
Autonomous landing of Fixed-Wing UAV
in net suspended by Multirotor UAVs
A Multirotor recovery system

Jostein Borgen Moe

Master of Science in Cybernetics and Robotics

Supervisor: Tor Arne Johansen, ITK
Co-supervisor: Thor Inge Fossen, ITK

Kristian Klausen, ITK

Department of Engineering Cybernetics

Submission date: June 2016

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Mathematics and Electrical Engineering
Science and Technology Department of Engineering Cybernetics

MSC THESIS DESCRIPTION SHEET

Name: Jostein Borgen Moe

Department: Engineering Cybernetics

Thesis title: Autonomous landing of Fixed-Wing UAV in net suspended by

Multirotor UAVs - A Multirotor recovery system

Thesis Description:

The purpose of this thesis is to study the operation of landing a fixed-wing Unmanned Aerial Vehicle

(UAV) in a net suspended by two multirotor type UAVs. In addition to the scientific contribution, the

work will provide an important demo for the capabilities of the UAV lab at ITK.

The following items should be considered:

1. Investigate methods to coordinate along-track speed of the multirotor formation with the

fixed-wing surge speed.

2. Literature overview on modeling the constrained dynamics of multiple multirotors in 6DOF

with a suspended net.

3. Modeling of impact effects when the fixed-wing hits the suspended net.

4. Investigate the usability of adaptive control for the multirotors.

5. Guidance system for the multirotor formation.

6. Develop simulators to enable software-in-the-loop simulations of the interconnected system

(fixed-wing + nx multirotors).

7. Discussions on the practical usage of a net-catch maneuver (Including operational aspects.)

8. Test and implement the synchronized controller for net-catching in a framework used for real

UAV operations (DUNE) with emphasis on the multirotor controllers.

9. Prove the usability of the proposed solution in an experimental setup.

10. Conclude findings in a report. Include a user-guide for the C-code as digital appendices.

Start date: 2016-01-11

Due date: 2016-06-20

Thesis performed at: Department of Engineering Cybernetics, NTNU

Supervisor: Professor Tor Arne Johansen, Dept. of Eng. Cybernetics, NTNU

Co-Supervisor: Kristian Klausen, Dept. of Eng. Cybernetics, NTNU

Abstract

This thesis considers the recovery of a fixed-wing Unmanned Aerial Vehicle (UAV) in
a net suspended by multirotor UAVs. Motivated by marine fixed-wing UAV operations
from ships, where limited landing space and harsh weather conditions often are present,
a dynamically controlled net is presented. Traditionally a net is located on the ship-deck,
introducing challenges such as heave motion and turbulence near the net. The concept pre-
sented in this thesis gives the possibility to move the net away from the ship and optimize
the landing trajectory of the fixed-wing UAV according to the current weather conditions.
Moreover, the multirotors can carry the net at a certain speed along the desired landing
trajectory, hence, reducing the relative velocity and the impact forces of the impact.

A mathematical model of the interconnected multi-body system is presented, emphasizing
the impact dynamics. Furthermore, a two-folded preliminary control system architecture
is presented, subdivided into the transport and the recovery phase. The transport phase
consist of the transportation of a suspended net with multirotors along a desired path, and
in the actual recovery phase the net is controlled according to the fixed-wing UAV land-
ing trajectory. The transportation is performed using a Line-Of-Sight (LOS) guidance law
in combination with a reference generator. While the recovery phase utilize a modified
pure-pursuit guidance law for cross-track control in combination with a desired along-
track velocity trajectory, instructed by the approaching fixed-wing UAV. Further different
along-track trajectories are proposed with the purpose of controlling the recovery location.
The cooperative multirotor control problem are solved using the passivity-based approach
given in [Bai et al., 2011] and implemented for cooperative multirotor control in [Røli,
2015]. Furthermore, the controllers are implemented in the open-source DUNE: Uniform
Navigational Environment framework on an embedded system in combination with the
open-source APM:Copter autopilot. The feasibility of the concept are verified by simula-
tions and field experiments.

iii

iv

Samandrag

(Norwegian translation of the abstract)

Denne avhandlinga har som mål å syne ein landingsstrategi for eit ubemanna fly i eit nett
spent opp av eit sett med ubemanna multirotorar. Motivert av marine operasjoner med ube-
manna fly fra skip, der det er avgrensa landingsplass og krevjande vêrforhold, presenterar
denne avhandlinga ei løysing der posisjonen til nettet kan regulerast. Tradisjonelt spen-
nast nettet opp på skipets dekk, men skipets vertikalrørsle og turbulens nær skipet gjev
utfordringar for det ubemanna flyet når det nærmar seg nettet. Her presenterast eit konsept
som gjev moglegheit til å flytte nettet vekk frå skipet og optimalisere landingsbanen til det
ubemanna flyet gitt dei gjeldande vêrforholda. Vidare kan dei ubemanna multirotorane
bere nettet i ein bestemd hastighet langs den ynskte landingsbanen, på den måten vert den
relative hastigheita og kreftene i kollisjonen mellom nettet og flyet redusert.

Ein matematisk modell av fleir-legeme systemet er presentert med vekt på kollisjonsdy-
namikken. Vidare er eit to-delt reguleringssystem presentert med det føremål å høvevis
transportere det oppstrekte nettet og gjennomføre den faktiske landingsmanøveren. Føremålet
med transportfasen er å flytte eit nett strekt opp av eit sett med ubemanna multirotorar
langs ein ynskja bane. På den andre sida skal nettet regulerast i samsvar med det ube-
manna flyet sin landingsbane under sjølve landingsfasen. Transporten av nettet er utført
ved hjelp av en Line-of-Sight (LOS) reguleringslov i kombinasjon med ein referanse gen-
erator. Under landingsfasen vert det nytta ein modifisert Pure-Pursuit reguleringslov, der
posisjonen i planet ortogonalt på landingsbanen vert regulert kombinert med ein ynskja
hastighet langsmed landingsbanen, instruert av det ubemmane flyet. Utfordringa knytt
til det samarbeidande reguleringssystemet for dei ubemanna multirotorane er løyst ved
hjelp av ein metode basert på passivitet. Denne metoden er introdusert i [Bai et al., 2011]
og implementert for eit sett med ubemanne multirotorar i [Røli, 2015]. Vidare er reguler-
ingssystemet implementert i eit åpen-kjelde rammeverk DUNE: Uniform Navigational En-
vironment på eit innvevd datasystem i kombinasjon med APM:Copter, ein åpen-kjeldekode
autopilot. Til slutt er konseptet verifisera ved hjelp av simuleringar og feltforsøk.

v

vi

Preface

This Master’s thesis on the subject of autonomous UAV operations at the Norwegian Uni-
versity of Science and Technology (NTNU) was carried out during the spring semester of
2016 in the Engineering Cybernetics study program.

The work continuous the pre-project carried out during the autumn semester of 2015 as
a part of the course TTK4550 - Specialization Project in Engineering Cybernetics. All
equipment used in the work is from the Unmanned Aerial Vehicles Laboratory (UAV-Lab),
a test facility for NTNU’s Research on UAV, and a part of the Centre for Autonomous
Marine Operations and Systems (AMOS). Furthermore, this work continuous and extends
the cooperative controller as implemented in the Master’s thesis of Jon-Håkon Bøe Røli
[Røli, 2015] carried out in the same study program.

The concept presented in this thesis relies on the work done by with the fellow MSc.
students Sigurd Olav Nevstad and Kjetil Hope Sørbø. Here, Nevstad [Nevstad, 2016]
presents a fixed-wing UAV landing system cooperating with the multirotor UAVs. A high-
precision navigation system is presented by Sørbø [Sørbø, 2016] which was utilized for
the multirotor control system.

I would like to thank my supervisors, Tor Arne Johansen and Thor Inge Fossen for the
opportunity to work with an innovative project in a research field of growing interest,
as well as advices and help during the process. Furthermore, the NTNU UAV operators
Lars Semb and Pål Kvaløy receives my gratitude for their patience and feedback during
the field experiments. Finally, I would also thank my co-supervisor the PhD Candidate
Kristian Klausen for all his help and advices during the project.

Trondheim, June 15, 2016

Jostein Borgen Moe

vii

viii

Table of Contents

Thesis Description i

Abstract iii

Samandrag v

Preface vii

Table of Contents xii

List of Tables xiii

List of Figures xviii

Abbreviations xix

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Objectives and methods . 1
1.3 Previous work . 2
1.4 Contributions . 3
1.5 Organization of the thesis . 4

2 Notation and background theory 7
2.1 Definitions . 7
2.2 Classical mechanics . 10
2.3 Aerodynamic drag . 11
2.4 Rigid-body dynamics . 12

3 System 15
3.1 Overview . 15

ix

3.2 Platforms . 15
3.3 Software . 17

3.3.1 LSTS Software Toolchain . 17
3.3.2 ArduPilot software . 18

3.4 Hardware . 19
3.4.1 Autopilot . 19
3.4.2 Navigation . 20
3.4.3 Computer . 20
3.4.4 Communication . 20
3.4.5 Suspended payload sensors . 21

4 The multi-body dynamics 23
4.1 Unconstrained body dynamics . 23

4.1.1 Multi-rotor dynamics . 23
4.1.2 Net dynamics . 25

4.2 Impact dynamics . 26
4.3 Multi-body constrained dynamics for simulation 27
4.4 Dynamics for control analysis . 29
4.5 Collision simulation . 30

5 Cooperative control 33
5.1 Centroid - the virtual vehicle . 33
5.2 Centroid control . 36

5.2.1 Heading and formation control 36
5.2.2 Link gain scheduling . 37
5.2.3 Velocity control . 37
5.2.4 Adaptive control . 38

5.3 Simulations . 41
5.3.1 Adaptive link gain . 41

6 Payload transport 43
6.1 Centroid LOS steering law . 43

6.1.1 Reference LOS velocity . 44
6.1.2 Surge and heading . 44

6.2 Marine craft simulator . 45
6.2.1 Surge dynamics and control . 46
6.2.2 Heading dynamics and control 46

6.3 Simulations . 47
6.3.1 Reference simulator . 47
6.3.2 MRAC . 49

7 The recovery maneuver 53
7.1 Virtual-runway . 53
7.2 Along-track trajectory . 54

7.2.1 Polynomial . 56
7.2.2 Piecewise . 57

x

7.2.3 Reference model . 58
7.2.4 Comparing . 59
7.2.5 Fixed-Wing ETA . 61

7.3 Cross-track control . 61
7.4 Position hold . 63
7.5 Supervisor . 63
7.6 Simulations . 66

7.6.1 Trajectory comparing . 66
7.6.2 Recovery maneuver . 67
7.6.3 MRAC . 70

8 Experimental setup 75
8.1 Architecture . 76

8.1.1 Configuration . 76
8.1.2 Transport layers . 78
8.1.3 Transport configuration . 79

8.2 Controllers . 79
8.2.1 Recovery Coordinator . 80
8.2.2 Path Control . 80
8.2.3 Coordinated Velocity Control 81

8.3 Software in The Loop (SITL) . 81
8.4 SITL results . 84

8.4.1 Payload transport . 84
8.4.2 Recovery maneuver . 87

9 Operational aspects 91
9.1 Overall maneuver . 91
9.2 Abort . 92
9.3 Recovery considerations . 94
9.4 Mission Control . 96

10 Experiments 97
10.1 Test facility - Agdenes airfield . 97
10.2 Setup . 98
10.3 Case 1: Gain scheduling . 99

10.3.1 Setup . 99
10.3.2 Results . 99

10.4 Case 2: Recovery . 102
10.4.1 Setup . 102
10.4.2 Case 2a: Minor compensation 103
10.4.3 Case 2b: Major compensation 106

10.5 Case 3: Payload transport . 108
10.5.1 Setup . 108
10.5.2 Case 3a: Compare reference surge 108
10.5.3 Case 3b: Cooperative . 110

10.6 Discussion . 112

xi

11 Conclusion and Closing Discussions 113
11.1 Dynamic models . 113
11.2 Transport and recovery concept . 114
11.3 Low-level controllers . 114
11.4 Further work . 115

A Additional Dynamical Modeling Theory 117
A.1 Modeling multi-body constrained dynamics 117

A.1.1 Udwadia-Kalaba . 118
A.2 Collision dynamics . 119
A.3 Time dependent equation of motions . 121

B Polynomial Trajectory Theory 123
B.1 Polynomial trajectory generation . 123
B.2 Polynomial generation matrices . 125

C Adaptive Control Theory 127
C.1 Model Reference Adaptive Control . 127
C.2 Controllability . 128

D Controllers – Tuning considerations 129
D.1 Alternative velocity control . 129
D.2 Closed-loop dynamics . 130

E Submitted conference paper for ICUAS’16 131

Bibliography 146

xii

List of Tables

2.1 Notation for the different body frames 7

4.1 Masses and velocity set-points . 30

5.1 Link gain-scheduling parameters . 41

6.1 Key reference simulator parameters in simulation 47
6.2 Key MRAC path-control parameters in simulation 49

7.1 Trajectory parameters . 59
7.2 Trajectory comparing simulation parameters 66
7.3 Recovery maneuver simulation parameters 67
7.4 MRAC recovery key parameters . 70

8.1 SITL - Controller and feedback frequencies 84
8.2 Payload transport (SITL): Parameters 84
8.3 Recovery (SITL): Parameters . 87

9.1 The different legs on the path Γ(s) . 91
9.2 The different time-parameters . 93

10.1 Experiments - Controller and feedback frequencies 98
10.2 Case 1: Gain scheduling – Parameters 100
10.3 Case 2: Recovery – Parameters . 103

xiii

xiv

List of Figures

2.1 Sketch of the platforms in the North-East plane with the approaching
fixed-wing airplane {a} and the two multirotors {c1} and {c2} with a
net suspended between them. 7

3.2 Software architecture, the different software systems are illustrated as
the boxes, and the application protocols are given in the italic text over
the dotted lines. 18

3.3 Hardware architecture, the dotted lines represents wireless communication 19
3.4 Load cell . 21
3.5 Angular encoder . 21

4.1 Multirotor body frame {ci} definition 24
4.2 Net body frame {l} definition . 25
4.3 Average collision force f̄l during impact on the suspended net, assuming

the fixed-wing UAV hits the CG of the net. 26
4.4 Suspended net from two multirotors, illustrating the wire vector Li from

the suspended load to the multirotor i wire attachment points. 28
4.5 Relative along-track velocity during collision run 31
4.6 Tension force in the wire connecting each multirotor to the suspended net 32
4.7 Snapshots from the collision . 32

5.1 Two multirotors, c1 and c2 in {n}, defining the centroid c̄ with position
pnc̄ and heading ψc̄. 35

5.2 Desired formation link z as a function of the zero heading formation zd,0
and the desired formation heading ψd,c̄ 36

5.3 Centroid heading and velocity control for agent 1 · · · i · · · k 39
5.4 Centroid heading and MRAC velocity control for agent 1 · · · i · · · k . . . 40
5.5 Link gain Kl(z̃) as a function of the difference error norm z̃ 41
5.6 Comparing position and velocity difference with link gain scheduling

enabled and disabled. 42

xv

6.1 Path control with marine craft simulator 47
6.2 Multirotor positions in {n} with reference simulator enabled and dis-

abled, the waypoints are given as the blue stars connected by the black
lines. 48

6.3 Comparing responses with reference simulator enabled and disabled . . 48
6.4 Reference simulator states and the height. 49
6.5 Multirotor and centroid positions in the North-East plane using MRAC

for path-control, the blue stars gives the desired waypoints connected by
the black lines. 50

6.6 Velocities of the multirotors in {n} during the path-maneuver, compar-
ing the reference, desired and the actual state. 50

6.7 Multirotor adaptive gains during the path-maneuver. 51

7.1 Virtual-runway {p} defined in the inertial frame {n} 54
7.2 Virtual runway path frame {p} in the North-East plane with the fixed-

wing UAV {a} and the multirotor centroid {c̄} during recovery, the dot-
ted lines indicates the boundaries of the virtual runway. 55

7.3 Desired jerk profile j(t), ∆t = 2(∆1 + ∆2 + ∆1) + ∆3 58
7.4 Comparing reference trajectories, target position xf marked with the

dotted red line . 60
7.5 The vehicles in the cross-track frame {p∗}, bounded by the dotted virtual

runway with height h and widthw. Where the black dot is the fixed-wing
and the circle is the center of the net. The height difference between the
centroid {c̄} and the net center is given as zL. 62

7.6 State machine for the recovery maneuver 65
7.7 Recovery structure figure . 66
7.8 Comparing along-track responses, the dotted lines indicates the constraints. 67
7.9 Position and orientation of the bodies in {n}, the center multirotor gives

the centroid, the black dotted line gives the boundaries of the virtual-
runway. 68

7.10 Positions of centroid and fixed-wing in the Virtual-Runway frame {p} . 69
7.11 Centroid velocities denoted in {p} . 69
7.12 Positions of the vehicles in the {n} frame, the black dotted line gives the

boundaries of the virtual-runway . 70
7.13 Positions of centroid and fixed-wing in the virtual-runway frame {p} . . 71
7.14 Centroid velocities denoted in {p} . 71
7.15 Velocities of the multirotors in {n} during the recovery maneuver, com-

paring the reference, desired and the actual state 72
7.16 Multirotor adaptive gains during the recovery maneuver 72

8.1 DUNE system architecture overview 75
8.2 DUNE on the different platforms . 77
8.3 DUNE control-loops overview . 78
8.4 Overview of DUNE feedback . 79
8.5 Structure of DUNE controllers implementation, IMC::ELS is short for

IMC::EstimatedLocalState . 80

xvi

8.6 SITL principle . 81
8.7 SITL architecture in ArduPilot. Image courtesy of dev.ardupilot.com . . 82
8.8 SITL setup . 83
8.9 Payload transport (SITL): Multirotor positions in {n}, centroid illus-

trated as the red multirotor. The blue stars indicate the way-points con-
nected by solid black lines . 85

8.10 Payload transport (SITL): Multirotor positions and centroid velocity. . . 86
8.11 Payload transport (SITL): Reference simulator states and the height. . . 86
8.12 Recovery (SITL): North-East overview of the recovery, where the green

and the blue line is the path of the fixed-wing and the multirotors respec-
tively. The centroid path is also plotted as the center multirotor. The
black dotted lines represents the boundaries of the virtual-runway and
the blue stars is the desired waypoints, connected with the solid black line. 87

8.13 Recovery (SITL): Along- and cross-track positions in the path-frame
{p}, the boundaries of the virtual-runway is represented as the black-
dotted line. 88

8.14 Recovery (SITL): Along- and cross-track positions in the path-frame {p}
a short period before the impact. 88

8.15 Recovery (SITL): The recovery state change timestamps during the op-
eration symbolized as red stars along the fixed-wing path (black line),
the blue circles is the position of the centroid at the specific timestamp.s 89

8.16 Recovery (SITL): Centroid velocities denoted in the virtual-runway frame
{p} . 89

9.1 Overall plan in the North-East plane {n} where {s} presents body frame
of the ship with heading ψs for illustration, and the approaching fixed-
wing {a} with heading ψa aligned with the path frame {p} 92

9.2 A section of the net . 94
9.3 Release mechanism and weight cell attached to a gimbaled suspension . 95
9.4 Screenshot from Neptus GCS during SITL, the fixed-wing UAV and the

multirotor are illustrated as the green and white arrow respectively. . . . 96

10.1 Agdenes airfield. Image courtesy of norskeflyplasser.no 98
10.2 Simulated slave setup . 99
10.3 Case 1: North-East positions, reference heading and surge 100
10.4 Case 1: Link distance expressed in the North-East plane ‖z1:2‖2 and the

Down axis |z3| respectively. 101
10.5 Case 2: Recovery setup . 102
10.6 Case 2a: North-East overview over the recovery, where the green and

the blue line is the path of the fixed-wing and the multirotor respectively.
The black dotted lines represents the boundaries of the virtual-runway.
The blue stars is the desired waypoints, connected with the solid black
line. 103

10.7 Case 2a: The recovery state change timestamps during the operation
symbolized as red stars along the fixed-wing path (black line), the blue
circles is the position of the centroid at the specific timestamps 104

xvii

http://www.norskeflyplasser.no/showOriginalImage.aspx?IMGID=114213

10.8 Case 2a: Along- and cross-track positions in the path-frame {p}, the
boundaries of the virtual-runway is represented as the black-dotted line . 104

10.9 Case 2a: Along- and cross-track positions in the path-frame {p} a short
period before the impact . 105

10.10 Case 2a: Multirotor velocities denoted in the virtual-runway frame {p}. 105
10.11 Case 2b: North-East overview over the recovery, where the green and

the blue line is the path of the fixed-wing and the multirotor respectively.
The black dotted lines represents the boundaries of the virtual-runway.
The blue stars is the desired waypoints, connected with the solid black
line. 106

10.12 Case 2b: Along- and cross-track positions in the path-frame {p} a short
period before the impact . 107

10.13 Case 2b: Multirotor velocities denoted in the virtual-runway frame {p}. 107
10.14 Case 3a: Centroid body {c̄} velocities, comparing reference and desired

values. 108
10.15 Case 3a: Link distance error z̃, expressed in the North-East plane and

and Down axis respectively . 109
10.16 Case 3a: North-East multirotors and centroid positions. 109
10.17 Case 3b: North-East positions and height 110
10.18 Case 3b: Link distance expressed in the North-East plane ‖z1:2‖2 and

the Down axis |z3| respectively . 111
10.19 Case 3b: Centroid velocity and reference simulator states. 111

xviii

Abbreviations

UAV = Unmanned Aerial Vehicle
NTNU = Norges teknisk-naturvitenskapelige universitet

(Norwegian University of Science and Technology)
DOF = Degrees Of Freedom
SITL = Software-In-The-Loop
GCS = Ground Control Station
LSTS = Laboratório de Sistemas e Tecnologias Subaquáticas

(Underwater Systems and Technology Laboratory)
GLUED = GNU/Linux Uniform Environment Distribution
BBB = BeagleBone Black
DUNE = DUNE Uniform Navigational Environment
GUI = Graphical User Interface
IMC = Inter-Module Communication
IMU = Inertial Measurement Unit
GPS = Global Positioning System
GNSS = Global Navigation Satellite System
RTK = Real Time Kinematic
MTOW = Maximum Take-Off Weight
LOS = Line-Of-Sight
PID = Proportional-Integral-Derivate
CG = Center of Gravity
CP = Center of Pressure
UDP = User Datagram Protocol
TCP = Transmission Control Protocol
RK4 = Runge-Kutta method of order 4
ETA = Estimated Time of Arrival
RC = Radio Control
ESC = Electronic Speed Control

xix

xx

Chapter 1
Introduction

1.1 Background and Motivation

Marine operations with small fixed-wing UAVs at sea often involve take-off and landing
from an area with limited space. The take-off is often handled using a catapult or similar
equipment. The landing on the other hand is often more complicated since it involves
reducing the speed of the UAVs fast without destroying the equipment. The most popular
approach uses a net attached to the end of the ship. However, it turns out to be hard to
create robust autopilots for these landing. The environment out at sea is characterized as
windy, along with a lot of ship movements, especially the heave motions are quite hard
to handle. Given that the landing area on the ship is not very large, the margins are quite
small and the high precession and accuracy are required.

A solution to these problems is to move the net away from the ship, this will make more
room for landing, and the motion from the ship will not affect the landing maneuver.
Therefore it is proposed to suspend a net between a group of multirotor UAVs such that
the net is dynamic. Hence, it should be adaptable concerning the landing trajectory of
the fixed-wing UAV. There are many advantages with such a solution. Firstly the relative
velocity between the net and the fixed-wing UAV can be regulated, such that the amount
of forces in the collision can be reduced. Further, changing the position of the net accord-
ing to the fixed-wing will give a very adaptable system concerning abrupt changes in the
environment.

1.2 Objectives and methods

In specific the coordination between the fixed-wing UAV and the multirotor UAVs will be
addressed, and how the multirotors should maneuver in order to catch the fixed-wing safely

1

Chapter 1. Introduction

in the net. Further a guidance method for safe transportation of the suspended payload both
with and without the fixed-wing recovered into the net will be given. In order to lift a net,
multiple multirotors should by used to distribute the force needed to hold the suspended
net and fixed-wing. Therefore a coordination controller scheme is needed to keep the
multirotor UAVs in a certain formation. The details and implementation of this is not
within the scope of this report, however, a method to treat the multirotors as one body to
simplify the guidance controllers will be considered. Lastly, some practical considerations
regarding the recovery operation will be addressed.

This requires that the multi-body system is mathematically modeled for analyzing differ-
ent control systems. Furthermore, the collision between the net and the fixed-wing UAV
should be consider in order to find the physical requirements for the multirotors and the
net. The total system with dynamics and control-algorithms should be simulated for fur-
ther analysis, for prototyping the numerical computing environment Matlab [MATLAB,
2015] would be used.

For more extensive experiments the resulting control algorithms should be implemented in
a software framework. The software implementation of the controllers should be tested us-
ing an external implementation of the dynamics of the fixed-wing UAV and the multirotor
UAVs. Such a Software-In-The-Loop (SITL) setup will be able to validate the controller
to some degree. Lastly, the total system will be verified by field experiments.

1.3 Previous work

Using a net suspended from multirotor UAVs to recover fixed-wing UAVs is a field lacking
of research in the literature. However, multiple methods for autonomous fixed-wing UAVs
recovery and landing exists. Many applications recover the fixed-wing in a static net such
as in e.g. [Skulstad et al., 2015]. Moreover, a moving landing target is addressed in e.g.
[Morais et al., 2015] where a vision based method for landing in a net on a moving ship
is proposed. Some methods does not use a net, such as the SkyHook system developed
by Insitu [Insitu.com, 2016]. Here the fixed-wing UAV ScanEagle developed by Insitu is
recovered by hooking the wing tip to a vertical wire. The wire can be attached to a fixed
structure, however, in [Ackerman, 2015] the wire has been attached to a multirotor and
performed a successful recovery of the ScanEagle, this solution was also able to launch
the fixed-wing from the multirotor.

A major challenge for the recovery is that a accurate and precise position system is re-
quired, either the recovery object is static or dynamics. In [Huh & Shim, 2009] the posi-
tioning system is based on a GPS (Global Positioning System) solution augmented with
a vision-based algorithm to detect the recovery object when approaching. On the other
hand, in e.g. [Kim et al., 2013] a system fully relied on vision-based positioning system
during the recovery phase is presented. Moreover in [Skulstad et al., 2015] a fixed-wing
UAV was recovered in a static net utilizing only a low-cost RTK (Real Time Kinematic)
GPS solution as positioning system.

The maneuver requires a certain load to be suspended to multiple multirotor UAVs, this

2

1.4 Contributions

is a field of growing interest in the literature. [Bisgaard et al., 2010] and [Klausen et al.,
2015] presents solutions to reduce the swinging motion of the load during slung load
operations using a helicopter and multirotor respectively. Further, [Klausen et al., 2014]
and [Bisgaard, 2008] discuss the mathematical modeling of multi-body system, in this
case, suspended loads between multiple vehicles. The method proposed here is based on
the Udwadia-Kalaba equation [Udwadia & Kalaba, 1992] where generalized coordinates
are utilized, such that the constraint forces can be found explicitly.

The net has a detailed structure which in itself has quite complex dynamics, however, as
net is extensively used in the fishing sector there exists rigorous numeric analysis of the
dynamics as e.g. seen in [Li et al., 2006]. The external forces applied on the net such as
drag is investigated in e.g. [Swift et al., 2006]. These methods is applied under water, but
can be adapted to aerodynamically purposes.

Regarding the field of collision dynamics the literature is quite extensive as force dynamics
is an important research field in the robot industry. Different contact force and impact
models can be found in e.g. [I.I: Argatov, 2012], [Lankarani & Nikravesh, 1990], [Ravn,
1998] and [Chatterjee & Ruina, 1998]. They presents different approaches to model the
dynamics of forces during a general collision.

Cooperative control of a set of bodies are introduced by among other [Bai et al., 2011], here
a passivity-based method are used giving a general framework for different applications.
In the Master’s thesis of Jon-Håkon Bøe-Røli [Røli, 2015] this framework was used to
implement a system for cooperative control for multirotors, where the viability was proven
through field experiments.

1.4 Contributions

This thesis seeks to investigate the dynamic net recovery approach by looking into the
control of multirotors. By incorporating existing control methods a fixed-wing UAV net
recovery concept using multiple multirotors is presented.

The contribution of thesis can be subdivided into the following parts:

Multi-body dynamics: Mathematically model the coupled system consisting the multiro-
tors and the suspended net, and the dynamics of the collision when the fixed-wing UAV is
captured in the net.

Multi-body control: The multirotors should be controlled as one vehicle, hence the multi-
rotor formation will be subjected to heading and translation control, assuming a multirotor
formation controller is present.

Guidance: The multirotor formation should transport the suspended net along any desired
path. The controller should be able to keep the net tensioned and avoid fluctuations.

Recovery: The fixed-wing should be instructed to follow a landing trajectory. The recov-
ery system will ensure that the multirotor formation are able to initiate a maneuver in order
to reach a desired rendezvous and capture the fixed-wing.

3

Chapter 1. Introduction

The main contribution to this thesis is the design and implementation of the total recov-
ery system with multiple multirotors. Here the recovery, guidance and multi-body control
methods are incorporated to present a total control system. Moreover, an implementation
of the multi-body control architecture for field experiments has been stressed, hence prac-
tical implementation and usage of the system has also been a significantly contribution.

This thesis will not consider all aspects of the problem formulation, hence the following
assumptions are made

• The attitude of multirotors are controlled, such that only translation motion of the
multirotors are considered.

• A cooperative controller is present proven to render the multirotors to a desired
formation.

• The fixed-wing UAV is instructed to follow a landing trajectory, hence fixed-wing
dynamics and controllers will not be discussed.

• The UAV-Lab provides the necessary UAV platforms with the required payloads
such that only a software implementation will be considered for field experiments.

It should be noted that the derivation of the multi-body dynamics together with the multi-
body numerical simulation architecture1 are based on work by Kristian Klausen as dis-
cussed in e.g. [Klausen et al., 2014]. Furthermore the work through this thesis and the
pre-project during the autumn of 2015 has also contributed to a conference publication
[Klausen et al., Submitted 2016] as presented on The 2016 International Conference on
Unmanned Aircraft Systems (ICUAS’16).

1.5 Organization of the thesis

Firstly, the necessary background theory and notation will be briefly discussed in Chapter 2
followed by a description of the system architecture in Chapter 3 used for the experimental
setup.

The mathematical model of the system will be derived together with the collision dynamics
in Chapter 4. It should be noted that the derivation of the collision dynamics were a major
part of the pre-project for this thesis, however, the model is restated here for completeness
purposes.

The controller architecture follows in Chapter 5, Chapter 6 and Chapter 7. Here the mul-
tirotor velocity control, payload transport guidance and recovery maneuver are addressed
respectively. For each of the controllers an analytical simulation study are presented. The
controller are based on work through the pre-project and they are developed further and
adapted to the cooperative multirotor control objective.

1The Matlab source code is available from the UAV-Lab GitLab server https://uavlab.itk.ntnu.
no/88 (requires authorized access)

4

https://uavlab.itk.ntnu.no/88
https://uavlab.itk.ntnu.no/88

1.5 Organization of the thesis

The experimental setup, addressing the implementation of the control architecture on an
embedded system as well as SITL simulation results follows in Chapter 8. For the purpose
of practical usage of the recovery system some challenges and suggestions are discussed
in Chapter 9.

Based on field experiments the most important results are presented in Chapter 10, fol-
lowed by a discussion of the main results in Chapter 11 with some concluding remarks
and suggestions for further work.

Lastly, the digital appendix included with this thesis contains illustration videos from some
of the Matlab and SITL simulation, as well as the experimental results. The source code
is not included, however, they can be obtained from the UAV-Lab Git server as well. On
the other hand, a user manual for the DUNE source code is also attached in this digital
appendix.

5

Chapter 1. Introduction

6

Chapter 2
Notation and background theory

2.1 Definitions

In Figure 2.1 a sketch of the platforms required in the operation are presented, further in
Table 2.1 the notation for these bodies are defined.

N

Exc1

xc2

yc1

yc2

xa
ya

Figure 2.1: Sketch of the platforms in the North-East plane with the approaching fixed-wing airplane
{a} and the two multirotors {c1} and {c2} with a net suspended between them.

Body frame Notation
Multirotor i ci
Centroid multirotor c̄1

Net (load) l
Fixed-wing UAV a

Table 2.1: Notation for the different body frames

1The centroid will be defined in Chapter 5

7

Chapter 2. Notation and background theory

It is assumed that the distances between all the bodies in the recovery phase is sufficiently
small enough to apply flat-earth approximation by a defining a common reference point
as origin of a local tangent-plane North-East-Down (NED), noted as {n} as seen in Fig-
ure 2.1. It should be noted that all frames are defined as right-hand systems such that for
the frames in e.g. Figure 2.1 the z-axis are pointing into the paper (assuming the bodies
are aligned with {n}). The multirotors are assumed to be attitude controlled where the
control loops are assumed to be sufficiently fast enough such that the orientation of the
multirotors can be neglected for the further analysis.

Notation

The notation as defined by SNAME in [The Society of Naval Architects and Marine Engi-
neers (SNAME), 1950] are somehow modified to compensate for the multi-body approach
presented in this work.

f ij =



f ij,x
f ij,y
f ij,z


 ∈ R3 mi

j =



mi
j,x

mi
j,y

mi
j,z


 ∈ R3 rij/k =



rij/k,x
rij/k,y
rij/k,z


 ∈ R3 ωij/k =



ωij/k,x
ωij/k,y
ωij/k,z


 ∈ R3

where f ij and mi
j gives the force and moment applied through and about the point oj

respectively, both expressed in the frame {i} from Table 2.1. Mostly oj denotes the origin
of the body such that the notation will be used if the action point differs from this. Further
rii/k defines a vector defined from the point oj with respect to {k} and expressed in {i}
where r e.g. can be a position or velocity. Here the term k is excluded if k = i. For
rotational motion and e.g. angular velocity ωij/k gives the angular velocity of the body
{j} with respect to {k} and expressed in {i}.
Further the list in Table 2.1 is used to connect each parameter to its respective body, such
that for any parameter the subscript notation ()i is used, where i is one of the bodies in
Table 2.12.

2The reader should note the difference between a element in the moment vector mi
∗ and the mass of body i

denoted as mi.

8

2.1 Definitions

Rotation matrices

The three principal rotation matrices are defined with the following notation based on the
Euler angle representation roll (φ), pitch (θ) and yaw (ψ) as discussed in e.g. [Fossen,
2011].

Rx(φ) =




1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)


 (2.1)

Ry(θ) =




cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)


 (2.2)

Rz(ψ) =




cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1


 (2.3)

Skew-symmetric matrix

The skew-symmetric matrix S(λ) ∈ R3×3 where λ =
[
λ1 λ2 λ3

]T
defines the cross

product betweenλ and a ∈ R3 such thatλ×a = S(λ)a giving the the following definition

S(λ) =




0 −λ3 λ2

λ3 0 −λ1

−λ2 λ1 0


 (2.4)

Diagonal matrix

A diagonal matrix A ∈ Rn×n can be constructed from a vector a =
[
a1 a2 · · · an

]
∈

Rn holding the diagonal elements by the function diag(). Such that

A = diag(a) =




a1 0 · · · 0
0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


 (2.5)

Moore-Penrose pseudoinverse

Given a matrix A ∈ Rn×m the Moore-Penrose pseudoinverse ()† gives a generalized
definition of the inverse matrix and is defined as follows

A† =

{(
ATA

)−1
AT if ATA is invertible (left inverse)

AT
(
AAT

)−1
if AAT is invertible (right inverse)

(2.6)

9

Chapter 2. Notation and background theory

which gives the following properties

A†A = I if ATA is invertible (left inverse)

AA† = I if AAT is invertible (right inverse)

Trace

The trace function tr(A) of an square matrix A ∈ Rn×n is defined as the sum of all the
elements on the diagonal, that is,

tr(A) = a11 + a22 + · · ·+ ann =

n∑

i=1

aii (2.7)

Nonlinear saturation function

The saturation function sat(x, xmin, xmax) saturate the signal x with respect to the upper
and lower bound as given by xmax and xmin respectivly such that

sat(x, xmin, xmax) :=





xmax if x > xmax

xmin if x < xmin

x else
(2.8)

2.2 Classical mechanics

Newton’s second law of motion from classical mechanics in linear Equation (2.9) and
rotational motion Equation (2.10) giving the force f and moment m respectivly in inertial
space is well known, and can be found in e.g. [Hugh D. Young & A. Freedman, 2011,
Ch.8 Vol 1]

f = ma =
dP

dt
(2.9)

m = Iα =
dL

dt
(2.10)

where m is the mass, a the acceleration, I the moment of inertia matrix and α the angular
acceleration of the body. This defines the linear momentum P and angular momentum L
in Equation (2.11) and Equation (2.12) respectively.

P = mv (2.11)
L = Iω = r×P (2.12)

where v and ω defines the velocity and angular velocity respectively, here the vector r
gives the location of the rotating object with respect to its axis of rotation3.

3Note that the linear momentum P is presented in capital text to avoid confusion with the position vector p.

10

2.3 Aerodynamic drag

Further the idealized linear impulse law is shown in Equation (2.13) by using Equa-
tion (2.9), and gives the impulse J for the sum of forces

∑
f acting over the timespan

from t1 to t2

J =

∫ t2

t1

∑
f dt =

∫ t2

t1

dP

dt
dt =

∫ P2

P1

dP = P2 −P1 = ∆P (2.13)

the same relation holds for angular momentum giving the angular impulse H

H =

∫ t2

t1

∑
m dt =

∫ t2

t1

dL

dt
dt = L2 − L1 = ∆L (2.14)

by assuming constant force
∑

f = f̄ during the impulse, Equation (2.13) can be simplified
to

J = f̄∆t (2.15)

where ∆t := t2 − t1 is defined as the duration of the collision.

Again by assuming constant torque
∑

m = m̄ during the impulse, Equation (2.14) can
be simplified to

H = m̄∆t (2.16)

2.3 Aerodynamic drag

Each body in the system is influenced by the aerodynamic forces, these are defined in
e.g. [Beard & McLain, 2012], here the aerodynamic drag forces are of most interest.
The drag will act on the center of pressure (CP) of the body and are defined in Equa-
tion (2.17) expressed in the body frame {i}. Here ρ is the density of air in kg/m3,
Vi
air =

[
Vair,x Vair,y Vair,z

]T
is the airspeed in the body frame, CD,i are nondimen-

sional coefficients and Si is the reference surface which the coefficientsCD,i are computed
for.

f iCP := f iD =
1

2
ρSiCD,i

[
V 2
air,x V 2

air,y V 2
air,z

]T
(2.17)

The airspeed V iair is defined as the relative velocity between the ground velocity of the
body viCP,i and the wind velocity viw such that

Vi
air = viCP,i − viw =

[
Vair,x Vair,y Vair,z

]T
. The introduction of wind as a external

disturbance will give different orientations of the wind frame and the body frame, this will
not be further addressed as the orientation of the multirotors will not be considered in this
work. However, for more rigorious analysis of the drag effect on the net, this should be
considered.

11

Chapter 2. Notation and background theory

2.4 Rigid-body dynamics

For all vehicles the local frame {n} is assumed to be inertial, such that Newton’s law can
be applied in the {n} frame.

Kinematics

Using the SNAME definition as defined in e.g. [Fossen, 2011] the following notation will
be utilized

ηb =

[
pnb/n
Θnb

]
pnb/n =

[
xn yn zn

]T
Θnb =

[
φ θ ψ

]T

νb =

[
vbb/n
ωnb

]
vbb/n =

[
u v w

]T
ωbb/n =

[
p q r

]T

The Euler angles Θb is used to express the rotation of the body given the rotation sequence
zyx which gives the rotation matrix Rn

b which rotates the frame {b} to {n}

Rn
b = Rn

b (Θ) := Rz(ψ)Ry(θ)Rx(φ) (2.18)

then the following relation holds
η̇b = JΘνb (2.19)

where

JΘ =

[
Rn
b (Θ) 03×3

03×3 TΘ

]
(2.20)

here TΘ is defined as follows (see e.g. [Egeland & Gravdahl, 2002] for details)

TΘ :=




1 sin(φ) sin(θ)/ cos(θ) cos(φ) sin(θ)/ cos(θ)
0 cos(φ) − sin(φ)
0 sin(φ)/ cos(θ) cos(φ)/ cos(θ)


 (2.21)

it should be noted that TΘ is not defined for θ = ±π2 , however, for both the multirotor and
the net such orientation is not within the scope of this operation. Therefore the assumption
that θ 6= ±π2 is valid.

Further, in order to transform inbetween the different notations the derivative of Equa-
tion (2.20) is derived

J̇Θ =

[
S(ωbb/n)Rn

b (Θ) 03×3

03×3 ṪΘ

]
(2.22)

Kinetics

Using Newton’s law of motion discussed in e.g. [Fossen, 2011] the following system can
be derived

Mbη̇b + Cb(ν
b)νb + gb(ηb) = τ b (2.23)

12

2.4 Rigid-body dynamics

Given the mass mb of the body and the moment of inertia about the center of gravity of
the body Ib the mass matrix Mb is defined as follows

Mb =

[
mbI3×3 03×3

03×3 Ib

]
(2.24)

further the coriolis matrix Cb(ν
b) is defined

Cb(ν
b) =

[
mbS(vbb/n) 03×3

03×3 −S(Ibω
b
b/n)

]
(2.25)

given the gravitational constant g the gravitational field vector in {n} is defined as gn =[
0 0 g

]T
. As the dynamics are given in the body-frame, the vector field is transformed

to {b}, giving gb(ηb)

gb(ηb) = −
[
mbR

b
ngn

03×1

]
(2.26)

Then the rigid-body dynamics are summarized as follows

η̇b = JΘηb (2.27)

Mbν̇
b + Cb(ν

b)νb + gb(ηb) = τ b (2.28)

13

Chapter 2. Notation and background theory

14

Chapter 3
System

This chapter will present the architecture of the system used for simulation studies and
field experiments. Firstly, an overview of the total system architecture will be given, then
the different platforms will be presented followed by a short introduction to the payload
and software used on the platforms.

3.1 Overview

In order to fulfill the desired operation the different vehicles used in the system needs a
custom payload which should be able to determine the different states of the vehicles and
communicate between the others. Further in order to control the total system pilots with
Radio Control (RC) systems responsible for take-off and landing of the vehicles are neces-
sary. Furthermore, they should also be able to abort the mission in case of any undesirable
behavior of the system. Moreover the operation should be monitored and controlled from
a Ground Control Station (GCS) by a operator familiar with the autonomous maneuver.
The positions and velocities of the vehicles are estimated using a high-precision relative
navigation method which requires a base station.

3.2 Platforms

The autonomous net recovery operation requires a small fixed-wing UAV, multirotors and
a suspended net.

15

Chapter 3. System

The X-8 Flying Wing from the Skywalker Technology Co. as seen in Figure 3.1a has been
used widely at the UAV-lab1 at NTNU for small fixed-wing UAV operations (e.g. [Skulstad
et al., 2015]) and would be the desired fixed-wing to recover. It is equipped with two
control-surfaces as well as a rotor attached behind the fuselage for propulsion.

To lift all the equipment a powerful and robust multirotor-platform is needed. Therefore
an octacopter configuration, with eight arms and rotors was considered. The S1000+ from
Da-Jiang Innovations Science and Technology Co., Ltd. (DJI) as seen in Figure 3.1b was
selected for its ability to carry heavy payloads and its compact octacopter configuration.
For the initial experiments a more compact and lighter multirotor with a hexarotor config-
uration from 3DR Robotics [3DRobotics, 2015] as seen in Figure 3.1c was selected due to
its successful usage in multirotor experiments at the NTNU UAV-lab.

(a) Skywalker X-8 Flying Wing. Image cour-
tesy of itk.ntnu.no (b) DJI S1000+. Image courtesy of dji.com

(c) 3DR Robotics Hexa-b. Image courtesy of
3dr.com

Figure 3.1: The vehicle platforms

1see the homepage of the organization http://www.itk.ntnu.no/english/lab/unmanned for
an introduction

16

http://www.itk.ntnu.no/english/lab/unmanned
http://www.dji.com/product/spreading-wings-s1000
http://3dr.com
http://www.itk.ntnu.no/english/lab/unmanned

3.3 Software

3.3 Software

This section will briefly introduce the most important software components in the system.
In this work the software would mostly be considered, and will eventually be deployed on
the hardware. However, the hardware will also be addressed briefly for completeness of
the architecture presentation.

3.3.1 LSTS Software Toolchain

The Laboratóro de Sistemase Tecnologias Subaquáticas (Underwater Systems and Tech-
nology Laboratory) (LSTS) has developed an open-source software toolchain specialized
for unmanned vehicles2. The toolchain consist among others of the software-framework
DUNE, the communication protocol IMC, the ground station control software Neptus and
a GNU/Linux Uniform Environment Distribution (GLUED) for embedded computers.

DUNE

DUNE Unified Navigation Environment (DUNE) is an on-board software framework writ-
ten in C++ independent of both CPU architecture and operating system. The system is
responsible for all interaction with the peripherals, supervision of the vehicle and com-
munication among others. In the framework a complete open-source guidance, navigation
and control scheme are already implemented. The basic idea is to divide the system into
smaller tasks each running as separate processes. The tasks communicate with each other
using the concept of message passing, where each task choose to listen for certain mes-
sages and sends others.

Neptus

Neptus is a distributed ground station software. The system provides a Graphical User
Interface (GUI) to the operator were all vehicles can be controlled and monitored. The GUI
consists of among others a map with real-time data from the vehicles, mission planning
and reviewing of missions.

IMC

The Inter-Module Communication (IMC) is a message communication protocol. The pro-
tocol defines all messages dispatched to the communication-bus between all DUNE tasks
both internally in the vehicle and between different vehicles, it also defines the communi-
cation interface to the ground software Neptus.

2see [LSTS, 2015] for information about the LSTS toolchain, the source code is available from GitHub at
https://github.com/LSTS

17

https://github.com/LSTS

Chapter 3. System

3.3.2 ArduPilot software

ArduPilot is an open-source autopilot system developed by the DIY Drones community3.
The system supports multiple platforms such as multirotors and airplanes which gives the
possibility to control the vehicles using different autopilot solutions. For this work the
multirotor and airplane autopilot known as the APM:ArduCopter and APM:ArduPlane
autopilot respectively were used. Ground station software for mission planning and mon-
itoring of the vehicles is provided, interfaced by the Micro Air Vehicle Link (MAVLink)
communication protocol. The MAVLink protocol also makes it possible to interface the
ArduPilot software with DUNE for lower-level control. A wide range of autopilot boards
are provided for the system, among other the Pixhawk autopilot.

In Figure 3.2 the overview of the software architecture is presented. Here the connection
between the DUNE and ArduPilot system is illustrated.

Neptus

DUNE ArduPilot

MAVlink

IMC MAVlink

Mission
Planner

Figure 3.2: Software architecture, the different software systems are illustrated as the boxes, and
the application protocols are given in the italic text over the dotted lines.

The benefits with this setup are not only that the ArduPilot autopilot can do the lower level
control such as controlling the attitude of the multirotor. As the ArduPilot presents a total
autopilot solution this is a safe backup system to use when developing new control system
in the DUNE framework. As it will be discussed in Section 3.4 the two systems will also
run on different hardware platforms giving the operator of the UAV the necessary fail-safe
system, as well as giving the developer the possibility to implement higher level control
scheme. Lastly the DUNE system can be monitored and controlled remotely utilizing a
IMC message link from the Neptus GCS.

3ArduPilot source code available from GitHub at https://github.com/diydrones/ardupilot

18

https://github.com/diydrones/ardupilot

3.4 Hardware

3.4 Hardware

In Figure 3.3, a schematic over the hardware components required. Here the hardware
embedded in the airframes are shown, as well as the Base Station equipped with a Global
Navigation Satellite System (GNSS) antenna and a computer utilized as a common earth-
fixed reference point for the moving airframes. Lastly the Mission Control segment gives
the possibility to remotely control and monitor the airframes using a GCS typically de-
ployed on a laptop computer and RC control handled by the pilot.

Airframe(s)

Base Station

GCS RC

BBB PixHawk

BBB

uBlox

uBlox

Rocket

Rocket

RC

Router

GNSS

GNSS

GPS

Motor(s)/

PWM

Receiver

antenna

Servo(s)

Control

Antenna

Antenna

Mission Control

Figure 3.3: Hardware architecture, the dotted lines represents wireless communication

3.4.1 Autopilot

The autopilot system sets the desired velocities of the rotors for the multirotors and the
control surfaces and the motor for the fixed-wing UAV. The Pixhawk autopilot designed
by the open-source community PX4 and delivered by 3DR robotics [3DR, 2015a] is used
for the lower-level control of the vehicles. This autopilot system runs the ArduPilot soft-
ware and includes sensors for navigation. Internally there is an Inertial Measurement Unit
(IMU) for measuring the rotation and acceleration and a barometer to measure relative al-
titude. An external Global Positioning System (GPS) and compass module [3DR, 2015c]
is required for more precise navigation. The Pixhawk also receives commands from a RC
operated by the pilot giving manual control4 of the vehicles. Lastly the desired angular

4Full manual control of a multirotor is impossible, and a computer must always be in the loop, controlling the
orientation by setting the individual rotor speeds

19

Chapter 3. System

velocities of the multirotors are sent to each Electronic Speed Control (ESC) using Pulse
Width Modulation (PWM). The ESCs are connected to each individual motor and controls
the speed of the rotor.

3.4.2 Navigation

The standalone GPS solution presented by the Pixhawk with its external antenna is not
accurate enough for cooperative operations. Therefore a differential method is used in
this thesis, where an earth-fixed base station are placed in the area of operation giving
corrections to all vehicles in the operation. In the cooperative experiments the Real Time
Kinematic (RTK) GNSS method is used. Here the satellites carrier wave are utilized and
the phase shift between the base station and the vehicle are calculated. In this setup satellite
data is received from the RTK GNSS module uBlox [u-Blox, 2016]. The method will not
be discussed further in this work, but the reader are referred to [Sørbø, 2016] for more
details around the RTK setup.

3.4.3 Computer

The embedded computer is responsible for running the DUNE framework on the GLUED
operating system, interfacing all the external sensors and the communication with the au-
topilot system. The BeagleBone Black (BBB) [BeagleBoard, 2015], a small, low-cost
platform is used as the embedded payload computer. The BBB is connected over a se-
rial port to the Pixhawk system which is responsible for the low-level control, further it
communicates wirelessly with the base station and the mission control. Furthermore, the
navigation algorithms on the base station are also deployed on the BBB.

3.4.4 Communication

The platforms used communicate wireless between each others. The main communica-
tion using DUNE IMC messages are performed utilizing a 5.8 GHz wireless link with
the Rocket M5 solution from Ubiquity Networks [Ubiquiti-Networks, 2015], here a con-
stant transfer delay are ensured using a Time Division Multiple Access medium control.
This transfer medium handles all the wireless communication for among others teleme-
try and base station control. This data is transfered using the User Datagram Protocol
(UDP) transport protocol, as the loss of a single packet is not critical for the performance.
Furthermore, the RTK solution are also transfered wireless from the base station to the
vehicles using the Rocket M5, however, this requires a high throughput and validity of
data between the base station, therefore the Transmission Control Protocol TCP transport
protocol are utilized here. Lastly, for the purpose of accessing the Pixhawk a simple 433
MHz link from the ArduPilot mission planner is created using a 3DR radio [3DR, 2015b].

20

3.4 Hardware

3.4.5 Suspended payload sensors

The dynamics of the suspended net will be addressed and measurements of the angle and
weight of the load are needed.

In order to measure the weight of the suspended load a load cell will be attached between
the multirotor and the suspended net measuring the relative load weight. In Figure 3.4 the
load cell of the type Futek LSB200 [Futek, 2015] can be seen, here it is suspended to a
frame and has a load attached with ropes. This setup illustrate how the load cell can be
used for the purpose of measuring the tension in the net. Further, in order to interface the
load cell to the BBB a interface board from Phidget, PhidgetBridge [Phidgets, 2015] was
utilized to convert the analog load cell signals to digital signals. Then the PhidgetBridge
was connected to the Universal Serial Bus (USB) interface of the BBB.

Figure 3.4: Load cell

Further it will be necessary to measure the angle of the net relative to the multirotor. As it
will be discussed in Chapter 5 the measurement of the pitch and roll angle of the load is
required to compensate for the load tension, and will be measured using a gimbaled setup
similar to the picture in Figure 3.5. Here two rotary encoder of the type Piher MTS-360
encoder [Piher, 2015] is attached which measures the two required angles. With the load
cell attached to the bottom of the gimbaled setup the tension in the net and angles will be
determined.

Figure 3.5: Angular encoder

21

Chapter 3. System

22

Chapter 4
The multi-body dynamics

For the purpose of analyzing the multi-body coupled system the dynamics must be de-
rived. The following chapter seeks to obtain the equations of motions in order to simulate
the constrained dynamics, as well as a less rigorous analysis aiming to extract the most
significant dynamics intended for control analysis. Also, the dynamics followed by the
collision between the fixed-wing UAV and the suspended net will be derived. The dy-
namics of the fixed-wing UAV will not be considered as it is only treated as an external
object actuating as well as adapting the dynamics of the suspended net during the impact,
moreover, this thesis will not look into the matter of controlling the fixed-wing.

4.1 Unconstrained body dynamics

In general one must find the unconstrained dynamics for each body in the coupled multi-
body system. This is required in order to state the general unconstrained dynamics q̈u for
the overall system as discussed in Appendix A.1.1. The coupled system consist of the net l
suspended by the k multirotors using p wires. The dynamics of the bodies will be derived
in the body frame {b} and on the same form as in Section 2.4.

4.1.1 Multi-rotor dynamics

The total dynamics for multirotor i is given as

η̇ci = JΘηci (4.1)
Mci ν̇

ci + Cci(ν
ci)νci + Dciν

ci + gci(ηci) = τ ci (4.2)

23

Chapter 4. The multi-body dynamics

where ηci =
[
pnci/nΘnci

]
gives the position vector pnci/n and the orientation Θnci =

[
φi θi ψi

]T
as illustrated in Figure 4.1.

zci

yci

θi

xn

φi

ψi

zn

yn

xci

h
ll

pn
ci/n

Figure 4.1: Multirotor body frame {ci} definition

The moment of inertia Ici is found by simplifying the geometry of the multirotor as a box
with height h lengths l giving a total volume of h× l2, then it can be shown that

Ici =
1

12
mci




3l2 + h2 0 0
0 3l2 + h2 0
0 0 l2


 (4.3)

further the multirotor is affected by translational aerodynamic drag during linear move-
ments. These forces is introduced in Section 2.3, however, the relation between velocity
and force is assumed to be linear as the multirotor will not operate in the velocity range
where the non-linear effects is significant. Furthermore, the center of pressure (CP) is as-
sumed to be located in the center of gravity (CG) such that the forces will be applied in
CG. Then it follows that the damping matrix Dci can be defined as

Dci =

[
Dc,t 03×3

03×3 03×3

]
(4.4)

where the translational aerodynamic drag matrix Dt is given as

Dc,t = kt,cI3×3 (4.5)

where kt,c is a factor determining the relation between the aerodynamic drag and the ve-
locity as explained in Section 2.3.

The external forces and moments τ ci applied on the multirotor will now mainly consist
of the control forces applied by the rotating propellers. The relation between τ ci and
the angular velocity of the propellers is dependent on the chosen multirotor configuration.
Furthermore, as the multirotor attitude control is not within the scope of this thesis, the
relation will not be derived here. The matter of control allocation and attitude control will
not be discussed, and the reader is referred to e.g. [Mahony et al., 2012] for example of
such control for a quadrotor configuration.

24

4.1 Unconstrained body dynamics

4.1.2 Net dynamics

The total dynamics for the net l are given on the same form as the multirotor

η̇l = JΘηl (4.6)

Mlν̇
l + Cl(ν

l)νl + Dlν
l + gl(ηl) = τ l (4.7)

where ηl =
[
pnl/n Θnl

]
gives the position vector pnl/n and the orientation Θnl =

[
φl θl ψl

]T
as illustrated in Figure 4.2.

zl

xl φl

xn

θl

ψi

zn

yn

yl

h

w

l

pn
l/n

Figure 4.2: Net body frame {l} definition

The geometry of the net is in a similiar fashion simplified to a box with height h, length l
and width w such that the moment of inertia Il = mlI

∗
l can be found as

Il =
1

12
ml



w2 + h2 0 0

0 l2 + h2 0
0 0 w2 + l2


 (4.8)

as the multirotor the net is affected by aerodynamic drag working in the center of pressure
(CP) of the net. As no rigorous analysis of the aerodynamic properties net has been per-
formed the location of CP is assumed to coincide with the CG. However, the net will also
be subjected to rotational damping around CG as the surface area of the net is significant
compared to the multirotor. Then it follows that the damping matrix Dl is on the following
form

Dl =

[
Dl,t 03×3

03×3 Dr

]
(4.9)

where the translational Dl,t and rotational Dl,r aerodynamic drag matrix is given as

Dl,t = kt,lI3×3 (4.10)
Dl,r = kr,lI3×3 (4.11)

where kt,l is a factor determining the relation between the aerodynamic drag and the ve-
locity as explained in Section 2.3, kr,l gives the relation between the damping moments
and angular velocities around CG.

25

Chapter 4. The multi-body dynamics

Now, the external forces and moments τ l applied on the net will mainly consist of the
forces and moments applied by the fixed-wing UAV during the impact. These will be
discussed in detail in Section 4.2.

4.2 Impact dynamics

The net and the fixed-wing UAV are the bodies which interacts directly during the col-
lision. It is assumed that there is no significantly external forces and torques applied to
the coupled system during the collision such that the linear and angular momentum are
conserved. Further as the fixed-wing will stick to the net after the collision it is assumed
that the collision is perfectly inelastic. Then the methods as derived in Appendix A.2 can
be used to calculate the average collision force and moment applied on the net during the
collision. Based on Equations (A.17)–(A.18) the following expression can be found

f̄l =
1

∆t
(mava,− −mlvl,−) (4.12)

m̄l =
1

∆t
(Iaωa,− − Ilωl,−) (4.13)

where all velocites v and angular velocites ω is given in the net frame {l}, in total τcoll =[
f̄l m̄l

]T
. In Figure 4.3 the force applied on the net by the fixed-wing UAV is illustrated.

f̄l

xl

zl

yl

Figure 4.3: Average collision force f̄l during impact on the suspended net, assuming the fixed-wing
UAV hits the CG of the net.

During the collision the dynamics of the net changes abruptly; the mass change simul-
tanously as high external forces are applied. As the dynamics of the changes in mass is
quite troublesome to find analytically it is assumed for simplicity that the mass of the in-
coming fixed-wing UAV adds to the mass of the net as a ramp from the start of the impact
t− to the end of the impact t− + ∆t. Then the piecewise linear mass function of the net is
defined as follows

26

4.3 Multi-body constrained dynamics for simulation

m(t) =





ml if t < t−

ml + ma

∆t (t− t−) if t ∈ [t−, t+]

ml +ma if t > t+
(4.14)

and the derivative

ṁ(t) =





0 if t < t−

ma

∆t (t− t−) if t ∈ [t−, t+]

0 if t > t+
(4.15)

Then by applying the Euler-Lagrangian method for the dynamics of the net as discussed
in [Sagatun & Fossen, 1991] and summarized in [Fossen, 2011] the equations of motion
of the net can be redefined as follows 1. The derivation of the equations is given in Ap-
pendix A.3.

M(t)ν̇ + C(ν, t)ν + D(ν)ν + g(η, t) = 0 if t /∈ [t−, t+] (4.16)

M(t)ν̇ + Ṁ(t)ν + C(ν, t)ν + D(ν)ν + g(η, t) = τcoll if t ∈ [t−, t+] (4.17)

such that the time-differentiated mass-matrix during the collision is found as

Ṁ(t) = ṁ(t)

[
I3×3 03×3

03×3 I∗l

]
(4.18)

this follows from the assumption that the mass is the only time-dependent variable. The
geometry of the net is assumed to be the same after the collision. Furthermore, the collision
is assumed to be in the center of the net. This will in general not be true, however, the
purpose with the analysis is to focus on the forces on the net which is assumed to be rigid,
and the moments applied will be damped out in the net as it is able to flex. Therefore, a
rigorous analyzis regarding the moments applied on the net will not be considered.

As seen in Section 2.4 and the definitions in Equations (2.24)–(2.26) of the mass M,
coriolis C and gravity g respectively the partly continuous dynamics can be defined by
different masses and the inertia matrix as seen above.

4.3 Multi-body constrained dynamics for simulation

The following sections presents the derivation of the multi-body constrained dynamics
with a suspended load from multiple multirotor agents as given in [Klausen et al., 2014],
the method is adapted to the current system, and the derivation is given here for notation
and completeness purposes.

1Note that the sub- and superscript l is left behind for ease of notation

27

Chapter 4. The multi-body dynamics

In order to use the Udwadia-Kalaba (UK) equations as introduced in [Udwadia & Kal-
aba, 1992] and summarized in Appendix A.1.1 on the multi-body constrained system the
unconstrained systems should be given on the generalized form

Mq̈u = Q (4.19)

As the rigid body dynamics is differentiated in the body frame {b} it can not be used
directly. Restating Equation (2.23) from Section 2.4 by collecting all external forces and
moments into τRB gives

Mbν̇
b + Cb(ν

b)νb = τRB (4.20)

However, Newton’s law of motion can be stated directly to the body frame by using the
body-fixed acceleration abb and αbb angular acceleration such that

Mb

[
abb
αbb

]
= τRB (4.21)

then
[
abb αbb

]T
can be used as the generalized unconstrained acceleration for each body.

That gives the total unconstrained acceleration q̈u for the total system

q̈u =
[
ac1c1 αc1c1 · · · ackck αckck all αll

]T
(4.22)

In order to express the constraints on the form Equation (A.2) the generalized constrained
coordinate q is defined

q =
[
pnc1 Θnc1 · · · pnck Θnck pnl Θll

]T

where the first k pnci and Θnci defines the position and orientation for multirotor i. The
last elements ()l defines the load position and orientation.

The wire i from the load to the multirotor j can be expressed as a vector

Li = pj − pL (4.23)

where pj and pL are the attachment points of the wire to the multirotor and suspended net
in {n}. Hence the wire-vector is a function of the generalized constrained coordinate q.
The wire vector is illustrated in Figure 4.4 for a relevant multirotor configuration with the
suspended net.

By defining the length of wire i as di the constraint i can be given as

gi := ||Li||2 − d2
i = 0 (4.24)

Now, gj can be differentiated in order to get the constraints on the form as discussed in
Appendix A.1.1.

dgi
dt

= 2L̇Ti Li = 0 (4.25)

d2gi
dt2

= 2L̈Ti Li + 2L̇Ti L̇i = 0 (4.26)

28

4.3 Multi-body constrained dynamics for simulation

L1

L2

pL

p1

{n}

Figure 4.4: Suspended net from two multirotors, illustrating the wire vector Li from the suspended
load to the multirotor i wire attachment points.

It should be noted that the last constraint Equation (4.26) is a function of the generalized
acceleration, that is d2gi

dt2 = f(q̈) such that this equation can be translated into Aiq̈ = bi.
Stacking the constraints from the p wires together gives

A =




A1

A2

...
Ai

...
Ap



∈Rp×n

b =




b1
b2
...
bi
...
bp



∈Rp×1

(4.27)

The full derivation of the constraint equations will not be given here, but the reader are re-
ferred to [Klausen et al., 2014] for an example on how to proceed from the definition of the
wire vector Li to get the constraint Equation (4.24) on the standard form Equation (A.2).

In order to find the constrained dynamics, one must stack the total unconstrained system
on the generalized form

Mq̈u = Q (4.28)

where Q is the generalized forces for all bodies and M is a diagonal concatenation of
the individual mass matrices. The unconstrained accelerations q̈u is on the same form as
the constrained accelerations q̈. The constrained dynamics can then be found using the
solution as derived in Appendix A.1.1 and summarized in Equation (A.5), by inserting
q̈u = M−1Q. The expression is restated here

q̈ = q̈u + M− 1
2

(
AM− 1

2

)†
(b−Aq̈u)

However, as q̈ is not expressed in the body-differentiated form it must be transformed
back. It can be shown that the total body differentiated acceleration for all bodies ν̇ is

ν̇ = −M−1C(ν) + q̈ (4.29)

by inserting the expression for the constrained accelerations q̈, such that
ν̇ =

[
ν̇c1 · · · ν̇ck ν̇l

]T
can be extracted.

29

Chapter 4. The multi-body dynamics

4.4 Dynamics for control analysis

By assuming the inner attitude control loops are sufficiently fast enough, the orientation
of the multirotor can be neglected for control synthesis purposes. Then a desired force in
inertial space can be applied by allocating a desired angular velocity on the respectively
rotors.

Therefore the translational motion of multirotor ci can be defined as seen in e.g. [Klausen
et al., 2015] by defining the position pn

ṗn = vn (4.30)
mv̇n = mgn + fn + fnL (4.31)

given the inertial control force fn, the gravitational force gn = [0, 0, g]T , and the mass of
the multirotor m.

The load force fnL is a function of the pitch angle θL and roll angle φL of the load as
discussed in [Klausen et al., 2014], by redefining Rci

l = Rx(φL)Ry(θL) and assuming
the multirotor is a point mass in {n} (Rn

ci = I3×3) such that Rn
l = Rci

l the load force is
given as

fnL = Rn
l




0
0
T


 =




T sin θL
−T sinφL cos θL
T cos θL cosφL


 (4.32)

where T is the magnitude of the load force along the wire connecting the multirotor and
the suspended load.

4.5 Collision simulation

An analytical simulation study was performed using the derived mathematical model for
the constrained system. The purpose was to investigate the dynamics of the tension forces
acting between the net and the multirotors during the collision. The magnitude of these
forces are crucial as the multirotors must be able to hold the desired height during the
collision as well.

For the simulations a net with length l = 5 m and height h = 3 m was suspended from
two multirotors with two wires of length 1.5 m attached to the top corners of the net. The
masses of the bodies were set as seen in Table 4.1a. Lastly the multirotors and the fixed-
wing was instructed to follow the desired surge velocities as seen in Table 4.1b, with a
desired multirotor distance2 of 5 m.

The equations of the system were solved numerically using a fixed-step Runge-Kutta
method of order 4 (RK4) [Egeland & Gravdahl, 2002, Ch. 14] running at 50 Hz. The
fixed-wing UAV dynamical model and controller will not be presented here, but the model

2The multirotor velocity and cooperative controller will be discussed in more detail in Chapter 5

30

4.5 Collision simulation

mci 3 kg
ma 0.5 kg
ml 0.5 kg

(a) Masses of the vehicles involved

vc̄ 3 m/s
va 18 m/s

(b) Desired along-track velocities

Table 4.1: Masses and velocity set-points

and the simulator3 details can be seen in [Gryte, 2015], were the dynamics of the X-
8 [Skywalker Technology Co., 2015] has been investigated. In Figure 4.5 the resulting
relative along-track velocity between the fixed-wing and the centroid of the multirotors
∆vx = va,x − vc̄,x is given. It can be observed that the impact occurs after approximately
30 s with a relative velocity of approximately 15 m/s.

Time [s]

0 10 20 30 40 50

∆
 v

x
 [
m

/s
]

-30

-25

-20

-15

-10

-5

0

5

Figure 4.5: Relative along-track velocity during collision run

The expression for the general constrained forces Qc as given in Equation (A.6) combined
with the derivation in Section 4.3 gives the forces acting between the constrained bodies
in the system, hence the constrained forces acting between the net and each multirotor can
be expressed directly as seen in Figure 4.6. Here a tension spike during collision almost 3
times the nominal force with the fixed-wing suspended in the net can be observed. Also,
the oscillations are present for almost 10 s, a period in which the tension is of a greater
magnitude than the nominal force. One can conclude that the multirotors must be able
to lift fairly more than the tension as given by the nominal gravitational pull from the
suspended load.

Lastly, some snapshots from the collision can be seen in Figure 4.7 revealing that the
impact might induce great fluctuations in the orientation of the net. However, as previously
stated, the net is assumed to be rigid in this analysis. In reality the net will be deformed
and absorb some of the energy.

3The source-code can be obtained from the UAV-Lab GitLab server https://uavlab.itk.ntnu.no/
88 (requires authorized access)

31

https://uavlab.itk.ntnu.no/88
https://uavlab.itk.ntnu.no/88

Chapter 4. The multi-body dynamics

Time [s]

10 15 20 25 30 35 40

T
e

n
s
io

n
 F

o
rc

e
 [

N
]

-5

0

5

10

15

20
Tension force on multirotor 1

x

y

z

(a) Multirotor 1

Time [s]

10 15 20 25 30 35 40

T
e

n
s
io

n
 F

o
rc

e
 [

N
]

-5

0

5

10

15

20
Tension force on multirotor 2

x

y

z

(b) Multirotor 2

Figure 4.6: Tension force in the wire connecting each multirotor to the suspended net

t = 29.6s

-2

-1

0

1

t = 29.8s

-2

-1

0

1

z
 [

m
]

t = 30.0s

-1

0

1

-2

z
 [

m
]

t = 30.3s

-2

-1

0

z
 [

m
]

t = 30.9s

-2
-1.6
-1.2

-2.4

t = 32.3s

-2

-1

0

z
 [

m
]

Figure 4.7: Snapshots from the collision

32

Chapter 5
Cooperative control

This chapter will explain how cooperative motion control has been utilized in order to
move the multirotor formation as a tightly coupled vehicle. The formation has been treated
as one virtual vehicle to create a modularized control scheme where the higher level control
seek to control one vehicle, namely the virtual vehicle. The following methods will not
emphasize the low-level cooperative control which ensures the different agents keep a
desired formation, however, a brief summary will be gi given.

5.1 Centroid - the virtual vehicle

The following section will define the 6 degrees-of-freedom (DOF) states and its derivatives
for the virtual vehicle following the same notation as in Chapter 4.

When considering the multirotor formation this work seeks to treat the formation as one
coupled vehicle noted as the virtual vehicle. Multiple methods can be used to define the
states of the virtual vehicle, such as defining one vehicle as the master agent where all
other slave agents must move according to the current state of the master. However, for
the purpose of performing a recovery maneuver, multiple agents must hold a suspended net
together, requiring a symmetric formation to extend the net to its full size. Hence, a more
advantageous method is to define the centroid of the agent formation as the virtual vehicle.
Furthermore, when doing the recovery there must exist a point within the formation which
the formation should seek to control according to the fixed-wing UAV position. Lastly,
the center of the net will be located somewhere near the centroid with a height offset as
illustrated in Figure 7.5, hence proving the benefits by using the centroid.

33

Chapter 5. Cooperative control

Position

The centroid position pnc̄ := p̄n in {n} for k agents with position pnci is then defined as
follows

pnc̄ :=
1

k

k∑

i

pnci (5.1)

which is illustrated in Figure 5.1 for two multirotors. Furthermore the velocity ṗnc̄ and
acceleration p̈nc̄ in {n} can be found by differentiating all the succesive terms in the Equa-
tion (5.1) directly.

Orientation

For the general case with k agents it is not straight forward to define the orientation of the
centroid as it is dependent of the formation shape. For some shapes it might make sense
to define a rolling and pitching angle, for other these definitions might not be applicable.
Therefore only two agents will be considered as all experiments will be conducted with
two agents only. However, the methods used in later chapters can easily be expanded with
more agents by defining the orientation for the given agent formation. For the two-agent
formation, only the heading angle will be considered, as all further experiments seek to
keep the same height on both agents to keep the net stable.

Firstly by defining the vector ∆pnc12
from agent 1 to agent 2 as ∆pnc12

:= pnc2 − pnc1 , the
heading ψc̄ of the centroid will be defined as

ψc̄ := −atan2(∆pnc12,x,∆pnc12,y) (5.2)

where atan2(y, x) is the four-quadrant version of arctan(y/x). The centroid heading for
two multirotors is illustrated in Figure 5.1 for two multirotors.

Furthermore the angular- velocity and acceleration can be found by normalizing the cross
product between the arm from the centroid to one of the agent with the velocity and accel-
eration respectively

ωc̄c̄/n =
S(rc̄)vc̄

‖rc̄‖2
(5.3)

αc̄c̄/n =
S(rc̄)ac̄

‖rc̄‖2
(5.4)

where rc̄ = Rc̄
n(pnci − pnc̄) is the vector from the centroid to the agent given in {c̄} as

seen in Figure 5.1 for two multirotors. Note that the angular- velocity and acceleration
should be approximately the same for each agent i one use for the calculation. Further the
velocity vc̄ and acceleration ac̄ is defined as the velocity of agent i in the centroid frame
relative to the centroid, such that vc̄ = Rc̄

n(ṗni − ṗnc̄) and ac̄ = Rc̄
n(p̈ni − p̈nc̄). However,

it should be noted that these expressions assumes the arm rc̄ is constant, this is in general
not the case, but is sufficient in order to control the rotation of the formation where the
arm can be assumed to be close to constant with slow movements.

34

5.1 Centroid - the virtual vehicle

Then the yaw- velocity and acceleration of the centroid can be found by extracting the
z-component from the calculated angular- velocity and acceleration ω and α respectively.

rc̄ = ωz (5.5)
ṙc̄ = αz (5.6)

xn

yn

pn
c̄

ψc̄

pn
c2

pn
c2

rc̄

rc̄

Figure 5.1: Two multirotors, c1 and c2 in {n}, defining the centroid c̄ with position pn
c̄ and heading

ψc̄.

6-DOF states
Firstly, as only the heading is defined, the Jacobian matrix for the system is simplified to
the following

Jψ =

[
Rn
c̄ 03×3

03×3 I3×3

]
(5.7)

where Rc̄
n = Rz(ψ). Thereby it follows that ψ̇c̄ = rc̄ and ψ̈c̄ = ṙc̄

By inserting the expressions above into the existing notation it follows that

ηc̄ =
[
(pnc̄)> 0 0 ψc̄

]>
(5.8)

then these expressions can be transformed back to body frame with the following transfor-
mations

ν c̄ = JΘ(ηc̄)
−1η̇c̄ (5.9)

ν̇ c̄ = JΘ(ηc̄)
−1
[
η̈c̄ − J̇Θ(ηc̄)ν

ci
]

(5.10)

35

Chapter 5. Cooperative control

5.2 Centroid control

The purpose with the centroid definition is to be able to treat the virtual vehicle as one
single body. This section will introduce the concept of centroid heading and velocity
control, as well as a short introduction to the formation control.

5.2.1 Heading and formation control

The heading of the centroid as defined in Equation (5.2) is a function of the current agent
formation. That is, in order to control the heading, the desired formation must be changed
according to the desired heading.

In general, [Bai et al., 2011] handles the formation control by defining a matrix of the
desired intervehicle relative positions. As the general case is not of interest and since this
subject is covered in [Røli, 2015], the special case for two multirotor formation control will
be summarized briefly here and is discussed in more detail in [Klausen et al., Submitted
2016].

The formation controller seeks to hold a desired intervehicle position. Hence by defining
z := p2 − p1 as the vector between the two multirotors in {n} one seek a desired zero-
heading vector zd,0 =

[
0 l 0

]
, where l is the desired distance between the two agents.

Furthermore, in order to define a desired heading, the desired vector zd will be given by
rotating zd,0 by the desired centroid heading ψd,c̄ around the z-axis

zd = Rz(ψd,c̄)zd,0 (5.11)

then zd = zd,0 defines the formation at zero heading ψd,c̄ = 0 as illustrated in Figure 5.2.

N

E

ψd,c̄

zd

zd,0

c2

c1

pn
c̄

Figure 5.2: Desired formation link z as a function of the zero heading formation zd,0 and the desired
formation heading ψd,c̄

By setting the desired agent velocity vni,df the controller will render the formation error
z̃ := z − zd to zero. The reader is referred to [Røli, 2015] or [Bai et al., 2011] for
derivation and stability proof for the following controller.

36

5.2 Centroid control

vni,df = diKl(z− zd) (5.12)

where d1 = 1, d2 = −1 and Kl > 0 is the controller gain, referred to as the link gain.

5.2.2 Link gain scheduling

The formation controller in Section 5.2.1 will hold the desired formation. However, to
keep the net steady it is required that the formation controller is agile and keeps the for-
mation at all time. As the link gain Kl is static, one will experience more aggressive
behavior when the error z̃ is large as seen in Section 5.3.1. Therefore a gain scheduling
scheme was proposed. Here there exists two cases, either the agents are lining up to the
desired formation during startup, or they are in formation. Therefore a logistic function
was nominated, where the two extrema points defines two different gain levels connected
by a smooth transition as a function of the norm of the distance error z̃ := ‖z̃‖2

Kl(z) = K +
Kf −K

1 + e−k(z̃−z̃0)
(5.13)

where K and Kf are constants, k gives the steepness of the transition slope and z̃0 is the
transition point.

The adaptive link gain function in Equation (5.13) has the following properties

Kl(0) = K +
Kf −K

1 + ek(z̃0)
= Kc (5.14)

lim
z→∞

Kl(z) = Kf (5.15)

Kl(z̃0) =
Kf +K

2
(5.16)

such thatKf andKc gives the gain with large errors z̃ and zero error (in desired formation)
respectively. Then the constant K can be expressed as follows

K =
1

ekz̃0
(Kc −Kf) +Kc

For practical implementations it is hard to physically interpret the parameter k. However,
k can be determined by requiring a certain gain at some link error. For example, by
requiring that the link gain is a fraction r ∈ [0, 1] of the in-formation gain Kc at some
desired link error zr, giving Kl(zr) = rKc. This equality can then be solved giving an
explicit expression for the steepness factor k.

5.2.3 Velocity control

For each multirotor i a velocity controller is implemented which gives the desired force
in the body frame {ci}. For simplified notation, i is used to denote ci in the following
derivation.

37

Chapter 5. Cooperative control

The desired heading and velocities from the guidance controllers are given in the cen-
troid frame {c̄} and must be rotated back to each individual multirotor frame {i} by the
following rotation

Ri
c̄ = Ri

nRn
c̄ = (Rn

i)>Rz(ψc̄) (5.17)

where ψc̄ is the actual heading of the centroid. Then a velocity controller is proposed
which gives f i the desired force applied on multirotor i given the velocity feedback vi

f i = Kp(R
i
c̄v
c̄
d + Ri

nvni,df − vi) +miR
i
c̄v̇
c̄
d (5.18)

where Kp ∈ R3×3 is a positive definite tuning matrix. Further the desired velocity vc̄d
and acceleration v̇c̄d for the centroid is given from the guidance law, lastly vni,df gives the
desired velocity from the formation controller as seen in Section 5.2.1.

Then the desired force f i can be rotated to {n}

fni = Rn
i f i (5.19)

Feed-forward

Using the results from Section 4.4, one assumes the multirotors can be modeled as point
masses with a positions pn in the inertial space subjected to a suspended payload. Ex-
panding Equation (4.30)–(4.32) gives for each agent i

m



ẍ
ÿ
z̈


 = m




0
0
g


+




T sin θL
−T sinφL cos θL
T cos θL cosφL


+



Fx
Fy
Fz


 (5.20)

Further by compensating for the gravity of the multirotor

f∗ci = fni −mig
n (5.21)

By measuring the load an optional feed-forward (FF) term fFF = −fL can be added for
compensation which gives the two controller schemes

fnci =
[
Fx Fy Fz

]T
=

{
f∗ci if FF disabled
f∗ci + fFF if FF enabled

(5.22)

Lastly, the structure of the low-level control scheme is summarized in Figure 5.3

5.2.4 Adaptive control

As the system is subjected to a major external force, in which the system dynamics changes
abruptly a robust control scheme is necessary. However, the model parameters are not
known explicitly and they are in general hard to find, therefore a model dependent control
scheme is not desirable. The simplified dynamics as given in Section 4.4 extracts the major

38

5.2 Centroid control

vi
i

Cooperative

fni
Rn

i

f iiKp(vi
d + vi

i,df − vi)i)+

mci v̇
i
d

1 · · · i · · · k

vi
i,df

pn
1 · · ·pn

k

−fng −fnL

ψd,c̄

vc̄
d

v̇c̄
d

Ri
c̄

Ri
c̄

Rz

xc0

xc

vi
d

v̇i
d

Ri
n

Figure 5.3: Centroid heading and velocity control for agent 1 · · · i · · · k

dynamics of the system, however, other effects may rise and the measurement of the load
force fnL may not be exactly correct. Such effects can be compensated by introducing
integral effect in the control scheme. Here an adaptive control scheme will be proposed in
order to adapt the gains of the controllers to compensate for these effects. A direct MRAC
scheme as introduced in Appendix C.1 was used for this purpose.

1-st order MRAC

The control objective is to render the velocities of the multirotors to a desired velocity,
hence a 1-st order MRAC was proposed. In order to use the MRAC scheme the system
model should be given on a state-space form as described in Appendix C.1. The trans-
lational model for multirotor i as seen in Equation (4.30)–(4.31) can be represented on a
state space form by defining the state vector x = vn ∈ R3, then by defining

A = 03×3 (5.23)
α = fn + fnL + fng (5.24)

B =
1

m
I3×3 (5.25)

the system can be set on the following state-space form

ẋ = Ax + B(u +α) (5.26)

Further it can be shown that (A,B) is controllable by calculating the row rank of the
controllability matrix C as stated in Equation (C.11) in Appendix C.2. Hence a reference
model and an adaptive control scheme can be found. Then a first order reference model is
required, by defining the reference state xr = vnr ∈ R3 as the model state and let the input
be the desired velocity r = vnd +vni,df be the sum of the desired velocity from the reference
model vnd and the desired coordination control velocity vni,df . Then the reference model
can be given as a first order model a state-space form as in Equation (C.2) by defining

Ar = − 1

T
I3×3 (5.27)

Br =
1

T
I3×3 (5.28)

39

Chapter 5. Cooperative control

Adaptive laws

For the following derivation it is given that the absolute value of the load force T = |fnL |
as defined in Equation (4.32) is measurable. Further, let the load force fnL be redefined as
fnL = TΦ where Φ = Φ(φL, θL) ∈ R3 is a measured vector

Φ =




sin θL
sinφL cos θL
cos θL cosφL


 (5.29)

then the adaptive control law u can be given as follows

u = −K̃(t)x + L̃(t)r− TΦ− fng + fni,df (5.30)

where the adaption laws for the adaptive gain matrices K(t) and L(t) is as given in Equa-
tion (C.8)–(C.9) and restated here

˙̃K = BT
r PexT sgn(l)

˙̃L = −BT
r PerT sgn(l)

where fng and fni,df is the gravity compensation and desired force from the cooperative
controller. Further e = x− xr is the error state and P is given by the Lyapunov equation
Equation (C.7). Hence, the response of the system can be tuned by setting the matrix Q
from the Lyapunov equation and the initial estimates of the gain matrices K̃(t0) = K̃0

and L̃(t0) = L̃0.

Then the alternative low-level MRAC for velocity control scheme can be seen in Fig-
ure 5.4. Comparing with Figure 5.3 one can observe that the controller now uses the
references in {n}.

vn
i = x

Cooperative

fni−K̃(t)x + L̃(t)r

1 · · · i · · · k

vn
i,df

pn
1 · · ·pn

k

ψd,c̄

vc̄
d Rn

c̄

Rz

xc0

xc

r

Φ T
θL
φL

−fng

Figure 5.4: Centroid heading and MRAC velocity control for agent 1 · · · i · · · k

40

5.3 Simulations

5.3 Simulations

5.3.1 Adaptive link gain

The benefits of using an adaptive link gain scheme were shown with the following sim-
ulation study. Using the parameters as summarized in Table 5.1, two multirotors were
simulated using RK4 on 50 Hz with the cooperative controller from Section 5.2.1.

Link gain static 0.5
Gain close, Kc 0.5
Gain far, Kf 0.05
z̃0 7.0 m
z0.9 4.5 m
Desired link length, l 3.0 m
Desired heading, ψd,c̄ 0 ◦

Table 5.1: Link gain-scheduling parameters

The predefined link gain function Kl(z̃) is represented in Figure 5.5 and gives the desired
link gain Kl = Kl(z̃). It follows that the formation controller will be more aggressive
to keep the desired formation, and less aggressive when the distance error is large. This
will ensure a less aggressive initial multirotor maneuver when the formation controller is
enabled on with a large distance error. Furthermore, the critical points z̃0 and z0.9 must be
chosen such that a high link gain is kept for all maneuvers with the formation controller
active.

Distance error [m]

0 5 10 15 20

L
in

k
 g

a
in

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Figure 5.5: Link gain Kl(z̃) as a function of the difference error norm z̃

41

Chapter 5. Cooperative control

Two simulations were conducted with the link gain scheduling enabled and disabled and
the results are given in Figure 5.61. With an initial link distance of 20 m the position and
velocity difference responses were compared. A smoother response towards the desired
formation can be observed with the gain scheduling active. However, the gain scheduling
also rises an minor abrupt change in the relative velocity as can be observed in the ∆vy
graph in Figure 5.6b. This is as expected, as the link gain will switch to a higher gain when
closing up towards the desired formation.

0 2 4 6 8 10

∆
x
[m

]

-1

0

1

Disabled

Enabled

0 2 4 6 8 10

∆
y
[m

]

0

10

20

Time [s]

0 2 4 6 8 10

∆
z
[m

]

×10 -4

-2

0

2

(a) Position difference ∆p = p2 − p1

0 2 4 6 8 10

∆
 v

x
[m

/s
]

×10 -15

0

0.5

1

Disabled

Enabled

0 2 4 6 8 10

∆
 v

y
[m

/s
]

-20

0

20

Time [s]

0 2 4 6 8 10

∆
 v

z
[m

/s
]

×10 -3

-1

0

1

(b) Velocity difference ∆ṗ = ṗ2 − ṗ1

Figure 5.6: Comparing position and velocity difference with link gain scheduling enabled and dis-
abled.

1Two videos with the link gain scheduling enabled and disabled can be seen in Simulations/Link Gain
Scheduling - Enabled.mp4 and Simulations/Link Gain Scheduling - Disabled.mp4 respectivly in the Digital Ap-
pendix.

42

Chapter 6
Payload transport

The purpose with the cooperative guidance scheme is to smoothly move the net along a
desired path. In this setting, smoothly is defined as a trajectory with minimal sideway
motion and damped along-track velocity profile. Moreover, the centroid heading should
not change abruptly to avoid oscillations in the heading of the net. As stated in Chapter 5
the following chapter will control the virtual vehicle, namely the centroid.

6.1 Centroid LOS steering law

A Line-Of-Sight (LOS) steering law was implemented in order to follow a straight path
given by two waypoints and a desired along-path velocity. This approach is addressed in
the two dimensional horizontal North-East plane for marine applications in [Fossen, 2011,
Ch. 10] which gives different control schemes for this purpose. Expanding the method
to three dimension is trivial and the same methods can be applied as discussed in e.g.
[Caharija et al., 2012].

It should be noted that the LOS steering law seek to generate a reference centroid body
velocity vc̄ref and heading ψc̄,ref which will be the input for the reference simulator gen-
erating a desired smooth trajectory for the low level control systems.

By defining waypoint k as pnk = [pk,x pk,y pk,z]
> and the leg ∆pnk = pnk+1−pnk one can

calculate the path-tangential angle αk and the pitching angle θk with respect to the inertial
frame {n}

αk = arctan

(
∆pk,y
∆pk,x

)
(6.1)

θk = − arctan

(||∆pk,1:2||2
∆pk,z

)
+
π

2
(6.2)

43

Chapter 6. Payload transport

The rotation matrix from the path frame {p} to the NED frame {n} is defined as Rp
n =

Rz(−θk)Ry(αk) then the cross-track errors ε(t) = [s ey ez]
> can be calculated based on

the current position pn and waypoint pnk in the {n} frame.

ε(t) = (Rn
p)>(pn − pnk) (6.3)

further the cross-track error can be derivated with respect to time to get the time-changing
errors.

ε̇(t) = (Rn
p)>ṗn (6.4)

The steering law was implemented as based on the methods from [Fossen, 2011, Ch. 10]
which gives the desired course χref (t) and pitching angle θref (t). The lookahead dis-
tances ∆y and ∆z are design-variables to tune how fast the system should approach the
desired path

χref (t) = αk + arctan

(−ey
∆y

)
(6.5)

θref (t) = θk + arctan

(−ez
∆z

)
(6.6)

Further, a mechanism for switching waypoints was needed. In [Fossen, 2011, Ch. 10] this
is solved by monitoring the Euclidean distance to the next waypoint ||pnk+1 − pn||2 and
switch when the distance is lower than some radius Rk, refereed to as the waypoint accep-
tance radius. However, as the purpose with this steering law is not to reach the waypoint,
but to create a feasible path the along-track distance is monitored instead. Therefore k
should be incremented when the following inequality holds

|(Rn
p)>(pnk+1 − pn)x| ≤ R2

k+1 (6.7)

6.1.1 Reference LOS velocity

Traditionally the reference velocity in {n} can be generated given the desired along-track
surge velocity. That is given the rotation matrix from the desired path to the local {n}
frame Rn

p,d = Rz(−θd)Ry(χd) and the desired along-track velocity vpx,d one get the
desired velocity vnref in the local {n} frame

vnref = Rn
p,d

[
vpx,d 0 0

]>
(6.8)

6.1.2 Surge and heading

As it is desired to avoid to much cross-track movements with the net during transport,
another approach is to use the desired along-track surge directly as the reference velocity.
Then the LOS steering law can be used to generate a reference heading.

44

6.2 Marine craft simulator

Firstly, the along-track surge velocity must be rotated back to {n} by rotating with the
current centroid heading ψc̄. This gives the velocity vn∗ , the path surge velocity given in
{n} .

vn∗ = Rz(ψc̄)
[
vpx,d 0 0

]>
(6.9)

The North-East components from vn∗ can be used to generate the North-East desired ve-
locity. However, as only the heading will be controlled the Down-component must be
generated in another fashion in order to be able to control the height. Here the Down-
component from vnref can be used, which generates a smooth LOS reference velocity.

Then the total reference velocity in {c̄} vc̄ref is found

vc̄ref = Rc̄
n

[
(vn∗,1:2)> vnref,z

]>
(6.10)

Lastly, the reference heading ψref is given as the desired course χref (t) ensuring that the
desired path in the North-East plane is followed.

ψref = χref (t) (6.11)

6.2 Marine craft simulator

A closed loop simulator was considered in order to constrain the formation dynamics. The
reference centroid heading and velocity in Section 6.1.2 ensures minimal sideway motion
during transit by setting the reference sway velocity to zero. However, one might get
abrupt movements in the net when changing way-points, where the desired heading might
step to a new set-point, or if the reference surge speed steps to another set-point during
transit. Hence, a closed loop reference simulator on the surge speed and heading was
proposed.

The concept of using a closed loop simulator as a reference generator are discussed in e.g.
[Fossen, 2011], here an surge and heading simulator is also presented. The dynamics of
the centroid can now be compared with an underactuated ocean surface vessel where only
surge and heading can be controlled using a rudder and fixed propellers. Therefore the
simulator will mimic the dynamics of such a vessel and use a heading and surge controller
to reach the reference heading and surge. Then the centroid will use the actual heading and
surge of the vessel as the desired trajectory which can be tuned to fulfill the requirements
for a smooth movement of the net.

45

Chapter 6. Payload transport

6.2.1 Surge dynamics and control

The surge dynamics is subjected to a non-linear drag term interpreting a constrained
change in surge velocity.

mu̇d + d|ud|ud = τ (6.12)

here ud is the surge speed of the simulated vessel, m gives the mass of vessel, and d the
amount of drag. By increasing the mass of the vessel the linear momentum will increase
and it will require more energy to change the current gained surge velocity. Furthermore
the higher drag coefficient d, the more energy is required to accelerate the vessel.

A PI-controller is proposed to control the surge velocity by applying a thrust τ . The
reference surge uref given from the guidance scheme is the desired set-point. By defining
the error signal eu = uref − ud the thrust τ is given as

τ = Kpτeu +Kiτ

∫ t

0

eu dt (6.13)

rendering ud to uref , where Kiτ > 0 for i ∈ {p, i}.

6.2.2 Heading dynamics and control

For the heading dynamics of ψd a first-order Nomoto model was used.

ψ̇d = rd (6.14)
T ṙd + rd = Kδ (6.15)

where T is the time-constant for the yawing motion. The heading is changed by applying
a yawing moment Kδ, where δ is the rudder angle and K is the rudder-gain.

Here a PID-controller is proposed to control the heading by applying a rudder angle δ.
Defining the error signal eψ = ψref − ψd, where ψref is the desired heading given by the
guidance scheme the rudder angle is given as

δ = Kpδeψ +Kiδ

∫ t

0

eψ dt+Kdδ ėψ (6.16)

In order to effectively tune the controller, a tuning procedure from [Fossen, 2011, Ch. 12]
was used. By setting the up the closed loop dynamics without integral effects

T ψ̈d + (1 +KKdδ)ψ̇d +KKpδψd = KKpδψref (6.17)

and comparing Equation (6.17) with the standard form of a 2nd order dynamics

ψ̈d + 2ζψω0,ψψ̇d + ω2
0,ψψd = ω2

0,ψψref (6.18)

46

6.3 Simulations

the following relation between can be found, where the rule-of-thumb proposed in [Fos-
sen, 2011, Ch. 12] is to set the integral gain 10 times lower than the closed loop natural
frequency ω0,u.

Kpδ =
T

K
ω2

0,ψ (6.19)

Kiδ =
ω0,ψ

10
(6.20)

Kdδ =
1

K
(2ζψω0,ψT − 1) (6.21)

then the response can be tuned to fit the desired standard form in Equation (6.18).

The overall payload transport guidance scheme is summarized in Figure 6.1, emphasizing
the input and outputs to the LOS controller and simulator respectivly.

LOS

Simulatorpk

pk+1

Rk+1

u uref

ψref

żref

ψd

ud
Rn

c̄ Rc̄
n

vc̄
d

p

Figure 6.1: Path control with marine craft simulator

6.3 Simulations

6.3.1 Reference simulator

A simulation study was conducted showing the feasability of the guidance law from Sec-
tion 6.1 and the reference simulator in Section 6.2. Again, the system was solved using
RK4 running at 50 Hz. Furthermore, the LOS controllers look-ahead distances ∆y and
∆z were both set to 10. The reference simulator parameters are summarized in Table 6.1.
Lastly the inner-loop velocity gain matrix were set to Kp = 2mciI3×3.

Reference surge, uref 0.7 m/s
Nomoto, timeconstant: T 0.9 s
Nomoto, rudder gain: K 1
Surge, mass: m 10 kg
Surge, damping: d 1
Heading control damping: ζψ 1
Heading control bandwidth: ω0,ψ 0.7 rad/s
Surge controller gains: Kpτ ,Kiτ 5,1

Table 6.1: Key reference simulator parameters in simulation

47

Chapter 6. Payload transport

0

5

10

y [m]

15

2020

15

x [m]

10

5

0

2

-4

-2

0z
 [

m
]

Enabled

Disabled

Figure 6.2: Multirotor positions in {n} with reference simulator enabled and disabled, the way-
points are given as the blue stars connected by the black lines.

The guidance scheme was simulated using a path defined by four waypoints located at
different heights as seen in Figure 6.2.

Two simulations were conducted with the reference simulator enabled and disabled1. As
expected the reference simulator gives a slower response and a much higher turning radius
which is seen more clearly in Figure 6.3a. However, this is the purpose with the reference
simulator, as it is desired to keep the sidemotion of the net at a minimum. If one consider
the body velocities of the centroid in Figure 6.3b it is clear that the sideway motion is less
aggressive and of lower magnitude, also, the surge speed is less agressive and rough.

x
 [
m

]

0

5

10

15

20

y [m]

0 5 10 15 20

Enabled

Disabled

(a) North-East multirotor positions with reference
simulator enabled and disabled

0 10 20 30 40 50 60

u
 [
m

/s
]

0

0.5

1

Enabled

Disabled

0 10 20 30 40 50 60

v
 [
m

/s
]

-0.5

0

0.5

Time [s]

0 10 20 30 40 50 60

w
 [
m

/s
]

-0.2

0

0.2

(b) Centroid body frame {c̄} velocities compar-
ing reference and desired values with the reference
simulator enabled

Figure 6.3: Comparing responses with reference simulator enabled and disabled

1Two videos showing the position and orientation of the multirotors with the reference simulator enabled and
disabled can be seen in Simulations/Reference Simulator - Enabled.mp4 and Simulations/Reference Simulator -
Disabled.mp4 respectivly in the Digital Appendix

48

6.3 Simulations

The performance of the reference simulator can be seen in Figure 6.4a where a smoother
and less aggressive desired heading and surge are dispatched to the inner coordination and
velocity controller. Lastly the results of the LOS height controller are given in Figure 6.4b
and Figure 6.3b where it can be seen that the controller is decoupled from the reference
simulator as expected, furthermore, it is not able to reach the desired height before switch-
ing waypoint. This has to do with choice of look-ahead distance ∆z , the distance between
the waypoint and the desired switching radius Rk. It should also be noted that the purpose
with this guidance scheme is not to reach the desired way-points, but to construct a rough
desired path for transportation purposes. For the purpose of reaching a certain way-point
a position controller of the form as discussed in Section 7.4 should be considered.

0 10 20 30 40 50 60

H
e

a
d

in
g

 [
d

e
g

]

-200

0

200

Time [s]

0 10 20 30 40 50 60

S
u

rg
e

 [
m

/s
]

0

0.5

1

Reference

Desired

(a) Comparing reference simulator inputs (refer-
ence) and output (desired); heading ψ and surge
u.

Time [s]

0 10 20 30 40 50 60

z
 [
m

]

-3

-2.5

-2

-1.5

-1

-0.5

0

State

Desired

(b) Actual height compared against the reference
height

Figure 6.4: Reference simulator states and the height.

6.3.2 MRAC

A simulation with the MRAC scheme from Section 5.2.4 was conducted as an alternative
to the inner loop velocity controller with the reference simulator enabled for a smooth
desired heading for the cooperative control. A RK4 method at 100 Hz were used to ensure
stability. The MRAC controller response are dependent of the initial gain matrices K̂0 and
L̂0, also the transient response can be tuned with the tuning matrix Q, for this simulation
the parameters as given in Table 6.2 were used.

Q 3I3×3

K̂0 −3I3×3

L̂0 3I3×3

Table 6.2: Key MRAC path-control parameters in simulation

49

Chapter 6. Payload transport

Four waypoints with the same height were defined forming a square as seen in Figure 6.5.
Further it can be seen that the MRAC is able to follow the desired path, given the desired
velocity2. As the initial gain matrices are set close to the desired gain matrices as seen in
Figure 6.7 the multirotors follows the initial desired reference closely.

x
 [
m

]

0

5

10

15

20

y [m]

0 5 10 15 20

Figure 6.5: Multirotor and centroid positions in the North-East plane using MRAC for path-control,
the blue stars gives the desired waypoints connected by the black lines.

On the other hand, the MRAC is a velocity controller, and the responses of both multirotors
are seen in Figure 6.6. It is clear that some time is required for the gain matrices to
stabilize, however, both multirotors seem to be able to follow the desired velocity. Some
transients can be observed, but these are located at the points were the desired formation
changes due to corners of the path and a turn must be performed.

0 20 40 60

v
x
 [
m

/s
]

-1

0

1

v - Multirotor 1

Reference

Desired

State

0 20 40 60

v
y
 [
m

/s
]

-1

0

1

Time [s]

0 20 40 60

v
z
 [
m

/s
]

-0.1

0

0.1

(a) Multirotor 1

0 20 40 60

v
x
 [
m

/s
]

-1

0

1
v - Multirotor 2

Reference

Desired

State

0 20 40 60

v
y
 [
m

/s
]

-1

0

1

Time [s]

0 20 40 60

v
z
 [
m

/s
]

-0.1

0

0.1

(b) Multirotor 2

Figure 6.6: Velocities of the multirotors in {n} during the path-maneuver, comparing the reference,
desired and the actual state.

2A video showing the multirotor positions and orientations can be seen in Simulations/Path Control -
MRAC.mp4 in Digital Appendix.

50

6.3 Simulations

Lastly, the diagonal elements of the MRAC gain matrices can be seen in Figure 6.7. The
observations from the previous figures can be explained with the responses seen here. It
is clear that some time is required for the matrices to stabilize. Furthermore, a correlation
between the transient responses of the matrices and the transients in the velocity of the
multirotors can be seen. Again, this is related to the turning points, were the coordination
controller also tries to hold the current formation.

0 20 40 60

M
u

lt
ir
o

to
r

1

-3.2

-3

-2.8

MRAC: Kp

(1,1)

(2,2)

(3,3)

Time [s]

0 20 40 60

M
u

lt
ir
o

to
r

2

-3.1

-3

-2.9

-2.8

-2.7

(a) Diagonal elements of Kp

0 20 40 60

M
u
lt
ir
o
to

r
1

2.8

3

3.2

MRAC: L

(1,1)

(2,2)

(3,3)

Time [s]

0 20 40 60

M
u
lt
ir
o
to

r
2

3

3.1

3.2

3.3

3.4

(b) Diagonal elements of L

Figure 6.7: Multirotor adaptive gains during the path-maneuver.

51

Chapter 6. Payload transport

52

Chapter 7
The recovery maneuver

The guidance scheme in Chapter 6 presents a solution for the transportation of a suspended
load using multiple multirotors, whether the fixed-wing UAV is recovered in the net or not.
This chapter seeks to find a parallel guidance scheme for the purpose of safely recover the
fixed-wing UAV. Modularity can be achieved by requiring that the control objective is to
reach a desired centroid heading and velocity as in Chapter 6. For all further analysis
the fixed-wing UAV is assumed to be the master agent for the maneuver, thereof, the
movement of the fixed-wing UAV will trigger an eventual recovery. Furthermore, fixed-
wing UAV control schemes will not be considered.

For safety reasons the movement of the centroid is constrained to be within some cuboid
named the virtual-runway. By instructing the fixed-wing to move and engage its landing
maneuver towards the virtual-runway, the centroid control objective can be subdivided into
an along- and cross-track guidance scheme. Firstly, track the cross-track position of the
fixed-wing and then engage an along-track trajectory to recover the fixed-wing within the
virtual-runway.

7.1 Virtual-runway

The virtual-runway is defined with an origin pnp/n and an orientation Θnp as illustrated
in Figure 7.1. In general the path can have a desired heading ψp and pitching angle θp,
however, for all tests performed the pitching angle is set to zero. Furthermore, the concept
of the virtual-runway already gives the possibility for the copters to move freely inside the
box, such that the height of the net can be adjusted according to the height of the fixed-wing
UAV. Therefore, for an initial concept, a pitching angle of the path is not necessary. Hence,
it follows that Θnp = [0 0 ψp]

> and the rotation matrix from {n} to {p} is Rn
p = Rz(ψp).

53

Chapter 7. The recovery maneuver

xn

yn

xp
yp

w

l

pn
p/n

ψp

Figure 7.1: Virtual-runway {p} defined in the inertial frame {n}

The transformation from the 6-DOF centroid state ηc̄ of the centroid in {n} to the virtual-
runway path frame {p} is then defined as follows

ṗpc̄/p = Rp
n(pnc̄/n − pnp/n) (7.1)

Θpc̄ = Θnc̄ −Θnp (7.2)

then the 6-DOF state ηpc̄ denoted in the virtual-runway frame {p} is given as follows

ηpc̄ =
[
ppc̄/p Θpc̄

]>
(7.3)

These states can be differentiated, as the virtual-runway frame is static it follows that
Θ̇np = 03×1 and Ṙp

n = 03×3, hence

ṗpc̄/p = Rp
nṗnc̄/n (7.4)

Θ̇pc̄ = Θ̇nc̄ (7.5)

Further it should be noted, as the virtual runway frame is static, it follows that no transfor-
mation is necessary for the derivatives given in the body frame ν c̄ and ν̇ c̄.

ν c̄p = ν c̄ (7.6)

ν̇ c̄p = ν̇ c̄ (7.7)

7.2 Along-track trajectory

For the purpose of controlling the along-track position of the net according to the fixed-
wing UAV one should accelerate the net to a desired velocity and keep this velocity until
the impact occurs. However, the net should not go on without any constraints one the
along-track distance it is allowed to move. Therefore one should be able to set a desired

54

7.2 Along-track trajectory

along-track collision point rcoll as illustrated in Figure 7.2 with a desired velocity. In order
to keep the net stable and to ensure smooth movements one should constrain the maximum
acceleration. The velocity profile should also be critically damped ensuring a stable net
during transit.

The virtual runway is given in the North-East plane as shown in Figure 7.2 where the
path-frame {p} is defined. Further, the virtual runway is bounded by a box such that the
multirotor has a limited operation area for safety purposes, the runway is also bounded in
height by some lower and upper limit.

xn

yn

xaya

ra

rcoll

xc̄ yc̄

cS

c4

c5

xpyp

c3

w

Figure 7.2: Virtual runway path frame {p} in the North-East plane with the fixed-wing UAV {a}
and the multirotor centroid {c̄} during recovery, the dotted lines indicates the boundaries of the
virtual runway.

It follows that it is necessary to find the Estimated Time of Arrival (ETA) for the desired
collision point for both the suspended net and the fixed-wind UAV. Based on the ETAs
the desired point cS to initiate the recovery maneuver can be found. In the following
section different methods for generating feasible along-track trajectories will be consid-
ered followed by methods for finding the ETA. Lastly the methods will be compared and
discussed.

In order to generate a trajectory the following notation will be used; the full reference state
q(t) ∈ R4 gives all the time dependent states of the scalar along-track values

q(t) =
[
x(t) ẋ(t) ẍ(t)

...
x(t)

]T
(7.8)

=
[
x(t) v(t) a(t) j(t)

]T
(7.9)

where x(t) defines the along-track position in the path-frame {p}. The velocity controllers
in Section 5.2 will be used in order to follow this trajectory, hence the only the desired ve-
locity and acceleration, q2(t) = v(t) and q3(t) = a(t) respectivly will be used for along-
track velocity control. However, the full state definition is neccesary for this analysis.

55

Chapter 7. The recovery maneuver

The trajectory will be defined between two timestamps t0 and tf which gives the time to
start and the time at the desired collision point respectively. As the net will be stationary
and wait for the aircraft until the time t0, the initial state q(t0) is

q(t0) = q0 = 0 (7.10)

assuming that the standby-position is at x = 0 in the path-frame {p}. Further at the time
of collision the net should have a stationary along-track velocity such that the acceleration
and jerk is zero giving

q(tf) = qf =
[
xf vf 0 0

]T
(7.11)

where xf and vf is the desired collision point and velocity respectively.

7.2.1 Polynomial

As described in Appendix B.1 a feasible trajectory can be generated by fitting the co-
efficient in a N order polynomial to the given constraints. Given q(t0) and q(tf) the
number of constraints M∗ =

∑n
i=0mi = 4 + 4 = 8, requiring a polynomial of order

N = m− 1 = 7.

Following the notation from Appendix B.1, the vectors b ∈ R8x1 and a ∈ R8x1 is defined
as.

b =
[
(q0)T (qf)T

]T
(7.12)

a =
[
a0 a1 a2 a3 a4 a5 a6 a7

]T
(7.13)

The coefficient vector a is calculated solving the system as seen in Equation (B.7)–(B.8)

a = M−1b (7.14)

where M is defined in Equation (B.11) in Appendix B.2.

By setting τ = t− t0 the trajectory q(τ) can be found

q(τ) = M(τ, 4)a (7.15)

where M(τ, 4) is defined in Equation (B.10) in Appendix B.2. Such that the extracted
version of Equation (7.15) is as follows.




x(τ)
v(τ)
a(τ)
j(τ)


 =




a0 + a1τ + a2τ
2 + a3τ

3 + a4τ
4 + a5τ

5 + a6τ
6 + a7τ

7

a1 + 2a2τ + 3a3τ
2 + 4a4τ

3 + 5a5τ
4 + 6a6τ

5 + 7a7τ
6

2a2 + 6a3τ + 12a4τ
2 + 20a5τ

3 + 30a6τ
4 + 42a7τ

5

6a3 + 24a4τ + 60a5τ
2 + 120a6τ

3 + 210a7τ
4


 (7.16)

For the polynomial case it is not necessary to calculate the trajectory duration, on the
contrary the timespan must be specified in order to solve for the coefficient vector a. By
specifying the start and end time t0 and tf respectively the duration ∆t is found

∆t = tf − t0 (7.17)

56

7.2 Along-track trajectory

7.2.2 Piecewise

Another approach is to specify a piecewise derivative (e.g. acceleration or jerk), then by
integrating analytically a smooth position and velocity trajectory can be obtained. Here
follows two examples of such an approach, firstly a piecewise acceleration profile, fol-
lowed by a piecewise jerk profile. Both profiles must define a velocity profile from zero to
the desired recovery velocity, and the acceleration should always be non-negative to avoid
fluctuations in the net during acceleration.

Acceleration

Given desired acceleration a(t) a piecewise function can be specified as follows

a(t) =





0 if t < t0

α if t ∈ [t0, t1)

0 if t > t1

(7.18)

then the velocity profile follows by integration

v(t) =





0 if t < t0

α(t− t0) if t ∈ [t0, t1)

α(t1 − t0) if t > t1

(7.19)

further the position profile x(t) is found by integrating once more

x(t) =





0 if t < t0
1
2α(t− t0) if t ∈ [t0, t1)
1
2α(t1 − t0) + α(t1 − t0)t if t > t1

(7.20)

then the full trajectory q(t) =
[
x(t) v(t) a(t) 0

]
is given analytically.

The response of the trajectory can be tuned with the slope parameter α and the duration
t1 − t0. However, the constraints q(t0) = q0 and q(tf) = qf must also be fulfilled. That
is v(tf) = vf and x(tf) = xf .

Jerk

Given desired jerk j(t), a piecewise function can be specified by ramping up to a positive
jerk followed by a ramp down to a negative value and back to zero as illustrated in Fig-
ure 7.3. This jerk profile ensures a non-negative acceleration profile as the definite integral
from t0 to t0 + ∆t of j(t) is zero as the profile is symmetric.

In the same manner as for the piecewise acceleration profile, the jerk profile can be inte-
grated to get the full trajectory state q(t). The parameters can be tuned adapting to the
same constraints q(t0) = q0 and q(tf) = qf .

57

Chapter 7. The recovery maneuver

j(t)

t

β∆1

−β∆1

∆1 ∆1∆2 ∆3

β −β

t0 t0 + ∆t

Figure 7.3: Desired jerk profile j(t), ∆t = 2(∆1 + ∆2 + ∆1) + ∆3

Lastly, the trajectory duration must be specified for both expressions, which can be found
by solving the equality analytically x(tf) = xf , giving the total timespan ∆t

∆t = tf − t0 (7.21)

7.2.3 Reference model

The reference model concept alouds the desired recovery velocity vf to be used directly
into a dynamical system which will smooth the reference step to a feasible reference tra-
jectory. Furthermore, by analyzing the reference model the adaptive scheme given in Sec-
tion 5.2.4 can be used for along-track control. For the following section a scalar reference
model will be considered, as the along-track scalar response need to be analyzed in order
to find an expression for the ETA.

A 1-st order reference model as in Section 5.2.4 was used such that the same adaptive
scheme can be used as an alternativ velocity controller. The 1st-order reference model for
the velocity along-track velocity vr can be given on the form as discussed in Section 5.2.4

T v̇r + vr = r (7.22)

where r = vf is the desired velocity at recovery and T is the desired time-constant.

For further analysis the differential equation Equation (7.22) must be solved analytically,
and it can be shown that the solution gives the velocity vr(t) assuming r = vf is a step
engaged at t = t0

vr(t) = vf

(
1− e t

T

)
(7.23)

Then the trajectory vector is given as follows

q(t) =
[∫ t
t0
vr(τ)dτ vr(t) v̇r(t) v̈r(t)

]>
(7.24)

58

7.2 Along-track trajectory

Solving the equality x(tf) =
∫ tf
t0
vr(τ)dτ = xf analytically gives tf and lastly the dura-

tion ∆t is found
∆t = tf − t0 (7.25)

7.2.4 Comparing

Lastly the methods are compared using the parameters in Table 7.1. The analytical expres-
sions as presented were solved using symbolic toolboxes, such that no explicit expressions
will be given here. Furthermore, it should be noted that the duration ∆t is only specified
for the polynomial approach. Hence, the duration of the other methods is not specified
explicitly, however, given a set of parameters the duration ∆t can be calculated explicitly
given the desired trajectory. The resulting responses are shown in Figure 7.4, as expected,

∆t = tf − t0 8 s (for polynomial)
xf 20 m
vf 4 m/s
amax 1 m/s2

β 1 m/s4

T 1 s

Table 7.1: Trajectory parameters

the time required to reach the target setpoint xf varies depending on the method, however
all methods fulfill the requirements for the desired trajectory as specified in the beginning
of this section.

Comparing the methods reveals the fact, that only the piecewise trajectories (piecewise
acceleration and jerk) are able to hold the acceleration constraints. This is because the
other methods has no explicit methods to constrain the acceleration, other than setting the
parameters such that the constraint is held. It should also be noted that the reference model
requires a large step in the initial acceleration in order to follow the trajectory, which is
not optimal, but can be solved by reducing the timeconstant T of the model. Summing
up, the piecewise jerk and polynomial trajectory gives the smoothest trajectory which the
multirotors is more likely to be able to follow. A simulation study for these methods is
given in Section 7.6.1.

59

Chapter 7. The recovery maneuver

0 1 2 3 4 5 6 7 8

x
 [
m

]

0

10

20

30

Piecewise

Polynomial

Ramp

Reference model

0 1 2 3 4 5 6 7 8

v
 [
m

/s
]

0

2

4

6

0 1 2 3 4 5 6 7 8

a
 [
m

/s
2
]

-2

0

2

4

Time [s]

0 1 2 3 4 5 6 7 8

j
[m

/s
3
]

-4

-2

0

2

Figure 7.4: Comparing reference trajectories, target position xf marked with the dotted red line

60

7.3 Cross-track control

7.2.5 Fixed-Wing ETA

All methods so far have found analytical expression for the timespan ∆t required to reach
the recovery point, however, the ETA for the fixed-wing ETAa must be derived such that
the timestamp to start the along-track trajectory profile can be found.

Multiple methods can be used in order to find the ETAa. These includes among others
analyzing the landing profile and the desired velocity trajectory in the same manner as
done for the centroid. However, these methods will not be consider in this thesis. For this
purpose, the along-track velocity of the fixed-wing is assumed to be constant such that
ETAa can be calculated by monitoring the along-track path position xa and velocity va.

ETAa =
|xa|
va

(7.26)

The ETA for the centroid ETAc̄ is given as the timespan ∆t added to the timestamp at the
start of the trajectory t0

ETAc̄ = t0 + ∆t (7.27)

in order to reach the recovery-point at the same time as the fixed-wing the following equal-
ity must hold ETAc̄ = ETAa. Then the time to start the along-track trajectory profile t0
is found as

t0 = ETAa −∆t (7.28)

7.3 Cross-track control

This section shows the implementation of a steering-law which were applied during the
net recovery maneuver in order to control the position of the multirotor according to the
approaching fixed-wing UAV.

The purpose with the pure-pursuit guidance is to control the vehicle to a desired position as
the LOS - steering law discussed in Section 6.1. However, the purpose with this controller
is to only control the position in the cross-track plane in the path frame {p}. Hence a new
frame {p∗} ∈ R2 as can be defined as the cross-track plane in the path frame {p}, such
that there exist a mapping for a vector rp =

[
rx ry rz

]T
to rp∗ = rp2:3. The purpose is

to render the position pp∗ to the target position pp∗d , such that the error p̃p∗ is minimized

p̃p∗ := pp∗d − pp∗ (7.29)

this gives a target tracking path following scheme as discussed in e.g. [Fossen, 2011, Ch.
10].

The desired position pp∗d = pp∗a is defined as the current position of the fixed-wing UAV
projected to the cross-track plane. Using the notation from Section 6.1 the position of the
fixed-wing UAV in the path-frame ppa is given as

ppa = Rp
npna = (Rn

p)Tpna (7.30)

which gives the cross-track position pp∗a = ppa,2:3 of the fixed-wing UAV.

61

Chapter 7. The recovery maneuver

Further the desired position is bounded by the rectangle defined by a height h and width w
with origin in the origin of the cross-track path frame {p∗}. Then the fixed-wing UAV po-
sition pp∗d is saturated to get the desired position pp∗d , note that the desired centroid height
is given with a certain offset zL. This offset is the nominal height difference between the
centroid and the center of the net as illustrated in Figure 7.5. As the center of the net will
fluctuate during the maneuver it is desired to define a static offset rather than measuring
the actual height difference.

pp∗d,1 = sat(pp∗a,1,−
w

2
,
w

2
) (7.31)

pp∗d,2 = sat(pp∗a,2 + zL,−
h

2
,
h

2
) (7.32)

zp∗

yp∗

zc̄

yc̄

zL

w

h

pp∗
a

Figure 7.5: The vehicles in the cross-track frame {p∗}, bounded by the dotted virtual runway with
height h and width w. Where the black dot is the fixed-wing and the circle is the center of the net.
The height difference between the centroid {c̄} and the net center is given as zL.

Equation (7.29) is minimized by by modifying the pure-pursuit guidance scheme as dis-
cussed in e.g. [Fossen, 2011, Ch. 10], such that the desired velocity in the cross-track
plane vp∗d is found by the following steering law

vp∗d = Kp,pp̃
p∗ + Kd,p

˙̃pp∗ + Ki,p

∫ t

0

p̃p∗ dt (7.33)

where the matrices Ki,p ∈ R2x2 for i ∈ {p, i, d} are diagonal matrices with all elements
positive along the diagonal. This gives in total the desired velocity in the path-frame as

vpd,1 = vpd,x(t) (7.34)

vpd,2:3 = vp∗d (7.35)

where vpd,x(t) is given by the desired along-track velocity trajectory q2(t). Then the de-
sired velocity in the local {n} frame can be found by the following rotation

vnd = Rn
pvpd (7.36)

62

7.4 Position hold

7.4 Position hold

This section briefly presents a position controller in order to hold the position at the start
of the virtual runway1. The control law in Equation (7.33) is modified with a constant
reference point, additionally the along-track position is controlled as well. Such that given
the position error p̃p := ppd − pp with the desired position ppd = 03x1

2 one get the PID
control law in Equation (7.37).

vpd = Kp,php̃
p + Kd,ph

˙̃pp + Ki,ph

∫ t

0

p̃p dt (7.37)

where the matrices Ki,ph ∈ R3x3 for i ∈ {p, i, d} still are diagonal matrices with all ele-
ments positive along the diagonal. Then the velocity vnd , is still given by Equation (7.36).

7.5 Supervisor

The open- and closed-loop schemes presented can be combined to present an overall so-
lution of the recovery maneuver problem. However, this requires an superior controller
responsible for enabling the desired controllers and trajectories by controlling the refer-
ence input based on the current state of the fixed-wing. Such an superior controller can
be realized using a Finite-State-Machine, wherein a set of states of the maneuver can be
defined. Each state can then enable a certain controller and reference. Furthermore, the
current position and velocity can be used to trigger a certain transition from one state to
another, such that only one state will be active at a certain time.

This Finite-State-Machine, or simply the state-machine for short can be defined as seen in
Figure 7.6. After engaging the recovery maneuver, the supervisor will initialize (INIT) and
wait for all vehicles to connected. Then the multirotors will be instructed to move to the
start of the virtual runway at checkpoint c3 as illustrated in Figure 7.2. In this (STANDBY)
state the position controller from Section 7.4 will be used to ensure the multirotor can hold
the current position with external disturbances such as wind present.

The supervisor should do a transition to (APPROACH) when the fixed-wing is approach-
ing towards the runway from behind within some along- and cross-track position and ve-
locity boundaries. The cross-track position and velocity boundaries is given as pp∗approach
and vp∗approach respectivly. At (APPROACH) the cross-track controller in Section 7.3 will
control the cross-track position of the centroid (and thereby the position of the net) accord-
ing to the current desired cross-track position instructed by the fixed-wing.

1The start of the runway and the origin of the path frame {p} is given by checkpoint c3 in Figure 7.2
2Position set to the origin of the path-frame, but can in general be any point in the given path frame {p}.

63

Chapter 7. The recovery maneuver

Meanwhile the supervisor will estimate the time of arrival of the fixed-wing ETAa, such
that desired time to start the recovery (START) and engage the along-track trajectory is as
given by Equation (7.28). As the fixed-wing approaches the net, three different outcomes
is possible: Hopefully, a successful recovery will be conducted (CATCH), else the fixed-
wing may pass the net without a recovery or reach the end of the runway, both resulting in
a stop of the maneuver (STOP).

After a catch, the cross-track reference point and the along-track velocity will be fixed in
order to not induce extra swinging motion in the net. Another approach is to stop the along-
track velocity control after the catch allowing the along-track swinging motion to decline
without external disturbance, however, this method has not been investigated further. In
order to do a second attempt for a recovery, the whole maneuver can simply be restarted.

64

7.5 Supervisor

INIT

start

STANDBY
ppd = pp(c3)
(Position hold)

APPROACH
pp∗d = pp∗a
vpc̄d,x = 0

ETAa = |xa|
va

(Cross-track control)

START
vpc̄d,x = q2(t)
apc̄d,x = q3(t)
(Enable along-track trajectory)

CATCH
t = tcoll
pp∗c̄,d = pp∗c̄d (tcoll)

vpc̄d,x = q2(tf)
(Fixed path-reference,
constant along-track velocity)

STOP
End of maneuver

END
End of runway

All vehicles connected

vpa,x < 0 && −vp∗approach < vp∗a < vp∗approach

ppa,x < 0 && −pp∗approach < pp∗a < pp∗approach

t ≥ ETAa −∆t

ppl,x − ppa,x < 0

(airplane passed)

Fixed-wing in net

∥∥ppx(c5)− ppa,x
∥∥2
< R5

Figure 7.6: State machine for the recovery maneuver

65

Chapter 7. The recovery maneuver

Lastly, the recovery control structure is summarize in Figure 7.7, illustrating the connec-
tions between the along- and cross-track schemes. Here the fixed-wing UAV states flows
from the left, and on the right hand side, the desired acceleration and velocity of the cen-
troid are given.

Cross-track

Along-track
vn
a

pn
a Rc̄

p

vc̄
d

Rp
n

Rp
n

vp
a

pp
a

pp∗
a vp∗

d

vpd,x(t)

vp
d

Rp
n

ap
a

Rc̄
p

an
a

apd,x(t)

ac̄
d

Figure 7.7: Recovery structure figure

7.6 Simulations

7.6.1 Trajectory comparing

The desired along-track trajectories as summarized and compared in Section 7.2.4 where
applied on a single multirotor with the velocity controller from Section 5.2. The system
equation were solved using RK4 running at 50 Hz, with the desired along-track trajectory
parameters as given in Table 7.2.

∆t = tf − t0 8 s (for polynomial)
xf 20 m
vf 4 m/s
amax 1 m/s2

β 1 m/s3

Table 7.2: Trajectory comparing simulation parameters

Furthermore, a fixed-wing were instructed to hold a constant course and height with a
surge speed of ua = 18 m/s towards the multirotor. The the along-track trajectories were
enabled when the simulation time passed the start time as calculated in Equation (7.28).

The resulting along-track responses are given in Figure 7.4. Comparing with the responses
in Section 7.2.4 one can see that all trajectories ensures that the multirotor reaches the de-
sired recovery point at approximately the same time stamp. Hence given that the estimated
time-arrival factor of the fixed-wing ETAa can be estimated, one should be able to con-
trol the desired recovery point with these open loop trajectories. It should be noted that the
first order reference model gives an aggressive acceleration profile, and comparing with

66

7.6 Simulations

the desired velocity and acceleration trajectory in Figure 7.4 one can also see that they are
not feasible, as the multirotor is not able to follow them. However, for the purpose of using
a MRAC scheme the model and estimation will be necessary.

Time [s]

6 8 10 12 14 16 18

P
o
s
it
io

n
 [
m

]

-20

0

20

40

60

Polynomial

Velocity ramp

Jerk ramps

Reference

Time [s]

6 8 10 12 14 16 18

V
e
lo

c
it
y
 [
m

/s
]

-2

0

2

4

6

Time [s]

6 8 10 12 14 16 18

A
c
c
e
le

ra
ti
o
n
 [
m

/s
2
]

-1

0

1

2

3

4

Figure 7.8: Comparing along-track responses, the dotted lines indicates the constraints.

7.6.2 Recovery maneuver

An overall recovery maneuver simulation study was conducted using the polynomial along-
track trajectory as introduced in Section 7.2.1 with the desired parameters as given in Ta-
ble 7.3.

∆t = tf − t0 8 s
xf 20 m
vf 4 m/s

Table 7.3: Recovery maneuver simulation parameters

67

Chapter 7. The recovery maneuver

Furthermore, the cross-track controller from Section 7.3 with Kp,p = 2I2×2 and Kp,d =
0.2I2×2 was used. Further, the supervisor in Section 7.5 handled the different controllers
and references. An virtual-runway were defined with length 50 m and a cross-track plane
of dimensions 5 m × 5 m, lastly, the fixed-wing was instructed to fly in parallel with the
virtual-runway and in the center of the cross-track plane with an along-track surge speed
of 18 m/s.

An overview of the resulting simulation are shown in Figure 7.9, where the bodies are
shown with the virtual-runway after the impact with the fixed-wing suspended in the net3.

x [m]

1214

10

20

y [m]

30

40

50

60

2

-4

0

-2

z
 [
m

]

Figure 7.9: Position and orientation of the bodies in {n}, the center multirotor gives the centroid,
the black dotted line gives the boundaries of the virtual-runway.

In Figure 7.10 the feasibility of the recovery scheme is proven. Firstly the multirotors are
able to reach the desired recovery point at the same time as seen in Figure 7.10a, then
Figure 7.10b illustrates how the cross-track controller ensures that the fixed-wing has an
impact with the net. One should note that the cross-track controller does not start immedi-
ately as the supervisor instruct the multirotor to wait until the fixed-wing are approaching
the virtual-runway. Also, the offset in height gives the height difference between the cen-
troid and the center of the suspended net.

3A movie of the recovery simulation can be seen Simulations/Recovery maneuver.mp4 in the Digital Ap-
pendix.

68

7.6 Simulations

Time [s]

0 5 10 15 20 25 30 35 40

x
 [

m
]

0

10

20

30

40

50
Centroid

FixedWing

Desired catch

(a) Along-track positions

0 10 20 30 40

y
 [
m

]

-0.6

-0.4

-0.2

0

0.2

Centroid

FixedWing

Time [s]

0 10 20 30 40

z
 [
m

]

-10

-5

0

(b) Cross-track positions

Figure 7.10: Positions of centroid and fixed-wing in the Virtual-Runway frame {p}

Lastly, the performance of the velocity controller are illustrated in Figure 7.11, where one
can see that the multirotor is able to follow the polynomial trajectory, as well as controlling
the cross-track velocity. The step in the desired cross-track velocity follows from the cross-
track deviation between the centroid and the fixed-wing when the cross-track controller is
enabled by the supervisor.

0 5 10 15 20 25 30 35

v
x
 [
m

/s
]

-5

0

5

State

Desired

0 5 10 15 20 25 30 35

v
y
 [
m

/s
]

-1

0

1

Time [s]

0 5 10 15 20 25 30 35

v
z
 [
m

/s
]

-5

0

5

Figure 7.11: Centroid velocities denoted in {p}

69

Chapter 7. The recovery maneuver

7.6.3 MRAC

As for the path control in Chapter 6 a simulation study with the MRAC as velocity con-
troller was conducted for the recovery maneuver. Here RK4 at 100 Hz was used with the
key parameters as given Table 7.4.

xf 20 m
vf 2 m/s
amax 0.5 m/s2

ua 18 m/s

(a) Net recovery simulation parameters

Q 3I3×3

K̂0 −3I3×3

L̂0 3I3×3

(b) MRAC parameters

Table 7.4: MRAC recovery key parameters

As in Section 7.6.2 the overall maneuver using the MRAC as the velocity controller is
illustrated in Figure 7.124

8

x [m]

1012
5

10

15

20

y [m]

25

30

35

40

45

50

55

2

0

-2

-4

z
 [
m

]

Figure 7.12: Positions of the vehicles in the {n} frame, the black dotted line gives the boundaries
of the virtual-runway

The same along- and cross-track response can be observed in Figure 7.13, the MRAC is
able to control the centroid to the desired recovery point at when the fixed-wing hits the
suspended net.

4A video of the recovery maneuver using the MRAC can be seen in Simulations/Recovery - MRAC.mp4 in
Digital Appendix.

70

7.6 Simulations

Time [s]

0 5 10 15 20 25 30 35 40

x
 [

m
]

0

10

20

30

40

50

Centroid

FixedWing

Desired catch

(a) Along-track positions

0 10 20 30 40

y
 [
m

]

-0.6

-0.4

-0.2

0

0.2

Centroid

FixedWing

Time [s]

0 10 20 30 40

z
 [
m

]

-10

-5

0

(b) Cross-track positions

Figure 7.13: Positions of centroid and fixed-wing in the virtual-runway frame {p}

The centroid velocity in the virtual-runway frame given in Figure 7.14 illustrate the is-
sues as discussed in Section 6.3.2, the MRAC is able to somehow follow the cross-track
velocities with some fluctuation and lag compared to the desired trajectory, however, the
along-track velocities oscillate towards the desired set-point after the collision due to the
fluctuating net.

0 10 20 30 40

v
x
 [

m
/s

]

0

1

2

3

State

Desired

0 10 20 30 40

v
y
 [

m
/s

]

-0.4

0

Time [s]

0 10 20 30 40

v
z
 [

m
/s

]

-4

-2

0

Figure 7.14: Centroid velocities denoted in {p}

Moreover, by observing the velocities of the individual multirotor in Figure 7.15 the same
fluctuations can be observed after the collision. The cross-track velocities vx (as the virtual
runway is facing east) does not suffer from the fluctuations. On the other hand it should
be noted that the first order reference model creates a more feasible reference trajectory.
However, a first-order model will also increase the delay, such that the agility of the mul-
tirotors are reduced, the amount of delay can be adjusted with the time constant of the
reference model.

71

Chapter 7. The recovery maneuver

0 10 20 30 40

v
x
 [

m
/s

]

0

0.4

v - Multirotor 1

Reference

Desired

State

0 10 20 30 40

v
y
 [

m
/s

]

0

1

2

Time [s]

0 10 20 30 40

v
z
 [

m
/s

]

-1

0

(a) Multirotor 1

0 10 20 30 40

v
x
 [

m
/s

]

0

0.4

v - Multirotor 2

Reference

Desired

State

0 10 20 30 40

v
y
 [

m
/s

]

0

1

2

3

Time [s]

0 10 20 30 40

v
z
 [

m
/s

]

-1

0

(b) Multirotor 2

Figure 7.15: Velocities of the multirotors in {n} during the recovery maneuver, comparing the
reference, desired and the actual state

By investigating the adaptive gains in Figure 7.16, one can see that the along-track gain
components (2, 2) fluctuates until the parameters converge towards the end of the simula-
tion, specially after the collision. This is due to the oscillations of the net after the impact
with the fixed-wing, where the adaptive laws tries to compensate. In this case, it seems
that the adaption law is somehow to slow.

0 10 20 30 40

M
u
lt
ir
o
to

r
1

-5

-4

-3

MRAC: Kp

(1,1)

(2,2)

(3,3)

Time [s]

0 10 20 30 40

M
u
lt
ir
o
to

r
2

-5

-4

-3

(a) Diagonal elements of Kp

0 10 20 30 40

M
u
lt
ir
o
to

r
1

3

4

5

MRAC: L

(1,1)

(2,2)

(3,3)

Time [s]

0 10 20 30 40

M
u
lt
ir
o
to

r
2

3

4

5

(b) Diagonal elements of L

Figure 7.16: Multirotor adaptive gains during the recovery maneuver

An important aspect with the MRAC scheme, is that the inputs need to fulfill the concept
of persistent excitation (PE). The general requirement for parameter convergence in an
adaptive scheme is that the input signal is sufficiently rich as discussed in detail in [Ioannou
& Sun, 2012]. For this specific MRAC scheme the inputs to the parameter estimation laws
are the error state e = x − xr for both laws, further the x and r = vnd + vni,df are
inputs for the adaption laws for K(t) and L(t) respectively. The virtual-runway along-

72

7.6 Simulations

track component reference signal ry consists of a step from zero to the desired recovery
velocity, which do not ensure PE. However, the formation law compensate greatly in this
axis, as the suspended net and the desired link vector are parallel to the cross-track plane.
Therefore, the adaption law converges for the (1, 1) components converges fast as seen in
Figure 7.16. On The

73

Chapter 7. The recovery maneuver

74

Chapter 8
Experimental setup

For prototyping the system was implemented and simulated in Matlab. However, in order
to test the system on an embedded hardware platform for field experiments the methods
implemented in Matlab must be ported to a more low-level software framework as Matlab
is not suitable to do this directly. Therefore the control algorithms for the multirotor were
implemented and written in the C++ programming language using the DUNE framework.
This chapter explains the structure of the software implementation, for details around the
practical usage of the system the reader is referred to the software user manual attached in
the Digital Appendix.

The overall architecture of the system implementation is presented in Figure 8.1. The
typical program flow is as follows: a plan is generated using the Neptus GCS which is
dispatched to the respective vehicle. Each plan contains one or more maneuvers mostly
attatched to one or more waypoints. The DUNE framework handles the internal switching
between these maneuvers by reading the current status of the maneuver in the
IMC::ManeuverControlState message as seen in the box leftmost in Figure 8.1, here the
operator of the GCS can choose to start or stop a plan as desired.

IMC::NetRecovery

IMC::Goto

IMC::DesiredNetRecoveryPath

IMC::DesiredPath

NetRecovery

Goto

Maneuvers

G
en

er
al

pl
an

ha
nd

lin
g

IMC::DesiredControl

Controls
Ardupilot

Pe
ri

ph
er

al
s

IMC::ManeuverControlState

IMC::PathControlState
interface

IMC::NetRecoveryState

Figure 8.1: DUNE system architecture overview

75

Chapter 8. Experimental setup

DUNE supports multiple standard maneuvers, as e.g. the Goto-maneuver which sends
a desired global waypoint1 with a desired height and speed set-point as defined in the
IMC::DesiredPath message. This data is received from the plan handler through the ma-
neuver message IMC::Goto. Furthermore, a controller can be implemented using this
information, and update the maneuver-task with the current state IMC::PathControlState
regularly. It should be noted that the vehicle controllers uses the local {n} reference sys-
tem, hence all waypoints received from the Neptus GCS must be converted to this local
frame. All vehicles uses a common reference point as the origin of this frame such that a
conversion can be conducted.

However, for the purpose of implementing a recovery maneuver, a custom NetRecovery
maneuver task were implemented. In order to keep the same hierarchically structure
the maneuver reads the IMC::NetRecovery maneuver message containing all data to per-
form a specific recovery, a controller is then engaged and the maneuver data is forwarded
through the IMC::DesiredNetRecoveryPath message. Lastly the recovery controller sends
a IMC::NetRecoveryState message such that the maneuver task NetRecovery can monitor
the progress and terminate the maneuver when done.

Lastly, the controllers dispatches the desired control force (in the local {n} frame) to be
applied on the vehicle to the Ardupilot through a interface implemented in the DUNE
framework. The Ardupilot handles the attitude control, followed by the control allocation
to distribute the desired angular velocity to each ESC controlling the speed of the rotors.

In the following sections the structure of the system will be discussed. Moreover, the
different controllers will be discussed; the two different path controllers implementing the
guidance scheme during the overall mission for the recovery and the transport maneuver.
The methods are discussed in detail in Section 8.2.1 and Section 8.2.2 respectively. The
output from these controllers is then sent to the velocity control responsible for sending
the desired force to the Ardupilot interface as seen in Section 8.2.3.

8.1 Architecture

Firstly, in order to present the controller implementation, the structure of the overall system
must be discussed in some detail. The inter-vehicle system must communicate and agree
on a set of configurations, furthermore, the navigation solutions must be transformed to a
common reference system.

8.1.1 Configuration

A configuration messaged named IMC::CoordConfig is sent from the master multirotor to
the slave multirotors and the fixed-wing UAV. The message is dispatched from the Coordi-
nation Configuration task as seen in Figure 8.2 to distribute setup both on system boot-up,

1The position is given in latitude and longitude defined in the World Geodetic System 1984 (WGS-84) datum

76

8.1 Architecture

but also for on the fly configuration2. This is very convenient especially for the multirotor
setup, as the desired initial formation, tuning parameters and such can be changed dynam-
ically. Also, as it will be seen in Figure 8.4, the configuration will be used to distribute the
common global reference origin for the inertial reference frame {n} for all vehicles.

The distribution of the different tasks implemented is also illustrated in Figure 8.2. As
seen the master multirotor, in addition to running the configuration task, it is responsible
for the overall path controllers, and dispatches the references to the slave(s). Still, all
multirotors must run the velocity controller Force dispatching the desired force. The Force
task consumes the current states of the other vehicles and itself dispatched from the Local
State Transport task, as well as the states of the centroid dispatched from Centroid in
order to control the formation. Lastly, the states of the fixed-wing UAV is dispatched to
the master vehicle from the Local State Transport task running on the fixed-wing in order
to do the recovery maneuver.

FixedWing

Local
State
Transport

Master

Local
State
Transport

Coordination
Configuration

Centroid

Force

Path

Slave(s)

Local
State
Transport

Centroid

Force

Figure 8.2: DUNE on the different platforms

2The ability to configure the system whilst running on the embedded computer.

77

Chapter 8. Experimental setup

Furthermore, the DUNE system incorporate a hierarchically system where the different
controllers are enabled consecutively based on which controllers it need to run. That is,
each controller task is enabled by reading a IMC::ControlLoops message containing a flag
telling which control-loop type to enable, if a controller read the message and it is of
the correct type it will enable itself. Furthermore, if the given controller needs a certain
control-loop a new IMC::ControlLoops will be dispatched with the specific flag set. For
this system the specific flags of type IMC::CL <desired controller> are seen in Figure 8.3.
The reader should note that each guidance controller is of the type IMC::CL PATH, requir-
ing a second flag preventing both controllers from being activated. This maneuver specific
flag is set from the GCS such that for each maneuver, the operator must choose the desired
controller.

All lines is message of type: IMC::ControlLoops

NetRecovery

Goto

Maneuvers

IMC::CL FORCE

Controls

Ardupilot
interface

IMC::CL PATH

Path

NetRecovery

LOS

Coordinator
IMC::CL SPEED

Force

Figure 8.3: DUNE control-loops overview

8.1.2 Transport layers

The feedback signal is dispatched from the navigation and sensor -systems on each vehi-
cle. The full state of the system, including among other the global position, local posi-
tion, velocity and orientation is contained in the IMC::EstimatedState message, lastly the
IMC::Acceleration message contains the acceleration data.

As the IMC::CoordConfig contains a fallback-reference the agent can choose to either
use the local states directly from the IMC::EstimatedState message or transform the local
states using the fallback reference. When using the RTK GNSS3 navigation solution, the
reference point will be the base-station which is common for all vehicles using the same
station, then it is not necessary to transform the local navigation solution as it is already
in the same reference system. However, if the RTK navigation solution is not valid, the
local GPS solution for the vehicle will be used. Then one must transform all solutions to
the common fallback reference point, as the reference points for the different vehicles will
most likely deviate from each others.

3Real Time Kinematic Global Navigation Satellite System as introduced in Chapter 3

78

8.2 Controllers

The new transformed IMC::EstimatedState message together with the IMC::Acceleration
will be incorporated in a new message IMC::EstimatedLocalState as seen in Figure 8.4.
Further the IMC::EstimatedLocalState from the Local State Transport task will be sent
locally between the vehicles as seen in Figure 8.2. Lastly the centroid state message will
be constructed locally on each multirotor in the Centroid task.

Centroid

Multirotors

IMC::EstimatedLocalStateLocalStateTransport

IMC::EstimatedState
IMC::EstimatedLocalState

IMC::CoordConfig

FixedWing + Multirotors

IMC::Acceleration

Figure 8.4: Overview of DUNE feedback

8.1.3 Transport configuration

As described in Chapter 3 the inter-vehicle communication is executed using the UDP
transport protocol based on the Internet Protocol (IP). In order to manually configure the
communication all transport layers must connect to the transport layer on the destination
vehicle. Each layers is identify with the IP address of the vehicle and a certain port, if
simulating all vehicles on the same computer all IPs will be the same, and unique port
numbers must be specified. It is troublesome to manually configure such a setup, therefore
a DiscoverVehicle task was implemented responsible for setting up the IPs and ports for
all transport layers. By listening for newly connected vehicles and linking the IP and port
to each transport layer automatic configuration where achieved, furthermore, by listening
for lost connection, the system is able to stop data transport to the disconnected vehicles.

8.2 Controllers

The overall scheme of the controllers implemented are presented in Figure 8.5. It should be
noted that a master/slave model is chosen, such that the master multirotor does all the guid-
ance calculations (Path Control) and dispatches the configuration message as illustrated in
Figure 8.2. However, the fixed-wing acts as the uppermost master, dictating the overall
maneuver flow. Note that all path-controllers uses the centroid IMC::EstimatedLocalState
dispatched from the Centroid task. The coordinated velocity control is the only task re-
quiring the states from all individual multirotors.

79

Chapter 8. Experimental setup

NetRecovery

Path Control

LOS

Coordinator

Force

IMC::ELS (Fixed-Wing)

IMC::ELS (Centroid)

IMC::ELS (Centroid)

IMC::ELS (Multirotor 1..n)

IMC::DesiredControl
IMC::DesiredLinearState

IMC::DesiredHeading

Multirotor master (+slaves)

Configuration
IMC::CoordConfigCoordination

Multirotor master

Figure 8.5: Structure of DUNE controllers implementation, IMC::ELS is short for
IMC::EstimatedLocalState

8.2.1 Recovery Coordinator

The recovery coordinator NetRecovery Coordinator as seen in Figure 8.5 implements the
coordinated recovery maneuver of the fixed-wing. The routine monitors the states of the
multirotors and the fixed-wing in order to control the movements of the net according to
the fixed-wing motions. It implements the recovery maneuver as discussed in Chapter 7
which uses the the different controllers as supervised by the supervisor as discussed in
Section 7.5.

8.2.2 Path Control

The path-controller LOS as seen in Figure 8.5 implements the guidance scheme as intro-
duced in Chapter 6. Furthermore, it ensure a smooth movement of the net combining
the LOS guidance law from Section 6.1 and the reference simulator in Section 6.2. The
controller is implemented as a periodic task with a fixed frequency ensuring a discrete
controller domain.

The LOS guidance law in Section 6.1 is implemented directly, using a set of waypoints
defined from the Neptus GCS to define the paths. As the reference simulator is a dynamical
system, and as it is not possible to solve the system analytically a numerical solution
is required. A fixed-step Runge-Kutta of order 4 was implemented to solve the system
numerically.

80

8.3 Software in The Loop (SITL)

8.2.3 Coordinated Velocity Control

The Force task in Figure 8.5 implements the velocity controller and the cooperative control
as introduced in Section 5.2.

The coordinated control scheme includes multiple tasks interacting as a distributed scheme
ensuring abort mechanisms if the multirotors are too close, lost intervehicle connection
or similar cases. The reader is again referred to [Røli, 2015] for more information, the
implementation from this thesis is the basis for the agent velocity controller.

The input states is the desired centroid body velocity, acceleration and heading as con-
tained in the IMC::DesiredLinearState and IMC::DesiredHeading. Implemented as a pe-
riodic task with a fixed frequency the task implements the controller from Section 5.2.3
directly. For heading control and link-gain scheduling the approaches discussed in Sec-
tion 5.2.1 and Section 5.2.2 is used.

To ensure a dynamically system, the global configuration message IMC::CoordConfig
contains all the necessary parameters for the coordinated control setup, such that e.g. the
desired link gain or desired formation can be changed while the system is operative.

8.3 Software in The Loop (SITL)

Further to test the algorithms a SITL setup where configured. In a SITL setup the software
supposed to control the system is used on an external simulator as seen in Figure 8.6, where
the controller sends the desired control input to the simulator and receives the consecutive
states from the simulator. The benefits with this setup is that the control algorithms can be
tested in the same manner as it would if it where controlling the real system.

Figure 8.6: SITL principle

A more thorough and realistic setup would be to run the control algorithms on the actual
hardware and send the desired input to the system to a simulated sensor platform that
sends simulated measured states back, however, this setup known as Hardware-In-the-
Loop (HIL) will not be addressed further.

81

Chapter 8. Experimental setup

JSBSim and ArduCopter simulator

The ArduPilot software framework as introduced in Section 3.3.2 contains a built-in sim-
ulators, but one is also able to use external simulators as seen in Figure 8.7. For the mul-
tirotor the built-in simulator was used together with the low-level attitude control-loops in
ArduCopter. Then the desired force in the local {n} frame was used as input, treating the
multirotor as a controllable point in the local frame. The fixed-wing UAV was controlled
using the landing system as discussed in [Nevstad, 2016] together with the ArduPlane
controllers. Here JSBSim, an open-source Flight Dynamic Model (FDM) library model-
ing the 6-DOF airplane dynamics was used [JSBSim, 2015] using the X-8 dynamics as
implemented in [Gryte, 2015].

Figure 8.7: SITL architecture in ArduPilot. Image courtesy of dev.ardupilot.com

82

8.3 Software in The Loop (SITL)

SITL setup

The total SITL setup is given Figure 8.8. In order to simulate the total recovery opera-
tion a multirotor and a fixed-wing UAV simulator is needed, this is achieved by running
two instances of DUNE where each of them communicate with the ArduCopter and Ardu-
Plane simulator respectively, here the MAVlink protocol is used by an internal ArduPilot
interface task in DUNE. The fixed-wing instance of DUNE sends the current states to the
multirotor instance of DUNE as the multirotor should control its location according to the
fixed-wing. The simulation results are presented in Section 8.4.

JSBSim

ArduPlane

DUNE
airplane

ArduCopter

DUNE
multicopter

Figure 8.8: SITL setup

83

Chapter 8. Experimental setup

8.4 SITL results

Using the setup as introduced above, a set of SITL experiments were conducted. In the
following, the different rates as summarized in Table 8.1 were used. It should be noted
that the inner velocity controller has a higher rate than the outer path control and recov-
ery coordinator loop to ensure that the outer loop can neglect the inner loop dynamics as
discussed in Appendix D.2. The feedback states are the numerical solution from the ex-
ternal simulator. For the following results, the label Estimated will refer to the numerical
feedback solution from the simulator. Further, these experiments does not include the sus-
pended payload between the multirotor, hence, no collision dynamics or suspended load
tension are included.

Feedback 50 Hz
Path control 10 Hz
Recovery coordinator 10 Hz
Velocity controller 30 Hz

Table 8.1: SITL - Controller and feedback frequencies

8.4.1 Payload transport

A SITL study on the transport control scheme was performed in a similar fashion as the
simulation study in Section 6.3.1. Now, with the parameters as listed in Table 8.2 a simu-
lation was performed, proving the usability of the implemented system.

Gain close, Kc 1.5
Gain far, Kf 0.6
z̃0 3.0 m
z0.9 2.5 m
Desired link distance, l 3.0 m
Velocity control gain, Kp 3I3×3

(a) Formation parameters

Reference surge, uref 0.7 m/s
Nomoto, timeconstant: T 0.9 s
Nomoto, rudder gain: K 1
Surge, mass: m 10
Surge, damping: d 1
Heading control damping: ζψ 1
Heading control bandwidth: ω0,ψ 0.7 rad/s
Surge controller gains: Kpτ ,Kiτ 5,1
∆y 10
∆z 10

(b) Reference simulator and LOS

Table 8.2: Payload transport (SITL): Parameters

Firstly, a set of waypoints were defined using the Neptus ground control station. Here four
points forming a square with different height set-point were selected for comparability
with the simulation results. The way-points, together with the multirotors positions in the
local {n} can be seen in Figure 8.10a4. As the theoretical simulation study proved the

4A video of the SITL path control experiment can be seen SITL/Payload transport.mp4 in Digital Appendix.

84

8.4 SITL results

reference simulator to be necessary it was enabled for this SITL experiment.

15

10

5

x [m]

0

-5

5

0

y [m]

-5

-10

-15

54

52

50

46

48

z
 [
m

]

Figure 8.9: Payload transport (SITL): Multirotor positions in {n}, centroid illustrated as the red
multirotor. The blue stars indicate the way-points connected by solid black lines

Observing the maneuver from above in Figure 8.10a reveals that controllers are able to
render the centroid position towards the path given by two subsequent waypoints. Further-
more, sideway motions are minimized as stated in Figure 8.10b and the heave velocity is
closely followed giving the height slopes as seen in Figure 8.11b. On the other hand, the
velocity controller is not able to reach the desired surge velocity, in this setting it should be
noted that neither the guidance or the velocity controller has integral action implemented.
Lastly the reference simulator heading and surge response are revealed in the same fashion
as in the theoretical simulation as Figure 8.11a states.

85

Chapter 8. Experimental setup

x
 [

m
]

-5

0

5

10

15

y [m]

-15 -10 -5 0 5

(a) North-East multirotor and centroid posi-
tions.

40 60 80 100 120 140

u
 [
m

/s
]

0.4

0.6

0.8

Estimated

Desired

Reference

40 60 80 100 120 140

v
 [
m

/s
]

-0.2

0

0.2

Time [s]

40 60 80 100 120 140
w

 [
m

/s
]

-0.5

0

0.5

(b) Centroid body {c̄} velocities, comparing reference
and desired values.

Figure 8.10: Payload transport (SITL): Multirotor positions and centroid velocity.

40 60 80 100 120 140

H
e
a
d
in

g
 [
d
e
g
]

-200

0

200

Time [s]

40 60 80 100 120 140

S
u
rg

e
 [
m

/s
]

0.6

0.65

0.7

Reference

Desired

(a) Comparing reference simulator inputs (refer-
ence) and output (desired); heading ψ and surge
u.

Time [s]

40 60 80 100 120 140

z
 [
m

]

47

48

49

50

51

52

53

54

(b) Centroid Downwards height in {n}.

Figure 8.11: Payload transport (SITL): Reference simulator states and the height.

86

8.4 SITL results

8.4.2 Recovery maneuver

Based on the theoretical simulation study setup in Section 7.6.2 a SITL recovery simula-
tion was conducted. The parameters from Table 10.3 were applied using the along-track
velocity ramp trajectory from Section 7.2.2.

xf 30 m
vf 3 m/s
amax 1.5 m/s2

Virtual-runway volume: w × h× l 10× 15× 60 m3

Kp,p 1I2×2

Kd,p 0.2I2×2

Table 8.3: Recovery (SITL): Parameters

The virtual runway, as well as the desired waypoints towards and back from the runway
were defined using the ground control station. Further, the fixed-wing UAV was instructed
to do multiple approaches towards the runway, enabling multiple recovery maneuvers to
be conducted. The reader is refered to [Nevstad, 2016] for details about the fixed-wing
maneuver. An overview of the waypoints and the runway with the multirotors are shown
in Figure 8.125, where the collision occured approximatly in the center of the runway
illustrated as the point where the fixed-wing is directly above the centroid.

x
 [

m
]

-20

-15

-10

-5

0

5

10

15

20

25

y [m]

-20 -10 0 10 20 30 40

Figure 8.12: Recovery (SITL): North-East overview of the recovery, where the green and the blue
line is the path of the fixed-wing and the multirotors respectively. The centroid path is also plotted
as the center multirotor. The black dotted lines represents the boundaries of the virtual-runway and
the blue stars is the desired waypoints, connected with the solid black line.

5A video of the SITL recovery maneuver can be seen in SITL/Recovery.mp4 in Digital Appendix.

87

Chapter 8. Experimental setup

Unfortunately the SITL simulator given by ArduCopter does not provide wind distur-
bances, therefore, no wind was applied for the following results. Without wind the fixed-
wing UAV was able to track the desired virtual runway direction in the North-East plane
with very low error magnitude. Also, the multrotors were able to follow the fixed-wing, as
illustrated in Figure 8.13 and Figure 8.14. For a more realistic experiment strong wind with
turbulence should be applied, however, field experiments will also give such conditions.

Time [s]

0 50 100 150 200 250 300

x
 [

m
]

-1500

-1000

-500

0

500

Centroid

FixedWing

Desired catch

(a) Along-track

0 50 100 150 200 250 300

y
 [

m
]

-100

0

100

200

300

Centroid

FixedWing

Time [s]

0 50 100 150 200 250 300

z
 [

m
]

-20

-10

0

(b) Cross-track

Figure 8.13: Recovery (SITL): Along- and cross-track positions in the path-frame {p}, the bound-
aries of the virtual-runway is represented as the black-dotted line.

In Figure 8.13 a closer view is given on the along- and cross-track positions, revealing
that the scheme are able to render the multirotors to the desired recovery point when the
fixed-wing arrives and with the correct cross-track position.

Time [s]

220 225 230 235 240

x
 [
m

]

-500

-400

-300

-200

-100

0

100

Centroid

FixedWing

Desired catch

(a) Along-track

220 225 230 235 240

y
 [
m

]

-0.1

0

0.1

0.2

0.3

Centroid

FixedWing

Time [s]

220 225 230 235 240

z
 [
m

]

-15

-10

-5

0

(b) Cross-track

Figure 8.14: Recovery (SITL): Along- and cross-track positions in the path-frame {p} a short period
before the impact.

The supervisor as discussed in Section 7.5 and Section 8.2.1 handles the different states

88

8.4 SITL results

during the maneuver, and in Figure 8.15 an overview of these are presented.

y [m]

-1200 -1000 -800 -600 -400 -200 0

x
 [

m
]

-900

-800

-700

-600

-500

-400

-300

-200

-100

0

STANDBY

APPROACH

START

CATCH

(a) All state changes during recovery

y [m]

-180 -160 -140 -120 -100 -80 -60 -40 -20 0

x
 [

m
]

-100

-80

-60

-40

-20

START

CATCH

(b) Closer view on the states after the approach
state

Figure 8.15: Recovery (SITL): The recovery state change timestamps during the operation symbol-
ized as red stars along the fixed-wing path (black line), the blue circles is the position of the centroid
at the specific timestamp.s

Lastly, the results from the velocity controller are presented in Figure 8.16, were the cross-
track velocities are closely followed. However, as discussed in Section 8.4.1 the controller
is not able to reach the desired surge velocity. Still, the recovery occurs within the virtual
runway and close to the desired recovery point, proving the feasibility of this controller
scheme.

0 50 100 150 200 250 300

v
x
 [
m

/s
]

0

2

4
Estimated

Desired

0 50 100 150 200 250 300

v
y
 [
m

/s
]

-0.5

0

0.5

Time [s]

0 50 100 150 200 250 300

v
z
 [
m

/s
]

-4

-2

0

2

Figure 8.16: Recovery (SITL): Centroid velocities denoted in the virtual-runway frame {p}

89

Chapter 8. Experimental setup

90

Chapter 9
Operational aspects

This chapter will discuss some of the challenges regaring the practical usage of the recov-
ery maneuver. This includes an example of how the overall maneuver can be conducted, as
well as timing considerations in order to abort the operation. Lastly, the practical control
and monitoring of the operation will be discussed.

9.1 Overall maneuver

The overall landing operation from a ship can be done as seen in Figure 9.1, note the safety
radius rs from the ship, which defines the minimum distance to the recovery maneuver.
Given the desired fixed-wing landing path Π(s) a recovery path Γ(s) can be defined. The
path contains crucial checkpoints and the legs between them are defined as in Table 9.1, at
the different legs different controllers will be enabled.

c1 → c2 Take-off l1
c2 → c3 Move to the runway l2
c3 → c4 Pre-recovery maneuver l4
c4 → c5 Post-recovery maneuver l5
c5 → c6 Transport to ship l6
c6 → c7 Landing l7

Table 9.1: The different legs on the path Γ(s)

91

Chapter 9. Operational aspects

For the recovery maneuver discussion the relative along-track distances between the net
and the fixed-wing ra and rcoll are defined. The distance ra from c3 gives the desired
position of the fixed-wing when the maneuver should start at checkpoint cS as a function
of the desired along-track impact position given by rcoll defining c4. The transportation
legs and the the legs noted as l4 and l5 are of most interest for this work and defines the
recovery maneuver as discussed in Chapter 7.

xn

yn

xs

ys

xaya

ψs

ψa

rs

ra

rcoll

Γ(s)
Π(s)

cS

c4

c5

c2, c6

c1, c7

xpyp

c3

Figure 9.1: Overall plan in the North-East plane {n} where {s} presents body frame of the ship
with heading ψs for illustration, and the approaching fixed-wing {a} with heading ψa aligned with
the path frame {p}

9.2 Abort

As the maximum operation duration is limited by the battery capacity of the multirotor the
total operation time will be considered with respect to the battery time for the multirotors
and a maximum waiting time at checkpoint c4 will be given. Further if the multirotor is
not able to reach the standby-checkpoint c3 in time the fixed-wing should abort. Table 9.2
defines the different time stamps and durations to be consider in this analysis. Note that
in the timing analysis the notation for minimum and maximum time duration is given as
tmin = ť and tmax = t̂ respectively.

1Time relative to the start of the overall plan

92

9.2 Abort

Time to start recovery mission1 t0
Battery duration time (fixed-wing) ta,bat
Battery duration time (multirotors) tcop,bat
Time to do maneuver at leg li ti
Time to stand at checkpoint i tc,i

Table 9.2: The different time-parameters

Abort multirotor operation

During the transit from start to checkpoint c3 the fixed-wing might abort landing due to
multiple reasons and go for another try. As the total operation time is limited by the battery
time of the multirotors (assuming tcop,bat << ta,bat), the maximum time the multirotor
can wait at c3 is t̂c,3 ≥ tc,3, given that there exists an upper limit on the estimated time left
of the operation.

tcop,bat −
(

3∑

i=1

ti +

2∑

i=1

tc,i +

7∑

i=4

(
t̂i + t̂c,i

)
)

= t̂c,3 (9.1)

Abort fixed-wing landing operation

The fixed-wing should abort if the multirotor is not capable of reaching checkpoint c3
before the time to start the maneuver at t0, therefore at each checkpoint cj before c3 the
fixed-wing will abort if the current estimated maximum total time t̂j to reach c3 is longer
than t0, thus tj ≥ t0, where tj is given by

t̂j =

j∑

i=1

(ti + tc,i) +




3∑

i=j+1

t̂i +

2∑

i=j+1

t̂c,i


 (9.2)

These timing abort mechanisms has not been investigated further, however, they should be
considered when for practical usage of the recovery concept.

93

Chapter 9. Operational aspects

9.3 Recovery considerations

The proper size and mesh sizes of the net were considered. Based on experience from
previous projects with net recovery of the Skywalker X-8 [Skulstad et al., 2015] a 5 meters
wide and 3 meters tall was chosen. In order to recover the fixed-wing properly multiple
hooks will be attached to the fixed-wing and a mesh size of 100x100 mm was chosen
such that the hooks will attach to the net at impact. In Figure 9.2 a section of the net is
illustrated. A light and stiff-rod will be attached to the top of the net in order to keep the
net as stiff and stable during transit and impact, therefore a 5 meter long light tent-pole
was chosen1. The reader should note that the choice of hooks and the feasibility of this
recovery method is still to be addressed.

Figure 9.2: A section of the net

The net should be suspended to the multirotors using a rope between the multirotor and
each corner of the net respectively. For safety reasons one should be able to quickly release
the net, therefore a release mechanism was constructed2. A servo was mounted to a simple
and robust release mechanism constructed to release sailplanes as illustrated in Figure 9.3.
The ropes should not be too long in order to keep the magnitude of the oscillatory motions
at a minimum. On the other hand, a too short rope reduces the relative operating area of the
multirotor in the formation. This gives lower error margins with respect to the cooperative
controller and the positioning system.

Furthermore a reasonable strong and light net is needed to catch the airplane, and a net
made from the light and strong polyethylene (PE) was chosen. Based on experience from
previous projects with net recovery of the Skywalker X-8 in [Skulstad et al., 2015] a 5
meters wide and 3 meters tall net seemed reasonable. Multiple hooks will be attached to
the fixed-wing and with a mesh size of 100x100 mm the hooks should attach to the net at
impact. To keep the net flat and stable during transit and impact, a light and stiff-rod will
be attached to the top of the net. The reader should note that the choice of hooks and the
feasibility of this recovery method are still to be addressed with physical experiments.

As the two octocopters should be able to lift the fixed-wing and a net, a mass budget was
considered. The external payload gives the load the octocopters should be able to lift and
consists of the airplane, the net and the rod as seen in Table 9.3a. Given the Maximum

1A light tent-pole as e.g. seen at http://www.helsport.no/dac-featherlite-teltstang ful-
fill these requirements.

2The reader should note that this mechanism is not constructed by the author, but as a part of the project
summarized in [Klausen et al., Submitted 2016]

94

http://www.helsport.no/dac-featherlite-teltstang

9.3 Recovery considerations

Figure 9.3: Release mechanism and weight cell attached to a gimbaled suspension

Take-Off Weight (MTOW) for each octocopter and the mass of all the external payloads
as seen in the mass budget for two octocopters in Table 9.3b shows that there is a total of
(MTOW − Total weight) ≈ 2.6 kg left for both octocopters. This extra take-off weight
should be filled by extra internal payload and the forces applied during the collision, and
the choice of platforms seems feasible for the given operation, but is still to be addressed
with physical experiments.

Component Mass [kg]
Aircraft 4.0
Net 0.68
Rods 0.36
Total 5.03

(a) External payload to be lifted by the octo-
copters

Mass [kg]
Frames 4.1× 2
Battery3 1.765× 2
External payload ≈ 5
Total ≈ 10.3× 2
MTOW 11× 2
MTOW - Total ≈ 2.6

(b) Mass budget for two DJI S1000+

Table 9.3: Mass budget

3Mass of a 17 Ah 6 cells lithium polymer battery

95

Chapter 9. Operational aspects

9.4 Mission Control

The overall mission should be operated from the Neptus GCS as illustrated in Figure 9.4.
Here the virtual runway is illustrated as the yellow box, defining the North-East plane
boundaries. Furthermore, additional waypoints are added for the purpose of moving the
net to the runway, and the transportation of the recovered fixed-wing UAV in the same
manner as in Figure 9.1.

Figure 9.4: Screenshot from Neptus GCS during SITL, the fixed-wing UAV and the multirotor are
illustrated as the green and white arrow respectively.

When the virtual runway is defined, the fixed-wing UAV will also receive the plan and
generate a landing path according to the desired height and bearing of the runway [Nevs-
tad, 2016]. Whilst waiting for the multirotor to reach the runway, the fixed-wing UAV will
loiter around in a circle movement. On the operator signal, the fixed-wing will enter the
landing trajectory and eventually trigger the multirotor recovery maneuver.

On the other hand, the take-off and landing phase has not been addressed, however, these
phases should eventually be autonomous. For now, it is proposed to do these phases man-
ually with two pilots. Moreover, two pilots should always be ready to take control of the
multirotors, especially without any robust and safe abort maneuvers implemented.

96

Chapter 10
Experiments

The ultimate goal with this thesis is to demonstrate that the presented recovery concept
can be conducted in the physical world. This chapter will demonstrate how the overall
system as presented in Chapter 3 were used in order to do field experiments and proof the
feasibility of the controller scheme implementation as presented in Chapter 8. Ultimately
the DJI S1000+ octocopter will be used, however, for these initial experiments the 3DR
hexacopter was used as the desired multirotor platform. Firstly, a brief presentation of the
experiment location will be given, followed by the a selection of the experimental results.
The different parts of the system were systematically tested to ensure that a successful
demonstration of the overall recovery operation can eventually performed. As for the SITL
experiments it has been focused on the two essential parts of the system; the transportation
scheme using the reference simulator and the actual recovery maneuver at the virtual-
runway. The rest of this chapter presents a selection of these field experiments.

10.1 Test facility - Agdenes airfield

The Agdenes airfield located about 90 km northwest of Trondheim is the primary test field
for unmanned aerial systems (UAS) operations for the NTNU UAV-Lab. This airfield was
also the test facility for all experiments conducted for this thesis. As the airfield has an
actual airstrip as illustrated in Figure 10.1, the location was well qualified for performing
the recovery maneuver. Therefore, in the recovery experiments the actual airstrip were
treated as the virtual-runway.

97

Chapter 10. Experiments

Figure 10.1: Agdenes airfield. Image courtesy of norskeflyplasser.no

10.2 Setup

In Table 10.1 the rates of the different system components are presented. Comparing with
the SITL experiments Section 8.4 a lower feedback rate can be observed, as the feedback
states now need to be estimated based on sensor measurements. Also, the feedback rates
are now estimates of the measured rate into the controller systems. Concerning the param-
eters on the different algorithms it should be noted that the parameter presented for each
part of the control architecture will be used for the all experiments unless something else
is specified.

Regarding the navigation setup, the RTK solution is preferred due to its high precision.
However, if a precise RTK solution is not available, the system implemented in [Sørbø,
2016] will use the Pixhawk solution instead, where the position is based on a single stan-
dalone GPS receiver. In the following experiments, the label Estimated will refer to the
output from the navigation system. As the RTK solution presents both position and ve-
locity solutions, these might change if a drop-out in RTK occurs. Orientation states and
acceleration will always be given from the Pixhawk estimates based on the internal IMUs.

Feedback (Pixhawk) 20 Hz
Feedback (RTK) 10 Hz
Path control 10 Hz
Recovery coordinator 10 Hz
Velocity controller 30 Hz

Table 10.1: Experiments - Controller and feedback frequencies

98

http://www.norskeflyplasser.no/showOriginalImage.aspx?IMGID=114213

10.3 Case 1: Gain scheduling

10.3 Case 1: Gain scheduling

Initially experiments with the gain scheduling scheme as discussed in Section 5.2.2 was
conducted. The purpose was to demonstrate that the scheduler were able to ensure a safe
and smooth approach to the desired formation. Furthermore, the parameter was tuned to
ensure that these requirements was met.

10.3.1 Setup

The experiment was conducted with only one multirotor airborne. Therefore, the slave
multirotor was simulated on a external computer. The necessary data was transmitted using
the wireless link between the simulated slave and multirotor as illustrated in Figure 10.2.
The benefits with this setup is that only one pilot is required, furthermore, the risk factors
are greatly reduced. On the other hand the simulation lack the possibility to simulate wind
and other external factors. The viability of the gain scheduling was also shown in the
following experiments in Section 10.5.

Multirotor

ArduCopter ArduCopter

DUNE multirotor DUNE multirotor

(master) (slave)

Stationary laptop

Physical multirotor

Figure 10.2: Simulated slave setup

10.3.2 Results

First, both the slave and the multirotor were instructed to fly toward two separate locations
20-25 meters away from each other. Given the parameters in Table 10.2 this distance
ensured that the initial gain was close to the far-distance gain Kf . Then a formation plan
was conducted with zero reference speed (uref = 0 m/s) such that the multirotors flied
towards each other and reached the desired link length l.

99

Chapter 10. Experiments

Gain close, Kc: 0.5
Gain far, Kc 0.05
z̃0 7.0 m
z0.9 4.5 m
Desired link length, l 5.0 m

Table 10.2: Case 1: Gain scheduling – Parameters

The resulting approach can be observed in Figure 10.3a, where the simulated slave multi-
rotor are located west of the centroid1. Further as observed in Figure 10.3b a slight change
in the desired heading can be observed due to the initial reference heading step, however,
this did not affect the experiment greatly as the dynamics are slowly varying and of low
magnitude.

x
 [
m

]

17

18

19

20

21

22

y [m]

-15 -14 -13 -12 -11 -10 -9

(a) North-East multirotor positions, the dark red
multirotor presents the centroid position-

2 4 6 8 10 12 14 16 18

H
e
a
d
in

g
 [
d
e
g
]

0

100

200

Time [s]

2 4 6 8 10 12 14 16 18

S
u
rg

e
 [
m

/s
]

-0.02

0

0.02

0.04

Reference

Desired

(b) Comparing reference simulator inputs (refer-
ence) and output (desired); heading ψ and surge
u.

Figure 10.3: Case 1: North-East positions, reference heading and surge

1A video showing the multirotors can be seen in Experiments/Case 1 - Gain scheduling.mp4 in Digital Ap-
pendix. Here the telemetry logs are post-processed and illustrated using Matlab.

100

10.3 Case 1: Gain scheduling

Then in Figure 10.4 the link distance ‖z‖2 can be observed. The North-East plane link
distance reveals a non-aggressive behavior towards the switching point at z̃0 = 7.0 m/s
where the sigmoid functions rises towards the in-formation link gain Kc resulting in a
more aggressive final approach towards the desired link distance as desired.

Time [s]

5 10 15

N
E

-
lin

k
 d

is
ta

n
c
e

 [
m

]

0

5

10

15

20

25

Time [s]

5 10 15

D
 -

 l
in

k
 d

is
ta

n
c
e

 [
m

]

0

0.5

1

1.5

2

2.5

Figure 10.4: Case 1: Link distance expressed in the North-East plane ‖z1:2‖2 and the Down axis
|z3| respectively.

101

Chapter 10. Experiments

10.4 Case 2: Recovery

In the initial recovery experiments, a single multirotor without any suspended payload and
a fixed-wing were used to test the recovery maneuver from Section 8.2.1. The purpose
with this initial test was to see that the approaching fixed-wing triggered the multirotor
maneuver. Two experimental results will be presented here, in the first one the fixed-wing
were able to track the center of the virtual-runway, hence minor multirotor cross-track
compensation was necessary. However, in the latter one, the fixed-wing had larger cross-
track error, leading to major cross-track compensation from the multirotors.

10.4.1 Setup

For safety reasons the vehicles was instructed to be separated in height. Furthermore,
the multirotor believed the fixed-wing to be at the same height as the virtual runway
by adding an offset on the fixed-wing state message received on the multirotor, then
the along-track and cross-track control scheme could be tested. The fixed-wing was in-
structed to fly in a predefined landing path with constant height when approaching the vir-
tual runway. The cross-track controller gain matrices was set to Kp,p = diag(

[
0.5 1

]
),

and Kp,d = 0.1Kp,p. For the position hold, the gain matrices were set to Kp,ph =
diag(

[
0.5 0.5 1

]
) and Kd,ph = 0.1Kp,ph.

Fixed-wing

ArduPlane ArduCopter

DUNE fixed-wing DUNE multirotor

Physical multirotorPhysical fixed-wing

Multirotor

Figure 10.5: Case 2: Recovery setup

102

10.4 Case 2: Recovery

xf 40 m
vf 5 m/s
amax 1.5 m/s2

Virtual-runway volume: w × h× l 10× 5× 60 m3

Height separation: zL 40 m

Table 10.3: Case 2: Recovery – Parameters

10.4.2 Case 2a: Minor compensation

The following experiment required minor cross-track correction during the approach phase
as seen in the overview in Figure 10.62.

x
 [

m
]

-55

-50

-45

-40

-35

-30

-25

y [m]

-80 -70 -60 -50 -40 -30

Figure 10.6: Case 2a: North-East overview over the recovery, where the green and the blue line
is the path of the fixed-wing and the multirotor respectively. The black dotted lines represents the
boundaries of the virtual-runway. The blue stars is the desired waypoints, connected with the solid
black line.

During this experiment the fixed-wing followed a larger landing trajectory as seen in Fig-
ure 10.7a. However, as expected, the boundaries for the approach phase for the multirotors
ensured that cross-track control was engaged after the fixed-wing had turned towards the
runway.

2A video of the experimental recovery maneuver can be seen in Experiments/Case 2a: - Recovery.mp4 in
Digital Appendixgenerated by post-processing in Matlab.

103

Chapter 10. Experiments

y [m]

-200 -100 0 100 200 300

x
 [
m

]

-250

-200

-150

-100

-50

0

50

100

150

APPROACH

START

CATCH

(a) All state changes during recovery

y [m]

-60 -50 -40 -30 -20 -10 0 10 20 30

x
 [
m

]

-40

-30

-20

-10

0

START

CATCH

(b) Closer view on the states after the approach
state

Figure 10.7: Case 2a: The recovery state change timestamps during the operation symbolized as
red stars along the fixed-wing path (black line), the blue circles is the position of the centroid at the
specific timestamps

The approach phase can be observed more closely in Figure 10.8 and Figure 10.9. Due to
the estimation of the ETA for the fixed-wing the multirotor are able to reach the desired
along-track catch point when the fixed-wing passes the same location within some reason-
able boundaries. More importantly, the position of the multirotor in the cross-track plane
are close to the fixed-wing at the rendezvous. For this run, the fixed-wing would have hit
the net.

Time [s]

20 40 60 80 100

x
 [
m

]

-400

-300

-200

-100

0

100

200

300

Centroid

FixedWing

Desired catch

(a) Along-track

20 40 60 80 100

y
 [

m
]

-200

-100

0

100

Centroid

FixedWing

Time [s]

20 40 60 80 100

z
 [

m
]

-20

-15

-10

-5

0

(b) Cross-track

Figure 10.8: Case 2a: Along- and cross-track positions in the path-frame {p}, the boundaries of the
virtual-runway is represented as the black-dotted line

104

10.4 Case 2: Recovery

Time [s]

92 94 96 98 100

x
 [
m

]

-100

-80

-60

-40

-20

0

20

40

60

80

Centroid

FixedWing

Desired catch

(a) Along-track

92 94 96 98 100

y
 [
m

]

-3

-2

-1

0

Centroid

FixedWing

Time [s]

92 94 96 98 100

z
 [
m

]

-1

-0.5

0

0.5

(b) Cross-track

Figure 10.9: Case 2a: Along- and cross-track positions in the path-frame {p} a short period before
the impact

Lastly, the performance of the velocity loop was investigated as seen in Figure 10.10. The
controller was able to follow the reference, however, some time delay can be observed
between the desired state and the state. This is as expected, as none of the controllers
incorporate acceleration feedback during this maneuver.

20 40 60 80 100

v
x
 [
m

/s
]

0

2

4

Estimated

Desired

20 40 60 80 100

v
y
 [
m

/s
]

0

2

Time [s]

20 40 60 80 100

v
z
 [
m

/s
]

-1

0

1

Figure 10.10: Case 2a: Multirotor velocities denoted in the virtual-runway frame {p}.

105

Chapter 10. Experiments

10.4.3 Case 2b: Major compensation

This case illustrate on of the flights where the fixed-wing struggled to minimize the cross-
track error, hence, more multirotor cross-track movement was observed as seen in Fig-
ure 10.113

x
 [

m
]

-55

-50

-45

-40

-35

-30

y [m]

-90 -80 -70 -60 -50 -40

Figure 10.11: Case 2b: North-East overview over the recovery, where the green and the blue line
is the path of the fixed-wing and the multirotor respectively. The black dotted lines represents the
boundaries of the virtual-runway. The blue stars is the desired waypoints, connected with the solid
black line.

Still, the multirotor was able to reach the rendezvous as illustrated in Figure 10.12a. On
the other hand major time lag for the cross-track positions are seen in Figure 10.12b. This
is not surprising, as the controller were not tuned aggressively as the controller might
experience large initial errors when engaged at approach.

3A video of the experimental recovery maneuver can be seen in Experiments/Case 2b: - Recovery.mp4 in
Digital Appendixgenerated by post-processing in Matlab.

106

10.4 Case 2: Recovery

Time [s]

66 68 70 72 74

x
 [
m

]

-150

-100

-50

0

50

100

Centroid

FixedWing

Desired catch

(a) Along-track

66 68 70 72 74

y
 [
m

]

-6

-4

-2

0

2

Centroid

FixedWing

Time [s]

66 68 70 72 74

z
 [
m

]

-2

-1.5

-1

-0.5

0

(b) Cross-track

Figure 10.12: Case 2b: Along- and cross-track positions in the path-frame {p} a short period before
the impact

To support the arguments above one can inspect the tracking of the desired velocity tra-
jectory in Figure 10.13 is reasonably good. Still, some lag can be observed, however, the
magnitude of this time difference can not explain the cross-track position errors.

20 40 60 80

v
x
 [
m

/s
]

-5

0

5

Estimated

Desired

20 40 60 80

v
y
 [
m

/s
]

0

2

Time [s]

20 40 60 80

v
z
 [
m

/s
]

-1

0

1

Figure 10.13: Case 2b: Multirotor velocities denoted in the virtual-runway frame {p}.

107

Chapter 10. Experiments

10.5 Case 3: Payload transport

In the initial transport experiments, one sought to test the path controller from Section 8.2.2
to verify a smooth movement along a predefined path controlling two multirotors. For the
following experiments the path was formed as a square in order to challenge the guidance
scheme through the whole maneuver and the possibility to do multiple laps.

10.5.1 Setup

For operational and safety reasons the initial experiments was conducted with one mul-
tirotor simulated on a stationary computer and the other one being a physical multirotor
platform as described in Figure 10.2.

10.5.2 Case 3a: Compare reference surge

For this section, experiments with cooperative multirotor control was conducted adding
a second simulated multirotor slave. The experimental setup as presented in Figure 10.2
was utilized in order to achieve such a scenario. Furthermore, as only one multirotor was
airborne all results were obtained utilizing the navigation solution from the Pixhawk.

Two experiments altering the reference surge uref by 1 m/s and 2 m/s were conducted.
Here the lookahead distances in the LOS controller were set to ∆y = ∆z = 5.

In Figure 10.14 one can observe that the controllers were able to reach the desired velocity,
however, the reference simulator do not reach the reference surge when setting uref =
2 m/s.

20 40 60 80 100

u
 [

m
/s

]

0

1

2

Measured

Desired

Reference

20 40 60 80 100

v
 [

m
/s

]

-0.5

0

0.5

Time [s]

20 40 60 80 100

w
 [

m
/s

]

-0.5

0

0.5

(a) uref = 1 m/s

20 40 60 80 100

u
 [
m

/s
]

-2

0

2

Measured

Desired

Reference

20 40 60 80 100

v
 [
m

/s
]

-1

0

1

Time [s]

20 40 60 80 100

w
 [
m

/s
]

-0.2

0

0.2

(b) uref = 2 m/s

Figure 10.14: Case 3a: Centroid body {c̄} velocities, comparing reference and desired values.

Further it seemed that the desired velocity did not have a great impact on the link distance
as illustrated in Figure 10.15.

108

10.5 Case 3: Payload transport

Time [s]

20 40 60 80 100

N
E

 -
 l
in

k
 d

is
ta

n
c
e

 E
rr

o
r

[m
]

-4

-2

0

2

4

6

8

10

Time [s]

20 40 60 80 100

D
 -

 l
in

k
 d

is
ta

n
c
e

 [
m

]

0

0.5

1

1.5

2

2.5

3

3.5

(a) uref = 1 m/s

Time [s]

20 40 60 80 100

N
E

 -
 l
in

k
 d

is
ta

n
c
e

 E
rr

o
r

[m
]

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

Time [s]

20 40 60 80 100

D
 -

 l
in

k
 d

is
ta

n
c
e

 [
m

]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(b) uref = 2 m/s

Figure 10.15: Case 3a: Link distance error z̃, expressed in the North-East plane and and Down axis
respectively

On the other hand, with greater speed, the centroid was not able to reach the path between
the waypoints as seen in Figure 10.164. The latter one pinpoint the fact that the desired
waypoint switching radius is dependent on the current surge reference speed as well as
the lookahead distance ∆y . This coupling must be handled in order to achieve the desired
performance for any desired path and speed.

x
 [

m
]

-5

0

5

10

15

20

25

y [m]

-20 -15 -10 -5 0 5

(a) uref = 1 m/s

x
 [
m

]

-5

0

5

10

15

y [m]

-20 -15 -10 -5 0 5 10

(b) uref = 2 m/s

Figure 10.16: Case 3a: North-East multirotors and centroid positions.

4The simulated slave is the outermost multirotor

109

Chapter 10. Experiments

10.5.3 Case 3b: Cooperative

The ultimate transport experiment was conducted using two airborne multirotors. The
takeoff was performed manually by the two pilots using a RC-controller. Then the two
multirotors were instructed to move to two separate points located approximately 20 me-
ters apart. Here, the RTK navigation solution was utilized to obtain centimeter accuracy.
The LOS controller lookahead distances was set to ∆y = ∆z = 5. Furthermore, the cen-
troid was instructed to move with a surge velocity uref = 1 m/s. Lastly the desired link
distance was set to l = 5 m.

The resulting positions of the multirotors through the run are illustrated in Figure 10.175.
It can be observed that the multirotors move into formation slowly while gaining forward
speed towards the first waypoint located southwest. However, on the last leg moving
towards the waypoint located farthest north the right multirotor starts to oscillate towards
the other multirotors, hence, the pilots decides to abort the mission by regaining manual
control.

x
 [
m

]

-5

0

5

10

15

y [m]

-15 -10 -5 0 5 10

(a) North-East multirotor positions

Time [s]

20 40 60 80 100 120 140

z
 [
m

]

-18.5

-18

-17.5

-17

-16.5

-16

-15.5

(b) Down position in {n}

Figure 10.17: Case 3b: North-East positions and height

5A video showing the multirotors can be seen in Experiments/Case 3b: Cooperative.mp4 in Digital Appendix.
Here the telemetry logs was post-processed and illustrated using MatLab.

110

10.5 Case 3: Payload transport

Furthermore, by observing the link distance in Figure 10.18 the cooperative controller
shows satisfactory performance for this experiment.

Time [s]

50 100 150

N
E

-
lin

k
 d

is
ta

n
c
e

 [
m

]

0

5

10

15

20

25

Time [s]

50 100 150
D

 -
 l
in

k
 d

is
ta

n
c
e

 [
m

]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 10.18: Case 3b: Link distance expressed in the North-East plane ‖z1:2‖2 and the Down axis
|z3| respectively

Also by inspecting the centroid velocities and the references in Figure 10.19 oscillatory
movements can be observed along all axes at the end of the maneuver. However, the
centroid seems to follow the desired velocity in the beginning of the maneuver.

20 40 60 80 100 120 140

H
e
a
d
in

g
 [
d
e
g
]

-200

0

200

400

Time [s]

20 40 60 80 100 120 140

S
u
rg

e
 [
m

/s
]

-0.5

0

0.5

1

Reference

Desired

(a) Comparing reference simulator inputs
(reference) and output (desired); heading ψ
and surge u.

20 40 60 80 100 120 140

u
 [
m

/s
]

-2

0

2

Estimated

Desired

Reference

20 40 60 80 100 120 140

v
 [
m

/s
]

-0.5

0

0.5

Time [s]

20 40 60 80 100 120 140

w
 [
m

/s
]

-0.5

0

0.5

(b) Centroid body {c̄} velocities, comparing reference
and desired values.

Figure 10.19: Case 3b: Centroid velocity and reference simulator states.

Even so, it should be noted that there was windless conditions during this experiment,
moreover, the controllers activated during this maneuver do not utilize integral action.
Therefore, large deviations from the setpoint should be expected during more windy con-
ditions.

111

Chapter 10. Experiments

10.6 Discussion

The field experiments proved that the proposed concept is able to both transport and re-
cover the fixed-wing. However, the actual transportation and recovery of the fixed-wing
UAV is yet to be verified. Still, the concept lack robustness. Among others need the coop-
erative controller to be revised in order to sustain the formation in strong wind, furthermore
the response with a suspended payload has not been observed. It should also be noted, that
integral action should be considered for the along-track velocity control in order to be able
to fully reach and hold the along-track velocity. This will be more important when the is
attached, as the net will introduce more drag to the system.

Moreover, the supervisor introduce potentially large steps in the references to the con-
trollers. Taking the cross-track controller as an example one will observe aggressive be-
havior if the multirotors enters the approach state with large fixed-wing cross-track error.
This was observed during the experiments and was temporarily solved by lowering the
controller gains. However, this introduce a slow multirotor tracking during the approach
state. Hence, the gain should adapt according to the magnitude of the error; large position
errors should reduce the gain. For the cooperative link gain this was solved using a logistic
function as explained in Section 5.2.2, but other methods may also be considered. On the
other hand, the solution can be handled by filtering the reference signals during the state
transitions to avoid this behavior.

The experiments also revealed that the system are not trivial to tune. Firstly, as addressed
above, the parameters in the LOS steering-law and the reference simulator are coupled.
Hence, relations between some of the parameters should be exposed to simplify the tuning.
Moreover, the outer position and cross-track controller which dispatches a desired velocity
into the velocity controller assembles a cascaded control system. These control loops
can be combined to investigate pole placement of the closed loop system utilizing the
simplified dynamics for control synthesis in Section 4.4. Still, the current approach is to
keep the bandwidth of the inner loop higher than the outer loop. Then, the outer loop can
neglect the inner loop dynamics and assume that the current velocity equals the desired.
This approach is discussed in detail in Appendix D.

112

Chapter 11
Conclusion and Closing
Discussions

This chapter will conclude and discuss the main results and see if they were as expected,
based on the discussion some suggestions for future work will be presented.

11.1 Dynamic models

The multi-body dynamics presented in Chapter 4 gives the ability to investigate the differ-
ent challenges emerging when suspending a load to a group of multirotors. Furthermore,
the consequences of the impact when the fixed-wing are recovered into the net is of great
interest for the feasibility of the concept. The analysis provided among others crucial
data about the tension in Section 4.5 demonstrating that the multirotors must be able to
withstand a vast amount of forces for some period during the impact.

However, the most important property of the collision dynamics is that a oscillatory move-
ment is engaged as seen in Figure 4.6. These movements most be suppressed before the
transportation of the fixed-wing can be continued. However, there exists multiple methods
to withstand these fluctuations as discussed in e.g. [Klausen et al., 2015] and [Bisgaard
et al., 2010] which has not been investigated further in this work.

Further, a partially linear model for control synthesis purposes as given in Section 4.4 are
utilized. This model simplifies the net to be an external force disturbing the dynamics of
the multirotor. As discussed in [Klausen et al., 2015] the suspended load and the multirotor
can be modeled as a coupled non-linear dynamical system. However, for this work, the
linear analysis has proven to be sufficient for proving the viability of the concept.

113

Chapter 11. Conclusion and Closing Discussions

11.2 Transport and recovery concept

The payload transport scheme as discussed in Chapter 6 gives a more feasible path con-
troller for the purpose of transporting a net. Even though more time and a longer path
is required, the benefits is less side-way motion in the net. Furthermore, the lower-level
formation controller is instructed with a less aggressive heading reference trajectory, en-
suring that the desired link distance between the multirotors is maintained for all formation
rotations. Still, the coupling between the tuning of the LOS guidance law should be inves-
tigated further.

Furthermore, the feasibility of the recovery scheme concept discussed in Chapter 7 has
been shown in both simulation and practical experiments. However, the actual recovery
has not been verified yet. On the other hand, common sense and the collision discussion
has shown that reducing the relative velocity between the net and the fixed-wing will re-
duce the impact forces. Furthermore, the multirotors agility should be utilized to control
the position of the net according to the fixed-wing UAV. Still, the transport scheme in
Chapter 6 sought to ensure a smooth and non-aggressive movement of the suspended net.
This approach has not been studied for the recovery maneuver. On the other hand, the
fixed-wing act as the reference model in this case, and the fixed-wing controller scheme
[Nevstad, 2016] instruct the fixed-wing to follow a slowly declining glide slope towards
the virtual runway, ensuring a non-aggressive behavior. This argument has been illustrated
through simulation and experiments.

Summing up, this approach is far from optimal, but for the purpose of investigating the
concept it has proven to be sufficient.

11.3 Low-level controllers

The low-level controller as discussed Chapter 5 is responsible for the velocity and forma-
tion of the controllers has shown overall good performance through the analytic and simu-
lation results. However, these environment did not incorporate external disturbances such
as wind, therefore practical experiments revealed that the robustness of the controllers was
not sufficient enough. Still, the recovery maneuver cross-track controller in Section 7.3
incorporate integral action, and the transport LOS guidance law in Section 6.1 can also be
modified to obtain such effects as discussed in among others [Fossen, 2011]. Even so, the
formation controller is still subjected to the same challenges during windy conditions. A
MRAC velocity controller was conceptually analyzed and shows promising results as dis-
cussed in detail in both Section 6.3.2 and Section 7.6.3, it should be noted that the results
are not optimized regarding the tuning of the controller. As the suspended load and mul-
tirotor dynamics are highly coupled and change during the impact, applying an adaptive
controller seems to be an desirable optional solution that should be investigated further.

114

11.4 Further work

11.4 Further work

The analysis of the system dynamics, specifically the impact dynamics should be validated
through experimental setups. This can performed by instructing the multirotors to hold the
airborne net, then by instructing a fixed-wing UAV to fly into the net the suspended load
sensors can measure the direction and magnitude of the force applied between the net and
the multirotors. Then the model properties might be utilized for more advanced pre-/post-
collision maneuvers. The fluctuation of the net during the maneuvers and specially after
the impact should be reduced, here the methods as proposed by among others [Klausen
et al., 2015] should be investigated.

Furthermore, the coupling between the LOS guidance law and the reference simulator
should be investigated further, ultimately proposing a tuning scheme independent of the
desired path geometry and surge. Utilizing the coupling between the turning radius of the
multirotor formation and the desired waypoint acceptance radius might introduce param-
eter dependencies and simplify the tuning of the setup. On the other hand, a closed-loop
surge synchronization with the fixed-wing should be investigated for the recovery maneu-
ver, here it should be utilized that the fixed-wing follows a predefined path as discussed in
[Nevstad, 2016]. Lastly, the MRAC controller can be investigated further for estimating
and compensating for the load force, here it would be interesting to incorporate the impact
dynamics for predicting the load during the impact.

The timing analysis in Section 9.2 has not been addressed in simulations, however, the
discussions shows that optimization techniques might be applicable for the operation as
the total operation time needs to be minimized since the flying time for the multirotor
is finite. Also different abort mechanisms concerning both time and deviations from the
desired recovery path should be stressed more thorough. Moreover, the robustness and
repeatability of the operation of the overall operation is not pursued in this work, and is
crucial for any practical usage of the recovery method.

115

Chapter 11. Conclusion and Closing Discussions

116

Appendix A
Additional Dynamical Modeling
Theory

A.1 Modeling multi-body constrained dynamics

The concept of multi-body constrained dynamics raises different modeling challenges, and
the choice of method is crucial depending on the purpose of the mathematical modeling.
When modeling with the purpose of simulation studies, a more detailed and realistic model
is required compared to a model for control synthesis purposes, where the most important
dynamics will be considered. Here, the first one will be addressed. Different techniques
exists, but the major differences depends on whether the forces applied on each body is
found explicitly using independent generalized forces or if a method utilizing the depen-
dent generalized coordinates where the constraint forces can be found explicitly. The latter
one will be emphasized in this analysis. A method proposed by Udwadia and Kalaba [Ud-
wadia & Kalaba, 1992] gives the possibility to first find the unconstrained dynamics of
the different bodies, and then find the constrained dynamics, as well as calculating the
constrained forces directly.

117

Chapter A. Additional Dynamical Modeling Theory

A.1.1 Udwadia-Kalaba

The method is presented in [Udwadia & Kalaba, 1992], and is applied on suspended load
systems by among others [Klausen et al., 2014] and [Bisgaard, 2008]. The following
section will summarize the derivation presented in these papers.

The Udwadia-Kalaba (UK) approach considers the dynamics of the unconstrained and
constrained system. Therefore the generalized coordinates q =

[
q1, · · · qn

]T ∈ Rn and

qu =
[
q1, · · · qn

]T ∈ Rn for the constrained and unconstrained system respectively are
defined.

The unconstrained dynamical Newtonian system is given as

Mq̈u = Q (A.1)

where the mass matrix M ∈ Rn×n is symmetric and positive definite and Q ∈ Rn is the
generalized forces applied on the system.

Then let the system be subjected to m linearly independent constraints in the form

A(q, q̇, t)q̈ = b(q, q̇, t) (A.2)

where the constraint matrix A ∈ Rn×m and b ∈ Rm are known.

By applying the constraints in Equation (A.2) the explicit constrained system is affected
by the generalized forces of the constraints Qc ∈ Rm such that the constrained system can
be written on the form

Mq̈ = Q + Qc (A.3)

The constrained generalized forces are found explicitly by applying Gauss’s principle of
least Constraints. The principle states that the constrained acceleration q̈(t) follows the
closest unconstrained acceleration q̈u(t) which is fulfilled by Equation (A.2).

The Gaussian function G is defined as

G = [q̈− q̈u]
T

M [q̈− q̈u] (A.4)

and the solution is found by minimizing G subject to Equation (A.2). The solution is
found using the Moore-Penrose pseudoinverse denoted as ()† which gives the constrained
acceleration q̈(t)

q̈ = q̈u + M− 1
2

(
AM− 1

2

)†
(b−Aq̈u) (A.5)

by combining the results the constrained general forces Qc ∈ Rm is found explicitly

Qc = M
1
2

(
AM− 1

2

)†
(b−Aq̈u) (A.6)

118

A.2 Collision dynamics

A.2 Collision dynamics

For general collision models it is common to assume that the forces between the contact
points are large compared to the other external forces and that the orientation and positions
do not change in the actual collision as discussed in e.g. [Chatterjee & Ruina, 1998]. From
this it follows that the impulse momentum of the total system is conserved, such that the
linear and angular momentum of the system before and after the collision do not change
as seen in Equation (A.7) and Equation (A.8) respectively.

P+ = P− (A.7)
L+ = L− (A.8)

here the subscript ()+ indicates momentum directly after the impact and ()− immediately
before.

Based on the assumption of conserved impulse momentum the average collision force
and moment can be calculated. By following the derivation in Section 2.2 one can use
Equations (2.13)–(2.15) and Equations (2.14)–(2.16) to find the average force and moment
during the collision respectively. Such that for each body i in the collision the following
equations can be derived.

f̄i =
Pi,+ −Pi,−

∆t
=

(
∑
jmj)vi,+ −mivi,−

∆t
(A.9)

m̄i =
Li,+ − Li,−

∆t
=

(
∑
j Ij)ωi,+ − Iiωi,−

∆t
(A.10)

where the total linear momentum and angular momentum of the system is conserved, that
is by defining P =

∑
j Pj and L =

∑
i Lj by summing over the momentum of the bodies

the following holds

∑

j

Pj,+ =
∑

j

Pj,− (A.11)

∑

j

Lj,+ =
∑

j

Lj,− (A.12)

119

Chapter A. Additional Dynamical Modeling Theory

Perfectly inelastic collision

The expressions can be simplified if the collision is assumed to be perfectly inelastic, that
is, the bodies stick together after the collision. Then the bodies will have the same linear
and angular velocity after the collision such that by denoting v+ = vj,+ and ω+ = ωj,+
one get

∑

j

Pj,+ = (
∑

j

mj)v+ (A.13)

∑

j

Lj,+ = (
∑

j

Ij)ω+ (A.14)

by inserting the expressions into Equations (A.11)–(A.12) the linear and angular velocity
after the collision is

v+ =
P−∑
jmj

=

∑
jmjvj,−∑
jmj

(A.15)

ω+ =


∑

j

Ij



−1

L− =


∑

j

Ij



−1
∑

j

Ij,−ωj,− (A.16)

finally by inserting into Equations (A.9)–(A.10) the average force and moment during the
collision is found as

f̄i =

∑
jmjvj,− −mivi,−

∆t
(A.17)

m̄i =

∑
j Ijωj,− − Iiωi,−

∆t
(A.18)

120

A.3 Time dependent equation of motions

A.3 Time dependent equation of motions

The time-dependent equation of motions for the net during the collision will be derived
using the methods discussed in [Fossen, 2011, Ch.3] with support from the theorems in
[Sagatun & Fossen, 1991]. It is assumed that the mass is the only time-dependent variable.

The method applies the Euler-Lagrangian equations, such that by defining the kinetic en-
ergy

T =
1

2
ν>Mν (A.19)

where the mass-matrix is diagonal on the following form

M =

[
M11 03×3

03×3 M22

]
(A.20)

by setting ν =
[
v ω

]>
Equation (A.19) can be simplified to

T =
1

2
(v>M11v + ω>M22ω) (A.21)

the method in [Sagatun & Fossen, 1991] applies the Kirchiff’s equation

d

dt

(
∂T

∂v

)
+ S(ω)

∂T

∂v
= τ 1 (A.22)

d

dt

(
∂T

∂ω

)
+ S(ω)

∂T

∂ω
+ S(v)

∂T

∂v
= τ 2 (A.23)

where τ =
[
τ 1 τ 2

]>
is the generalized forces applied on the system further

∂T

∂v
= M11v (A.24)

∂T

∂ω
= M22ω (A.25)

and

d

dt

(
∂T

∂v

)
= Ṁ11v + M11v̇ (A.26)

d

dt

(
∂T

∂ω

)
= Ṁ22ω + M22ω̇ (A.27)

then Equation (A.22)–(A.23) can be restated as follows

M11v̇ + S(ω)M11v + Ṁ11v = τ 1:3 (A.28)

M22ω̇ + S(ω)M22ω + S(v)M11v + Ṁ22ω = τ 4:6 (A.29)

121

Chapter A. Additional Dynamical Modeling Theory

Then the coreolis-matrix C(ν, t) and time differentiated mass-matrix Ṁ can be given as

C(ν, t) =

[
S(M11v) 03×3

03×3 −S(M22ω)

]
(A.30)

Ṁ =

[
Ṁ11 03×3

03×3 Ṁ22

]
(A.31)

such that the equations of motion finally is found

Mν̇ + Ṁ(t)ν + C(ν, t)ν = τ (A.32)

122

Appendix B
Polynomial Trajectory Theory

B.1 Polynomial trajectory generation

The field of trajectory planning is well established in the field of robot control, and the
polynomial approach for creating feasible trajectories is introduced in among others [Spong
et al., 2006, Ch. 5].

A trajectory is defined as a path with a desired set of states for any given time. In order
to generate a trajectory one can define a set of constraints on the states at specific time
stamps. With the general coordinate q ∈ R1 one can define a polynomial of order N for
varying τ

q(τ) =

N∑

k=0

akτ
k (B.1)

further the generalized trajectory state vector q(τ) = [q0, q1, · · · qi, · · · qM]
> ∈ RM+1

gives the M derivatives of q with respect to τ

q(τ) =

[
q,

d

dτ
q, · · · d

i

dτ i
q, · · · dM

dτM
q

]>
(B.2)

where the ith derivative is given as

qi(τ) =

N∑

k=i

ak
k!

(k − i)!τ
k−i (B.3)

123

Chapter B. Polynomial Trajectory Theory

In general a trajectory can be defined by constraining mi of the states q at a set of times-
tamps {τ0, τ1, · · · τj , · · · τn}, such that at timestamp τj the ith derivative is constrained
by

qi(τj) =

N∑

k=i

ak
k!

(k − i)!τ
k−i
i = qj,i (B.4)

and the set of constraints at τj stacked in q∗(τj) = q∗j ∈ Rmi is subset of the state
vector q. This gives a total of M∗ =

∑n
i=0mi constraints. Then a polynomial of order

N = M∗ − 1 is required in order to determine the coefficients {a0, a1, · · · , aN}.
Expanding q∗(τj) = q∗j by utilizing Equation (B.4) and stacking the coefficients of the
polynomial a = [a0, a1, · · · , aN]

T ∈ RN+1 gives

M(τj ,mi)a = q∗j (B.5)

given for a set of constraints q∗j at time τj . Further by assuming that the constraint is on

the form q∗j =
[
qj,0 qj,1 · · · qj,mi

]>
the matrix M(τi,mi) ∈ Rmi×M∗

can be found
as

M(τj ,mi) =




1 τj τ2
j · · · τN

0 1 τj · · · N !
(N−1)!τ

N−1

...
...

0 · · · 1 · · · N !
(N−mi−1)!τ

N−mi−1


 (B.6)

By stacking the constraints into a vector
b =

[
(q∗0)>, (q∗1)> · · · (q∗i)>, · · · (q∗n)>

]> ∈ RM∗
and setting

M =




M(τ0,m0)
...

M(τn,mn)


 ∈ RM

∗×M∗

the total system can be given on the following form

Ma = b (B.7)

given that M is invertible the coefficients can be found

a = M−1b (B.8)

then the M∗ coefficients a can be inserted into q(τ) to generate the desired trajectory.

124

B.2 Polynomial generation matrices

B.2 Polynomial generation matrices

Given a desired trajectory q(τ) ∈ R4 and polynomial of order N = 7. Then a set of
coefficients stacked in a vector a ∈ R8x1 such that the trajectory can be defined as

q(τ) = M(τ, 4)a (B.9)

following the notation from Appendix B.1, where

M(τ, 4) =




1 τ τ2 τ3 τ4 τ5 τ6 τ7

0 1 2τ 3τ2 4τ3 5τ4 6τ5 7τ6

0 0 2 6τ 12τ2 20τ3 30τ4 42τ5

0 0 0 6 24τ 60τ2 120τ3 210τ4


 (B.10)

the matrix M defining the relation between the constraint vector b ∈ R8x1 and the coeffi-
cients a can be defined as follows

M =

[
M(t0, 4)
M(tf , 4)

]
=




1 t0 t20 t30 t40 t50 t60 t70
0 1 2t0 3t20 4t30 5t40 6t50 7t60
0 0 2 6t0 12t20 20t30 30t40 42t50
0 0 0 6 24t0 60t20 120t30 210t40
1 tf t2f t3f t4f t5f t6f t7f
0 1 2tf 3t2f 4t3f 5t4f 6t5f 7t6f
0 0 2 6tf 12t2f 20t3f 30t4f 42t5f
0 0 0 6 24tf 60t2f 120t3f 210t4f




(B.11)

125

Chapter B. Polynomial Trajectory Theory

126

Appendix C
Adaptive Control Theory

C.1 Model Reference Adaptive Control

In [Ioannou & Sun, 2012] a simple MRAC scheme is derived for a linear Multiple-Input
and Multiple-Output (MIMO) system on the following state space form with x ∈ Rn

ẋ = Ax + Bu (C.1)

where in general A ∈ Rn×n and B ∈ Rn×q is unknown constant matrices. (A,B)
is assumed to be controllable. The reference model is also defined as a n order MIMO
Linear-Time-Invariant (LTI) system

ẋr = Arxr + Brr (C.2)

if A and B is known, and the dynamics is truly the same as stated in Equation C.1 a
controller with the optimal controller parameters K∗ and L∗ can be chosen

u = −K∗x + L∗r (C.3)

and by choosing K∗ ∈ Rq×n and L∗ ∈ Rq×q such that A−BK∗ = Ar and BL∗ = Br

the system state x(t) → xr(t) exponentially fast for any bounded reference input signal
r(t).

By introducing the following adaptive control law and define K̃ =: K − K∗ and L̃ =:
L− L∗

u = −K(t)x + L(t)r (C.4)

and further by defining the error state e = x− xr the error dynamics can be found as

ė = Are + B(−K̃x + L̃r) (C.5)

127

Chapter C. Adaptive Control Theory

Then [Ioannou & Sun, 2012] propose a Lyuapunov function candidate

V (e, K̃, L̃) = eTPe + tr
[
K̃TΓK̃ + L̃TΓL̃

]
(C.6)

where Γ−1 = L∗ sgn(l) and l is chosen based on whether L∗ is positive definite or not,
that is

l =

{
1 if L∗ > 0

−1 if L∗ < 0

further P = PT > 0 satisfies the Lyapunov equation

PAr + AT
r P = Q (C.7)

by choosing some Q = QT > 0, then by choosing the following adaption laws

˙̃K = BT
r PexT sgn(l) (C.8)

˙̃L = −BT
r PerT sgn(l) (C.9)

it can be shown that
V̇ = −eTQe (C.10)

Then [Ioannou & Sun, 2012] proofs that K(t),L(t),e(t) are bounded and that e(t)→ 0.

C.2 Controllability

Given a continuous time LTI system with the state x ∈ Rn and input u ∈ Rk on the
following state-space form

ẋ = Ax + Bu (C.11)

Then the concept of controllability determine if it is possible to reach any desired state x
from an initial state x(t0) = x0 given an external input u in finite-time. In among other
[Hespanha, 2009] a simple method for checking the controllability is presented. First, the
controllability matrix for the LTI system in Equation (C.11) is defined as

C :=
[
B AB A2B · · · An−1B

]
n×(kn)

(C.12)

then the system is said to be controllable if rank(C) = n, that is, C has full row rank with
n linearly independent columns.

128

Appendix D
Controllers – Tuning considerations

D.1 Alternative velocity control

The velocity controller in Section 5.2.3 controls the individual multirotor body velocities.
For all simulations and experiments the controller gains were the same along all axes,
hence, the effect of using the body frame did not appear. However, regarding the recovery
maneuver, one might want to make the along-track controller more aggressive than the
cross-track velocity controller. Therefore this section presents an optional controller in the
centroid frame {c̄}.
For each multirotor i a velocity controller is implemented which gives the desired force
in the centroid frame {ci}. For simplified notation, i is used to denote ci in the following
derivation.

The desired heading and velocities from the guidance controllers are given in the cen-
troid frame {c̄} and must be rotated back to each individual multirotor frame {i} by the
following rotation

Ri
c̄ = Ri

nRn
c̄ = (Rn

i)>Rz(ψc̄) (D.1)

where ψc̄ is the actual heading of the centroid. Then a velocity controller is proposed
which gives f c̄i the desired force applied on multirotor i given the velocity feedback vii

f c̄i = Kp(v
c̄
d + Rc̄

nvni,df −Rc̄
iv
i
i) +miv̇

c̄
d (D.2)

where Kp ∈ R3×3 is a positive definite tuning matrix. Further the desired velocity vc̄d
and acceleration v̇c̄d for the centroid is given from the guidance law, lastly vni,df gives the
desired velocity from the formation controller as seen in Section 5.2.1.

Then the desired force f i can be rotated to {n}

fni = Rn
c̄ f c̄i (D.3)

129

Chapter D. Controllers – Tuning considerations

D.2 Closed-loop dynamics

For the following analysis the inner velocity controller above in Appendix D.1 will be
used together with the feed-forward term from Section 5.2.3 together with the model from
Section 4.4. Then the closed-loop model for the inner-loop controller for multirotor i can
be found as the following, where the formation controller term has been neglected.

miv̇
c̄
i = Kp(v

c̄
d − vc̄i) +miv̇

c̄
d (D.4)

setting ei = vc̄d − vc̄i gives the following closed loop dynamics

ėi +
1

mi
Kpei = 0 (D.5)

which renders the error ei exponentially fast to zero with the timeconstants 1
mi

Kp.

However, the inner control loop renders each individual multirotor i to the desired mis-
sion velocity vc̄d and the desired formation. The outer position loops in Section 7.3 and
Section 7.4 seeks to control the centroid velocity only. Hence, setting up the closed-loop
dynamics from the desired position to the actual centroid position requires the closed loop
dynamics of all individual multirotors giving the dynamics of the centroid.

The analysis can be simplified by utilizing successive loop closure as discussed in e.g.
[Beard & McLain, 2012, Ch. 12]. If one assume that the inner loop is sufficiently fast, that
is, the bandwidth of the inner loop is higher than the outer, the inner loop dynamics can be
neglected for the outer control loop. Hence, when analyzing e.g. the outer position control
loop for the centroid in Equation (7.37) one can assume that the inner control loop renders
the desired velocity vpd to the actual centroid velocity vp instantly, giving vp ≈ vpd. By
setting ep = ppd,c̄ − ppc̄ , the position closed-loop dynamics can be found as follows

ëp + Kp,dėp + Kp,pep = 0 (D.6)

Comparing with the following second order system with the natural frequency ω0 and
relative damping factor ζ

ëp + 2ζω0ėp + ω2
0 ëp = 0 (D.7)

the method as discussed in [Fossen, 2011, Ch. 12] and Section 6.2 can be used to tune the
outer loop.

Kp,d = ω2
0I3×3 (D.8)

Kp,p = 2ζω0I3×3 (D.9)

Here, only scalar elements are specified for ω0 and ζ, however, they can be in general be
specified for each axis.

130

Appendix E
Submitted conference paper for
ICUAS’16

This appendix contains the conference paper submitted for The 2016 International Con-
ference on Unmanned Aircraft Systems (ICUAS’16).

131

Coordinated Control Concept for Recovery of a
Fixed-Wing UAV on a Ship using a Net Carried by

Multirotor UAVs
Kristian Klausen∗, Jostein Borgen Moe∗, Jonathan Cornel van den Hoorn†, Alojz Gomola‡,

Thor I. Fossen∗, Tor Arne Johansen∗
∗Centre for Autonomous Marine Operations and Systems, Department of Engineering Cybernetics,

∗NTNU, Norwegian University of Science and Technology, Norway
†TU Delft

‡Department of Electrical and Computer Engineering, University of Porto, Portugal
Email: ∗kristian.klausen@ntnu.no

Abstract—Ship-based Unmanned Aerial Vehicle (UAV) opera-
tions is an important field of research, and enables many mission
types. Most of them, because of the endurance requirement,
require the use of a fixed-wing UAV. Traditionally, a net
located on the ship deck is used for recovering the fixed-
wing UAV. There are, however, numerous challenges when
attempting autonomous landings in such environments. Waves
will induce heave motion, and turbulence near the ship will
make approaches challenging. In this paper, we present a
concept using multirotors to move the recovery operation off
the ship deck. To recover the fixed-wing UAV, a net is suspended
below two coordinated multirotor UAVs. By synchronizing the
movement with the fixed-wing UAV, the multirotor UAVs can
carry a net located away from the ship deck, and the approach
trajectory can be optimized with respect to the wind direction
and turbulence caused by the ship can be avoided. In addition,
the multirotors can transport the net at a certain speed along
the trajectory of the fixed-wing UAV, thus decreasing the relative
velocity between the net and fixed wing UAV to reduce the forces
of impact. This paper proves the concept through a simulation
study and a preliminary control system architecture.

I. INTRODUCTION

An increased effort has been made to enable autonomous
operations with UAVs in marine environments. Here, UAVs
are typically used for surveillance, data-acquisition or com-
munication relaying.

Fixed-wing UAVs are often launched with a catapult-like
device, powered by either pneumatics, springs or rubber
bands. These devices have a reasonable footprint, and are
quite popular. For recovery a fixed net can be used. To
accommodate this however, a relatively large part of the ship
needs to be set aside for UAV operations. This has a large
footprint, and for safety reasons a large part of the deck
needs to be emptied for both equipment and other personell.
Depending on the construction of the net, the UAV has a
risk for damage due to the impact with the fixed net. More
importantly, waves will induce oscillatory heave motion on

This work was partially supported by the Research Council of Norway
through its Centers of Excellence funding scheme, grant number 223254
(NTNU Centre for Autonomous Marine Operations and Systems).

1

2

3

Direction
of
wind

Fig. 1. The figure illustrates the recovery of a fixed-wing UAV. (1), the
multirotors take off from the ship. (2), the fixed-wing UAV moves against
the wind direction, while the multirotors position the net along its trajectory
and accelerate to a prescribed velocity in order to catch the incoming fixed-
wing UAV. (3), the multirotors are transporting the fixed-wing UAV back to
the ship.

the ship, and the nets location and attitude may not always
be optimized with respect to wind and turbulence near the
ship due to the requirements of other ship operations.

On the topic of recovering fixed-wing UAVs, autonomous
landing based on e.g. GNSS [1] or visual servoing [2] have
been studied in the literature. For ship-based operations,
several methods including nets, hooks and wires have been
pursued. Most notably is the SkyHook system developed by
Insitu [3]. It consists of two components; a vertical wire
attached to a mobile or fixed structure, and a hook on
the wing tip of the fixed-wing UAV. When it is passing
the wire, the wing gets hooked on tight. This system is
commercially available today, with the specially designed
ScanEagle UAV. This concept has been expanded by having
the wire suspended in air by a heavy-duty multirotor [4].
Further, a concept for landing larger UAVs by using a

horizontal wire and a hook, is presented in [5]. In stead
of using nets or hooks, the high braking capabilities of a
fixed-wing UAV in deep stall [6], [7] can be utilized for
landing. In [8], the non-linear dynamics of a fixed-wing UAV
during deep stall is analyzed and controlled using model
predictive control. However, autonomous landing by a deep
stall maneuver requires accurate models and high accuracy,
and are especially prone to changing wind conditions.

In this paper, we present an approach for landing a small
fixed-wing UAV in a net suspended by two powerful (> 10 kg
maximum takeoff weight) multirotor UAVs. The fixed-wing
UAV is equipped with hooks so that after impact with the
net, it will be arrested by the net to be transported back to the
ship, see Figure 1. Key benefits of such an approach include
• Operational flexibility: When recovering a fixed-wing

UAV, it is crucial to travel against the wind to minimize
the ground speed, and thus a fixed net needs to be
aligned with this path. Even in vessels equipped with
Dynamic Positioning (DP) systems, turning the ship can
be undesired as it may interfere with operations. The
multirotors can however quickly react to changing wind
conditions, and align the net against the wind without
interfering with other ship operations.

• Not affected by waves and turbulence: Since the net is
suspended free from the ship, heave motion induced by
waves on the ship will not affect the landing. Also, there
is no impact from turbulence caused by the ship super-
structure.

• Safety: By having the net suspended by two multirotor
UAVs, the recovery operation can be moved off ship.
Thus, no operators or staff risk coming in contact with
the incoming UAV.

• Smaller impact force: By having the two multirotors move
against the wind with the fixed-wing UAV, the relative
speed difference between it and the net can be made
smaller, thus decreasing the structural load on the fixed-
wing body during impact.

• Smaller footprint: By moving the landing operation off
ship, operations with UAVs can be conducted from
smaller ships, not needing a large open deck with a
net to support the mission. Launch and recovery of the
multirotors are still required.

Recovery with nets suspended by multirotors have been
attempted in various settings. Due to the popularity of
consumer-type multirotor UAVs, there is an increased interest
in the ability to safely remove such vehicles from restricted
airspaces. In [9], a multirotor is equipped with a net gun,
capable of incapacitating smaller multirotors by shooting a
net at them to disable the rotors on the target. A similar
experiment was conducted in [10], where the target multirotor
stays attached to the larger multirotor after the net is fired,
see also [11], [12]. But to the best of the authors knowledge,
no attempts to recover fixed-wing UAVs in a net suspended
between multirotor UAVs have yet been published.

The contributions of this paper is twofold. First, it presents
a controller structure for the net recovery concept, where the

main contribution consists of how to combine existing control
methodologies to a complete system. Next, we present the
results from numerical simulations, which gives insight into
the dynamics during the recovery maneuver. In addition, we
give an overview of an implementation of the controller.

A. Organization

This paper is organized as follows. Section II gives an
overview of the maneuver and proposed control structure,
followed by more details of each part of the controller
in Section III. This section also introduces the necessary
notation and dynamical models. In Section IV, the multi-
body dynamics of the suspended net is discussed to create a
simulator with 6 degrees of freedom (DOF) of all involved
objects. A model of the impact dynamics is developed in
Section IV-B. The results of the simulation is presented in
Section V, which also shows the results of the proposed
controller. Section VI gives an overview of the systems
architecture of the proposed design, including necessary
hardware. We also present the results of a Software-In-the-
Loop (SIL) simulation, to verify the implementation. This is
the same setup to be used in experiments. Section VIII gives
a brief summary and concludes the paper.

II. AUTONOMOUS NET RECOVERY CONCEPT

Autonomous recovery of a fixed-wing UAV in a suspended
net is a complex task, so the functionality is split into several
key components. The overall mission is executed in the
following fashion:
• The fixed-wing UAV is instructed to follow a path

against the wind, with the minimal airspeed required
for safe flying. This is called the virtual runway, and
the path is transmitted to the multirotor UAVs.

• Both multirotors are equipped with coordinated con-
trollers that keep the inter-formation of the two intact,
while lifting the suspended net.

• The current position and the velocity of the fixed-wing
UAV is transmitted to a coordination controller in one
of the multirotors, which sends desired setpoints to the
formation controllers according to the phases of the
mission, as to catch the fixed-wing UAV.

Although using two multirotor UAVs instead of one in-
creases the complexity of the system, it has several practical
advantages. First, by distributing the load, each multirotor
can be physically smaller than a single with the combined
lift capacity. Further, the two multirotors can spread the net
without a support structure (top beam), giving reduced weight
of the net.

Precise navigation is crucial for precision landing of UAVs.
In this work, we utilize Real-Time Kinematic (RTK) Global
Navigation Satellite System (GNSS). This is a navigation
technique using the carrier wave of the incoming signals from
the satellites, and comparing the signals to that received by
a base station. By computing the phase shift between the
signals at the UAV (rover) and the base, the location can
be locked in at centimeter-level accuracy. Such a system was

used in [13] for landing a fixed-wing UAV in a stationary net,
which also contains more detailed information about RTK
GNSS systems.

III. CONTROL DESIGN

This section introduces the control design, and gives details
about each of the different parts. The overall structure can
be seen in Figure 2. As can be seen, there are three distinct
control modules, which are detailed next. We also introduce
the concept of the virtual runway.

FixedWing
Position and Velocity

Virtual Runway

Coordination
Controller

Multirotor
Formation

controller

Supervisory
control

Fig. 2. Information flow in the controller structure. Based on the current
position of the fixed-wing UAV, the supervisor starts the net-recovery
maneuver. The coordination controller guides the two multirotors along a
recovery path to intercept the fixed-wing UAV.

Note that the fixed-wing UAV acts as a reference generator
(master) in the proposed control scheme, as it is not affected
by the current position of the multirotors. Depending on the
type of fixed-wing UAV used, it is preferred to keep a steady
flight envelope, rather than correcting minor deviations from
the net position. This is much better handled by the agility
of the multirotors.

We assume that the fixed-wing UAV moves with a constant
course and altitude along a virtual runway, and its position
and velocity is communicated to the other vehicles. This is
controlled by an on-board autopilot.

In the next sections, let pni ∈ R3, i ∈ {1, 2} be the position
of multirotor i in the inertial frame {n}. Further, we define
the position p̄n as the centroid of the two multirotors plus
an height offset to compensate for the position of the net.
Further, the states of the fixed-wing UAV is denoted with
subscript ·f .

A. Virtual runway
Figure 3 illustrates the virtual runway (VR). The virtual

runway defines a path frame {p} at constant altitude, which
is defined by an origin pnp/n and a rotation ψ around the {n}
z-axis such that Rn

p = Rz(ψ). Then a position pn can be
decomposed in {p} by the transformation pp = (Rn

p)>(pn−
pnp/n). By dividing the path frame into a cross-track plane
and an along-track distance, we can design controllers for
each part separately.

B. Supervisor
The supervisor monitors the position and velocity of the

fixed-wing UAV relative to the virtual runway in order to
switch between the different modes in the maneuver. Each
mode enables a certain controller and reference which gives

zp

yp

xp

Cross-track plane

Along virtual
runway

Fig. 3. Illustration of the virtual runway. The runway defines a path frame
{p}, and can be divided into a cross-track plane (ypzp) and an along-track
distance xp. The position of the net on the cross-track plane is marked with
a circle, while the intersection of the cross-track plane and the path of the
fixed-wing UAV is marked with a cross.

a desired velocity setpoint. Figure 4 gives an overview of the
different states of the supervisor. As can be seen in Figure 5,
the supervisor also controls when to activate the two parts of
the coordination controller.

In addition, the supervisor monitors the maneuver as it is
progressing. If, because of wind or other factors, the fixed-
wing UAV misses the net, it instructs the vehicles to try the
maneuver again. Further, if the projected proximity of the
fixed-wing UAV and multirotors are to small, the supervisor
can abort the operation. Depending on the situation, an abort
can involve the multirotors to climb and reposition for a retry,
or releasing the net and abort the mission entirely.

C. Coordination - Cross-track

The position of the net is controlled according to the
fixed-wing UAV position in the cross-track plane along the
virtual runway. A cross-track frame {p∗} is defined as the yz-
plane in the path frame {p}, such that there exist a mapping
from a position pp =

[
px py pz

]>
to pp∗ = pp2:3 =[

py pz
]> ∈ R2. Then a modified pure-pursuit [14] scheme

is introduced. Given a desired position pp∗d and the position
error p̃p∗ := pp∗d − pp∗ the following controller is used

vp∗d = Kp,pp̃
p∗ + Kd,p

˙̃pp∗ + Ki,p

∫ t

0

p̃p∗ dt (1)

where Kj,p ∈ R2×2 for j ∈ {p, i, d}. The desired position
pp∗d = pp∗f = pf,2:3 is defined as the current position of the
fixed-wing UAV projected along the virtual runway to the
cross-track plane.

It should be noted that the net position is not measured
explicitly, and furthermore it is not a desirable control target
as the net will swing during the transit. Therefore we seek to
control the position p̄ as illustrated in Figure 3 as the circle
in the cross-track plane. Hence, pp∗ = p̄2:3.

Calculate net position and
velocity

Along-track

Cross-track

Fixed-wing
UAV

yp

zp

t

ẋp

Feedback

vd

Supervisor

Coordination
controller

Multirotor 1
w/ autopilot

Multirotor 2
w/ autopilot

p1

p2

Synchronized, distributed
formation control

Position,
Velocity, VR

F1

F2Formation
controller

Formation
controller

Fig. 5. Illustration of the control-structure. The cross-track controller gets feedback from the position of the fixed-wing UAV in a plane orthogonal to the
virtual runway. The along-track controller is an open-loop controller, initiated by the supervisor when the fixed-wing UAV reaches the virtual runway.

INIT

STANDBY
Position hold

APPROACH
Control

cross-track position

START
Engage along-track

velocity profile

CATCH
Successful recovery

END
Transport UAV

back to ship

TRY AGAIN
Retry the catch

Transport to VR

Fixed-wing heading towards the VR

Fixed-wing at r0

Fixed-wing

passed

Catch detected
End of VR

Fig. 4. Supervisor state-machine. The supervisor monitors the position of the
fixed-wing UAV along the virtual runway (VR), and starts the coordination
controller. When the along-track distance reaches r0 (Figure 6), the START
state is initiated.

D. Coordination - Along-track

The relative velocity between the net and the fixed-wing
UAV is reduced by accelerating the net to a desired velocity.
In order to control the point of impact an open loop scheme
is proposed.

Firstly, the along-track velocity of the fixed-wing UAV is

assumed to be constant, then a desired along-track veloc-
ity profile is defined. By integrating these the along-track
position profile can be found analytically for both vehicles.
Finally the desired catch point rc = rc(tf) is given as a
function of the desired start point r0 = r0(t0) as illustrated
in Figure 6.

1 2 3 4

r0

rc

Fig. 6. Figure showing the timing of the along-track velocity, where the
current position of the net is marked with a circle at different instances of
time (1)-(4). When the fixed-wing UAV reaches r0, the multirotors starts
the velocity profile for forward flight as to intercept the fixed-wing UAV at
rc.

Different methods can be used to create a feasible velocity
profile as the ultimate goal is to be able to calculate r0.

These include, among others, ramps and reference models.
Here a polynomial approach will be derived. First, we define
the desired along-track velocity profile vpd,x(t) := v(t) as an
N th-order polynomial

v(t) =
N∑

k=0

ak(t− t0)k (2)

Next, we seek to constrain the position, velocity, acceler-
ation and jerk along that trajectory. This trajectory q(t) =

[
p(t) v(t) a(t) j(t)

]> ∈ R4 can be found by integrating
and differentiating (2). Then, by defining the constraints
q(t0) and q(tf), the N coefficients ak can be found as
derived in e.g. [15]. With a total of 8 constraints a polynomial
of order 7 is required. In Figure 7 an example of such an
trajectory is shown.

0 2 4 6 8 10 12
0

10

20

30

40

Time [s]

0 2 4 6 8 10 12
-2

0

2

4

6

8

p [m]

v [m/s]

a [m/s
2
]

j [m/s
3
]

Fig. 7. Along-track polynomial velocity profile. Here the desired duration
tf − t0 = 12, constraints q(t0 = 0) = 0 and q(tf) = [40, 7, 0, 0]

>

are specified.
By combining the desired velocity from the cross-track

and along-track control we get vpd =
[
vpd,x(t) (vp∗d)>

]>
,

and the resulting desired velocity in {n} can be found by
the following transformation

vnd = (Rp
n)>vpd (3)

which gives the desired velocity for the two multirotors, and
is applied to the formation in the next section.

E. Multirotor Modeling
In this section, we start by presenting the dynamical model

of a multirotor UAV, as in [16]. The model can be derived by
Newtonian or Lagrangian methods, and readers are referred
to [17] for details on its derivation. By further assuming
the presence of an internal attitude controller, the relevant
dynamics for the control design is extracted.

Let the dynamics of multirotor i be modeled by

ṗi = vi (4)
miv̇i = mig + Rifi (5)

Ṙi = RiS(ωi) (6)
Iiω̇i = S(Iiωi)ωi + Mi (7)

where pi ∈ R3 is the UAV position in the inertial frame
{n}, vi ∈ R3 the translational velocity in {n}, Ri ∈ SO3

a rotation matrix from the body-fixed frame {bi} to the
inertial frame {n}, ωi ∈ R3 the angular velocity of the UAV,
represented in {bi}. Further, the operator S(·) is the skew-
symmetric transformation, such that p×q = S(p)q. mi is the
mass of the multirotor, and Ii the body-fixed inertia matrix.
fi is upwards thrust directed along the negative body-aligned
z-axis, Mi are applied moment about the multirotor centre
of gravity, and g = [0 0 g]> where g is the gravitational
constant.

Consider now the net being suspended in the centre of
gravity of the UAV. This will affect the translational motion
(5) by a force τL,i, given by the load dynamics, but the
rotational motion (7) is unaffected. As control of the attitude
of the multirotor is not considered in this paper, the model
considering the translational motion is now

miv̇i = mig + Rifi + τL,i (5b)

Further, assume now that a sufficiently fast attitude con-
troller is present. The direction of the applied force for
translational motion (5) is given by Ri, and by manipulating
the roll and pitch of the UAV we can apply force in a desired
direction. An example of such a controller is given in [17],
and a similar controller is assumed present in the multirotor
autopilot. Thus, the term Rifi can be replaced by an inertial
control force Fi ∈ R3, resulting in the linear dynamics

miv̇ = mig + Fi + τL,i (5c)

F. Formation Control of Two Multirotors
The formation controller is designed in two steps, follow-

ing the procedure outlined in [18]. This is a passivity-based
approach, where an inner loop controller takes a velocity
setpoint from an outer controller, and the stability of the
cascaded structure is proved by passivity theory. While the
inner controller uses only its own measurements, the outer
uses available information from the other multirotor to reach
the desired formation.

First, let

Fi = τL,i +mig −Ki(vi − vd) +miv̇d + ui (8)

where vd is the desired common velocity from the coordina-
tion controller, known to both vehicles. ui ∈ R3 is the input
from the outer loop formation controller, which acts as an
injection to achieve a desired formation, to be specified later.
Note that we assume we can measure the disturbance force
τL,i of the suspended net, so it can be compensated using
feed-forward by the controller as discussed in Section VI-D.

z

p2

p1

Fig. 8. Illustration of the vector between the two multirotors.

Next, let z := p1 − p2 be the vector between the two
multirotors in {n}, as in Figure 8. Let the desired value zd

be given by a length l and rotation ψn about ~z as

zd =
[
l cos(ψn) l sin(ψn) 0

]>
(9)

The standard linear consensus protocol ([18]) can now be
applied as

ui = diKp(z− zd) (10)

where d1 = 1, d2 = −1. We can now state the main result
of this section:

Proposition 1. The inner control loop (8) combined with the
consensus protocol (10) ensures that the equilibrium point

v1 = v2 = vd (11)
z = zd (12)

is globally asymptotically stable.

Proof. Direct application of Corollary 2.2 in [18].

IV. MULTI-BODY SIMULATION MODEL

This section discusses the dynamical models of the com-
bined multirotor-net system. To provide a thorough un-
derstanding of the dynamical motion during the recovery
maneuver, we developed a simulator that includes the full
6-DOF dynamics of the multirotors, fixed-wing UAV, and
the net suspended under the multirotors. We also model the
impact forces during collision.

A. Tension from the Suspended Net

By having the net attached to the multirotors, we have in
effect a system of constrained motion where each wire con-
necting the net removes one degree of freedom. We consider
the net being a rigid body. To model this behavior, one can
reduce the state-space and use only generalized coordinates
that cover the configuration space [19]. This, however, will
hide the forces acting on the wires during impact. Instead, we
chose to model the interconnected system with constrained
coordinates. The Udwadia-Kalaba equation is presented in
[20], which is a way to explicitly calculate the forces of
constraints acting on each body. This methodology was used
in [21] to develop equations of motions for helicopter slung
load systems and [22] for multirotors. We follow a similar
approach, described in this section. For textual brevity, we
have omitted the torques resulting by the constraints due to
attaching wires away from the centre of gravity of each body.
They are, however, included in the numerical simulations
conducted in Section V.

For generality, we consider the case with N multirotors
connected to a common suspended load (in our case, a net).
Let wire i, connecting body (multirotor) i to the load. A
vector along the wire is given by

Lni = pi − pn (13)

where pn is the position of the suspended load in {n}. A
constraint gi acting on body i and the load is given by

gi = ||Li||2 − d2i = 0 (14)

where di is the nominal length of wire i. (14) can be
differentiated twice to obtain

ġi = 2L̇>i Li (15)

g̈i = 2L̈>i Li + 2L̇>i L̇i = 0 (16)

By defining the concatenated position- and velocity vector
p := [p>1 , . . . ,p

>
N]>, v := [v>1 , . . . ,v

>
N]>, the constraint

can now be put on standard form [19]:

Ai(p,v)v̇ = bi(p,v) (17)

where

Ai = 2L>i
[
03×3(i−1) I3×3 03×3(N−i) −I3×3

]
(18)

and
bi = −L̇>i L̇i (19)

According to [23], the constraint forces τL acting on all the
bodies are now given by:

τL = M1/2(AM−1/2)+(b−Av̇) (20)

where A and b are concatenations of Ai and bi, respectively,
(·)+ denotes the MoOre-Penrose pseudo inverse, and M is
a diagonal matrix with the masses of the involved bodies.
To include the effects on the attitude dynamics by torques
from attachment points, one can follow a similar procedure
as listed above. These are more involved expressions, as they
include states in the body-fixed coordinate systems. Readers
are referred to [23] and [21] for details on derivation. Note
that the results from the numerical simulations presented in
the next section, includes the full attitude dynamics as well.

B. Modeling the Fixed-Wing UAV Impact
This section studies the dynamics during the impact, when

the fixed-wing UAV gets arrested by the suspended net.
The collision is assumed to be perfectly inelastic such that
the bodies will stick together after the collision. In order
to calculate the forces and moments on the suspended net,
conservation of momentum is applied. The impact is assumed
to affect the system in the timespan t ∈ [t−, t+], where we
define the duration ∆t = t+ − t−.

Further it assumed that linear and angular momentum,
denoted as P = mv and L = Iω respectively, is conserved.
Thus, the sum of momentum directly after ()+ and before
()− is equal, with:

P+ = P− = mfvf,− +mnvn,− (21)
L+ = L− = Ifωf,− + Inωn,− (22)

where n denotes the suspended load. Next, the common
velocity v+ and angular velocity ω+ after the collision can
be found by

v+ =
P−

mf +mn
(23)

ω+ = (If + In)−1L− (24)

Finally, the average forces and moments applied to the
suspended load can be found by utilizing the linear and

angular impulse law. The linear and angular impulse J =
∆P = P+ − P− and H = ∆L = L+ − L− gives the
change in momentum. The laws are coupled with forces and
moments τ =

[
f> m>

]>
over the timespan t− to t+ as

follows [
J
H

]
=

∫ t+

t−

τ dt = τ̄∆t (25)

Then, the average forces and moments on the suspended load
τ̄n is given as:

τ̄n =
1

∆t

[
(mf +mn)v+ −mnvn,−
(If + In)ω+ − Inωn,−

]
(26)

V. SIMULATION AND RESULTS

In this section, we present the results from a numerical
simulation using the controllers and models presented in the
previous sections. In this case, we consider two multirotors,
with a mass of m1,2 = 6 kg, recovering an incoming
fixed-wing UAV at mf = 3 kg. The fixed-wing UAV is
approaching at a constant speed of 15 m/s, and the multirotors
are set to reach an approach-speed of 7 m/s. Further, the
multirotors are equipped with a basic autopilot that handles
attitude setpoints, as discussed in Section III-E which is
implemented as a PD control structure. This is a similar
structure as in the autopilot to be used for experiments,
discussed later in Section VI. Next, we consider a net with a
width and height of 5 and 3 m, respectively. The numerical
simulation is conducted in MATLAB, using Runge Kutta 4
as integrator at 50 Hz. The total thrust of each multirotor
is configured such that it uses half of the available power at
hover. Due to the construction of the multirotor, the available
torque is likewise limited so that each motor does not exceed
its maximum. The multirotor has a motor-to-motor diameter
of 1 m. Further, discrete time sampling is implemented with a
zero-order-hold. The net is attached 10 cm below the Centre
of Gravity of each multirotor.

In Figure 9, snapshots of the dynamics during the catch is
shown. We can see that the multirotors successfully intercept
the incoming fixed-wing UAV, and are able to handle the load
during impact. The tension force on the left multirotor can
be seen in Figure 10, where the oscillations of the load can
be clearly seen. The steady value in the z axis conform to
half the weight of combined net and fixed-wing UAV. Due to
a slight twist in the net when it swings, a slight transient can
be seen on the y-component of the tension force. Further,
in Figure 11, the along-track velocity of the multirotors are
shown. We can see that right after impact, some residual
oscillations remains due to the swinging payload.

VI. SYSTEMS ARCHITECTURE

This section gives an overview of the architecture of the
experimental system, including the different vehicles used,
autopilots and communication links. A detailed description
of the base system architecture can be seen in [24].

t = 16.5s

4

0

2

z
 [
m

]

t = 17.1s

2

0

4

z
 [
m

]

t = 17.8s

1

0

-1

2

t = 18.5s

0

-1

1z
 [
m

]

t = 19.0s

3

-1

2

1

0

z
 [
m

]

t = 19.5s

3

2

1

4

0

z
 [
m

]

Fig. 9. Snapshots of a simulation run at right before and after the fixed-wing
UAV is intercepted by the suspended net.

Time [s]

10 15 20 25 30 35 40

T
e

n
s
io

n
 F

o
rc

e
 [

N
]

-20

-10

0

10

20

30

40

50
Tension force on multirotor 1

x

y

z

Fig. 10. The tension force on the wire connected to multirotor 1, in all three
dimensions. The stationary value of z corresponds to half the total weight
of the net and the arrested fixed-wing UAV.

Time [s]

0 10 20 30 40

A
lo

n
g

-t
ra

c
k
 v

e
lo

c
it
y
 [

m
/s

]

-2

0

2

4

6

8
Centroid along-track velocity

Speed

Reference

Fig. 11. Resulting velocity along the virtual runway.

TABLE I
SKYWALKER X8 DATA

Airframe weight 3 kg
Maximum takeoff weight 4.2 kg
Cruise speed 18 m/s
Flight time 45 - 60 minutes
Control Surfaces Elevons (combined aileron and elevator)
Autpilot Pixhawk w/ ArduPlane

TABLE II
DJI S1000+ DATA

Airframe weight 4 kg
Maximum takeoff weight 11 kg
Flight time 15-25 minutes
Autopilot Pixhawk w/ ArduCopter

A. Airframes
In this research, we utilize the Skywalker X8 as our fixed-

wing UAV. This is a light-weight low-cost flying-wing type
UAV made out of styrofoam, making it an ideal platform for
research purposes. The main characteristics are summarized
in Table I, and seen in Figure 12. For a multirotor platform,
a versatile vehicle with plenty of lift capacity is needed. We
are using the S1000+, made by DJI. This is a octocopter
type design with eight arms and motors, as can be seen in
Figure 13. The main data can be seen in Table II.

Fig. 12. The Skywalker X8 in flight.

B. Autopilot and Payload Computer
Both the fixed-wing and the two multirotors are controlled

by the same basic hardware. We are using the Pixhawk [25]
autopilot hardware, configured with Ardupilot [26] software

Fig. 13. DJI S1000+ frame. Image courtesy of dji.com

as the low-level autopilot. This setup can be configured for
a multitude of different vehicle types, and handles basic
navigation and control, such as sensor fusion from ac-
celerometers and gyros, and attitude control. In addition, the
vehicles are fitted with an onboard Linux Computer, running
customized software. This sends commands and reference
values to the autopilot. On the computer, we utilize the LSTS
toolchain [27] as a framework for controller implementation.
The toolchain is developed by the Underwater Systems and
Technology Laboratory at University of Porto, Portugal, and
is available open-source at Github [28]. The main compo-
nent is DUNE, which is a modular software framework for
autonomous control. The toolchain also contains a ground
control segment (Neptus), messaging protocol (IMC), and a
Linux distribution (Glued). The components communicate as
illustrated in Figure 14.

Telemetry
Network

RTKLIB

DUNE Ardupilot

Simulator

UAV (fixed-wing or multirotor)

Servo/motor
commandsState

controller
implementation

RTKLIB

Setpoints

Position of other vehicles

Base station

UDPTCP

Serial, MAVLink

Corrections

UDP

Fixed-wing: JSBSim
Multirotor: Ardupilot

Position

Telemetry

Fig. 14. Overview of the different elements involved in the UAV control
system. A base station runs a server hosting corrections for RTK GNSS, and
which is transmitted to each vehicle. The telemetry network is based on a
5.8 GHz ethernet/IP radio link, with time division multiple access as medium
control. DUNE, running our control software in the vehicle on a Beaglebone
Black, transmits setpoints to the autopilot. In the figure, italic text denotes
a transport protocol.

C. Navigation

The autopilot internally fuses data from a MEMS-based
IMU with a magnetometer and GNSS to provide a full state
attitude and position reference solution using an Extended
Kalman Filter. As described earlier, the position acquired
from traditional GNSS is without the required accuracy to
do precision landing and formation flight [13]. However, by
using real-time kinematic (RTK) techniques with a differen-
tial correction, centimeter-level real-time positioning can be
achieved due to the short signal wavelength (19 cm for GPS
L1) of GNSS signals. This requires that integer carrier phase
ambiguities are successfully resolved [13]. RTKLIB [29] is
an open-source library for computing these ambiguities, and
providing real-time position updates using raw data from a
GNSS receiver, in our case the u-blox M8T [30]. The same
receiver is used at both the base station and in the vehicles.

D. Network, Net and Custom Sensors

The vehicles communicate over a wireless 5.8 GHz net-
work, using a radio from Ubiquity Networks. This is an
ethernet/IP based radio, with Time Division Multiple Access
medium control. This ensures constant transfer-delay in the
network.

To keep the weight of the net low, but still have it strong
enough to sustain multiple recovery missions, we chose a
net made from Polyethylene. With a mask size of 12 cm, it
weights only 45 g/m2. To have a reasonable margin for error,
we chose a net size of 3 times 5 m. We will equip hooks
along the wings and in the nose of the fixed-wing UAV. For
safety, we have made a device to release the suspended net
from the multirotors.

To measure the load of the net to the multirotors, we have
constructed a device to measure the tension and angle of
the attached wire. The angles are measured using two digital
magnetic encoders (MTS 360 from PIHER [31]) in a gimbal-
like structure, while the tension is measured using a light-
weight load cell (LSB200 from Futek [32]).

VII. SOFTWARE IN THE LOOP SIMULATIONS

As a preparation for experiments, the control software is
tested in a Software In the Loop (SIL) simulation procedure.
Here, the software is the same as when running on the target
vehicle, but where the dynamics and response are done by a
simulator. Our control software is implemented in C++, and
by using DUNE makes it straight forward to run the software
in a SIL environment. Further, one of the benefits of using
the open-source autopilot ardupilot, is that is has an option
to run the autopilot code with an accompanied simulator
in SIL as well. This makes all the software interfaces and
communication channels identical, which makes it a good
test of the implementation.

In this test, we investigate the performance of the control
software with the focus on the coordination task. While the
simulation presented in Section V included the complete
dynamics of the suspended net, including the impact forces,
there is no net in this test. We will however be able to detect

that the fixed-wing UAV would have been arrested by the net
given its position relative to the multirotors.

The results of the simulation can be seen in Figures 15–
17. Figure 15 shows the trajectory of the fixed-wing UAV
as it approaches the virtual runway. As it comes closer to
the multirotors, the coordinated multirotors start the along-
track velocity profile to intercept the fixed-wing UAV at the
prescribed speed. Figure 16 gives a closer look at this phase.
As noted above, this simulation does not contain any net
dynamics. Thus, in Figure 17, we see the relative distance
between the vehicles at the time the fixed-wing UAV would
have hit the suspended net.

y [m]

-400 -300 -200 -100 0

x
 [

m
]

-350

-300

-250

-200

-150

-100

-50

0

STANDBY

APPROACH

START

CATCH

Fig. 15. An overview of the software in the loop simulation. The red cross
marks the location of the fixed-wing UAV, while the blue circle represents
the centroid location of the multirotors. The state of the supervisor at is
marked at the corresponding position of the fixed-wing UAV.

y [m]

-100 -50 0

x
 [
m

]

-80

-60

-40

-20

START

CATCH

Fig. 16. A closer look at the simulation in the catch-phase. START marks
the start of the multirotor along-track velocity, as to intercept the incoming
fixed-wing UAV at the prescribed speed.

VIII. CONCLUSIONS

In this paper, we have presented a concept for recovery of
a fixed-wing UAV in a net suspended by two multirotors. We
have suggested a control design to comply with the concept.
Further, numerical simulations which includes the full non-
linear dynamics of the multirotors and the suspended net were
conducted, which showed the feasibility of the controller.
Further, we have suggested an implementation strategy, and
the control system was implemented and tested in a SIL-setup
which included the interface to the autopilots.

-18

x [m]

-20

-2222
21

y [m]

20

-22

-25

-24

-23

-21

-20

z
,
[m

]

Fig. 17. A snapshot of the multirotors and fixed-wing UAV at the moment
when the fixed-wing UAV would have hit the net.

REFERENCES

[1] S. Pullen, P. Enge, and J. Lee, “Local-Area Differential GNSS Archi-
tectures Optimized to Support Unmanned Aerial Vehicles (UAVs),”
in Proceedings of the International Technical Meeting of The Institute
of Navigation,, San Diego, CA, 2013.

[2] S. Huh and D. H. Shim, “A Vision-Based Automatic Landing Method
for Fixed-Wing UAVs,” Journal of Intelligent and Robotic Systems,
vol. 57, pp. 217–231, 2010.

[3] Insitu.com, “Insitu - ScanEagle,” 2016. [Online]. Available: http:
//www.insitu.com/information-delivery/unmanned-systems/scaneagle

[4] Spectrum.ieee.org, “Watch This Massive Drone Launch
and Recover Another Drone in Flight,” 2015. [On-
line]. Available: http://spectrum.ieee.org/automaton/robotics/drones/
insitu-flares-drone-launch-and-recovery

[5] N. Sarigul-klijn and M. M. Sarigul-klijn, “A Novel Sea Launch and
Recovery Concept for fixed wing UAVs,” in 54th AIAA Aerospace
Sciences Meeting, no. 4-8 January, San Diego, California, USA, 2016,
pp. 1–11.

[6] A. G. Sim, “Flight Characteristics of a Manned, Low-Speed, Con-
trolled Deep Stall Vehicle,” NASA Technical Memorandum, pp. 1–10,
1984.

[7] H. Taniguchi, “Analysis of deepstall landing for uav,” 26Th Interna-
tional Congress of the Aeronautical Sciences, pp. 1–6, 2008.

[8] S. H. Mathisen, K. Gryte, T. Johansen, and T. I. Fossen, “Non-linear
Model Predictive Control for Longitudinal and Lateral Guidance of
a Small Fixed-Wing UAV in Precision Deep Stall Landing,” in AIAA
Guidance, Navigation, and Control Conference, San Diego, 2016.

[9] Delftdynamics.nl, “DroneCatcher catches drone,” 2015. [On-
line]. Available: http://www.delftdynamics.nl/index.php/en/news-en/
117-dronecatcher-catches-drone

[10] Mtu.edu, “Michigan Tech Robotic Falconry,” 2016. [Online].
Available: http://me.sites.mtu.edu/rastgaar/home/news/

[11] Theverge.com, “Tokyo police unveil net-wielding interceptor
drone,” 2015. [Online]. Available: http://www.theverge.com/2015/
12/11/9891128/tokyo-interceptor-net-drone

[12] Nextgenerationvision.fr, “Drone interception,” 2014. [Online].
Available: https://youtu.be/APWG3VEGbJw

[13] R. Skulstad, C. Syversen, M. Merz, N. Sokolova, T. Fossen, and
T. Johansen, “Autonomous Net Recovery of Fixed-Wing UAV with
Single-Frequency Carrier-Phase Differential GNSS,” Aerospace and
Electronic Systems Magazine, IEEE, vol. 30, no. 5, pp. 18 – 27, 2015.

[14] T. I. Fossen, Marine Craft Hydrodynamics and Motion Control. Wiley,
2011.

[15] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot Modeling and
Control, 3rd ed. Wiley New York, 2006.

[16] K. Klausen, T. I. Fossen, and T. A. Johansen, “Nonlinear Control of a
Multirotor UAV with Suspended Load,” in Unmanned Aircraft Systems
(ICUAS), 2015 International Conference on. Denver, CO: IEEE, 2015,
pp. 176 – 184.

[17] R. Mahony, V. Kumar, and P. Corke, “Modeling, Estimation, and
Control of Quadrotor,” IEEE Robotics and Automation magazine,
vol. 19, no. 3, pp. 20–32, sep 2012.

[18] H. Bai, M. Arcak, and J. T. Wen, Cooperative control design: A
systematic, passivity-based approach. Springer-Verlag New York,
2011.

[19] J. Ginsberg, Engineering Dynamics. Cambridge University Press,
2008.

[20] F. Udwadia and R. Kalaba, “A new perspective on constrained motion,”
Proceedings: Mathematical and Physical Sciences, vol. 439, no. 2, pp.
407–410, 1992.

[21] M. Bisgaard, J. D. Bendtsen, and A. L. Cour-Harbo, “Modeling of
Generic Slung Load System,” Journal of Guidance, Control, and
Dynamics, vol. 32, no. 2, pp. 573–585, mar 2009.

[22] K. Klausen, T. I. Fossen, T. A. Johansen, and A. P. Aguiar, “Cooper-
ative path-following for multirotor UAVs with a suspended payload,”
2015 IEEE Conference on Control Applications (CCA), pp. 1354–
1360, 2015.

[23] F. E. Udwadia and P. Phohomsiri, “Explicit Poincaré equations of
motion for general constrained systems. Part I. Analytical results,”
Proceedings of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 463, no. 2082, pp. 1421–1434, jun 2007.

[24] A. Zolich, T. A. Johansen, K. Cisek, and K. Klausen, “Unmanned
Aerial System Architecture for Maritime Missions . Design & Hard-
ware Description,” in IEEE RED-UAS Conference, 2015.

[25] Pixhawk.ethz.ch, “PX4 Pixhawk,” 2016. [Online]. Available: https:
//pixhawk.ethz.ch/

[26] Ardupilot.com, “Ardupilot - Open source autopilot,” 2016. [Online].
Available: http://ardupilot.com

[27] J. Pinto, P. S. Dias, R. Martins, J. Fortuna, E. Marques, and J. Sousa,
“The LSTS toolchain for networked vehicle systems,” OCEANS 2013
MTS/IEEE Bergen: The Challenges of the Northern Dimension, 2013.

[28] Github.com, “LSTS: Underwater Systems and Technology
Laboratory,” 2016. [Online]. Available: https://github.com/LSTS/

[29] T. Takasu and A. Yasuda, “Development of the low-cost RTK-GPS re-
ceiver with an open source program package RTKLIB,” in Proceedings
of the International Symposium on GPS/GNSS, Jeju, Korea, 2009.

[30] U-blox.com, “NEO/LEA-M8T — u-blox,” 2016.
[31] Piher.net, “MTS-360,” 2016. [Online]. Available: http://www.piher.net/
[32] Futek.com, “LSB200 S-Beam,” 2016. [Online]. Available: http:

//www.futek.com/lsb200/overview.aspx

142

Bibliography

3DR (2015a). 3dr Pixhawk - 3drobotics Inc.
URL https://store.3drobotics.com/products/3dr-pixhawk

3DR (2015b). 3dr Radio Set - 3drobotics Inc.
URL https://store.3drobotics.com/products/3dr-radio-set

3DR (2015c). 3dr uBlox GPS with Compass Kit - 3drobotics Inc.
URL https://store.3drobotics.com/products/
3dr-gps-ublox-with-compass

3DRobotics (2015). http://3drobotics.com.
URL http://3drobotics.com/

Ackerman, E. (2015). Watch This Massive Drone Launch and Recover Another Drone in
Flight.
URL http://spectrum.ieee.org/automaton/robotics/drones/
insitu-flares-drone-launch-and-recovery

Bai, H., Arcak, M., & Wen, J. (2011). Cooperative Control Design: A Systematic,
Passivity-Based Approach. Springer Science & Business Media.

BeagleBoard (2015). BeagleBoard.org - black.
URL http://beagleboard.org/black

Beard, R. W., & McLain, T. W. (2012). Small Unmanned Aircraft: Theory and Practice.
Princeton University Press.

Bisgaard, M. (2008). Modeling, Estimation, and Control of Helicopter Slung Load System.
Department of Control Engineering, Aalborg University.

Bisgaard, M., la Cour-Harbo, A., & Dimon Bendtsen, J. (2010). Adaptive control system
for autonomous helicopter slung load operations. Control Engineering Practice, 18(7),
800–811.

143

https://store.3drobotics.com/products/3dr-pixhawk
https://store.3drobotics.com/products/3dr-radio-set
https://store.3drobotics.com/products/3dr-gps-ublox-with-compass
https://store.3drobotics.com/products/3dr-gps-ublox-with-compass
http://3drobotics.com/
http://spectrum.ieee.org/automaton/robotics/drones/insitu-flares-drone-launch-and-recovery
http://spectrum.ieee.org/automaton/robotics/drones/insitu-flares-drone-launch-and-recovery
http://beagleboard.org/black

Caharija, W., Pettersen, K., Gravdahl, J., & Borhaug, E. (2012). Integral LOS guidance
for horizontal path following of underactuated autonomous underwater vehicles in the
presence of vertical ocean currents. In American Control Conference (ACC), 2012, (pp.
5427–5434). IEEE.

Chatterjee, A., & Ruina, A. (1998). A New Algebraic Rigid-Body Collision Law Based
on Impulse Space Considerations. Journal of Applied Mechanics, 65(4), 939–951.

Egeland, O., & Gravdahl, J. T. (2002). Modeling and simulation for automatic control,
vol. 76. Marine Cybernetics Trondheim, Norway.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John
Wiley & Sons.

Futek (2015). LSB200 S-Beam Jr.
URL https://www.futek.com/lsb200/overview.aspx

Gryte, K. (2015). High Angle of Attack Landing of an Unmanned Aerial Vehicle. Master’s
thesis, Norwegian University of Science and Technology (NTNU).

Hespanha, J. P. (2009). Linear Systems Theory. Princeton, New Jersey: Princeton Press.

Hugh D. Young, & A. Freedman, R. (2011). University Physics with Modern Physics. San
Francisco: Addison-Wesley, 13 edition ed.

Huh, S., & Shim, D. H. (2009). A Vision-Based Automatic Landing Method for Fixed-
Wing UAVs. Journal of Intelligent and Robotic Systems, 57(1-4), 217–231.

I.I: Argatov (2012). Mathematical modeling of linear viscoelastic impact: Application to
drop impact testing of articular cartilage. Institute of Mathematics and Physics, Aberys-
twyth University, Ceredigion SY23 3BZ, Wales, UK.

Insitu.com (2016). Insitu - ScanEagle.
URL https://insitu.com/information-delivery/
unmanned-systems/scaneagle

Ioannou, P. A., & Sun, J. (2012). Robust Adaptive Control. Courier Corporation.

JSBSim (2015). JSBSim Open Source Flight Dynamics Model.
URL http://jsbsim.sourceforge.net/

Kim, H. J., Kim, M., Lim, H., Park, C., Yoon, S., Lee, D., Choi, H., Oh, G., Park, J., &
Kim, Y. (2013). Fully Autonomous Vision-Based Net-Recovery Landing System for a
Fixed-Wing UAV. IEEE/ASME Transactions on Mechatronics, 18(4), 1320–1333.

Klausen, K., Fossen, T., & Johansen, T. (2014). Suspended load motion control using mul-
ticopters. In 2014 22nd Mediterranean Conference of Control and Automation (MED),
(pp. 1371–1376).

Klausen, K., Fossen, T., & Johansen, T. (2015). Nonlinear control of a multirotor UAV
with suspended load. In 2015 International Conference on Unmanned Aircraft Systems
(ICUAS), (pp. 176–184).

144

https://www.futek.com/lsb200/overview.aspx
https://insitu.com/information-delivery/unmanned-systems/scaneagle
https://insitu.com/information-delivery/unmanned-systems/scaneagle
http://jsbsim.sourceforge.net/

Klausen, K., Moe, J. B., van den Hoorn, J. C., Gomola, A., Fossen, T. I., & Johansen, T. A.
(Submitted 2016). Coordinated Control Concept for Recovery of a Fixed-Wing UAV
on a Ship using a Net Carried by Multirotor UAVs.

Lankarani, H. M., & Nikravesh, P. E. (1990). A Contact Force Model With Hysteresis
Damping for Impact Analysis of Multibody Systems. Journal of Mechanical Design,
112(3), 369–376.

Li, Y.-C., Zhao, Y.-P., Gui, F.-K., & Teng, B. (2006). Numerical simulation of the hydro-
dynamic behaviour of submerged plane nets in current. Ocean Engineering, 33(17–18),
2352–2368.

LSTS (2015). The Laboratório de Sistemas e Tecnologia Subaquática-Toolchain.
URL http://lsts.fe.up.pt/toolchain

Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor Aerial Vehicles: Modeling, Esti-
mation, and Control of Quadrotor. IEEE Robotics Automation Magazine, 19(3), 20–32.

MATLAB (2015). 8.5.0.197613 (R2015a). Natick, Massachusetts: The MathWorks Inc.

Morais, F., Ramalho, T., Sinogas, P., Marques, M. M., Santos, N. P., & Lobo, V. (2015).
Trajectory and guidance mode for autonomously landing an UAV on a naval platform
using a vision approach. In OCEANS 2015 - Genova, (pp. 1–7).

Nevstad, S. O. (2016). Autonomous landing of Fixed-Wing UAV in net suspended by Mul-
tirotor UAVs – A Fixed-Wing landing system. Master’s thesis, Norwegian University of
Science and Technology (NTNU).

Phidgets (2015). PhidgetBridge.
URL http://www.phidgets.com/products.php?category=34&
product_id=1046_0

Piher (2015). MTS-360 datasheet.
URL http://piher.net/pdf/mts360_datasheet.pdf

Ravn, P. (1998). A Continuous Analysis Method for Planar Multibody Systems with Joint
Clearance. Multibody System Dynamics, 2(1), 1–24.

Røli, J.-H. B. (2015). Cooperative Control and RTK Navigation System for Multirotors.
Master’s thesis, Norwegian University of Science and Technology (NTNU).

Sagatun, S. I., & Fossen, T. I. (1991). Lagrangian formulation of underwater vehicles’
dynamics. In , 1991 IEEE International Conference on Systems, Man, and Cybernetics,
1991. ’Decision Aiding for Complex Systems, Conference Proceedings, (pp. 1029–1034
vol.2).

Skulstad, R., Syversen, C., Merz, M., Sokolova, N., Fossen, T., & Johansen, T. (2015).
Net recovery of UAV with single-frequency RTK GPS. In Aerospace Conference, 2015
IEEE, (pp. 1–10). IEEE.

145

http://lsts.fe.up.pt/toolchain
http://www.phidgets.com/products.php?category=34&product_id=1046_0
http://www.phidgets.com/products.php?category=34&product_id=1046_0
http://piher.net/pdf/mts360_datasheet.pdf

Skywalker Technology Co., L. (2015). Skywalker Technology Co.,Ltd.
URL http://www.skywalker-model.com/

Spong, M. W., Hutchinson, S., & Vidyasagar, M. (2006). Robot modeling and control,
vol. 3. Wiley New York.

Swift, M. R., Fredriksson, D. W., Unrein, A., Fullerton, B., Patursson, O., & Baldwin, K.
(2006). Drag force acting on biofouled net panels. Aquacultural Engineering, 35(3),
292–299.

Sørbø, K. H. (2016). Autonomous landing of fixed wing uav in a stationary net – Path and
navigation system. Master’s thesis, Norwegian University of Science and Technology
(NTNU).

The Society of Naval Architects and Marine Engineers (SNAME) (1950). Nomenclature
for Treating the Motion of a Submerged Body Through a Fluid. Technical and Research
Bulletin No. 1-5.

u-Blox (2016). NEO/LEA-M8T.
URL https://www.u-blox.com/en/product/neolea-m8t

Ubiquiti-Networks (2015). RocketTMM.
URL https://www.ubnt.com/airmax/rocketm/

Udwadia, F. E., & Kalaba, R. E. (1992). A New Perspective on Constrained Motion.
Proceedings: Mathematical and Physical Sciences, 439(1906), 407–410.

146

http://www.skywalker-model.com/
https://www.u-blox.com/en/product/neolea-m8t
https://www.ubnt.com/airmax/rocketm/

	Thesis Description
	Abstract
	Samandrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background and Motivation
	Objectives and methods
	Previous work
	Contributions
	Organization of the thesis

	Notation and background theory
	Definitions
	Classical mechanics
	Aerodynamic drag
	Rigid-body dynamics

	System
	Overview
	Platforms
	Software
	LSTS Software Toolchain
	ArduPilot software

	Hardware
	Autopilot
	Navigation
	Computer
	Communication
	Suspended payload sensors

	The multi-body dynamics
	Unconstrained body dynamics
	Multi-rotor dynamics
	Net dynamics

	Impact dynamics
	Multi-body constrained dynamics for simulation
	Dynamics for control analysis
	Collision simulation

	Cooperative control
	Centroid - the virtual vehicle
	Centroid control
	Heading and formation control
	Link gain scheduling
	Velocity control
	Adaptive control

	Simulations
	Adaptive link gain

	Payload transport
	Centroid LOS steering law
	Reference LOS velocity
	Surge and heading

	Marine craft simulator
	Surge dynamics and control
	Heading dynamics and control

	Simulations
	Reference simulator
	MRAC

	The recovery maneuver
	Virtual-runway
	Along-track trajectory
	Polynomial
	Piecewise
	Reference model
	Comparing
	Fixed-Wing ETA

	Cross-track control
	Position hold
	Supervisor
	Simulations
	Trajectory comparing
	Recovery maneuver
	MRAC

	Experimental setup
	Architecture
	Configuration
	Transport layers
	Transport configuration

	Controllers
	Recovery Coordinator
	Path Control
	Coordinated Velocity Control

	Software in The Loop (SITL)
	SITL results
	Payload transport
	Recovery maneuver

	Operational aspects
	Overall maneuver
	Abort
	Recovery considerations
	Mission Control

	Experiments
	Test facility - Agdenes airfield
	Setup
	Case 1: Gain scheduling
	Setup
	Results

	Case 2: Recovery
	Setup
	Case 2a: Minor compensation
	Case 2b: Major compensation

	Case 3: Payload transport
	Setup
	Case 3a: Compare reference surge
	Case 3b: Cooperative

	Discussion

	Conclusion and Closing Discussions
	Dynamic models
	Transport and recovery concept
	Low-level controllers
	Further work

	Additional Dynamical Modeling Theory
	Modeling multi-body constrained dynamics
	Udwadia-Kalaba

	Collision dynamics
	Time dependent equation of motions

	Polynomial Trajectory Theory
	Polynomial trajectory generation
	Polynomial generation matrices

	Adaptive Control Theory
	Model Reference Adaptive Control
	Controllability

	Controllers – Tuning considerations
	Alternative velocity control
	Closed-loop dynamics

	Submitted conference paper for ICUAS'16
	Bibliography

