataset used for visual domain adaptation. In addi-
tion, a new large-scale cross-dataset collection for classification across visually
distinct domains. Positive results were achieved for supervised adaptation, where
labeled data was available in all source categories and sparsely available in the
target categories. Using only soft labels or domain confusion performed better
than hard label training in 5 out of 6 domain transfers. By combining the two,
slightly higher performance on average was achieved. Their method outperforms
the baselines for semi-supervised adaptation, where labeled data was available in
all source categories and sparsely available for a subset of the target categories.
The baseline for semi-supervised adaptation was a previous adaptation method
as well as a CNN trained only on the source.

2.6.4 Actor-Mimic: Deep Multitask and Transfer Rein-
forcement Learning

Parisotto et al. [2016] builds on the findings of Mnih et al. [2015] and suggests
a method to enable multitask- and transfer learning. This makes a network able
to learn multiple tasks at the same time and generalize its knowledge to different

2.6. RELATED WORK 21

and new domains. A part of their motivation is that this cuts back on the time
it takes to learn in new environments. They use Atari games to evaluate their
method.

Mnih et al. [2015] uses the same hyperparameters for all the games they learn,
but their DQN needs to be explicitly trained for each game. Parisotto et al.
[2016] suggests that it would be beneficial to exploit the similarities in the differ-
ent games. An example is the game Pong and Breakout, where both consist of
steering a paddle to deflect a ball. They hypothesize that a network trained on
many source tasks should be able to generalize between them. Also, if a network
is trained on many source tasks, it could be transferred to new target tasks.

Given source games S1, ..., SN and expert DQNs E1, ...EN , where Ei is an expert
at playing Si. The goal is to obtain a single network that is able to play at
an expert level on any source game. The paper introduces a method they call
Actor-Mimic to achieve this. The output of the expert network is used as a su-
pervised training signal to guide a multitask network. The multitask network has
the same architecture as an expert network and learns from 8 expert networks
simultaneously. This shows that the model does not need to scale linearly with
the number of source tasks and indicates some level of generalization between
the games.

Transfer learning is achieved by learning a previously unseen game with a trained
multitask network as starting point. They show that the pre-trained network con-
verges faster than a randomly initialized network, effectively cutting down the
training time and also indicating that the learned representations in the source
network generalize well.

The Actor-Mimic method is evaluated across a set of 20 Atari games and reaches
close-to-expert performance on 7 out of the 8 games trained simultaneously. The
Actor-Mimic network uses around 5 million frames to reach a stable behavior.
Compared to the expert networks, using up to 50 million frames for training, this
is a significant cutback. In the case of transfer learning, transferring between
similar games such as Breakout and Video Pinball saves up to 5 million frames
of training time. They claim this corresponds to a cutback in training time of
several days with the hardware used (Nvidia GTX Titan). However, the cutback
in training time is significant only for relatively similar games. The game Rob-
otank seems to learn slower with the transfer from the multitask network. This is
probably because it was the only first-person game in the set of evaluated games
and not similar to the other games.

22 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.6.5 Other Relevant Work

Because of memory limitations on the original Atari 2600 console, a maximum
number of objects that could be displayed on-screen at the same time was set.
Many games omitted this limitation by drawing game objects every other frame,
effectively increasing the number of possible objects to use. This introduces a
flickering effect. It is not visible and hence not a problem for a human player
as it happens too fast to be noticed, but this must be taken into consideration
when designing a learning system. Mnih et al. [2015] solved this issue by using
the four last frames as input every time step. This provided enough information
for the system to understand the context. A different approach to this problem
is described by Hausknecht and Stone [2015]. They suggest replacing the
first post-convolutional fully-connected layer with a recurrent Long Short Term
Memory and only using one frame as input for each time step. Their Deep Recur-
rent Q-Network generalize its policies to the case of complete observations when
trained with partial observations by introducing Flickering Pong. Flickering Pong
is a variant of the game Pong where for each time step, the screen is either fully
revealed or fully obscured with a probability of p = 0.5. They found that in
the case of Flickering Pong, the performance scaled with the observability of the
domain, reaching almost perfect levels when every screen is observed. They ob-
served no improvement on other standard Atari games and concluded that their
recurrent approach only served as an alternative method to the original approach.

A somewhat similar contribution as Parisotto et al. [2016] (see Section 2.6.4)
was published by a Google DeepMind team late November 2015. Rusu et al.
[2016] builds on the findings of Mnih et al. [2015]. They use policy distilla-
tion to extract and transfer action policies from DQNs. Distillation was earlier
introduced as a method for supervised model compression. It works by using su-
pervised regression to train a target network to reproduce the same output as the
source network. The paper suggests a method to use distillation in reinforcement
learning domains. They tested policy distillation in various processes, distillation
to smaller networks was successful and resulted in compression and generaliza-
tion advantages from the original DQN. This is interesting because small models
can be used in many ways, an example is multitask performance. As mentioned
in Section 2.3, multitask learning is a method to improve generalization by using
some similar tasks as a shared source of inductive bias. This is hard in the Atari
domain because the images are diverse and, opposed to natural images, does not
share a common statistical basis. However, distillation makes this easier. Finally,
they mention that future research should focus on using distillation techniques
to stabilize and accelerate learning.

As mentioned in Section 2.3, Caruana [1997] stated that machine learning tech-

2.7. BACKGROUND SUMMARY 23

niques not using handcrafted features could benefit from multitask learning. An
example of this is Collobert and Weston [2008]. In the domain of natural
language processing, they used a CNN that when given a sentence, outputs sev-
eral different traits of it. Examples of outputs were labeling words with their
syntactic role (noun, adverb,...), synonyms, and if the sentence made sense gram-
matically and semantically. The interesting part of their work is that by training
jointly with shared weights using multitask learning, their network was able to
learn these different traits of a sentence at the same time. Earlier approaches
only focused on learning one trait at a time. They focused on developing a net-
work that was rather general and effective with very limited prior knowledge.
They claim that the reason for why they succeeded was that the CNN learned
the features that were relevant and did not rely on handcrafted features. Apart
from showing that simultaneous learning improved generalization performance,
their method was extremely fast. It could take advantage of huge databases, such
as Wikipedia with 631 million words.

2.7 Background Summary

Research from the field of deep learning related to this thesis have been presented.
This section will give a summary of this chapter and at the same time view the
related work in light of the research questions.

Mnih et al. [2015], as described in Section 2.6.1 is the paper this thesis builds
upon. The paper received a lot of publicity and has lead to many studies pub-
lished by other research teams, building on its findings. This indicates that their
contributions have been significant.

Yosinski et al. [2014], summarized in Section 2.6.2, is used in this background
theory because their contributions are directly related to the research questions
of this thesis and provide a foundation for further research in this area. The
question is if the lower layer features in DQNs will have similarities as well.

In terms of the second research question, which investigates ways to achieve a
cutback in training time for DNNs, we see that Section 2.6.3 describes a method
to reduce the bias a trained network has for the domain it is trained on. This
will indeed make it generalize better and reduce the perceived training time for a
potential end user of a system since the network is already initialized with general
knowledge.

In addition, as we saw in Section 2.6.5 with Collobert and Weston [2008], com-
bining multitask learning with deep networks can provide good results in terms of

24 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

generality and the speed of learning. It turns out Parisotto et al. [2016], summa-
rized in Section 2.6.4, successfully combined multitask learning with a DQN. It
describes a novel technique to train a network on multiple tasks at the same time
and reducing training time drastically. Similarly, Rusu et al. [2016], published by
researchers from Google DeepMind used a distillation technique to compress the
knowledge contained in a DQN. They stated that accelerating learning should be
prioritized.

It seems like research in the area of combining multitask learning with rein-
forcement learning, and the importance of reducing training time is a priority
among research done in this field at the moment. This does indeed confirm the
relevance of the research questions of this thesis. However, the task of combining
multitask learning with deep reinforcement learning is computationally expensive
and requires state of the art hardware. What if it is possible to reduce the train-
ing time for a DQN in a less computationally expensive way. Is it possible that
DQNs trained on tasks in the domain of Atari games can have knowledge general
enough that it can reduce training time on a similar task when transferred?

This is the motivation identified when doing the background research. Can the
knowledge contained in a trained DQN be general enough to be transferred to an-
other network and reduce the training time for a similar task? And, is it possible
to do this directly without any distillation, multitask learning or other techniques
focusing on compressing the knowledge from several trained networks? The next
chapter describes the DQN in detail in addition to using the insights provided by
the background research to define experiments addressing the research questions.

Chapter 3

Methodology

3.1 Overview

This chapter starts by introducing the domain of Atari 2600 games used in the
experiments of this thesis in Section 3.2. Second, the DQN is described in detail
in Section 3.3. Furthermore, the hyperparameters and implementation details are
mentioned in Section 3.4 and Section 3.5, respectively. Finally, the experiments
conducted with the DQN in this thesis are described in Section 3.6.

3.2 Atari 2600

The Atari 2600 video game console was released in 1977 and is by many con-
sidered the godfather of modern video game systems. Selling over thirty million
consoles and hundreds of millions of games, it helped spawn a multi-billion dollar
industry [Ata, 1999].

Two games have been chosen for the experiments in this thesis; Pong and Break-
out. Pong, as seen in Figure 3.1 was one of the first arcade video games and was
first released in 1972. It is a sports game that simulates a game of tennis. It
was originally a 2-player game in which the players control a paddle each and
try to deflect the ball in a way that makes the opponent miss it. By making the
opponent concede the ball, the player is rewarded a point. The player that first
reaches 21 points wins. The version of Pong used in this thesis includes a simple
reflex agent used as the opponent to the Q-network. The reflex agent simply
steers the paddle to the same y-coordinates as the ball at all times. It does this
with a constant velocity, making it possible for the other player to beat it. The
player controlled by the DQN agent needs to learn how to use the walls to be

25

26 CHAPTER 3. METHODOLOGY

able to drive the ball past the reflex agent.

(a) (b)

Figure 3.1: The Atari game Pong. (a) Screen from a newly started episode. (b)
Screen from a little later in the same episode. The left (orange) player is the
simple reflex agent built into the game. The right (green) player is the agent
controlled by the DQN. The ball, seen in the middle of the screen, is deflected
by the players. If a player misses and concedes the ball, the opponent receives a
point. The score is displayed at the top of the screen. Best viewed in colors.

Breakout, as seen in Figure 3.2, is the other game selected for this thesis. It
was influenced by Pong and released in 1976. The game consists of six layers of
blocks at the top of the screen. These blocks can be broken by hitting them with
a ball. The player controls a horizontally aligned paddle at the bottom of the
screen which can be steered left and right. By using the paddle to deflect the
ball and hitting the blocks, the player is rewarded points. Each block in the two
bottommost layers is worth one point. The blocks in the two middle layers are
worth four points each. In the two top layers, each block is worth seven points.
If the player is unable to deflect the ball, letting it exit the screen at the bottom,
he or she loses a life.

Throughout this thesis, the term episode is used to describe a self-contained
series of events in a game. For example, an episode of Pong starts with both
players having a score of 0. When one of the players has obtained a score of 21
and thereby winning the game, the episode ends and a new episode can start.

There are some reasons why Pong and Breakout were chosen as tasks for the
experiments in this thesis. First, they have similar game mechanics. Both involve
steering a paddle and deflecting a ball. At the same time, they have differences

3.3. DEEP Q NETWORK 27

(a) (b)

Figure 3.2: The Atari game Breakout. (a) Screen from a newly started episode.
(b) Screen from a little later in the same episode. The agent controls the paddle
down in the middle of the screen. Its task is to steer the paddle horizontally to
deflect the ball as it drops down. By hitting the blocks at the top of the screen
with the ball, the agent is rewarded points. The numbers at the top display
current points, lives left and number of times all the blocks have been cleared
(from left to right). Best viewed in colors.

such as the overall alignment of the game play. In Pong, the ball mainly travels
horizontally, while in Breakout, the ball mainly travels vertically. Even though
they are two different games, they are similar enough that it is fair to consider
the possibility that a DQN may acquire knowledge that is applicable to both.

The Atari 2600 was one of the first gaming systems. Hence, there are some
reasons why using this platform as domain is suitable to test concepts and the-
ories within reinforcement learning. First, the games themselves are easy to
understand and has straightforward mechanics. Second, the fact that most of
the games are two-dimensional as opposed to three-dimensional, removes some
of the complexity faced by the DQN when learning from pixel values. Third, the
games have a resolution of 210x160, making the number of pixels on the screen
relatively low. This is, of course, important when considering the time complexity
of a system working with each pixel.

3.3 Deep Q Network

This section describes the DQN system used in this thesis. First, the preprocess-
ing step performed on the game frames before using them as input to the network

28 CHAPTER 3. METHODOLOGY

is described. Second, a description of the network model architecture is given.
Last, the algorithm and how the DQN is trained is described.

3.3.1 Preprocessing

Atari frames are 210×160 pixels images with a 128-color palette. This can make
the memory and computational requirements challenging. In addition, memory
limitations on the original Atari system resulted in a hard limit on how many
objects could be displayed at each frame. To be able to increase the number of
objects displayed, many games contain objects that are only visible every other
frame. This causes an unwanted flickering effect if every frame is used without
modification. A preprocessing step is introduced to handle these issues. Flicker-
free frames are created using the maximum pixel value of the current frame and
the previous frame. Then, the frame is rescaled to an 84 × 84 gray-scale image.
m = 4 frames are stacked at a time and used as input to the DQN. The m
stacked frames are necessary for the agent to get a sense of how the environment
is changing. As an example, it is important for the agent to know which direction
the ball is traveling. This preprocessing step is represented as the function φ in
the algorithm described in Section 3.3.3.

3.3.2 The Model Architecture

The input to the network is the 84× 84× 4 array produced by the preprocessing
step. This is the state representation. Each convolutional layer first convolves
the result from the previous layer, then applies an activation function called the
rectifier, defined as

f(x) = max(0, x) (3.1)

where x is the input to the neuron. A unit applying the rectifier function is often
called a rectified linear unit (ReLU) and is the most used activation function in
neural networks today [Glorot et al., 2011]. See Figure 3.3a.

The first hidden convolutional layer has 32 8 × 8 kernels and a 4-pixel stride.
The stride is simply how many pixels at a time the filter is moved during each
step in the convolution operation. A stride of 4 results in the filter moving in
4-pixel increments over the convolved image. The second hidden convolutional
layer has 64 4 × 4 kernels and a 2-pixel stride. The third hidden convolutional
layer will have 64 3 × 3 kernels with a 1-pixel stride. The final hidden layer
is a fully-connected layer consisting of 512 ReLU units. The output layer is a
fully-connected layer with 3 - 18 linear units, one unit for each possible action

3.3. DEEP Q NETWORK 29

(a) (b)

Figure 3.3: (a) The rectifier activation function used by most layers in the DQN.
(b) The linear activation function used in the output layer of the DQN. Best
viewed in colors.

the agent can choose (see Figure 3.4). Each output corresponds to the predicted
Q-value of a specific action. This is the only layer that changes depending on
what game is learned. Some games have many legal actions, while others have
few. Both Pong and Breakout has three valid actions: moving the paddle to
each side (right/left or up/down) and no-action which is doing nothing. A linear
activation function does not alter the output from the unit. This makes sense in
the case of the output layer since its outputs are the predicted Q-values. Figure
3.3b depicts a linear activation function.

Section 2.2 explains how pooling is often used between convolutional layers in
CNNs. Notice that there is no pooling operation between the layers in the DQN
architecture. The reason for this is that when including a pooling operation,
the learned features becomes spatially invariant and the network becomes in-
sensitive to the location of an object in the image. This is beneficial when the
location of the feature is not important for the task, such as detecting a face in
a face-detection system. However, in Atari games, the location of features is an
important piece of information. For instance, knowing the location of the ball in
a game of Breakout is crucial in determining the potential reward.

30 CHAPTER 3. METHODOLOGY

Figure 3.4: The DQN model architecture. The numbers under each layer repre-
sent the size of the input frames (feature map) after each convolution step.

3.3.3 The Algorithm

The task of the DQN is to train an agent that interacts with the environment. For
every time step it chooses an action at from the set of legal actions A = {1, ...,K}.
The action is sent to the emulator which modifies its internal state. The only
thing visible to the agent is the stack of images from the emulator representing
the game screen as vectors of pixel values. The agent also receives the change
in game score as a reward signal rt for each time step. Although a reward is
received every time step, positive rewards are often a result of long sequences of
actions and observations. By only observing the current stack of screen images,
the task is partially observable. This is because it is not possible to understand
the current situation and the potential rewards received solely based on the cur-
rent stack of frames, that is the observation xt. Because of this the input to
the algorithm is a sequence of actions, at, and observations, each being a dis-
tinct state st = x1, a1, ...at−1, xt. This makes it possible to view it as a Markov
Decision Process (MDP) and reinforcement learning methods for MDPs can be
applied. An MDP relies on the Markov assumption, that the probability of the
next state, st+1, is only dependent on the current state, st, and not any of the
preceding states.

As mentioned in Section 2.4, the goal of a reinforcement learning agent is to
maximize its future reward. Consequently, it is advantageous to know the total
future reward. Since the environment is stochastic, there is no guarantee that a
reward received by doing an action now will lead to the same reward in the future.
This is the reason the discounted future reward is used in the DQN, emphasizing
immediate rewards more than future rewards:

3.3. DEEP Q NETWORK 31

Rt =

T∑
t′=t

γt
′−trt′ (3.2)

where t is a given time step, t′ is the next time step, T is the time step where
the game episode ends and γ is the discount factor.

The optimal Q-learning function Q∗(s, a) is defined as the maximum discounted
future reward achievable by following a policy, π, after observing a state, s, and
then taking some action a:

Q∗(st, at) = maxπE[Rt|st, at, π] (3.3)

in which the policy, π, maps sequences to actions. The best policy will be to
pick the action with the highest Q-value. The optimal Q-learning function obeys
the Bellman equation, explained in Section 2.4. As long as the agent chooses the
optimal action, the utility of a state is the immediate reward plus the expected
discounted utility for the next state. Or in terms of the Q-function:

Q∗(s, a) = r + γmaxa′Q
∗(s′, a′) (3.4)

where the Q-value for the current state, s, and action, a, is given by the immedi-
ate reward, r, plus the maximum future reward for the next state, s′, and action,
a′ discounted by γ.

The DQN is introduced as a non-linear function approximator to estimate the
Q-learning function Q(s, a; θ) ≈ Q∗(s, a), where θ are the adjustable weights in
the network being optimized. The network is trained to reduce the mean-squared
error in the Bellman equation. The optimal target values from Equation 3.4 are
replaced with the approximate target values:

y = r + γmaxa′Q(s′, a′; θ−i) (3.5)

where θ−i are the model parameters from some previous iteration. In supervised
learning the targets, or labels, are fixed before learning. Here, as we can see, the
targets, y, are dependent on the network weights, θ. Using the targets, y, and
the predicted Q-value, Q(s, a; θi), we can define regression tasks optimized with
the squared error loss:

Li(θi) =
1

2
[y −Q(s, a; θi)]

2 (3.6)

32 CHAPTER 3. METHODOLOGY

for each iteration, i. This loss function defines the error surface in which a varia-
tion of SGD called RMSProp is used to tune the weights of the DQN iteratively.
RMSProp is explained further in Section 3.3.4.

Using a CNN to approximate the Q-function is not a very stable approach by
itself. Thus, Mnih et al. [2015] introduces several techniques to improve the sta-
bility of the DQN. One of these techniques is the replay memory. It works by
storing the experiences et = (st, at, rt, st+1) of the agent at each time step t in
a dataset Dt = {e1, ..., en}. Q-learning updates are applied to these samples of
experience, (s, a, r, s′) ∼ U(D). These are drawn at random from the pool of
stored samples in the replay memory Dt. The size of the replay memory starts
out at 50,000 experiences and is constantly filled up. Over time, the 1 million
most recent experiences are kept in the memory.

The introduction of a replay memory has several advantages. First, previous
experiences are reused making the data usage more efficient. Second, there are
most likely correlations between consecutive experiences. By randomly selecting
samples from the replay memory the correlations will vanish. From Equation
3.5 we can see that the targets are dependent on the weights of the DQN. It is
not hard to imagine that by using subsequent training samples of experience, the
behavior of the agent will be biased. As a result, when averaging the behavior
distribution over many of the previously seen states, the algorithm is prevented
from getting stuck in a poor local minimum.

Another technique used to improve the stability of the DQN is the employment
of a target network. This is a separate network used to generate the targets in
the Q-learning update. It works by cloning the DQN to a new network, Q̂, every
C updates. Q̂ is used to generate targets for the Q-learning update the next C
updates. Since targets are dependent on the network weights, using older param-
eters to generate the targets will effectively create a delay between the Q-update
and when that update affects the targets. This makes oscillations and divergence
of the algorithm less likely.

In addition, Mnih et al. [2015] found that clipping the difference between the
generated target and the predicted output of the network to be between [-1, 1]
improved the stability of the algorithm. This keeps the gradient constant when
the loss is outside the clipping range. By doing this, the high score variation
between different games has less impact on how the DQN learns. For instance,
in Breakout, the score can be between 0 and several hundred while in Pong, the
score is always between -21 and 21.

3.3. DEEP Q NETWORK 33

Algorithm 1 Deep Q-learning with experience replay, Mnih et al. [2015]

Initialize replay memory D to capacity N
Initialize action-value function Q with random weights θ
Initialize target action-value function Q̂ with weights θ− = θ
for episode = 1, M do

Initialize sequence s1 = {x1} and preprocessed sequence φ1 = φ(s1)
for t = 1, T do

With probability ε select a random action at
otherwise select at = argmaxaQ(φ(st), a; θ)
Execute action at in emulator and observe reward rt and image xt+1

Set st+1 = st, at, xt+1 and preprocess φt+1 = φ(st+1)
Store transition (φt, at, rt, φt+1) in D
Sample random minibatch of transitions (φj , aj , rj , φj+1) from D

Set yi =

{
rj if epsiode terminates at step j+1

rj + γmaxa′Q̂(φj+1, a
′; θ−) otherwise

Perform gradient descent step on (yi −Q(φj , aj ; θ))
2 with respect to

the network parameters θ
Every C steps reset Q̂ = Q

end for
end for

34 CHAPTER 3. METHODOLOGY

3.3.4 Training

A DQN is trained for each game. The hyperparameters, model architecture and
learning algorithm are all kept the same on all games trained. The exception
is the output layer in the model architecture. As mentioned in Section 3.3.2,
there is one output neuron for each valid action the agent can choose. The games
themselves are not altered except for clipping the reward coming from the Atari
emulator to be between 1 and -1. By clipping the reward, it is possible to keep
the learning rate fixed between the different games. However, the downside of
clipping the reward is that the agent is unable to separate different magnitudes
of the score. In some games, the number of lives is important. This information
is also sent from the Atari emulator and is used to mark the end of a game episode.

A variation of SGD (described in Section 2.2) called RMSProp [Hinton et al.,
2012] approximates the optimal gradient used to adjust the weights. When using
SGD, each weight is updated at its own pace due to the large variation in the
magnitudes of the various gradients. In addition, it can also change during learn-
ing. This makes it hard to determine a global learning rate. RMSProp solves this
by dividing the gradient by a running average of the magnitude of the gradient.
This is used as the momentum described in Section 2.2 where earlier gradients
affect the current gradient. Intuitively, minimizing the loss with momentum can
be seen as rolling a ball down the error landscape defined by the loss function.
The ball gains momentum as it rolls downhill and variations in the gradients
has less influence on its velocity. This reduces oscillations in the updates of the
weights, effectively speeding up the learning. A ρ-decay determines the decay
factor of the moving average tracking the gradients which are used to find the
momentum. Furthermore, a minibatch size of 32 is used, effectively using 32
training examples to estimate each gradient.

The Q-learning behavior policy is the ε-greedy policy mentioned in Section 2.4
where the agent chooses a greedy action with a probability of 1 − ε and a ran-
dom action otherwise. This ensures a desirable divide between exploring and
exploiting. Exploring new states can potentially result in the discovery of actions
leading to higher rewards, while exploiting the current best action is necessary to
collect the current best-known reward. The ε value starts at 1.0 and is reduced
to 0.1 over the first 1 million frames where it is kept fixed for the rest of the
training. The agent is trained for a total of 25 million frames. This is in contrast
to Mnih et al. [2015] where the agent is trained for 50 million frames. The rea-
son for this is limitations in available computing power, elaborated in Section 3.5.

The replay memory dataset has a maximum size of 1 million experiences and
a start size of 50,000 experiences. Before the training starts, the replay memory

3.4. HYPERPARAMETERS 35

is populated with experiences generated from random actions until reaching the
start size. The DQN employs a frame skipping technique based on repeating the
previously found action k = 4 times. The network returns an action based on
the observation, or stack of frames it receives as input. Limiting the frequency
in which the network receives observations and simply repeating the previously
found action k times has some advantages. First, no game is designed to require
a new action input for every frame, so the introduction of frame skipping seems
like a reasonable choice. Second, it is less computationally expensive to have the
Atari emulator repeat the last action than to propagate a new observation input
through the DQN and wait for a new action to be returned. This helps making
the DQN feasible to run on current available hardware.

After every training epoch, lasting 250,000 steps, a testing epoch of 125,000 steps
is conducted. This testing epoch has no effect on training and is there simply to
give feedback on how the training is progressing. During testing, the ε value is
kept fixed at 0.05. The reason for this is that the Atari emulator does not have a
random generator. Consequently, the randomness involved in many games needs
to be introduced externally. This is done through the player input. This works
for human players, as they are not accurate enough to be able to exploit or even
notice these deterministic subtleties. However, an agent trained by the DQN may
be able to both detect and exploit it, resulting in unwanted behavior. Giving the
agent a 5 % chance of performing a random action, introduces the needed ran-
domness and effectively removes the possibility of the agent exploiting the Atari
emulator.

3.4 Hyperparameters

When training DNNs there are a lot of hyperparameters involved. There are
even more hyperparameters to consider when combining DNNs with reinforce-
ment learning. The hyperparameters, their values and descriptions are presented
in Table 3.1. They are similar to those used by Mnih et al. [2015] and are held
constant for both games and all tests performed in the experiments. Most of the
hyperparameters are mentioned and explained in Section 3.3.

An important hyperparameter that should be mentioned is the update frequency.
It is included to limit the weight update frequency. Updating the network weights
at every action step chosen by the network, results in a higher computational cost
with no apparent performance gain in terms of learning. The RMSProp, there-
fore, updates the network weights only at every fourth action step while learning.

36 CHAPTER 3. METHODOLOGY

This results in a lower computational cost and has almost no impact on the per-
formance.

Furthermore, the no-op max hyperparameter determines how many random ac-
tions the agent should perform at the start of each game episode. There are two
reasons for this, the first being that the DQN is certain that the screen buffer for
the Atari emulator is ready. Second, the initial game screen should be random-
ized. Recall that the Atari emulator is dependent on external input to generate
randomness. Doing a number of random actions before the game episode starts
should ensure that the agent is unable to take advantage of the deterministic
behavior of the Atari emulator.

3.5 Implementation Details

Several frameworks and libraries exist that can make the design and implementa-
tion of DNNs easier and training them faster. Some of the most popular frame-
works are Torch, Theano, PyLearn, TensorFlow and Caffe. A comparison be-
tween these technologies is beyond the scope of this thesis. However, it is worth
mentioning that they all allow the user to implement high-level code that is exe-
cuted on a graphics processing unit (GPU).

The work done in this thesis uses Theano [Bergstra et al., 2010] and [Bastien
et al., 2012]. Theano is a Python library and optimizing compiler for mathemat-
ical expressions using NumPy [Ascher et al., 2001]. NumPy is a Python package
for scientific computation. Theano supports C/C++ implementations of tensors,
or n-dimensional arrays, and other functionality important to implement a deep
learning system. Theano uses g++ or nvcc to compile parts of the code to CPU-
or GPU instructions which are more efficient than pure python.

The implementation of the DQN in this thesis is based on Sprague [2015], which
is a Python implementation aimed at recreating the system of Mnih et al. [2015]
using Theano. A Theano-based Python library called Lasagne [Battenberg et al.,
2015] is used to easily create the CNN model. To emulate Atari games, the Ar-
cade Learning Environment [Bellemare et al., 2013] is used. It is a framework
built on top of an Atari 2600 emulator and is specifically designed to develop
AI agents. The framework makes it easy to interact programmatically with the
emulator.

The system was run on a desktop computer with an Nvidia GTX 570 GPU
with 1 GB of video memory. Training an agent to play a game took between 120
and 150 hours depending on the game. Optimizations of this code were done by

3.5. IMPLEMENTATION DETAILS 37

Table 3.1: Hyperparameters for the DQN.

Hyperparameter Value Description

Epochs 100 Number of epochs trained.

Training steps per epoch 250000 Number of training steps in one epoch.

Testing steps per epoch 125000 Number of testing steps in on epoch.

Minibatch size 32 How many training examples RMSProp uses to

compute the gradient.

Replay memory size, N 1000000 The maximum number of experiences stored in

the replay memory to randomly sample from.

Replay memory start size 50000 Initial size of the replay memory. Before training

starts, the replay memory is populated with

experiences resulting from random actions.

Target network update 10000 Number of training steps between each time Q̂ is

frequency, C reset.

Learning rate 0.00025 Used by RMSProp to scale how fast

the agent should learn.

ρ-decay 0.95 Decay factor of gradient moving average in

RMSProp. Used to track the history of

the gradient and the squared gradient.

Minimum squared gradient 0.01 Small value added in RMSProp for numerical

stability.

Clip limit 1.0 Where the loss should be clipped. 1.0 indicates

clipping values outside [-1, 1] to corresponding

limits, keeping the gradient constant.

Discount factor, γ 0.99 The factor of which future rewards are discounted by

in the Q-learning update.

Exploration probability, ε 1.0 - 0.1 ε-greedy exploration starts at 1.0 and decreases

over 1000000 steps to 0.1 where it is kept static.

Frame skip, k 4 How many frames the current action is repeated

by the agent.

Agent history length, m 4 How many frames is stacked to create the input to

the Q-network.

Update frequency 4 Number of actions selected by the agent between each

update from the RMSProp. The agent will choose 4

actions before weights are updated.

No-op max 30 Number of random actions at the start of each episode.

This is done to ensure the screen buffer is ready and to

randomize the initial game state.

38 CHAPTER 3. METHODOLOGY

eliminating unnecessary CPU - GPU cycles. In addition, redundant data struc-
tures that were draining memory was removed. The alterations were done while
still maintaining the core principles of the system described by Mnih et al. [2015].
This brought the run time down to between 70 and 90 hours for a single training
run. This was deemed feasible for a system of this complexity executed on the
specified hardware. In addition to the optimizations, several scripts were imple-
mented to aid in conducting the experiments in this thesis. These include being
able to transfer layers between two trained networks, visualization of weights in
specific layers of a trained network, comparison of the weights in specific layers
between two trained networks as well as plotting score, expected reward and loss
signal. Appendix B and Appendix C describes the code briefly, including where
it is available.

Due to the somewhat dated GPU used in this thesis, Amazon Web Services was
also considered to do the training, as hey provide cloud-based GPU instances.
However, at an hourly price of around $0.65 per hour and considering the total
hours required by the experiments, this price was too high.

3.6 Experiments

The DQN system described in this chapter was used to address the research ques-
tions. In Section 2.7, the current state of the field is summarized. Based on the
insights provided by the background research and the research questions, three
experiments have been designed. This section describes the experimental setup
for all experiments. In addition, it will specify how the results are presented and
what the expected outcome of the experiments are.

The research questions, first mentioned in Section 1.3 are restated here for sim-
plicity:

Research question 1 Will there be any similarities between the lower level fea-
tures in DNNs trained on similar tasks?

Research question 2 Will there be a significant cutback on the training time
for a network already trained on a similar task? How significant?

Table 3.2 provides an overview of the experiments conducted in this thesis. Each
experiment was given a unique ID to clearly separate them. Experiment E1 is
related to research question 1 and consists of two parts. First, a visual comparison
between the low-level features in DQNs trained on similar tasks was performed.
Second, a method to compute a score describing the difference between the first
layers of two trained networks was executed. Experiment E2 and E3 are almost

3.6. EXPERIMENTS 39

identical. The difference being what task is used as target network. The various
experiments will be described in the following subsections.

Table 3.2: Experiment overview.

ID RQ Description

E1 1 Visually compare the first convolutional layers of networks trained

on similar tasks. In addition, compute and compare the

difference score between the first convolutional layers of

networks trained on similar tasks.

E2 2 Cutback in training time, Pong as target task.

E3 2 Cutback in training time, Breakout as target task.

3.6.1 Selection of Tasks

Two games were chosen as tasks for the experiments performed with the DQN in
this thesis. The research questions clearly state that the tasks should be similar.
In addition, the background research also confirmed the importance of similarity
between tasks. Since the DQN consists of a CNN, the visual similarity was heav-
ily emphasized when considering different games to use as tasks. In addition, the
gameplay and game mechanics were evaluated. This includes what the goal of
the player is and how that goal is achieved.

As described in Section 3.2, Pong and Breakout were the games chosen as tasks
for the experiments in this thesis. They are somewhat visually similar, hopefully
similar enough that the DQN will be able to generalize its learning. However,
there are some visual differences. Pong has less critical information on the screen,
only two paddles and a ball. Breakout has several layers of breakable blocks in
addition to a paddle and a ball. In terms of gameplay and game mechanics, there
are more similarities. The goal of both games is to prevent a ball from moving
past the paddle in which the player controls. More specifically, in Pong, the goal
of the game is for each player to make the opponent concede the ball. Whereas
in Breakout, the goal of the game is to break the blocks while not conceding the

40 CHAPTER 3. METHODOLOGY

ball. The two games are similar enough that it is fair to hypothesize whether the
DQN may be able to learn some features that can be used in both games.

3.6.2 E1 - Low-Level Features - Visual Comparison

This subsection describes the setup of the first part of Experiment E1, which
makes a visual comparison between the first convolutional layer in two networks.
A DQN is trained for each task, Pong and Breakout, to investigate if there are
any similarities between the weights learned in the first convolutional layer of the
DQNs. A comparison between the two networks is done by visualizing the first
convolutional layers and comparing them manually. A layer consists of 32 × 4
filters, each being 8×8 pixels each. If the knowledge contained in these weights is
of a general nature, they should correspond to image processing filters like edge
detectors. However, if the weights have evolved as more specific feature detectors
for the task it is trained on, they may be less similar and of a less general nature.

The expected results from this experiment are that the learned features will be
somewhat general. Hopefully, filters resembling edge detectors can be detected.
In addition, the focus will be to detect filters appearing similar across the tasks
being learned. For example, the ball is a game object that both Pong and Break-
out have in common. Investigating the filter visualizations should reveal feature
detectors that can detect this ball.

The result will be visualized as an array of 32 × 4 filters, as this is the num-
ber of filters in the first convolutional layer of the DQN. Each filter is 8 × 8
pixels, where each pixel has a gray value between 0 and 1. A pixel value of 0 is
black, whereas a value of 1 is white.

3.6.3 E1 - Low-Level Features - Difference Score

This subsection describes the setup for the second part of Experiment E1. In ad-
dition to visually comparing the first convolutional layers, the difference between
them is also quantified in this part of E1.

A quantification method compares two DQNs: DQNA and DQNB . Only the
first convolutional layer is considered and consists of 32 × 4 filters, each 8 × 8
pixels large. The weights, or pixels, in each filter are first normalized to make
the comparison easier and more accurate. The average of the pixel-wise differ-
ence between each filter in DQNA and DQNB results in a number describing the
difference between two arbitrary filters, DQNAm and DQNBn, in the first layer

3.6. EXPERIMENTS 41

of two different networks:

DQNAm,Bn =

p∑
i=0

DQNAm,i −DQNBn,i

p
(3.7)

in which the difference between each pixel, i, in the m'th filter in DQNA and
n'th filter in DQNB is averaged into a number describing the difference between
those two filters, DQNAm,Bn. p is the number of pixels in a filter and in the first
convolutional layer, p = 64.

This results in 32 × 4 = 128 comparisons for each filter in DQNA, all stored
in its own collection DQNAm,B . Next, each filter from DQNA locates the com-
parison in DQNAm,B with the lowest difference, i.e the most similar filter from
DQNB :

DQNAm,Bmin = min(DQNAm,B) (3.8)

This is done for all m filters in DQNA and the results are stored in another
collection, DAmin. DAmin now contains one difference number for each filter in
DQNA. Each difference number is the lowest difference found in DQNB for the
m'th filter in DQNA. Finally, this collection of most similar filters is averaged
and comprise the difference score between the two layers:

Dscore =

N∑
i=0

DAmin,i

N
(3.9)

where N = 128 and is the number of filters in DAmin.

The reason the difference score, Dscore, is computed this way is because the
filters evolve differently depending on their random initial values. If both DQNA
and DQNB are trained on Breakout, similar filters may appear in both, but the
actual location within the layer is arbitrary. By comparing them this way, the lo-
cation of the filters is not important. However, the problem with this approach is
that several filters from DQNA may select the same filter from DQNB , thus not
utilizing all the filters from DQNB in the comparison. This is prevented by doing
the comparison both ways. The assumption is that this two-way comparison will
produce difference scores that will be both very similar, as well as reasonable to
use to quantify the difference between layers.

42 CHAPTER 3. METHODOLOGY

Table 3.3 describes how the different trained DQNs will be compared. The left-
most column contains the trained networks being used as DQNA, while the first,
top row contains the trained networks being used as DQNB . Cell numbers are
used to indicate corresponding comparisons. For instance, the cells containing
the number 4 are the comparisons between the Pong network and the Breakout
network. First, Pong is used as DQNA in row 2. Then, Breakout is used as
DQNA in row 3.

Table 3.3: Comparison scheme for different trained models. Cell numbers indicate
corresponding comparisons.

DQNA ↓ DQNB → Pong Breakout Random

Pong 1 4 5

Breakout 4 2 6

Random 5 6 3

The expectation is that when comparing different networks trained on equal
tasks, like Pong with Pong or Breakout with Breakout, the Dscore should be rel-
atively low. Furthermore, the Dscore between a Pong and a Breakout network
should be somewhat higher, although it should be lower than the Dscore between
a Pong and a randomly initialized untrained network or Breakout and a ran-
domly initialized untrained network. This will indicate whether the filters have
knowledge applicable to both tasks.

The comparison of the Dscore values will be performed with two different Pong
networks, two different Breakout networks and two different randomly initialized
untrained networks. Two networks trained for each task is used to be able to
compare the same task with itself. In addition, it adds reliability to the rest of
the numbers. The results from the difference score comparison will be presented
in a table similar to Table 3.3.

3.6.4 E2 and E3 - Cutback in Training Time

As the setup for Experiment E2 and E3 are almost identical, this subsection de-
scribes both. A DQN is trained on each task, Pong and Breakout. These networks
are trained from randomly initialized weights, and constitute the base networks.
The first convolutional layer in the trained base networks is transferred to a target
network, which is an untrained randomly initialized network. Next, the target
network is trained on the task different to the task used to train the base network.

3.6. EXPERIMENTS 43

Experiment E2 and E3 are very similar. In E2, Pong is used as target task,
employing the transferred first convolutional layer from a Breakout base net-
work. In E3, Breakout is used as target task, employing the transferred first
convolutional layer from a Pong base network.

As mentioned, only the first convolutional layer is transferred from the base net-
work to the target network. The reason for this is simple. Intuitively, the lower
level features are more general and less specific to the task being learned; they
can more easily be applied to a wider range of tasks with minimal adjustments.
When transferring this general first layer, it may affect the training time as it has
already been trained to fit a similar task. From the related work in Section 2.6.2,
Yosinski et al. [2014] claims that by transferring all the convolutional layers, the
target network will generalize better on images. However, he does not consider
training time when transferring the different layers. Most likely, the higher layers
will contain knowledge more closely related to the task being learned. It can,
therefore, be argued that these high-level features may contain knowledge so spe-
cific that they need to be “unlearned” before being able to learn anything new.
If this is the case, it may be worse in terms of training time to transfer all the
convolutional layers. Of course, this is just a hypothesis that needs to be tested.
Due to the limitations in hardware, this is not in the scope of this thesis, but is
the reason why only the first layer was transferred.

Figure 3.5 depicts the transferring process in this experiment. For example, Pong
and Breakout are the two tasks that will be learned. In this example, the tasks
are termed task A and task B. First, a DQN is trained on task A which results
in a base network. Second, the first convolutional layer is transferred from the
base network to a new untrained randomly initialized network, the target net-
work. The layer being transferred replaces the randomly initialized first layer of
the target network. Then, the target network is trained on task B. There are no
differences regarding the way a target network is trained. All hyperparameters
are kept the same and all layers, including the transferred layer are allowed to
be adjusted. The experiment is performed by transferring a task A base network
to a task B target network and a task B base network to a task A target network.

The performance of a trained network is evaluated based on three numbers. First,
the average score per epoch. This is the game score the agent achieves and is
recorded during the testing epochs which happen after every training epoch (see
Section 3.3.4). Second, the average action value per epoch, which is the expected
reward for the agent and is also gathered during the testing epochs. Finally, the
moving average of the mean training loss. As mentioned in Section 3.3.3, the loss

44 CHAPTER 3. METHODOLOGY

Figure 3.5: The first convolutional layer of the fully trained base network are
used as initial starting weights in the target network before it starts training.

is what the network uses for the backpropagation and adjustment of the weights.
The loss is gathered for each game episode during the training epochs.

By comparing the result of a task A base network and a task A target network,
it is possible to identify if the transferred layer has any effect on the training
time for the target network. If the target network converges at an earlier point
during training, this may indicate that it needs less training time to achieve the
same result as the base network. This comparison is also done with a task B
base network and a task B target network. To mitigate the statistical anomalies
that may lead to poor results, each experiment is done three times and the data
averaged. Ideally, more experiments should be performed, but the limitations in
available hardware prevented this.

The expected results from these experiments are an earlier convergence of the
target network compared to the base network trained on the same task. The
most important metrics are probably the average score and the average action
value. They are more closely related to the performance of the agent than the

3.7. METHODOLOGY SUMMARY 45

loss metric is. If both the average score and the average action value climbs faster
and converges earlier for the target networks, it is certainly a good sign in terms
of a cutback in training time.

3.7 Methodology Summary

In this chapter we have seen an in-depth description of the DQN and the hyper-
parameter configuration. Further, the selection of tasks and experimental setup
were defined. The next chapter will present, analyze and discuss the results from
the experiments.

46 CHAPTER 3. METHODOLOGY

Chapter 4

Results and Analysis

4.1 Overview

This chapter presents, analyzes and discusses the results from the three experi-
ments defined in Chapter 3. Section 4.2 presents the visual comparison part of
Experiment E1. Second, the difference score from Experiment E1 is presented in
Section 4.3. Section 4.4 presents the results from Experiment E2, using Pong as
target network when investigating cutback in training time. The results from the
last Experiment, E3, are presented in Section 4.5 using Breakout as target net-
work when investigating cutback in training time. Then, Section 4.6 states how
well the agent in this thesis performed compared to Mnih et al. [2015]. Finally,
Section 4.7 will do a brief summary of the results, showing some general trends.

4.2 E1 - Low-Level Features - Visual Comparison

This section first presents the results from part one of Experiment E1 regarding
the visual comparison done to identify similarities between the low-level features
in networks trained on similar tasks. Finally, the results are discussed and ana-
lyzed.

4.2.1 Results

The visualized filters of the first layers in DQNs trained on Pong and Breakout
are illustrated in Figure 4.1 and Figure 4.2. Each figure depicts the first con-
volutional layer of three different DQNs. A layer consists of 32 stacks of filters,
each containing 4 filters. A filter stack is used in the convolution process on the
corresponding stack of input frames to the network. Figure 4.1a and Figure 4.1b

47

48 CHAPTER 4. RESULTS AND ANALYSIS

are both trained on Pong, while Figure 4.1c is a randomly initialized untrained
network. Figure 4.2a and Figure 4.2b are both trained on Breakout, while Figure
4.2c is a randomly initialized untrained network. Furthermore, Figure 4.1b and
Figure 4.2a are the result of training Figure 4.1c to play Pong and Breakout,
respectively. Finally, Figure 4.1a and 4.2b is the result of training Figure 4.2c to
play Pong and Breakout, respectively.

Each pixel in the filters is an adjustable weight, normalized to make the visual-
ization and comparison easier. The normalized weights have a value between 0
and 1, 0 being black and 1 being white. The values in between represent different
gray values.

4.2.2 Analysis and Discussion

The first thing that comes to mind when looking at Figure 4.1 and Figure 4.2
is the overall alignment of the filters. The filters from the Pong networks in
Figure 4.1, seems to be more vertically aligned while the filters from the Break-
out networks in Figure 4.2, seems to be more horizontally aligned. The overall
alignment of the pixels suggests that some of the filters give a high response to
horizontal and vertical objects within the games. In the game of Pong, there are
two vertically aligned paddles in addition to the ball that the agent is required to
detect. In Breakout, both the paddle controlled by the agent and the breakable
blocks at the top are horizontally aligned.

In CNNs trained to recognize objects in images, the first convolutional layer
often corresponds to low-level image processing filters, like edge detectors. Typ-
ically, filters that are able to detect edges have one side filled with high pixel
values, the middle filled with low pixel values and the other side filled with high
pixel values again. By sliding this type of filter over an image, sudden changes
in the texture are detected, like edges. The Gabor filter is a well-known edge
detection filter.

Observing the Pong filters, there may be some examples of vertical edge de-
tectors. However, they are not very apparent. For instance, the top three filters
in filter stack 19 in Figure 4.1a may be able to detect some vertical edges. Also,
filter stack 22 in Figure 4.1b.

Despite having some filters being able to detect edges in Pong, they seem to
be slightly specific to the edges found in the game. The Pong filters mentioned
above seems like they would give a high response on the paddles controlled by the
players. This is an example of situation specific filters. In addition, the fourth

4.2. E1 - LOW-LEVEL FEATURES - VISUAL COMPARISON 49

(a) Pong1 (b) Pong2 (c) Random1

Figure 4.1: The figure depicts the first layer from three different DQNs. Each
layer consist of 32 stacks of filters. One stack consists of four filters which is used
on the corresponding stack of input frames to the network. (a) The first layer in
a trained Pong network. (b) The first layer in a different trained Pong network.
(c) A randomly initialized untrained network. (b) is the result of training (c) to
play Pong. (a) is the result of training Figure 4.2c to play Pong.

50 CHAPTER 4. RESULTS AND ANALYSIS

(a) Breakout1 (b) Breakout2 (c) Random2

Figure 4.2: The figure depicts the first layer from three different DQNs. Each
layer consist of 32 stacks of filters. One stack consists of four filters which is
used on the corresponding stack of input frames to the network. (a) The first
layer in a trained Breakout network. (b) The first layer in a different trained
Breakout network. (c) A randomly initialized untrained network. (b) is the
result of training (c) to play Breakout. (a) is the result of training Figure 4.1c to
play Breakout

4.2. E1 - LOW-LEVEL FEATURES - VISUAL COMPARISON 51

filter in filter stack 2 and 3 in Figure 4.1b both seems to give a high response
when the ball is closing in on the paddle from left to right, the light pixels in-
dicating the ball. Furthermore, the fourth filter in filter stack 12 in Figure 4.1a
seems to give a high response when the ball is closing in on the paddle from right
to left. These are two situations important for the agent to detect and recognize.
Obviously, it is beneficial to know if the ball is approaching a paddle.

Investigating the Breakout filters, there are indeed examples of edge detectors.
The filter in the fourth row in filter stack 13 in Figure 4.2a resembles a horizontal
Gabor filter. This also applies to the second image in filter stack 29 in the same
figure. Breakout2 in Figure 4.2b has a horizontal Gabor filter in the fourth row in
filter stack 24 as well. These filters resemble feature detectors for the horizontal
paddle that the agent controls.

Although there are some examples of somewhat general edge detection filters
i Breakout, there are indications that many of the filters are trained to give a
high response on specific situations occurring during a game. For instance, the
fourth filter in filter stack 0 in Figure 4.2b may detect holes, or openings in the
layer of blocks at the top. There are several filters in both Breakout figures that
work the same way, consisting of mostly light pixels with a darker dot in the mid-
dle. In addition, the fourth filter in filter stack 11 in Figure 4.2b has a gradient
moving left to right. This may give a high response when the paddle is close to
the wall, signaling that it is not possible to move further in the same direction.
Another situation specific filter for Breakout is the second filter in filter stack 15
in Figure 4.2b. The light pixel may be the ball closing in on the blocks over it. It
looks like this filter may give a high response when the ball is about to hit either
a block or a hole in the block layer.

Section 3.6.2 predicted that filters being able to detect the ball in both Pong
and Breakout should emerge. Intuitively, since the ball is an object both games
have in common, this might be a feature that is general for both tasks. A filter
able to detect a ball on the input frames should consist of high pixel values (light)
surrounded by lower pixel values (dark). A filter with these properties will give
a high response when it is slid over the location of the ball on the input frame
during the convolution. There are some filters in Pong that may be a feature
detector for the ball. Namely, the fourth filter in filter stack 19 in Figure 4.1a
and the fourth filter in filter stack 22 in Figure 4.1b.

For Breakout, it is hard to detect any filters with the potential of being a general
feature detector for the ball. An example of this is the filters in filter stack 29 in
Figure 4.2a. The light pixel areas may be the ball, but there are other, darker

52 CHAPTER 4. RESULTS AND ANALYSIS

artifacts in the filters suggesting the filters are situation specific. Perhaps the
filters give a high response when the ball is closing in on the wall or the blocks
in a certain manner.

It is hard to find features that might be similar in both networks. In addition to
being specific to certain situations, a reason for this may be that a combination
of the filters in the same stack is needed to extract a feature for each input to
the network. As we know, the input to the network consists of four frames. Each
filter in the first layer is applied to one of the frames in the input stack. This
may be a reason why it is difficult to visually compare the different layers. In
addition, the filters may have co-adapted. This is a phenomenon occurring when
training neural networks without distinct regularization techniques. By having
co-adapted filters, they depend on each other to be able to extract meaningful
features. This is not a good thing, and often leads to overfitting and low general-
ity. A regularization technique often used to cope with this, is dropout, proposed
by Srivastava et al. [2014]. The technique involves randomly dropping different
neurons from the network during training. This prevents strong dependencies
between them and reduces the co-adaptation. Dropout is not used in the DQN,
but it would be interesting to see if incorporating some sort of regularization
would result in less situation specific filters.

When taking a closer look at the Pong layers, it seems like some of them have
remained unadjusted during the training. By looking at Figure 4.1b and the
corresponding filters in Figure 4.1c, filter stacks 4, 5, 16, 17, 18, 25 and 29 seems
to not have been adjusted at all since initialization. This is also the case with
filter stacks 2, 5, 6, 8, 10, 22, 24 and 30 when comparing Figure 4.1a and Figure
4.2c. A reason for this may be that the filters are poorly initialized. Recall that
the activation function used is the rectifier described in Section 3.3.2. If the filter
response when performing the convolution is negative, the rectifier function will
simply clip it to 0. If the filters are initialized in a way that results in them
always giving a zero response, they may not get adjusted by the backpropagation
algorithm during training.

Another reason may be that the network architecture is too large. From Fig-
ure 3.1 it is clear that the only objects that is crucial for the agent to understand
in Pong, are the two paddles on the sides and the ball. The rest of the screen is
not very important as it will not affect the score in any way. The current model
architecture of the DQN may be too excessive for the game of Pong. The game
may not be complicated enough as a task for all the filters to be needed. This
may result in the filters giving the least response when starting training, simply
not being adjusted. The result of this is that many of the filters will give a zero

4.3. E1 - LOW-LEVEL FEATURES - DIFFERENCE SCORE 53

response most of the time. Nevertheless, the agent seems to perform well without
using all the filters in the first convolutional layer of the network.

In Breakout, this is not the case. From Figure 4.2 it is clear that all the fil-
ters are adjusted. Breakout is harder and more complex to play. Since the task
of the agent is to break all the blocks, they must all be considered. In addition,
the horizontal paddle and the ball is crucial for the agent to keep track of (see
Figure 3.2). The game pace is also higher. In other words, there are more ele-
ments to keep track of and less time to react when playing Breakout. This may
be an explanation why all the filters in the first layer of the Breakout networks
are used.

4.3 E1 - Low-Level Features - Difference Score

This section presents the results from the second part of Experiment E1 regard-
ing the computation of the difference score. This is used to compare the first
convolutional layers between trained networks and will help identify similarities
between the low-level features in networks trained on similar tasks. Then, the
results are discussed and analyzed.

4.3.1 Results

The results from finding the difference score between the networks are shown in
Table 4.1. It consists of all the computed scores describing the difference between
the first convolutional layers in the networks. The leftmost column presents the
different networks used as DQNA, while the topmost row presents the different
networks used as DQNB . Because the comparison is done both ways, all the
networks are used as both DQNA and DQNB . The name of the networks in the
table corresponds to the names found in Figure 4.1 and Figure 4.2.

To see the results more clearly, Table 4.2, is constructed by averaging the cor-
responding comparisons. For instance, take the comparison between Breakout1
and Pong1. In Table 4.1 there is one difference score for each comparison, the
first using Pong and the second using Breakout as DQNA respectively. The re-
sulting scores are 0.2058 and 0.1964. In the sparse Table 4.2, these numbers are
averaged, giving a difference score of 0.2011.

The results made bold in Table 4.2, are not as expected. It appears that in
both networks trained on Pong, several of the filter stacks remain unchanged
throughout training. The filter stacks are equal to the corresponding filter stacks
in the untrained randomly initialized network in which they are based on. By

54 CHAPTER 4. RESULTS AND ANALYSIS

Table 4.1: Difference score when comparing the various networks. Both two-way
comparisons are present in this table.

DQNA ↓ DQNB → Pong1 Pong2 Breakout1 Breakout2 Random1 Random2

Pong1 0.0000 0.1967 0.2058 0.2093 0.2524 0.1696

Pong2 0.1955 0.0000 0.2062 0.2082 0.1771 0.2509

Breakout1 0.1964 0.1961 0.0000 0.1663 0.2495 0.2456

Breakout2 0.1980 0.1980 0.1680 0.0000 0.2486 0.2444

Random1 0.2535 0.1782 0.2519 0.2508 0.0000 0.2702

Random2 0.1714 0.2530 0.2501 0.2504 0.2705 0.0000

Table 4.2: Difference score when comparing the various networks, based on num-
bers from Table 4.1. Scores for the corresponding two-way comparisons are av-
eraged for the table to be more sparse and the result easier to read.

Pong1 Pong2 Breakout1 Breakout2 Random1 Random2

Pong1 0.0000

Pong2 0.1961 0.0000

Breakout1 0.2011 0.2011 0.0000

Breakout2 0.2036 0.2031 0.1671 0.0000

Random1 0.2529 0.1776 0.2507 0.2497 0.0000

Random2 0.1705 0.2519 0.2478 0.2474 0.2703 0.0000

4.3. E1 - LOW-LEVEL FEATURES - DIFFERENCE SCORE 55

extracting the unadjusted filters from the Pong networks and computing the dif-
ference score one more time, the results are closer to what was expected. These
results are presented in Table 4.3. The cells made bold in the table are the differ-
ence scores that changes after extracting the unadjusted filters. The rest of the
scores are the same as in Table 4.1. Section 4.3.2 will discuss the results found
in this experiment.

Table 4.3: Difference scores after extracting the unadjusted filters in both Pong
networks. The cells made bold indicate that the score has changed after extract-
ing the unadjusted filters. The other scores are the same as in Table 4.1.

DQNA ↓ DQNB → Pong1 Pong2 Breakout1 Breakout2 Random1 Random2

Pong1 0.0000 0.1779 0.1905 0.1956 0.2464 0.2235

Pong2 0.1787 0.0000 0.1936 0.1962 0.2263 0.2453

Breakout1 0.1964 0.1961 0.0000 0.1663 0.2495 0.2456

Breakout2 0.1980 0.1980 0.1680 0.0000 0.2486 0.2444

Random1 0.2541 0.2332 0.2519 0.2508 0.0000 0.2702

Random2 0.2331 0.2531 0.2501 0.2504 0.2705 0.0000

4.3.2 Analysis and Discussion

Looking at Table 4.2 there are some expected results, but also unexpected results.
The unexpected results are made bold. Comparing the two Breakout networks
gives a low difference score, around 0.16. This is expected. However, comparing
the two Pong networks results in a higher difference score, around 0.19. This is
almost as high as the difference between a Pong and a Breakout network. The
reason for this is the unadjusted filters in the Pong networks, first mentioned in
Section 4.2.2. Since as many as eight of the filters in Pong1 and seven of the filters
in Pong2 (as seen in Figure 4.1) can be regarded as random even after training,
it makes an impact on the difference score. The fact that comparing anything to
a random filter tends to give a high difference score supports this suspicion. The
unadjusted filters effectively raise the difference score when comparing the two
Pong networks.

We see that the unadjusted filters in both Pong networks push the difference
score up when comparing the two. This is also the reason for the relatively
low difference between Pong2 and Random1. The Random1 network is simply a
randomly initialized untrained network and the Pong2 network is the result of

56 CHAPTER 4. RESULTS AND ANALYSIS

training the Random1 network to play Pong. Since several of the filter stacks in
Pong2 remains unchanged during training, they are equal to the corresponding
filter stacks in the Random1 network. This is likely the reason why the difference
score between the Pong2 network and the Random1 network is so low. The same
reasoning applies to the unexpected low difference score between the Pong1 net-
work and the Random2 network. The Pong1 network is the result of training the
Random2 network to play Pong.

Another observation that supports this reasoning is found in Table 4.1. If we look
at the comparisons between Breakout and Pong. When using Pong as DQNA,
the numbers are slightly higher than when Breakout is used as DQNA, going from
around 0.19 to 0.20. This is also presumably due to the unadjusted filters in the
Pong networks. As mentioned in Section 3.6.3, when using a network as DQNA
all its filters will be compared to their most similar counterpart in DQNB . This
means that when Pong is used as DQNA, the unadjusted filters are forced to be
compared. However, when a Breakout network is used as DQNA the unadjusted
filters in Pong may be ignored as there are other filters that are more similar.
This may be the reason for the difference scores being slightly different.

To confirm the suspicion that the unadjusted filters in the two Pong networks
affect the resulting difference scores, the comparisons were redone. This time,
the unadjusted filters were skipped in the comparison process. The results are
presented in Table 4.3.

Comparing Table 4.1 and Table 4.3 the numbers indicate that it is indeed the
unadjusted filters in the Pong networks that affect the initial results. From Table
4.3 we see that the difference score between the two Pong networks has decreased,
as expected. We can also see that the difference score between the Pong networks
and the Random networks has increased and better correspond with the expec-
tation. When using Breakout as DQNA, the difference scores remain unchanged.
This does indeed indicate that the unadjusted filters in the Pong networks are
too different from any of the filters in the Breakout networks to be used in the
original comparison. Additionally, we can see that when using Pong as DQNA,
the difference score between Breakout has slightly decreased from around 0.20 to
0.19 when extracting the unadjusted filters. These numbers correspond better
with the difference scores found when using Breakout as DQNA.

The rest of the difference scores are as expected. We can see that comparing
two random networks yield a high difference of around 0.27. After extracting
the unadjusted filters, comparing either Breakout or Pong to a random network,
results in a relatively high difference of between 0.23 and 0.25. Comparing Pong

4.4. E2 - CUTBACK IN TRAINING TIME - PONG AS TARGET 57

to Breakout yields a lower score of around 0.19. The first layers in the two Break-
out networks have a lower difference at around 0.16. This is also the case when
comparing the two Pong networks after the unadjusted filters are extracted from
the comparison, about 0.17.

The difference scores are as expected, suggesting that the first convolutional layer
in the Pong and Breakout networks may have more in common than a randomly
initialized network, but not as much in common as a network trained on an equal
task.

4.4 E2 - Cutback in Training Time - Pong as Tar-
get

This section presents the results from Experiment E2, using Pong as target task
when investigating cutback in training time. Then, the results are discussed and
analyzed.

4.4.1 Results

The results from Experiment E2 using Pong as target network are depicted as
graphs in Figure 4.3. As mentioned, the experiment is performed three times with
identical settings and averaged to mitigate statistical anomalies. Figure 4.3a plots
the average episode score per epoch, gathered during the testing epochs. Figure
4.3b plots the average episode action value per epoch, also collected during the
testing epochs. Figure 4.3c plots a moving average of the mean loss per game
episode. The loss is gathered during the training epochs. All graphs plot data of
both the Pong target network and the Pong base network for comparison.

4.4.2 Analysis and Discussion

As seen in Figure 4.3a, when playing Pong, the target network does get a higher
average score faster than the base network and it looks like it has a higher score
for the duration of the training until around epoch 70. It is also interesting to see
that the score seems to be somewhat more stable for the target network, not fluc-
tuating as much as the base network. Both networks seem to converge towards
an average score of 18-19. This means that on average, the agent scores 21 points
by deflecting the ball past the opponent (and thereby winning the game), while
only conceding 2-3 balls itself. Both the base network and the target network
seems to reach the same score over time.

58 CHAPTER 4. RESULTS AND ANALYSIS

(a) Average episode score per epoch.

(b) Average episode action value per epoch.

4.4. E2 - CUTBACK IN TRAINING TIME - PONG AS TARGET 59

(c) Mean loss moving average per episode.

Figure 4.3: Results when using Pong as target task. Best viewed in colors.

In terms of cutback in training time, it seems like the target network has con-
verged at around epoch 40-45. The base network needs at least 60-70 epochs
before getting the same score and converging. This is a cutback of 15-20 epochs,
or up to 5 million less frames. This cutback amounts to around a day of training
time with the hardware setup used for this experiment. It is hard to say why
the target network achieves a more stable score throughout the training. The
score graph may indicate that knowledge from the pre-trained first layer makes
the target network perform more stable. In addition, the fact that the target
network achieves a higher score faster than the base network may suggest that
there are some features from Breakout that the Pong network can take advantage
of.

Figure 4.3b plots the average action value per epoch. The action value is the
reward the agent expects at any given time. Since the agent is rewarded one
point for deflecting the ball past the opponent, it is clear that the highest reward
possible for the agent to expect by doing an action at any time is 1. We can see
from the graph that the action value for the target network is generally higher
than for the base network. Towards the end of training, the two networks have
more similar values, but from epoch 40-70, the target network does expect the
reward for each action it takes to be higher than the base network. At around

60 CHAPTER 4. RESULTS AND ANALYSIS

epoch 50, the target network expects almost 20% higher reward for the actions
it takes in general.

The action value and the score are tightly coupled. Since the average score
climbs faster for the target network, it is only natural that the action value, or
expected reward, will be higher on average for the target network as well. One
peculiar observation about the action value graph is the drop during the first
few epochs. A possible explanation for this is that the final fully connected layer
before the output layer in the model architecture needs some time to calibrate.
It is this final fully connected layer that maps the features found by the convo-
lutional layers to actual action values for each valid action. They both start out
with randomly initialized weights which will give inaccurate action values for the
different valid actions. After a few epochs, the initial adjustment of the weights
creates the base for the understanding of how the action values are connected
with the different actions.

Figure 4.3c plots a moving average of the mean loss per game episode. The
loss is recorded for training epochs. The data points are down-sampled by a
factor of 10 with a moving average. This is done to get a more clear plot while
still being an accurate representation of the mean loss per episode. As mentioned
in Section 3.3.2, the mean loss is used as a learning signal for the network dur-
ing training. Higher loss means that there is a larger distance from the action
predictions the network is currently doing and what the target network, Q̂ (see
Section 3.3.2), considers the “correct” action prediction for that state. Since the
“correct” prediction is dependent on the weights of the network, this loss can not
be interpreted the same way a supervised loss signal would. However, it is still
what the network uses for learning.

The mean loss for both the target network and the base network are mostly
the same until around episode 2,000. From this point on the target loss con-
tinues to drop while the base loss seems to flatten out. The sudden mean loss
increase right before episode 1,000 is an unexpected observation. Generally, a
loss graph is expected to drop constantly and flatten out over time if the network
is properly configured. This kind of behavior might indicate that something is off.

One reason for this increase may be the exploration factor, ε, explained in Section
3.3.4. The ε value represents the exploration probability of the agent. The value
starts at 1.0 and is decreased to 0.1 over the first million frames. This happens to
be around episode 1,000 where the mean loss is about to decrease again. This is
probably the best explanation for this hump in the graph. There is still a decent
probability that the agent will choose a random action instead of the action pro-

4.5. E3 - CUTBACK IN TRAINING TIME - BREAKOUT AS TARGET 61

viding the highest action value. If the agent somehow chooses the random action
many times in a row, it would certainly give a higher mean loss, as the actions it
is currently taking is further from the targets used to calculate the loss.

Nevertheless, an odd-looking training loss graph does not provide much informa-
tion in itself. The score and action value are more valuable metrics to evaluate
the performance of the agent during training by. As long as the agent seems to
learn and acts in an intelligent manner on the tasks, the training loss is of less
importance.

The results from using Pong as target task seems promising. There are indi-
cations that the knowledge contained in the first convolutional layer in a base
network trained to play Breakout does have some general knowledge that can be
transferred to the task of playing Pong. However, as the results are only averaged
over three experiment runs, it is not possible to make any conclusive statements.

4.5 E3 - Cutback in Training Time - Breakout as
Target

This section presents the results from Experiment E3 using Breakout as target
task when investigating cutback in training time. Then, the results are discussed
and analyzed.

4.5.1 Results

The results from Experiment E3 using Breakout as target network are depicted
as graphs in Figure 4.4. As mentioned earlier, the experiment is performed three
times with identical settings and averaged to mitigate statistical anomalies. Fig-
ure 4.4a plots the average episode score per epoch, collected during the testing
epochs. Figure 4.4b plots the average episode action value per epoch, also gath-
ered during the testing epochs. Figure 4.4c plots a moving average of the mean
loss per game episode. The loss is gathered during the training epochs. The
graphs plot the collected data for both the Breakout target network and the
Breakout base network for comparison.

4.5.2 Analysis and Discussion

Figure 4.4a plots the average episode score per epoch. As seen in this figure, both
the base network and the target network seem to perform equally. Based on the
graph, it is hard to determine whether the target network achieves a better score

62 CHAPTER 4. RESULTS AND ANALYSIS

(a) Average episode score per epoch.

(b) Average episode action value per epoch.

4.5. E3 - CUTBACK IN TRAINING TIME - BREAKOUT AS TARGET 63

(c) Mean loss moving average per episode.

Figure 4.4: Results when using Breakout as target task. Best viewed in colors.

than the base network. Even though the graph shows the score averaged over
3 runs, the score seems to fluctuate and vary a lot compared to the score from
the Pong experiment in Section 4.4.2. An explanation for this may be that doing
a random explorative move can influence the score more drastically in Breakout
than Pong. During a testing epoch, which takes place after every training epoch,
the explorative factor, ε, is fixed at 0.05. In other words, there is a 5 % chance
of the agent choosing a random action. This is done due to the Atari emulator
depending on player input to generate randomness, as described in Section 3.3.4.
Although the chance of doing a random action is the same for both Pong and
Breakout, making a random (and most likely sub-optimal) move in Breakout may
influence the score more since the game pace is higher. There is much less time
to correct bad choices.

Another reason why the Breakout score seems more variable than the Pong score,
may be that it is distributed over several hundred points. In Pong, the score is
always between -21 and 21. In Breakout, the score can be between 0 and several
hundred. The explanation for the varying score may simply be the nature of the
game itself and how it is designed to be played.

Figure 4.4b plots the average episode action value per epoch. Neither the tar-

64 CHAPTER 4. RESULTS AND ANALYSIS

get network nor the base network seems to achieve a higher action value than
the other. Both the target and the base network seem to increase steadily until
around epoch 70, where they both stabilize at an action value at about 4. The
keen reader may have noticed that the action value is higher for Breakout than
for Pong. This is because of the scoring system in the respective games. When
a Breakout episode starts there are 6 layers of breakable blocks at the top of the
screen. The blocks in the two lowest layers earn the agent one point when hit.
The blocks in the third and fourth layer earn the agent four points when hit. The
two top layers consist of blocks worth seven points when hit. This means that the
highest reward the agent can expect from doing an action at any point in time
is seven. An average action value over 4 seems reasonable for a well-performing
agent, as it is impossible to hit the blocks yielding maximum points with every
deflection of the ball.

Figure 4.4c plots a moving average of the mean loss per episode. For Break-
out, the data is down-sampled by a factor of 50. The reason for this is the same
as for Pong, that the loss is sampled at every end of an episode during the train-
ing epochs. In Breakout, the episodes are much shorter than Pong. As we can
see by comparing the x-axis in Figure 4.4c and Figure 4.3c there are a lot more
episodes for Breakout than for Pong. The reason for this is that Breakout is a
more fast paced game and the duration of an episode is shorter on average.

The loss graph seems a little strange. Generally, a training loss signal will start
with a high value and decrease as training progresses, converging at a low value
close to 0. The training loss signal for Breakout starts out as expected, decreasing
over the first 20,000 episodes. However, from this point on it starts to increase.
As mentioned in Section 3.3.3, the loss describes how far the current predicted
Q-value is from the target Q-value. Based on this, the weights are adjusted ac-
cordingly. A higher loss indicates that the current Q-value is further from the
target Q-values.

In supervised learning, a climbing test loss signal may indicate that the network
is overfitting. It is harder to draw the same conclusion with the training loss. The
DQN does not have a testing set with unseen examples that can judge how well
the agent has generalized to the task, as supervised learning methods require. In
contrast to the labels used as targets in supervised learning, the targets in the
DQN system are dependent on the weights of the target network, Q̂, which is a
copy of the current DQN some iterations ago (see Section 3.3.3). Because of this,
the loss signal is only based on what the network itself considers good targets
according to the knowledge it possessed some time ago. Unlike supervised labels,
these targets are not necessarily the optimal or “correct” targets.

4.6. PERFORMANCE OF THE DQN 65

However, the figure illustrates that the network regards the predicted actions
at the end of training as further away from what it considers “correct” behav-
ior given its knowledge at that point during training. Why this is the case is
hard to determine, especially since both the score and the action value are as
expected and the agent appears to behave reasonably. Recall that the training
in this thesis is done over 25 million frames rather than the 50 million frames
done by Mnih et al. [2015]. It could be interesting to see how the loss would
evolve over the next 25 million frames. Generally, as mentioned in the analysis of
Pong in Section 4.4.2, the training loss does not provide very valuable information
in itself. A strange training loss does not necessarily mean that anything is wrong.

Training Breakout as target network with its first layer transferred from a trained
Pong base network did not seem to affect the result much. Both the base network
and the target network progressed equally during training. A reason for this may
be that Pong requires less skill to achieve a good score. In Pong it is sufficient
to avoid conceding the ball, in addition, the ball and the pace of the game are
slower. The Pong base network may not have knowledge general enough that the
Breakout target network can take advantage of it. This may be why the results
are better when using Pong as target network compared to using Breakout as
target network. Breakout is harder to play and requires more skill. The results
from the other experiments support this claim as well. For instance, the unad-
justed weights found in the Pong networks. There are simply more task specific
knowledge contained in the Pong networks than the Breakout networks.

When choosing tasks for these experiments, the difficulty was not considered.
As seen from the results, this may be a weakness with the experimental design.
By choosing tasks more equal in terms of difficulty, the results might be improved.

The knowledge contained in the first layer of a fully trained Breakout base net-
work seems to be more general and transferable than the knowledge contained in
the first layer of a fully trained Pong base network. At least when transferring
between these two tasks.

4.6 Performance of the DQN

The purpose of this section is to discuss the performance achieved with the DQN.
Although not critical to the research questions or goal of this thesis, it can be
interesting to compare the performance with that of Mnih et al. [2015] to confirm
that the agent does acquire knowledge.

66 CHAPTER 4. RESULTS AND ANALYSIS

To measure the agent's performance, Mnih et al. [2015] use the evaluation from
the test epochs after every training epoch, just as this thesis does. Their test
epochs last 135,000 validation frames, as opposed to 125,000 in this thesis. In
addition, their agent is trained on 50 million frames, as opposed to 25 million in
this thesis. The highest achieved average score from their testing epochs is used.

In Pong, Mnih et al. [2015] achieved a score of 18.9(±1.3). This is very simi-
lar to the score the agent in this thesis achieved. From the graph in Figure 4.3a,
we can see that the score the agent achieves is around 18 to 19. However, the
highest achieved average score during a single test epoch is 19.2. It seems like
the performance of the agent playing Pong is similar to that of Mnih et al. [2015].

In Breakout, Mnih et al. [2015] achieved a score of 401.2(±26.9). Compared
to the score the agent in this thesis achieved it is a bit higher. From the graph
in Figure 4.4a, we can see that the agent rarely achieves a score higher than 300.
However, the highest achieved average score during a single test epoch is 369.7.
Although not as high as that of Mnih et al. [2015], the score confirms that the
agent does acquire knowledge.

To give an idea of how the skills of the agent develops during training,
some videos have been made to demonstrate this. How these can be
watched and their descriptions are provided in Appendix A.

4.7 Results Summary

This chapter has presented the experimental results. In addition, they have been
analyzed and discussed.

In the experiments regarding similarities between the low-level features in net-
works trained to play Pong and Breakout, the results were mixed. There were
signs of general features, especially in Breakout. However, there were filters from
both games resembling task specific feature detectors.

In addition to the visual comparison between the tasks, a difference score was
found between the first layer of the different networks. These results were more
promising, indicating that the difference between the first layers in Pong and
Breakout was less than their difference to a randomly initialized network. This
may suggest some level of generality between the low-level features.

For the experiments regarding cutback in training time, the results were mixed.
Training Pong as target network with its first layer transferred from a fully trained

4.7. RESULTS SUMMARY 67

Breakout base network gave promising results. Both the score and the action
value increased faster and converged earlier for the target network than the Pong
base network during training.

However, training Breakout as target network with its first layer transferred from
a fully trained Pong base network did not seem to result in faster convergence.
Both the target network and the Breakout base network progressed in a similar
manner during training and converged at around the same epoch. The fact that
Breakout is more challenging to learn compared to Pong could be the reason why
we are not seeing a cutback in training time. Pong seemed to be less challeng-
ing, this was supported by the fact that the trained Pong networks contained a
considerable amount of unadjusted filters.

Although the results are inconclusive, there are indications worth exploring. The
next chapter will evaluate the results in terms of the goal and research questions.
In addition, it will outline possible future work and how to explore these subjects
further.

68 CHAPTER 4. RESULTS AND ANALYSIS

Chapter 5

Conclusion

5.1 Overview

This chapter begins by giving a summary of the thesis in Section 5.2. Section
5.3 evaluates the results in terms of the defined goal and research questions.
Contributions are described in Section 5.4. Finally, Section 5.5 describes how the
work done in this thesis can be built upon and my thoughts on interesting paths
for this field of research.

5.2 Thesis Summary

Chapter 2 gave an introduction to the field of deep learning, CNNs and reinforce-
ment learning. A literature review resulted in the various papers presented as
related work which provided an insight into the current state of the field of deep
reinforcement learning. It focused on how to further build on the DQN proposed
by Mnih et al. [2015]. Especially, how to compress the knowledge from several
DQNs into a single more general DQN. The related works revealed that a more
direct approach to investigating how general the knowledge contained in deep
CNNs could be a valid contribution to the field.

Chapter 3 contained detailed information about the system, domain and tech-
nology used to perform the experiments in this thesis. A DQN, first proposed
by Mnih et al. [2015], was implemented based on a recreation by Sprague [2015].
Three experiments were designed according to the research questions. Part one
of experiment E1 was concerned with visually comparing the lower layer features
in various DQNs trained on similar tasks. The second part quantified the simi-
larity between the lower level features in various DQNs trained on similar tasks.

69

70 CHAPTER 5. CONCLUSION

Experiment E2 transferred the Breakout base network to a Pong target network
to investigate how training time could be reduced. Finally, Experiment E3 did
the same as E2, only using Pong as base network and Breakout as target network.

Chapter 4 described, analyzed and discussed the results from the experiments.
First, part one of Experiment E1 performed a visual comparison between the first
convolutional layer in a DQN trained on the games Pong and Breakout. There
were indications that the networks had some limited knowledge that was general
to the two tasks, but most filters seemed to be specific to the task. Second, the
quantified difference between lower level features in part two of Experiment E1
was calculated. The results were positive in that the tasks Breakout and Pong
seemed to have some similarities in their lower level features. Experiment E2 and
E3 transferred the first layer of a pre-trained DQN and used it to train a target
network. In Experiment E2, the results showed that Pong did perform better
using pre-trained weights from Breakout. However, in Experiment E3, Breakout
did not and the performance was equal to a network without pre-trained weights.

5.3 Goal Evaluation

The goal of this thesis was to investigate how general the knowledge contained
in a DNN is. The motivation behind investigating the generality came from
Mnih et al. [2015], their DQN and their statement of it being a general solution.
Because of this, it was natural to use the DQN for the experiments in this thesis.
The DQN was used to perform experiments aimed at addressing the research
questions. This section discusses the results achieved with the research questions
in mind.

Research question 1 Will there be any similarities between the lower level fea-
tures in DNNs trained on similar tasks?

For research done with CNNs applied to image detection and image recognition,
we know that the lower level features in CNNs often correspond to known image
processing filters, like edge detection filters such as Gabor filters. These filters can
be regarded as general features, as most images contain edges. Edge detection is
applicable in most systems aimed at somehow interpreting images, including the
DQN.

The first experiment, E1, was designed with this research question in mind. By
training different networks to play Pong and Breakout, the first convolutional
layer could be visualized and interpreted. The interpretation was first done man-
ually by visually comparing the filters in the first layers of the networks. This

5.3. GOAL EVALUATION 71

was done to identify similar filters that might have been optimized independently
of the task. Second, a difference score was computed between the different layers.
The difference score served as a quantified measure of the difference between the
layers.

The results from E1 when visually comparing the different filters were divided. In
the Breakout networks, horizontal edge detection filters could clearly be identi-
fied. The Pong networks on the other hand, evolved slightly specific vertical edge
detection filters. The edge detection filters were expected since the respective
games mostly consist of horizontal or vertical objects. However, since the games
seem to only include one of the filter types, they might not be very general in
respect to each other. Both Pong and Breakout had some task specific filters.
Generally, it was hard to visually identify similarities between networks trained
on the two games.

The results of computing difference scores were more promising and showed that
the first convolutional layer in networks trained to play Pong and Breakout were
more similar than when comparing either of them to a randomly initialized net-
work. It is not possible to draw any conclusions based solely on this experiment.
But as an answer to the research question, there are indications that DQNs are
developing similar lower level features for tasks that are related.

Research question 2 Will there be a significant cutback on the training time
for a network already trained on a similar task? How significant?

The process of training DNNs is computationally expensive and require modern
hardware to be feasible to carry out. Lately, the task of reducing training time
of DNNs has been in focus for research in this field.

The second experiment was designed with this research question in mind. DQNs
were trained on Pong and Breakout and named base networks. The trained
weights from the first convolutional layer in the Pong base network were used
as initial weights in the Breakout target network. The target network with the
modified first layer was then trained. For the Pong target network, a Breakout
base network was used as initial weights. By comparing the score, action value
and mean loss during training of both the base networks and the target networks,
research question 2 could be addressed.

The results when using Pong as target network were promising. During training,
both the score and the action value of the target network converged at an earlier
point compared to the base network. Around halfway through training, the tar-
get network had a 20 % higher action value than the base network. The average

72 CHAPTER 5. CONCLUSION

score was also higher for the target network. For the base network to achieve
the same numbers, it needed 10-20 more epochs of training, or up to 5 million
more frames to train on. In terms of training time, this amounts to a cutback of
around 24 hours with the hardware used in this experiment.

The results when using Breakout as target network were not as promising. The
score and action value for both the base network and the target network devel-
oped at an equal pace and converged at the same time. Although the performance
of the agent trained on Breakout was adequate, the training loss signal resulted
in a peculiar plot. Based on the results from Breakout alone, there were no indi-
cations that initializing the first convolutional layer with a layer pre-trained on
a similar task gave advantages in terms of reduced training time. At least with
the current experimental setup.

Although the results when using Pong as target network were promising, look-
ing at the results combined, no definitive conclusions can be drawn in terms of
cutback in training time. More work should be done to confirm the results from
Pong. One suggestion is to choose tasks that are more equal in terms of difficulty.
Since Pong requires less skill and knowledge, it may not contribute as much to
the target Breakout network.

5.4 Contributions

The generality of DNNs has been explored. It has been shown that there are
indications that the lower level features in CNNs do have similarities and may
contain some general knowledge. This has already received some attention in re-
gards to object recognition in images, but has, to my knowledge, not been done
with DQNs in the domain of Atari games before. The contributions to the field
are also done by supporting earlier found evidence.

To my knowledge, there have not been any previous efforts concerned with in-
vestigating how pre-trained layers in a DQN can give a cutback in training time.
This thesis has shown that there are indications that cutback in training time
can be achieved by using knowledge previously obtained as a starting point when
learning to do new and similar tasks. However, this thesis can only be regarded
as exploratory research of this subject. More experimentation is needed in this
area before any conclusions can be made.

5.5. FUTURE WORK 73

5.5 Future Work

To mitigate the statistical anomalies in the results, they should be averaged over
more experiments. This is at least true for the experiments targeted at cutting
down on training time. In this thesis, the results presented are only averaged over
three runs due to limits in computational power. Also, training the DQNs could
be done for longer, training for 50 million frames instead of 25 million frames like
Mnih et al. [2015].

Additionally, the same experiments should be performed on the other convo-
lutional layers in the DQNs. An experiment similar to Yosinski et al. [2014],
described in Section 2.6.2 could be done to quantify the generality of each layer.
This could pinpoint the convolutional layer in which the knowledge becomes too
specific to be used in transferring.

In addition, the experiments should be conducted involving more tasks. In this
thesis, only the games Pong and Breakout were used as tasks. Other games being
both more similar and less similar should be used. By doing the same experi-
ments on a wide range of games with different levels of similarity, it could be
possible to determine how similar the tasks need to be for a potential cutback in
the training time to take effect.

Recall that using Pong as base network did not result in cutback in training
time on a target Breakout network. The reason may be that Pong is an easier
game to learn and less knowledge may be required to play it compared to Break-
out. It would be interesting doing the same experiments using tasks that are
considered to be at the same level of difficulty. One approach could be to make
Pong more difficult by increasing the length of the opponent's paddle or placing
a block in the middle of the screen to increase the unpredictability of the ball.
This would force the agent to aim better. Furthermore, the game pace could be
increased making the ball move faster. This could possibly achieve better results.

Furthermore, it could also be interesting to implement a regularization tech-
nique like dropout [Srivastava et al., 2014] in the DQN. This could potentially
reduce the co-adaptive neurons in the layers and make them more general. In
addition, noise could be introduced in the input data to increase its domain size.
This could also result in more general knowledge.

An important aspect of reducing training time is to be able to train a network
sufficiently with less data. An interesting thought that takes the concepts from
this thesis a little further, is to build a library of pre-trained networks with gen-

74 CHAPTER 5. CONCLUSION

eral knowledge. A network from this library can then be used as a base to further
fine-tune other networks to more specific tasks, effectively reducing training time.
This could possibly be done better with techniques like multitask learning or dis-
tillation as mentioned in Section 2.6.

Bibliography

(1999). Atari 2600 history. http://www.atariage.com/2600/. Accessed: 2016-
04-07.

Ascher, D., Dubois, P. F., Hinsen, K., Hugunin, J., Oliphant, T., et al. (2001).
Numerical python.

Azizpour, H., Razavian, A. S., Sullivan, J., Maki, A., and Carlsson, S. (2015).
Factors of transferability for a generic convnet representation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence.

Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron,
A., Bouchard, N., and Bengio, Y. (2012). Theano: new features and speed
improvements. Deep Learning and Unsupervised Feature Learning NIPS 2012
Workshop.

Battenberg, E., Dieleman, S., Nouri, D., Olson, E., van den Oord, A., Raffel,
C., Schluter, J., and Sonderby, S. K. (2014–2015). Lasagne. http://lasagne.
readthedocs.org/.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade
learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279.

Bengio, Y. (2012). Deep learning of representations for unsupervised and transfer
learning. Journal of Machine Learning Research (JMLR), 27:17–36.

Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins,
G., Turian, J., Warde-Farley, D., and Bengio, Y. (2010). Theano: a CPU and
GPU math expression compiler. In Proceedings of the Python for Scientific
Computing Conference (SciPy). Oral Presentation.

Caruana, R. (1997). Multitask learning. Machine Learning, 28(1):41–75.

75

http://www.atariage.com/2600/
http://lasagne.readthedocs.org/
http://lasagne.readthedocs.org/

76 BIBLIOGRAPHY

Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing: Deep neural networks with multitask learning. In Proceedings of
the 25th International Conference on Machine Learning, ICML ’08, pages 160–
167, New York, NY, USA. ACM.

Glorot, X., Bordes, A., and Bengio, Y. (2011). Deep sparse rectifier neural
networks. Journal of Machine Learning Research (JMLR), 15:315–323.

Goertzel, B. and Pennachin, C. (2007). Artificial General Intelligence. Springer-
Verlag.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. Book in
preparation for MIT Press.

Hausknecht, M. J. and Stone, P. (2015). Deep recurrent q-learning for partially
observable mdps. CoRR, abs/1507.06527.

Hecht-Nielsen, R. (1989). Theory of the backpropagation neural network. In
Neural Networks, 1989. IJCNN., International Joint Conference on, pages
593–605. IEEE.

Hinton, G. E., Osindero, S., and Teh, Y.-W. (2006). A fast learning algorithm
for deep belief nets. Neural computation, 18(7):1527–1554.

Hinton, G. E. and Salakhutdinov, R. R. (2006). Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507.

Hinton, G. E., Srivastava, and Swersky (2012). Overview of mini-batch gradient
descent. http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_

slides_lec6.pdf.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification
with deep convolutional neural networks. In Pereira, F., Burges, C., Bottou,
L., and Weinberger, K., editors, Advances in Neural Information Processing
Systems 25, pages 1097–1105. Curran Associates, Inc.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature,
521(7553):436–444.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learn-
ing applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beat-
tie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg,

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

BIBLIOGRAPHY 77

S., and Hassabis, D. (2015). Human-level control through deep reinforcement
learning. Nature, 518(7540):529–533.

Parisotto, E., Ba, L. J., and Salakhutdinov, R. (2016). Actor-mimic: Deep multi-
task and transfer reinforcement learning. International Conference on Learning
Representations (ICLR).

Russel, S. and Norvig, P. (2010). Artificial Intelligence A Modern Approach.
Pearson Education.

Rusu, A. A., Colmenarejo, S. G., Gülçehre, Ç., Desjardins, G., Kirkpatrick,
J., Pascanu, R., Mnih, V., Kavukcuoglu, K., and Hadsell, R. (2016). Policy
distillation. International Conference on Learning Representations (ICLR).

Sprague, N. (2015). Parameter selection for the deep q-learning algorithm. In
Proceedings of the Multidisciplinary Conference on Reinforcement Learning and
Decision Making (RLDM).

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.
(2014). Dropout: A simple way to prevent neural networks from overfitting.
The Journal of Machine Learning Research, 15(1):1929–1958.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction.
Cambridge: MIT Press.

Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. (2015). Simultaneous Deep
Transfer Across Domains and Tasks. ArXiv e-prints.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning,
8(3):279–292.

Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014). How transferable are
features in deep neural networks? In Ghahramani, Z., Welling, M., Cortes, C.,
Lawrence, N., and Weinberger, K., editors, Advances in Neural Information
Processing Systems 27, pages 3320–3328. Curran Associates, Inc.

78 BIBLIOGRAPHY

Appendices

A Videos - Agent Training Progression

There are three videos available to watch on YouTube. These are provided for
the reader to get a grasp of how the training progression of the agent is.

Video 1: Pong - Training progression
URL: https://www.youtube.com/watch?v=4KzE3C7Q0mE
This video shows how the skills of the DQN agent progresses throughout training.
First, an untrained agent plays Pong. The movements are clearly random and the
performance poor. Second, an agent trained for 50 epochs, or approximately 12
million frames plays. We can clearly see that the agent is starting to understand
the concept of the game. However, it is not until after 100 epochs, or 25 million
frames of training, that the agent performs very well. We can see that it has
found an optimal angle to hit the ball which makes the opponent unable to reach
it.

Video 2: Breakout - Training progression
URL: https://www.youtube.com/watch?v=tyHyvDg0yoc
This video shows how the skills of the DQN agent progresses throughout training.
First, an untrained agent plays Breakout. The movements are clearly random
and the performance poor. Second, an agent trained for 50 epochs, or approxi-
mately 12 million frames plays. As for Pong, we can see that the Breakout agent
is starting to grasp the concept of the game. After 100 epochs, or 25 million
frames of training, the agent performs very well. An interesting observation is
that the fully trained agent has learned the advantageous strategy of digging a
tunnel on one of the sides of the blocks. By deflecting the ball through the tunnel,
the ball will bounce on top of the blocks, generating an abundance of points.

Video 3: Pong - Base network vs Target network
URL: https://www.youtube.com/watch?v=CWC6RFN84PY

79

https://www.youtube.com/watch?v=4KzE3C7Q0mE
https://www.youtube.com/watch?v=tyHyvDg0yoc
https://www.youtube.com/watch?v=CWC6RFN84PY

80 BIBLIOGRAPHY

This video shows the difference between a base network and a target network
playing Pong. The video is recorded halfway through training, i.e after 50 epochs
and approximately 12 million frames. At this stage in training, the target net-
work has started to converge, while the base network still has around 10-20 epochs
left before converging. The difference in agent behavior is subtle, but if we look
closely, we can see that the base network has not yet found that “optimal” de-
flection angle. The result of this is rather lengthy rallies. The target network
seems to perform as good as the fully trained agent from Video 1.

Pong is the only game with a video comparing the base network and the tar-
get network play. The reason is that in Breakout, there is no visible difference in
terms of agent performance.

B. SOURCE CODE - ENVIRONMENT OVERVIEW 81

B Source Code - Environment Overview

The source code is available online at https://github.com/torgeha/dqn.

Dependencies:

• Python 2.7

• Numpy 1.11

• Theano 0.7

• Lasagne 0.1

• Arcade Learning Environment (ALE) 0.5.1

• OpenCV 3.0.0

• matplotlib 1.5.1

The source code is implemented and run in Ubuntu 14.04. Installing the de-
pendencies should be straight forward using the Linux package manager APT
(apt-get) and the Python installation manager Pip. The environment has not
been tested on Windows.

https://github.com/torgeha/dqn

82 BIBLIOGRAPHY

C Source Code - System Overview

There are two kinds of scripts in the GitHub repository mentioned in Appendix
B; system scripts and tool scripts. The system scripts are the scripts implement-
ing the DQN and can be found in the /src folder. The tool scripts are tools
implemented to transfer layers, visualize weights, calculate difference score and
so on. The tool scripts can be found in the /tools folder. In addition, scripts
used to plot graphs can be found in the /plotting folder.

Following is a brief overview of the different scripts.

DQN:

• run.py - Static class where the hyperparameters can be adjusted.

• launcher.py - Initialize all components with correct hyperparameters and
start training.

• ale experiment.py - Handles logic for training and agent.

• ale agent.py - Agent wrapping the Q-network.

• q network.py - The DQN implementation.

• ale data set.py - Replay memory.

• updates.py - RMSProp.

Tools:

• difference score.py - Calculate the difference score between a specific layer
in two networks.

• check similarity.py - Verify if two networks are equal, layer by layer.

• visualize weights.py - Visualize the convolutional filters in a specific layer
in a network.

• swap layers.py - Transfer a specific layer from one network to another.

• wath gameplay.py - Watch an agent play an Atari game by providing a
model.

Plotting:

• plot loss.py - Plot the loss signal from result file produced during training.

• plot results.py - Plot the score and action value based on result file produced
during training.

	Introduction
	Overview
	Background and Motivation
	Goals and Research Questions
	Research Method
	Thesis Structure

	Background Theory and Motivation
	Overview
	Deep Learning
	Multitask Learning
	Reinforcement Learning
	Structured Literature Review
	Identification of Research
	Screening Process

	Related Work
	Human-Level Control Through Deep Reinforcement Learning
	How Transferable are Features in Deep Neural Networks?
	Simultaneous Deep Transfer Across Domains and Tasks
	Actor-Mimic: Deep Multitask and Transfer Reinforcement Learning
	Other Relevant Work

	Background Summary

	Methodology
	Overview
	Atari 2600
	Deep Q Network
	Preprocessing
	The Model Architecture
	The Algorithm
	Training

	Hyperparameters
	Implementation Details
	Experiments
	Selection of Tasks
	E1 - Low-Level Features - Visual Comparison
	E1 - Low-Level Features - Difference Score
	E2 and E3 - Cutback in Training Time

	Methodology Summary

	Results and Analysis
	Overview
	E1 - Low-Level Features - Visual Comparison
	Results
	Analysis and Discussion

	E1 - Low-Level Features - Difference Score
	Results
	Analysis and Discussion

	E2 - Cutback in Training Time - Pong as Target
	Results
	Analysis and Discussion

	E3 - Cutback in Training Time - Breakout as Target
	Results
	Analysis and Discussion

	Performance of the DQN
	Results Summary

	Conclusion
	Overview
	Thesis Summary
	Goal Evaluation
	Contributions
	Future Work

	Bibliography
	Appendices
	Videos - Agent Training Progression
	Source Code - Environment Overview
	Source Code - System Overview

