
Open Real-Time Control and
Emulation of Robots and
Production Systems

Thesis for the degree of Philosophiae Doctor

Trondheim, February 2012

Norwegian University of Science and Technology
Faculty of Engineering Science and Technology
Department of Production and Quality Engineering

Morten Lind

NTNU
Norwegian University of Science and Technology

Thesis for the degree of Philosophiae Doctor

Faculty of Engineering Science and Technology
Department of Production and Quality Engineering

© Morten Lind

ISBN 978-82-471-3388-0 (printed ver.)
ISBN 978-82-471-3390-3 (electronic ver.)
ISSN 1503-8181

Doctoral theses at NTNU, 2012:60

Printed by NTNU-trykk

To Trine, Sofus, and Oline

ii Front Matter

Acknowledgements iii

Acknowledgements

Thanks to The Research Council of Norway for funding my PhD scholarship through the
IntelliFeed research project.

The IntelliFeed project was a research project with industrial cooperation, and I wish to
extend my gratitude to the partners:

� Department of Production and Quality Engineering, Norwegian University of Sci-
ence and Technology

� SINTEF Raufoss Manufacturing AS

� Scandinavian Business Seating AS

� Glen Dimplex Nordic AS

Thanks to my advisers at the Norwegian University of Science and Technology for support
and interesting discussions:

� Professor Terje Kristoffer Lien, Department of Production and Quality Engineering

� Associate Professor Amund Skavhaug, Department of Engineering Cybernetics

� Adjunct Professor Trygve Thomessen, Department of Production and Quality En-
gineering

I am especially grateful for the support from my colleagues at SINTEF Raufoss Manu-
facturing AS, Department of Production Technology.

iv Front Matter

Abstract v

Abstract

This PhD thesis addresses the shop-floor control level in manufacturing and industrial
production at some important points for the future. The main contributions are principles
and software relating to the control of production systems and hereunder production de-
vices. Specifically challenging at the production device level is the real-time, application-
oriented and sensor-integrated motion control of industrial robots. At the higher level,
the production control system for a shop-floor, considered as an ensemble of indepen-
dently controllable production devices, is addressed. The challenge at this higher level
regards the representation of all production devices of a shop-floor by suitable control
interfaces for a distributed deployment of the control system.

The control of industrial robots and their integration into a production system is pro-
posed to be troubled by each robot manufacturer developing their own native application
platform. Each native platform offers some pre-chosen paradigm for programming and
its own restricted set of technologies available for application development. For migrat-
ing the real-time motion control of industrial robots onto application platforms offering
higher flexibility, or simply the right technologies, than that found in the native con-
trollers, several software frameworks and platforms exist. The work underlying this PhD
thesis has produced such a software framework, dubbed PyMoCo. It is entirely imple-
mented in the high-level, interpreted programming language Python, and allows fast and
highly flexible real-time motion control and application integration of industrial robots.

At the shop-floor control level, it is proposed by a segment of the research commu-
nity dealing with production control, that holonic and multi-agent control architectures
are suitable paradigms for bringing highly intelligent, computationally powerful resources
into the direct control loops in production systems. The use of autonomous holonic or
agent-based systems for distributed real-time shop-floor control presents some inherent
difficulties regarding formal validation and verification. Hence, in the research commu-
nity it has been suggested to use real-time, realistic emulators of the production systems
as platforms for experimenting, developing, and validating holonic and agent-based pro-
duction control systems. This PhD thesis presents principles for using the Blender Game
Engine for implementing a physically realistic real-time emulator for the collection of
production devices of a production shop-floor. An emulator has been designed and im-
plemented for an extended version of a prototype shop-floor system set up in a laboratory,
and an experiment control system has been implemented to validate the emulator. The
presented emulator is developed to a state of being suitable for use as a realistic plat-
form for development of a distributed, autonomous multi-agent system for control of the
extended prototype shop-floor system.

vi Front Matter

Acronyms and Abbreviations

AGV Automated guided vehicle, page 2

AI Artificial Intelligence, page 1

API Application programming interface, page 43

AS Joint stock company (comparable to “Ltd.”, “Inc.”, and “Corp.”), page iii

BGE The Blender Game Engine, page 8

CNC Computer numerical control, page 22

DES Discrete event simulation, page 56

ERP Enterprise resource planning, page 19

FireWire The IEEE 1394 communication bus standard, page 5

GNU GNU’s Not UNIX, page 11

GPL GNU General Public License, page 43

GPOS General purpose operating system, page 37

HMS Holonic Manufacturing System, page 6

IPC Industrial PC, page 36

IPK Department of Production and Quality Engineering, page 2

JIT Just in time, page 20

LED Light Emitting Diode, page 5

NC Numerical control, page 22

NTNU Norwegian University of Science and Technology, page 2

OTED One-touch exchange of die, page 21

PAC Programmable automation controller, page 37

PC Personal computer, page 11

vii

viii Front Matter

PLC Programmable logical controller, page 17

PROSA Product-Resource-Order-Staff Architecture, page 6

PyMoCo Python-based robot motion control, page v

RTOS Real-time operating systems, page 37

SBC Single-board computer, page 7

SINTEF The Foundation for Scientific and Industrial Research, page 2

Slerp Spherical linear interpolation, page 216

SMED Single-minute exchange of die, page 21

SRM-PT Department of Production Technology at SINTEF Raufoss Manufacturing
AS, page 2

TCO Total cost of ownership, page 29

TPS Toyota production system, page 21

UML Unified Modeling Language, page 62

WIP Work in process, page 4

SE(3) Special Euclidean Group, page 216

SO(3) Special Orthogonal Group, page 216

Contents

Front Matter i
Dedication . i
Acknowledgements . iii
Abstract . v
Acronyms and Abbreviations . viii
Contents . xi

1 Introduction 1
1.1 Problem Domain . 1
1.2 Project Background and Outline . 2

1.2.1 Project Background . 2
1.2.2 Project Evolution and Circumstances 4

1.3 PhD Thesis Outline . 10

2 Philosophical Considerations on Production Control 13
2.1 Terminology . 13
2.2 A Brief History of Production . 20
2.3 A Battle of Paradigms for the Future . 23
2.4 Hierarchic, Heterarchic, and Holarchic Control 23
2.5 From Flexibility and Batch to Agility and Chaos 26
2.6 Automation Principles of Agile Production 30

3 Account of PhD Work 33
3.1 Linux-PCs in Production Control . 33

3.1.1 Issues with common PCs in Manufacturing Control 34
3.1.2 PCs to Take Over or Inter-Operate with PLCs 38
3.1.3 Real-Time Control with GNU/Linux 39
3.1.4 Examples of PC Control for Devices 44

3.2 Real-Time Production Device Emulation 48
3.2.1 Considerations for Real-Time Device Emulation 48
3.2.2 Real-Time Emulation with the Blender Game Engine 50
3.2.3 Examples of Real-Time Emulated Systems 52

ix

x Contents

3.3 Real-Time Production System Emulation 55
3.3.1 Simulation vs. Control of Emulated Devices 55
3.3.2 From Device to System Emulation 57
3.3.3 Performance Considerations . 58
3.3.4 Distribution of Emulation Functionality 59

3.4 Experimental Production Control System 60
3.4.1 Overview . 62
3.4.2 Supply Operations . 62
3.4.3 Upload Operation . 67
3.4.4 Transport System . 69
3.4.5 Carrier and Conveyor Management 77

4 Included Publications 83
Bibliography of Included Publications . 85
4.1 Paper: Instrumented fixtures for on-line correction of welding paths . . . 87
4.2 Paper: Holonic Manufacturing Paint Shop 93
4.3 Paper: Development of a Holonic Free-Roaming AGV System for 109
4.4 Paper: Open Real-Time Robot Controller Framework 121
4.5 Paper: Real-Time Sensor Servoing using Line-of-Sight 129
4.6 Paper: Development of a Low-Cost Prototype AGV 137
4.7 Paper: Emulation of Manufacturing Devices for Simulation of 145
4.8 Paper: Holonic shop-floor application for handling, feeding and 153
4.9 Paper: Using the Blender Game Engine for Real-Time Emulation of 169
4.10 Paper: PyMoCo – Python-Based Robot Motion Control 195

5 Conclusions 215
5.1 Main Conclusions . 215
5.2 Summary of Contributions . 216
5.3 Future Work . 217

References 221

Web References 224

A Production Control System Code 225
A.1 Interfaces to Emulated Devices . 225

A.1.1 Workpiece Producer Interface . 226
A.1.2 Turntable Control Interface . 227
A.1.3 Tool Control Interfaces . 228
A.1.4 PnF-Conveyor Control Interfaces 230
A.1.5 Transport Control Interfaces . 233
A.1.6 Robot Control Interfaces . 238

A.2 Control System Code Excerpts . 241
A.2.1 SupplyCell Class . 242

Contents xi

A.2.2 UploadCell Class . 247
A.2.3 Picker Class . 250
A.2.4 TransportManager Class . 252
A.2.5 AGV Class . 255
A.2.6 CarrierManager Class . 262
A.2.7 ConveyorManager Class . 265

xii Contents

Chapter 1

Introduction

With respect to automation, much of the remaining industrial production in the developed
countries may be characterized as somewhere between hard and flexible. A good share of
the industrial production has been automated during the past three decades, but maybe
even more have been moved to newly industrialized countries; notably China. Probably
most of the remaining labour intensive production of goods in the developed countries
are bound by local geographic requirement or by the need of a highly skilled labour force
that would not yet be possible to find or educate in the newly industrialized countries.

What could have kept massive industrial production of ordinary goods in the developed
countries from off-shoring to the developing countries was commonly thought to be the
development of flexible, automated production systems. However, the off-shoring drove
faster through the past two decades than the development of flexible and automated
production systems. Furthermore, flexible production turned out to not meet today’s
volatile market requirement for manufactured goods. Agile, automated production sys-
tems seems to be a necessity to start up new, as well as keeping the remaining, industrial
production of goods in the developed world.

Fast-paced development of agile, automated production systems should thus be empha-
sized to not lose the production and manufacturing competence and capacity remaining
in the developed, high-cost countries.

1.1 Problem Domain

The main goals of the PhD work underlying this thesis is to advance further some
possibilities for implementing advanced and computationally demanding control systems
on high-performance computers at all levels of shop-floor control in production systems.

AI is a difficult concept to define. It is hard to define in a formal, let alone measurable,

2 Chapter 1. Introduction

way. AI is not explicitly used in the work presented here, nor is it claimed that the
presented work implements any kind of AI. However, it may be argued that AI is a
necessity for the realization of agile, automated production control. The agent-based
paradigms for computing are generally agreed upon to be suitable for realizing AI, and
they are extensively probed by the international research community to yield viable agile
solutions in the field of automated production control.

This PhD thesis concentrates on three subjects, proposed to be of high importance in
bringing AI into the control loop of agile, automated production:

� Making high-performance computational resources available in the real-time control
loops of even the lower control levels in a production system.

� Development of flexible control frameworks to some of the more complex devices
of production systems; notably robots and AGVs.

� Development of real-time emulation for the realistic simulation of production con-
trol systems, based on new paradigms of autonomous holonic and multi-agent
systems.

1.2 Project Background and Outline

The work presented in this PhD thesis was part of the IntelliFeed project. IntelliFeed
was a technology development and transfer project between research and development
institutions and industrial production companies. The research and development part-
ners were NTNU, IPK, and SRM-PT1 while the industrial production companies which
partnered were Nobø Electro AS2 and HÅG AS3. All research and development activities
were funded by The Research Council of Norway. The IntelliFeed project was active for
the period from 2007 to 2010 inclusive. The PhD scholarship in the IntelliFeed project
was given for three years in the period from 2008 to 2010 inclusive.

1.2.1 Project Background

Nobø Electro AS and HÅG AS are medium sized manufacturing enterprises producing me-
chanical goods; Nobø Electro AS produces electrical panel heaters and HÅG AS produces
office and conference chairs. The two enterprises had many structural similarities in their
enterprises and production systems, as well as the challenges with efficient automation
of flexible assembly sections.

1SRM-PT was formerly the Production Engineering department of SINTEF Technology and Society.
2Nobø Electro AS has now changed name to Glen Dimplex Nordic AS
3HÅG AS is now a part of Scandinavian Business Seating AS

1.2. Project Background and Outline 3

The IntelliFeed project was motivated by an earlier project, the SuperFlex project; with
the same type of funding and the same partners, running for the period 2004 to 2007
inclusive. The SuperFlex project addressed the challenges of automating the assembly
processes of mechanical goods. It was proposed, as a general tendency for small and
medium sized manufacturing enterprises, that while most of the material processing in-
volved with fabrication of the parts of final goods was close to fully automated, the
assembly sections predominantly remained entirely based on manual labour. The chal-
lenge with automating the assembly section was accredited to the high flexibility required
from it.

During the SuperFlex project a general consensus evolved that most of the assembly
processes themselves were not especially challenging. Rather, the general transport for
just-in-time deliveries of small, ordered numbers of component parts to specific assembly
sites; the handling and feeding of complex component parts of the final goods to the
assembly processes; and the real-time control system for operating the whole assembly
system in detail were all identified as major challenges.

The main challenges addressed by the IntelliFeed project may be formulated as the
following.

S/R Systems: If precise, small, measured numbers of ordered component parts must be
delivered with low response time to the assembly sites ordering the parts, versatile
and intelligent systems for storage and retrieval of parts is necessary as an integrated
service in the production control system.

Stacking, Handling, and Feeding: Many components of final goods are of small and mod-
erate size and shape. However, both partner enterprises have a good share of
components that present severe challenges with respect to stacking, handling, and
feeding; e.g. 2m by 20cm punched and pressed heater shells in sheet metal, wire
harnesses for installing in heaters, and chair covers made from textile. Note that
components involving textile or wires are not only a challenge for storing, han-
dling, and feeding, but even more so for the assembly processes themselves; and
no known, general solution exists to this assembly challenge.

RT Production Control: With smaller batch sizes and mixed production, towards single
piece flow of parts, the planning and scheduling problem of production management
transforms into one of real-time scheduling and control. To this end, it is not
sufficient to deploy the ordinary implicit control of production systems, based on
simple trigger signals. Rather, increasingly cognitive, distributed control systems
based on information processing, advanced sensor systems, and communication are
necessary for efficiently handling the increasing complexity.

The PhD work of this thesis addresses the challenge of real-time production control.

4 Chapter 1. Introduction

1.2.2 Project Evolution and Circumstances

This section brings an informal “eye-witness” account by the author, of how the PhD
project was conceived and how it proceeded. It is intended to present a 10km-altitude
flyover of the central points of the development and evolution of the PhD project.

Preliminary Inspiration

Prior to any IntelliFeed activity, and hence prior to the presented PhD work, an activity
led by professor Terje Lien as a masters project activity for engineering student Erik
Haga, was centred around the simultaneous measurement and mechanical clamping of
aluminium parts for welding. The mechanical development was undertaken by Erik Haga,
but the development of the control for clamping, measuring, and correction submission to
the welding robot system was undertaken by the author of this PhD thesis. The success
of this project gave the first indication and confidence that an application developed
in the interpreted language Python, confer [Python Website], from a standard personal
computer system, in cooperation with dedicated peripheral devices and commonplace
communication systems, could be reliably used for industrial application in production.
A later publication on the subject is included as part of this PhD thesis.

SuperFlex, the IntelliFeed Predecessor

The predecessor project to IntelliFeed, SuperFlex, ended in 2007 and notably left Nobø
Electro AS and HÅG AS with flexible transport solutions in the shape of palette conveyors,
at the hearts of their assembly sections; almost all assembly processes were integrated
up against the palette conveyors. Analysis of different low-response-time (10s to 60s)
production transport solution for the flexible routing of single-piece WIP workpieces had
indicated that the palette conveyors made the best compromise between flexibility and
reliability. AGVs had been briefly considered for the transport and carriers of single-piece
workpieces in-between and under assembly processes due to their potentially extreme
agility, but under suspicion of being unreliable AGVs as solution principle was evicted.

The palette conveyors set up at Nobø Electro AS and HÅG AS were not, or only to a
limited degree, extended to and integrated with intermediate component parts storage,
so the transport of part batches to and onto the palette conveyors, as well as supply
of parts to the assembly stations, were largely left as manual labour operations. These
were, however, in grand total not as time and effort consuming as the transportation
between assembly sites and associated preparation operations.

1.2. Project Background and Outline 5

Free-Roaming, Prototype AGVs

Automation of the logistics operations surrounding the assembly conveyor systems was a
leftover from the SuperFlex project and an overall motivation for the IntelliFeed project.
The author of this PhD thesis suggested and undertook early on a short and limited
project, which made an attempt at in-house, low-budget development of a prototype
AGV. The goal of the prototype was to assess whether a very cheap, mechanically reliable
and controllable free-roaming AGV could be built by consumer-grade, off-the-shelves
electromechanical components.

The design target was for such an AGV to be able to drive at a march speed of at least
that of human walking pace (∼ 1m

s) and to carry a load of about 100kg on a flat top
plate. The ubiquitous issue with free-roaming AGVs is the localization problem, and to
keep costs low while allowing for flexibility and redundancy, an accompanying localization
system was based on AGV-mounted LEDs and cheap, ceiling-mounted FireWire cameras.
The cameras were equipped with optical band-pass filters centred at the peak of the LEDs’
emission spectrum.

The AGV prototype development was completed with success of the vague, qualitative
goals, thanks to a very skilled masters student from Politecnico di Milano, Stefano Pede-
monte. He worked intensely together with the author of this PhD thesis on the project
for half a year.

The activity of AGV prototype and localization system development was not taken to
industrialization, or even subjected to quantitative performance tests. However, the AGV
was later used by a Holonic AGV System, mainly developed by Olivier Roulet-Dubonnet.

Onset of IntelliFeed Research

From its beginning, three PhD scholarships were announced in the IntelliFeed project,
of which two were given to researchers already associated with the IntelliFeed project.
The AGV development activity was to be carried over into a PhD project undertaken
by Olivier Roulet-Dubonnet. Another PhD project, the one presented in this thesis, was
undertaken by the author, and the project was addressing the development of real-time
production control systems.

The first phase of research in the IntelliFeed project concerned itself with the identification
of a suitable demonstration case, which could serve as a direct prototype, and later pilot,
for one or both of the partnering industrial production enterprises. The case settled on
was one of intense manual labour in both production enterprises: The up- and download
of workpieces from carriers of the painting systems in the productions. A demonstration
prototype based on a Power-and-Free overhead conveyor for fixing painting system carriers
under up- and download of workpieces was scheduled for setting up with two industrial
robots in the laboratory of IPK and SRM-PT. An overview of an extended version of

6 Chapter 1. Introduction

the IntelliFeed demonstrator, with the purpose of development of a shop-floor control
system, may be observed in Fig. 3.1 (page 61).

Meanwhile, Olivier Roulet-Dubonnet together with the author started an analysis for
selecting middleware technology for implementing an Ethernet-distributed control sys-
tem, permeating from the highest level of management to the lowest level of logical,
real-time device control. The selected technology was the quite new, free and open-
source Ice�middleware from ZeroC Inc. [ZeroC Inc. Website]. Together, Olivier Roulet-
Dubonnet and the author analysed the general application needs of a shop-floor pro-
duction system, such as the IntelliFeed demonstration case, and designed a holonic or
agent-based facility framework for implementing and managing a distributed control sys-
tem. This framework, which was successfully tested and taken to use in several other
projects, was implemented by Olivier Roulet-Dubonnet. It was dubbed IceHMS, and
much inspired by the PROSA reference architecture for HMS.

The first direct case of use of the IceHMS framework was for developing a holonic AGV
system, working for the real-time management of the previously developed prototype
AGVs, and integrating the developed localization system. This activity was also, in
its initial phase, a highly collaborative effort between Olivier Roulet-Dubonnet and the
author.

Real-Time Robot Motion Control

The robot control tasks in the IntelliFeed demonstrator case was not apparently compli-
cated, and an ordinary task and application implementation on any standard industrial
robot controller should suffice. However, it was clearly recognized from the demonstrator
analysis phase that it was not so simple altogether. The painting system carriers, though
geometrically well-specified, were made of soft steel and often bent several cms out of
shape from dangling and entangling during transport in the painting system.

The most complex part of the robot system development thus turned out to be the
3D localization of carrier attachment points and attachment directions. In a separate
project, owing much to Pål Ystgaard at SRM-PT, a stereo vision system from Tordivel AS
[Tordivel Website] was set up for carrier identification and attachment point localization.
Even with this advanced 3D vision system, and for just two specific carrier and workpiece
types tested, it was a challenge to meet the tolerance of the attachment motion of
workpieces.

This sparked the contingency planning of using sensor-based real-time motion control for
the attachment of workpieces onto carrier sites. Standard industrial robot controllers,
except the newest and the emerging ones, have very little or limited support for the
real-time, intermediate frequency (∼ 100Hz) motion control required by sensor-servo
control. Thus came about the desire for bringing the industrial robots under real-time
motion control on a computer platform external to the native robot controller; a computer

1.2. Project Background and Outline 7

platform with the necessary computational resources and technologies for creating and
controlling the robot according to a model-based sensor integration.

This desire for achieving externally controlled real-time robot motion was as much sparked
by the need as the opportunity: In an activity entirely unrelated to IntelliFeed, researchers
at SRM-PT, Johannes Schrimpf and Thomas Ulleberg, were working on embedding an
SBC into the Nachi AX10 controller, which provided interception of the communication
between the high- and low-level controllers. This interception was controllable over the
Ethernet port of the SBC, and thus allowed an external computer to completely take
over the joint-position-level control of the low-level controller; running at 100Hz with
approximately 150ms trajectory control delay.

In collaboration with Johannes Schrimpf, the author started the development of Py-
MoCo, a framework for real-time motion control of industrial robots in tool and joint
space, over native controllers providing real-time joint-position-control. As part if the
PyMoCo framework a set of “canonical” motion controllers were developed, comprising
those provided by the application platform of typical industrial robot controllers, but also
featuring real-time interactive motion controllers such as a joint velocity controller, a
tool velocity controller, and correction tool and path controllers.

The PyMoCo framework never came to direct use in the control system for the IntelliFeed
demonstrator, since the traditional approach with 3D vision eventually managed to meet
the tolerances. However, in the presented PhD work, PyMoCo became a central and
necessary ingredient in the activity for developing a real-time emulation setup for the
IntelliFeed demonstrator, as well as for developing the experimental control system tested
on the emulator. Further, PyMoCo has found its use in several other projects in need of
sensor-based robot motion control.

Waiting for Equipment

At a specific point in time the following important status was reached within the com-
ponent sub-systems:

� The PyMoCo framework for real-time motion control for the Nachi SC15F robots,
controlled by Nachi AX10 controllers, was in place and working well with the
robots. A simultaneous development by Pål Ystgaard had a more traditional robot
application based on the native high-level controller platform meeting the tolerance
for uploading workpieces. I.e. regarding the robot applications for the workpiece
upload, everything was doubly ready.

� The IceHMS middleware framework for Ethernet-distributed, agent-based control
was implemented and tested by Olivier Roulet-Dubonnet.

� the 3D vision system had been experimented and set up to perform at its best
regarding time and accuracy.

8 Chapter 1. Introduction

� A micro-controller board had been setup and programmed by Johannes Schrimpf
to integrate the control over Ethernet of a PnF-conveyor that had been specified
and ordered for installation in the laboratory. This included the commanding of
any of the PnF-valves for controlling the stopping states of the PnF-stops, reading
the proximity sensors at any PnF-stop, and controlling the drive-train speed of the
conveyor.

In other words, all that was needed for the overall laboratory production system as a
demonstrator in the IntelliFeed project was the overhead PnF-conveyor itself. All other
component sub-systems had been tried in individual testbeds. The waiting was not just
impacting the progress of the IntelliFeed project itself, but it was a major delay for the
PhD work presented in this thesis, as it was addressing exactly the integration and control
of all component devices and sub-systems.

A natural remedy for this situation, ensuring the progress, of the central activity of the
PhD project, was to break open the development of an realistic real-time emulation
platform for the demonstrator system.

Real-Time Emulation Platform

The conception of using the Blender [Blender Website] Game Engine (BGE) for real-
istic real-time emulation of a production shop-floor came while waiting for arrival and
installation of equipment for the physical IntelliFeed demonstrator system. The enabling
experiences had been in place already from the early phase of development of real-time
robot motion control, in which a simple but realistic real-time emulator of the low-level
controller and its motion of the mechanical robot had been implemented. The robot
control emulator development was motivated by three aspects which were equally valid
for the emulator for the IntelliFeed demonstrator:

Safety: Experimental control of large, heavy, fast, or strong mechanical systems, e.g.
industrial robots, AGVs, conveyors, always involve safety risks. These safety issues
are entirely cut out by using pure software emulation.

Availability: A production system at shop-floor level comprises many individual devices
that are interdependent in long operation chains and intertwined implicit states.
In an physical system, such as a laboratory prototype, at any given instant in time
there is a high probability that one or more necessary devices are

1. not arrived or setup yet,

2. experiencing downtime for repair or maintenance, or

3. borrowed or leased by other laboratory projects.

This impacts, often severely, the progress of the project.

Efficiency: The typical experiment cycle in a laboratory comprises the sequence of

1.2. Project Background and Outline 9

1. stopping operations,

2. shutting down all devices necessary,

3. making changes or adjustments,

4. replacing or re-localizing workpieces,

5. starting up all devices,

6. starting operations,

7. recording and monitoring operations.

It is evident that for a pure software emulation system, this experiment cycle time
may be vastly lower than for a physical laboratory system.

It is important to note in this connection that, however high the advantages with devel-
oping a control system over even a very realistic real-time emulated system may seem,
validation of the control system over the emulated system does not imply validation of
the control system in the physical system. While this seems to impair the principle of
development over an emulated system, it is equally important to note that failing to
validate a control system in a realistically emulated system almost always implies that
the control system would fail on the physical system; at least for sufficiently realistic
emulation. Hence it is suggested that control system development takes place with an
emulated system until successful, and then proceed with the physical system.

Whether the benefit of the emulated system will exceed the cost of implementing it is
a matter of analysis for each pertinent target system. When attempting to estimate the
balance in such a cost-benefit analysis, it should be taken into account that in addition
to the benefit of having an emulator for a target production system, the development of
the emulator itself brings about valuable knowledge and detailed analysis also usable for
the targeted physical system.

The above analysis assumes that a target physical system has already been chosen. Such
was the case for the circumstances of the laboratory prototype system for the IntelliFeed
demonstrator. But if an emulation system is being set up in advance of the selection and
layout of the physical system, it may be a valuable integral part of the system design
process. Such design-phase integration could have helped avoid a slightly unfortunate
placement of the upload robots with respect to the upload stop on the PnF-conveyor;
a placement resulting in some carrier sites being out of reach of the robot used for the
demonstration scenario.

Experimental, Simulated Demonstrator Control System

The development of an emulator for an extended IntelliFeed demonstrator took up a
considerable amount of time of the PhD project, and came to be a central and fruitful

10 Chapter 1. Introduction

part of it. However, it took much of the resources away from the planned focus, i.e.
research and development of advanced production control systems.

Eventually a quite advanced, Ethernet-distributed control system for the IntelliFeed
demonstrator emulator was developed. Initially this was an activity which was a nat-
ural and integral part of developing the emulator itself, since control of the emulated
system was necessary for experimenting and testing. Later on, as the emulator was in its
final phase and close to completed, focus switched from the emulator development and
concentrated on transforming the pieces of control system code for experimenting and
testing the emulator into a full-fledged control system in its own right.

The completed version of the control system is adequate for controlling the extended
IntelliFeed demonstrator. Three circumstances prevented it from ever being deployed on
the physical demonstrator system in the laboratory:

1. It was, as previously indicated, developed for a quite extended version to the In-
telliFeed demonstrator, involving more devices, such as AGVs, more robots, more
vision systems, turntables, order based workpiece providers, and exposed transport
and re-supply issues.

2. A simpler control system, also based on agents, had already been implemented and
used for demonstration in the IntelliFeed project on the actual, physical demon-
strator set up in the laboratory. The control system was developed, tested, and
demonstrated by Per Åge Nyen at SRM-PT.

3. At the time of completion of the control system developed in the presented PhD
work, the IntelliFeed demonstrator system was no longer available due to other
laboratory activities.

1.3 PhD Thesis Outline

The PhD thesis presented here has four major content components.

� Chapter 2 presents an essay of philosophical considerations assembled by the au-
thor during the period of the PhD work. First it introduces some terminological
use in manufacturing and industrial production research, mainly to clarify some, to
the authors opinion, frequent causes of slight confusion. It then presents a succinct
and subjective selection of the history of manufacturing and production. The re-
mainder of Chapter 2 is dedicated to a series of speculations over the paradigms for
production control under development in some part of the research community, and
relating it loosely to paradigms of previous eras and in contemporary use in man-
ufacturing and industrial production enterprises. Chapter 2 presents many views
that are associated with the philosophical background, and the very motivation, of
the work presented in this PhD thesis.

1.3. PhD Thesis Outline 11

� Chapter 3 gives a somewhat detailed account of most of the technical development
undertaken by the author throughout the PhD scholarship period. The account is to
a wide extent based on references to the publications included with the thesis. The
majority of the effort is invested in describing aspects and development efforts which
have not been adequately represented in the included publications. Notable subjects
that have received much attention in Chapter 3 regards the use of GNU/Linux
based PCs in real-time production and device control, and the development of an
experimental shop-floor control system for the extended IntelliFeed demonstrator.
The account of the developed control system goes into some details of the software
design at the mechanistic level, and refers to code for the control system and
interfaces of the emulator included in Appendix A.

� Chapter 4 is a selection of published and submitted papers prepared during the
course of the PhD scholarship. Most of the work in the PhD project have been
disseminated at scientific conferences and in scientific journals. The author has a
considerable share in the underlying work of all the included publications. They
have been selected among other publications, in which the author also contributed,
for their coverage of the central parts of this PhD project. The collection of
published papers is to be considered the main contribution of the PhD thesis.

� Chapter 5 concludes this PhD thesis proper by stating the main conclusions, giving
a summary of contributions from the PhD work, and presenting a short account of
planned and progressing future directions.

Finally a bibliography of cited publications, a webliography of referenced websites, and an
appendix containing central interfaces descriptions and implementation code are given.

12 Chapter 1. Introduction

Chapter 2

Philosophical Considerations on
Production Control

This chapter gives a presentation of views on philosophical themes and aspects of pro-
duction automation and control. It shall not be considered as a thorough, corroborated,
or comprehensive survey of production automation philosophies. The views and descrip-
tions are representative for the philosophical considerations underlying the work of this
PhD thesis.

Central to the presentation in this chapter are a series of propositions. The propositions
are succinct formulations of some core concepts within the field of production and man-
ufacturing engineering science. It must be kept in mind that about each and every one
of the propositions, several to hundreds of books have been written and published. By
no means the stated propositions are meant as a diminution of the extensive works of
others, but an attempt at distilling their essence to as few as one to two sentences.

Thus, while it is the hope that the descriptions and the themes are recognizable, it is
further hoped that some amount of fresh view on relations and new perspectives of the
matters are also found.

2.1 Terminology

In research literature and correspondences, as well as in common everyday-use, there
seems to be a lack of consensus about what concepts are covered by the terms man-
ufacturing and production. While the thesis at hand is not a theoretical study on the
scientific area of production- or manufacturing-engineering, a non-negligible amount of
confusion is assumed to arise without the precision and motivation of the concepts behind
those highly central terms.

14 Chapter 2. Philosophical Considerations on Production Control

First and foremost, it is natural to examine the etymology of the terms. A superficial
investigation in standard dictionaries shows that both are composed words of Latin origin;
manufacture meaning literally “to make by hands” and produce literally meaning “to
lead forward”. In modern concepts this transfers to an impression of manufacturing
being process and machine oriented, and is clearly associated with something tangible
and physical. Production literally gives the impression of being more concerned with
management or conditions slightly peripheral to the real activity involved, and it does
not necessarily imply something physical or tangible. The term production is further
used in many different contexts, such as arts and theatre, computing, agriculture, etc.
To limit the context of production to that which is relevant in this thesis, the term should
everywhere be perceived in the context of manufacturing.

A short excursion into standard dictionaries of German, British, and US-American reveals
that the concepts behind terms such as “Produktion”, “production”, “manufacturing”,
“Herstellung”, “Fertigung”, “fabrication” seem hard to dis-entangle, let alone finding an
unambiguous and clear concept for each of them in their own right. They are highly
context dependent in use; “production” more so than “manufacturing”.

At online fora the exact question of the difference between manufacturing and production
is abundantly posed. From observation of the answers given by various persons, the
professions of whom are stated to be within the fields of manufacturing and production,
are quite diverging and often contradicting. A conclusion from this is that the concepts
behind may not simply be dependent on lingual culture, but even professional culture; e.g.
with exactly which company a person is associated or employed, or from what department
at which university a person graduated.

This PhD thesis adopts a terminology in which the concepts are used in consistence
with their etymology, while not introducing or inventing new aspects. The following
propositions defines the concepts as they are used throughout this thesis:

Proposition 1 (Manufacturing)
Manufacturing is the transformation activities and processes of physically cre-
ating goods from raw material or input parts, utilizing tools, machinery, and
labour.

Proposition 2 (Production)
Production is the aggregation of activities, resources, and personnel utilized for,
and directly involved with, the systematic manufacturing of any kind of goods
with the intent of sale or later processing into final products. Production may be
described as organized and formalized manufacturing, taking place at a factory,
as part of a production enterprise in a production company.

These proposed definitions of central terms serve to clearly distinguish the associated
concepts. By these definitions, it is possible to distinguish what is technically a producer
from a manufacturer. For instance, most modern industrial robots are produced. Hence
the companies producing and supplying the robots may be appropriately termed “robot
producers”. The same companies will typically develop new robot models as well, and

2.1. Terminology 15

when making robot prototypes they will be manufacturing these but not producing them.
If, however, they develop custom robots, and supply these to customers, they may, in
that capacity, be appropriately termed “robot manufacturers” too. Machine builders are
often performing manufacturing of the machines for very specific customer purposes.
In contrast, simple goods like pencil sharpeners would typically be manufactured under
highly optimized, formalized circumstances, and hence they are produced.

However, since “production” is a broad term, used in many areas of activity, the term
“producer” is not very specific. A farmer, for instance, is a producer, but he has no
manufacturing involved in his enterprise activities; natural processes take the place of
manufacturing processes in this case. Hence, when referring to a producer which has
manufacturing as its core activity, “manufacturer” is mostly used. This thesis adopts
the common use of “manufacturing”, and does not strongly or consistently distinguish
between the use of the two terms “production” and “manufacturing”.

It may be summarized that manufacturing is at the essence of physical creation of goods.
Production, in contrast, is to do with control of the immediate circumstances of man-
ufacturing, which enables it to be carried out efficiently and in a manner that allows
replication of the end products. Mostly, the objective of production is mass manufactur-
ing of goods of a controlled quality.

The definition of production make use of the term production enterprise. A definition is
proposed as follows:

Proposition 3 (Production Enterprise)
A production enterprise is an integration of the whole range of entities relating
to, and including, a production department and a production system. This com-
prises business entities with functionality such as product development, produc-
tion development, maintenance, planning, accounting, purchasing, sales, mar-
keting, distribution, etc.

In short, a production enterprise is the production domain part of a production company;
i.e. the company may be thought of as the legal and financial entity, in which the
production enterprise is embedded.

The essence of the concept of a production enterprise can be carried over to the con-
cept of a manufacturing enterprise, which implies the absence of production-concerns
around the manufacturing. As an example, consider the work in a joiner’s workshop
where wooden chairs are made with hand-tools, where details are added ad hoc as to
the pleasure or idea of the joiner or customer at any given moment, with no formal
specification of processes, and where no repetitiveness of processes have guaranteed a
deterministic quality of any given finished chair. This would be appropriately called a
manufacturing enterprise when considered together with the joiner’s accounting, sales,
purchasing, and general interaction with the customers. There is no particular pro-
duction aspects involved. Such artisan-based manufacturing enterprises would typically
begin their transformation towards a production enterprise with the purchase of milling

16 Chapter 2. Philosophical Considerations on Production Control

or turning machinery suitable for batch processing of chair seats, arm rests, legs, support
structure elements, etc. This is where the more detailed planning and scheduling begins,
as well as formal geometric specification of any element of the chair types that will have
most of their elements made from machinery.

The work behind this thesis addresses problems mostly relevant to what may be called
complex production. The results of the work may be applied to the complementary
concept of simple production, but is thought to be less likely to be of need or to give
profitable benefit. Complex production is not easily defined in a quantitative manner.
The following is a proposition of a definition of complex production:

Proposition 4 (Complex Production)
A production which must schedule tight deadlines to fulfil the production plans,
pressing the flexibility towards the limit of the theoretically possible in terms of
changeovers; where the internal logistics of the production is complex; or where
external control of manufacturing processes are complex, is said to be complex.

Some remarks regarding production enterprise, production, and manufacturing are in
place in connection with this proposed definition of complex production. Production
complexity is different from production enterprise complexity, which is a characterization
of how sales, ordering, stock, purchasing, etc., interact and operate. Production com-
plexity may be determined by the arrangement of production devices and machines; the
real-time status of all ongoing processes and devices; the real-time coordinated, collabo-
rative, or cooperative control of the aggregation of production devices; and the detailed
progress and dynamical scheduling of the orders and products in progress. It is fully
possible to have complex production in a simple production enterprise, or vice versa.
This is analogous to the possibility of finding simple manufacturing in a complex produc-
tion, or vice versa. Manufacturing may be called complex if the manufacturing processes
are complex; typically implying high internal complexity of the manufacturing machinery
or tools. Internally complex manufacturing processes or machinery does not necessarily
imply that the external control of the machinery or processes need to be complex. A
CNC milling machine, say, may have immense internal complexity by itself, and even the
programs for a range of workpieces may be highly complex. However, once the machine
complexity is handled well by the machine manufacturer, and the process control for the
milling jobs on the workpieces have been handled by an experienced programmer, the
production aspect of using the machine may be very simple. The example illustrates a
case of separation between the manufacturing and the production processes.

Of central importance to automated production are the concepts of production machine
and production device. Their use deserve separate propositions:

2.1. Terminology 17

Proposition 5 (Production Device)
A production device is a controllable technical installation or equipment serving
a purpose in the production system; and under real-time production control. It
implies an obligation from the production control system to manage the device
in a responsive, timely manner depending on the pertinent requirements to the
device.

Proposition 6 (Production Machine)
A production machine is a production device that is internally complex. It may
provide several control aspects and interfaces to the production control system,
some of which addressing complex setup, monitoring, and information retrieval.

When used in the context of production, with no obvious ambiguity, the word “produc-
tion” is dropped from these terms. The production devices and production machines
may cover the production aspect of manufacturing machines and manufacturing devices.
Specifically with respect to automated production, they are concerned with the exter-
nal, exposed interface to such machines or devices with the purpose of automatically
controlling them within the production system. Production machines and production
devices may also be unrelated to manufacturing, and in such case they typically relate
to processes involved in production logistics, i.e. handling and transport of parts and
goods, or packaging of goods.

It should be noted that the proposition of a production device excludes equipment that
may not be controlled, or installations which are purely mechanical in nature. Such
installations may be adequately termed passive production devices or reactive production
devices. A central theme of the PhD work for this thesis is fully automated production,
and all devices are assumed to be controllable or interactive by digital communication.
Most reactive devices with actuators may, when it serves a purpose, be brought to be
controllable by associating a dedicated computing unit, such as a PLC, a micro controller
board, an embedded PC, or just plainly a PC with adequate data communication.

Plain devices, i.e. devices that are not as complex as machines, are mostly simple, stan-
dardized equipment. Examples that frequently occur in automated production systems
are conveyors, simple robot tools, valve controlled pneumatic cylinders, servo tracks and
gantries, vibration feeders, etc. These examples represent simple devices with no hard,
high-frequency real-time requirements by themselves, giving limited or no status data and
with simple control signals. For a manufacturing company with in-house development of
their production system, plain devices may be tightly linked to make up compound ma-
chines. Such linking may be of mechanical, electrical, or control-communication nature,
and the component devices will typically be inaccessible to all but the associated devices
in the compound.

Machines are often custom made by an automation supplier or machine builder for a
very specific function; often in the form of customized, electromechanical assemblies of
standard off-the-shelf components. Pallet transport systems may be considered examples
of modular machines that are customized from standard elements. Industrial robots are

18 Chapter 2. Philosophical Considerations on Production Control

examples of monolithic machines.

The insinuated distinction between plain devices and machines is not a clean categoriza-
tion into disjoint sets. It bears more resemblance to the two extremities of a spectrum of
complexity and use. Clearly, an industrial articulate robot is a machine, while a pneumatic
valve with a logically controlled solenoid switch is a plain device. However, an installed
robot with a tested and proven programmed logic may support two simple signals for
“pick” and “place” with no further complexities or parameters, whereby the machine is
turned into a device from the perspective of production control. In a simple produc-
tion this is the most common way of using robots, but it is notable that the online and
real-time flexibility of the robot as a production machine is thus also removed.

Machines may be divided into two rough categories of logistical and transformational
natures. Machines of a logistical nature are devices for handling, picking, packaging,
and transporting products in progress. Machines of a transformational nature are the
actual value adding devices; those that perform manufacturing processes. They are
frequently highly custom made, with very complex internal control. CNC machining
stations, fish fillet cutters, welding automatons, and thread rolling machines in screw
production are examples illustrating the great variation in the plethora of transformational
machines. When a drill or a welding torch is mounted on a robot, the combined system
of tool, robot, motion control, and transformation process control may be treated like a
compound transformational machine. When the same robot is equipped with a picking-
tool for moving workpieces from a press to a box, it is to be considered a compound
logistical machine.

The presented distinction and propositions for defining production devices and machines
is partially in agreement with the concepts “intelligent device” and “intelligent machine”
as used by Auinger et al. [2005]; though they incorporate software components explicitly
with the concepts. Their concept of machine is, however, strictly reserved for machines
supplied by machine builders or machine vendors. In the proposed definitions above used
in this thesis work, the example of a robot with a mounted drill or weld torch represents
a machine built by the systems integrator at the shop-floor, rather than by a machine
shipped by a machine builder.

The concepts of devices and machines leads this thesis to the following propositions for
the concepts of production system and production control system:

Proposition 7 (Production System)
A collection of machines and devices with their controllers, possibly organized
into workcell areas or production lines, the associated labour and operators, and
the supporting facility installations taken together for the controlled manufac-
turing of a certain spectrum of goods, is called the production system.

2.1. Terminology 19

Proposition 8 (Production Control System)
A production control system is a system of one or more computers that interact
over a digital communication medium with each others and with all machines,
devices, and labour in the production system. Its main objectives are to handle,
control, and orchestrate all aspects of production not covered by internal control
of the production devices.

A production system, as considered in this thesis, is not active in itself, but has ex-
clusiveness in the potential for performing any physical actions. It takes a production
control system to give life to a production system, because it adds to the whole system
the decisions; the actions of carrying out the decisions; the commands to machines and
devices for configuration and operation according to the actions; and it determines and
sets up the low level interactions among machine and device controllers.

Production control in a traditional sense may be understood as the execution of routines,
formal or informal, written or in the minds of personnel, and the actions of the persons
involved with the matter. A traditional production control system may be defined as the
production control information together with the computer systems and the personnel
involved with operating the production system in real-time. It is clear from the above
proposed definition that this PhD thesis addresses fully automated production control,
which distinguishes itself from traditional production control by the absence of informal
descriptions of routines or actions from personnel.

The production aspects that must be addressed by any kind of production control system
may be illustrated by the examples in the following list:

� Detailed, real-time, and reactive scheduling.

� Coordination of manufacturing processes.

� Production logistics.

� Supply from raw material stock.

� Changeovers

� Progress monitoring

� Reporting

In a typical production company with automation of both production and production
enterprise, the main input to the production control system stems from the ordering
and planning aspects of the production enterprise. The input may be expressed to the
production department, or directly to the production control system, through an ERP
system. The form of the input is in day plans and rough sequencing. The sequencing
is formulated in terms of delivery deadlines of specific product types and quantities for
shipments during the day.

20 Chapter 2. Philosophical Considerations on Production Control

2.2 A Brief History of Production

The works, methods, and principles developed and applied by Taylor [1913] and Ford
in the early 20th century are renowned for the foundation of the engineering area that
brought systematics to manufacturing, and from which emerged what is today referred
to as industrial production. The main points may be crudely summarized by:

� Simplification of manual transformation processes by deploying specialized ma-
chines.

� Reduction of product complexity while maintaining or increasing product quality
and functionality.

� Structuring the management and information of production operations and trans-
formation processes.

Taylor’s scientific approach to management of a manufacturing enterprise aimed at rais-
ing the efficiency by structuring and systematize manufacturing operations, workshops,
machinery, and human labour activity. It became key to mass manufacturing of merchan-
dise in manufacturing companies; thus evolving to production companies. Production of
identical cars based on standardized components enabled Ford to lower the costs of the
individual products sufficiently that the working classes could afford them. The afford-
ability of the products, and the market they thus opened, justified and made sense of
systematic mass manufacturing. Ford’s insight into, and courage to exploit, the symbiotic
relationship between mass consumption and mass manufacturing, may have contributed
a considerable share of the spreading of wealth from production in the industrialized
world, throughout the 20th century.

Ford’s principle of reduction of product complexity aimed at lowering the material costs of
the product, and simultaneously simplifying the manufacturing processes for the produc-
tion and assembly. Structuring the end-products from standardized components made
product upgrades easier regarding the production system, because their impacts were
confined to proportionally few affected production lines, workers, and machines. Another
achievements which is, contrary to common beliefs, accredited to Ford is the JIT prin-
ciple, as argued by Petersen [2002]. The JIT principle was applied to the ordering of
material, such that no material was stockpiled far in advance of its need in production.
The principle was used not only on an external supply-level, but also production lines,
and even each process-site on the production line, were supplied only the amount of
parts for a foreseeable future of planned operations. The replenishment would even, with
advantage, be delivered by the external supplier directly to the transformation processing
site on the line, and thus even cut out a central storage. The main benefit that comes
with the principle of JIT is the release of investments in stockpiled supplies and the as-
sociated valuable shop-floor spaces it takes up. The benefit of applying the JIT principle
will outweigh the more vulnerable complex and tight logistics only if the latter can be
handled in a sufficiently reliable manner.

2.2. A Brief History of Production 21

With centralized production, Ford faced a serious spatial problem of transportation ca-
pacity for the sheer amount of cars; cars being not exactly easy to package tightly in large
amounts. The solution to the problem was to geographically distribute the final assembly
of the components, making the shipments from the factory much more compact. The
final assembly would then take place near wholesaler or retailer. Thus, the final assembly
was done to individual order (assembly-to-order), and the specific variant of the final
car would be determined by selecting among compatible components, specified with the
individual order (delayed product differentiation).

The Ford-T model is an eminent example of the achievement of production in the form
of mass manufacturing. However, the post war increase of consumers wealth became
the driver for diversity in the requirements, demands, and wishes to the products. The
multitude of final products, the product spectrum that a manufacturer had to provide
to remain competitive, became a direct challenge for the streamlined, optimized, highly
tuned production lines. Methods and principles for accurate sales projections was not
well developed at that time, and in the name of supply security for the wholesalers, final
goods began to pile up at the manufacturer. Though expensive on the investment in final
goods stock, it was possible for US-American automotive manufacturers to implement
such a space-consuming principle, but in Japan problems arose. Being an automotive
manufacturer in a densely populated country, Toyota had to seek a way of simultaneously
meeting the requirements of a broad product spectrum, and not fill up the precious stock
space with cars that were not certainly known to be sold and shipped in a short time.
For Toyota, producing only what was ordered, and only close to delivery time, became
the solution. This was another application of the JIT principle; in this case supplying the
final goods storage with only what was ordered.

The problems faced by Toyota resulted in the development of TPS, notably by Taiichi
Ohno. It is widely recognized as the forerunner of the lean production philosophy, which
has permeated to many production companies today. Much of TPS is aimed at the
business management around production. However, some elements of TPS are aimed
directly at the production control and strategy. SMED and OTED were key technical
achievements for enabling the shorter lot size, which was important for TPS; such tech-
nical key achievement for the success of TPS are well described by Shingō [1989]. The
names derive from the main problem of changing die in stamping presses for the car bod-
ies. Such die-change operations posed the major challenge to reducing the change-over
time, which was urgently necessary to lower the lot size while remaining efficient. Only
by lowering the lot size could Toyota produce the cars close to the delivery times.

Where SMED and OTED were directly aimed as principles of inter-transformation pro-
cess operations, the production control strategy they were part of enabling is referred to
as Pull Strategy. The pull strategy broke with the predominant Push Strategy of pro-
duction control. In a production controlled by a push strategy, the production planners
first have to be certain of what to produce in the end. Then a corresponding amount
of raw material, corresponding to the total bill of material, are pushed into the produc-

22 Chapter 2. Philosophical Considerations on Production Control

tion system, every segment of the production pushing its products in progress further
downstream in the production. When the situation of a production company is such that
prognostics is reliable and planning is optimized, the push strategy may be more efficient
and productive than the pull strategy. However, especially if the prognostics is highly
uncertain in estimating the later demand-situation, the push strategy may result in large,
long-term stocks of end-products. The technical development at Toyota enabled a pull
strategy to be developed, and the solution was based on cards that were passed upstream
in the production to notify the need of products at specific downstream points. A card,
or “Kanban” in Japanese, thus triggered upstream activity directly from a downstream
need. In a well-implemented “Kanban”-system, the production of final goods is simply
ordered by placing the desired amount of cards at the shipping area of the production.

The direct technical achievements in the production at Toyota, as well as the philosoph-
ical achievements in production management, may be considered unsurpassed. With
introduction of NC and CNC in machinery, for automated precision transformation pro-
cessing, and later robots and robotics for handling and assembly, the levels of efficiency,
automation, and transformation process capabilities increased. In TPS, the concept of
autonomation was established for describing and organizing the cooperation of a human
operator and an automated machine.

With the onset of fully automated production systems, implying the elimination of ma-
chine operators from the shop-floor, system control computers was introduced for taking
over the supervisory and communicative level of the operators. The application and
control software deployed onto the various machines and devices was becoming increas-
ingly complex and interdependent between machine and system controllers. The total
reliability became an issue as a result of the control paradigm and the sheer number of
potential failure points.

To deal with such new complexity in software and application control, a number of
ideas and paradigms have been proposed, debated, investigated, and experimented with.
The earliest, most successful, and the only one to come into use, is the hierarchical
control paradigm. Its success in automated production control hinges on a number of
qualities, such as amenability to analytic verification, computational efficiency, and clear
and static responsibility delegation. If a hierarchical control system is also centralized,
i.e. fully synchronized in execution, the highly desirable quality of determinism may be
attained.

In spite of an increasing level of criticism against the hierarchical and centralized produc-
tion control paradigm, due to changed circumstances and requirements to production,
it is safe to say that it is the de facto pinnacle of achievement within the realm of fully
automated production control.

2.3. A Battle of Paradigms for the Future 23

2.3 A Battle of Paradigms for the Future

The competition, and controversy, among paradigms for the fully automated production
control and management systems of the future can be inferred from the following two
propositions:

Proposition 9 (Traditional Evolution)
The traditional production engineers insist on remaining with a proven, well
analysed, hierarchical or centralized control system. They will attempt to extend
and re-factor it to accommodate current and future requests for flexibility. Every
small step of the way must present a stable and reliable solution, adequate for
continued deployment in production.

Proposition 10 (AI Revolution)
When considering the most extreme requests for manufacturing and production
flexibility, the AI-minded engineers propose that only by distributed deployment
of AI and allowing autonomy into all levels of manufacturing and production
control may the requested flexibility be fulfilled in a scalable manner. By allowing
autonomy in distributed, intelligent entities, emergent behaviours may have to
be tamed and tethered to prohibit inadequate, spurious control decisions.

Both of these paradigms are generally applicable throughout the spectrum of manufac-
turing and production. Being paradigms, they do not lay down hard constrains on the
architectures, designs, or implementations of production control system. Rather, they
may characterize the architecture, design, and implementation of a given production
control system, or the state of minds of the developers during its development.

The paradigms are conceived to be efficient in different regions of the spectrum of pro-
duction characteristics, and should be expected to have very different profiles of efficiency
with respect to production performance, development effort, and maintainability.

Hatvany [1985] details how analogies to the controversy of these paradigms of hierarchy
and centralization versus distributed autonomy apply in society, in corporate structures,
and in scientific tradition. It demonstrates that this controversy is neither new, nor
limited to production management and control. Raymond [1998] gives a good overview
of how the controversy of paradigms apply to the development of large software systems.

2.4 Hierarchic, Heterarchic, and Holarchic Control

Where a hierarchy may be described as a simple, rooted, acyclic graph, a heterarchy is a
dynamic graph with no restrictions on connections; i.e. a general graph. Trying to tame
the inefficient anarchy of such a heterarchic structure with its unlimited freedom while
retaining some of its flexibility, the concept of holonic control was introduced.

24 Chapter 2. Philosophical Considerations on Production Control

This section will state and discuss some loose and succinct propositions of three different
paradigms of control systems in the following. Van Brussel et al. [1998], Hatvany [1985],
Leitão [2009], and Blanc et al. [2008] all gives comparative descriptions of the paradigms
from the perspective of heterarchic or holonic systems for production and manufacturing
control, and with emphasis on the shortcomings of hierarchical or centralized approaches.
Dilts et al. [1991] dedicates a more detailed treatment on the evolution of hierarchical
and centralized control systems towards heterarchic control systems in production and
manufacturing. In many ways, the holonic architecture resembles the “modified hierar-
chic” architecture of Dilts et al. [1991], but with the possible difference in dynamics of
superior-subordinate and inter-subordinate relations.

The traditional, hierarchic control system may be described as:

Proposition 11 (Hierarchic Control System)
A hierarchic control system is a statically, hierarchically organized system of
control entities where each control entity is subordinate to exactly one superior
control entity, and exclusive superior to a number of subordinate control entities.
Interactions are strict with respect to commands going from a superior to a
subordinate, and status information in the opposite direction.

It is apparent from this proposition that designing and implementing a hierarchic control
system is a task that may be immediately undertaken and started, provided that an
analysis and ideas exist about how the overall logic of operation should proceed. This
is a situation often met in a production subsystem of limited scale or complexity. The
notion of “statically” mentioned in the proposition, is not a strict requirement, but
allowing dynamics in the hierarchy opens a whole range of complicated failure modes,
whereby one of the major benefits of the paradigm vanishes.

When considering larger or more complex subsystems, the immediate overall logic of
operation, which presents itself to the developer, tends to be somewhat more vague,
since the scale or complexity of the system reflects on the logic. Trying to capture a very
complex logic while maintaining consistency and completeness is an essential problem;
for certain cases it is not even solvable. This motivates the relief of the specification
from such global completeness and consistency, concentrating rather on the individual
component control entities, leading to the concept of heterarchic control. Heterarchic
control may be captured shortly by

Proposition 12 (Heterarchic Control System)
A heterarchic control system is a flat organization of control entities. Each
control takes on its own responsibilities and initiates peer relations to other
control entities. Control responsibilities and peer relations are autonomously
and continuously updated according to internal logic and negotiation with peers.

The architectural concept of a heterarchic control system is very aligned with the paradigms
of agent and multi-agent systems. The central common concept is that of ultimate au-
tonomy in every entity. Heterarchic control systems share the advantage of agent systems
when dealing with large or complex systems, which is that of an unconstrained decom-

2.4. Hierarchic, Heterarchic, and Holarchic Control 25

position of the problem into a representation of numerous aspects; all of which being
easily comprehensive both computationally and logically. This is in sharp contrast to
the reductionist decomposition in hierarchical control, where a pure separation of con-
cerns combined with a full coverage of all aspects of the strict operation specification is
required.

Development, maintenance, and improvement of a heterarchic control system, where
everything is characterized by dynamic connections and absence of architectural con-
straints between entities, has its apparent advantages. Systems implemented along the
heterarchic or agent-based paradigms are viable wherever “best effort” or “intelligent
response” are the only requirements. Such are typical of complex problems where no
external requirements can be reasonably posed, and where just reasonable solutions or
answers are requested of the systems. The problems of using the heterarchic paradigm
for production control should thus present itself immediately. While it is easy to start
implementing control entities that covers and take responsibility for different parts or
different concerns of a production system, meeting the external expectations to overall
performance gets lost in the process.

It is not the least difficult to imagine heterarchic systems for controlling very large and
complex production systems, achieving full flexibility in principle, but where the lack of
coordination, or inefficient execution, leads to vastly deficient performance, or even zero
overall performance. In a multi-agent system, there is, by definition, no way of overruling
the internal autonomy and decision competence of individual agents, and no agent may
thus be controlled into submission by overall real time planning and production perfor-
mance concerns. The shortcomings of the otherwise tempting paradigm of heterarchic
control when met with external performance and coordination criteria, motivated the
paradigm of holonic, or holarchic, control systems.

In a holonic system, a hybrid and dynamic mixture of the aspects of heterarchic and
hierarchic systems is allowed. For a given instant in time, a holonic system may seem to
operate as a heterarchic system, with all entities taking on responsibility deliberately and
seeking meaningful peers for cooperation. At a later instant the same system, or parts
of it, may have switched character, and then exhibit a hierarchic behaviour with entities
acting like slaves for other entities, and thereby having their autonomy and integrity
suppressed in certain respects. This is expressed in the following proposition

Proposition 13 (Holonic Control System)
A holonic control system is an dynamic organization of control entities, called
holons. A holon is an agent of which a certain set of control facets must exhibit
the ability to cooperate, be coordinated, and act autonomously. The precise
dynamics of the modes is entirely up to the surrounding environment of holons
and to the timely state and status of the local and global tasks, goals, and
objectives.

As such, this is a very precise proposition, which basically just relieves constraints that are
in effect in hierarchic and heterarchic systems. While it is clear that choosing a holonic

26 Chapter 2. Philosophical Considerations on Production Control

paradigm will enable the developers of a control system to work around the inherent
limitations and problems with the heterarchic and hierarchic paradigms, it comes at the
cost of a higher inherent complexity of the holons that must be consistently designed
and implemented.

The presented propositions on control paradigms are quite clear on the architectural
aspects. But in practise, it is doubtful if designers and implementers of hierarchic and
heterarchic control systems are strictly following the paradigms. It may be conjectured
that in almost any successful implementation of a complex, real-time control system that
claims to be heterarchic, violation of the absolute autonomy and integrity of some agents
take place. Likewise, it is hard to believe that an intelligent, hierarchic system for the
real-time operation and control of a complex production system with numerous local
uncertainties, is never in need of delegating considerable autonomy or decision control
to subordinate components and allowing them a high degree of self-organization in a
peer-to-peer manner.

In light of this, the paradigm of holonic control may simply express and extend what
is more or less common practise. It may not be useless for that matter, since it will
clearly help developers if they are not constantly believing that they are violating the
overall paradigm or architecture of their solution system. It have also kicked off an entire
community and forum of researchers that develop strategies and techniques for the design
and implementation of holonic control systems.

2.5 From Flexibility and Batch to Agility and Chaos

Production control, considered as a service in a production enterprise, has traditionally
been required to put dependability, predictability, and efficiency above everything else;
e.g. flexibility, scalability, and maintainability. When facing these requirements in isola-
tion from other concerns, the hierarchical or centralized control paradigm will stand out
as an almost obvious choice for the organization of a production control system.

The gradual transition, during the past two decades, towards requiring production flex-
ibility has left a cleft between production enterprise aspects and production systems.
Flexibility is, to the production control system, for most part a matter of handling the
increased number of static configuration states of production equipment and flow of ma-
terials. The states are static during the whole operation of a given setup of the production
system for a given product; though a possible set of dynamic co-states may introduce,
when manageable, an extra complexity of a dynamic nature for handling related variants
of the pertinent product in the same setup.

Flexibility may be classified as a quality of a combined production and production control
system as follows:

2.5. From Flexibility and Batch to Agility and Chaos 27

Proposition 14 (Flexible Production Quality)
Production flexibility is the quality to produce the whole or a large part of
the product and variant spectrum of the production enterprise, in the same
production system with massive reuse of production equipment across products
and variants.

Central to the concept of flexible production is the batch production strategy:

Proposition 15 (Batch Production Strategy)
Batch production is a production strategy characterized by system-wide, time-
separated periods of setup and producing. During setup, no producing takes
place and all equipment is prepared for the next product type. During producing,
nothing is changed in the equipment setup and a high number of goods of one
specific type is produced.

Typical production in today’s advanced production enterprises may be qualified as flexible
batch-production. The notion of advanced production discounts the companies with
trivializing extremities in their production systems, product spectrum, or transformation
processing complexity:

� companies that have an extremely sparse product spectrum, e.g. one single product
with no variation and simple transformation processes, and

� companies where the transformation processing and handling variations across the
whole product spectrum are possible on the same equipment and within one and
the same setup; e.g. only colour or inscription variations with no or little geometric
variation.

As even the complexity of flexible batch-production may make a hierarchical approach
to production control struggle to achieve stability and efficiency, it does not promise
any better for the future. The last decade of development of the concept of agile
manufacturing and agile production is beginning to break its way into the requirements
to contemporary production systems.

Proposition 16 (Agile Production Quality)
Agility is the quality of a production control system and production equipment
when any entity is able to, without prior or with only short notice, undertake the
meaningful or necessary processing from the whole, or a part, of its capability-
share of the product and process spectrum. All reconfiguration of the entity
must be automatized and initiation must be triggered autonomously, without
the requirement of stopping any other part of the entire production system.

Agility is a much stronger quality than the quality of flexibility. It is not hard to understand
why agility is a quality to strive for when considering the desires from the following
production ordering rules:

� Issue only internal production orders for items that can be associated with effective
external customer orders.

28 Chapter 2. Philosophical Considerations on Production Control

� Immediately start internal ordering of production upon the issue of an external
customer order.

The first of these rules express the vision of complete eliminating stockpiling based on
prognostics, and the second express the desire for avoiding delivery delay due to high lot
sizes. Only agile production may operate in simultaneous fulfilment of these rules while
retaining some level of efficiency. On the other hand, a flexible production which fulfil
these rules may be phenomenologically re-classified as agile.

If production agility can be efficiently achieved, the entire production planning and prog-
nosis activities may be severely reduced or entirely eliminated. A direct technical benefi-
cial effect implied by efficient agility is the ease with which load balancing of equipment
usage may be introduced.

A desirable production strategy that may be deployed with attained efficient agility is
chaotic production:

Proposition 17 (Chaotic Production Strategy)
Chaotic production is a strategy of production control characterized by absence
of a global production plan. Production orders are created on the fly, scheduled
on-line, and with routing, re-scheduling, and transformation processing decisions
created in real-time during the course of the individual work orders.

The term “chaotic” intuitively carries a negative impression. In the context of agile
production control, however, it is to be perceived as the successful mastering of chaos.
An analogy may be drawn to intentional “inherent instability” or “relaxed stability” in
aircraft design, allowing for increased manoeuvrability by an advanced control system.
Likewise, allowing chaos in the planning, scheduling, and execution of a production system
may be possible for a sufficiently advanced production control system. The production
control system which can master a chaotic composition of work in progress and entangled
material flows will likely be less disturbed by sudden changes to order priorities, order
types, or breakdowns in devices, machines, cells, or lines. I.e. it will be agile.

The property of chaos may pertain to something internal to a system, emerging out
of even quite simple and strict production control logic. This poses a challenge to
flexible production systems that assume that the production operation can be maintained
under strict control according to plans and schedules. For a discussion in mathematical
terms, and examples of conditions for, emerging chaos in controlled production confer
Haghighirad et al. [2008].

In a different sense, which is the one intended with the proposed definition here, chaos
may pertain to the external expectations imposed on the production control system from
the production enterprise. The production enterprise may simply reflect the fluctuat-
ing circumstances of customer demands, customer ordering patterns, and supply chain
opportunities to the production control system. This meaning of chaos in production
control is discussed by Rio [2007].

2.5. From Flexibility and Batch to Agility and Chaos 29

A chaotic production strategy, as proposed here, implemented with an agile production
system is a vision and desire of most production companies that either have highly
complex product spectra; high uncertainty or downright unpredictability in the pattern
of customer orders; very short lifetime of product types or families; or all of these.

A hybrid of the chaotic and batch production strategies is called mix production. It may
be characterized as a chaotic production strategy, but with high penalties, in terms of
temporal delays, for the change of product type at some or several devices, machines,
cells, or lines. The intelligent scheduling system of an agile production control will know
this a priori, or experience it a posteriori for later application. Thus for certain situations
and periods the production control will operate according to the batch production strategy
but with changeovers flowing with the product type boundaries. By arrangement and
orchestration of the changeover operations in a flexible production control, the same
may basically be achieved. Thus, the mix production strategy is approachable from both
flexible and agile production control systems.

The immense complexity that arises when changing from batch-, over mix-, to chaotic
production strategy is very hard to capture and manage in a control system. Ultimately,
to become efficiently agile, the flexible production control system must be evolved to au-
tomatically deal with the full complexity of the whole spectrum of products and variants,
at any time, at any single device, machine, cell, and line.

At the historical advent of fully automated production some decades ago, the natural and
superior agility of a manually operated or assisted production system evaporated. The
agility was traded off for extremely “stiff”, hard-automated, but efficient production lines.
Basically, a production line could produce one single product variant, but at a high rate,
controlled quality, and at a low cost. Increasingly varying customer demands induced the
desire for regaining agility, but widespread production automation seems stuck with only
flexible batch production in hierarchical or centralized production control systems.

As the hierarchical control paradigm is struggling even with flexible control of batch
production, it is not far-fetched to project for the future that it either must rely on some
basic innovation or be replaced by some new paradigm. The holonic production control
paradigm may turn out to be a viable successor, but still has some way ahead, in terms
of analysis and proof of concept, before being considered. Specifically, as long as no wide
scale holonic production control system is known to exist, any TCO analysis will be more
or less guesswork. Besides a TCO analysis, a wide scale prototype or pilot system further
has to clearly indicated that such a production system can in fact operate satisfactorily;
i.e. that the eventual loss of productivity is adequately balanced by the increased stability,
flexibility, and agility. Until then, and as long as production companies are unwilling to
or incapable of risking loss of productivity at the potential gain of agility, they are, it
seems, stranded in the current production crisis in countries with high labour costs.

30 Chapter 2. Philosophical Considerations on Production Control

2.6 Automation Principles of Agile Production

The flexible and the agile strategies break with the focus on immensely stable, mono-
lithic, costly, high-productivity solutions of past production strategies. In past paradigms
of production control, and still widespread today, it was considered mandatory that any
subsystem was of high quality, high reliability, and yielding high productivity, disregarding
the cost. In the future it will be much more important that commissioned subsystems
present highly flexible platforms for hosting intelligent or cognitive control systems al-
lowing for automatic reconfiguration and operation.

As a traditional example, consider the installation of an assembly cell centred around one
large, expensive robot, with long reach for covering voluminous magazines of component
assembly parts. This would typically be the only installation for doing exactly these perti-
nent assembly operations on all products of the production. Hence the high requirements
to quality, reliability, and productivity. These requirements lead to the development and
tuning of the setups of the installation into an extreme level of complicated parameter
interdependence and low tolerances. Very tight demands on the operation tact-time to
the installation will leave no slack for sensory or cognitively based decisions and control.
The final setups of the cell ends up in a set of “stiff” parameter configurations, for which
no engineer will stand a chance of changing a single bit in any parameter without knowing
every aspect of the control system to the lowest level of detail.

Such a system is naturally wanted for its resulting reliability and productivity, but un-
wanted when it comes to product upgrades, cross-product reuse, change of products
and parts flow control, changes to magazine geometries, and every other aspect that
change the circumstances for any production system entity. In the future, such a choice
of subsystem principle must be preceded by an extremely careful analysis, showing with
high certainty that the requirement on the productivity, the parts produced, and the
immediate production environment for the system are kept fixed for some years ahead.

In today’s increasingly fluctuating market-demands a positive outcome of the aforemen-
tioned analysis is decreasingly likely to be met. Rather than considering an alternative
system principle, the traditional project described is simply rejected, and automation is
never introduced for the assembly tasks. This situation may account for some of the
general decline of production in the western economies with high labour cost.

A possible future alternative to the traditional production automation principle calls
for less emphasis on requirements to quality, reliability, and productivity of individual
installations. Instead, other qualities, less amenable to direct analysis regarding impact
on productivity, may be gained. At the same total cost as commissioning of one large
assembly cell based on expensive high quality equipment, five to ten smaller systems
may be designed for solving the same assembly tasks, each having the same capability
as the traditional system, but with much lower tact time. The combined productivity of
the five to ten low-cost systems, however, may greatly surpass the productivity of the
single-system design, and even at a lower total cost.

2.6. Automation Principles of Agile Production 31

Several immediate beneficial impacts of such a change in automation strategy, mainly
derivatives of the properties of redundancy and low cost, are given in the following list:

1. Delayed emergency maintenance is possible when any single redundant system
may be automatically taken out of production on failure, with the other systems
taking up the combined instantaneous productivity requirement.

2. Live experimentation for upgrades and changes on a real, on-line, complete hard-
ware systems which has been partially taken out of production is a major benefit
of having redundancy.

3. Decoupled and unconstrained maintenance scheduling becomes possible, since
any one system may be taken out of production at any time, without disrupting
the entire up- and down-stream production.

4. Incremental commissioning by replication of individual hardware and software
setups allows gradual ramp-up to a desired level of productivity or redundancy.

5. There will be less pressure on optimization and hard geometric coupling, yielding
room for more intuitive and comprehensible system implementation.

Intuitively it would seem an immediate problem that the engineering and maintenance
burdens are proportional to the number of installations. This is naturally not so for repli-
cated, near-identical installations, and this objection is further rejected by the property
of comprehensible implementation (impact 5). By allowing for a much more intuitive
implementation of the control systems of the individual installations, the processes of
error seeking, debugging, and fixing of the systems will be much less cumbersome and
time consuming.

The principles of delayed emergency maintenance (impact 1) and decoupled and uncon-
strained maintenance (impact 3) affect not directly the effort required for maintenance,
but maybe more importantly the circumstances surrounding maintenance. In an emer-
gency on a traditional productivity-critical installation, there is no maintenance schedul-
ing; it has to be fixed immediately. For a solution based on several cells and redundancy,
the failure of any single cell, which is automatically switched out of production, emer-
gency maintenance may be deferred for hours, weeks, or even months, depending on
the level of redundancy in the solution or the impact on overall productivity. Scheduled
maintenance in a traditional system will have to be carried out in coordination with the
surrounding production system and most frequently implies the total stop of production
in the cell under maintenance. By decoupled and unconstrained maintenance (impact 3)
in an agile system with redundant cells, any cell will be possible to schedule for mainte-
nance based exclusively on conditions internal to the cell and availability of maintenance
personnel.

Specifically with respect to total cost of ownership and performance optimization of the
agile solution, the concepts of live experimentation (impact 2) and incremental com-
missioning (impact 4) are highly important. In a traditional productivity-critical setup,

32 Chapter 2. Philosophical Considerations on Production Control

there is very little room for experimentation on the live system for upgrading; either to
meet product changes or for optimizing in the face of inferior productivity. By having a
sufficient redundancy in terms of number of cells, or a period of lower requirements on
productivity, any single cell of the agile solution may be taken out for live experimen-
tation. Regarding incremental commissioning, in case of the final agile solution proving
to give too little redundancy or too low productivity, or if at a later stage the overall
productivity is desired to be increased, replication of the single cell systems may enable
the minimum investment for meeting the immediate demands or desires. This is contrary
to the situation faced with solution along the traditional principle, where a replication
requires a doubling of the shop-floor spaces and equipment costs, while the required or
desired productivity increase may be as low as 10%.

Chapter 3

Account of PhD Work

This chapter presents an account of work and results throughout the duration of the
scholarship for this PhD thesis. The account is mainly thematically organized across the
included publications in Chapter 4.

The fundamental themes that make up the core of the work in this thesis is succinctly
captured by the following list:

� The use of GNU/Linux and standard computers in real-time and on-line distributed
control in production.

� Real-time emulation of complex production devices; notably robots and AGVs.

� Device-level, real-time emulation of production systems for development of dis-
tributed, intelligent production control.

� Implementation of an experimental production control system for verification of
the production emulation system.

3.1 Linux-PCs in Production Control

A common PC is considered as any computer based on, or developed from, the IBM
PC architecture. For a couple of decades, since it’s conception in the early 1980’s, the
standard PC has been generally considered too unreliable and fragile for use in con-
trol application by industry. Industrial control during those decades were predominantly
based on the PLC hardware and logical programming platforms, offering much simpler
programming and operating facilities. Much of the automation in manufacturing industry
today is still based on PLCs.

Due to the inferior general computing facilities and performance in the typical PLC, PCs
have been gaining ground on the shop-floor, adding comparatively tremendous computing

34 Chapter 3. Account of PhD Work

powers needed for the heavy information and data processing associated with intelligent
and advanced control systems. This section is devoted to discussing how deep into the
control loops the PCs may go, and to review some possible trends of the past decade in
this regard. Specific attention is devoted to common PCs with GNU/Linux, since this
has been the consistent and fundamental control and development platform for the work
underlying this PhD thesis.

3.1.1 Issues with common PCs in Manufacturing Control

In comparison to simpler, rugged computing or logic devices such as PLCs, three common
issues with standard PC may be stated succinctly as:

Software System Unreliability: Too high flexibility of technologies and programming paradigms
in the development environment and at the operating system level.

Real-time Unreliability: Lack of real-time support in the operating system, as service to
control applications.

Hardware Fragility: Sensitivity to the physical environment, i.e. moist, dust, temperature
variations, vibrations, electromagnetic disturbances, etc.

On Software System Unreliability

The software system unreliability is here suggested to have nothing much to do with the
PC platform itself. This thesis suggests that it rather has to do with the very flexibility
and vast amount of available technology available with standard operating systems for
PCs.

Unreliability emerge or evolve when developers build complex applications; especially
when bad software design choices are made, the resulting software complexity may greatly
exceed the fundamental solution complexity. The wide possibilities provided by the op-
erating system, the development environment on the platform, and the technologies
available for the development sometimes muddle an otherwise good solution design of
the control application, simply by unfortunate mixing-up of technologies at the imple-
mentation and deployment level. Such a spaghetti-implementation will contain a fair
amount of implicit mechanisms and constraints. While the initial system may be de-
veloped to become reliable in operation, it may exhibit a perceived unreliability during
later software evolution stages, as the aforementioned hidden, implicit constraints and
mechanisms surface. As indicated, this may be a perceived unreliability, whereby the
original programmers may successfully evolve the system, but where any attempt by a
non-initiated developer will fail. However, in severe cases not even the initial developers
of the software system may grasp the implicit mechanisms, and hence the software sys-
tem design, the operating system, and the PC platform are left open for being victimized
as inherently unreliable.

3.1. Linux-PCs in Production Control 35

It is thus suggested that it is the highly flexible software development facilities and the
wide range of technologies that lure the programmers into building unreliable applica-
tions. This problem will rarely arise when founding the control application on PLCs,
where the lack of advanced features in principle inhibit the design and implementation
of complex applications. Furthermore, besides being quite simple, the restricted facilities
for application development on PLCs are quite standardized. Therefore neither the initial
developers, nor the new, non-initiated developers will find it difficult or complicated to
perceive the mechanisms of a PLC-based application.

Of course, it is possible to restrict the development of control applications on PCs to the
functionality provided by various PLC development and operation platforms. This is the
essence of a Soft PLC, and the principle was indicated by Rullán [1997], though the case
was purely for demonstrating how easily it was done on a standard PC with common
development tools.

A principle of restricting the flexibility and technology of the facilities available to the
control system designers and programmers may imply better reliability of the control
systems produced. However, it is definitely not a principle that will help a production
enterprise to evolve towards advanced and agile production control.

On Hardware Fragility

When considering standard PCs or personal laptops, these are mostly only shielded and
protected for reliable operation in the friendly environment of an office. The standard
office PC or personal laptop being the predominant form of the common PC, it is not
strange that industrial production engineers often consider PCs too fragile to be com-
missioned in the shop-floor environment of a production system.

A short description of the operation-environmental issues for a standard PC is given in
the following list:

Dust: Air-suspended solid particles, such as arising from burning, welding, wood-cutting,
etc., or simply dust, will enter with the air-flow into any standard PC. Accumulation
of such particles may eventually create short-circuits, or reduce ventilation and
heat conduction. Given enough time, any PC will get a hardware failure from such
effects.

Shock/Vibration: No part in the PC is suspended by a damped elastic mechanism, and
thus shock or vibration may lead directly to fracture in fragile components. The
common rotating disk hard drive is possibly the weakest point of the PC in this
respect.

Electromagnetic: While some PCs have grounded metal plating all around the cabinet,
mostly the components inside are quite unshielded from electromagnetic interfer-
ence from large motor drives, welding equipment, etc., in the immediate vicinity in

36 Chapter 3. Account of PhD Work

an industrial environment.

Thermal: The operating range of the hardware components in a common PC is quite
narrow. Having a standard PC operate at high CPU load for a moderate duration
at an environment temperature beyond 30◦C will bring it to the brink of failure;
the CPU core temperature will rise quickly towards the limit of specification and
the hardware monitoring system will either shut down the computer, or simply cut
the power supply.

Humidity: There is no air-tight sealing of any kind in a common PC cabinet, and inside
the cabinet, no component is sealed in itself in any way; with the possible exception
of the CPU being encapsulated between the socket plate, on which the die is
mounted, and the cooler. Any component within the cabinet is thus susceptible to
the humidity of the air surrounding the PC itself.

Water/Moist: However high the humidity tolerance of any PC component, it will typi-
cally not be liquid tight. It is easily possible to shield a PC from trickling water
from above, but randomly splashing water, or water impinging at high speed is a
challenge. In addition, in an environment with any kind of water or moist, it is
almost certain that the humidity will approach saturation.

In any shop-floor of a given factory a certain fraction of the floor area, or volume, may be
classified as tolerable for standard, common, office PCs. This fraction may vary violently,
from 0.0 to 1.0, depending on the industry or the nature of the manufacturing processes
of the shop-floors.

To bring this factor closer to 0.0 motivated the conception of an IPC1 as an environment-
hardened version of the common office PC. An IPC has good electrical shielding, and
a powerful, dust-filtered ventilation system. This meets three of the issues with the
common PC mentioned above; the dust, electrical, and thermal issues. High grade of
all hardware components may also be shock and vibration tolerant, dealing with that
issue. The equilibrium of humidity between the inside and outside of an IPC can not be
avoided, and is a natural consequence of the air exchange of the cooling system of most
PCs. However, the individual components of an IPC are typically of a higher grade than
those of the common PC, and an increased overall moist tolerance may be a grand result
of the higher moist tolerance of all constituent components.

Stepping slightly away from the office-type PC system, there exist a large number of
types of PC-compatible SBCs with all peripherals integrated on the single board, or even
on the CPU chip. Most of the embedded versions, i.e. with a low power consumption
and small form-factor, are entirely fanless systems with only passive cooling, allowing for
complete sealing of the entire device. Only connectors are left as a potential vulnerability
to water and moist. SBCs are mostly based on solid state or flash disk drives, and thus
highly shock and vibration tolerant. A well-encased SBC may thus provide much of

1IBM were probably the first to release an IPC already in 1985, but called it an Industrial Computer ;
confer [IBM 1984 Archive Website]

3.1. Linux-PCs in Production Control 37

the flexibility from the software technology, the operating systems, and the performance
known from the common PCs, and they may be mechanically hardened to meet most or
all of the physically demanding requirements for commission in the harshest of shop-floor
environment.

Although SBCs are typically moderately inferior to the common mid-range PC regarding
computational power, they outperform the standard PLCs in computational power. When
they do not, it is probably because such PC-compatible, SBCs are found inside some
PLCs today. An embedded computing device offering both the flexibility of a PC and the
ruggedness and communication interfaces of a PLC is called a PAC; confer e.g. Josifovska
[2004].

On Real-Time Unreliability

The association of PCs with absence of real-time performance may stem from the GPOSs
predominantly used with PCs. These operating systems were multi-tasking systems with-
out any real-time scheduling or preemption support, and thus no guarantee of determin-
ism could be given to any process.

Without going into details of the vast literature on the matter of RTOSs for the PC
platforms, it is safe to state that most RTOS-approaches with PCs have worst case
latency well below 100µs. This should be sufficient for most applications where PLCs
are being used today, with the possible exception of control applications of very low
timing-tolerance.

Already in the early 1980’s, hard real-time systems were developed for the PC platforms.
As an example, the hard RTOS OS-9 was initially released for the Motorola architectures
around 1980, and towards the end of the 1989’s it was ported to the Intel x86 architecture
in a version called OS-9000. Of newer, proprietary, pure RTOS systems that are easier
to learn and bring to use may be mentioned the Windows CE and QNX.

OS-9, Windows CE, and QNX are entire and pure, “self-contained” RTOSs. VxWorks
is another dedicated RTOS, which is not self contained. It requires a host system for
development and building, with the built image being deployable on the target system.
This approach to RTOS highly resembles the development and deployment method for
common microcontrollers, where the built or compiled binary program is flashed on the
target microcontroller. This may render VxWorks more efficient in operation on com-
puters with scarce memory and computational resources, but increases the development
burden and run-time flexibility.

During the past decade various extensions, such as RMX and INtime, to some of the
Microsoft GPOSs bring hard real-time capabilities into the operating system, side by side
with the GPOS system. Likewise, dual-kernel approaches for Linux will host the user-level
GNU/Linux GPOS system side by side with an RTOS environment. Such approaches
makes it easier to integrate GPOS facilities relating to high-level operation logic with

38 Chapter 3. Account of PhD Work

RTOS facilities relating to low-level device or process control. However, systems based
on separate concurrent kernels require the separation of real-time tasks from the general
software, at every level from source code to deployment. And the development and run-
time environments provided by the RTOS may be very different from those known from
the GPOS. Hence, it still requires special expertise and a different set of skills to exploit
the RTOS capabilities, like was the case for development for pure RTOSs.

Recent development effort are closing in on hard real-time capabilities from normal user-
space processes in ordinary GNU/Linux systems. This effort is based on real-time pre-
emption patches in progress of being integrated into the main line Linux kernel. This
will be discussed shortly in Section 3.1.3.

In summary, the state-of-the-art operating systems and hardware for the common PC,
should present no hindrance of use in applications tolerating up to 100µs worst case
latency in the control loop.

3.1.2 PCs to Take Over or Inter-Operate with PLCs

As PCs are entering the control loops at the factory floor, it is interesting to shortly
review some of the visions and emerging standards, as well as the progress towards im-
plementations, regarding more sophisticated control systems. The main effort in this
area is motivated by allowing for much more advanced computational performance and
integration at the production control level. This is assumed to be a necessity for devel-
oping highly flexible or agile production control systems, and naturally directs attention
towards the use of PCs.

It was already suggested by Rullán [1997] that PCs may eventually entirely take over
the functionality of PLCs in production automation, for all but the simplest PLCs. The
simpler PLCs may remain cost effective for distributed applications where a remotely
located control component is to implement a very simple IO mapping.

The IEC 61499 standard for distributed control in manufacturing aims at formalizing and
specifying the flexible inter-operation of the distributed control elements, on platforms
such as PCs and PLCs, at the control system level. Thramboulidis [2009] gives a critical
overview of the results of the standard and the relation with its ancestor IEC 61131,
accounting for the absence of adoption by industry. This standard clearly aims at the co-
operation between PCs and PLCs, rather than PCs fully taking over the domain of PLCs.
The standard was developed to meet the limitations of previous standards and engineer-
ing practises in the face of the requirements to higher flexibility in the manufacturing
control systems.

O3neida [O3neida Website] is an open, cooperative network under IMS2 for supporting
and furthering the development of distributed automation and control, based on open

2Intelligent Manufacturing Systems [IMS Website]

3.1. Linux-PCs in Production Control 39

standards. Auinger et al. [2005] gives a good description of the views and philosophies on
which O3neida is founded. Hegny et al. [2008] developed an IEC 61499-compliant run-
time system within the 4DIAC project [4DIAC Website] for integrating an agent-based
control system with low-level device control.

In conclusion, there is not yet any clear tendency regarding the PC versus PLC battle for
the future of advanced production automation. The following extreme scenarios may all
be realistic to some level:

� The PC may take over all control aspects and situations on the shop-floor; as
hinted by Rullán [1997].

� The successful adoption of either the IEC 61499 standard or the IEC 61131 standard
with advanced extensions may help separate the control domains for inter-operation
and cooperation among PCs and PLCs; as per the purposes of these standards
according to Thramboulidis [2009].

� The PLCs, based on the IEC 61131 standard, will evolve into increasingly powerful
platforms with stronger and more flexible operation and programming facilities.
The production control systems will then evolve with the PLCs and their facilities
will gradually meet the demand for higher flexibility and agility on the shop-floor.

� A new hybrid between hardened PC and advanced PLC, such as the PAC mentioned
by Josifovska [2004], may emerge as the predominantly used standard computing
device in production automation. This may squeeze itself in-between the PCs and
the PLCs, pushing them back to where they came from; PCs back to the enterprise
and office systems and PLCs relegated to the simple IO-signal control.

There is, however, nothing contradicting the co-existence of all of these outcomes, and
many more on top of them. Perhaps in-house competences will once again. in the
near future, prevail in manufacturing companies, reducing the need for sticking to strict
standards and a uniform practices of automation engineering.

3.1.3 Real-Time Control with GNU/Linux

As touched upon in Section 3.1.2, there exist a wide range of GPOSs and RTOSs suitable
for different objectives. Mostly these are disjoint sets; an RTOS being ill-suited for user
and office applications, while a GPOS is ill-suited for real-time control applications. For
many control tasks in a production control system the timeliness provided by a GPOS,
i.e. mostly none, is not sufficient.

In addition to the pure RTOSs mentioned in Section 3.1.1 the GNU/Linux based plat-
forms RTLinux, Xenomai, and RTAI are worth mentioning. They are based on an ap-
proach where a micro- or nano-kernel is the fundamental OS on the host computer,
ensuring the timeliness of the real-time tasks while hosting the GNU/Linux system with

40 Chapter 3. Account of PhD Work

low priority as a preemptive process on top. The tasks developed and deployed as real-
time tasks in the micro/nano-kernel is thus guaranteed hard real-time performance, while
the Linux kernel and user system itself may be scheduled as one low-priority, preemptive
task in its entirety. This dual-kernel approach clearly distinguishes the programming,
compile-time, and run-time environments of the real-time programs from that of an or-
dinary GNU/Linux system. Some system level features of the approach facilitates the
interaction between the real-time tasks and the processes of the GNU/Linux system, but
at the programming and deployment level, they are two separate worlds.

A different approach, now known as Real-Time Linux3, has been an ongoing activity for
the past decade, where patches to the Linux kernel makes it, almost, fully preemptible.
Together with advanced developments, e.g. in scheduling and high resolution timers, the
Linux kernel can today be easily patched to become an RTOS. It is noteworthy that this
RTOS-property comes with almost no impact on the programming, compile-time, or run-
time environment as presented to the application programmer, and without losing any
of the features of its GPOS nature, and at the cost of only a minor general performance
loss. Of course, it is then up to the application designers and programmers not to ruin
the real-time performance by bad choices of technologies, design, and implementation.

At the onset of the presented PhD-work in this thesis, it was generally assumed that
many control tasks would require low-latency real-time execution; e.g. development of
external robot motion control and low-level control of AGV motor controllers. Therefore,
some effort was invested in studying the real-time performance of Real-Time Linux, and
with good inspirations by work such as that of Dallefrate et al. [2005]; though they used
RTAI and QNX.

Eventually it turned out that the standard Linux kernel, and even the Python interpreter
platform, [Python Website], was adequate for meeting the latency and real-time require-
ments for all experiments and developed applications. In spite of many runs of control
applications with the standard Linux and Python setup without any instabilities accred-
ited to lack of real-time performance, the lack of worst-case guarantees may not stand
when taking such applications to industrial use. Therefore some valuable reference and
thought on the matter is presented in this section.

Real-Time Linux, the RT Patch

The mainstream Linux kernel is currently almost to characterize as an RTOS. By config-
uration options in the build-system for the standard kernel, it is possible to select almost
all required kernel features for making it an RTOS kernel. This is due to an effort in
the past few years, where most of the “RT patch” has been merge into the mainstream
kernel. A few features making the kernel fully preemptible are still left out, due to their

3Not to be confused with the older RTLinux.

3.1. Linux-PCs in Production Control 41

compromising the general computational performance of the kernel. Thus, to achieve a
high quality RTOS with standard Linux, it is still necessary to patch the kernel source.

The core source of information on the RT patch for the Linux kernel is the Real-Time
Linux Wiki [Real-Time Linux Wiki Website]. This is the home of the RT patch with
good instructions on how to apply the patch and build the kernel, reported benchmark
results, applications, guides, etc. The patch itself is (mainly) developed and maintained
by Ingo Molnar and Thomas Gleixner, but with a long history of the principle and many
contributors working on different forerunners to the RT patch.

The “Open Source Automation Development Lab” [OSADL Website] is an industry-
oriented organization for the further development of the real-time Linux kernel and its
industrial application; notable for process control and automation. The website and the
organization itself are highly relevant sources of information and resources for getting to
terms with Real-Time Linux, especially for production automation.

Specifically on Debian-based systems, it is possible to install pre-built, RT-patched Linux
kernels from Pengutronix [Pengutronix Website]; a company providing services for em-
bedding Linux in industrial applications. Such pre-built kernels makes it very easy for pro-
duction control engineers to quickly start developing applications with Real-Time Linux,
without the trouble of first understanding the mechanisms for patching, configuring, and
building a custom kernel from source.

Dietrich and Walker [2005] and Rostedt and Hart [2007] present good, thorough overviews
of the issues met with the development of the fully preemptive Linux kernel, and how they
were dealt with; the latter going into some details closer to the code. The mechanisms
involved with the RT patch are well described.

Arthur et al. [2007] present some benchmark measurements of Real-Time Linux of high
relevance to control in automation. The most important measurement setup is one
where a pin on the parallel port of the PC must be kept high for 50µs at a cyclic rate
of 1kHz. The results for the highest performing hardware setup, based on a 2.8GHz
Intel P4 processor, with the RT patch show a scheduling latency in the range of 5µs to
10µs and a jitter of 24µs. For comparison they made the same measurements for RTAI
and RTLinux, both based on micro/nano-kernels, showing no latency and around 15µs
symmetric jitter.

The measurements of Arthur et al. [2007] illustrate that Real-Time Linux still has some
way to go to become a high-quality RTOS. They emphasize that the biggest problem
for Linux to become a hard RTOS is that of absence of guaranteed worst case latency.
The complexity of the Linux kernel makes it impossible to formally prove a bound to the
worst case latency, and only trust may be gained by extensive testing under very varied
conditions. However, as also indicated by Bruzzone et al. [2009], Real-Time Linux has
come a long way and is usable for many real-time applications in its current state.

42 Chapter 3. Account of PhD Work

Embedding

Embeddability, defined as the degree to which an OS lends itself to embedded appli-
cations, plays a crucial part for GNU/Linux to becoming widely accepted in industrial
applications of production automation control. Fortunately this is one of GNU/Linux’
major advantages over many other GPOSs. Thousands of hobby and research projects
favour GNU/Linux as their embedded OS. Many consumer electronics devices, such as
Ethernet routers and media players, are based on customized, embedded GNU/Linux sys-
tems; confer e.g. [Linux for Devices Website] for a comprehensive list of such examples.

Techniques, methods, principles, and guides for embedding GNU/Linux are abundantly
represented in literature. Sally [2010] presents a comprehensive and general work on
embedding Linux. He states, in the opening sentence of Chapter 1, that

“Linux is an incredible piece of software. It’s an operating system that’s just
as at home running on IBM’s zSeries supercomputers as it is on a cell phone,
manufacturing device, network switch, or even cow milking machine.”

The OS quality of being embeddable relates to a series of aspects which may have various
importance depending on the application. Following is a non-exhaustive list of aspects
included under embedability:

� system miniaturization of installation in terms of memory and disk footprint, as
well as CPU performance requirement;

� systems robustness;

� range of supported computing hardware platforms;

� range of supported peripheral devices;

� real-time performance;

� power consumption and heat generation.

Clearly, many of these aspects are not just pertaining to the OS, but rather shared
among OS, application environment, and hardware platform. It is noteworthy, and not
coincidental, that on most of these aspects standard PLCs score high marks; which is
the very reason for their widespread use. However, as previously mentioned, PLCs have a
relatively limited application and execution environment, low computational power, and
do not support the wide range of flexible application technologies that come with GPOSs
like GNU/Linux.

Sally [2010] gives a quite comprehensive guide for embedding GNU/Linux, covering many
aspects from download and configuration over application development and debugging
to cross-compilation and deployment.

3.1. Linux-PCs in Production Control 43

Industrial Communication

An important part of production control is the direct, external control of the machines
and devices, which is often handled by PLCs in contemporary production automation.
To actually perform the external control of the devices and machines, it is obviously
necessary to have the means of communicating with them. To this end, one of the major
advantages of PLCs are their support of industrial communication, i.e. fieldbusses. If
GNU/Linux systems on PCs should pervade down through the PLC-level of device and
machine control, rather than remain in a higher level layer, it is necessary to establish
that GNU/Linux is indeed capable in a wide range of industrial communication hardware
and protocols.

GNU/Linux supports a lot of the prominent and widespread industrial communication pro-
tocols, such as EtherCAT, PROFINET, PROFIBUS, Ethernet POWERLINK, CANOpen,
ARCnet. OSADL has a separate activity for unifying the major fieldbusses in a layered
structure4. The German companies Pengutronix and Steinhoff [Steinhoff Website] are
very active in the development of fieldbus support on Linux.

For illustrative purposes the following give examples of reports on support of a couple of
prominent fieldbusses in GNU/Linux.

Kastner et al. [1999] claim to have implemented the first PROFIBUS DP master driver
for GNU/Linux. The emphasis of their work, however, is on a developed gateway on the
GNU/Linux host connected to the PROFIBUS DP network, giving access to Internet-
connected control clients.

Khanh et al. [2009] present the “PBMaster” project, which aims at a software implemen-
tation of PROFIBUS DP. It is an entirely open implementation under the GPL. Many
details of the API to the fieldbus data link, kernel modules, as well as example applica-
tions are presented. It is reported as a work in progress towards certification, supporting
the basic DP-V0 specification for cyclic data exchange. A gateway is implemented for
Internet connectivity of remote control clients to the PROFIBUS network. Graphical
interfaces for monitoring and analyzing the PROFIBUS communication are provided by
the project. For the ease of testing and evaluating, or even using, the implementation,
the project provides a complete OS system on a Live CD.

Baumgartner and Schoenegger [2010] present the use of openPOWERLINK, an open
implementation of the Ethernet POWERLINK stack on Linux. It takes advantage of
the RT patch and the High Resolution Timers in Real-Time Linux to realize a POW-
ERLINK master node. A test environment is detailed, and performance results in terms
of correlated cycle times and system loads on the master node are presented for two
different master node PCs, and with varying number of control nodes. It is concluded
that Real-Time Linux is indeed suitable for hosting a POWERLINK master node.

4Confer e.g. the presentations from the “OSADL Fieldbus Framework Meeting”, November 26, 2008,
at [OSADL Website]

44 Chapter 3. Account of PhD Work

Soft Real-Time Control with Python

All the experimental control activities reported in this PhD thesis were started by pro-
totyping with the Python Programming Language, confer [Python Website], on a stock
kernel from the Debian GNU/Linux distribution. The contingency plan for each activity,
in case of inadequate performance or timing issues, was to migrate first to a C/C++
implementation. In case of persisting timing issues it was further planned to move to an
Real-Time Linux kernel; e.g. a kernel from Pengutronix5.

As physical devices were to be integrated in control systems, the project activities would
need to address the fieldbus interfaces provided by the physical devices. It was expected
that some or all of PROFIBUS, PROFINET, and Ethernet POWERLINK were necessary
during the course of the work.

As it turned out, Python programs executing on moderate-performance PCs running a
stock Debian GNU/Linux system fulfilled all performance and real-time requirements of
the control tasks. Remarkably, this was even achieved without any optimization, such
as shutting down unused standard services and applications, and while running advanced
desktop managers on top of the X Window System. None of the devices controlled
eventually imposed the need of special industrial communication. Only UDP and TCP
Ethernet, and UART/RS232 communication have been used.

It is inferred that the hardware and software technologies used, with the notable bottle-
neck expected to be the Python Interpreter processes, are capable of performing well in
a 100Hz control cycle. Approximate figures for the real-time performance is suggested
to be 1ms fixed latency and 1ms asymmetric jitter (towards delay) over an UDP con-
nection; amounting to some 2ms to 3ms average latency, but without guarantee. As all
applications have required only soft real-time performance, it has not been possible to ob-
serve any critical glitches in control deadlines. As no performance deficiencies have been
observed, the actual real-time performance of the hardware and software configurations
were never quantitatively measured.

3.1.4 Examples of PC Control for Devices

With reference to the included papers in Chapter 4, a some examples of PC control of
industrially relevant setups and equipment is given in the following.

Example: Fixture and Welding Robot Operation

Section 4.1 [Lien and Lind, 2008] presents an industrial setup where a PC is integrat-
ing and controlling a welding fixture with a welding robot. The fundamental problem

5Pengutronix provides pre-compiled, RT patched Debian GNU/Linux kernels from their website,
[Pengutronix Website].

3.1. Linux-PCs in Production Control 45

addressed by the work was the offset correction of weld seams to be measured simulta-
neously with the controlled automatic clamping of the workpiece.

The clamps, acting from the top and two orthogonal sides of the workpiece, were pneu-
matically operated, with the valves controllable through a simple service program on
a micro-controller board. For the measurements, high-resolution incremental encoders
were mounted on the axes of two arms clamping in the horizontal direction. The micro-
controller was continuously keeping the pulse-count of the encoders and made these
accessible for reading out.

An RS232 connection between the PC and the micro-controller enabled the PC-software
to read instantaneous encoder pulse-counts and command the states of the pneumatic
valves. At the other end, the robot controller was also setup with a program communi-
cating with the PC on an RS232 connection. The robot controller program listens for
submission of weld seam corrections and for a command for starting the execution of the
welding process.

The entire setup and operation of the welding cell was handled in an application on the
control PC. The application was implemented Python and graphical interfaces for oper-
ator interactions were based on the Qt framework [Qt Website]. It covers the following
tasks:

� calibration of encoder readings to geometrical offsets;

� specifying and executing the clamping procedure;

� computing offset corrections from sensor readings;

� sending corrections and welding commands to the robot controller;

� and presenting several graphical interfaces for operation and monitoring.

The solution emphasized the removal of production control and strategy from lower
level devices, and placing it in a more accessible software application on a PC. The
implementations in the robot controller and in the micro-controller were stripped down
to essential process control signalling and sensing.

The application control software on the PC is kept with a clean separation of functional
code and graphical interface. The implies that the system may easily be beheaded of its
graphical interface, which could then be replaced by a network-exposed interface. This
interfaces would then allow the welding cell control to be directly with the wider produc-
tion control system; on-line and in real-time. Such an automated, remotely controlled
commissioning will eventually be desirable, as confidence in the welding cell control ap-
plication has been established.

For efficient development, refinement, extension, run-in, and integration with the produc-
tion control system, the flexibility of the PC platform, the GNU/Linux operation system,
and the Python programming platform may play a major role.

46 Chapter 3. Account of PhD Work

Example: External Robot Motion Control

Section 4.4 [Lind et al., 2010] presents some measurements of achievable control charac-
teristics for three different industrial robot controllers. The measurements were obtained
by real-time control from an external PC connected to the industrial robot controllers,
over regular Ethernet.

It is suggested how it is possible to take over the entire application and motion control
from the proprietary robot controller platform, presenting a framework for motion control
in a much more flexible computing and programming environment to the application
developer.

The results show that the real-time characteristics and performance of the addressed
low-level controllers in the native industrial robot controllers are very different. The best
performance obtained was a measured tracking delay of about 12ms, suitable for many
sensor-based motion control applications. The worst performance showed a tracking
delay of about 120ms, disqualifying the robot from applications demanding fast physical
response to sensor system readings.

The paper in Section 4.5 [Schrimpf et al., 2010] presents an application using the prin-
ciples of external motion control that was described in Section 4.4 [Lind et al., 2010].
The application uses vision-based identification of a point on a marked line together with
the inclination of the curved surface surrounding the point. The control task of the
application is to move the robot tool centre at a specified speed along the line, while
maintaining a normal orientation of the tool approach direction to the local plane of the
surface.

The application did not involve mechanical contact, and no external metrological systems
was used for measuring the precision of tracing the marked path or the deviation of the
orientation from normal. While using a robot controller with a high tracking delay, this
did not obscure the performance towards instability. As a system for testing of principles
for sensor-based motion control, and for taking advantage of a flexible framework for
motion control, it can be characterized as successful. However, as it was set up with a
robot with long tracking delay, the specific system as a whole would only be useful in
highly tolerant applications.

In the cardinal paper included in Section 4.10 [Lind and Schrimpf, 2011], the principles
and design of the PyMoCo motion control framework are detailed and described. This
is the motion control framework which is also underlying the papers in Section 4.4 [Lind
et al., 2010] and Section 4.5 [Schrimpf et al., 2010].

The main results from the work with PyMoCo are capitalized in the following list:

� External motion control from an ordinary PC with an Ethernet connection to an
accessor element in a native controller for an industrial robot is possible.

� For prototype or pilot installations the presented framework, PyMoCo, based en-

3.1. Linux-PCs in Production Control 47

tirely on the Python programming language and platform, may boost development
and integration.

� In non-critical production installations, PyMoCo will be an adequate choice for
robot control in terms of performance, and a preferable choice in terms of main-
tainability, flexibility, comprehensibility, and integrability.

� For high-performance real-time applications, a more comprehensive motion control
framework should be chosen; e.g. Orocos as described by Bruyninckx et al. [2003].

The PyMoCo framework as presented in Section 4.10 [Lind and Schrimpf, 2011] is not in
its final version, being under active development and improvement. As mentioned in the
paper, a refactoring and slight redesign of the communication mechanisms is in progress.

PyMoCo was initialized as a development effort in direct consequence of a project for
gaining access to the low-level controller of the Nachi AX10 robot controller. The soft-
ware that started off as a testing system for the low-level control of the Nachi SC15F
robot eventually became a more general software framework for robot motion control
implemented in Python. The latest development has resulted in the successful motion
control of the Universal Robots UR-6-85-5-A industrial robot.

The technical development of robotics control software, such as PyMoCo, is ultimately
relying on fundamental mathematics, modelling, and applications of robotics; e.g. the
seminal works by Craig [2004] and Schilling [1990].

Example: Custom Built, Free-Roaming, Low-Cost AGV

The AGVs and AGV systems for production logistics are often closed for deeper inte-
gration by proprietary protocols, just like industrial robot controllers. For AGVs as for
industrial robots, this may be an advantage in the simplest forms of use, where the
scenarios of application control considered by the system supplier are sufficient for a
given production use. But this rarely covers the wish for deeper integration that takes
advantage of the full flexibility of their electromechanical capabilities.

Free-roaming AGVs must be unleashed, as must general industrial robot manipulators,
when intending to bring a production system towards agility. For a fully agile AGV system,
there should not even be soft-coded, fixed routes in the production area. In principle,
routes should not even be represented a priori, but rather inferred by experience by
the AGVs themselves, and gathered by the distributed AGV system for sharing among
all associated AGVs. With the holarchic control paradigm as key to bringing agility
to production systems, redundancy and intelligent cooperation of the AGVs become
conflicting with the centralized control and high unit-costs of commercially available
solutions.

Such considerations spurred the development effort that led to the design ideas presented
in the paper included in Section 4.3 [Roulet-Dubonnet et al., 2009]. It presents a pro-

48 Chapter 3. Account of PhD Work

totype AGV which is inexpensive and where the task, application, and motion control
systems at the individual AGV level are hosted on-board on a standard laptop PC. The
laptop communicates with the surrounding AGV system over standard wireless Ethernet.

3.2 Real-Time Production Device Emulation

When implementing the control of a device, or a system of devices, it is a tedious, time-
consuming, and often a risky process to work with the hardware system itself. When
separable from the low-level device control, it is highly efficient for development and
testing of certain aspects of the higher level control to run it on real-time, emulated
low-level control.

The realistic emulation of low-level device control has been an activity in which much
effort has been invested as part of this PhD work, and fortunately it has yielded a
proportionally great success. It has been fruitful as an independent activity in itself, and
the results have been serving their purposes in helping or enabling other activities in the
PhD work.

3.2.1 Considerations for Real-Time Device Emulation

When developing a control system for an electromechanical device, comprising actuators
and sensors, it is typically arranged in a cascade of control loops integrating various levels
of sensor inputs with various abstractions of control. Such are the circumstances of con-
trol systems around motors in AGVs, servos of robots, and arrangements of pneumatics,
motors, and sensors in machines. For motors, at the lowest level, the control objective
regards the current passing through the motor windings. By knowing the characteris-
tics of a motor, the torque that the motor exerts on its axle at a given current may be
computed. By knowing the gearing on the axle a rough output torque exerted on the
external mechanical system may be computed. In case of an AGV, knowing the diameter
of the wheels will give a good estimate of the force exerted by the floor on the AGV at
the contact point of the wheel. The knowledge of the geometry and inertia of the AGV
may then lead to good estimation of the resulting acceleration of the AGV. Of course,
unmodelled and non-deterministic effects, such as time-varying friction, enters at every
level, making it impossible to obtain acceptable accuracy with pure feed-forward control.

Rather than explicitly controlling the full acceleration of the AGV by motor currents,
it is more common to have an encoder on the wheel axle and then control the motor
current to a given rotational velocity of the wheel. By knowing the encoder resolution,
and the AGV geometry, the AGV may be controlled to a trajectory in terms of velocity
commands to the motor controllers. Development of an advanced velocity controller may
be based on realistic emulation of the physical system, where correct or realistic quan-
titative properties of electrical, mechanical, and geometrical nature will help experiment

3.2. Real-Time Production Device Emulation 49

with the workings of an implemented controller. At the level of the velocity control loop
over motor current, emulation and experimentation is typically performed with high fre-
quency, high-performance software simulation systems based on advanced physics-based
mathematical system models.

If this level of control of the AGV is established, and when such limits as slipping of
the wheels are respected in the controlled region, the trajectory controller simply has to
command updates to the velocities in a timely manner. Specific for the problem of AGV
control is the problem that it is non-holonomic. As a consequence, errors accumulate, and
the feed-forward velocity scheme of trajectory control diverges. The trajectory controller
needs feedback on the position and orientation of the AGV, in manner to incorporate
error compensation into its velocity commands.

It can be argued that much of the development of an external control system may
be performed with a simulation of the controlled device, which can be described as
a coordinated scenario of interactions which are played back for the controlling system.
Such a scenario would be set up in expectancy of the specific commands and events from
the controlling system, while it is fed back the consistent measurements, outputs, events,
etc., from the controlled device. When a given system-aspect of both the controlling
system and the controlled device may be isolated from all other aspects for testing
purposes, it can be realistic and efficient to use such a system simulation for development.
However, the highly distributed and autonomous nature of complex devices, such as
AGVs, and advanced control systems, such as AGV system and AGV controllers, renders
isolated simulation of specific aspects a very questionable endeavour.

It may be more efficient and more flexible to implement a consistent and complete set
of aspect in a realistic emulation, which is not locked to a complex prepared scenario of
playback. For control system simulation with realistically emulated devices, the scenario
rests entirely with the logic operation of the controlling system, e.g. AGV controllers
and the AGV system, and the implemented behaviour of the emulated devices, e.g. the
AGVs.

Several techniques exist for global localization of AGVs. If implementing any one of these,
it may be done as an emulated system together with the emulated velocity controllers
of the AGV. The trajectory controller is now the target for development, and for a
sufficiently realistic, real-time implementation of emulators for the velocity controllers
and localization system, the real trajectory control system may be efficiently tested in
the emulated setup. Even the connection technology of the trajectory control system
may be the same for the emulated as for the real systems, and the trajectory controller
is left entirely oblivious of the fact that it is not connected to the real devices.

Having developed a satisfactory trajectory control system for the single AGV, a collection
or fleet of AGVs may then be considered as an emulated device. Over a real-time
emulation of the collection of AGVs, real systems for task scheduling, traffic control, and
collision avoidance may be the next targets of development and experimentation.

50 Chapter 3. Account of PhD Work

Much the same scenario can be achieved for robots, conveyors, and other machines. It
is of cardinal importance to find the correct level of separation between the controlling
and the emulated systems. This level of separation is determined by such factors as

� the facilities of the underlying technologies used for making the emulator;

� the communication types and frequencies between the different cascaded control
systems;

� and the target control system to be experimented.

The emulated system for a device may in principle be anywhere from individual motor
current control to the highest level of motion planning.

A true emulation of a standard industrial robot controller, as commissioned by the end-
user, would contain the implemented code for the robot application control, and the
target control system is the external application control system which is controlling the
deployed robot application. In such a simple setup, the external orchestration of a
pick-and-place operation could be experimented with, if the application control in the
emulated robot controller is set up to listen for positions and orientations to hold a
mounted gripper, and triggers for opening and closing it. This scenario may even be
possible with an emulated controller supplied with the robot by the manufacturer.

For more advanced control scenarios of industrial robots, where application and motion
control is tightly integrated with sensor and process control systems, the emulation level
of the robot has to be lowered to the low-level control of the robot. This is where the
interface between the emulated device and the external control system starts to put up
real-time constraints. In case of hard real-time requirements from the emulated system,
the controlling system must meet these, and in case of soft real-time requirements,
the performance of the controlling system depends on the level to which it meets the
requirements. The development efficiency of advanced control systems, integrated with
sensor and process control, will benefit highly from initially using realistic, real-time
emulation of the lower level systems. Naturally, the development with the emulated
system should only proceed along any given aspect to the extent with which that aspect
is realistic in the emulator. The stage where the control system performs well enough,
and all that can be realistically tested on the emulated lower level system has been
tested presents a breaking point. At this point, either the emulation must be refined to
become more sophisticated and realistic or the experimentation must be taken to the
real, physical system.

3.2.2 Real-Time Emulation with the Blender Game Engine

The animation studio Blender [Blender Website] integrates a game engine which has
advanced physics capabilities via the Bullet Physics Library [Bullet Physics Website].

3.2. Real-Time Production Device Emulation 51

The modeller of Blender allows for advanced mesh modelling, and integrated setup of
game and physics properties of all objects in a scene.

The applicability of the Blender game engine lies with good performance, visual real-time
display, realistic physics interaction, and an extensive run-time API exposed to Python.
The run-time API enables an almost unrestricted control of the game engine by embedded
Python code. The unrestricted execution of the embedded Python code presents a very
flexible mechanism for presenting a realistic real-time emulation system to an external
control system.

Every object modelled in the scene in Blender is turned into a game object when the
game engine is started. A game object is characterized by:

� The object type, such as static, non-colliding, dynamic, soft body, and rigid body.
The type of a game object is highly determining for its run-time behaviour in the
game engine.

� A set of physical properties such as inertia, motion damping, interference radius,
collision boundary object, friction quotient, collision elasticity, etc., depending on
the kind of object.

� A configurable map of general numerical or string properties.

� A set of game object sensors for triggering controllers under various circum-
stances such as collision, proximity, timed delays, message reception, property
changes, keyboard inputs, mouse events, etc. Many sensors are mostly useful
when implementing the entire logic through the Blender interface. For advanced
control setup, however, mostly the sensors of a temporal or geometric nature are
useful.

� A set of game object controllers which are activated by triggering from the
game object sensors connected to it. A game object controller is not restricted
to be connected to game object sensors from its own game object. There are
various simple sensors for Boolean operation on the inputs from connected game
object sensors, which when evaluating to true triggers the associated game object
actuators. However, for advanced control, the type of game object controller which
invokes a function in an externally implemented Python module is the most heavily
used.

� A set of game object actuators, which may perform various operations on the
game object such as object destruction and creation, change of properties, change
of motion, change of forces, change of position and orientation, etc. Most of what
can be performed by game object actuators is also possible from Python code
invoked from the game object controllers.

These are the primitives with which an emulated system can be set up with the Blender
game engine. These are, however few in number or limited in extent they may seem,

52 Chapter 3. Account of PhD Work

together with the flexibility and technologies available to Python itself and the large and
comprehensive API to the game engine run-time system, enough that for most part it is
the fantasy that limits the devices and systems that may be realistically emulated. Of
course, there are always performance limits of communication bandwidth, CPU resources,
GPU resources, RAM, etc., which may ultimately limit the level to which a device may
be emulated.

So long as the frequency of the logic ticks is adequate for the internals and the control
of the device emulated, there are very few restrictions on the nature of the devices that
can be emulated. The most notable limitations are concerning the Bullet Physics Library,
which has its natural limitations in precision and its natural limitations in the natures
of physical interactions. Some of these limitations of the Bullet Physics Library simply
stems from lack of computing power, to which there is an easy remedy in buying more
powerful CPUs. Other limitations pertains to the absence of certain physics features or
effects, such as static friction, which wholly excludes a range of emulation applications
from the category of being easy and straight forward to implement.

3.2.3 Examples of Real-Time Emulated Systems

As part of the presented PhD work a robot motion control framework has been developed.
Some work effort was also contributed to designing and building an AGV prototype with
simple vehicle control, and the development of a prototype AGV system for operating a
collection of AGVs. The robot motion control framework and the development of the
AGV system were both greatly boosted in efficiency by the early establishment of realistic
emulation models.

Example: Robot Controller Emulation

Experimenting with external, real-time motion control of an industrial robot is hazardous
for the robot involved and for surrounding and mounted equipment. Every live run
with the robot controller must be preceded by thorough preparations; as always when
developing robot applications. However, when interacting with the low-level controller of
the robot in real-time with experimental code, even more thorough and comprehensive
precautions should be made.

This factor of cautiousness presents an immense hindrance to efficient and quick de-
velopment, and may be greatly alleviated by realistic emulation of the low-level robot
system. The robot motion control framework described in Section 3.1.4, and in detail
in the papers included in Section 4.10 [Lind and Schrimpf, 2011] and Section 4.4 [Lind
et al., 2010], owes much in terms of development efficiency to the early setup of a realistic
emulation model of the lower level of the industrial controller.

3.2. Real-Time Production Device Emulation 53

The initial development of the PyMoCo framework for motion control was targeting
the interface of an accessor component deployed on a single-board computer in the
Nachi AX10 controller. From an external control PC, through the accessor, the low-
level controller can be commanded in 100Hz with position updates, while synchronously
receiving emitted actual joint positions from the accessor.

The implemented emulator system for the low-level controller and accessor is, as with
almost any emulation, realistic only up to a certain limit. Some deficiencies from fully
realistic emulation are intentional for reasons of simplicity. An emulation for experiment-
ing with a certain aspect of the external control system may be oblivious to a whole
range of complex features of a highly realistic emulation. Other deficiencies are limited
by hardware performance of either the node running the emulation or the node running
the external control system.

Examples of deficiencies for the low-level robot control emulation implemented to support
the development in the paper in Section 4.10 [Lind and Schrimpf, 2011] are listed in the
following.

� The tracking delay and response time discussed in the paper in Section 4.4 [Lind
et al., 2010] are not modelled. Modelling these would not have presented any
serious challenge, but was left out since the purpose of the emulation was to
achieve a simple validation of the behaviour of implemented motion controllers,
and to get visual hints to software error localization.

� Mostly the setup for emulation was done on standard laptop computers, hosting
both the emulation in the Blender game engine and the external control system.
While lowering the network latency in the communication by a small amount,
it played a greater role in lowering the frame-rate of the emulation, and hence
the communication frame-rate between the emulated low-level controller and the
external motion controller. This was not an intentional deficiency, but rather one
induced by the hardware performance in the pertinent development situations. With
the right computing hardware and setup, frame-rates up to 200Hz frame-rate were
no problem to achieve.

As indicated, the emulation was mainly set up for ease of visual inspection and validation
of the motion controllers in terms of accelerations, speeds, directions of motion, and axes
of rotations; which may be described as behavioural debugging and error finding. To this
end, the simple emulation was a tremendous success. For more advanced validations and
motion controller development, the emulation model should be extended to encompass
the known tracking delay and response time.

Example: AGV Collection Emulation

The development of a prototype AGV was described in the paper included in Section 4.6
[Roulet-Dubonnet et al., 2010]. The same problem of cautiousness with developing a

54 Chapter 3. Account of PhD Work

robot control framework is not present to near the same extend when developing an
AGV. The lower power of motors, the lighter mass for the given AGV, and the generally
lower accelerations, make the risks of person injury or equipment damage much lower
when operating experimentally with the live AGV device. Still, the development of the
motion-level control of the AGV would have benefited from a low-level device emulation,
but it was not considered at the time of development.

The real-time emulation of a collection of AGVs at their individual motion- and task-
level control became a necessity when the development of the AGV system started. The
AGV system was described at the analysis and consideration levels by the publication
included in Section 4.3 [Roulet-Dubonnet et al., 2009], and with some more design and
technical detail in the paper included in Section 4.6 [Roulet-Dubonnet et al., 2010]. The
collection of the described mechanisms for matters such as transport order handling, AGV
reservation, task scheduling, traffic control, environment mapping, cooperative tasks,
etc., that are not entirely attributed to any individual AGV in the collection, is what may
be collectively referred to as the AGV system.

The AGV system is hard to develop and experiment with, without having a considerable
amount of AGVs. Certain aspects may be tested on just a single operational AGV, but
most of the mechanisms associated with the AGV system regards the central theme of
managing and coordinating a fleet or collection of AGVs, and it makes no real sense to
consider a fleet with a cardinality of one. This is where realistic emulation enters not
just as an efficiency enhancer for the realistic development, but downright as a necessity
for experimenting with systems that are not yet available.

An AGV collection emulation was easily set up for experimenting during development of
the AGV system. Two different AGV emulations were set up for developing AGV systems
with two separate purposes.

One AGV system was developed over simplified AGVs with motion-level emulation. By
motion-level emulation is meant, that there is no motor-level control and sensing. Thus,
direct linear and angular velocities can be commanded to the individual AGVs, and
their instantaneous velocities can be read off. The localization system also took an
unrealistic advantage of the emulated world, and the full knowledge of the AGV poses in
the Blender game engine; and thus the highly problematic aspect of global localization
was disregarded. The work with developing this AGV system and the simplified, emulated
AGVs for use in the production system emulation is described in the paper included in
Section 4.9 [Lind and Skavhaug, 2011]. The AGV system itself was first developed
with a stand-alone emulation of the collection of AGVs. The AGV collection appeared
as a complex “emulated device” to be controlled by the AGV system being developed.
Both the emulated AGV collection and the AGV system was later incorporated into the
production emulation system and the production control system described in Section 4.9
[Lind and Skavhaug, 2011]. The simple AGV trajectory control, order handling, and AGV
reservation system provided by the AGV system was adequate for the targeted aspects of
the production emulation and control system. However, a more realistic AGV emulation

3.3. Real-Time Production System Emulation 55

and fully developed AGV system will present a more realistic level of both uncertainty
and flexibility to the production control system.

Another, much more realistic, AGV system is under development by Olivier Roulet-
Dubonnet. The AGVs are emulated at the motor velocity-control level, with individual
wheel velocity sensors; though not physically modelled. One of the objectives for the
emulation system is to develop the global localization and tracking system, based on
localizing LEDs mounted on the AGVs by vision systems associated with ceiling-mounted
cameras. The emulated vision systems are taking advantage of the global knowledge in
the Blender game engine of all LEDs in the emulated scene, but provide the controlling
AGV agents and the AGV system with realistic data pertaining to the locations of the
visible LEDs. Other aspects of development are the overall ordering system, the traffic
control system, and the individual AGV motion control systems. This is still work in
progress.

For both AGV emulations it is only the lower control levels of the AGVs that are emu-
lated; pertaining to instantaneous velocities and sensor, odometric, and localization data.
External to the emulation, each AGV device is controlled by an AGV agent, undertaking
trajectory control, low-level ordering, AGV status, inter-AGV communication, and other
higher level activities. These AGV agents are representatives of the AGV devices in the
AGV system.

3.3 Real-Time Production System Emulation

The ultimate goal of the PhD work underlying this thesis was to investigate and exper-
iment with distributed real-time production control, based on autonomy in the device
control entities. The emphasis on PC-based device-control in Section 3.1 is an important
step towards deploying tremendous computing power in direct association with the con-
trolled production devices. Virtual experimentation of the real control system on realistic
emulated, real-time responsive production devices, as described in Section 3.2, brings
about an invaluable tool for developing the device control systems. Before being able to
start an efficient development of a real production control system, the production system
must be realistically emulated and be real-time responsive. This section is dedicated to
describing the advances towards realistic, real-time production system emulation.

3.3.1 Simulation vs. Control of Emulated Devices

In traditional production simulation a distinction can be made between what may be
dubbed production logistics-oriented simulation and what may be dubbed device/process-
oriented simulation.

Device/process-oriented simulation covers the detailed operations of a few devices or the

56 Chapter 3. Account of PhD Work

processes in a machine. It is used for either determining or validating the possible abstract
control logic for the operation to succeed, or verifying that an operation is withing bounds
of restricted resources; such as time, power, geometric clearance, transformation process
tolerances, etc. Device/process-oriented simulation bears a high resemblance to the
combination of the real-time device emulation and its control system, as described in
Section 3.2. However, while the real-time emulation and control setup respects the real-
time nature of the interaction and aims at using and developing the real control system
for the devices, the device/process-oriented simulation concerns itself neither with any
relation to the real time clock nor with the concrete, deployable, detailed, realistic logic
control of the devices. Being constrained by real-time requirements, any emulation
may only obtain a certain quality of process realism. Determining high precision internal
stress-development during welding, forging, casting, etc. are examples of process-oriented
simulations which may not be expected to be obtainable in real-time emulation.

Production logistics-oriented simulation takes as fundamental data the processing times
of devices and machines, transport times, waiting times, buffer sizes, changeover times,
etc., and possibly the statistical characteristics of all of these. With the use of DES, as
the typical method, a model of the overall internal ordering is set up for the production
system containing all the devices, machines, buffers, transport units, etc. By running
the DES, a multitude of statistical characteristics of the performance of the production
control system as a whole may be immediately derived. With careful analysis, tuning, and
rerunning the DES, the abstract logistical control-logic can be developed and enhanced.
Furthermore, introspective analysis of the statistical data collected from a DES-run will
also reveal the locations of bottlenecks, giving hints to where effort should be directed
in increasing productivity or where production capacity should be increased by additional
production equipment. A good survey of DES for production systems is given by Smith
[2003].

The production logistics-oriented DES, has its abstraction level of device and transfor-
mational and logistical process description primarily based on cycle-times characteristics.
It leaves no room for a complex, real-time interaction between higher level production
logistics control and the detailed individual device or process control. The separation of
the device and logistics control perspectives, on which production logistics-oriented simu-
lation relies, stems from a traditional view on reliability, repeatability, repetitiveness, and
simplicity in device and machine operation in manufacturing. Many of the problems aris-
ing from demands for shorter batches and quicker changeovers in production today may
be conjectured to origin from the remnant of this traditional principle of disconnecting
production logistics and device control.

If the future of production control brings highly autonomous control systems, which are
cognitive in a broad sense and distributed over the production devices and machines,
the simple divisions of computation and analysis underlying production logistics- and
device/process-simulation breaks down. The focus must be switched towards realistic
real-time emulation of the entire collection of production devices, and executing the real

3.3. Real-Time Production System Emulation 57

production control system in the virtual world created by the production emulation. This
is largely what has been proposed and described in the papers included in Section 4.7
[Lind and Roulet-Dubonnet, 2010] and Section 4.9 [Lind and Skavhaug, 2011]. Support
for such arguments may be found in the literature of agent-based production control;
confer e.g. Vrba and Maŕık [2005].

3.3.2 From Device to System Emulation

In exact analogy with the division of the device control systems and the emulated, con-
trolled devices presented in Section 3.2, the emulated production system is cleanly sep-
arated from the production control system. The full production control system may be
a distributed system of control entities at very different levels, or it may be a highly
centralized, near-sequential program running in a single process and with a very limited
number of threads of control. There are two requirement of paramount importance for
the emulation system to be realistic:

(Interfaces) that it provides realistic, real-time responsive, accessible control interfaces
to all devices involved in the production system;

(Constraints) and that it implements and enforces all the lower-level constraints and
interactions among the devices, between devices and uncontrolled objects, and
among uncontrolled objects.

The requirements on interfaces is natural and obvious. It is in principle what is pro-
vided by a simple aggregation of the independently developed device emulators as per
the description in Section 3.2. The requirement that the interfaces be realistic is fun-
damental, and should be simply carried over from the development of individual device
emulation and modelling. For the interaction between the production control system
and the production system emulation to be real-time responsive to an adequate level,
the implementations for the individual devices may need simplifications or distribution of
functionality; as explained in Sections 3.3.3 and 3.3.4. The last requirement associated
with interfaces regards accessibility. The production system emulation must set up for
all devices to be accessible over their control interfaces such that they do not clash on
underlying communication interfaces. For instance, using serial communication ports
to access some type of emulated device in the production system emulation, the setup
routines must ensure that each device gets a dedicated serial port. Similar considerations
applies to addresses, ports, channels, etc., of any other communication hardware and
technology; e.g. USB, CAN, FireWire, and Ethernet.

The requirement on constraints is much more subtle and complex, since it regards not
only the low-level device interactions, but also the natural, physical behaviour of objects
that are not under explicit control; such as workpieces. The implications on developing a
realistic production system emulation from such emulation-internal activity is described at
great length in the papers included in Section 4.9 [Lind and Skavhaug, 2011, Section 5.1]

58 Chapter 3. Account of PhD Work

and Section 4.7 [Lind and Roulet-Dubonnet, 2010, Section 3.1].

A further aspect that enters when emulating a production system, which is not present
in device emulation to the same degree, is the interaction with external systems; such
as process-control and factory-wide information services; e.g. ERP systems. Though
much of this interaction is expected to be addressed by the production control system,
rather than the emulated production system, some external systems may be in need
of addressing some level of device control or behaviour, which is implemented in the
emulation system.

In an emulation system based on the Blender game engine it may be advantageous,
for this reason and, as indicated in Section 3.3.3, for performance reasons, to move as
much complexity and functionality out of the game engine platform as possible. The
functionality will remain emulation specific, and the computation entities that contain
it will as such still be part of the emulation system. However, the surrounding run-time
presented to the emulation components external to the game engine may be easier to
integrate with such external systems as process-control and factory information services.
This principle is not to be considered specific to the Blender game engine, but rather
a general principle of re-deploying functionality away from centralized, monolithic-core
systems.

3.3.3 Performance Considerations

Performance of an implemented system emulation in the Blender game engine is indi-
cated by the achieved frame-rate, or its inverse, the frame cycle-time, of the running
game engine. For any production emulation, there will be a lower bound on the frame
rate, below which a certain device or a certain transformational or logistical process will
become unreal, un-natural, or simply fail. An arc-welding process, for instance, hav-
ing a trajectory position-tolerance of 1mm, executed by a robot at the speed of 10mm

s
may meet insurmountable control difficulties when the frame-rate drops towards 10Hz.
On the other hand, many production applications with no timely related tolerances will
operate quite well even below this frame-rate.

As indicated in Section 3.3.2, the Blender game engine is not a distributed platform itself,
but rather centralized and monolithic. This sets a limit to the size of the emulated system
in terms of number and complexity of devices contained, with no possibility to achieve
good scalability by complete separation and distribution. The limitations may arise from
any kind of resource limit on the computer hosting the Blender game engine executing
the system emulation. It is a consistent observation throughout the PhD work that it is
the computational power of the host computer that is always the limiting resource for
the performance. In different system setups than the ones that were experimented with
it might be the memory, the graphics card, or the network bandwidth or latency which
will be the limiting resource.

3.3. Real-Time Production System Emulation 59

As an increasing number of production devices are added to an emulation scene to make
up a production system, the nature and applicability of the emulation changes. The
emphasis switches from physical realistic emulation, being the case for individual device
emulation, towards a simplified implementation limited to the sufficiently realistic features
of behaviour; in order to retain real-time responsiveness.

Performance of a system emulation is dominated by the fact that the emulation frame
cycle-time has an approximately linearly increasing component with the number of any
given independent device; as indicated in the paper included in Section 4.9 [Lind and
Skavhaug, 2011, Section 6]. If, in addition, devices may have direct interactions with a
number of other emulated devices in proportion to the total number of such devices, this
will contribute a super-linear growth in frame cycle-time, and thus a considerably rapid
decrease in performance of the system emulation with the number of devices.

The observation that it is always the computational power of the computer hosting
the emulation game engine spurs a principle to retain only the core functionality of the
emulated devices inside the game engine. For some devices this is the natural thing to do.
For other devices it becomes a violation of the principle that the real production device
is entirely embedded in the emulation system in the game engine, while the production
control system provides the external control of the device. Fortunately it is not difficult
to keep the principle of a clean separation while gaining some level of distribution of the
otherwise monolithic emulation system in the game engine. It is a matter of re-deploying
a certain amount of emulation control code at a computation node remote from the
game engine node, and establishing an interface to the remaining control code inside the
emulation system in the game engine. This separation must remain transparent to the
production control system, however, since otherwise it will become emulation specific.

3.3.4 Distribution of Emulation Functionality

An example which provides several natural options for the division of both the external
control to device emulation interface as well as the division of the device emulation
between an external computation node and the game engine is presented by a robot with
the control system based on PyMoCo; confer Section 3.2.3 and the paper included in
Section 4.10 [Lind and Schrimpf, 2011].

At the top level, there is the option of presenting the production control system to a
fixed control logic; the typical principle of integration supported by standard industrial
robot controllers. Alternatively the emulated robot presents a prepared set of motion
controllers, which may be logically controlled from the production control system. The
ultimate alternative is to present the production control system to the low-level, real-time
interface of controlling the robot joints directly; yielding the maximum of flexibility by
integrating a motion control functionality directly with the production control system.

The division and distribution of the emulation system over external computational nodes

60 Chapter 3. Account of PhD Work

and the game engine node also presents several alternatives. The concern of the lowest
level, which must be deployed inside the game engine, is the controlled positioning in
each time cycle of the geometry parts of the pertinent device; i.e. links, tools, sensors,
etc., for a robot. The minimum computational load on the game engine is achieved by
exposing an interface to the internal emulation entity associated with the device, over
which is provided pose data for all geometry parts in each time cycle from the external
emulation entity. The external emulation entity for the device may then provide the
required interface of the emulated device to the production control system. In the case of
a robot, the external emulation entity must perform the forward kinematics computation
in each time cycle, resulting in sending the poses of all robot parts to the internal
emulation entity. Additionally, depending on the interface required by the production
control system, the external emulation entity may have to undertake the motion control
step required by the task, and possibly even the logical task handling.

Alternatively, the computational load of the full forward kinematics for finding robot part
poses may be left inside the game engine, while leaving task logic and motion control with
the external emulation entity. For a robot device, this latter approach results in a much
cleaner and generic interface of data exchange, in the form of joint positions, between
the external emulation entity and the internal game engine part of the device emulation.
Finally, there is the option of implementing the entire emulation of the device inside
the game engine. This design choice leaves the full computational load on the game
engine node, but simplifies the software and computational system setup by eliminating
the external emulation entity.

Development, in reality, of any advanced production system and production control sys-
tem will experience a very similar phase of determining boundaries and interfaces among
deployed subsystems. Hence, besides being not particularly specific to emulation of
production systems based on the Blender game engine, this exercise is not even to be
considered specific to the setting up of an emulation system.

Similar considerations of division of functionality between the game engine and external
emulation was touched upon for the emulated AGVs described in Section 3.2.3.

3.4 Experimental Production Control System

Throughout the PhD work of this thesis, the IntelliFeed project has been concerned with
a specific prototype production setup, and the development of distributed, autonomous
control for that setup; confer Fig. 3.1 for an overview of the scene as modelled in Blender.
The papers included in Section 4.2 [Lind et al., 2009], Section 4.3 [Roulet-Dubonnet et al.,
2009], Section 4.7 [Lind and Roulet-Dubonnet, 2010], Section 4.8 [Lind and Roulet-
Dubonnet, 2011], and Section 4.9 [Lind and Skavhaug, 2011] dedicates a considerable
amount of explanation of the production and manufacturing related circumstances; the
devices and logistical processes involved with their individual control; and the production

3.4. Experimental Production Control System 61

Figure 3.1: Overview-snapshot from the emulated prototype production system modelled in
Blender. Supply cells are seen on the left, each comprising a CNC machine for producing work-
pieces; a top-view camera for bin-picking, a picker-robot, of type Universal Robots UR-6-85-5-A,
associated with a bin-picking vision system; and a turntable with boxes for switching produced
workpieces from the CNC machine to the picker-robot. Upload cells are seen on the right, under
the PnF-carrier, each featuring a Nachi SC15F robot and a camera and vision system for picking
workpieces off a docked AGV. The carrier management is based on the side-view camera under the
PnF-conveyor, focused on the upload position of a carrier between the upload-robots. The PnF-
conveyor comprises the carrier trolleys, on which the paint-system carriers are suspended, and the
controllable PnF-stops located on the track of the PnF-conveyor. The paint-system carriers are seen
as skeletal structures at the far end of the PnF-conveyor. A total of five AGVs are seen around the
scene on the floor and on the floor near the cells are shown some marked rectangles, symbolizing
docking poses for the AGVs.

scenario to be supported by a production control system.

For testing purposes, a simple production control system was developed along with the
production system setup and emulation system. The developed production control system
was designed to be centralized, for keeping setup, testing, experimentation, and run-time
inspection comprehensible; these being the initial goals for the experimental production
control system. It was thus experimental in the sense that it was used to perform
experiments with the emulated production system. However, over time it evolved to
some level of sophistication and will be easily distributed in its current state. The level of
autonomy is not impressive, though, since it has remained a central goal for the control
system to be a facility for testing and debugging the emulation system.

The sophistication level evolved naturally from the attempt at making the emulation
system realistic. Thus, like in a real production control system, there are many details
with many timely constraints and a high degree of concurrency. Though quite sophisti-
cated in its present state, there is no current support for orchestrating changeovers. To

62 Chapter 3. Account of PhD Work

demonstrate changeovers, first of all the production system must be slightly extended to
handle different workpieces and use different tools and carriers. Since there is currently
only one set of tools, carriers and workpieces in the emulated production system, the
production control system handles only that specific setup.

It is the purpose of this section to give an impression of the design, implementation, and
operational logic of the experimental production control system; which has been almost
neglected in the publications. The description is based on UML diagrams as a descriptive
tool, and reference to included interface and implementation code in Appendix A.

3.4.1 Overview

Fig. 3.2 gives a structural overview of the central production controllers, and their as-
sociation with important emulated devices. The diagram is a UML object diagram, and
thus illustrates the objects and their associations at a given instant of time. In the il-
lustrated prototype system in Fig. 3.2, the only associations that change over time are
those regarding the AGVs.

In addition to the displayed emulated devices, but not shown, there is a collection of
dock-devices for the AGVs. These play no major role for the overall workings of the
system, and have been left out of the diagram for reasons of clarity.

There are four distinctly identifiable clusters in the control system:

� Supply of workpieces.

� Upload of workpieces.

� Management and execution of transportation.

� Management of upload-carrier and control of PnF-conveyor.

The responsibilities and operations of each of these clusters are the target for descriptions
in the remainder of this section.

3.4.2 Supply Operations

An object of the SupplyCell class is the hub of a workpiece-supply cell. There are two
workpiece-supply cells in the laboratory prototype system, so two SupplyCell objects
are found in Fig. 3.2; lower left and lower right. Appendix A.2.1 includes the code
implementing the SupplyCell class.

A SupplyCell object associates and orchestrates a workpiece producer, a bin-picking
vision system, a tool-linear controller for a robot with picking tool, and a turntable. It is
further responsible for acquiring AGVs to fill with workpieces. It has an associated picker
object of class Picker, which is itself associated with the vision system and the robot

3.4. Experimental Production Control System 63

agv0:

AGV

_UploadBuffer:

PnFStop

_CarrierStorage:

PnFStop

_Upload:

PnFStop

_PaintBuffer:

PnFStop

conveyorManager:

ConveyorManager

carrierManager:

CarrierManager

transportManager:

TransportManager

agv1:

AGV

agv2:

AGV

agv3:

AGV

agv4:

AGV

uploadLeft:

UploadCell

supplier0:

SupplyCell
supplier1:

SupplyCell

uploadRight:

UploadCell

vsRightPickUpload:

VisionSystem

vsPickup1:

VisionSystem

_picker_supply1:

Picker

_picker_supply0:

Picker

_picker_uploadLeft:

Picker
_picker_uploadRight:

Picker

wppPartSupply1:

WorkpieceProducer

ttTTPartSupply0:

TurnTable
ttTTPartSupply1:

TurnTable

_linCon_supplier0:

LinearController
_linCon_supplier1:

LinearController

_linCon_leftUpload:

LinearController

vsCarrier:

VisionSystem

vsPickup0:

VisionSystem

vsLeftPickUpload:

VisionSystem

wppPartSupply0:

WorkpieceProducer

_linCon_rightUpload:

LinearController

Figure 3.2: UML object diagram for the most active and important objects from the production
control and production emulation systems in the prototype production setup. Production system
controllers are shown in shades of green and interfaces to emulated devices are shown in shades of
orange. Important controllers from the production system are shown in strong green, while more
peripheral controllers are shown in pale green. Distributed controllers for emulated devices are shown
in strong orange, while controllers deployed purely in the game engine are shown in pale orange.

64 Chapter 3. Account of PhD Work

SupplyWorkpieces

<<submachine>>

do / _suplyWorkpieces()

AcquireAGV

<<submachine>>

do / _acquireAGV()

FillAGV

<<submachine>>

do / _fillAGV()

WaitForAGV

do / _agv.waitForIdle()

CheckSupply

do / n=_getGrabableParts()

[n < 2]

[n >= 2]

AGVFull

do / _releaseAGV()

Ready

Figure 3.3: Overview of the operations of a supply cell modelled as a UML state machine
diagram. The main cycle is based on acquiring an empty AGV, and filling it with workpieces. The
main operations are in the sub-machine for filling workpieces on the AGV. Re-supply of workpieces
from a workpiece producer is represented by a separate sub-machine, which is invoked while waiting
for an AGV to arrive, and as an integral part of filling the AGV.

controller of the supply cell. The picker is delegated the general operation of selecting
and picking a workpiece when ordered. Both the Picker and the SupplyCell objects are
associated with the tool controller for the tool mounted on the robot. The tool controller
is, for reasons of clarity, considered as an integral part of the robot controller in Fig. 3.2.
The operation of a Picker object will not be described in detail. However, since it plays
an important role for both the SupplyCell and UploadCell classes, as evident from the
descriptions in the following and from Fig. 3.2, the code for the Picker class is included
in Appendix A.2.3 for reference.

The overall operation of a SupplyCell object is shown by a UML state machine diagram
in Fig. 3.3. Note that the UML state machine formalism allows sub-machines; confer
e.g. the OMG Unified Model Language�(OMG UML), Superstructure [OMG, 2010]. The
purpose of the supply cell is to fill a docked AGV with workpieces; that the AGV may then
supply to any production facility in need of the parts. The supply cell does not operate to
order, but simply fill AGVs as fast as possible; limited by availability of unloaded AGVs,
workpiece production rates, and pick-and-place operation times.

A necessary precondition to filling an AGV is the reservation and docking of an empty
AGV at the loading dock of the supply cell. In parallel with the waiting for arrival of a
reserved AGV, the supply cell checks that there are indeed available parts in the box on
the turntable facing the picker-robot. While the number of pickable parts are below some
threshold, a resupply-operation is ordered, comprising an order to the CNC-machine to
produce a certain amount of parts. At the join of transitions in Fig. 3.3 an AGV has
arrived, and a minimum number of pickable workpieces is guaranteed.

There are three sub-machines involved in the overall operation state machine of the
supply cell in Fig. 3.3. Each will be explained in the following.

3.4. Experimental Production Control System 65

loop

opt

transportManager:

TransportManager

[agv == None]

[waitForArrival]

supplier0:

SupplyCell

agv0:

AGV

requestAGV(UnLoaded)

agv

goToDock()

waitForArrival()

_acquireAGV()

setLoadState(Loading)

setPayloadSpec(partType)

Figure 3.4: UML sequence diagram for the interaction between a supply cell, the transport
manager, and an AGV, for obtaining a reservation for an AGV, and commanding it to the dock. An
infinite loop is initially entered, wherein each iteration requests an unloaded AGV from the transport
manager. The loop runs as long as no AGV object is returned. As a reserved AGV is returned, it is
immediately sent to the loading dock of the supply cell.

Acquisition of an AGV

In the supply-cell state machine, Fig. 3.3, the acquisition of an AGV is a separate sub-
machine; AcquireAGV. The operation of acquiring an AGV is an interaction between a
supply cell (or an upload cell; confer Section 3.4.3), the transport manager, and an AGV.
The interaction is best described by a UML sequence diagram, as shown in Fig. 3.4.

The scenario of acquiring an AGV may be recognized in the protected method acquireAGV()

of the SupplyCell class in Appendix A.2.1. The transport manager is repeatedly asked for
an available AGV until one is returned. When a reserved AGV is returned it is guaranteed
to match the requested load state and payload type. In case of a supply cell request, the
AGV is requested to be un-loaded and with un-specified payload type; the payload type
being irrelevant since the AGV is requested to be un-loaded. In the equivalent operation
of acquiring an AGV for an upload cell, the AGV is requested to be loaded, and match a
given payload specification for the pending upload process. The AGV returned from the
transport manager is for an AGV which has been reserved to the requesting cell, and it
may be immediately commanded to the cell’s operational dock.

As reservation of the AGV is obtained, and it is commanded to the operational dock, its
load state and payload specification is set according to the planned operation. For the
supply cell the load state is set to Loading and for the upload cell the load state is, in the
corresponding situation, set to UnLoading.

Optionally, though not used in the current implementation, the caller to the acquireAGV()

method may be blocking to synchronize with the arrival of the reserved AGV to the cell’s
dock, as seen in the lower fragment of Fig. 3.4.

66 Chapter 3. Account of PhD Work

supplier0:

SupplyCell

wppPartSupply0:

WorkpieceProducer

ttTTPartSupply0:

TurnTable

waitForCompletion()

_supplyWorkpieces()
waitForIdle()

waitForCompletion()

produce()

rotate()

Figure 3.5: UML sequence diagram for the operation of re-supply of parts to pick. First any
previously ordered, ongoing operations of the turntable and CNC machine resources are allowed to
complete. Then the turntable is rotated, and after completed rotation, a box filled by the previous
produce operation is facing the picker-robot, while a new produce order is allowed to commence
asynchronously.

Re-supplying Workpieces for Picking

Re-supplying workpieces for picking by the associated picker is an operation involving the
workpiece producer (the CNC machine), the turntable and the bin-picking vision system.
The supply operation always leaves the box under the CNC machine being filled with
workpieces, while immediately rotating a previously filled box on the turntable towards
the picking robot. Thus, the actual producing of new workpieces proceeds in parallel
with the main operation of the supply cell.

The operation of re-supplying workpieces for picking was shown as a sub-machine in the
state machine of the overall operation of the supply cell in Fig. 3.3. Fig. 3.5 shows the
details of the re-supply operation by a sequence diagram for the supplier0 supply cell. The
corresponding method in the implementation of the SupplyCell class in Appendix A.2.1
is found in the protected method supplyWorkpieces().

Filling an AGV

The filling of an AGV, at rest in the operational dock of the supply cell, is the operation
of the supply cell fulfilling its ultimate purpose. The operation is illustrated by a UML
state machine diagram in Fig. 3.6. The operation is implemented by the code for the
protected method fillAGV() in the code of the SupplyCell class in Appendix A.2.1.

The main operation consists of interleaved operations of picking a workpiece from a
supply box, deploying the picker associated with the supply cell, and dropping it at a
layout-site on the AGV. The picker, when requested to perform a pick of a workpiece
will indicate failure if no pickable parts could be found in the supply box, and this results
in a re-supply operation. After re-supplying, the picking and dropping operations are
resumed, proceeding thus until the AGV has been filled to the specified layout.

3.4. Experimental Production Control System 67

FillAGV

<<submachine>>

do / _fillAGV()

SupplyWorkpieces

<<submachine>>

do / _suplyWorkpieces()

DropOnAGV

<<submachine>>

do / _dropOnAGV()

PickWorkpiece

<<submachine>>

do / res = _picker.pick()

[res == False]

[res == True]

CheckLayout

[incomplete]

done

_fillAGV

[complete]

Figure 3.6: UML state machine diagram for illustrating the operations involved in filling an AGV.
The main iterative cycle between the states PickWorkpiece and DropOnAGV proceeds as many times
as there are workpiece sites in the layout on the AGV; each cycle filling one site. The pick operation
in the PickWorkpiece sub-machine may fail, when no workpieces are found by the bin-picking vision
system of the supply cell, triggering a re-supply operation.

In the current implementation the supply cell contains directly the layout of the workpieces
to put on the AGV and the logic for expressing the layout by place-operations with the
robot controller. In a real, advanced production system, the specifications of layouts
and motion involved with adding workpieces to an AGV may be of a great variety. Such
specifications would typically reside in an off-line generated database, but they may also,
in very advanced production systems with highly customized products, be generated on-
line, and thus unknown prior to the operation. The supply cell operation should be
flexible with respect to layouts and motion specifications for adding workpieces, and this
aspect could be adequately based on the strategy software design pattern; as described
by Gamma et al. [1995]. This current lack of flexibility also pertains to the upload process
of the upload cell, and with the general picker class for picking workpieces identified by a
vision system. All these aspects must have their motion and identification computations
and controls encapsulated with a strategy support-object for given workpiece types and
operation conditions.

3.4.3 Upload Operation

An upload cell is operationally and logically very similar to a supply cell. Two UploadCell

objects are found in the system overview in Fig. 3.2, named uploadLeft and uploadRight;
to the upper left and upper right. An upload cell is persistently associated with a robot
linear controller, a bin-picking vision system, a workpiece picker, the transport manager,
and the carrier manager. An upload cell is further transiently, periodically associated
with an AGV which is acquired from the transport manager. The AGV brings workpieces
from the supply cells for upload on a paint system carrier, and thus represents an implicit

68 Chapter 3. Account of PhD Work

PickWorkpiece

<<submachine>>

do / res = _picker.pick()

CheckSupply

do / n = _agvWorkpieceCount()

UploadWorkpiece

<<submachine>>

entry / carrierManager.getSite

exit / carrierManager.siteFilled

do / _uploadWorkpiece

AcquireAGV

<<submachine>>

do / _acquireAGV()

[n == 0]

[res == False]

[n != 0]

WaitForAGV

do / _agv.waitForIdle()

[res == True]

Figure 3.7: UML state machine diagram for the upload cell operation. The basic operation cycle
is to pick a workpiece from the AGV by using the vision system, and uploading the workpiece to a
site on the paint system carrier. Before a pick is performed, it is ensured that an AGV is docked. If
a pick operation fails, the AGV is deemed empty, and a new AGV is requested. Following every pick,
the AGV is checked for workpieces, and if none are found, a new AGV is requested. The upload
operation proceeds concurrently with this check. The upload operation may block on requesting a
new site on the paint system carrier, and remain blocked until a new carrier is in place.

association with the supply cells.

The objective for the upload cell is to fill its share of a paint system carrier with workpieces
for painting, at the highest possible rate. Compared to a SupplyCell object, an Upload-

Cell object have less devices to orchestrate while another production system controller
to interact with. The interaction with another, high-level, production system controller
is, in this case, less interaction-complex than that of commanding a device controller. Of
course, generally there are easily imaginable, highly complex interactions between higher-
level controllers in an advanced production control system; the complexity of which may
vastly supersedes that of mere device control.

The operation of an upload cell is illustrated by a UML state machine diagram in Fig. 3.7.
The code for the UploadCell implementation is included in Appendix A.2.2. The sub-
machines AcquireAGV and PickWorkpiece of the UML state machine diagram in Fig. 3.7
are identical in operation to the correspondingly named ones shown for the supply cell
operation in Fig. 3.3. The most pronounced difference in a real system lies with the
vision system. In the supply cell, workpieces are produced and fall freely into boxes,
and hence the bin-picking vision system can not assume anything about the structure of
workpieces to identify. The vision system of the upload cell may assume a structured,
specified layout of the workpieces on the AGV supplying them. This difference is specific
to the setup in the prototype production system.

In the implementation for the upload cell, in Appendix A.2.2, the protected method
acquireAGV() implements the AcquireAGV sub-machine. The PickWorkpiece sub-machine

is implemented by a call to the method pick() of the Picker object associated with the

3.4. Experimental Production Control System 69

pertinent UploadCell object.

The main operation cycle for the upload cell is to let the associated picker pick up a
workpiece from the AGV, acquire a free site on the paint system carrier from the carrier
manager, and command the robot to place the picked workpiece on the acquired site on
the carrier. This operation cycle flow is interrupted in two situation:

1. When there are no more workpieces on the docked AGV.

2. When there are no further upload sites on the carrier.

The handling of these two situations in the upload cell are of two quite different natures.
The acquisition of a new AGV in the AcquireAGV sub-machine is, like for the supply cell,
directly handled by the upload cell. I.e. the transport manager is repeatedly requested
for a loaded, available AGV, and the AGV, which eventually gets reserved, is commanded
to the operational dock of the upload cell.

The acquisition of a new carrier is not observed from the state machine for the upload cell.
It is not even expressed the code in Appendix A.2.2, since it is handled integrated with
the call to the method getSite() of the the carrier manager, carMan, in the UploadWorkpiece

sub-machine.

The operation that clearly distinguishes the upload cell from the supply cell is the
upload of a workpiece to the carrier. It is symbolically illustrated in Fig. 3.7 by the
UploadWorkpiece sub-machine. The UploadWorkpiece sub-machine is implemented by the
protected member uploadWorkpiece() of the UploadCell class. Its operation is simply that
of acquiring a free site for upload on the carrier from the carrier manager, computing the
approach position, and commanding the robot linear controller to the approach and to
the attachment pose of the site, attaching the workpiece, and registering with the carrier
manager that the site has been filled. The logic for computing and executing the actual
upload is hard-coded into the uploadWorkpiece() member function. This exposes the lack
of support for different workpieces and carriers, and in a flexible, more realistic system
will be implemented by a strategy software design pattern. Both the pick and the upload
motion processes are depending on specific workpiece, tool and carrier types, and should
be designed as dynamic strategies.

3.4.4 Transport System

The transport system is the coupling between the supplier and upload cells. It partially
administrates the AGVs, which perform the physical transport. The TransportManager

is a singleton class in the current design, and the object, transportManager, of the exper-
iment control system is seen at the centre of Fig. 3.2, with the AGV objects scattered
around it. A third central concept of the transport system is represented by the Dock

class; which was left out of Fig. 3.2 for clarity. The Dock objects serve as registered

70 Chapter 3. Account of PhD Work

dockRightUploadLoad:

Dock

agv0:

AGV
agv2:

AGV

supplier1:

SupplyCell

dockPartSupply0Buffer:

Dock

dockPartSupply1Load:

Dock

supplier0:

SupplyCell

dockRightUploadBuffer:

Dock

dockPartSupply0Load:

Dock

dockLeftUploadBuffer:

Dock

dockLeftUploadLoad:

Dock

uploadRight:

UploadCell

transportManager:

TransportManager

dockPartSupply1Buffer:

Dock

agv1:

AGV

uploadLeft:

UploadCell

agv3:

AGV

agv4:

AGV

Figure 3.8: UML object diagram for an overview of objects and associations involved with the
transport system. The singleton TransportManager object is central, and connected to almost any
other entity of the transport system; shown in green as a production system controller. The AGV

objects represent the aggregation of the low level devices for an AGV, such as velocity controller and
localizer system, with the production system aspects of handling individual transport tasks; shown
in orange as distributed emulated devices. The Dock objects represent the information service
connected to specific physical areas, where AGVs must have reservation to pose themselves; shown
in light blue symbolizing production system information services. For completeness, the SupplyCell

and UploadCell objects are included since they are clients to the transport system; they are here
shown in grey since they are not a part of the transport system.

targets and restricted zones for AGVs in the transport system, and the docks of the
prototype production system are included in the transport system overview in Fig. 3.8.

Fig. 3.8 illustrates the associations among objects that make up the transport system
and its clients in the production control system. The associations between AGVs and
supply cells, upload cells, and docks are transient, while the all remaining associations
are persistent. Generally the operational docks are associated with the operational cells,
while the buffer docks are associated with the transport manager. The AGVs are taken
under appropriate ordering of the transport manager when they are idle, whereas they
are commanded by the supply and upload cells when under operation. The geometric
layout of the objects in Fig. 3.8 reflects the geometric layout of the associated physical
entities on the shop-floor in the laboratory prototype.

Docks

A primitive Dock object is an informational service for handling the reservation of a
particular area around a given position and orientation on the shop-floor. It is part of the
logic of all AGVs in the production control system to not enter a target dock without
having obtained reservation first, and when entering it must register this with the dock
service object. In a more advanced system, with, for instance, mechanical fixing or local
sensor guidance of a docking AGV, the Dock class may be much more involved, and may

3.4. Experimental Production Control System 71

Free

entry / reserver = None

exit / reserver = caller

Full Booked

reserve

enter

[caller == reserver]

[caller != reserver]

/ reject

release

[caller == reserver]

/ accept

release

[caller == reserver]

/ accept

[caller != reserver]

/ reject

Figure 3.9: UML state machine diagram for a Dock object. The standard operation cycle is seen
as the central transitions from Free to Booked to Full and back to Free state. Whenever in the Booked

or Full states the Dock object has a reserver, and only the reserver is allowed to do operations that
change the state.

even temporarily take over the direct control of some low-level AGV devices.

In an advanced AGV system for production system transport tasks, the individual AGVs
will ensure general collision avoidance among themselves, while also avoiding immediate
dead-locks. This may be based on central localization services, inter-AGV communi-
cation, and, for safety and stability reasons, proximity sensors on the individual AGVs.
Certain situations or conditions, however, may render such autonomous and cooperative
mechanisms inefficient. An example of this is the case of an operational dock, where
the AGV under operation must not suddenly, autonomously, decide to yield to another,
passing, AGV. While standing still, or under very controlled motion, under operation with
a production system controller, the AGV must not be hindered in its operation. Two
other examples where autonomous AGV-behaviour should be suppressed for reasons of
efficiency and safety are high-speed corridors and congested intersections. A separate
or integrated, distributed traffic control system may take responsibility for controlling
or monitoring such features of the transport system. These features are control-wise
reminiscent of the primitive dock, in the respect that AGVs, based on certain conditions
and priorities, must achieve some level of reservation, and once obtained they may lower
their internal level of safety awareness, allowing for more liberty in motion planning and
control.

The primitive Dock class used in the prototype system in this work is, in its nature,
a representative of such traffic-control features. The code for the interface provided
by a Dock object, the Dock interface, is included in Appendix A.1.5. The code for
implementing the Dock class is, as is evident from a quick glance at the interface, quite
simple and not included in the appendices.

The operation logic of a dock is illustrated by the UML state machine diagram in Fig. 3.9.
It shows that a dock in the Free state will acknowledge any AGV-request for reservation,
registering the AGV as the reserver of the dock. Reservation implies a transition to

72 Chapter 3. Account of PhD Work

the Booked state, whereby any subsequent requests not originating from the reserver are
rejected; likewise in the Full state. The reserver is obliged to notify the dock at the time
of arrival to the dock, triggering a transition to the Full state. From either of the states
Full and Booked, the AGV may trigger the dock to make a transition to the Free state.
From the Full state, this symbolizes that the AGV has left the dock, whereas from the
Booked state it is equivalent to a cancellation of a reservation.

More complex logic may be implemented in the Dock classes. For instance, an AGV may
notify that it leaves the dock but retains its reservation. Another realistic example of
more advanced logic is cooperative docking, where two or more AGVs may bring together
various, simultaneously necessary parts for assembly. The cooperating AGVs must then
be given coordinated priority for obtaining simultaneous reservation of the neighbouring,
operational docks for the assembly cell.

Transport Manager

The transport manager is a central element, serving two main operational purposes:

� On request from a production control entity, all AGVs are searched for an appro-
priately loaded, unreserved AGV according to the request. This is a reactive task
in response to requests.

� Periodically searching for idle AGVs, and sending them to buffer docks flagged to
be appropriate for the load state of the pertinent AGVs. This is an active, internal
task of the transport manager.

In addition, the transport manager has an internal task of regularly refreshing its list
of active AGVs in the production system. The mechanism employed in the current
implementation is suitable for adding AGVs, but there is no mechanism for handling AGVs
which disappear from the system. I.e., the transport system may handle dynamically
deployed AGVs but not AGVs being dismissed or disconnected from the system. This is
not a severe issue for testing in the scenarios of the prototype production system, which
simply deploys a fixed set of AGVs initially, an no AGV is ever dynamically deployed,
disconnected, or dismissed during operation.

The code for implementing the TransportManager is included in Appendix A.2.4 and
the interface provided to the production control system, the TransportManager interface,
is found in Appendix A.1.5.

The core service of the transport manager is to support the request for reservation of
an AGV to any production control system entity. The interactions that unfold when the
method requestAGV() of the TransportManager class is invoked is illustrated in the UML
sequence diagram in Fig. 3.10. The illustrated scenarios are taken from an invocation
from the uploadLeft upload cell, requesting an AGV loaded with workpieces for upload
to the paint system carrier.

3.4. Experimental Production Control System 73

alt

[failure]

agv1:

AGV

[success]

agv4:

AGV

agv0:

AGV

agv2:

AGV

transportManager:

TransportManager

agv3:

AGV

uploadLeft:

UploadCell

getStates()

Available, Loaded, ...

agv3

getStates()

Reserved, ...

getStates()

Available, UnLoaded, ...
getStates()

Reserved, ...

requestAGV()

getStates()

getStates()

Reserved, ...

Reserved, ...

None

reserve()

Figure 3.10: UML sequence diagram for illustrating the interactions of the transport manager
with the AGVs, when an operational cell requests an AGV. In the specific scenarios illustrated, an
upload cell is requesting a loaded AGV. The transport manager queries all active AGVs in turn for
their states regarding reservation and load. For the request from the upload cell, a match is made
when an available, loaded AGV is located, the AGV is reserved to the upload cell and an interface to
the AGV is returned; as illustrated in the “success” alternative. The “failure” alternative illustrates
that if all AGVs have been queried and no state-match is found, the transport returns an empty,
“None”-interface to the requester.

The diagram illustrates two alternative scenarios; one where an appropriate AGV is suc-
cessfully identified and one where all AGVs are queried but without identifying an ap-
propriate AGV for the request. A sweep is started for querying all AGVs, and it stops
when either an AGV is identified which matches the request or if all known AGVs have
been queried and failed to match the request. In case of success, the matching AGV is
reserved to the invoking production system controller, and an interface to the reserved
AGV is returned. In case of failure to find an appropriate AGV, an empty interface is
returned.

The internal, active operational purpose of the transport manager, i.e. the continual
identification and appropriate disposal of idle, available AGVs, is a production control
task. It is a centralization of functionality for the production control system, relieving
AGVs and operational cells that use the AGVs from the complex production knowledge
about where to send AGVs after operation. In the prototype system, as an AGV has
been filled with workpieces at a supply cell, some entity must identify the situation and
know where to send the loaded AGV. A similar situation arises at an upload cell, when a
docked AGV has been depleted of workpieces. For the supply cell it is a natural part of
its operation to request for a new, unloaded AGV for continuing operation, as well as it is
natural for an upload cell to send out requests for an AGV loaded with workpieces. But

74 Chapter 3. Account of PhD Work

both operational cell types share the problem of how to dispose of the currently docked
AGV.

The transport manager solves the AGV disposal problem by having a number of buffer
docks registered. A buffer dock is not directly associated with any operational cell, but is
physically located in the vicinity of an operational dock. A buffer dock is registered into
the transport manager with the load state of the AGVs relevant for it. Thus, a buffer
dock near an operational dock for the upload cell should be registered as accepting
AGVs loaded with workpieces, whereas the buffer docks near the supply cells should be
registered for accepting empty AGVs. The disposal task of the transport manager thus
serves two purposes:

� It solves the problem of getting AGVs out of the way from operational docks, when
the AGV is dismissed from the pertinent operation.

� It tries to optimize the transport tasks of the production system by a pre-fetch
mechanism, by which idle AGVs are sent to appropriate buffers in the vicinity to
their next expected usage.

An endless number of further optimizations is possible as extensions to the currently
implemented mechanism for pre-fetching AGVs. The current mechanism simply selects
a dock at random, from the set of appropriate buffer docks for an idle AGV. The appro-
priateness of a buffer dock for an AGV is based entirely on whether the AGV’s load state
matches the load state for which the dock is registered. Many immediate optimizations
may be implemented as strategies for inspecting and computing at various sophistication
levels, where a buffered AGV is likely to have the shortest time to wait for operation in the
associated operational dock. Such strategies may depend on the nominal or estimated
rate of “consumption” of AGVs in the operational cells serviced by the buffer dock, and,
of course, the operational status of the associated operational cell.

The transport manger is the strongest point of centralization in the current prototype
production control system. In a control system based on more autonomous agents, the
solution may be that the supply cells would be implemented to obtain awareness of
and association with an upload cell in near-future need of workpieces, and thus inferred
where to send the AGV. Alternatively, such awareness could have been located with the
individual AGVs or with the upload cells. The centralized approach taken in the current
implementation, by which the transport manager eliminates the need for autonomy and
awareness, was motivated by its simplicity. This approach is known to result in poor
scalability and low flexibility; for instance, all AGVs are handled equally and with very
little intrusiveness. An approach allowing more autonomy and diversity in the requesting,
operational production system entities and in the AGVs themselves may lead to much
better system scalability and higher production flexibility; at the price of more complexity
in design and implementation, however.

3.4. Experimental Production Control System 75

AGVs

The AGVs are software representatives and controllers of the physical transport devices.
In essence they are the entities which bind together AGV velocity controller devices and
AGV localization services with the production control aspects of physically transporting
workpieces.

An AGV software object has, as its central control task, the responsibility for the low-level
trajectory planning and control, which leads to achievement of a desired gross motion
of the physical device. The achievement of the endpoint pose of the motion is the
production system task associated with transport by the AGV.

In the current prototype system, the design does not encompass such features as traffic
control, prioritization of transport tasks, or AGV interference avoidance. The trajectories
of AGVs are thus simply planned and controlled along the direct paths to target pose. The
implemented AGV system only works for testing purposes by optimally fulfilling the direct
transportation tasks, disregarding anything directly or indirectly involving interferences
and collisions of the AGVs, except for access control to docks; which is considered part
of the production system constraints.

AGVs are on the conceptual border between production controllers and production de-
vices. Their main control objective, being motion and trajectory control, is device-
oriented, and thus may be classified as production devices. However, much of the mo-
tion and trajectory planning, encapsulated in the AGV software, touches upon produc-
tion control aspects. Continuing this trend in future design, i.e. putting more advanced
production control related responsibilities into the AGV software, will render the AGVs
increasingly as production system controllers.

Due to the quite low amount of production system aspects in the current, simple AGV
software design and its unrealistic state for real deployment, the AGV software will not
be further discussed. Still, the AGV software is some of the more complex code in the
production control system. Therefore, its implementation in the AGV class is included
in Appendix A.2.5 for reference. The AGV interface provided by the AGV class to the
production control system is included in Appendix A.1.5.

Certain central features of the AGV software design is expected to be usable also in
a future, more realistic, implementations. This regards the design of three concurrent,
internal state machines illustrated in Fig. 3.11.

The AGVReservation state machine in Fig. 3.11(a) takes precedence for all logic opera-
tions in the AGV object, which basically rejects all requests originating from a requester
which does not have reservation of the AGV.

The AGVTarget state machine, in Fig. 3.11(b), holds information of the kind of motion
task, and hence the kind of motion target, is currently in progress. The target type is
determining of some internal tasks and activities of the AGV object. The states and

76 Chapter 3. Account of PhD Work

AGVReservation

<<submachine>>

Available Reserved

release

[reserver == self._reserver]

/ reserver = 0

reserve

[self._reserver == 0]

/ self._reserver = reserver

(a) UML state machine dia-
gram for the reservation states
of an AGV.

AGVTarget

<<submachine>>

DockTargetFreeTarget NoTarget

goToTarget

[taskAcceptet == True]

taskDone

goToDock

[taskAcceptet == True]

taskDone

(b) UML state machine diagram for the target
states of an AGV.

AGVOperation

<<submachine>>

Tasking

Buffering

motionTask

[buffer == False]

motionTask

[buffer == True]

/ (reset target buffer)

Idle

Buffered

motionTask

[buffer == False]

taskDone

taskDone

motionTask

[buffer == True]

motionTask

[buffer == False]

motionTask

[buffer == True]

(c) UML state machine diagram for illustrating the dynamics of the
operation states of an AGV.

Figure 3.11: UML state machine diagrams illustrating the dynamics of the internal state machines
of an AGV. The three state machines are concurrent in the AGV objects, the logic of which depends
on and manages the state transitions of the state machines.

dynamics of this state machine is supposed to be generally extended, with corresponding
extension of motion control strategies, and customized for the detailed use in production
control systems. In the prototype production control system, only the DockTarget is in
active use, since all requests to the AGVs regards transport to docks; the NoTarget state
is used when there is no target for the AGV.

The AGVOperation state machine is controlling the operational states of an AGV object.
As seen in Fig. 3.11(c), it is the one with the highest number of states and the highest
complexity of transition dynamics. It mainly controls, and is controlled by, requests of
motion tasks. The Tasking state is associated with a real production system task, such as
moving to service of, or staying posed at, an operational cell. The Tasking state naturally
takes precedence above all other states, and transition out of it is only possible with the
completion of the task. Correspondingly, all other states allow transition to the Tasking

state, in recognition of their lower importance to the production system control. The two

3.4. Experimental Production Control System 77

states Buffering and Buffered are associated with motion and posing for the pre-fetch
optimization of the transport system. The AGV is in the Buffering state while moving
to a buffer dock, and at the end of such motion, the state changes to the Buffered state;
which resembles the Idle state by signalling that the AGV is at rest. The important
difference between the Idle and Buffered states, and which justifies the existence of the
Buffered state, is that in the Buffered state the AGV has a purpose with being posed
where it is; in the Idle state, the AGV has no special purpose with being anywhere in
particular.

3.4.5 Carrier and Conveyor Management

The carrier management is a service for the upload cells to acquire 3D information about
upload sites for workpieces on a painting system carrier. The conveyor manager is a
service to the carrier manager, for orchestrating a shift of carriers in which a filled carrier
at the upload PnF-stop is sent on to the painting system and a new, empty carrier
from a carrier storage or buffer is sent to the PnF-stop at the upload area. The carrier
and conveyor management objects, of classes CarrierManager and ConveyorManager,
together with the PnF-stop objects, of class PnFStop, are found topmost in the prototype
control system overview of Fig. 3.2.

Carrier Management

The carrier manager is implemented by the CarrierManager class in the code file included
in Appendix A.2.6.

The carrier manager serves two purposes in the production control system:

� To support all upload cells in their requests for free upload sites for workpieces
on the painting system carrier. This is a reactive service provided by the carrier
manager.

� To keep account of free sites on the painting system carrier with potential to be
filled by some upload cell, in order to timely command the shifting of carrier. This
is an internal, continuous task undertaken by the carrier manager.

The design of carrier management includes the issue with having several concurrent
upload cells, each of which may cover only a subset of the upload sites of a given painting
system carrier. For instance, the two upload robots in the laboratory prototype system
are limited in reach to the proximal sites of a particular painting system carrier. Therefore
the regions in the carrier management problem in the UploadCell and CarrierManager

classes are referred to as “sides”. The painting system carrier sites are thus, following the
vision analysis for upload site localization on a newly arrived carrier, partitioned into the
left and right sides. The uploadLeft upload cell should register with the carrier manager

78 Chapter 3. Account of PhD Work

that it covers the left sites of a carrier, and likewise the uploadRight upload cell registers
to cover the right side.

Like for many other detailed mechanisms in the design of the prototype control system,
this is an instance where the detailed logic for a particular configuration is directly imple-
mented in the code of the control entity. The separation of sites into relevant regions,
as well as the specification of installation of a particular workpiece type on a site of a
particular painting system carrier, must, for the system to be agile, or at least flexible,
have its design and implementation based on dynamic strategies and plug-in structures.

carrierManager:

CarrierManager

opt

[region filled]

uploadRight:

UploadCell

siteFilled(site)

_siteCond.wait()

getSite(region)

site

_uploadWorkpiece()

Figure 3.12: UML sequence diagram for the request from an upload cell to get an upload site
on the painting system carrier. Initially the carrier manger checks if any more sites are available for
the region addressed by the getSite() request. If no more sites are available, the requester is blocked
while waiting for the carrier to be shifted, and new sites to become available. As an upload site is
eventually returned, it is marked in the carrier manager as reserved. The site will be cleared from
the site-accounting when the upload cell have performed its upload operation; signalling this by the
call to the siteFilled() method of the carrier manager.

The details of the operations involved for supporting an upload cell in getting a site
for uploading a workpiece is shown by the UML sequence diagram in Fig. 3.12. At the
request for a site for a given side the carrier manager checks if there are remaining free
sites on the given side. If not, the caller is blocked until notification of new sites, in
the advent of arrival of a new carrier. A free site is eventually marked as reserved and
returned to the upload cell. As the upload cell completes its upload operation to the
site, it notifies the carrier manager that the site have been filled; which removes the site
from the accounting of sites for the pertinent carrier.

The task of monitoring the upload status of any carrier is an internal, continuous task
for the carrier manager. It involves monitoring the total number of reserved sites and
free sites with potential to be filled. A site that has potential to be filled defined as a
free site in some region of the carrier for which an upload cell is registered. It means that
some upload cell has taken the obligation to fill the site, when it is returned in a getSite()

request. When the sum of the number of reserved and free sites goes to zero, the carrier
is defined to be full. It is so in the sense that any remaining site which does not have had
a workpiece attached has no registered upload cell which may fill it. The condition of
a carrier being declared full triggers the internal task of disposing of the current carrier,
and providing a new, empty carrier from the PnF-conveyor. This is achieved by using

3.4. Experimental Production Control System 79

the service of the conveyor manager. After arrival of a new, empty carrier, it is analyzed
by the vision system for localizing upload sites, which are then partitioned according to
the site regions for the carrier. Finally, all upload clients awaiting new carrier sites are
notified that a new carrier is in place.

loop

opt

carrierManager:

CarrierManager

vsCarrier:

VisionSystem

conveyorManager:

ConveyorManager

shiftCarrier()

getWorldPoses()

_partitionSites()

siteCount()

_siteCond.notifyAll()

[count == 0]

Figure 3.13: UML sequence diagram for illustrating the active loop internal to the carrier manager.
Its main purpose is to monitor the potential number of free sites on the current upload carrier. At
a count of zero, the shift of carriers is ordered to be handled by the conveyor manager. As a new
painting system carrier has arrived, the associated vision system is requested to analyze for the
locations of all free sites for upload. These are partitioned according to the “sides” or regions for
which upload cells have registered their coverage. At the end, all waiting upload clients are notified
that there are now new, free sites available.

The detailed interactions of the carrier manager, involved with shifting the carrier, is
illustrated in the UML sequence diagram in Fig. 3.13.

A minor flaw with the mechanism used to obtain and store carrier sites in the current
design of the carrier management is that all sites are identified and localized only once,
on the arrival of the new carrier. Sites are thereafter referred to by their 3D pose in
world coordinates. For this to work in reality, the mechanical stability and fixture of the
carrier must be ensured. However, in the current laboratory prototype system, the carriers
are free to rotate around a horizontal axis normal to the plane spanned by the carrier
structure. This means that uploading a workpiece on one side shifts the equilibrium angle
of the carrier, and hence shifts all upload site in world coordinates by a rotation around
the carrier attachment axis. Since such a shift in position of any site is outside tolerance
for the attachment motion process for the particular workpieces and carriers used, the
operation based on the current design of the carrier management and upload process
will fail. However, the emulated version of the laboratory prototype system assumes
that the carriers are mechanically stabilized throughout the upload process, without
explicitly including a fixture mechanism. It is possible, and feasible, to model and control
a manipulator for fixing the freely hanging bottom of a carrier, as an integral part of
the arrival of a new carrier at the upload site. This solution is possible and realistic to
implement in the real, as well as in the emulated, laboratory prototype system.

Changing the design of the implemented carrier management is possible, and involves
use of vision localization of sites in every request from the upload cells. For stability

80 Chapter 3. Account of PhD Work

reasons, such that no site doublets are registered, structural recognition of the upload
sites is necessary for matching the cached, reserved sites to the right sites from a vision
localization.

Conveyor Service

The conveyor manager provides a simple service to the carrier manager for shifting a
painting system carrier filled with workpieces out and shifting a new, empty carrier in
at the PnF-stop at the upload cells. The production system aspect is that the trolley
of a carrier filled with workpieces is to move on to a transfer area, where carriers are
transferred from the PnF-conveyor to the main conveyor through the painting system.
This section details the rather fixed orchestration involved with shifting the carrier at the
upload cells.

The code for implementing the CarrierManager class is included in Appendix A.2.7. The
PnFStop device interface used to control the PnF-stop devices is found in Appendix A.1.4.

The PnF-conveyor has three PnF-stops involved with the shifting of carriers. The PnF-
stop associated with the upload area is called Upload. It is located where the carrier
manager has its vision system for identifying carriers and localizing upload sites on the
carrier, and such that it is withing reach of the upload robots of the upload cells. As
close as possible to, and upstream on the conveyor from, the Upload is another PnF-stop,
called UploadBuffer. It is positioned as close as possibly allowed by the geometrical extent
of the carriers not to interfere, for giving the shortest shift time of the upload carrier. A
distant PnF-stop, called CarrierStorage, is located upstream from the UploadBuffer, at
an appropriate location for many trolleys with empty carriers to stand in line, blocked
against each other. This is, as the name indicates, a mass storage of carriers. Whenever
the UploadBuffer has released its trolley to refill the upload area with an empty carrier, a
new carrier should be supplied from the CarrierStorage to the UploadBuffer.

The detailed sequence of interactions of the conveyor manager with the PnF-stop con-
trollers is illustrated in the UML sequence diagram in Fig. 3.14. The detailed logic of the
orchestration involves three conditional fragments, which serve the purpose of starting up
normal operation from transient states; such as entirely depleted Upload and UploadBuffer

stops at initialization. In understanding the logic of the sequence diagram, it is important
to note that the semantics of invoking the releaseTrolley() method on a PnFStop interface is
that the calling thread is blocked until a trolley has passed the associated stop, regardless
of whether a trolley was blocked at the stop prior to the invocation. This gives a potential
deadlock, if releaseTrolley() is invoked without a trolley is blocked or on its way towards
the stop. The logic sequence in Fig. 3.14 is safeguarded from this deadlock potential.

Some of the checks in Fig. 3.14 also serves to correct errors in the real, as well as the
emulated, conveyor system. Errors may arise if two trolleys are released when only one
was ordered. In a certain sense, these checks and their associated actions may not recover

3.4. Experimental Production Control System 81

opt

opt

opt

opt

_UploadBuffer:

PnFStop

carrierManager:

CarrierManager

[False]

_Upload:

PnFStop

conveyorManager:

ConveyorManager

_CarrierStorage:

PnFStop

[False]

[True]

waitForBlockedTrolley()

hasBlockedTrolley()

releaseTrolley()

hasBlockedTrolley()

releaseTrolley()

releaseTrolley()

hasBlockedTrolley()

releaseTrolley()

shiftCarrier()

[wait]

Figure 3.14: UML sequence diagram for illustrating the interactions of the the conveyor manager
in response to the request from the carrier manager with to shift the current, filled upload carrier
with a new, empty carrier. It is a simple, conditional orchestration of the PnF-stops of the conveyor
to ensure that a carrier at the upload site is released, a new carrier is moved to the upload site, and
that the carrier buffer site for upload is replenished from the carrier storage PnF-stop.

the real system from such types of errors. If, for instance, two trolleys with carriers are
blocked at the Upload stop, the entanglement of the pegs between the two carriers will
certainly make any upload attempt fail, if the vision system is indeed able to actually
localize the entangled upload sites. It may even be the case that two entangled carriers
may stick together when one trolley tries to leave the PnF-stop, with unpredictable
results. For these reasons the error recovery included with the logic displayed in Fig. 3.14
should rather be perceived as operational verifications, with emergency stop as the result
of failure of any of the checks.

82 Chapter 3. Account of PhD Work

Chapter 4

Included Publications

This chapter is a compilation of pre-prints of selected published and submitted papers
prepared during the period of the PhD scholarship. The compilation is to be considered
the main contribution of this thesis.

In the following is found a bibliography of the included papers, and following that the
pre-prints of the papers themselves are included in order of publication, each in their
own section. Each section for a paper opens with the bibliographic information for the
contained paper and a short declaration of contributions.

83

Bibliography of Included
Publications

Terje Kristoffer Lien and Morten Lind. Instrumented fixtures for on-line correction of
welding paths. In Mamoru Mitsuishi, Kanji Ueda, and Fumihiko Kimura, editors,
Manufacturing Systems and Technologies for the New Frontier, Engineering, chap-
ter 11, pages 435–438. Springer London, May 2008. ISBN 978-1-84800-267-8. doi:
10.1007/978-1-84800-267-8 89.

Morten Lind, Olivier Roulet-Dubonnet, Per Åge Nyen, Lars Tore Gellein, Terje K. Lien,
and Amund Skavhaug. Holonic Manufacturing Paint Shop. In Vladiḿır Maŕık,
Thomas Strasser, and Alois Zoitl, editors, Holonic and Multi-Agent Systems for
Manufacturing, volume 5696 of Lecture Notes in Computer Science, pages 203–
214. Springer Berlin/Heidelberg, September 2009. ISBN 978-3-642-03666-8. doi:
10.1007/978-3-642-03668-2 20.

Olivier Roulet-Dubonnet, Morten Lind, Lars Gellein, Per Nyen, Terje Lien, and Amund
Skavhaug. Development of a Holonic Free-Roaming AGV System for Part Manufac-
turing. In Vladiḿır Maŕık, Thomas Strasser, and Alois Zoitl, editors, Holonic and
Multi-Agent Systems for Manufacturing, volume 5696 of Lecture Notes in Computer
Science, pages 215–224. Springer Berlin/Heidelberg, September 2009. ISBN 978-3-
642-03666-8. doi: 10.1007/978-3-642-03668-2 21.

Morten Lind, Johannes Schrimpf, and Thomas Ulleberg. Open Real-Time Robot Con-
troller Framework. In Terje Kristoffer Lien, editor, CIRP Conference on Assembly
Technologies and Systems, pages 13–18, NO-7005, Trondheim, Norway, June 2010.
Tapir Academic Press. ISBN 978-82-519-2616-4.

Johannes Schrimpf, Morten Lind, Thomas Ulleberg, Chen Zhang, and Geir Mathisen.
Real-Time Sensor Servoing using Line-of-Sight Path Generation and Tool Orientation
Control. In Terje Kristoffer Lien, editor, CIRP Conference on Assembly Technologies
and Systems, pages 19–23, NO-7005, Trondheim, Norway, June 2010. Tapir Academic
Press. ISBN 978-82-519-2616-4.

Olivier Roulet-Dubonnet, Morten Lind, and Terje Kristoffer Lien. Development of a Low-
Cost Prototype AGV. In Terje Kristoffer Lien, editor, CIRP Conference on Assembly

84

Bibliography of Included Publications 85

Technologies and Systems, pages 25–29, NO-7005, Trondheim, Norway, June 2010.
Tapir Academic Press. ISBN 978-82-519-2616-4.

Morten Lind and Olivier Roulet-Dubonnet. Emulation of Manufacturing Devices for
Simulation of Distributed Real-Time Control. In Terje Kristoffer Lien, editor, CIRP
Conference on Assembly Technologies and Systems, pages 67–72, NO-7005, Trond-
heim, Norway, June 2010. Tapir Academic Press. ISBN 978-82-519-2616-4.

Morten Lind and Olivier Roulet-Dubonnet. Holonic shop-floor application for handling,
feeding, and transportation of workpieces. International Journal of Production Re-
search, 49:1441–1454, 2011. ISSN 0020-7543. doi: 10.1080/00207543.2010.519115.

Morten Lind and Amund Skavhaug. Using the blender game engine for real-time emula-
tion of production devices. International Journal of Production Research, 0(0):1–17,
2011. ISSN 0020-7543. doi: 10.1080/00207543.2011.601772. Online available, iFirst.

Morten Lind and Johannes Schrimpf. PyMoCo – Python-Based Robot Motion Control.
Journal of Software Engineering for Robotics, 2011. ISSN 2035-3928. In preparation.

86 Bibliography of Included Publications

Instrumented fixtures for on-line correction of welding paths 87

4.1 Instrumented fixtures for on-line correction of welding
paths

Terje Kristoffer Lien and Morten Lind. Instrumented fixtures for on-line cor-
rection of welding paths. In Mamoru Mitsuishi, Kanji Ueda, and Fumihiko
Kimura, editors, Manufacturing Systems and Technologies for the New Fron-
tier, Engineering, chapter 11, pages 435–438. Springer London, May 2008.
ISBN 978-1-84800-267-8. doi: 10.1007/978-1-84800-267-8 89

Declaration of co-authorship

The idea and project setup was entirely a contribution from Terje Lien. The working
principles and conceptual design was a cooperative effort from Terje Lien, Erik Haga (at
that time, a master student at IPK) and Morten Lind.

The detailed mechanical and geometrical analysis was a cooperative effort by Erik Haga
and Morten Lind. The detailed mechanical design and machine construction is entirely
a contribution by Erik Haga. Morten Lind contributed the design and implementation
of the computational software and control system. In close collaboration, Erik Haga and
Morten Lind performed comprehensive laboratory testing of the fixture. For the final
validation Erik Haga and Morten Lind brought the fixture to a welding laboratory at
Hydro Aluminium Structures Raufoss AS, where several test welds were performed in
collaboration with personnel there.

Terje Lien is the main author and writer of the paper. Morten Lind contributed with
writing the Sections 4, 5, and 6, and produced the graphics therein; not the photos.
Morten Lind’s written contribution was thoroughly reviewed and revised by Terje Lien.

88 T. Lien and M. Lind (2008)

Instrumented fixtures for on-line correction of welding paths

T.K.Lien1 and M. Lind1

1 Department of Production and Quality Engineering,
Norwegian University of Science and Technology, Trondheim, Norway

Abstract
Robotic welding of thin-walled aluminium structures is very sensitive to deviations in parts’ positions. Position deviations
give inferior weld quality. Measurement devices integrated in the clamping elements of the welding fixture can provide
data to the welding robot for dynamic correction of the welding path. The paper describes a system of integrated
measurement in clamping systems. Various approaches to measurement of critical dimension deviations are evaluated
and optimal solutions have been selected. The obtainable accuracy is analyzed and verified through laboratory tests. A
microcontroller-based control system has been developed to process and transmit the measurement data to the robot
controller.

Keywords:
Robot; Welding; Measurement; Fixture

1 INTRODUCTION

All manufacturing operations that are performed automatically by
some sort of machinery need a firm positioning of the work piece.
This is one of the most fundamental truths of manufacturing. In
many cases this is not a big problem either. But in modern highly
automated processes where both the primary operation and the
product or component has been automated challenges appear also
in this area. The removal of human interference in the positioning
and fixation of the work piece sometimes leads to challenges in
securing a proper positioning to assure the wanted outcome of the
manufacturing process.

2 HANDLING LARGE PART DIMENSION VARIATIONS

The problem of part tolerances outside the process window

Even products with wide tolerances can present big challenges to
automation. One typical problem is that neither the final product nor
the ingoing parts in an operation have particularly narrow
tolerances. But the process in itself may require a much tighter
tolerance to yield a good quality result. Typical examples in this
category are grinding, polishing and welding. The case examined
in this paper concerns welding.

The parts in many weldments can have quite wide tolerances if the
weld is manually performed. Even if the parts have slight variation
in relative positions from product to product the yield of the process
is good since the operator will adjust the welding path according to
observation in each case. It is not so in automatic welding. The
robot or automatic welding machine will assume that the parts are
identically placed in each operation. But it may well be that the
parts are offset more than 1 mm from the ideal position even on
relatively small parts. Such large offsets will create problems in the
welding of thin walled components. Because of the thin material
only small welding currents are allowed. The filling capacity is thus
limited and the burn-in into the base material can be too low to
assure proper welding strength.

Performance requirement in the case study

In this case study the challenge was to weld thin walled extruded
box profiles to a base plate. The product is shown in figure 1. This
is a simplified example of a component in automobile bumper
system, the so called crash box. The wall thickness of the box
typically lies in the region around 2mm, while the outer dimension
tolerance of the box is in the order of ±0.9 mm in the worst case.
The expected variation in outer dimension of the box is too large
for a good quality automated welding process.

One possible solution to the problem is to use the well established
method of edge detection by means of the welding gun as a touch
probe [1,2]. But this method has limited accuracy, and it is time
consuming since it has to be performed after the parts in the
weldments has been locked in the fixture and before the actual
welding starts. The time consumed for this pre-weld check was
considered to be too high. It would severely reduce the productivity
of the automated welding operation.

Figure 1: The study object, a simplified crash box

The alternative that was studied was to include measurement of
the position of the extruded box as it is clamped in the fixture. By
using this method the exact position of each box would be known
at the moment it was clamped. This position information could then
be used to adjust the welding path for the automatic welding
operation.

Pre-print for The 41st CIRP Conference on Manufacturing Systems, 2008

Instrumented fixtures for on-line correction of welding paths 89

For best quality welding the welding path should be corrected to
within ±0.1mm of the ideal path. This is a conservative requirement
to make sure that local variations along the weld path will not give
risk of inferior local quality.

3 METHODS FOR MEASUREMENT COMBINED WITH
CLAMPING

Evaluation of possible methods

The measurement of the position of the workpiece while clamping
can be done either directly or indirectly through the clamping
elements. Both possibilities have advantages and disadvantages
as shown in table 1 [3,4].

Table 1: Comparison of measuring methods

Measuring method comparison

Direct measurement on object

Advantages Disadvantages

• Most precise method • Measurement device
will interfere with
clamping device or
welding gun

• Expensive
measurement devices

Indirect measurement through clamping element

Advantages Disadvantages

• Measurement device
away from clamp and
weld area

• Low costs measuring
devices can be used

• Mechanical protection of
measurement device easy

• Less accurate due to
coupling through
clamp

• Non-linearity in some
of the applicable
measurement methods

Table 2: Characteristics of clamp position measurement methods

Method Merits

Rotational encoder on the
clamp arm shaft

Low cost robust solution.
Non linear measurement

Laser distance
measurement of clamp
arm position

Linear measurement
Robust solution
High cost

Pneumatic linear distance
measurement of clamp
arm position

Linear measurement
Robust low cost solution
Short measurement range

Inductive linear distance
measurement of clamp
arm position

Linear measurement
Robust low cost solution
Short measurement range

Touch probe linear
distance measurement of
clamp arm position

Linear measurement
Less robust
High cost

The evaluation of measuring methods placed strong emphasis on
robustness, simplicity and reliability. Thus the qualitative
advantages and disadvantages listed in table 1 lead to the clear
conclusion that indirect measurement through the clamping
elements was the better method.

For clamping both linear and rotational clamps were considered.
Again the space requirements lead to the conclusion that rotational
arm clamps would be the best solution. It then remains to decide
which measurement system that would be most suitable for
measurement of the clamp movement. Table 2 shows the
candidates and their merits [3,4].

Again the requirement for robustness and low cost were
dominating. In addition it was realized that only the rotational
encoder could be fitted without any major mechanical interference
problems with any other element of the system. The final design
ended up with rotational clamps that included incremental rotary
encodes for position measurement of the clamped surface.

4 THE COMPLETE INSTRUMENTED WELDING FIXTURE

Figure 2 shows the laboratory version of the instrumented welding
jig. The work piece is clamped against two vertical fixed walls with
three contact points on one wall and two on the other to ensure
orthogonality and stable positioning. The variation in dimension of
the workpiece can then be measured directly on the two surfaces
pressed on by the clamps.

The clamps are pneumatically operated. The operation of the
clamps and reading of the measured signals is controlled by a local
microcontroller that communicates with a PC that acts as an overall
process controller. This PC generates the path correction data for
the welding robot controller.

Figure 2: Laboratory version of the complete welding jig with one
work piece in position ready for clamping.

The precision of the selected clamping method

Figure 3 shows a sketch of the claming-measurement arm
principle. In an ideal design the distance x in figure 3 should be 0
for the calibrating position. But for mechanical reasons the
clamping arm had to be L-shaped, thus there will be a substantial x
value in the measurement setup. In this design the clamp arm had
the dimensions X=20 mm, Y=20 mm giving a total length L=101.98
mm.

This gives an amplification of the non-linear behaviour of this
measuring principle. It is of interest to evaluate how large the error
due to non-linearity will be. The measurement system is calibrated
against a master block with dimensional tolerance better than
±0.01 mm. This assures a reference for the measurement system
with an accuracy one order of magnitude smaller than the required
correction accuracy.

90 T. Lien and M. Lind (2008)

Figure 3: Sketch of the principle of the rotating arm clamp and
measure device.

Let the angle θ0 represent the reference angle corresponding to the
reference position x0 as is given in equation (1)

0 0sinx L θ=
(1)

A small measurement distance ∆xs relative to x0 can be expressed
as:

0 0(sin() sin)s sx L θ θ θ∆ = + ∆ −
(2)

For simplicity the measurement uses a linearization of ∆xs around
x0 as given in (3):

0coss sx Lθ θ∆ = −∆%
(3)

The error due to this linearization is the difference between
equations (2) and (3):

[]0 0 0sin() sin coserr s sx L θ θ θ θ θ∆ = + ∆ − + ∆
(4)

Figure 4 shows the variation in ∆xerr as function of ∆xs for different
values of x0. This error is one order of magnitude less than the
resolution of the measuring system.

Figure 4: Theoretical measurement error ∆xerr as function of
measurement distance ∆xs for various x0 values.

5 CONTROL SYSTEM FOR ROBOT PATH CORRECTIONS

The control PC is the central unit, through which a user initiates all
action chains. The user interface developed has three modes:
communication setup, calibration control, and production control. In
communication setup mode, communication to the micro controller
and the robot controller is specified and verified. In calibration
mode, a semi-automatic calibration routine can be performed and
stored. Production mode presents to the user a chain of check
points for the whole operation cycle. The check points serve only
safety purposes for the prototype. The necessary external signals
for fully automated operation are that the welding is done and that
a new crash box has been positioned in the fixture.

The robot controller is set up with a program where the welding
path is taught from the nominal crash box. The robot controller has
program code for receiving offsets over the RS232 interface from
the control PC. Further, the robot controller listens over the RS232
interface for a command from the control PC for executing the
offset corrected weld program.

Figure 5: Block structure of the control system.

The micro controller traps pin change interrupts on one parallel
port, where the 3 channels from each encoder are connected. Two
of the lines from an encoder forms the quadrature pulse train, on
basis of which the encoder position counter is updated. The third
line for an encoder gives the index pulse, generated at a fixed
position in the encoder. The index pulse interrupt from an encoder
resets the encoder pulse counter to zero, thus eliminating possible
drift by loss of pulses. The micro controller will reply with
instantaneous encoder positions over the RS232 interface by
request.

The pneumatic system of 3 double acting pistons is controlled by 3
solenoid controlled valves. One parallel port of the micro controller
has 3 pins dedicated to control the gates of 3 MOSFETs, which
controls the valve solenoids. The RS232 interface exposes direct
control of the valves to the control PC.

6 LABORATORY VERIFICATION OF THE PRINCIPLE OF
MEASUREMENT

The selected encoder for the clamp arm has a resolution of 5000
pulses/rev. With quadrature counting principle this gives 20000

Pre-print for The 41st CIRP Conference on Manufacturing Systems, 2008

Instrumented fixtures for on-line correction of welding paths 91

counts/rev and the selected arm design gives a resolution of 32
µm/count. This should give sufficient accuracy.

A laboratory test was performed to verify that the expected
measurement resolution 30 pulses/mm did not create problems for
the measurement linearity. The test was performed by using the
calibration block as base. Successively laboratory grade gauge
blocks were stacked to create an offset from the calibration block,
starting with a 1 mm gauge block as the offset 0 point. Figure 6
shows the measured result. It is in perfect agreement with the
expected performance, giving 3 pulses per 0.1 mm offset change.
The change in pulse steps is also very regular switching between 1
and 2 pulses per 0.05 mm. This regular pattern assures that no
extra inaccuracy is introduced by the granularity in measurements
near the reference point.

Figure 6: Granularity test for small linear offsets

7 LABORATORY WELDING TESTS

Real welding tests were performed to verify the performance of the
correction system. Figure 7 shows a cross-section of a perfect weld
performed with optimal path programming on a part with nominal
dimensions. Figure 8 shows a weld on a part with 2 mm offset of
the box wall. This weld has inferior quality because of too little
melt-in into the box wall. Use of the path correction system results
in the weld shown in figure 9 for a wall offset of 2mm. This is a weld
of similar quality as the reference weld.

A series of similar welding tests were performed. The all gave
similar results. The industrial partner in the project feels confident
that the system performs as required to compensate for dimension
tolerance on ingoing parts.

8 SUMMARY AND CONCLUSIONS

• A system has been built for making measurement of part
dimension offset combined with the clamping action in a
welding fixture.

• A theoretical model for the measurement error has been
developed.

• A control system to operate both clamping and offset
measurement has been developed.

Figure 7: Reference weld of satisfying quality.

Figure 8: Weld test with 2 mm offset uncorrected, insufficient melt-
in on box wall

Figure 9: Weld test with 2mm offset corrected through feed forward
correction from the clamping measurement system

The complete system has been tested in a laboratory setup. The
laboratory tests verified that the system performed as expected. It
enables the measurement of individual parts offset during the
clamping cycle to generate offset command to the welding robot
before the welding operation starts. The corrected weld satisfies
the quality requirement for automatic welding of the investigated
and similar parts.

9 ACKNOWLEDGMENTS

This research work was sponsored by Hydro Aluminium and the
Norwegian Research council

10 REFERENCES

[1] Ågren, B.G., 1995, Sensor integration for robotic arc welding,
Department of Production and Materials Engineering, Lund
University.

[2] Cary, H.B., 1995, Arc Welding Automation, Marcel Dekker,
NY.

[3] Bolton, W., 2003, Mechatronics – Electronic control systems
in mechanical and electrical engineering, Pearson Education
Ltd, Harlow, England.

[4] Cetinkunt, S., 2007, Mechatronics, John Wiley &Sons,
Hoboken, NJ.

92 T. Lien and M. Lind (2008)

Holonic Manufacturing Paint Shop 93

4.2 Holonic Manufacturing Paint Shop

Morten Lind, Olivier Roulet-Dubonnet, Per Åge Nyen, Lars Tore Gellein,
Terje K. Lien, and Amund Skavhaug. Holonic Manufacturing Paint Shop. In
Vladiḿır Maŕık, Thomas Strasser, and Alois Zoitl, editors, Holonic and Multi-
Agent Systems for Manufacturing, volume 5696 of Lecture Notes in Computer
Science, pages 203–214. Springer Berlin/Heidelberg, September 2009. ISBN
978-3-642-03666-8. doi: 10.1007/978-3-642-03668-2 20

Declaration of co-authorship

The initial project conception for the laboratory demonstration is credited to Terje Lien,
Per Åge Nyen, Lars Tore Gellein, and Pål Ystgaard. Per Åge Nyen made the initial
process and simulation model for the uploading station; with the central operation of the
laboratory demonstration system.

The conceptual analysis and design, with respect to holonic manufacturing and holonic
control, of all elements, operations, and devices for the general laboratory system pre-
sented was made by Morten Lind, with involvement and contributions from Olivier Roulet-
Dubonnet. For the same laboratory system, Olivier Roulet-Dubonnet was concentrating
on the parallel activity of developing the holonic AGV system, briefly mentioned in the
paper. There was a valuable and frequent exchange of ideas between the two activities;
the same paradigmatic basis and the addressing of the same laboratory system made this
natural.

Morten Lind was the sole writer of the paper with frequent reviewing and commenting
by Olivier Roulet-Dubonnet in the writing process. In the final revision rounds, Amund
Skavhaug gave a valuable and comprehensive contributions. The paper was review and
commented by Terje Lien before submission. The graphics in Figure 1 is supplied by Per
Åge Nyen from his simulation setup. All remaining graphics is designed and produced by
Morten Lind.

94 M. Lind et al. (2009)

Holonic Manufacturing Paint Shop

Morten Lind1, Olivier Roulet-Dubonnet1, Per Aage Nyen2, Lars Tore Gellein2,
Terje Lien1, and Amund Skavhaug3

1 Department of Production and Quality Engineering,
The Norwegian University of Science and Technology, Norway,

morten.lind@ntnu.no
2 SINTEF Raufoss Manufacturing, Norway
3 Department of Engineering Cybernetics,

The Norwegian University of Science and Technology, Norway

Abstract. In pursuit of flexibility and agility within discrete manufac-
turing, the surrounding logistics and handling processes of a paint shop is
under construction as a laboratory prototype application. Holonic Man-
ufacturing seems to be a promising strategic paradigm and architecture
to use for a system characterised by production logistics and control.
This paper describes the physical devices to be used; the desired func-
tionality; and the basic logic control designed. Additionally, the ideas for
holonification based on the already designed logic control is presented.

1 Introduction

Distributed decisions and coordination of autonomous sections in manufacturing
have been around as long as complex manufacturing. By complex manufacturing
in our context, we mean dealing with multiple complex products and extensive
sharing of manufacturing equipment across different simultaneous product vari-
ants, i.e. with frequent changeovers and reconfigurations on the shop floor. In the
recent decades there has been focus on the flexible automation of these entities.
The enabling technologies for this may be traced back to the birth of numerical
control and computational intelligence in the 1950s.

Holonic Manufacturing is a paradigm for pervasive manufacturing automa-
tion, ranging from (and integrating with) the lowest level of real time shop floor
control and all the way up to company or even corporate level. It covers most
aspects of manufacturing, be it machine to machine cooperation or order to
production department interaction.

The concept of a Holonic Manufacturing System (HMS) date back to the
early 1990s when the Intelligent Manufacturing Systems (IMS) initiative set out
a project with that name. The term Holon was coined by Arthur Koestler[1],
some 40 years ago, for capturing the dualistic capabilities of autonomy and coop-
erativeness withing a single entity. The concept was found suitable to encompass
the entities, physical as well as abstract, in manufacturing control and manage-
ment.

There exist some architectures for Holonic Manufacturing Systems, such as
PROSA[2] and ADACOR[3]. PROSA is strictly a reference architecture and

Holonic Manufacturing Paint Shop 95

Pre-print, HoloMAS2009

introduces the central concepts of basic holons: order, product, resource, and
staff holons. High level scenarios illustrate the interactions of the different holon
types. ADACOR is also an architecture, but with a different naming of the
holon types. Notably the ADACOR supervisor holon differs from the PROSA
staff holon, in that it formally coordinates the dynamics of holon aggregation
and subordination. Leitão and Restivo applies the ADACOR architecture to a
(partially simulated) machining and assembly workshop in several papers, see
e.g. Leitão and Restivo[4, 5].

Two standards are highly relevant for Honlonic Manufacturing on very dif-
ferent levels: IEC61499 and FIPA; cf. Mař́ık et al.[6]. The IEC61499 standard
regards a function block structuring of design and code for low level control ori-
ented holons and their interactions. At the higher level, FIPA is a standard for
ontology based agent communication.

The laboratory prototype described in this paper is a part of IntelliFeed,
a cooperative project between the research institutions of the authors and in-
dustrial partners, supported by the Norwegian Research Council. Relevant and
related projects also based at our research institutions are RAMP and CREAM;
both part of the CRI NORMAN research program[7].

The particular laboratory prototype system we present here has its origin
in the recognition that much manual labour is associated with the materials
handling around paint shops in manufacturing industry. In itself, the full or
partial automation of such systems will have a good potential for reducing trivial
manual labour. But the potential is extended further if the automation is flexible
and responsive, enabling the paint shop system to integrate with other parts of
the entire manufacturing system.

This paper is organised as follows. In Sect. 2 the physical devices and their
layout is described. Sect. 3, presents aspects of a holonification of elements and
control. Discussion and future challenges is presented in Sect. 4.

2 Application Overview

In this section we describe the laboratory layout and the associated physical
devices.

A real paint shop roughly consists of a painting system, a part upload station,
a part download station, a painting carrier upload station, a painting carrier
download station, and an overhead conveyor system. The painting carriers are
hanging from the conveyor trolleys and are transported through all the stations
and the painting system.

Our current goal is automation of the processes and materials handling at
the part upload station. In the future, the other stations will undergo equivalent
automation projects in a successive manner.

2.1 Laboratory Application Overview

A sketch of our initial laboratory system setup, currently used for simulation
with QUEST, is shown in Fig. 1. The transport AGVs and a Parts Arrangement

2

96 M. Lind et al. (2009)

Pre-print, HoloMAS2009

Station are not seen. The setup is planned for a Power-and-Free (PnF) overhead
conveyor, though the conveyor type has not been decided for yet. As will become
clear, a PnF conveyor is definitely to wish for when automating the uploading
of parts to the painting carriers.

Fig. 1. Overview layout of a planned laboratory system. 1) Upload Robot, 2) Upload
Tool Rack, 3) Mounted Upload Tool, 4) Upload 3D Vision System, 5) Backlight Screen,
6) PnF Overhead Conveyor Track, 7) PnF Switch, 8) Painting Carriers, and 9) Local
Part Storage Carriers.

The robots we have available in the upload area are two Nachi SC15F, which
are floor mounted within reach of each others and the conveyor track. Both are
equipped with a 6D force sensor at the wrist. One of the Nachi robots have
a modified controller, giving a direct 100 − 200Hz interaction with the servo
controller using UDP over Ethernet. The other Nachi controller can easily be
modified likewise.

In addition we have an ABB IRB 2400 with an S4C+ controller, also located
in the laboratory but well outside the conveyor area. The ABB robot is connected
to the rest of the system over an RS232 serial communication link. It has its own
standard robot controller programmed in the complex RAPID control language.
The program execution is hard real time, but interaction can only be through
parameter modifications before real time execution.

3

Holonic Manufacturing Paint Shop 97

Pre-print, HoloMAS2009

2.2 Part and Painting Carrier Handling

The part uploading is performed by a robot which has access to parts from a local
part storage. The upload robot picks a part from one of the local storages and
then attaches the part onto the presented painting carrier on the conveyor. Given
the part and painting carrier type, as well as known painting carrier capacity
state, the support system will be able to control the robot to attach the part at
some free site on the painting carrier.

The painting carriers may have very different geometries and have a load
capacity from one to several tens of parts. Frequently each painting carrier type
may match different part types; this has, of course, a high impact on the se-
quencing of part batches. Some painting carrier types are adjustable and can
host a whole family of parts types. The automatic handling of painting carriers
is not a part of the initial laboratory system. Manual change of painting carriers
will be performed, when need be.

The process of localising the attachment points on some of the simpler paint-
ing carriers, with the Scorpion 3D vision system from Tordivel, has already been
implemented and verified. For stable identification and analysis of all painting
carrier types, it may be necessary with more vision system or other sensory
systems.

To ensure mechanical stability of the painting carrier under identification,
analysis, and upload, a controlled clamping mechanism will be implemented
underneath the PnF switch at the upload station.

2.3 Conveyor System

The conveyor system has not been decided yet. This decision is of cardinal im-
portance for a lot of other hardware decisions, as well as the control logic.

We concentrate our efforts around the PnF conveyor, simply because of the
severe implications which would arise by using the more common Chained Trolley
conveyor[8]. The main difficulty with a chained trolley conveyor is that all trolleys
travel at constant speed at all times. Thus either the parts must be uploaded onto
the painting carriers in motion, or the painting carriers must be sidetracked to
a small PnF conveyor loop with a buffer for reattachment to the main conveyor.

2.4 Painting Process Scheduling

For a given paint process setup, with parameters for rate of paint added and
geometric configuration of parts, it is desirable to use the maximum speed of
the conveyor while still meeting the paint quality requirements. Or, for given
speed of the conveyor and geometric configuration of parts on the carriers, it is
desirable to minimise the rate of paint added, while meeting the required paint
quality, thus minimising the amount of wasted paint.

Upload and download capacity and equipment utilisation makes up a delicate
trade-off. This depends on the pertinent part type, painting carrier type and
painting process parameters. In a simple batch controlled system, where only

4

98 M. Lind et al. (2009)

Pre-print, HoloMAS2009

one part type and one painting carrier type is on-line at any time, there will
often be under-utilisation in one or more of the upload station, the download
station, and the painting system.

If mixing of parts within each painting carrier, or in the sequence of painting
carriers, is allowed for, more freedom is given to the optimisation and the prob-
lems of under-utilisation can be remedied somewhat. The implication is a much
more complicated logistics around uploading and downloading.

2.5 AGV System

Figure 2 shows a class diagram illustrating some important aspects of a multi-
AGV system for material transport. Multiple AGVs are being built at our lab-
oratory and the software system is in the design phase. The physical AGVs and
AGV control system is based on earlier experience with a prototype AGV and
vision based positioning system.

Fig. 2. A class diagram showing some important aspects and subsystems related to
the AGV system.

The conceptual AGVs, being hosted entirely on the physical AGVs, are cen-
tral components in the AGV system. We initially assume that all of the AGV
localisation functionality will be based on vision applications. This is based on
earlier successes with developing a vision based AGV localisation system.

The traffic system gathers information from and supplies information to the
client AGVs about viable paths in the whole of the roaming area. It will be
the the coordinator for pre-reservation of long term trajectories of the AGVs,
whereas the AGVs themselves can react to short term (emergency) trajectory
interferences. Specialised intersection controllers at known congested areas are
regulatory rather than guiding in their relation with the approaching AGVs.

The geography system is the general global localisation system for the AGVs.
It is demanded that the cameras of the geographic localiser servers cover the
entire area where the AGVs may roam, and can serve the client AGVs with real
time location information

Specialised conceptual controllers for local positioning and control may be
defined to serve purposes relevant to situations or tasks, partly external to the

5

Holonic Manufacturing Paint Shop 99

Pre-print, HoloMAS2009

AGV system. Examples, relevant to our laboratory system are docking, trajec-
tory, and passage controllers.

3 Holonification

Based on the initial plans, layouts, and experiments with uploading of parts, a
logic control of a paint shop has been designed. The given design is more or less
a traditional hierarchical control design.

In this section we sketch our ideas for holonification of the logic control
system and the physical devices and layout in the previous sections. Ideally
the designed explicit logic control will emerge out of the holonic control system
currently under development.

We are not suggesting that we have a complete design for the holonic system,
but this is a description of our initial thoughts and ideas on how a holonic
architecture will be applied in the control and management system.

3.1 Resource Holons

The resources, holons associated with physical devices, are related to the set
of devices discussed in Sect. 2. This need not be a direct mapping, and indeed
the devices described in Sect. 2 give too little detail to identify the entire set of
resource holons.

The Robots plays a central role to the part handling processes. They are the
devices with the hardest real time aspects which we try to holonify. Normally the
real time aspects of the motion control is integrated with other real time tasks
inside the commercial controller, and closed to the intervention in a broader sys-
tem, cf. Fig. 3(a). This should not be so in a deeply holonified system, since it
enables only a virtual high granularity of the holonified control; this is illustrated
in Fig. 3(a), by the low level holons all addressing the integrated robot controller
for accessing their logical control functionalities. The device controllers’ function-
alities are hierarchically organised inside the commercial controller.

What is usually meant when referring to a robot in a manufacturing work
station is the physical arm, the robot controller, and a whole range of various
peripheral devices and their controllers, i.e. the whole robot system. These pe-
ripherals may consist of tools available for the robot, external (rail or gantry)
axes for the robot, and even the whole range of sensors external to the robot
arm. This is often well justified due to the black hole nature of commercial robot
controller, in which coordination with external devices is possible only if these
devices are integrated into, and controlled by the robot controller. The real time
aspects of the entities integrated into the commercial controllers is a good reason
for the tight integration, but is an example of both types of lock-in processes
described by Mař́ık et al. [6].

We have made an effort in separating the motion control of the mechanical
arm from the control of the peripheral devices. This will enable us to perceive

6

100 M. Lind et al. (2009)

Pre-print, HoloMAS2009

Robot System Controller

Robot System Holon

Tool Holon Tool Rack Holon Servo Rail Holon

Robot Holon

Robot Controller

RobotServo Rail Active Tool Tool Rack

External Axes Controller Robot Axes Controller

Servo Rail Controller

Tool Controller Tool Rack Controller

(a) Centralised robot control system in vendor controller.

Robot System Holon

Tool Holon

Tool Rack Holon

Servo Rail Holon

Robot Holon

Tool Controller

Tool Rack Controller

Servo Rail Controller

Robot Axes Controller

Robot Servo RailActive ToolTool Rack

(b) Distributed holonic robot control system.

Fig. 3. Traditional integrated and holonic robot systems in automation. Holons are
shown in blue colours and controllers and physical devices are shown in red colours.

7

Holonic Manufacturing Paint Shop 101

Pre-print, HoloMAS2009

the real robot, i.e. without tools, external axes, etc., as a holonic device, giving
a higher true holonic granularity in the holonic system. This is illustrated in
Fig. 3(b) where the holons access their physical controllers directly, and where
the device controllers are allowed peer-to-peer interaction for hard real time
performance.

The robots locations, motion capabilities, and work space envelopes are of
high importance to the order and product holons. Even for a homogeneous set
of robots with the same product capabilities, a slight difference in location rel-
ative to the process location, may give a major impact in process performance.
This will be even more expressed in a system of heterogeneous robots. These
relations may not be a disadvantage, but rather an advantage, especially if the
batch layouts and the scheduler functionalities allow for mixing on-line part and
painting carrier types.

We are planning to have two different robot systems in the initial laboratory
system. One is the system around the central upload robot and another system
around the less described arrangement robot. The arrangement station is where
bin picking is taking place, picking single parts out of gross storage carriers and
placing them structured to order on local storage carriers, possibly directly on
top of AGVs.

The Parts Arrangement Station is the location where parts are taken from
gross storage containers and transformed into a pickable arrangement in a local
storage carrier. The whole station, once robotised with bin picking capabilities,
will be in itself a complex holonic system, if the supplier of the bin picking
software and hardware allows it. It will definitely be so, in case we endeavour to
implement it in-house.

For the initial phases, however, we must envision the absence of robotisation
of this station, thus leaving the bin picking a manual operation. This is by no
means in contradiction with the holonic manufacturing thought. On the contrary,
one of the forces of the HMS paradigm is that an operator need not be treated
or represented differently from any other resource or staff holon. The physical
interaction with an operator is slightly different, though the capabilities should
not be inferior to that of a robotised processing entity.

The direct interaction of this station with the paint shop system is to the
orders and schedulers. Product holons for parts play a role in identifying methods
for parts, and possible handling process information. Product holons for the
transport carriers play another role of specifying the arrangement of parts into
the carrier and possibly some process information for installation of the parts.

The Robot Tools are mountable on the robot arm and customised to handle
specific parts. The entire set of tools available to one or more robots, or other
handling device, must cover the whole range of parts to be handled by the robots.
In case of multiple tools, they must be organised in a tool rack, to be on-line
changeable by the robot system. There will be a tool holon for each tool, but
typically only the ones mounted on a robot at any given time will be active.

8

102 M. Lind et al. (2009)

Pre-print, HoloMAS2009

Fixtures, be it active or passive, may be considered as tools as well, and
need not be at a fixed or active location all the time. In that sense, they are no
different from what we normally refer to as tools; tools just just differ by being
mountable on a robot end effector.

The tool set available to a robot system is of high importance to the product
and order holons. A given order holon needs to be able to request from the robot
system that it use a certain tool or tool capability, namely one that is compatible
with one of the process alternatives in the pertinent product holon.

The Vision Systems planned for the initial laboratory system are comprised
by the following four quite different types:

Painting Carrier Vision System: This is the 3D vision system already im-
plemented with Scorpion 3D from Tordivel. It analyses for the points and
directions of interest for a empty painting carrier presented to its cameras.
This information is used by the upload robot system.

Part Localiser Vision System: Localises the parts for picking positions and
orientations in the transport carriers (possibly the AGVs) in the local part
storage area at the upload robot system. It is not to be considered a bin
picking system, since the parts are at least semi-structured in the transport
carriers.

Passage Vision System: The vision system used to guide the AGVs to cross
intersection(s) of the transport route(s) with the overhead conveyor system.
It is quite simply a matter of determining, in advance, when there will be
passage where, and for how long.

Bin Picking Vision System: Used for identifying parts lying unstructured
in gross storage carriers or containers.

This list of vision systems disregards the various dedicated and specialised
AGV location vision systems, which are considered private to the AGV system.

The integration of the vision systems into holonic vision applications is a
matter of letting orders interact with them in various ways, such as reserving for
usage, configuring for detailed applications, and querying for or subscribing to
information. But most vision system usage is expected to take place on a lower
holonic level, integrated in a more numerical and detailed way with the direct
consumers of the information, such as robot systems and AGVs.

The Conveyor System As mentioned earlier, we are not yet sure what type
of overhead conveyor system we will install, hence we know little about the
controller capabilities and properties. The overall conveyor controller interaction
will, however, be controlled by a holon.

In case of a PnF conveyor it will be relevant to find out if the PnF stations
can be directly controlled, and thus be integrated with a physical device holon.
Otherwise a logical device holon must be set up to access the main conveyor
controller. If tracking of the trolleys is possible, it may be relevant to model each
trolley as a resource holon. However passive, such trolley holons will at least be

9

Holonic Manufacturing Paint Shop 103

Pre-print, HoloMAS2009

responsive to queries regarding arrival time, as well as associated painting carrier
and order.

The AGV System The holonic AGV system is under development, but is
developed as a generic AGV system rather than a custom made system for the
laboratory paint shop.

It may well be the case that the AGV system exposes its products, i.e. the
transport and part carrier capabilities and capacities. This is a necessary infor-
mation to access for the orders and schedulers in the paint shop system. There
may be various alternative procedures for creating transport and configuration
orders in the AGV system from the paint shop system. One is to send transporta-
tion requests to one or more AGV centrals, receiving an offer after negotiations
internal to the AGV system. Another, lower level alternative is to directly create
a transport order in the paint shop system and then have the pertinent paint
shop order holon interact with relevant individual AGVs and AGV system sched-
ulers, to settle a suitable contract. Both alternatives should be offered, since they
may have their strengths and weaknesses in different situations.

3.2 Order Holons

The orders in the system contain the static data relevant for the associated
order holons. We think of the orders as a hierarchy where the highest level is
a production plan, being a quite simple list of parts for production during the
day. Typically, in manufacturing systems today, the production plan for the
day has been determined over night, or some days in advance, by the company
ERP system. In a batch oriented system such as a paint shop, the sequencing
and scheduling of the production plan is done heuristically by the operators
at the paint shop. All parts produced in the painting systems we know of, are
produced for intermediate storage, so the parts produced are used no earlier
than the following day.

An illustration of a possible division of orders for our laboratory case is shown
in Fig. 4.

Fig. 4. Overview of aggregations and compositions among the order holon classes.

10

104 M. Lind et al. (2009)

Pre-print, HoloMAS2009

3.3 Product Holons

The product holons for the upload station must contain a specification of how to
attach a compatible set of parts onto a given painting carrier type. If similarity of
parts and optimality of the painting process allow for it, certain painting carrier
types will be able to host a range of part types. This matching is exemplified in
Fig. 5.

Fig. 5. Illustration of a match between painting and transport carrier types and part
types in a simple example with four part types and three carrier types.

The identical problem of matching of carriers and parts arises for transporta-
tion purposes. Shown also in Fig. 5 is an example of a transport carrier type to
part type match.

In the cases described, the product holons are very static and persistent
structures. This will be the case with predefined mixing of part types on the
same carrier type. But to be truly flexible, the mixing should be possible to
decide for in an on-line manner, i.e. some scheduling functionality may have
an on-line or real time interaction with the uploader system. In this case some
volatile product holons will be configured ad hoc for a single painting or transport
carrier, or configured for the sake of some number of carriers; e.g. for mixing and
completing a set of batches.

3.4 Staff Holons

Of staff holons we most certainly will have schedulers. In fact, one of the first
overall control mechanisms we should experiment with, may be to emulate the
decision system of the responsible operator in the real paint shops. The responsi-
ble paint shop operator has a fundamental input the painting day plan from the
company ERP system. He makes on-line scheduling decisions based on a variety
of parameters and feelings, which we should make an effort in investigating.

11

Holonic Manufacturing Paint Shop 105

Pre-print, HoloMAS2009

In addition to the vaguely interacting staff holons from PROSA[2] we em-
brace the more directly interacting supervisor holons from ADACOR[5]. We
believe both aspects are good to have in separate entity types, whereas Leitão
and Restivo[5] seems to suggest that the supervisor holon is more than a staff
holon, and replaces it. The staff holons hold the responsibility for planning, long
term scheduling, and global optimisation. And the supervisor holon, under nor-
mal system operation conditions, should have responsibility for and control of
more local aspects of short term scheduling, optimisation, holon structures, and
orchestration.

The distinguishing difference between staff and supervisor holons, in our
interpretation, is that staff holons are available as a service and help to other
holons, whereas decisions by supervisor holons have to be respected by other
holons. Thus staff holons can be thought of as finding solutions to problems
and supervisor holons to be executors and enforcers of such solutions. As per
design of the supervisor holons by Leitão and Restivo[5], they lose their powers
when disturbances arise, regaining them again when it is possible to restore local
order. These views are not in contradiction with the PROSA and the ADACOR
architectures.

4 Discussion and Future Work

While we will proceed with implementing the holonic control and management
system in the near future, further development and implementation of hardware
and device specific control software will take place in parallel.

One might say that we are still only in the analysis phase of developing the
holonic manufacturing system for our laboratory prototype. We feel well into
that phase, and have begun considering high level design issues. One pressing
issue that we currently have much emphasis on is choosing middleware and
platform.

Inspired by such works as Shin et al.[9], one viable path to follow is to start
without a platform and use CORBA as middleware. This will enable us to
progress fast by implementing our own platform using the Python Program-
ming Language. Python is a language and platform with which we have good
experience regarding both the management and soft real time domains of soft-
ware. The direct implementation of the holons based on CORBA references in-
vocations does not really support a fully flexible holonic platform. However, the
platform we develop can be revised into a FIPA compliant one, adding complex
communication abilities where and when it is needed.

Another path to follow might be more traditional, like the applications of
ADACOR[5], where Leitão and Restivo use the FIPA compliant, Java based
JADE agent platform. In order to apply our experience with Python we would
use the FIPA compliant, Python based SPADE[10].

12

106 M. Lind et al. (2009)

Pre-print, HoloMAS2009

5 Concluding Remarks

At the current state of design of the laboratory paint shop prototype, we have
gained such confidence in the HMS paradigm, that it will be used for the pro-
totype, and recommended to the industrial partners in the project. The HMS
paradigm has turned out to be a major initiator in bringing our minds from the
offices towards the laboratory.

References

1. Koestler, A.: The Ghost in the Machine. London : Hutchinson (1967)
2. Brussel, H.V., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference

architecture for holonic manufacturing systems: PROSA. Computers in Industry
37(3) (1998) 255–274

3. Leitão, P.: An Agile and Adaptive Holonic Architecture for Manufacturing Control.
PhD thesis, Department of Electrotechnical Engineering, Polytechnic Institute of
Bragança (January 2004)

4. Leitão, P., Restivo, F.: ADACOR: A holonic architecture for agile and adaptive
manufacturing control. Computers in Industry 57 (September 2005) 121–130

5. Leitão, P., Restivo, F.: Implementation of a Holonic Control System in a Flexible
Manufacturing System. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews 38(5) (September 2008) 699–709

6. Mař́ık, V., Fletcher, M., Pechouček, M.: Holons & Agents: Recent Developments
and Mutual Impacts. In: Multi-Agent Systems and Applications II. Volume 2322 of
Lecture Notes in Computer Science. Springer Berlin / Heidelberg (January 2002)
89–106

7. Lien, T.K., Welo, Nyen, Schütz, et al.: WP1: Technology and Trend Monitoring,
White Papers. SINTEF Technology and Society (August 2007)

8. Kay, M.G.: Material Handling Equipment Taxonomy (1999)
9. Shin, J., Park, S., Ju, C., Cho, H.: CORBA-based integration framework for dis-

tributed shop floor control. Computers & Industrial Engineering 45(3) (October
2003) 457–474

10. Gregori, M.E., Camará, J.P., Bada, G.A.: A Jabber-based Multi-Agent System
Platform. In: Proceedings of the Fifth International Joint Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS06), New York, NY, USA,
ACM (May 2006) 1282–1284

13

Holonic Manufacturing Paint Shop 107

108

Development of a Holonic Free-Roaming AGV System for . . . 109

4.3 Development of a Holonic Free-Roaming AGV System
for Part Manufacturing

Olivier Roulet-Dubonnet, Morten Lind, Lars Gellein, Per Nyen, Terje Lien,
and Amund Skavhaug. Development of a Holonic Free-Roaming AGV Sys-
tem for Part Manufacturing. In Vladiḿır Maŕık, Thomas Strasser, and
Alois Zoitl, editors, Holonic and Multi-Agent Systems for Manufacturing, vol-
ume 5696 of Lecture Notes in Computer Science, pages 215–224. Springer
Berlin/Heidelberg, September 2009. ISBN 978-3-642-03666-8. doi: 10.1007/
978-3-642-03668-2 21

Declaration of co-authorship

The initial project conception for the laboratory demonstration is credited to Terje Lien,
Per Åge Nyen, Lars Tore Gellein, and Pål Ystgaard. Per Åge Nyen made the initial
process and simulation model for the uploading station; with the central operation of the
laboratory demonstration system.

The principles and rough design of the AGV was conceived by Morten Lind. The proto-
type AGV was built and equipped with power and logic electronics by Stefano Pedemonte;
an exchange student from Politecnico di Milano. The proof-of-concept systems for mo-
tion control and low-level network communication was developed and implemented by
Morten Lind. The AGV localization principle based on ceiling-mounted cameras and
AGV-mounted LEDs was analysed and specified by Morten Lind. A simple vision-based
localization system based on these principles was implemented and integrated with the
motion control system in close cooperation between Stefano Pedemonte and Morten
Lind.

The paper describes the ensuing conceptual analysis and design for the distributed control
of such AGVs, i.e. the AGV system, within a production systems. Most of the concepts
were developed in close cooperation between Olivier Roulet-Dubonnet and Morten Lind.
The detailing and description of the concepts, and the entire writing, as well as prepara-
tion and submission, of the paper is credited to Olivier Roulet-Dubonnet. Morten Lind
made some contribution in reviewing the final version of the paper.

110 O. Roulet-Dubonnet et al. (2009)

Development of a Holonic Free-Roaming AGV
System for Part Manufacturing

Olivier Roulet-Dubonnet1, Morten Lind1, Lars Tore Gellein3, Per Åge Nyen3,
Terje Lien1, and Amund Skavhaug2

1 Department of Production and Quality Engineering, The Norwegian University of
Science and Technology

2 Department of Engineering Cybernetics, The Norwegian University of Science and
Technology

3 Department of Production Engineering, SINTEF Technology and Society

Abstract. This paper presents an Automated Guided Vehicle (AGV)
system under development and its industrial background as a support
system for an automated paint department. The focus is on demonstrat-
ing how the holonic architecture can be used to implement a flexible
AGV system. The system is composed of autonomous AGV holons who
cooperate, directly or as groups, with other holons such as robot holons,
vision-system holons and order holons to produce the real parts. The
holonic architecture is described in detail and example use-cases pre-
sented.

1 Introduction

A niche for small and medium enterprises is to produce individually tailored
products or services. If the production is done on a large scale, this is called mass
customization[1, 2] and requires highly flexible automated production systems.
The new generation of free-roaming Automated Guided Vehicles (AGV) can
play an important role in this pursuit for flexible automation. AGVs are ground
robots, usually used for transportation purposes on the manufacturing shop-
floor. Taking fully advantage of the free-roaming AGVs require an integration
into the manufacturing systems and a flexibility that the hierarchic, sequential
systems currently implemented on most shop-floors do not offer.

Holonic manufacturing[3] is a promising architecture for the development of
the new kind of flexible manufacturing systems needed. Holonic manufactur-
ing is a highly distributed control paradigm that promises to handle frequent
changes and disturbances successfully[4]. It combines features of both heterar-
chic and hierarchic organizational structures and is based on the concept of
autonomous cooperating agents, called ‘holons’. Holonic manufacturing is re-
lated to multi-agent systems (MAS), a paradigm derived from the distributed
artificial intelligence field, but has some key differences[5]:

– Holonic manufacturing is a concept while MAS is a concept and a technology.
It is possible to implement holonic manufacturing using MAS technology.

Development of a Holonic Free-Roaming AGV System for . . . 111

Pre-print, HoloMAS2009

– A holon can represent simultaneously a whole and a part of the whole: a
holon can be composed of several lower level holons.

– Some holons per definition represent and contain physical devices while
agents are normally software components.

AGV systems are, by nature, distributed and, as such, we see the holonic paradigm
as a good candidate for the architecture of AGV systems. By AGV system we
mean one or more physical AGVs and the control and communication software
that enable them to receive orders, schedule and execute them.

A systematic review of published papers on material handling in manufac-
turing systems was performed, with a focus on holonic systems. There are many
publications on holonic manufacturing systems but only a few concentrate on
material handling. In one of the first papers on the subject, Liu[6] proposes
a distributed holonic architecture with one staff holon, where all service re-
quests are sent to and handled by the AGVs themselves. Srivastava[7] presents
an approach for conflict-free shortest path, minimum time motion planning and
deadlock avoidance for AGV systems. It also presents an architecture for AGV
systems which is influenced by its focus on zone algorithms. The architecture
is partially reused in our research project. Babiceanu, in his PhD thesis[8], pro-
poses a holonic-based control system for automated material handling systems.
His thesis focuses on scheduling and he shows that the results, obtained by run-
ning the holonic algorithms, are close to the optimal solution. Most publications
on transport systems focus on AGVs running on fast tracks with fixed crossing
nodes and empty pathways[6, 7, 9]. They do not investigate the case of free-
roaming AGVs driving in a stochastic environment together with other vehicles,
manufacturing artefacts and humans.

This paper presents an Automated Guided Vehicle (AGV) system under de-
velopment and its industrial background. The focus is on demonstrating how
the holonic architecture can be used to implement a flexible AGV system. The
system is composed of autonomous AGV holons who cooperate, directly or as
groups, with other holons such as robot holons, visions-system holons and or-
der holons to produce the real parts. The holonic architecture is described and
example use-cases presented.

The remainder of this paper is organized as follow: Section 2.1 presents the
industrial test case for the AGV system. Section 3 describes the holonic architec-
ture of the system. Section 4 considers some use-cases showing how the holonic
architecture can support the required flexibility. Finally, section 5 presents dis-
cussion and conclusion.

2 Industrial Application and Physical Devices

2.1 Industrial Background of the AGV System

The industrial background of the AGV system is two medium sized enterprises
producing consumer goods. Their manufacturing process is a typical example of

2

112 O. Roulet-Dubonnet et al. (2009)

Pre-print, HoloMAS2009

mass customization: they manufacture individually tailored products on a large
scale.

This paper is written as part of a larger project which focuses on the au-
tomation of the paint department and its surrounding logistic processes. In an
earlier work the current paint process was analyzed and a new automated paint
solution was proposed. The new automated paint-shop department and its logi-
cal control has been thoroughly documented. The result of this work serves as a
reference system to be used for the further development of the proposed holonic
AGV system.

Figure 1 shows the proposed system simulated in QUEST, a commercial sim-
ulation program. The heavy yellow wires are the tracks of the overhead conveyor
which transports the painting carriers past the upload cell, the download cell,
and through the paint process. All the red boxes make up the devices for the
paint process, such as washing, drying, painting, hardening. The four robots are
grouped in an upload cell and a download cell. In the upload cell one robot grips
parts from bin and places them on an AGV, the other grips part from the AGV
and hangs them on the conveyor belt. The download cell has not been setup yet
but follows the same principles.

Fig. 1. The uploading(right side) and downloading(bottom side) cells of the paint
department in QUEST

The role of the AGV system in the paint process is to perform the resupply of
components for upload, and the transfer of downloaded components. The AGV
system will also perform the transport tasks inside the cells, in-between the
industrial robots, thus allowing for a better utilization of the shop-floor area e.g.
by physically splitting the bin-picking operation from the uploading operation.
For the industrial partners the AGV system is not viewed as a separate goal but

3

Development of a Holonic Free-Roaming AGV System for . . . 113

Pre-print, HoloMAS2009

rather as a support service for the manufacturing cells we are working on and
eventually the rest of the manufacturing process.

A concrete challenge in this transport application is that it will not be pos-
sible to reserve pathways in all areas where the AGVs will be driving: There
are no static paths nor static nodes and the pathways cannot be guaranteed to
be free of obstacles. This uncontrollable environment requires advanced obstacle
avoidance capabilities. This fact, as well as the importance of flexibility in this
project, has driven our focus on free-roaming AGVs.

2.2 The Laboratory Demonstrator

To demonstrate the feasibility of the proposed paint process, and to experiment
with new technologies, a laboratory demonstrator was setup. The functionality
contained within the upload cell together with the corresponding resupply of
components constitutes the basis for the laboratory demonstrator.

The implemented AGV part of the laboratory demonstrator consists of a
working AGV that communicates with a vision system used for accurate posi-
tioning within the laboratory. The system is in the process of being extended: two
AGVs are being assembled and several more are planned. In addition, several vi-
sion systems are being set up. By design, the AGV fleet will be heterogeneous to
be able to experiment with AGV-dependent optimization for the manufacturing
system.

The first test case is to transport components within the uploading cell. A bin-
picker robot picks parts from a container and organise them on an AGV. When
the task is accomplished the AGV drives to an upload robot where components
are uploaded to the power-and-free conveyor to get painted (cf. Fig.2).

Fig. 2. The split upload cell using AGVs for transport between the two robots

4

114 O. Roulet-Dubonnet et al. (2009)

Pre-print, HoloMAS2009

3 The Holonic AGV System for Part Manufacturing

AGV systems are, by nature, distributed and flexible. When they, in addition,
are composed of free-roaming AGVs, with local navigation ability, they match
physically the definition of autonomous holons in the holonic manufacturing
concept. As such we see holonic manufacturing as a natural choice for the control
architecture of AGV systems.

Compared to a more traditional architecture the holonic architecture offers
off-line and on-line flexibility that makes it possible to implement the required
adaptability of the system, thus exploiting the possibilities offered by free roam-
ing AGVs. The off-line structural flexibility of the holonic architecture enables
the implementation of features of heterarchic and hierarchic organization[4]. In
addition, holonic manufacturing has a built-in concept of on-line aggregation of
holons into a new holon, that can be used to represent the physical, temporary
association of holons to a specific task (cf. Sec.4).

The AGV system has been designed based on the published literature on
holonic manufacturing and material handling system. The system is an imple-
mentation of the PROSA architecture[4] and is in several aspects inspired by
the work done by S.C. Srivastavaet al[7] and Babiceanu et al[10].

Scalability in holonic material handling systems is a central issue which has
been little mentioned in publications. In the design process of our proposed AGV
system we have taken scalability issues into account from the beginning. We have
used a distributed architecture and have avoided communication bottlenecks and
central servers where practical.

3.1 The Holons

The proposed AGV system is composed of the four base holons defined in the
PROSA architecture.

– Resource holons represent the physical devices. In our cases resource holons
are AGVs or groups of AGVs.

– Product holons represent the part to manufacture. In our case they are
containers for information about the parts to transport.

– Order holons are generated for each transport request. They are the driving
force of the holonic system. They compete or collaborate with each other to
allocate AGVs and process their transport need.

– Staff holons are adviser holons. They do not execute actions directly but
give advices to other holons. A typical example is the scheduling holon which
generates an ’optimal’ schedule and advice it to other holons.

A simplified overview of the architecture is shown in Fig.3. Resource holons
are represented in rectangles, order holons in ovals and staff holons in hexagons.
It shows independent AGV holons and AGV holons aggregated in an AGV-
group. It also shows one path-planning holon inside an AGV holon, although
this is not a requirement: path-planning holons can be part of AGV holons or
shared.

5

Development of a Holonic Free-Roaming AGV System for . . . 115

Pre-print, HoloMAS2009

The main components of the AGV system have been split into autonomous
entities: low-level AGV control, traffic, scheduling, path-planning, ordering, lo-
calisation. Not all components need to be implemented as holons. Entities can be
implemented as separate processes, on servers or AGVs, but as soon as they can
deliver useful information to other entities it makes sense to implement them as
holons. Some entities, like ordering, are implemented using many order holons.

It is our experience that industrial partners often desire central algorithms
for critical functions like scheduling. A possible implementation of such criti-
cal functions is to use a unique central holon or several holons using the same
algorithm. The algorithm must have a deterministic result so that holons even-
tually will end up with the same conclusions. This requires a system resilience
to temporary disagreements. Resilience can be implemented in a holonic system
by using staff holons giving advices, and not orders to other holons. In the dis-
agreement period, the obtained result might not be optimal, but we think that
the added flexibility and scalability of the solution overweight this issue.

Fig. 3. Simplified overview of the AGV system control architecture

A more detailed description of the main holon types is presented in the
following subsections.

The AGV Holon. The AGV holon is the resource holon controlling the phys-
ical AGV and as such it runs directly on the physical AGV. In our system the
AGVs are required to be able to run holons and communicate through a wireless
network.

An AGV holon has a queue of order holon tasks which are periodically
rescheduled. To support AGV-groups and special situations within the man-
ufacturing cell AGV holons can enter a slave-state, thus letting another AGV
holon or holon from the manufacturing take over the high level physical control
of the AGV.

6

116 O. Roulet-Dubonnet et al. (2009)

Pre-print, HoloMAS2009

The Order Holon. The order holon is the specialized order holon for the
AGV system. An order holon is created by a generic manufacturing order holon
to solve a transport issue.

Order holons are the driving force of the holonic system. As long as its
transport request is not executing, an order holon constantly queries the AGV-
central holons for available AGVs and expected scheduling data. If it gets a
better offer, or does not yet have an AGV assigned, it contacts the candidate
AGV holon and request to be appended to its order queue.

The order holon also periodically contacts its assigned AGV to keep each-
other aware of their current state. If an AGV holon does not get information
from a order holon for a period of time, it removes it from its transport queue.

The AGV Central Holon. The AGV-central holon is a staff holon. Its name
is inspired by an analogy to a ’taxi central’. The role of the AGV-central holons
is to increase scalability by providing an interface to AGV holons. Each AGV
uses one AGV-central holon chosen using, for example, geographic parameters.

AGV-central holons answer queries from order holons and advice them to an
AGV. Order holons call several AGV-central holons and choose the best offer.

The Group Holon Group holons are created when several AGVs link them-
selves together to a special task. The group holon is an abstract holon type
inherited by specialized group holons cf. Sect.4.1. In some cases it may appear
as one AGV holon to other holons.

The Scheduling Holon. The scheduling holon is a staff holon providing
scheduling data to other holons. These holons are a necessary complement to
local scheduling information from the AGV holon, since AGV holons have a
limited vision of the global manufacturing system. The scheduling holons give
advices to order holons or AGV-central holon to influence the choice of AGVs
by order holons.

By communicating with other holons it keeps an up-to-date view of the man-
ufacturing system, generates an ’optimal’ scheduling and tries to get it applied
by trying to re-affect order holons to AGVs.

The Path Planning Holon. The path-planning holon is a staff holon. It is a
holon computing an optimal transport path for an AGV. It needs a map of the
shop-floor obtained through the mapping holon and optional information from
the online-traffic-control holon. Since the AGVs are capable of local navigation,
a path is, in our context, defined as a list of points to be loosely reached. The
path-planning holon can either be part of an AGV holon or be shared between
several AGV holons.

The Mapping Holon. This is a staff holon that collects mapping information
from all running AGVs in a geographic area. Mapping is a crucial feature of

7

Development of a Holonic Free-Roaming AGV System for . . . 117

Pre-print, HoloMAS2009

AGV systems for localization, navigation and path planning. Some of the AGVs
are using Self Localization And Mapping algorithms, thus they depend on an
up-to-date map to know their current position.

The idea is that all the AGVs participate in the on-line mapping of the shop-
floor, thus reducing the need for manual updating of the current map. AGVs send
periodically a report on their modification to their internal map, thus informing
other AGVs of obstacles and changes on the shop-floor.

This system can used as the basis for the implementation of specialized scout
AGVs that constantly investigate the shop-floor and maintain an up-to-date
map. Unused AGVs could also be used to investigate unknown areas.

The Online Traffic Controller Holon. This is a staff holon whose role is to
survey the AGV traffic in a geographical area and give advices to AGV holons
to sort out conflicts and avoid congestions.

4 Holonic Use-Cases

This section details some use-cases as they have been defined for the AGV sys-
tem. They focus on showing how the holonic architecture can be used to increase
the flexibility of the AGV system.

4.1 AGV Holons as One AGV Holon

By this cryptic name we mean applying the holonic fractal concept to link to-
gether several AGVs to a special task. A group AGV can appear to the external
holonic environment as a specialized AGV holon. The constituting AGV holons
do not reply to requests as individuals but through the group holon. Examples
of such applications are:

– Replace a palette conveyor with several AGVs: Several AGV holons enter a
special ’pallet’ state and one AGV holon start acting as a pallet conveyor
supervisor. Required specialized holons are started. e.g. scheduling.

– Create a transport chain for an transport order with high priority.

– Transport large objects. The AGVs can link together their lower-level con-
trollers thus allowing on AGV holon to control directly all physical AGVs.
The AGVs can even be linked together mechanically.

4.2 AGV Holon as Part of a Manufacturing Cell Holon

A fundamental concept of our system is that AGVs are an integrated part of the
manufacturing system. AGV holons can be assigned to a cell holon or, even, a
robot holon for a given time.

8

118 O. Roulet-Dubonnet et al. (2009)

Pre-print, HoloMAS2009

– AGVs can be assigned to a robot system, thus allowing direct ordering from
the robot to the AGV, effectively bypassing all scheduling and negotiations
with other holons. It can be used, for example, to implement efficient coop-
eration between two robots out of each others reach: when a robot is finished
placing parts on the AGV it communicates directly to the AGV to send it
to next robot.

– In a similar idea AGVs can be used to increase the reach of an industrial
robot. Thus allowing a smaller robot to temporary accomplish tasks usually
requiring bigger robots.

– AGVs could also be used to push objects in a cell if required.
– AGVs can be affiliated to a robot on a track. An example taken from our

paint conveyor: If instead of using a power-and-free conveyor for the hangers
we would use a simple trolley conveyor and an industrial robot on rail. We
could then follow the robot with the AGV while it is hanging parts on the
conveyor, thus avoiding travel back and forth for the robot to pick parts. This
solution would require a precise positioning system for the AGV or/and a
vision system to give real-time part positions to the industrial robot.

4.3 The AGV as a Self Contained AGV System

In this concept a physical AGV represents the whole AGV System: the entire
AGV system is started by starting one AGV. This feature is desired to sim-
plify the administration of the system and to solve some specific scenarios e.g.
transport to external storages areas outside the wireless network.

An AGV holon has a list of holons to connect, e.g. path-planning holon and
AGV-central holons. Some of them are optional and others are required. If a
required holon is not found then it is started either on the local AGV or on an
available server.

A consequence of allowing holons to start other required holons, is that a
mechanism is required to handle ’excessive’ holons of one type. This is typical
issue of distributed systems, holons of an excessive type need a consensus on
who will close itself.

5 Discussion and Conclusion

In this paper we have presented the industrial background of an AGV system
under development. The need for a flexible solution has been identified and a
control architecture using the holonic manufacturing paradigm proposed. The
paper has also presented, through several use-cases, how the holonic architecture
can support the required flexibility of the AGV system.

In our proposed system there is clearly an emphases on the process viewpoint
as defined in the reference PROSA architecture: It has been a conscious choice
to focus on the AGV system as a support component of the manufacturing cell.
As a consequence, the described use-cases are concerned with the interactions
between the AGVs and the manufacturing cell and much less with high level

9

Development of a Holonic Free-Roaming AGV System for . . . 119

Pre-print, HoloMAS2009

scheduling and traffic management. One might say that AGV system presented
only partially defines a material handling solution but we see this system as
working subsystem from which a larger system can be composed, an important
characteristic of holonic manufacturing systems[11].

6 Future Work

Implementation of the proposed holonic AGV system will continue during the
next years in cooperation with the industrial partners. Much work has yet to
be done to evaluate the performance, scalability and flexibility of the proposed
holonic system and to demonstrate the industrial feasibility of the proposed
use-cases.

7 Acknowledgements

This paper presents research results obtained through work in the IntelliFeed
and CRI Norman projects sponsored by The Research Council of Norway.

References

1. Zipkin, P.: The Limits of Mass Customization. Harvard Business Review 75 (1997)
91–101

2. Davis, S.: Future Perfect. Reading, Massachusetts/USA (1987)
3. Van Brussel, H.: Holonic Manufacturing Systems The Vision Matching the Prob-

lem. In: Proceedings of the 1 stEuropean Conference on Holonic Manufacturing
Systems, Hannover, Germany, IFW-Hannover. (1994)

4. Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts, L., Peeters, P.: Reference
architecture for holonic manufacturing systems: PROSA. Computers in Industry
37(3) (1998) 255–274

5. Leitão, P.: Agent-based distributed manufacturing control: A state-of-the-art sur-
vey. Engineering Applications of Artificial Intelligence (2008)

6. Liu, S., Gruver, W., Kotak, D., Bardi, S.: Holonic manufacturing system for dis-
tributed control of automated guided vehicles. In: Systems, Man, and Cybernetics,
2000 IEEE International Conference on. Volume 3. (2000)

7. Srivastava, S., Choudhary, A., Kumar, S., Tiwari, M.: Development of an intelligent
agent-based AGV controller for a flexible manufacturing system. The International
Journal of Advanced Manufacturing Technology (2007) 1–18

8. Babiceanu, R.: Holonic-based control system for automated material handling
systems. PhD thesis (2005)

9. Wallace, A.: Application of AI to AGV control-agent control of AGVs. Interna-
tional Journal of Production Research 39(4) (2001) 709–726

10. Babiceanu, R., Chen, F., Sturges, R.: Framework for the control of automated
material-handling systems using the holonic manufacturing approach. Interna-
tional Journal of Production Research 42(17) (2004) 3551–3564

11. Valckenaers, P., Brussel, H.V.: Fundamental insights into holonic systems design.
In: HoloMAS. (2005) 11–22

10

120 O. Roulet-Dubonnet et al. (2009)

Open Real-Time Robot Controller Framework 121

4.4 Open Real-Time Robot Controller Framework

Morten Lind, Johannes Schrimpf, and Thomas Ulleberg. Open Real-Time
Robot Controller Framework. In Terje Kristoffer Lien, editor, CIRP Conference
on Assembly Technologies and Systems, pages 13–18, NO-7005, Trondheim,
Norway, June 2010. Tapir Academic Press. ISBN 978-82-519-2616-4

Declaration of co-authorship

Experiment setups for and conduction on the three different robot controllers were a
collaborative effort among Morten Lind, Johannes Schrimpf, Sebastian Dransfeld, and
Thomas Ulleberg. Morten Lind implemented the final versions of all external control
code, that was used in conducting the experiments. The experiments were developed
and planned in close cooperation between Morten Lind and Johannes Schrimpf.

� Sebastian Dransfeld single-handedly performed all experiment setup and measure-
ments for the KUKA RSI control.

� The Nachi controller setup was enabled by the efforts of Johannes Schrimpf, with
help from Thomas Ulleberg, to intercept and modify the internal Nachi controller
communication. The measurement experiments on the Nachi controller were car-
ried out in collaboration between Morten Lind, Johannes Schrimpf, and Thomas
Ulleberg.

� The gateway to the low-level control interface in the Universal Robots controller
was designed and tested in collaboration among Johannes Schrimpf and Morten
Lind, and was implemented by Johannes Schrimpf on the native controller platform.
The experiments with the Universal Robots controller were conducted by Morten
Lind and Johannes Schrimpf in collaboration.

The PyMoCo control framework was conceived and designed by Morten Lind, with a
cooperative contribution from Johannes Schrimpf. PyMoCo was implemented single-
handedly by Morten Lind, and tested extensively in close cooperation among Morten
Lind and Johannes Schrimpf.

The paper was written, prepared, and submitted by Morten Lind. Johannes Schrimpf
contributed review of the final version. All graphics is designed and produced by Morten
Lind.

122 M. Lind, J. Schrimpf, and T. Ulleberg (2010)

Open Real-Time Robot Controller Framework

Morten Lind1,3, Johannes Schrimpf2,3, Thomas Ulleberg3

1Norwegian University of Science and Technology, Department of Production and Quality Engineering, Trondheim, Norway
2Norwegian University of Science and Technology, Department of Engineering Cybernetics, Trondheim, Norway

3SINTEF Raufoss Manufacturing AS, Trondheim, Norway

Abstract
The challenge with advanced robot control in manufacturing is two-fold, regarding industrial robot controllers:
1) General real-time control from external entities are not supported; and only for special cases of application
scenarios, limited real-time extensions to the controller can be purchased. 2) The robot controller application-
platforms are robot centric; leaving an external application to battle with achieving the desired behaviour.
Based on free and open software resources, experiments have been performed with three industrial robot con-
trollers, and measurements of response times and tracking delay from external control are presented. Also
presented is the design of a motion control framework, demonstrating external integration of force feedback and
visual servoing.

Keywords:
Manufacturing system; Real-time control; Robot motion control; Robot sensor-servoing

1 INTRODUCTION

The past couple of decades have seen an ever increasing de-
mand for flexibility and adaptability in manufacturing automa-
tion. Regarding the near future of manufacturing in western
countries, a quite probable scenario is that manufacturing of
simple goods with no or little variation, will be almost non-
existing. The manufacturing industry that will remain in this
part of the world will have emphasis on a high degree of cus-
tomization, almost to the level of having no product catalogue.

One of the drivers for this effect is the market demands, re-
questing customization and personalization, simply due to the
possibility [1]. This is a stimulative and additive effect, changing
existing manufacturing companies and shaping new ones. An-
other driver for this is the outsourcing or relocation of uncompli-
cated large-series production to low-cost countries. This latter
effect is a subtractive and inhibitory effect in the sense that it re-
moves manufacturing companies that do, or can, not change,
and prevents establishment of new manufacturing companies
that only manufacture simple goods.

These two effects are, of course, but two among a whole range
of other effects, and can not encompass the plethora of aspects
and types of manufacturing. However, in the general subject
of manufacturing research, they are the predominant effects
discussed regarding automation.

Automation is well in the process of taking over shop-floor level
activities, like processing, handling, and transportation. Fac-
tory level activity, like orchestration, real-time (re-)scheduling,
and online logistics management, is under development to be
automated, hence closing the gap between Enterprise Re-
source Planning (ERP) systems and shop-floor control.

Motivation

Robot manipulators are used to meet the requirements of
agility, reachability, flexibility, adaptability, dexterity, etc., in
manufacturing systems. The most flexible kind of industrial ma-
nipulator is the (serially linked) articulate robot, and it mostly

has 6 degrees of freedom (DOF). A challenge with such mech-
anisms is, that the mapping between the actuator and opera-
tional spaces are highly non-linear. This is why an advanced
motion controller is always found associated with such a robot.

Historically, there has not been an overall application control
at the factory or shop-floor levels, so robot-centric application
controllers were implemented co-located with the motion con-
trollers in the robot controllers. These have evolved to quite ad-
vanced platforms, but typically remain closed and proprietary,
shielding off the underlying servo controller from the application
programmer. Hence, the native application controllers are well
suited for the use cases that were part of the platform devel-
opers’ design criteria, but virtually excludes or hinders all other
uses and application scenarios.

To render the robots more general and generic, the world of
robotics has seen some projects aimed at developing open
controllers, independent of the robot and controller manufac-
turers. Examples of such are the Open Modular Controller, de-
veloped by a team led by Jensen [2], and the OROCOS project
[3]. Such projects provide an advanced application platform,
which is completely open, and thus allowing any application
scenario within the limits of mechanics, hardware, and real-
time communication.

Facing the need for application flexibility and factory-wide au-
tomated control, the robot controllers are no longer adequate
as application platform. Further, the open application-platform
controllers may also be too complex, since they remain robot
centric. I.e. they still assume that it is within the application
controller of the robot, that the major part of the application is
to be implemented.

In a distributed, intelligent system for automatic control at fac-
tory or shop-floor level, the application platform is in “the sky”;
i.e. in the local network in the factory. Such a control system,
e.g. a Holonic Manufacturing System [4], will benefit from soft
real-time access to motion- or servo-control. Local application
scenarios, like sensor-servo-based motion control, will need
semi-hard real-time access to the servo-controller [5].

Pre-print for 3rd CIRP Conference on Assembly Technologies and Systems, 2010

Open Real-Time Robot Controller Framework 123

Related Work

Real-time external motion-control of native controllers for in-
dustrial manipulators is not a new phenomenon. In special ap-
plications, where the application platform in the native controller
is inadequate, or where the real-time application control is al-
ready implemented on another computer platform, there hardly
exists any viable alternative.

Cederberg et al. [6] mention 10Hz interaction frequency with
an ABB IRB 2400/16 robot with an S4CPlus controller, through
the native application controller. They use a combination of a
RAPID program running in the controller and an external pro-
gram using RAP to communicate from the external program.
The tracking delay is not quantified, but judging from the pro-
grams presented, and by experience with the S4CPlus con-
troller, it seems realistic to guess at no less than 500ms. This
is an example of real-time control through the application plat-
form in the commercial controller, and may be classified as a
gentle technique for circumventing the native application plat-
form.

Wetterwald et al. [7] used the KUKA RSI with a KR60L30 HA
robot for external motion (correction) control in a sewing appli-
cation. This is a hybrid approach, since part of the application is
implemented in the main controller, whereas the external con-
trol performs sensor-based real-time trajectory corrections. In
their experiments, the robot motion could have been controlled
freely over RSI, but the KUKA application platform was chosen
for part of the entire application; somewhat due to historical
reasons in the project.

Bigras et al. [8] implements a force-control loop around the op-
erational space position-control over KUKA RSI with a KUKA
KR210 robot. A central part of their work is impedance mod-
elling of the robot joints and surroundings. This demonstrates
a quite advanced control application made possibly by the real-
time access to the KUKA controller.

Schnell et al. [9] used an advanced open controller, the Open
Modular Controller [2], implementing servo-level control and
providing a flexible platform for integration on top of a PC-
platform. They used an ASEA IRB6/2 robot, and apart from
the mechanical arm and servos, only the servo amplifiers were
reused. At the lowest level, the controller itself addresses the
servo amplifiers through a PMAC controller board. This is an
example of a demanding effort for recycling old robots, com-
pletely modernizing their control system. An outdated applica-
tion platform is replaced by a new, open, and advanced appli-
cation platform.

A simple and most elegant external real-time control of an in-
dustrial robot is described by Dallefrate et al. [10]. They used
the 7-DOF Mitsubishi PA-10 robot. The PA-10 controller sup-
ports direct access to velocity or torque control on the servo
controller. Though elegant, it takes some effort to implement a
trajectory controller to close a position control loop around ei-
ther velocity or torque control. The servo controller of the PA-10
is accessible over ARCNET, with the possibility of achieving a
control frequency up to 1kHz. They report an impressively low
jitter of less than 4µs, in their specific Linux+RTAI environment.

Paper Outline

The remainder of this paper is in two parts. The first part,
in Section 2, presents a simplified, conceptual model of how
an industrial robot controller is organized. It is used as ba-
sis for the discussion of motion and servo controllers. Ex-
periments with three different robot controllers are discussed
and the performance-results are presented. The second part,
in Section 3, gives a conceptual overview of the implemented

Figure 1: Simplified view of the communication within an indus-
trial robot controller.

framework for real-time, external motion-control. Finally, some
concluding remarks and acknowledgements.

2 ROBOT CONTROLLERS

In this part, a simple conceptual model of a standard robot con-
troller is presented. Afterwards, experiences with external con-
nection to three different controllers is shortly described. Finally
performance measurements on the three case-controllers are
presented and discussed.

2.1 Controller Basics

Figure 1 illustrates a possible, if naive and simplified, commu-
nication diagram for the interesting components in a standard
type of robot controller. Labels in the figure indicate the order
of magnitude for frequency of interaction between the compo-
nents.

At the top level the application controller handles the logic of the
user application, and submits motion segment specifications to
the motion controller. The motion controller will execute these
by interpolation according to the motion type, and control the
servo controller in executing the motion. The servo controller
makes a refinement of the interpolated points from the motion
controller. These finely spaced position targets are executed
by, say, velocity commands to the servos, their synchroniza-
tion and positions being monitored and controlled. The servos
control the motor currents and read back the motor encoder
values.

2.2 Robot Experiences

The results in this part of the paper is based on working ex-
perience with three different robot controllers, each of which
supports external motion control. All communication is over or-
dinary, unmodified Ethernet, using UDP or TCP connections.

NACHI SC15F

By installation of an embedded single board computer (SBC),
transparently intercepting the communication between the in-
ternal motion controller and the servo controller. The actual
joint positions from the servo controller is sent out in a UDP
packet over Ethernet, and is received by the external motion
controller. This emission of joint positions are bound to the in-
terpolation period between motion and servo controllers. The
SBC further listens for UDP packets from the external motion
controller, sending position commands to override the com-
mands from the internal motion controller.

124 M. Lind, J. Schrimpf, and T. Ulleberg (2010)

In the native NACHI controller, the internal communication fre-
quency between motion and servo controllers can be config-
ured freely within some range, but defaults to 100Hz; which is
understood to be recommended. The servo controller provides
pure joint position control with joint position feedback.

KUKA KR60L30 HA with RSI

Experience with the KUKA RSI control interaction is mainly
from a sewing application [7]. KUKA RSI supports external po-
sition control over TCP in real-time, either in joint or operational
space, with position feedback. The version of RSI used is 2.1
with RSI-XML version 1.1.

The interpolation period of the RSI communication is 12ms;
i.e., a frequency of 83.33Hz. The external control must be syn-
chronized to the feedback from the RSI controller, with a 4ms
time window to respond with a new desired position specifica-
tion.

The possibility of real-time external motion-control in opera-
tional space may be a major advantage for companies that do
not have the competence for developing or dare commissioning
third part, free and open, motion control.

Universal Robots UR-6-85-5-A

The 6-DOF UR-6-85-5-A articulate manipulator from Universal
Robots has an internal PC running a GNU/Linux OS for motion
and application control. It is very open for access and deploy-
ment of software. The servo controller is directly accessible by
compiling a “motion controller” program, using an API header
file and linking with a library file; both supplied from Universal
Robots. On the native controller computer, the high-level con-
troller is then replaced by this new controller.

The controller in the presented work is about 100 lines of C-
code, which simply implements an adaptor to the servo con-
troller, exposing it over UDP sockets to an external motion con-
troller. The servo controller sends, at 125Hz, the actual posi-
tion and velocity joint-vectors; i.e. a packet containing (qa, q̇a).
In response, it requires the desired position, velocity, and ac-
celeration joint-vectors for the next interpolation period; i.e. a
packet containing (qd, q̇d, q̈d). Alternatively it is possible to
control by pure joint velocity, and a future release of the con-
troller software will give access to joint torque control as well.

2.3 Experiments and Performance

The expected performance of an external motion controller ap-
plication will, naturally, depend heavily on the performance of
the underlying servo controller. Specifically it is the response
time and the tracking delay which are of interest in real-time
sensor-servoing applications.

For the specific experiments presented in this paper, to be fair
to KUKA and NACHI, it is imperative to mention here, that no
tweaking or optimization of filtering in the servo-controllers was
performed. It is possible to change the filtering, and possibly
lower both response time and tracking delay.

Response Time and Tracking Delay

Response time is defined as the time from a change is made in
the desired motion until an effect can be observed in the actual
motion. The tracking delay is the amount of time that the ac-
tual motion is trailing the desired motion. These quantities are
chosen for measurement mainly due to external observability,
but also because they are of importance for designing motion
control applications.

Robot Response [ms] Tracking [ms]

NACHI 45 120
KUKA 42 115
UR 12 9

Table 1: Summary of numerical results for response time and
tracking delay for the different robots.

Both response time and tracking delay are observed from the
external side, and hence they include network transport time.
However, the latency in a standard switched local network will
be of the order of 200µs, which hardly contributes compared to
the interpolation cycle period of around 10ms.

These quantities are measured by customized small programs
that do nothing but addressing the robot servo controller di-
rectly over the network. While executing some desired motion,
the corresponding times of sending and receiving the positions
are logged together with the positions.

Response time is found by commanding the servo controller
with a step function, the step being set as high as the pertinent
servo controller accepts. Tracking delay is measured on a ramp
or a sine motion as the time the actual position of a joint is
trailing the desired position.

Measurements

Some selected measurements are displayed by plots of desired
and actual joint position vs. time. The desired positions sent to
the robot are shown as green crosses connected by green line
segments, and the actual positions reported from the robot are
shown as blue points connected by blue line segments.

Figure 2 shows plots of sine responses from the robot con-
trollers. The motions shown are generated with 10◦ amplitude
and at a cyclic frequency of 1Hz. All measurements are mov-
ing only the base shoulder joint (joint 0), with the upper arm
vertical and the forearm horizontal. The plots show the first 1.5
periods of the motion. The experiments continued for several
periods with the same behaviour as observed in the plots.

Figure 3 shows plots of step responses from the experiment
controllers. For each robot is seen an individual size of the step,
which has been experimentally maximized. The maximization
is done to ensure as fast and strong a response as possible.
Since the KUKA and NACHI servo controller performs filtering
of the motion, they accept a much larger step than the unfiltered
servo control in the Universal Robots robot. The time axis in the
plots have been zeroed to the time where the step is sent.

Measurement series for the sine responses were made on all
robots by specialized programs. The step responses are calcu-
lated from one single experiment, since it has no parameters.
The tracking delay was inspected over a series of experiments
where both amplitude and frequency was varied.

Results

By analysis of Figures 2 and 3 some estimates of the sine-
and step-responses for the different robot controllers can be
extracted.

Measurement of tracking delay is performed at the steepest po-
sition of the desired trajectory as the horizontal shift to the ac-
tual trajectory on the sine response curves. The response time
is measured as the time passed from the step is sent and until
a half interpolation cycle before the first significantly changed
interpolation point.

Open Real-Time Robot Controller Framework 125

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [s]

−10

−5

0

5

10

A
ng

le
[◦

]

[origin=c]180© Morten Lind, 2010

NACHI : Sinus Tracking with A = 10.00◦ and ν = 1.00Hz

qact.0

qdes.0

(a) NACHI

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [s]

−20

−15

−10

−5

0

A
ng

le
[◦

]

[origin=c]180© Morten Lind, 2010

KUKA : Sinus Tracking with A = 10.00◦ and ν = 1.00Hz

qact.0

qdes.0

(b) KUKA with RSI.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time [s]

−10

−5

0

5

10

A
ng

le
[◦

]

[origin=c]180© Morten Lind, 2010

UR : Sinus Tracking with A = 10.00◦ and ν = 1.00Hz

qact.0

qdes.0

(c) Universal Robot.

Figure 2: Sine wave tracking by the three experiment robots.

−0.04 −0.02 0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

1.0

1.2

1.4

1.6

1.8

2.0

A
ng

le
[◦

]

[origin=c]180© Morten Lind, 2010

NACHI : Step Response with ∆q0=1.0◦

qact.0

qdes.0

(a) NACHI

−0.04 −0.02 0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

A
ng

le
[◦

]

[origin=c]180© Morten Lind, 2010

KUKA : Step Response with ∆q0=1.3◦

qact.0

qdes.0

(b) KUKA with RSI.

−0.04 −0.02 0.00 0.02 0.04 0.06 0.08 0.10
Time [s]

0.10

0.12

0.14

0.16

0.18

0.20

0.22

A
ng

le
[◦

]

[origin=c]180© Morten Lind, 2010

UR : Step Response with ∆q0=0.1◦

qact.0

qdes.0

(c) Universal Robot.

Figure 3: Step responses from the three experiment robots.

The numerical results from the analysis of the plots are sum-
marized in Table 1.

The KUKA and NACHI robots have similar characteristics with
just beyond 40ms response time and around 120ms tracking
delay. This is easily understood if it is assumed that their servo
controllers have a motion buffer for estimating trajectory pa-
rameters, and filter the control to the desired trajectories for the
servos.

From experiments with the Universal Robots robot, both re-
sponse time and tracking delay is measured to around 10ms,
which is around one interpolation period. This observation is
consistent with the absence of trajectory parameter estimator
and filtering.

3 CONTROLLER FRAMEWORK: PYMOCO

The “space” of motion control is huge, and it may interact with
many systems of very different nature. Therefore it is preferable
to keep motion control on the most agile platform, providing
a vast amount of libraries for computing and communication.
This leaves the ultimate flexibility to the application designer
regarding implementation method or paradigm, programming
language, and platform. This is in strong opposition to the ap-
plication platform design within contemporary robot controllers.

This part presents a simple framework for motion control that
have been developed, tested, and used in applications; how-
ever, still to be considered experimental. Since it is entirely im-
plemented in the Python Programming Language, it has been
named PyMoCo.

An important advantage of having the entire code base in
Python is that it should require almost no effort in porting
it among any Operation System platform that supports the
Python interpreter; e.g. OS X, any Windows OS, or any
GNU/Linux distribution. Debian and Ubuntu distributions of
GNU/Linux was used for developing, testing, and applying it.

The Natural Level of Separation

It is in the motion control layer that advanced control scenar-
ios with respect to external orchestration or real-time sensor-
integration will be relatively easy. One level lower, in the servo
controller, things get control theoretically quite involved, and
will anyways be rather robot specific regarding dynamics, me-
chanics, and electronics. Further, below the servo controller
level, the control frequency will be very high and jitter tolerance
low.

In this light, interfacing to the servo controller from an external
motion controller should be considered a natural choice. Sys-
tem and application developers will thus be empowered by the
possibility of implementing suitable motion control, while the
robot manufacturer takes care of the very robot specific and
complex control issues.

Servo Controller Interfaces

For the KUKA and NACHI robots, the trajectory data for the
interface is of the same nature: Joint positions are sent to
the controller and joint positions are received. The Univer-
sal Robots controller requires additional trajectory data: joint-
velocities and -accelerations. The data returned from the Uni-
versal Robots servo controller is also extended with actual joint
velocities.

126 M. Lind, J. Schrimpf, and T. Ulleberg (2010)

Figure 4: Class diagram of the central classes in the PyMoCo
design.

To control the Universal Robots robot with the same interface
as the KUKA and NACHI robots, a P(ID)-controller at the in-
terface layer will be implemented; possibly at the cost of some
response time and tracking delay. This will enable use of the
same motion controllers across all of the robots. However,
some motion controllers may in fact take advantage of the ex-
plicit control of accelerations and velocities.

3.1 Framework Design

A class diagram of some core classes and some specific con-
trollers in the framework is presented in Figure 4. The central
classes are explained in this section.

The controller framework provides two essential classes: The
ServoPublisher and the Controller. They are the functional
proxies to communicate with the servo controller. Similar to the
ServoPublisher class, publisher classes for sensor inputs can
be implemented; ForcePublisher is one such sensor publisher.
The Controller class, besides from having some fundamental
functionality itself, is the base class for the hierarchy of differ-
ent motion controller classes.

The ServoPublisher Class

The ServoPublisher supports the publisher-subscriber pattern,
calling a special method on each subscriber when there are
new state data from the servo controller. The ServoPublisher
is an abstract base class, and is to be specialize into proxies
for the different controllers; e.g. NACHIServoPublisher, etc.

The Controller Class

The Controller base class is an abstract class for mediating the
desired motion from an explicit controller to the servo controller.
It will need specific implementations for implementing motion
control strategies.

Notable functionalities, which reside in the base Controller are
the ability to address data in correct format to the servo con-
troller; consistency checks on the data; scaling of data into
known limits of the servo controller, if so configured; and pro-
viding a basic handler of notifications from the ServoPublisher.

In specialized base-controllers, i.e. those that differentiate
among the different servo controllers, special consistency
checks or control aspects can be implemented. An example is
the implementation of a basic P(ID)-controller for the Universal
Robots controller, URPositionController, where position control
can be implemented over the raw servo controller interface.

The KinematicsController Class

A KinematicsController is to be distinguished from a joint-
based controller, in that it relates operational space to the joint
space of the robot. The controller classes that specialize the
abstract class JointController, is only relating to the joint space
of the robot.

A fundamental component of a KinematicsController is a Kine-
maticsComputer class. The KinematicsComputer is the class
that provides the fundamental computation elements for the ac-
tual robot, mathematically relating joint and operational spaces.
This leaves the KinematicsController specializations to focus
on motion strategies and application of sensor inputs.

The KinematicsController is an abstract entity which must be
specialized to implement some motion strategy. Example mo-
tion strategies are CompliancyController, ToolLinearController,
ToolVelocityController, etc.

The SensorPublisher Class

To accommodate and distribute asynchronous sensor input,
the implementer must provide specializations of the abstract
class SensorPublisher. Some external sensors may support
polling and some may submit asynchronous publications of
their data. Both of these can be handled and cross-transformed
in a specialized SensorPublisher.

As an example, consider a force sensor system which broad-
casts force data over the network, but does not support polling.
A ForcePublisher can be implemented to collect force data,
and support polling internally to the controllers in the PyMoCo
framework. This is an important decoupling mechanism.

3.2 Examples: Compliance Control System and Visual
Servoing

A complicated control scenario, which serve as a good proof-
of-concept, is the implementation of a 6D force compliance
control. The NACHI robot has been equipped with a 6D force
sensor at the tool flange, giving full force and torque data in its
reference system. The force sensor is connected to a LabView
application on a PC running Mandriva GNU/Linux. Sensor data
are broadcast over UDP as fast as they are read off the sensor.

The purpose of a force compliance controller is to achieve the
motion that “follow” the force and torque applied to the robot
tool. The core communications in this PyMoCo application is
best illustrated by the sequence diagram, shown in Figure 5.

It is important to note here, that there are two independent
sequences in Figure 5, and that they trigger asynchronously.
One sequence is triggered by the ServoPublisher publishing
new state data from the servo controller, and the other is the
one triggered by the ForcePublisher, publishing new force data.
In general the sensor publishing event does not have a fixed
timely pattern and may be cyclic, sporadic, or episodic. The
coupling between the servo and sensor data is performed in
the the ComplianceController.

Using the NACHI robot with 120ms tracking delay and 45ms re-
sponse time, cf. Table 1, the input from the force sensor needs
some filtering to match the delays in the servo controller. This
was done by a simple exponential moving average with a suit-
able smoothing constant. The resulting control is adequate for
manipulating the robot by hand, or generally in slow-varying
force applications. This result would be similar with the KUKA
robot.

Another case of use of the PyMoCo framework is described
in [11]. In that application, the PyMoCo framework is used
as a component in an application, which handles multiple sen-
sor inputs and processing in its own framework. The PyMoCo
framework is configured to provide a ToolVelocityController to
the application.

Open Real-Time Robot Controller Framework 127

Figure 5: Sequence diagram illustrating the two, asynchronous, cyclic interactions in a single-sensor servoing controller.

4 CONCLUSIONS

We have described how access is gained to servo-level control
from an external PC for three different industrial 6-axis manipu-
lators. The three methods of access are very different, but may
be considered as spanning the possibilities of external servo
level control.

The experiments, based on sine wave tracking, show some
considerable response times and tracking delays for the purely
position-controlled robots, and minimal response time and
tracking delay for the robot commanded by acceleration, ve-
locity, and position.

The framework for external motion control, PyMoCo, has been
sketched at the software design level. The framework provides
some basic types of controllers, which can be customized or
extended, and provides utilities and connectivity for further im-
plementation of general or specialized motion controllers and
sensor publishers.

Future work will concentrate on more advanced motion con-
trollers and sensor integration in the presented framework. Par-
allel to this, we will be planning activities toward integration of
new robot controllers as well as optimize the filter settings of
the KUKA and NACHI controllers; cf. Section 2.3.

5 ACKNOWLEDGEMENTS

Thanks to professor Terje Lien, Norwegian University of Sci-
ence and Technology, for good support and discussions.

We owe thanks to NACHI Robotic Systems Inc. for allowing a
guided insight into their controller protocol. Without their will-
ingness and help, the interaction with the NACHI robot would
not have been possible in our setting.

Esben Hallundbæk Østergaard, Universal Robots, gave good
help and guidance in interfacing to their servo controller.

Sebastian Dransfeld, SINTEF Raufoss Manufacturing AS,
spent some hours in the laboratory on our request. We are
thankful to him for performing the response measurements on
the KUKA robot controller.

This work has been financed mainly by the IntelliFeed project,
and, through the Norwegian University of Science and Tech-
nology, the RAMP project under the SFI Norman research pro-
gramme. Both the IntelliFeed project and the SFI Norman pro-
gramme are funded by The Research Council of Norway.

6 REFERENCES

[1] Carpanzano, E., Jovane, F., 2007, Advanced Automation
Solutions for Future Adaptive Factories, CIRP Annals -
Manufacturing Technology, 56/1:435–438.

[2] Jensen, S.M., 1998, Open Modular Controller, Proceed-
ings of the 29th International Symposium on Robotics.

[3] Bruyninckx, H., 2001, Open Robot Control Software: the
OROCOS project, Proceedings of the 2001 IEEE Interna-
tional Conference on Robotics and Automation, volume 3,
2523–2528.

[4] Vrba, P., Marı́k, V., 2005, From Holonic Control to Vir-
tual Enterprises: The Multi-Agent Approach, Zurawski, R.
(editor), The Industrial Information Technology Handbook,
CRC Press.

[5] Blomdell, A., Bolmsjö, G., Brogårdh, T., Cederberg, P.,
Isaksson, M., Johansson, R., Haage, M., Nilsson, K., Ols-
son, M., Olsson, T., Robertsson, A., Wang, J., 2005, Ex-
tending an Industrial Robot Controller: Implementation
and Applications of a Fast Open Sensor Interface, IEEE
Robotics Automation Magazine, 12/3:85–94.

[6] Cederberg, P., Olsson, M., Bolmsjö, G., 2002, Remote
control of a standard ABB robot system in real time using
the Robot Application Protocol (RAP), Proceedings of the
33rd International Symposium on Robotics.

[7] Wetterwald, L.E., Dransfeld, S., Raabe, H., Ulleberg, T.,
Lind, M., 2008, Flexible Robotic Sewing with Real Time
Adaptive Control, ElMaraghy, H.A. (editor), Proceedings
of the 2rd CIRP Conference on Assembly Technologies
and Systems, 552–561.

[8] Bigras, P., Lambert, M., Perron, C., 2007, New Formula-
tion for an Industrial Robot Force Controller: Real-time im-
plementation on a KUKA Robot, Proceedings of the IEEE
International Conference on Systems, Man and Cybernet-
ics, 2794–2799.

[9] Schnell, J., Andersen, S., Langer, G., Sørensen, C., 1999,
Development of a robot holon using an open modular con-
troller, Proceedings of the IEEE International Conference
on Control Applications, 2:1642–1647.

[10] Dallefrate, D., Colombo, D., Tosatti, L.M., 2005, Develop-
ment of robot controllers based on PC hardware and open
source software, Seventh Real-Time Linux Workshop.

[11] Schrimpf, J., Lind, M., Ulleberg, T., Zhang, C., Mathisen,
G., 2010, Real-Time Sensor Servoing using Line-of-Sight
Path Generation and Tool Orientation Control, Lien, T.K.
(editor), Proceedings of the 3rd CIRP Conference on
Assembly Technologies and Systems, Tapir Academic
Press, NO-7005, Trondheim, Norway, 19–23.

128 M. Lind, J. Schrimpf, and T. Ulleberg (2010)

Real-Time Sensor Servoing using Line-of-Sight . . . 129

4.5 Real-Time Sensor Servoing using Line-of-Sight Path Gen-
eration and Tool Orientation Control

Johannes Schrimpf, Morten Lind, Thomas Ulleberg, Chen Zhang, and Geir
Mathisen. Real-Time Sensor Servoing using Line-of-Sight Path Generation and
Tool Orientation Control. In Terje Kristoffer Lien, editor, CIRP Conference
on Assembly Technologies and Systems, pages 19–23, NO-7005, Trondheim,
Norway, June 2010. Tapir Academic Press. ISBN 978-82-519-2616-4

Declaration of co-authorship

The design and implementation of application, application control, vision analysis, and
hardware is credited to Johannes Schrimpf, with Morten Lind and Thomas Ulleberg
contributing in occasionally discussions. Thomas Ulleberg participated actively in all
laboratory sessions during the development. Morten Lind contributed directly during
integration of the PyMoCo framework for the robot motion control under the application,
and participated actively in related experiment sessions in the laboratory. Chen Zhang
contributed with discussions during development of the presented work.

Johannes Schrimpf single-handedly wrote the paper. Geir Mathisen contributed with
discussions during the initial preparations for writing the paper. Chen Zhang contributed
by discussing, commenting, and revising the paper during the entire writing process.
Thomas Ulleberg and Morten Lind contributed by reviewing the final version of the
paper. Johannes Schrimpf handled the preparation and submission of the manuscript.

130 J. Schrimpf et al. (2010)

Real-Time Sensor Servoing using Line-of-Sight Path Generation and Tool Orientation
Control

Johannes Schrimpf1,3 , Morten Lind2,3 , Thomas Ulleberg3 , Chen Zhang4 , Geir Mathisen1,5

1Norwegian University of Science and Technology, Dept. of Engineering Cybernetics, Trondheim, Norway
2Norwegian University of Science and Technology, Dept. of Production and Quality Engineering, Trondheim, Norway

3SINTEF Raufoss Manufacturing AS, Trondheim, Norway
4Darmstadt University of Technology, Institute of Automatic Control, Darmstadt, Germany

5SINTEF ICT, Trondheim, Norway

AbstractIn the future, industrial robot systems have to be more flexible and autonomous to serve the needs of
increasing product variation and shorter time-to-market. In the past, off-line programming of robot systems was
often sufficient to meet the demands. But now, considering more complex automation tasks like handling of non
rigid materials, the need for robot systems to interact in real-time with their surroundings is getting more and
more important.
This paper describes real-time sensor servoing concepts aimed at industrial applications such as welding or
sewing. To evaluate the methods, an adequate test platform is developed. A real-time, line-following algorithm
based on a line-of-sight concept is presented, as well as a tool orientation control algorithm based on surface
normal detection. The robot system consists of a 6-axis industrial manipulator and a vision system including a
camera with four laser pointers used in distance measurements. The goal is to show new concepts for appli-
cations where the tool to surface-normal orientation has to be controlled in real-time according to a specified
trajectory or control scheme, and where the path cannot be pre-programmed in the robot program. In the test
case the tool is orientated perpendicularly to the workpiece surface and the path is given by a marking. Prelimi-
nary experiments verify that the algorithms work properly on the test platform.

Keywords:
robotics, manufacturing, real-time control, sensor servoing, visual servoing, line-of-sight, tool orientation control,
laser triangulation, eye-in-hand

1 INTRODUCTION

Nowadays, increasing product variations, shorter time-to-
marked, and more complex automation tasks like handling of
non rigid materials, lead to new challenges in manufactur-
ing. Industrial robot systems have to be more flexible and au-
tonomous than ever. While in the past off-line programmed
robot system were sufficient to meet the demands, today real-
time interaction with the surroundings and thus sensor integra-
tion and real-time control are often desirable.

These demands have led us to implement a servo-level inter-
face and an external motion controller for a NACHI SC15F 6-
axis industrial manipulator [1]. The next natural step was to
build, demonstrate, and evaluate a sensor interface, demon-
strating the possibilities of real-time sensor servoing within
manufacturing. It was decided to build a system which in-
tegrates different control algorithms and sensors to show the
possibilities of real-time robot control. The focus is on cases
where the tool has to follow a given path and has to be ori-
entated perpendicularly to the workpiece, as for example in
welding or sewing applications [2]. Common systems use time-
consuming offline programming or, less time consuming, path
planning based on CAD models [3]. To make the system more
flexible for changes and independent of CAD files, the focus is
on a system which does not need to be preprogrammed, but
uses online path-planning in real-time.

The challenge can be divided into two smaller parts: the path-
following and the tool orientation detection and control. Path-
following is a common scenario in many automatization areas,
not only robotics, for example in navigation of ships and vehi-
cles. A common method is the line-of-sight algorithm [4, 5].

As solution for the surface normal detection, there were pro-
posed different methods, including force sensors or visual sen-
sors. Marques et al. use a triangulation based surface orien-
tation and distance sensor which allows contactless sensing of
the surface orientation [6]. A similar sensor is used by Caccia
to detect the surface normals and distances for the navigation
of underwater vehicles [7].

Other systems use force sensors to measure the surface ori-
entation. One robot system which combines a fixed camera for
position detection and force sensors for the surface orientation
detection is developed by Hosoda et al. [8].

Zhang et al. proposed an automatic robot program generation
method based on a combination of an eye-in-hand vision sys-
tem to follow a marked path on the workpiece and a force sen-
sor to measure the tool orientation [9]. In the resulting sys-
tem, the robot has to move on a defined pattern, for example
a zigzag path, to detect the local geometry. This is suitable for
path generation in advance, but not for smooth path-following
in real-time.

In this paper a visual line-of-sight tracking method is combined
with the advantages of contactless surface orientation and dis-
tance measurement based on laser triangulation. This gives
us a system which allows smooth line tracking with the tool
orientated normal to the surface in real-time. Effort was con-
centrated on the practical implementation of the test platform
which will be used as starting point for further evaluations of
the real-time interface.

As test case, a scenario is defined where the tool has to follow
an optical marked path on the workpiece, while orientated per-

Pre-print for 3rd CIRP Conference on Assembly Technologies and Systems, 2010

Real-Time Sensor Servoing using Line-of-Sight . . . 131

Figure 1: The test platform consists of a NACHI SC15F with a
real time sensor interface and a hilly shaped workpiece.

pendicularly to the workpiece surface. The first tests verify that
the algorithms work properly on the test platform.

2 SYSTEM DESCRIPTION

The test platform consists of a table with a 3-D structured sur-
face and a NACHI SC15F 6-axis industrial manipulator with a
tool, which is to be aligned perpendicularly to the workpiece
surface and has to follow an optically marked line on the work-
piece, as illustrated in Figure 1. The tool is a placeholder for
a real tool, which can be used in applications such as welding
and sewing [2].

The tool center point was defined to be at a given distance from
the tool flange; in our experiments 10cm. The tool coordinate
systems origin is in the tool center point and the z-axis stands
perpendicularly to the tool flange.

The desired movement of the tool is given by the combination of
a marked path on the workpiece as well as the surface normal
vectors at the desired path. A vector was defined, expressing
the deviation of the actual tool center point from the desired
tool center point in the tool coordinate system, both in position
and orientation:

e =
[
ex ey ez eθ,x eθ,y eθ,z

]T
, (1)

where ex and ey denote the distance between the desired posi-
tion and the projection of the tool center point in the x-y plane.
ez is the deviation along the z-axis, and eθ,x, eθ,y and eθ,z the
deviations in rotation around the x-, y- and z-axis, respectively.
In general, correction of rotation around the z-axis is possible,
but due to rotation symmetry it will not be considered in our
demonstrator; hence, erz will be set to 0.

The system can be seen as a closed loop control system con-
sisting of the vision system, divided in the hardware part and
the software part; a robot controller (PyMoCo) written in Python
[1]; the real-time interface to the robot controller; and the robot
system. The structure of this system is depicted in Figure 2.

2.1 Tool Distance and Orientation Detection

Triangulation-based Distance Sensor Principle

To detect the tool distance and orientation with reference to the
workpiece surface, a system was defined, which is based on

Figure 2: The control structure - from upper left: real-time in-
terface, robot, camera, vision system, PyMoCo (Python motion
controller).

Figure 3: A triangulation-based distance sensor with a CCD-
array. When the sensor is moved in vertical direction, the laser
point is projected to another position on the CCD array.

several triangulation based distance measurements. The sen-
sor system is closely related to the Opto 3D sensor described
in [6] and a sensor described in [7].

Triangulation-based distance sensors consist of a light source,
mostly a laser beam, which acts as a pointer, and a detector
which is mounted at some distance from the laser source, as
shown in Figure 3. Ideally, the laser source for triangulation
has a high accuracy to illuminate a small spot over a large dis-
tance. Depending on the distance to be measured, the desired
accuracy and the light conditions of the environment, infrared
sensors can be used as light source instead of the laser.

The light emitted by the light source is reflected by the object’s
surface and returns to the detector. A lens focuses the reflected
light onto a light-sensitive component, which can detect the po-
sition of the light point on the projection, e.g. CCD arrays, spe-
cial photo diodes, or cameras. Thereby, the angle between the
laser beam and the returning light can be measured, and hence
the distance can be calculated.

Implementation of the Distance Measurement

In our setup, four laser pointers are used. Even if theoretically
three laser pointers are sufficient, one extra laser is attached for
symmetric reasons in the algorithm and to increase the accu-
racy by eliminating linear dependencies in the surface normal
detection.

132 J. Schrimpf et al. (2010)

Figure 4: The sensor system attached to a tool changing sys-
tem. The stick is a placeholder for a real tool.

The sensor hardware consists of four low cost laser pointers
and a Prosilica GC1350 Gigabit ethernet camera, mounted on
the tool as shown in Figure 4.

The distance dzi between the sensor i and the surface can be
derived by the formula

dzi = fi(u) with i ∈ {1, 2, 3, 4} , (2)

where u is the x-pixel-value of the center of the laser dot on the
image and fi is a nonlinear function, which is extracted from
calibration measurements, as shown in Figure 5.

The resolution of the height measurement depends on the dis-
tance between the workpiece and the camera. The depen-
dency is shown in Figure 6. In the working height of 10cm,
the resolution is around 4.3 pixel

mm .

The distance between the tool and the surface was defined to
be the average of the separate distance measurements:

dz =
1
4

4∑

i=1

dzi , (3)

where dz is the distance between the tool and the workpiece
and dzi are the separate distance measurements.

By taking the working height of 10cm into account, the height
error ez can be derived.

ez = 10cm − dz , (4)

which is used as input to the tool height controller.

Implementation of the Tool Orientation Measurement

To determin the tool orientation in reference to the surface, the
surface normal vector is calculated. The calculation of the sur-
face normal vector of the workpiece at the tool center point is
based on four distance measurements around the tool center
point. On the basis of the measured distance and the physical
setup it is possible to derive the coordinates of the four laser
dots p1 to p4 on the surface in tool coordinates:

Figure 5: In the vision system the x-values of the laser point
projection on the picture are converted to heights. This fig-
ure shows the dependency between the x-pixel and the height
measurement for each laser.

Figure 6: The height measurement resolution is dependent on
the actual distance between the camera and the workpiece.

pi =
[
xi yi zi

]T
with zi = dzi , (5)

where xi and yi are given by the coordinates of the lasers on
the tool x-y-plane.

To derive the surface normal vector, it was assumed that the
local area around the tool center point is planar. Now, two vec-
tors are described by the positions of the laser points refer-
enced in tool coordinates, preferably vectors with a right angle
in-between. By calculating the cross product of two vectors, the
resulting normal vector n can be calculated:

n =
[
nx ny nz

]T
= (p3 − p1) × (p4 − p2) . (6)

By comparing this normal vector with the tool’s z-axis, the de-
viation from the desired position can be described, for example
by a vector which acts as rotation axis and by the angle of rota-
tion around this axis. In our case, the axis-vector lies in-plane
and the rotation angle equals the angle between the normal
vector of the plane and the z-axis.

Now the error values can be derived:
[
eθ,x eθ,y eθ,z

]T
=

[
nx ny 0

]T
. (7)

Real-Time Sensor Servoing using Line-of-Sight . . . 133

Figure 7: In the line-of-sight algorithm a circle is drawn around
the tool center point, and the intersection points between the
circle and the marked path are taken as possible way-points.
Our algorithm choses the way-point with the smallest angle de-
viation from the actual movement direction.

eθ,z is 0 in this case, since rotations around the tool’s z-axis are
not taken into account.

These values can now be passed on to a tool orientation con-
troller which translates the deviation from the desired alignment
to rotation commands for the robot controller.

Technically, the tool orientation algorithm is programmed in
C++ using the OpenCV library [10], which is a cross-platform
computer-vision library focusing on real-time image process-
ing.

2.2 Line-of-Sight Path Following

As line tracking algorithm, an autopilot algorithm described in
[4] is used. The method is called Line-of-Sight guidance (LOS).
In the LOS algorithm the direction of motion ΨLOS of a vessel
is defined by the coordinates of the next way-point:

ΨLOS = atan2
(

yk − y
xk − x

)
, (8)

where (xk, yk) are the coordinates of the way-point and (x, y)
are the coordinates of the vessel. If the vessel enters a circle-
of-acceptance around the actual way-point, the next way-point
is chosen.

In our tracking algorithm, a sliding way-point is used, which
lies on the line to follow in a constant distance. A circle is as-
sumed around the projection of the tool center point, and the
intersection points between this circle and the marked line are
considered as possible way-points, see Figure 7. Our algorithm
choses the way-point with the smallest angle deviation from the
actual movement direction.

The main parameter in this method is the radius, which has
large influence on both accuracy and robustness of the system.
While a larger radius makes the system more robust, the accu-
racy is decreased. On the other hand, low values for the radius
give more accuracy, but disturbances can make the method
unstable. In general, this method is very robust against dis-
turbances, when the radius is chosen large enough, but it is
always a compromise between accuracy and stability [5].

As with the tool orientation algorithm, the tracking algorithm is
implemented with OpenCV.

The output of the line-of-sight algorithm is the desired xd and
yd value in tool coordinate system. These values correspond
with the ex and ey values:

Figure 8: The graphical user interface allows to set the pa-
rameters for the line following and the tool orientation detection
algorithms.

[
ex ey

]T
=

[
xd yd

]T
(9)

The stability is also highly dependent on the desired movement
speed of the robot. For fast movements the radius has to be
increased to ensure the stability of the tracker.

2.3 Tool Velocity Controller

The robot movement planning is done by using an open tool
velocity controller which is connected to a servo-level controller
interface of the robot.

The input to the tool velocity controller is a 6-element move-
ment vector, in principle a twist, which includes both a linear
movement vector and an angular velocity vector.

ξ =
[
vx vy vz ωx ωy ωz

]T
(10)

The first 3 elements build a linear movement vector for the robot
tool, while the remaining 3 elements describe angular velocities
around the tool center point. The movement vector is derived
by applying a P-Controller to the e-vector defined in formula 1:

ξ = diag(K) · e (11)

with

K =
[
Kx Ky Kz Kθ,x Kθ,y Kθ,z

]T
. (12)

2.4 GUI

A graphical user interface (GUI) was developed to monitor and
adjust the control program. It is shown in Figure 8. In the GUI it
is possible to change the value of the radius of the line-of-sight
algorithms. It can be adjusted according to the disturbances
applied to the test platform. Two additional sliders allow ad-
justing the thresholds for line-detection and laser-detection for
using the system under different light conditions.

134 J. Schrimpf et al. (2010)

In the figure, the dots on the line are possible way-points de-
rived by the line-of-sight algorithm. The cross corresponds to
the projection of the tool center point of the workpiece and
the arrow points in the movement direction towards the cho-
sen way-point. One can clearly see the laser points and
their deviation from the square, which represents a slight non-
perpendicular orientation.

3 EXPERIMENTS

To verify the mentioned control methods, a test case was de-
fined where the robot tool had to follow a marked line with the
tool orientation perpendicularly orientated to the workpiece sur-
face.

A hilly shaped workpiece with a marked path was mounted
on an freely movable table. The algorithms were tested un-
der static conditions and under random disturbances simulated
by shifting the table position during robot path following.

In the initial experiments it could be verified that the algorithms
work properly in the test setup. Further experiments will be
done to evaluate the influence of the LOS radius and the move-
ment speed on the accuracy and stability of the line following.

Furthermore, delays in the robot system were discovered which
are assumed to be motion buffering in the servo controller [1].

4 CONCLUSION

A test platform was built to demonstrate real-time sensor-
servoing applications. A test case was defined where the tool
has to follow a marked path on the workpiece and remain
aligned perpendicularly to the workpiece surface. A contact-
less sensor system was implemented using a camera and four
laser beams to measure the distance between the tool and the
workpiece. The surface normal is calculated based on the dis-
tance measurements. The camera is also used to identify the
path on the workpiece. A way-point system was implemented,
based on a line-of-sight guidance algorithm. The vision system
was implemented using C++ and OpenCV.

A controller was implemented in Python to convert the mea-
surement results into motion commands, which are passed to
a low level servo controller interface.

It was observed that the sensor-servoing system works prop-
erly in the initial test scenarios, and can be used for further ex-
periments. It serves as a starting point for evaluation of different
control strategies and servo-controller constraints in industrial
applications [1].

5 ACKNOWLEDGEMENTS

The authors wish to thank the SFI Norman programme for fi-
nancial support and supplying equipment to the RAMP project,
in which this work was a part.

Also thanks to Terje Mugaas, SINTEF ICT, Department of Ap-
plied Cybernetics, for paving the way for the development of
the real-time interface to the robot controller.

6 REFERENCES

[1] Lind, M., Schrimpf, J., Ulleberg, T., 2010, Open Exter-
nal Real-time Servo-level Robot Control Framework, Pro-
ceeding 3rd Conference on Assembly Technologies and
systems (CATS 2010).

[2] Wetterwald, L.E., Dransfeld, S., Raabe, H., Ulleberg, T.,
2008, Flexible Robotic Sewing with Real Time Adaptive
Control, Proceeding 2nd Conference on Assembly Tech-
nologies and systems (CATS 2008).

[3] Mitsi, S., Bouzakis, K.D., Mansour, G., Sagris, D., Maliaris,
G., 2005, Off-line programming of an industrial robot
for manufacturing, The International Journal of Advanced
Manufacturing Technology, 26/3:262–267.

[4] Fossen, T.I., 2002, Marine Control Systems - Guidance,
Navigation and Control of Ships, Rigs, and Underwater
Vehicles, Marine Cybernetics, Trondheim.

[5] Børhaug, E., 2008, Nonlinear Control and Synchroniza-
tion of Mechanical Systems, Ph.D. thesis, Norwegian Uni-
versity of Science and Technology, Department of Engi-
neering Cybernetics.

[6] Marques, L., Nunes, U., de Almeida, A., 1998, A new 3D
optical triangulation sensor for robotics, Advanced Motion
Control, 1998. AMC ’98-Coimbra., 1998 5th International
Workshop on, 512–517.

[7] Caccia, M., 2006, Laser-Triangulation Optical-Correlation
Sensor for ROV Slow Motion Estimation, Oceanic Engi-
neering, IEEE Journal of, 31/3:711 –727.

[8] Hosoda, K., Igarashi, K., Asada, M., 1998, Adaptive hybrid
control for visual and force servoing in an unknown envi-
ronment, Robotics & Automation Magazine, IEEE, 5/4:39
– 43.

[9] Zhang, H., Chen, H., Xi, N., 2006, Automated robot pro-
gramming based on sensor fusion, Industrial Robot: An
International Journal, 33/6:451 – 459.

[10] OpenCV, http://opencv.willowgarage.com/wiki/.

Real-Time Sensor Servoing using Line-of-Sight . . . 135

136

Development of a Low-Cost Prototype AGV 137

4.6 Development of a Low-Cost Prototype AGV

Olivier Roulet-Dubonnet, Morten Lind, and Terje Kristoffer Lien. Develop-
ment of a Low-Cost Prototype AGV. In Terje Kristoffer Lien, editor, CIRP
Conference on Assembly Technologies and Systems, pages 25–29, NO-7005,
Trondheim, Norway, June 2010. Tapir Academic Press. ISBN 978-82-519-
2616-4

Declaration of co-authorship

The principles and rough design of the original prototype AGV was conceived by Morten
Lind. The prototype AGV was built and equipped with power and logic electronics by
Stefano Pedemonte; an exchange student from Politecnico di Milano. The proof-of-
concept systems for motion control and low-level network communication was developed
and implemented by Morten Lind. The AGV localization principle based on ceiling-
mounted cameras and AGV-mounted LEDs was conceived and analysed by Morten Lind.
A simple vision-based localization system based on these principles was implemented
and integrated with the motion control system in close cooperation between Stefano
Pedemonte and Morten Lind.

Cooperatively Olivier Roulet-Dubonnet and Morten Lind worked on analysing the funda-
mentals of an AGV system for coordinated and cooperative control of a group of AGVs,
and further on the analysis of available communication middleware. Based on the cooper-
atively developed conceptual analysis and design, Olivier Roulet-Dubonnet implemented
the agent-level middleware, later dubbed IceHMS, in its entirety. During development of
the agent-middleware, Morten Lind continuously made minor design-level contributions
and occasional case-based code corrections.

The writing, preparation, and submission of the paper is solely credited to Olivier Roulet-
Dubonnet. Morten Lind contributed continuously in the writing process with minor
reviews and produced the graphics in Figure 2; based on layout from Olivier Roulet-
Dubonnet. Terje Lien contributed with reviewing the final version of the paper.

138 O. Roulet-Dubonnet, M. Lind, and T. Lien (2010)

Development of a Low-Cost Prototype AGV

Olivier Roulet-Dubonnet1, Morten Lind1, Terje K. Lien1

1Department of Production and Quality Engineering, The Norwegian University of Science and Technology, Norway

Abstract
This article presents a low cost AGV System, developed and built at a laboratory at NTNU / SINTEF. The system
is intended as an automated transport solution to and from prototype assembly cells. This article also presents
a discussion of selected hardware and software components available for the development of low-cost flexible
automated transport solutions. The AGVs have been built from available off-the-shelf hardware components
and are controlled by open-source software. The localization system is based on odometry and ceiling-mounted
cameras, which are communicating with the AGVs in a distributed holonic framework.

Keywords:
Manufacturing, Robotics, Assembly Technology, Automation, Holonic Manufacturing Systems, AGV

1 INTRODUCTION

Manufacturing automation in enterprises with large total pro-
duction volume, small series and frequent changes in the prod-
uct spectra, is challenging. The manufacturing system needs
to handle high part variety, frequent changes and maintain ef-
ficiency. The new generation of free-ranging, small and fast
Automated Guided Vehicles (AGVs) is a promising tool in this
regard. AGVs can help reduce buffers and batch sizes by spa-
tially decoupling the temporary storages from the manufactur-
ing line. Compared to manual transport, AGVs can reduce the
transport cost per unit and increase the transport reliability thus
making it practical to increase the total transport and as a con-
sequence improve the internal manufacturing logistic. Com-
pared to other automated transport solutions, like pallet con-
veyors, AGVs offer unequalled flexibility. However, there are
few free-ranging AGV systems commercially available and, to
our indication, their current price level makes the return on in-
vestment too long for small to medium sized enterprises, which
have often limited resources. To experiment with free-roaming
AGVs as resources in automated manufacturing control, we
have built an AGV System composed of off-the-shelf compo-
nents and open-source software. The AGV System has been
developed and built at a laboratory at NTNU / SINTEF. The sys-
tem is intended as an automated transport solution to and from
prototype assembly cells.

Different approaches are possible when developing a large
mechatronic system. A particular point of dissension is the
relative value of purchase cost against design, assembly, and
maintenance cost. In manufacturing it is generally the rule to
emphasize proven, reliable solutions. However this creates a
less dynamic environment and industrial solutions tend to be
more affected by the vendor lock-in issue than the consumer
marked. The vendor lock-in issue is well described by P. Valck-
enaers et al.[1, sec3.2,p4] and can be summarized as followed:
Vendor lock-in is the process of being locked to a specific prod-
uct due to the reliance of our processes and equipments to the
product specificity(in opposition to quality). Lock-in is a con-
sequence of earlier choice and the problem is increased by
the use of proprietary standards. Examples of vendor lock-in
can be found everywhere, from CNC controllers to sensor sys-
tems and operating systems on main stream computers. When
developing a system for research in flexible manufacturing we
consider it important to value proven solutions, but avoid obvi-
ous vendor lock-in.

In addition to describing the current AGV System this article
also presents a discussion of selected hardware and software
components currently available for the development of a low-
cost flexible automated transport solution.

2 HARDWARE

A prototype AGV System with three AGVs has been imple-
mented at our laboratory facility. In this section we present the
hardware used and the thoughts behind the chosen solution.

2.1 Geometry

The AGVs have been designed to carry pallets the size of a
quarter of a euro pallet: 600mm x 400mm. This size offers the
advantage of being roughly as large as a person, thus the robot
can enter corridors and doors; It is also large enough to carry
standard pallets from our partners pallets conveyors.

The mechanical frames of the first two AGVs are inherited from
demounted appliances. This is not a long term solution and a
frame made from bolted aluminium profiles is being designed
for the third version.

The AGV use a differential drive propulsion system: Two inde-
pendent wheels can rotate independently to move the robot.
The advantages of differential drive, compared to ackerman
steering, are the simplicity and the ability to turn on place. The
propulsive wheels are situated at the back of the AGV and two
casters are mounted at the front. The first AGV prototype can
be seen in Fig.1. The use of casters is not problems free, they
are unstable at higher speed and they make the orientation
regulation at low speed difficult when they are not oriented in
the currently chosen direction. However they are low-cost and
readily available in many size and quality.

The batteries are sealed lead batteries on the first AGV and
lithium ion batteries on the next models. The batteries are cur-
rently changed and recharged by hand.

2.2 Motors And Wheels

A central element of the robot design is the wheel-motor as-
sembly. To simplify the design, thus assembly and main-
tenance, we looked for integrated wheel motor components.
Wheel motors, also called hub motors are motor integrated into
a hub. Many wheel motor products are available, unfortunately

Pre-print for 3rd CIRP Conference on Assembly Technologies and Systems, 2010

Development of a Low-Cost Prototype AGV 139

Figure 1: The first prototype AGV

they are designed for wheel chairs, scooters or bicycles and, as
a consequence, do not have encoders. Encoders are neces-
sary for precise velocity and position regulation, they are also
used to compute odometry data. Adding encoders to a wheel
motor system is often cumbersome as it does not have any ro-
tational axes available. Using integrated encoders would also
further decreases the number of parts. A possible solution is
to use brushless hub motors and use the hall effect sensor for
speed and position regulation.

The implemented solution is currently different on all three pro-
totypes:

• The original AGV uses wheel-motors and custom rotating
optical encoders which has been fitted inside the hubs by
hand. The solution has been reliable the last three years
but requires a lot of work for each new AGV to build.

• The second AGV uses the same wheel-motor and an ex-
ternal optical sensor which is a prototype developed by
philips. The sensor is based on the technology used for
optical computer mouse but with an increases precision
from ten to three percent and a larger focus zone. The
sensor is mounted on the frame of the AGV and uses the
cover on the wheel as reflective surface. The sensor com-
municates with a micro-controller using SPI and is used,
as rotating encoder for speed and position regulation ; the
difference being that the result cannot be more than 3 per-
cents accurate. This is though to be acceptable in our
application.

• The third system uses a standard gear-encoder-motor as-
sembly from a major electric motor manufacturer. This
solves the encoder problem but brings in several additional
parts.

2.3 Electronic

The first two prototypes are based on a standard design with
a power board and wheels encoders connected to a micro-
controller for real-time control. The micro-controller itself is con-
nected to the main board through usb. The solution is flexible,
allows for fancy solutions like optical extern encoders but re-
quires much manual work to setup. The third AGV, that is not
assembled yet, uses an industrial grade motor controller with
input for encoders and integrated speed regulation. The mo-
tor controller is connected to the main board using serial. The
solution is more expensive to buy and restricted to standard ro-
tating optical encoders, but saves man hours to setup and rely
on industrial components designed to be reliable.

Another approach, which has been considered but not applied
yet, is to use a microcontroller or IO board to control the power
board but to do the motor regulation in the main board. This

is especially interesting when the real-time constraints can be
achieved without a specialized real-time operating system. In
our experience, common motor regulation frequency used in
robotics, up to 100Hz, are easy to achieve with general bare-
bones Linux systems with and without low latency scheduling.
The main advantage of this solution is to keep flexibility but
move microcontroller code in the, more development friendly,
main board.

3 SOFTWARE

Software is a very complex and critical part of an AGV Solu-
tion and generally of autonomous robots. A possible solution
to reduce development cost is to use code from open-source
robotics projects available. With open-source we mean free-
software[2], thus with a licence compatible with research and
commercial use.

It is possible to classify the software needed for an AGV in two
interconnected categories: The AGV controller and the AGV
System. The AGV System is in charge of the high level AGVs
managements. It handles the communication with the ERP and
MES systems and all inter-AGVs issues like scheduling, and
traffic regulation. The term AGV controller is loosely defined
but, in our scope, we define it as being the software in charge
of the local management of an AGV including motor regulation,
sensors, localization and local navigation.

3.1 AGV System

The AGV System application is often partly customized or even
implemented in-house to fit the shop floor requirements and
other existing production systems. In this project we have cho-
sen to develop a system based on the Holonic Manufacturing
System concept (HMS). The HMS concept is well defined in P.
Valckenaers et al[1].

HMS is related to Multi-Agent Systems, but they have some key
differences since HMS is designed with manufacturing in mind.
Holons, per definition, represent and contain physical devices
while agents are normally software components. A holon can
be composed of other holons to represent assembly cells and
devices composed of other devices. In addition Multi-Agent
Systems often implement heterarchic structures with emerging
behaviour while HMS explicitly support hierarchic and hybrid
structure.

To implement the system we reviewed available holonic and
multi-agent tools. However the mainstream Multi-Agent sys-
tems [3, 4] are all java based platforms. A distributed manufac-
turing control system is an collection of heterogeneous hard-
ware and software components; implementing a wide range of
control entities. To integrate those components we need a com-
mon communication framework, but we consider a common
software platform as a severe limitation when it dictates the
programming language and impose constraints on the hard-
ware devices.

As a consequence we implemented the AGV system using a
custom framework based on The Internet Communication En-
gine (IceTM) [5] and is inspired by the work of Vallejo et.al[6].
Ice is a modern object-oriented communication middleware
with support for many programming languages. Ice offers many
features like persistence, replication, location service, load-
balancing and publish/subscribe.

The current holonic framework is composed of two parts:

1. The Ice setup which define the network protocols and the
Ice registry server to handle a Multi-Agent System.

2. Helper classes written in python to interact with Ice.

140 O. Roulet-Dubonnet, M. Lind, and T. Lien (2010)

AGV holonAGV-group holon

Order holon

<order 1>

AGV-central holon

<agv-central 1>

Scheduler holon

AGV holon

<agv 1>

Order holon

<order 2>

AGV holon

<agv 4>

Order holon

<order 3>

Order holon

<order 4>

AGV-central holon

<agv-central 2>

Path-planning holon
AGV holon

<agv 2>

AGV holon

<agv 5>

Traffic holonMapping holon

AGV holon

<agv 3>

Figure 2: An overview of the AGV System, showing selected components

This makes it very easy to implement holons using Python.
The clients written in other programming languages, so far C++
and java, need to use directly the Ice interface and follow the
Multi-Agent System conventions. This has not been a limitation
yet, but when need arises we will develop appropriate helper
classes in other languages.

The AGV System has been developed based on the published
literature on holonic manufacturing and material handling sys-
tem. The system is currently a classic implementation of the
PROSA architecture and is in several respects inspired by the
work done by Srivastava et al.[7] and Barbiceanu[8]. Figure 2
shows the main holons of the system.

Following the PROSA architecture the order holons are the
driving force of the holonic system. The order holons moni-
tor the AGV System through the AGV-central holons and at-
tempt to (re-)assign itself to the AGV with the most advanta-
geous schedule, cf. figure2.

3.2 AGV Controller

There exist many open-source projects for mobile robots imple-
menting some forms of AGV controller. The majority of those
projects have been created with research or personal interest
as motivation, something which clearly influenced their design
and the range of implemented features.

The Player Stage project[9], seems to be the most used open-
source software for mobile robots. It offers drivers for many
research robots and devices and a set of servers that imple-
ment features like local navigation and map-based 2D local-
ization. The project also developed a 2D and a 3D simulation
programs which can be used through player. The Player client
library is available in several languages, however, the servers,
components that expose functionalities to other Player servers
and clients, must currently be written in C++. CARMEN[10] is
another project which describes itself as a modular robot con-
trol software. It is written in C and seems less active than the
others.

In our context, the most interesting open-source project is The
Robot Operating System (ROS)[11]. ROS targets more compli-
cated, android likes, autonomous mobile robots with mechan-
ical arms. It is, therefore, a more complete solution designed

for robots with several computing units; Compared to the other
available framework, some key features we appreciate are:
Support for several communication modes(publish/subscribe
and remote call), multi-language and a large set of tools to
ease development. Special care has been taken from the de-
veloper to separate general robotic code from the ROS specific
framework. The idea is to encourage the development of ROS
agnostic libraries that can be used in other robotic frameworks.
ROS is a research project but the developers are aiming to de-
velop a production robot, and it is therefore a very good fit for
manufacturing research. ROS is also the project that seems to
be developed at highest rate.

In the current prototype controller we use the framework devel-
oped for the higher level distributed AGV System and assembly
cell controller. The main advantage of the solution is the possi-
bility to directly expose internal objects to the rest of the man-
ufacturing system. Since the chosen framework is also a thin
communication layer and is influenced by earlier experience
with ROS it is relatively easy to port code from one platform to
another.

4 LOCALIZATION ISSUE

Localization is a major challenge for free-roaming AGV Sys-
tems, it is therefore discussed in a separate section in this
article. Many solutions available on the market are based on
fixed markers on the floor or walls which are read by laser or
magnetic sensors. Those solutions require opening the floor or
fixing markers on the walls every few meters and are, conse-
quently, of limited flexibility. In this article we review two solu-
tions: Map based localization using laser range finders and a
simpler system using ceiling mounted cameras.

4.1 Map Based Localization

Map based localization[12] is a promising solution that has the
potential to solve the localization problem in a very flexible way.
However, generating an internal representation of the spatial
layout of the local environment to position itself is a very com-
plex task which is an active research area.

There exists solution for 2D map localization[12], but 2D map
localization gets easily confused by thin objects like chairs and

Development of a Low-Cost Prototype AGV 141

loop

:TopicServer:OdometryController :LEDLocalizer :LEDVisionServer :GeographyServer

newOdometryData()

newOdometryData()

getRelevantVisionServers()

getIntrinsicParameters()

getExtrinsicParameters()

getLEDsImagePos()

newLocalizedPose()

newLocalizedPose()

Figure 3: A localizer holon using vision holons and odometry data for localization.

does not take into account objects under or over the vision
level. Localization based on 3D data is still a research area
but we are approaching a solution.

Commercial complete solutions have started to appear on the
market. An available AGV System from RMT Robotics is
ADAM[13]. However price is still an issue for those systems.
Even the sensors are still relatively expensive although their
prices are getting rapidly lower, and sensors for map based lo-
calization are appearing on automatic mobile vacuum cleaner
for home use[14].

We are experimenting with the navigation stack from ROS and
have laser range finders installed on two AGVs, but the AGVs
in the lab currently use a localization solution based on cam-
eras mounted on the ceiling. The camera based system is es-
pecially interesting for precise local positioning in a loading or
offloading station and within an assembly cell.

4.2 Localization Using Ceiling Mounted Camera

A potential low cost localization solution is to use roof mounted
cameras which localize LEDs mounted on the AGVs. There ex-
ist many variations of camera localization systems using either
cameras on the mobile robot looking for patterns on the ceiling
or ceiling mounted cameras recognizing patterns on the AGV;
they are regularly used in robotic competition.

The proposed system uses no pattern but four undifferentiated
LEDs on each side of the AGVs and cameras attached on the
ceiling. Each camera surveys a zone on the floor and stream a
list of localized LEDs to the AGVs requesting the information.
Using known camera characteristics, the AGVs uses the LEDs
positions on the image to compute the world coordinates of the
LEDs. Having prior knowledge of its own position, orientation
and movement, the AGV can then deduce which LEDs are its
own, cf. Fig.3.

The process of transforming LED camera image coordinates to
LED world coordinates is called homography and has a unique

solution when the Z coordinates of the LEDs in the world coor-
dinate system is known. The computation can be done either
by the cameras or the AGVs themselves. The process requires
the cameras to be calibrated, thus to know the characteristic,
position and orientation of the cameras.

The camera calibration process is manual, thus it is an issue
and require further research. A potential solution is to use
overlapping zones and the AGVs to automatically calibrate the
cameras: If the cameras keep track of their calibration state, an
AGV receiving different position information from two cameras
can send correction information to the camera with the lowest
calibration state. In theory this solution would only require to
calibrate one camera at installation, but it is subject to quality
degradation with the distance from the last calibrated camera.
Although it is to be noted that, in our application, global posi-
tioning precision is of lesser importance that local positioning
precision: If the local docking is within tolerance, it does not
matter if the AGV system has the global position of the docking
area wrong.

Another solution would be to implement automated calibration
with markers on the floor but this solution suffers from the same
problems as floor or walls magnetic markers.

5 DISCUSSION AND CONCLUSION

This article has outlined a low cost AGV System, developed
and built at a laboratory at NTNU / SINTEF and intended as
an automated transport solution to and from prototype assem-
bly cells. It has also presented a discussion of the selected
hardware and software, and their alternatives.

Many aspects of the system have not been considered yet, like
battery replacement and maintenance. The safety standard for
industrial AGVs defined in BS EN 1525[15] has also not been
implemented; Consequently, the proposed system is currently
targeted at unmanned areas. However, the AGVs are an inter-
esting platform for manufacturing executing system prototyping
and to experiment with new mechatronic solutions.

142 O. Roulet-Dubonnet, M. Lind, and T. Lien (2010)

6 REFERENCES

[1] Valckenaers, P., Brussel, H.V., 2005, Fundamental In-
sights into Holonic Systems Design, HoloMAS, Springer,
volume 3593, 11–22. 1, 3.1

[2] 2010, The Free Software Foundation, http://www.fsf.org. 3
[3] Bellifemine, F., Poggi, A., Rimassa, R.G., 1999, JADE -

A FIPA-compliant agent framework, Proceedings of the
Practical Applications of Intelligent Agents, The Practical
Application Company Ltd. 3.1

[4] Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A., 1999,
Jack intelligent agents-components for intelligent agents
in Java, AgentLink News Letter, 2:2–5. 3.1

[5] Henning, M., 2004, A new approach to object-oriented
middleware, IEEE Internet Computing, 8, 1:66–75. 3.1

[6] Vallejo, D., Albusac, J., Mateos, J., Glez-Morcillo, C.,
Jimenez, L., 2009, A modern approach to multiagent de-
velopment, The Journal of Systems & Software. 3.1

[7] Srivastava, S., Choudhary, A., Kumar, S., Tiwari, M.,
2007, Development of an intelligent agent-based AGV
controller for a flexible manufacturing system, The Inter-
national Journal of Advanced Manufacturing Technology,
1–18. 3.1

[8] Babiceanu, R.F., 2005, Holonic-based control system for
automated material handling systems, Ph.D. thesis, In-
dustrial and Systems Engineering, Virginia Tech. 3.1

[9] Gerkey, B., Vaughan, R., Howard, A., 2003, The
player/stage project: Tools for multi-robot and distributed
sensor systems, Proceedings of the 11th international
conference on advanced robotics, Citeseer, 317–323. 3.2

[10] Montemerlo, M., Roy, N., Thrun, S., 2003, Perspec-
tives on standardization in mobile robot programming:
The Carnegie Mellon navigation (CARMEN) toolkit, Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Cite-
seer, 2436–2441. 3.2

[11] Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., Ng, A., 2009, ROS:
an open-source Robot Operating System, Open-Source
Software workshop of the International Conference on
Robotics and Automation (ICRA), IEEE. 3.2

[12] Meyer, J., Filliat, D., 2003, Map-based navigation in mo-
bile robots: II. A review of map-learning and path-planning
strategies, Cognitive Systems Research, 4, 4:283–317.
4.1

[13] Robotics, R., ADAM. The intelligent AGV.,
http://www.adam-i-agv.com/, accessed: 2010-03-02.
4.1

[14] Konolige, K., Augenbraun, J., Donaldson, N., Fiebig,
C., Shah, P., 2008, A Low-Cost Laser Distance Sen-
sor, Proceedings of the IEEE International Conference on
Robotics and Automation, Pasadena, California. 4.1

[15] 1998, BS EN 1525, Safety of industrial vehicles – Auto-
mated guided vehicles (AGV) and their systems. 5

Development of a Low-Cost Prototype AGV 143

144

Emulation of Manufacturing Devices for Simulation of . . . 145

4.7 Emulation of Manufacturing Devices for Simulation of
Distributed Real-Time Control

Morten Lind and Olivier Roulet-Dubonnet. Emulation of Manufacturing De-
vices for Simulation of Distributed Real-Time Control. In Terje Kristoffer Lien,
editor, CIRP Conference on Assembly Technologies and Systems, pages 67–
72, NO-7005, Trondheim, Norway, June 2010. Tapir Academic Press. ISBN
978-82-519-2616-4

Declaration of co-authorship

Investigating and experimenting with Blender and the Blender Game Engine, as well as
conceiving the idea of using it for real-time emulation of production devices with regard
to control, is entirely the work of Morten Lind. Morten Lind modelled, developed, imple-
mented, and experimented with the laboratory demonstration system from the IntelliFeed
project.

The underlying agent-middleware, which was based on ZeroC Ice, was conceptually anal-
ysed and designed cooperatively by Olivier Roulet-Dubonnet and Morten Lind. Olivier
Roulet-Dubonnet carried the conceptual design into an implementation, which was a
development that ran in parallel to the development and implementation of the real-time
emulation system. There was a strong interplay and collaboration between these two
parallel developments, and Olivier Roulet-Dubonnet and Morten Lind closely inspected
and commented on each others progress and problems.

Morten Lind was the sole writer of the paper and designer and producer of all the graphics.
Olivier Roulet-Dubonnet contributed with valuable, continuous review during the writing
process. Submission and preparation of the manuscript was undertaken by Morten Lind.

146 M. Lind and O. Roulet-Dubonnet (2010)

Emulation of Manufacturing Devices
for Simulation of Distributed Real-Time Control

Morten Lind1, Olivier Roulet-Dubonnet1

1Norwegian University of Science and Technology, Department of Production and Quality Engineering, Norway

Abstract
This paper describes a work in progress towards a framework for emulation of shop-floor devices, providing a ba-
sis for simulation of real-time manufacturing-control. Though the emulated reality is centralized, the surrounding
manufacturing control system entities are distributed over ordinary Ethernet. The implemented principles of the
device controllers, device interfaces, and control system agents is in accordance with the Holonic Manufacturing
System paradigm.
The work is based on open and free software tools and systems; thus the resulting implementation can be made
easily available. The main software tools used are Blender, ZeroC Ice, the Python programming language, and
the Debian GNU/Linux operating system.
The implementation and principle has been used to make realistic simulations of a holonic AGV system and for
shop-floor simulation of robotized upload to conveyor carriers for industrial paint-shop control.

Keywords:
Agent-based simulation; Shop-floor control; Holonic manufacturing systems; Distributed control system; Manu-
facturing system; Real-time control

1 INTRODUCTION

Recent paradigms for distributed shop-floor and factory con-
trol in manufacturing, notably the multi-agent and holonic
paradigms [1, 2], allow for increased autonomy in orchestrating
and controlling physical manufacturing entities. Control sys-
tems following these paradigms exhibit emerging behaviour,
whereas more traditional, centralized control-paradigms induce
systems with designed behaviour.

Background

To design, analyze, optimize, and verify manufacturing systems
following traditional control paradigms, Discrete Event-based
Simulation (DES) have a long history of application; for a com-
prehensive survey see e.g. [3]. DES efficiently utilize determin-
istic models of the simulated systems. Autonomous agents or
holons in a Distributed Control System (DCS) can not, gener-
ally, in their very essence, provide such prerequisites. Hence,
the emergent behaviour of agent-based or holonic control-
systems must be realistically simulated; i.e. by agent-based
simulation, using the actual agent code, and in real-time [2, 4].
For an original reference to Holonic Manufacturing Systems
and their motivation, confer [1].

Event-based simulations are useful in verifying, on a macro-
scopic level, that buffer capacities are adequate; that produc-
tivity, throughput, activity, efficiency, etc., are as expected; to
search for critical operations and transport routes; etc. The
event based simulation takes as a prerequisite that quite accu-
rate and deterministic models of all processes in the entire sys-
tem exists. This is at the crux of event based simulation, and al-
lows time to skip forward between any two consecutive events,
trusting the model that such two events are really consecutive.
In a real DCS, with possibility for autonomy in every entity, such
a deterministic and true model can not be constructed. Hence,
to simulate an agent-based control system, it is necessary to
deploy the real control entities in a real-time simulation system.

Supply Chain Level

Factory Level

Shop-Floor Level

Workcell/Line Level

Device Level

D
es

ig
n

S
im

ul
at

io
n

Pro
ce

ss
 S

im
ula

tio
n

Operatio
nal S

im
ulatio

n

Con
tro

l S
im

ul
at

io
n

Figure 1: Levels of manufacturing and associated regions of
simulation types.

Figure 1 illustrates a rough view on simulation categories asso-
ciated with abstraction levels in manufacturing. Design, oper-
ational, and process simulations are a rough categorization of
traditional simulation approaches.

Design simulations may not be timely or control related at all,
but might focus on access and geometric layout of the shop-
floor and factory levels. At the other end of the spectrum, pro-
cess simulation may not be relating to the shop-floor or factory,
or even device level, but could be a physics simulation of the
melting in a welding process. Operational simulation would typ-
ically be based on results from design and process simulations
and simulate, in a timely manner, how long-term operation of
the factory performs. Its results would be in terms of statistics
over variables like throughput, efficiency, equipment utilization,
down-time, productivity, etc.

What is proposed is control simulation that operates at a meso-
scopic level. It must capture the real-time control part of the

Pre-print for 3rd CIRP Conference on Assembly Technologies and Systems, 2010

Emulation of Manufacturing Devices for Simulation of . . . 147

Blender 3D

Modeller Game Engine

Python Interpreter

Distributed
Control
System

ZeroC
 Ice(TM

)

C
om

m
. U

tility Fram
ew

ork

Figure 2: A structural overview of the basic architecture used
for emulation/simulation.

device-related process simulation, and must extend upwards
into the levels covered by operational simulation. This will be
inefficient compared to DES, since it will be a real-time simula-
tion at the control agent and process level. However, it may be
the only way to accurately design, analyze, optimize, and verify
a manufacturing system based on agent or holonic control. To
address the inefficiency, depending on the depth of control de-
tail, it may be possible to have a coarse or adaptive time-step.

Motivation

Rather than using an existing, general agent simulation plat-
form, a custom-built platform was selected. This is motivated
from the desire to simulate the behaviour of the actual agent
system, which can then remain oblivious to whether it executes
in the emulated or real world.

A simulation modelling tool, like MAST [5, 4], could have been
used, if it was not tied to the Java programming language.
MAST was thus relegated in favour of freedom of implementa-
tion language among the distributed entities. This freedom can
be obtained by choosing a flexible communication middleware.

The framework and principles being developed for control simu-
lation is not to be compared to a “simulation development envi-
ronment” or “simulation studio”. In its current design, it is rather
to be considered a by-product of the process of developing a
holonic or agent-based manufacturing control system.

The emulation framework presented in this paper is based on
the Python programming language and the Blender animation
studio. At the foundation of the system is the Ice communica-
tion middleware. These tools are all free and open software,
as well as cross platform, and both Windows and GNU/Linux is
used in development and experiments.

Paper Outline

The remainder of this paper is in two parts. First, Section 2
gives an introduction to the tools used and the architecture
of the emulation framework. The second part, in Section 3,
presents illustrative aspects from the simulation of an auto-
mated material handling case.

2 DEVELOPMENT TOOLS AND ARCHITECTURE

A structural overview of the development system architecture,
underlying the implementing of an emulation and simulation
system, is shown in Figure 2.

It is important to note the distinction between the emulation sys-
tem and the simulating control system. The emulation system

is entirely within Blender; specifically modelled with the mod-
eller, driven by the Blender Game-Engine (BGE) and controlled
mainly from the embedded Python interpreter. The simulating
control system is the actually implemented DCS. It connects to
the emulator on the local area network, and is separated from
the emulator by a utility-framework implemented with the ZeroC
Ice communication middleware.

The individual components of this structure are briefly intro-
duced in the following sections.

2.1 Blender

Blender comes with a game engine, which is perfect for visu-
alizing the motions and handling the geometrically related in-
formation in real-time. The best resource for documentation at
all levels and parts of Blender is the Blender Wiki [6]. Follow-
ing is a short introduction to the modeller and the BGE, with
emphasis on the latter.

Modeller

The Blender modeller is a 3D modelling environment support-
ing mesh modelling. It does not support solid modelling, and
as such is not a mechanical modelling environment. However,
it is originally an animation studio, and the modelling features
are indeed sufficient for modelling and visualizing a setup in a
manufacturing environment.

An important aspect of simulation and modelling is the concept
of a closed mesh surface, with which all solids are modelled.
A closed mesh surface has, unless manually obscured, a clear
distinction of inside and outside, by use of the surface normals
on the individual faces. This enables a consistent use of closed
surfaces as solids in the simulation.

As a very important feature, greatly enhancing usability and
efficiency, the modeller supports library loading, such that ob-
jects or groups of objects from another Blender-model can be
loaded. When loading an object or group from an external
model, materials and properties from the pertinent objects are
loaded with it. Upon loading, it is selected whether to load a
copy or make a link to the external resource. The linking is
preferable due to model reuse, where, for instance a model file
for each type of robot can be created and maintained separate
from a emulation model-file. When the robot model is updated
in the model file, the instances of the linked robot is updated in
the simulation model. Thus a set of library files for all reusable
parts can be developed, maintained, and used across emula-
tion models.

The modeller itself supports an API for the embedded Python
interpreter, enabling Python scripts to control almost any part of
the modeller functionality and interaction with all the modelled
entities. The API to the modeller is alive even during BGE exe-
cution, enabling access to important information and resources
not exposed by the BGE Python API.

Game and Physics Engines

The strength of the BGE is that almost any physical-mechanical
process can be modelled and simulated realistically. For some
kinds of processes, like free body dynamics with collisions, this
can be very challenging. In some cases this can be severely
levered by activating the physics engine. The physics engine
can take care of such cases as friction, collisions, and general
body dynamics. The physics engine even support advanced
features as soft bodies, like textile or rubber, and particle sys-
tems, like smoke or steam. However, some deficiencies in the
current version limit its use.

148 M. Lind and O. Roulet-Dubonnet (2010)

An example of said deficiencies in the physics engine regards
the lack of support for static friction (or stiction). Thus a body
resting on top of an accelerating body, will always move, no
matter how slight the acceleration. Such situations need to be
dealt with explicitly, by strategies for freezing dynamic bodies
when they have been determined to have come to rest.

The BGE is set up in the modeller, by adding logic elements
and properties to geometric entities. To every geometric en-
tity any number of sensors, controllers, and actuators can be
added; these are referred to as logic bricks. Any sensor can
activate any controller and any controller can activate any ac-
tuator; this goes for the entire set of sensors, controllers, and
actuators among all geometric entities. The cardinality of the
links between sensors and controllers and between controllers
and actuators is completely free.

The sensors are the triggers of events to the controllers, and
when triggering they contain and supply valuable information to
the triggered controller code. The concrete sensor types avail-
able comprise a large set. The sensors may be roughly classi-
fied into the categories of geometry, mechanics, time, and user
interaction. The trigger semantics for any sensor can be set
among such types as pulse mode, tap mode, positive, nega-
tive, and some more advanced modes.

The controllers are more limited in type. Basically the controller
types are classified into Boolean operators on sensor input and
Python controllers. The Boolean controllers work by doing a
Boolean operation on the sensor triggers logic states, and on
positive result triggers the associated actuators. Boolean op-
erators and actuators are not used in the current experimental
system. Rather, the more general Python module-type con-
trollers are used, which call a Python function in a module, or a
method on a Python object.

The Python controllers, rather than trigger associated actua-
tors, operate directly on the Blender APIs of the modeller and
the BGE. For most cases, use of actuators are unnecessary.
It is, however, important to know that some special operations
can not be done on the APIs, and have to be performed by ac-
tuators. One such special operation is that of adding an object
to the game scene. For this, an AddObjectActuator must be
allocated at configuration-time in the modeller; it can, however,
be re-configured at execution time.

A facilitating property of the embedded Python interpreter in
Blender is that it is unrestricted. Thus, everything possible
with and accessible to an ordinary Python interpreter on the
OS platform is also accessible for the Python code in the em-
bedded interpreter. Important examples of technologies are
the NumPy numerical extensions to Python, the use of threads
and sockets, and connection to the communication middleware.
Availability of threads and sockets enables the code in the in-
terpreter to set up active agents or holons inside the embedded
interpreter.

2.2 ZeroC Ice

The emulated devices are exposed to the DCS over Ether-
net using the Internet Communication Engine (Ice) [7]. Ice is
an modern, object-oriented communication middleware, devel-
oped by ZeroC, Inc., providing a full set of features to support
development of distributed application.

The utility framework is used directly in the BGE. This would
not have been possible using an existing Multi-Agent System
platform. The scalability of the simulation is also facilitated by
the documented low overhead of Ice [8].

Ice is also multi-language, and thus the emulated devices can
be accessed using any of the programming languages sup-
ported by Ice. Compared to raw sockets, Ice offers high-
level managed facilities such as location services, the pub-
lish/subscribe pattern, and synchronous and asynchronous
method invocations.

The exposed interfaces of all registered objects, notably the
emulated and real devices, are defined in Slice interface lan-
guage. Slice is a purely declarative language to describe object
interfaces exposed through Ice. The devices have a complex
inheritance hierarchy which is defined in Slice files. The same
Slice files are used by the real and emulated devices. Thus,
exposing the same interface over the network , the emulated
devices are not structurally discernible from the real devices.

2.3 Application Architecture

The development system architecture was illustrated in Fig-
ure 2 and described in the preceding sections. This section
will give, in abstract terms, a short overview of some principles
for application-setup in the BGE.

Devices and Sensors

An emulated device in the BGE is a composition of blender
geometries making up for the material part, and properties, in-
ternal states, and rules for motion in the device controller in the
embedded Python interpreter. A device can have an interface
exposing it to the DCS. It can alternatively be purely emulator-
internal, in case of a device that is entirely uncontrolled or im-
plicitly controlled by other device controllers.

Emulated sensor devices may comprise the whole range of
physical sensors used throughout robotics and automation.
They may work by explicit relations among the geometries in
the model, or by implicit relations deducted from emulated de-
vice controllers working with the model.

Initialization

A special BGE sensor will always be set up to trigger initial-
ization of all emulated devices and sensors in the embedded
Python interpreter. This BGE sensor will trigger only in the first
time-frame of the execution session, and its associated BGE
controllers will simply invoke functions in all the active modules
for creating control devices necessary for the emulation.

The most flexible setup is achieved by having complex and
adaptive initialization code in all control modules, which, upon
inspection of the geometries and their properties in the emula-
tion scene, can construct the corresponding Python controllers.

Time-Step Update

Some controllers will be bound to synchronizing their control
update to the time steps in the BGE. For this, as a principle,
there will always be a BGE “Always”-sensor configured, which
will call a dedicated Python controller that can send a “timeUp-
date” event to all device-controllers in need.

An example is an emulated robot servo controller, which will
need, in each time frame of the emulation, to update the posi-
tion of the links of the robot. In contrast to this, a controller for
a binary finger-gripper, i.e. a gripper that has only two states of
the finger set, is never activated from inside the BGE, but only
upon a control message from the external DCS.

A sensor or controlled device may need sub-time-step updates.
Such can not be generated from the BGE sensors, but the free-
dom in the embedded Python interpreter allows for creation of
a thread that sends a message at any frequency that may be
desired.

Emulation of Manufacturing Devices for Simulation of . . . 149

Figure 3: A perspective overview of the case setup from the
Blender modeller.

Event Update

The event-based updates come from configured BGE sensors.
Of importance to modelling real sensors used in manufacturing
automation are the geometrically related BGE sensors for trig-
gering on collisions or proximity. Other BGE sensor types, re-
lating to time, mechanics, user interaction, and properties and
states of BGE objects, may also contribute to the implementa-
tion of CPU-efficient or simpler controllers.

Distributed Control System

The DCS, on the right in Figure 2, is the target for the simula-
tion. The BGE emulator is merely providing a consistent world
for the DCS to execute with.

The external control system may be executing in a single OS
process; especially so in simple cases. In fact, the only con-
straints on the implementation and deployment architecture of
the external control system, are that the timeliness demanded
by the application is adequate and that Ice communication is
supported.

3 SIMULATION CASE SYSTEM

The simulation case, which has been the general target for
developing the emulation framework, is a laboratory case in
the IntelliFeed project; a joint project at The Norwegian Univer-
sity of Science and Technology, Department of Production and
Quality Technology and at SINTEF Raufoss Manufacturing AS.
An overview of the laboratory setup, as modelled in Blender, is
seen in Figure 3.

The case setup in the laboratory and modelled in the frame-
work is a shop-floor section supplying workpieces to an indus-
trial painting system. The red rail-system in the upper part of
Figure 3 is a PnF-conveyor loop, on which painting system car-
riers, or rather, PnF-trolleys, are circulating. Filled carriers are
to be transferred to a chained trolley conveyor of the painting
system. This main conveyor of the painting system is not part
of the laboratory setup.

The PnF feature of the conveyor is a major facilitator, if not a
necessity, when automating the upload of parts for painting to
the painting system carriers. PnF-stops have been placed at
the upload robots and at various buffers around the PnF-track.
A PnF-stop is a mechanical entity, of which the blocking state,
with respect to the trolleys, can be pneumatically controlled.
Thus, a painting system carrier can be stopped and fixed dur-
ing upload, and the trolleys can be stacked at, and released
from, buffer points before upload and transfer, to ensure cor-
rect process timing.

The two orange NACHI SC15F manipulators in the background
are handling workpieces for painting. The workpieces are
picked from the supplying AGVs and hung onto the painting
system carriers. The painting system carriers, seen as brown
skeletal objects hanging down from the left end of the PnF-
conveyor, are all unique due to mechanical entanglement in
their handling, so a 3D stereo-vision system is used for iden-
tifying every hanging point. The 3D vision system used is de-
scribed by Ystgaard in [9].

The AGVs, of which two are seen in the scene, transport work-
pieces to order from the two picking cells seen in the foreground
and on the left. The picking cells are not yet set up in the lab-
oratory, but are under design. They are based on a lightweight
manipulator from Universal Robots.

This section illustrates, without going into too much detail,
some representative interaction sequences for different cate-
gories in the software system. UML sequence-diagrams are
used to illustrate examples of the interactions internal to the
emulation system; interactions between the DCS and the em-
ulation system; and, for completeness, interactions at the logic
level in the DCS.

3.1 Emulation-Internal

A lot of code is spent on maintaining the emulated reality at the
physical level. This functionality is not exposed over Ice, since
it will not be accessible to the DCS in the real application.

As a simple example the following scenario is considered: A
train of two PnF-trolleys are blocked by a PnF-stop and then
subsequently one of the trolleys are released from the PnF-
stop. Though the scenario is simple, a lot of communication
and activation takes place to realize it in a realistic manner.

The scenario is presented as the sequence of messages ex-
changed between the BGE, the PnF-stop, and the two PnF-
trolleys. The control of the trolleys is purely internal to the
emulation, since they simply follow the conveyor chain; unless
stopped against an active stop, or against another trolley. The
only externally controllable entity in the scenario is the PnF-
stop. The external activation of the PnF-stop agent may sug-
gest that the presented scenario is not exclusively emulation-
internal. However, the role played by the external activation is
minor, and the emphasis is on the communication internal to
the emulation.

Figure 4 shows the sequence diagram for the scenario. The
situation assumed at the beginning of the scenario is that two
PnF-trolleys are approaching the PnF-stop. The scenario be-
gins with an external activation for closing the PnF-stop. The
PnF-stop agent accomplishes this in the BGE by moving its
geometric stopping object into the path of the trolleys. As the
first trolley arrives at the stop, the stopping geometry triggers
the collision sensor of the trolley, signalling that it touched a
blocking stop. Later, the second trolley will collide with the first,
triggering a sensor message from the BGE to the second trol-
ley that it is colliding with another trolley.

The collision sensor messages from the BGE actually triggers
whenever there is a change in the collision state for the per-
tinent object. So, it is up to the PnF-trolley agent to infer if a
new collision occurred, or if an existing contact disappeared.
The first case will lead to the trolley stopping and the latter may
lead to the trolley resuming motion again.

As the PnF-stop agent now receives an external request to re-
lease one single trolley, it will retract the stopping-geometry,
which is blocking the way for the first trolley. As it is supposed
to release only one trolley, it will start listening for changes in its

150 M. Lind and O. Roulet-Dubonnet (2010)

Figure 4: The mechanism for stopping a train of independent
PnF-trolleys by a PnF-stop, and then release one of the trolleys.

associated proximity sensor, to determine when the first trolley
has left the blocking region.

Meanwhile, the stop collision sensor for the first trolley trig-
gers, signalling that there are no longer contact with the stop-
geometry, and the trolley will start moving again. A short while
later, the second trolley will have its trolley collision sensor trig-
ger, since it is no longer in contact with the first trolley. Thus
both trolleys are now moving again.

When the first trolley has moved entirely past the proximity sen-
sor of the PnF-stop, the sensor triggers the PnF-stop agent.
The PnF-stop agent acts upon this by once again inserting its
stop-geometry into the track of the trolleys. Hence, as the sec-
ond trolley reaches the stop, it will be blocked again.

This scenario is applicable at every buffer point on the PnF-
conveyor where there is a PnF-stop. Inside the emulator as
well as in reality. It can be extended almost trivially backward
and forward in time. The number of trolleys will, of course be
different, and in some cases it is up to the external control logic
to ensure that there is never more than one trolley at a PnF-
stop.

3.2 DCS-Emulator Interaction

As an illustration of the interaction between the DCS and the
emulated devices, an example of an iteration of the cyclic se-
quence of one of the picking cells is presented. The picking
cells are the two cells shown in the lower and left part of Fig-
ure 3.

Either picking cell is composed of the small, lightweight 6-DOF
manipulator from Universal Robots, a box of accessible work-
pieces to pick from, a workpiece vision system to locate pick-
able workpieces from the box, and a docking area for AGVs.

In the sequence diagram in Figure 5 the picking cell agent is
seen to the left. It is deployed in the DCS and connects to,
and controls, all the shown emulated devices. The only other
resource used from the DCS is the carrier layout agent, holding
information about where the picked parts should be placed.

Figure 6: The sequence for initiating a transport of parts from
a picking cell.

The picking cell agent gets the poses for the visible workpiece
from the workpiece vision system. A workpiece is selected, the
selection strategy not shown, and the motion controller for the
robot is commanded to the grasp pose. Naturally, the motion
controller interacts heavily with the BGE for performing the mo-
tion with the robot arm, but for clarity in the sequence diagram,
this has been left out. Meanwhile, from the carrier layout the
next pose for putting the workpiece in the transport carrier is
retrieved. As the motion controller reports the completion of
the motion, the tool controller is commanded to grasp. In case
of a finger gripper, this results in moving the geometries for the
fingers of the gripper in the BGE. Inspection of messages from
BGE collision sensors, associated with the finger geometries,
serves to assert correct grasp of the workpiece. The motion
controller is then commanded to go to the placing pose, and
then the tool controller is commanded to release the grasp.

It is interesting to consider the “graspOK” message sent back
to the picking cell agent from the tool controller. In an ordi-
nary setup for picking, there are no sensory system associated
with the fingers on the gripper. In such a case, the message
can only carry information that the gripper did the motion of
the fingers. This does not mean that the workpiece was ac-
tually grasped. However, if some sensory system measures
that there is contact with something between the fingers, or a
vision system can observe the fingers, the message can actu-
ally carry information that some object is grasped. Either way,
the emulated “finger sensors” will be present, if only to serve
the internal bookkeeping of the BGE, about which workpiece
or object to actually move with the gripper. Whether or not
the information of the emulated sensors can be exposed to the
simulation system, depends upon whether the modelled, real
system has such sensors.

3.3 DCS-Internal

For completeness, but unrelated to the BGE emulation, the
sequence in Figure 6 illustrates the initiating role of a holonic
transport order. The purpose of the transport order is to supply
workpieces from the picking cells to the upload robots at the
conveyor system. The sequence takes place among agents
exclusively deployed in the DCS.

The transport order requests an AGV for the transport task from
the AGV central, which in turn creates an AGV order associated
with a physical AGV. The transport order then sets up the pick-
ing cell with a suitable carrier layout for the set of workpieces
to deliver. When the AGV order reports arrival of the AGV at
the specified docking pose at the picking cell, the picking cell
can start the cycle over the operation that was illustrated in Fig-
ure 5.

Emulation of Manufacturing Devices for Simulation of . . . 151

Figure 5: A pick sequence involving a fair amount of interactions.

4 CONCLUSION AND FUTURE WORK

We have described a work in progress towards a framework for
real-time emulation of shop-floor devices. Some preliminary
simulation activity has begun, using a DCS in connection with
the emulation.

The AGV-system described in [10] has been fully emulated with
the preliminary framework described in this paper, and has
helped in developing the holonic level control system for the
AGV-system.

The emulation for the laboratory application, used as case in
Section 3, has been modelled almost completely. Some de-
sign decisions regarding workpiece handling still remain. The
development of the holonic control system for the laboratory
case can proceed when these final decisions have been made.

When the described simulation case is completed, work will
proceed in extending and refining the simulated system. It will
be incrementally expanded to model and emulate more of the
factory surrounding the painting system. Depending on opti-
mizations and techniques, it shall be interesting to see to what
extent the simulation principle will be useful.

Several other manufacturing prototype systems at our depart-
ment also have distributed real-time control aspects relevant for
emulation and simulation similar to the painting system.

For scalability reasons, it will be interesting to attempt to dis-
tribute the emulation model among several nodes, each run-
ning a Blender Game Engine. One challenge with this is how
to maintain a consistent emulation of the manufacturing system
in real-time across the game engines.

5 ACKNOWLEDGEMENTS

Thanks to our supervisor, professor Terje Lien, Norwegian Uni-
versity of Science and Technology, Department of Production
and Quality Engineering, for supporting this work.

Thanks to Per Aage Nyen, SINTEF Raufoss Manufacturing,
and Johannes Schrimpf, Norwegian University of Science and
Technology, Department of Engineering Cybernetics, for impor-
tant comments and discussions.

Thanks to professor Amund Skavhaug, Norwegian University
of Science and Technology, Department of Engineering Cy-
bernetics, for interesting discussions regarding distributed and
real-time control.

This work has been financed through the IntelliFeed project,
funded by The Research Council of Norway.

6 REFERENCES

[1] Van Brussel, H., Wyns, J., Valckenaers, P., Bongaerts,
L., Peeters, P., 1998, Reference architecture for holonic
manufacturing systems: PROSA, Computers in Industry,
37/3:255–274.

[2] Vrba, P., Marı́k, V., 2005, From Holonic Control to Vir-
tual Enterprises: The Multi-Agent Approach, Zurawski, R.
(editor), The Industrial Information Technology Handbook,
CRC Press.

[3] Smith, J.S., 2003, Survey on the Use of Simulation for
Manufacturing System Design and Operation, Journal of
Manufacturing Systems, 22/2:157–171.

[4] Vrba, P., Marı́k, V., 2005, Simulation in Agent-based Man-
ufacturing Control Systems, Proceedings of the IEEE In-
ternational Conference on Systems, Man and Cybernet-
ics, IEEE, volume 2, 1718–1723.

[5] Marı́k, V., Vrba, P., Fletcher, M., 2005, Agent-Based Sim-
ulation: MAST Case Study, Emerging Solutions for Future
Manufacturing Systems, 159:61–72.

[6] Blender Wiki, http://wiki.blender.org/.
[7] Henning, M., 2004, A New Approach To Object-Oriented

Middleware, IEEE Internet Computing, 8/1:66–75.
[8] Henning, M., 2009, Choosing Middleware: Why Perfor-

mance and Scalability do (and do not) Matter, Online.
[9] Ystgaard, P., 2010, Accuracy in binocular robot-vision sys-

tem, Proceedings of the 3rd CIRP Conference on Assem-
bly Technologies and Systems.

[10] Roulet-Dubonnet, O., Lind, M., Lien, T.K., 2010, Develop-
ment of a Low-Cost Prototype AGV, Lien, T.K. (editor),
Proceedings of the 3rd CIRP Conference on Assembly
Technologies and Systems, Tapir Academic Press, NO-
7005, Trondheim, Norway, 25–29.

152 M. Lind and O. Roulet-Dubonnet (2010)

Holonic shop-floor application for handling, feeding and . . . 153

4.8 Holonic shop-floor application for handling, feeding and
transportation of workpieces

Morten Lind and Olivier Roulet-Dubonnet. Holonic shop-floor application for
handling, feeding, and transportation of workpieces. International Journal of
Production Research, 49:1441–1454, 2011. ISSN 0020-7543. doi: 10.1080/
00207543.2010.519115

Declaration of co-authorship

This paper is an invited journal paper based on two papers from the HoloMAS2009
conference proceedings. Sections 1 and 2 are integrated introductory sections from the
two original papers and may be considered as a shared contribution from Olivier Roulet-
Dubonnet and Morten Lind. Section 3 may be considered as a pure contribution from
Morten Lind, and Section 4 as a pure contribution from Olivier Roulet-Dubonnet.

While Morten Lind was the responsible author and handled the integration of the texts,
the writing credits largely follow the contribution credits as stated above. The submission
and review process with the journal and editors was handled by Morten Lind. Morten Lind
created the graphics in Figures 1 through 4, and the diagram in Figure 5 was produced
by Morten Lind, based on layout from Olivier Roulet-Dubonnet.

154 M. Lind and O. Roulet-Dubonnet (2011)

International Journal of Production Research
Vol. 49, No. 5, 1 March 2011

RESEARCH ARTICLE

Holonic Shop-Floor Application for Handling, Feeding, and
Transportation of Workpieces

Morten Linda∗ and Olivier Roulet-Dubonneta

aDepartment of Production and Quality Engineering
NTNU Valgrinda 7491,Trondheim, Norway

(Received 00 Month 200x; final version received 00 Month 200x)

In pursuit of flexible and agile automation within the domain of discrete
manufacturing, a paint-shop with its surrounding logistics and handling pro-
cesses is under construction as a laboratory prototype application.

Holonic Manufacturing is argued to be a promising strategic paradigm and
architecture to use for a system characterized by flexible production logistics
and control. This paper describes the physical devices to be used; the desired
functionality; and the basic logic control design. Additionally, the ideas for
holonification, based on the already designed logic control, are presented.

The paper also outlines a holonic Automated Guided Vehicle (AGV) system
developed for the automated paint-shop. The AGV system is composed of
autonomous AGV holons that cooperate, individually or in groups, with other
holons, such as robot holons and vision-system holons.

Keywords: Holonic Manufacturing Systems; AGV system; Part handling; Robot systems;
Shop-floor control

∗Corresponding author. Email: morten.lind@ntnu.no

ISSN: 1478-6451 print/ISSN 1478-646X online
c© 2011 Taylor & Francis
DOI: 10.1080/00207543.2010.519115
http://www.informaworld.com

Holonic shop-floor application for handling, feeding and . . . 155

2 M. Lind and O. Roulet-Dubonnet

1. Introduction

A niche for small and medium enterprises is to supply individually tailored products
or services. If the production is done on a large scale, this is called mass customization
(Zipkin 1997, Davis 1987) and requires highly flexible automated production systems.
To deal with the complexity arising from the desired flexibility, a natural strategy is the
distribution of the control system. This way, functionalities gets separated and isolated
to their natural sites. Distributed decision-making and cooperation of autonomous sec-
tions in manufacturing have been around as long as complex manufacturing. “Complex
manufacturing” in the present context can be described as “dealing with multiple complex
products and extensive sharing of manufacturing equipment across different simultaneous
product variants”, i.e. involving frequent changeovers and reconfigurations on the shop
floor. In the recent decades there has been focus on the flexible automation under such
circumstances. The enabling technologies for this may be traced back to the birth of
numerical control and computational intelligence in the 1950s.

Holonic Manufacturing is a paradigm for pervasive distributed manufacturing automa-
tion, ranging from the lowest level of real time shop-floor control and all the way up to
company or even corporate level. It covers most aspects of manufacturing, be it machine
to machine cooperation or order to production department interaction. The concept of
a Holonic Manufacturing System (HMS) date back to the early 1990s when the Intel-
ligent Manufacturing Systems (IMS) initiative set out a project with that name. The
term Holon was coined by Koestler (1967), some 40 years ago, for capturing the dualistic
properties of autonomy and cooperativeness within a single entity. Van Brussel (1994)
discusses various approaches to autonomous, distributed control and argues that HMS
is suitable for manufacturing control and management.

There exist some general architectures for Holonic Manufacturing Systems, such as
PROSA (Van Brussel et al. 1998) and ADACOR (Leitão 2004). PROSA is strictly a
reference architecture and introduces the central concepts of basic holons: order, product,
resource, and staff holons. High-level scenarios illustrate the interactions of the different
holon types. ADACOR is also an architecture, but with a different naming of the holon
types. Notably the ADACOR supervisor holon differs from the PROSA staff holon, in
that it formally coordinates the dynamics of holon aggregation and subordination. Leitão
and Restivo applies the ADACOR architecture to a (partially simulated) machining and
assembly workshop in several papers; see e.g. Leitão and Restivo (2005, 2008).

In an early paper on holonic AGV control, Liu et al. (2000) proposes a distributed
holonic architecture, where all service requests are handled by the AGVs themselves. Sri-
vastava et al. (2007) presents an approach for conflict-free shortest path, minimum-time
motion-planning and deadlock-avoidance for AGV systems. He presents an architecture
for AGV systems which is influenced by it’s focus on zone algorithms. The architecture
is partially reused in the presented research project. In his PhD thesis, Babiceanu (2005)
proposes a holonic-based control system for automated material handling systems. The
thesis focuses on scheduling and he shows that the results, obtained by running the
holonic algorithms, are close to the optimal solution.

The outline of the remainder of this article is as follows. Section 2 presents the in-
dustrial background of the laboratory prototype with its current manual operation. It
then describes the physical devices to be used; the desired functionality; and the basic
logic control design of the automated solution. Section 3 presents the ideas for holonifica-
tion, based on the already designed logic control, and Section 4 presents a more detailed
description of the AGV system.

156 M. Lind and O. Roulet-Dubonnet (2011)

International Journal of Production Research 3

2. Application Overview

This section first describes a typical industrial paint-shop operation and the challenges
with automating a paint-shop. It proceeds to describe the prototype laboratory system
for upload, and the associated devices and subsystems in an operation-oriented sense.

2.1. Manually Operated Paint-Shop

A contemporary industrial paint-shop roughly consists of a very long chained trolley
conveyor leading painting carriers through the various processing sites of the painting
system. The processing steps, taken care of by separated processing plants along the
conveyor, are typically of the following kind:

(1) Cleaning
(2) Drying
(3) Painting
(4) Drying
(5) Hardening

At certain stretches along the conveyor, workpieces and painting carriers are handled.
The up- and download of workpieces to and from painting carriers is a constant and
continuously ongoing process, since each workpiece is to take only one pass through the
painting system. The up- and downloading of the painting carriers only takes place when
the workpiece type changes, or for occasional maintenance. The “matching”-complexity
related to production logistics and planning is described by Williams and Sadakane
(1997).

The up- and download processes are typically manual in contemporary paint-shops in
SMEs. This is mainly due to a combination of the complex handling, localization of sites
on the carriers, and mechanical stability and geometrical precision of the carriers.

2.2. Automating a Paint-Shop

The current development goal is the automation of the processes and materials handling
at, and surrounding, the workpiece upload process. In the future, the other handling
processes may undergo equivalent automation projects in a successive manner.

Three challenges for the automation of the immediate process exist:

(1) Painting carriers have low mechanical stability and high geometrical tolerance;
much higher than the path-tolerance for mounting workpieces onto the carriers.

(2) The motion sequences involved with the attachment of workpieces onto the car-
riers are quite complicated; they can contain combined rotation and translation
or peg-in-hole types of motion.

(3) Chained trolleys are driven with continuous motion, and the attached carriers
are dangling and jumping. The sensory system and the motion-control have to
be quite advanced to meet these conditions.

2.3. Laboratory Application Overview

A sketch of the planned laboratory system setup is seen in Figure 1.
Referring to Figure 1(a), the following is an overview description of the devices in the

Holonic shop-floor application for handling, feeding and . . . 157

4 M. Lind and O. Roulet-Dubonnet

(a) Top view of the laboratory setup. (b) Perspective view of the laboratory setup.

Figure 1. Model of the laboratory setup.

laboratory setup:

• An overhead Power-and-Free (PnF) conveyor is shown as a dark red track in the right
side. The “rusty” skeletal structures are painting carriers hanging from trolleys on the
conveyor. There are four controllable stops with trolley presence sensors on the track,
illustrated by small grey cubes on top of the track. Details of the conveyor may be
observed in Figure 2.

• The two large, orange NACHI SC15-F robots are placed enclosed by the PnF conveyor
track, in adequate reach of the PnF-stop dedicated for uploading.

• Two Universal Robots UR-6-85-5-A robots, seen on the left, are dedicated to supplying
workpieces.

• Two AGVs for transporting workpieces between workpiece supply and upload areas
are seen in the setup.

• A 3D stereo vision system is used for localizing upload sites on the painting carriers.
The associated cameras are mounted on a ground support near the centre of the PnF-
track.

• Several vision systems with cameras around the setup are to recognize workpieces in
various (semi-)structured arrangements. The cameras are shown as small black-grey
boxes hanging from the (invisible) ceiling or on ground support at the workpiece supply
cells.

• Specialized vision systems for global localization of AGVs are associated with small
ceiling mounted cameras.

2.4. Workpiece Upload

Central to workpiece uploading is a robot which has access to workpieces from an AGV
and to a painting carrier at the PnF-stop dedicated for upload. The upload robot picks
a workpiece from the AGV and attaches it onto the presented painting carrier. Given
the workpiece and painting carrier type, as well as known painting carrier load state, the
system will be able to control the robot to attach the workpiece at some free site on the
painting carrier.

The painting carriers may have very different geometries and have a load capacity
from one to several tens of workpieces. Frequently each painting carrier type may match
different workpiece types. Some painting carrier types are adjustable and can host a
whole family of workpiece types.

The initial prototype will be using only one workpiece type, and only compatible

158 M. Lind and O. Roulet-Dubonnet (2011)

International Journal of Production Research 5

Transfer

Inlet

Outlet

Upload buffer

Upload

Main conveyor

Figure 2. A detailed overview of the PnF conveyor for upload.

painting carrier types. There is thus currently no need for changing painting carriers or
changing gripper tools on the robots.

Challenges (1) and (2), described in Section 2.2, have been addressed satisfactorily for
two workpiece types with associated (different) painting carrier types.

2.5. PnF Conveyor System

As mentioned earlier, it is necessary to address the problems posed by the typical use
of chained trolley conveyors in industrial paint-shops; challenge (3) in Section 2.2. To
this end, the solution is to place a PnF conveyor in conjunction with the main painting
system conveyor, and to transfer carriers as they arrive into buffering for upload. See
Figure 2.

The PnF conveyor set up in the laboratory has four pneumatically controlled stops,
each with a capacitive sensor for trolley presence. It also has four mechanical rotator
units, that rotates the attachment point of the trolley by 90◦ on passage. The effect of
the rotators is to ensure that the carriers face the correct direction at all times.

An embedded computer interfaces with the valves controlling the PnF-stops and the
presence sensors at the stops. It exposes basic functionality over Ethernet for external
control of the stops and reading of the sensors.

The PnF-stops, symbolized by small grey boxes on top of the PnF-track, are labelled
according to their function in Figure 2. The “Inlet” and “Outlet” stops serve as buffering
from and to the transfer at the junction with the main conveyor. The “Upload”-stop is

Holonic shop-floor application for handling, feeding and . . . 159

6 M. Lind and O. Roulet-Dubonnet

where the PnF-trolley is stopped for upload to the mounted painting carrier. The speed
of the PnF-carrier is quite low, in the order of 10cm/s, so to speed up the exchange of
carrier at the “Upload”-stop, an “Upload buffer”-stop is placed upstream close by.

Overall, the conveyor elements must be controlled to ensure that carriers are supplied
to the upload robot, and such that the transfer area receives carriers at the correct pace.

2.6. Workpiece Supply

Workpiece supply cells are where workpieces are picked by a robot from gross storage
boxes and put into arrangement on top of an AGV. The AGV may be equipped with a
workpiece-compatible transport carrier, which could be offloaded at the delivery point.

In case the robot is to pick workpieces from gross storage boxes, a semi-structure
arrangement may be generally anticipated, and some sensory system for localization
must be deployed.

The robot must have the workpiece storage and the docked AGV within reach. The
robots used are small, light-weight industrial robots. It may happen that the area on top
of the AGV, available for workpiece arrangement, is too large for the reach of the robot.
In that case, the AGV must be able to re-dock with a different pose on request, enabling
access to unreachable areas.

2.7. AGV System

The role of the AGV system is to undertake the resupply of components for upload. The
AGV system thus enables the geographical separation of the bin-picking operation from
the uploading operation.

A concrete challenge for the transport system is that it will not be possible to reserve
pathways in all areas with AGV operation. There are no static paths nor static nodes
and the pathways cannot be guaranteed to be free of obstacles. This uncontrollable, pro-
duction environment requires advanced obstacle-recognition and -avoidance capabilities.
This fact, as well as the importance of flexibility in this project, has driven the focus
towards free-roaming AGVs.

Multiple AGVs are being built at the laboratory and the control system is in the exper-
imentation phase. The physical AGVs and control system is based on earlier experience
with a prototype AGV and vision based positioning system.

Section 4 is dedicated to a description of the developed AGV system.

3. Holonification

Initial work on the laboratory setup experimented with a hierarchic, distributed control
system for managing the upload process. This section concentrates on the conceptual
holonification of the devices and resources presented in the preceding sections. Ideally,
the explicit logic control behaviour of the hierarchic control system will emerge from the
holonic control system currently under development.

160 M. Lind and O. Roulet-Dubonnet (2011)

International Journal of Production Research 7

3.1. Resource Holons

The resource holons are related to the set of devices discussed in Section 2. This section
presents some aspects of the resource holons in relation to devices.

3.1.1. Robots

For ordinary industrial robots, the real-time aspects of the motion control is integrated
with other real-time tasks inside the controller, limiting the interaction from an external
system. This design prevents a “deeply holonified” system; see Figure 3(a). Owing to
communication and computing equipment standards some decades ago, the integrated
controller design made good sense.

One problem with the integrated robot controller architecture generally arises with
sensor-driven motion control. The designers of the integrated controllers used some sce-
narios for some sensors to affect motion control. The robot controller platform hence
forces the application designers to limit the use cases of the robot system.

Some modern or experimental robot controllers support external motion control. This
is the case for the robots used in the presented work, and it enables the deeper, and more
flexible holonic-level integration presented in Figure 3(b).

Two different robot systems are planned in the initial laboratory system. One type is
the system around the central upload robot and another around the workpiece supply
robot.

3.1.2. Workpiece Supply System

The workpiece supply cells transform workpieces from batch containers into a pickable
arrangement in a transport carrier. One of the major challenges is the workpiece local-
ization in the containers. In most cases, a semi-structured arrangement of workpieces can
be anticipated, for which ordinary 2D-vision can be used for localization.

The direct interaction of this system with the paint-shop system is through the orders
and schedulers. Product holons for workpieces play a role in identification, localization,
and graping. Product holons for the transport carriers play another role of specifying
the arrangement of workpieces into the carrier and possibly some process information for
insertion.

3.1.3. Tools

The tools in the presented system are grippers, mountable on a robot end effector, for
handling workpieces. The entire set of tools available to one or more robots must cover
the whole range of workpieces to be handled by the robots.

In case of multiple tools for a single robot, or shared among several robots, the tools
may be organized in a tool rack to be on-line changeable by the robot system. There
will be a tool holon for each tool, but typically only the ones mounted on a robot at
any given time will be active. In case of a multi-function tool, each functionality may be
modelled as a separate resource holon.

3.1.4. Vision Systems

The different types of vision systems are :

(1) Painting Carrier Analyzer: This is a commercial 3D stereo vision system, which
has been configured and tested. It analyzes for empty sites on a painting carrier
presented to its cameras. This information is used by the upload robot system.

(2) Workpiece Localizer: Localizes the workpieces for picking, either semi-structured
in batch boxes or in structured layout.

Holonic shop-floor application for handling, feeding and . . . 161

8 M. Lind and O. Roulet-Dubonnet

Robot System Controller

Robot System Holon

Tool Holon Tool Rack Holon Servo Rail Holon

Robot Holon

Robot Controller

RobotServo Rail Active Tool Tool Rack

External Axes Controller Robot Axes Controller

Servo Rail Controller

Tool Controller Tool Rack Controller

(a) Centralized robot control system in vendor controller.

Robot System Holon

Tool Holon

Tool Rack Holon

Servo Rail Holon

Robot Holon

Tool Controller

Tool Rack Controller

Servo Rail Controller

Robot Axes Controller

Robot Servo RailActive ToolTool Rack

(b) Distributed holonic robot control system.

Figure 3. Traditional integrated and holonic robot systems in automation. Legend: ovals: holons,
rectangles: controllers, and parallelograms: physical devices.

162 M. Lind and O. Roulet-Dubonnet (2011)

International Journal of Production Research 9

Figure 4. Overview of aggregations and compositions among the order holon classes.

(3) AGV Localizer: Vision systems specialized in localizing LEDs on AGVs, giving
sufficient information to the subscribed AGVs to compute their position and
orientation.

The integration of the vision systems into holonic vision applications is a matter of
letting orders interact with them in various ways, such as reserving, configuring, querying,
and subscribing.

3.1.5. PnF-Conveyor

The PnF-conveyor was described to some detail in Section 2.5. The objects for holoni-
fication are the stops and their associated presence sensors.

The stops and sensors are modelled as individual holons. Since there is only one inte-
grated controller for all the stops and sensors, the system will resemble the integrated
robot system in Figure 3(a). However, since there are no hidden real-time interaction
among stops and sensors, the integrated control for the PnF-conveyor will not impact
the holonic control system use cases.

3.2. Order Holons

The production-orders in the factory contain the data relevant for the associated top-
level holonic orders. Orders are modelled as a hierarchy where the highest level is a
production day-plan. In contemporary manufacturing systems in SMEs, the production
day-plan has been determined over night, or even some days in advance, by the ERP
system.

In a typical paint-shop in an SME, the sequencing and scheduling of the production
plan is done heuristically by the operators at the paint-shop. They perform the implicit
break-down of the day-plan into batch orders, painting carrier orders, stock reservation
orders, transport orders, as symbolized in Figure 4. Such funcitonality and logic is what
must be implemented in, and executed by the order holons.

As a general rule in HMS, it is the order holons that take all higher level initiatives in
the control system.

3.3. Product Holons

End-products are naturally represented in the product holon system. They are the items
exposed for ordering, from customers, retail stores, importers, or the company sales de-

Holonic shop-floor application for handling, feeding and . . . 163

10 M. Lind and O. Roulet-Dubonnet

partment. Elements that will be represented in a end-product holon would comprise usual
manufacturing information such as order number, bill of materials, assembly sequence,
machining process information, painting process information, etc.

Products that has constituent parts, indicated by bill of materials and assembly se-
quences, have reference to the pertinent product holons for the constituent parts.

Product holons may also represent something more abstract. The following are exam-
ples of information that may be modelled as “abstract” product holons, relevant to the
paint-shop case:

• Arrangement of workpieces in transport or on painting carriers.

• Process information regarding grasping and attachment process motion.

• Vision analysis configuration and result specification.

• Transport related specifications like routes, deadlines, docking poses and tolerances.

3.4. Staff and Supervisor Holons

Staff holons are candidates for implementation of complex, global, and long-running
computations. The basic holons will not be suitable for realizing such functionality, since
they must remain focused on their core, short-term objectives.

Planning, sequencing, scheduling, prioritizing, and global monitoring of tasks may be
left as an emerging functionality from the cooperating order and resource holons. How-
ever, this may be severely far from optimal, and, in complex, cases even unsolvable. Staff
holons may be deployed to perform such global computational tasks, and provide results
to basic holons that request it.

Where the staff holons from PROSA are lacking any kind of controlling authority,
the supervisor holons from ADACOR was designed to meet the practical need for co-
ordination. Supervisor holons may be used to create or destroy elementary holons, and
to control aggregation of holons. They can further be used to enforce results from staff
holons, such that order and resource holons will be coordinated to obey certain sequenc-
ing or prioritization schemes.

4. Holonic AGV System

The AGV system has been developed based on the published literature on holonic manu-
facturing and material handling system. The system is an implementation of the PROSA
architecture and is in several respects inspired by the work done by Srivastava et al. (2007)
and Babiceanu et al. (2004).

4.1. Overview

The holonic AGV control architecture is exemplified by an object diagram in Figure 5.
Resource holons are represented by rectangles, order holons by ovals and staff holons by
hexagons. It shows independent AGV holons and AGV holons aggregated in an AGV-
group. It also shows a path-planning holon inside an AGV holon, although this is not a
requirement; path-planning holons can be part of AGV holons or shared.

A requirement to the AGV system is to be integrable into the manufacturing system.
In addition to allowing the manufacturing system to create transport orders, integrability
is currently implemented by allowing elements from the holonic manufacturing system

164 M. Lind and O. Roulet-Dubonnet (2011)

International Journal of Production Research 11

AGV holonAGV-group holon

Order holon
<order 1>

AGV-central holon
<agv-central 1>

Scheduler holon

AGV holon
<agv 1>

Order holon
<order 2>

AGV holon
<agv 4>

Order holon
<order 3>

Order holon
<order 4>

AGV-central holon
<agv-central 2>

Path-planning holon
AGV holon

<agv 2>
AGV holon

<agv 5>

Traffic holonMapping holon

AGV holon
<agv 3>

Figure 5. Example object diagram for the holonic AGV system.

to reserve an AGV for a period of time. Thus enabling real-time cooperation between an
AGV and other devices of the production system. Realistic application examples are:

• Efficient geometric separation of cooperating robots, like the functioning of a turn-
table.

• Following a robot on a servo-track.

• Precise control of AGV positioning.

4.2. Holons

A short description of selected holons from the AGV system is presented in the following
subsections.

4.2.1. AGV Holon

The AGV holon is the resource holon administrating the physical AGV. It is assumed
to run on the physical AGV; although this might depend on the available hardware in
the pertinent case.

The internals of an AGV holon can be categorized into the following:

• An aggregate of internal holons when the system runs on an open AGV controller.
The internal holons may be exposed to the rest of the control system but it may not
be the case if the controller is implemented using, for example, the Robot Operating
System Quigley et al. (2009) where each ROS-node can be seen as a holon.

• A wrapper around a commercial AGV controller. In this case AGV holons might
even be entities that are limited to monitor and send orders to a completely closed
commercial AGV system, resulting in an AGV holon with low flexibility.

• An AGV-group composed of AGV holons in slave state. Cf. Section 4.2.6 regarding
AGV groups.

Since different AGV types result in different features, the AGV holon needs to expose
its capabilities to the rest of the system.

Holonic shop-floor application for handling, feeding and . . . 165

12 M. Lind and O. Roulet-Dubonnet

Figure 6. Sequence diagram showing an AGV order holon registering with an AGV holon.

4.2.2. Order Holon

An order holon in the AGV system is created by a generic manufacturing order holon
to solve a transport task.

Following the PROSA architecture, the order holons are the driving force of the holonic
system; cf. Figure 6. The order holons monitor the AGV system through the AGV-central
holons and attempt to (re-)assign themselves to the AGVs with the most advantageous
schedules.

4.2.3. Scheduling Holon

Industrial partners often desire central, or at least deterministic, algorithms for critical
functions like scheduling. A possible implementation of such critical functions is to use
a unique central scheduling holon or several holons implementing the same algorithm.
The algorithm must be deterministic so that holons eventually will end up with the same
conclusions. This requires a system that is resilient to temporary disagreement.

The scheduling holon is a staff holon providing scheduling data to other holons. It is
a necessary complement to local scheduling information from the AGV holons, since the
latter have only local insight into the manufacturing system.

By communicating with other holons, a scheduling holon keeps an up-to-date view of
the manufacturing system, generates an “optimal” schedule and applies it by trying to
re-assign order holons to AGVs.

4.2.4. On-line Traffic Controller Holon

This is a staff holon, the role of which is to survey the AGV traffic in a geographical
area and give advices to AGV holons to sort out conflicts and avoid congestion.

The traffic system gathers information from and supplies information to the client
AGVs about viable paths in the whole of the roaming area. It will be the coordinator
for pre-reservation of long term trajectories of the AGVs, whereas the AGVs themselves
can react in the short term; such as emergency trajectory interferences.

Specialized intersection controllers at known trafficked or congested areas are regula-

166 M. Lind and O. Roulet-Dubonnet (2011)

International Journal of Production Research 13

tory rather than guiding in their relation with the approaching AGVs.

4.2.5. Geography and Vision Holons

Initially it is assumed that all of the AGV localization functionality will be based on
vision applications. This soundness of this decision is substantiated by earlier success
with developing a vision based AGV localization system.

The geography system is the general global localization system for the AGVs. It re-
quires that the cameras of the geographic localizer servers cover the entire area where
the AGVs may roam, and can serve the client AGVs with real-time location information.

Specialized conceptual controllers for local positioning and control may be defined to
serve purposes relevant to situations or tasks, partly external to the AGV system. Exam-
ples relevant to the laboratory painting system are docking-, trajectory-, and passage-
controllers.

4.2.6. AGV-Group Holon

The AGV-group holon applies the holonic fractal concept to aggregate several AGVs
to a special task. An AGV-group can appear to the external holonic environment as a
specialized AGV holon.

The constituent AGV holons in slave state let another AGV take over the high level
motion control. They do not reply to requests as individuals but through the group holon.
Example applications are temporary palette conveyors, large object transport and high
priority transport chains.

5. Conclusion and Discussion

This paper has presented an automated paint-shop under development. The need for a
flexible solution has been identified and a design and an implementation based on the
holonic manufacturing paradigm has been proposed. A lightweight holonic framework
has been implemented and many hardware devices, including sensors, the PnF-conveyor,
AGVs and industrial robots are now exposed to the control system as holons. A low-level
emulation platform is also under development and the prototype AGV system is running
on it.

Implementation of the proposed holonic control system will continue during the next
years in cooperation with the industrial partners. Further development and implementa-
tion of hardware and device-specific control software are taking place in parallel. Much
work has yet to be done to evaluate the performance, scalability and flexibility of the
proposed control system and demonstrate its industrial feasibility.

At the current state of design of the paint-shop prototype, we have gained such con-
fidence in the HMS paradigm, that it will be used for the prototype, and recommended
as a good candidate to the industrial partners in the project.

6. Acknowledgements

This paper presents research results obtained through work in the IntelliFeed project, fi-
nanced by The Research Council of Norway. Thanks to professor Terje Lien, Department
of Production and Quality Engineering, NTNU, for general discussions on manufacturing
an for taking an interest. Thanks to Amund Skavhaug at Department of Engineering

Holonic shop-floor application for handling, feeding and . . . 167

14 REFERENCES

Cybernetics, NTNU for many supportive consultations on distributed systems and com-
puting. Our gratitude for good cooperation goes to the IntelliFeed group at SINTEF
Raufoss Manufacturing AS.

References

Babiceanu, R.F., 2005. Holonic-based control system for automated material handling
systems. Thesis (PhD). Industrial and Systems Engineering, Virginia Tech. 1

Babiceanu, R., Chen, F., and Sturges, R., 2004. Framework for the control of automated
material-handling systems using the holonic manufacturing approach. International
Journal of Production Research, 42 (17), 3551–3564. 4

Davis, S., 1987. Future Perfect. Reading, Massachusetts/USA. 1
Koestler, A., 1967. The Ghost in the Machine. London : Hutchinson. 1
Leitão, P., 2004. An Agile and Adaptive Holonic Architecture for Manufacturing Control.

Thesis (PhD). Department of Electrotechnical Engineering, Polytechnic Institute of
Bragança. 1

Leitão, P. and Restivo, F., 2005. ADACOR: A holonic architecture for agile and adaptive
manufacturing control. Computers in Industry, 57, 121–130. 1

Leitão, P. and Restivo, F., 2008. Implementation of a Holonic Control System in a Flex-
ible Manufacturing System. IEEE Transactions on Systems, Man, and Cybernetics,
Part C: Applications and Reviews, 38 (5), 699–709. 1

Liu, S., et al., 2000. Holonic manufacturing system for distributed control of automated
guided vehicles. In: 2000 IEEE International Conference on Systems, Man, and Cy-
bernetics, Vol. 3, Nashville, TN IEEE, 1727–1732. 1

Quigley, M., et al., 2009. ROS: an open-source Robot Operating System. In: Open-
Source Software workshop of the International Conference on Robotics and Automation
(ICRA). 4.2.1

Srivastava, S., et al., 2007. Development of an intelligent agent-based AGV controller for a
flexible manufacturing system. The International Journal of Advanced Manufacturing
Technology, 1–18. 1, 4

Van Brussel, H., et al., 1998. Reference architecture for holonic manufacturing systems:
PROSA. Computers in Industry, 37 (3), 255–274. 1

Van Brussel, H., 1994. Holonic Manufacturing Systems The Vision Matching the Prob-
lem. In: Proceedings of the 1st European Conference on Holonic Manufacturing Sys-
tems, Hannover, Germany, IFW-Hannover. 1

Williams, E.J. and Sadakane, S., 1997. Simulation of a Paint Shop Power and Free Line.
In: Winter Simulation Conference, Atlanta, GA IEEE Computer Society, 727–732. 2.1

Zipkin, P., 1997. The Limits of Mass Customization.. Harvard Business Review, 75, 91–
101. 1

168 M. Lind and O. Roulet-Dubonnet (2011)

Using the Blender Game Engine for Real-Time Emulation of . . . 169

4.9 Using the Blender Game Engine for Real-Time Emula-
tion of Production Devices

Morten Lind and Amund Skavhaug. Using the blender game engine for real-
time emulation of production devices. International Journal of Production
Research, 0(0):1–17, 2011. ISSN 0020-7543. doi: 10.1080/00207543.2011.
601772. Online available, iFirst

Declaration of co-authorship

The basic idea of using the Blender game engine for real-time emulation of production
devices and production setups is credited to Morten Lind. The entire software system
analysis and design, and development of the principles and mechanisms for obtaining
realistic device emulation is credited to Morten Lind. The entire implementation of the
demonstration system is a contribution by Morten Lind. All experiments and performance
testing was carried out by Morten Lind.

Olivier Roulet-Dubonnet contributed with discussions and comments from using the
Blender game engine and the presented principles on an AGV systems emulation. Amund
Skavhaug contributed with general discussions on distributed control considerations dur-
ing the development of the demonstration system and principles.

The paper is entirely written by Morten Lind. All graphics is designed and produced
by Morten Lind. The preparation and submission process was handled by Morten Lind.
Amund Skavhaug contributed valuable comments in frequent correspondence during the
writing of the paper.

170 M. Lind and A. Skavhaug (2011)

International Journal of Production Research
Vol. , No. , 2011

RESEARCH ARTICLE

Using the Blender Game Engine for Real-Time Emulation
of Production Devices

Morten Linda∗ and Amund Skavhaugb

aNorwegian University of Science and Technology,
Dept. of Production and Quality Engineering,

7491 Trondheim, Norway

bNorwegian University of Science and Technology,
Dept. of Engineering Cybernetics,

7491 Trondheim, Norway

(Received 00 Month 200x; final version received 00 Month 200x)

This paper describes principles, architecture and design details for using the
Blender Game Engine in real-time production device emulation. An emulation
system for a real material transport and handling production installation was
implemented based on this. A prototype of a distributed production control
system was run on top of the device emulation system to evaluate feasibility.

A cardinal architectural principle is the clear distinction between produc-
tion controllers and production devices. This principle, applicable through a
flexible communication middleware, enables the implementation of portable
production controllers, which execute transparently on either the emulated or
the real production system.

Production system engineers may take advantage of this approach, to develop
and gain confidence in complex production control solutions.

Keywords: Simulation; Distributed manufacturing control; Shop floor control; Robot
applications; AGV.

1. Introduction

Distributed, autonomous production control systems, such as of a holonic or agent-based
nature, have the potential to provide much higher flexibility, intelligence, and error recov-
ery than a centralized system (Valckenaers and Van Brussel 2005). However, this comes
at the price of a higher development threshold and difficulty of debugging in the run-in
phase. Hall et al. (2005) discusses more specific obstacles to the use of agent technology

∗Corresponding author. Email: morten.lind@ntnu.no

ISSN: 1366–588X print/ISSN 0020-7543 online
c© 2011 Taylor & Francis
DOI: 10.1080/00207543.2011.601772
http://www.informaworld.com

Using the Blender Game Engine for Real-Time Emulation of . . . 171

2 Morten Lind and Amund Skavhaug

in production control system.
Whether developing a control system for a new production installation or for an ex-

isting one, there will often be limited availability for experimenting on the real system
hardware. In case of a new system with expensive hardware, the more central and ex-
pensive components will probably not be ordered until a control system is designed and
validated. In case of the development of a new control system for existing production
installation, the installation will probably not be recommissioned, until the new control
system has been accepted.

Providing true emulators of the production hardware entities (machines, native con-
trollers, devices, sensors, etc.) such that they can co-exist and operate in a virtual real-
time world, is a large step towards developing a production control system for unavailable
hardware; especially so for an agent-based control system.

1.1. Simulation Overview

When faced with the need of simulation for verifying or develop production control
systems, it is traditional to consider Discrete Event Simulation (DES). A plethora of
software applications and platforms exist for the purpose of simulation for manufactur-
ing; e.g. DELMIA QUEST, FlexSim, and PySim. Smith (2003) presents an extensive
classification and survey of DES in the field of manufacturing. However, DES is by its
nature more suitable for simulating production control systems characterized by deter-
minism. This is a severe restriction on control system design; especially so, when hoping
to honour the request for flexibility by intelligence at the production control level.

Moon et al. (2006) presents a example of a combined use of a DES system, QUEST,
and a robot simulation studio, DELMIA IGRIP. The body shop in an automotive fac-
tory is modelled, simulated, and analyzed. Each workstation is modelled, simulated, and
optimized in detail using IGRIP, producing offline generated robot motion specifications.
The resulting visual model for each workstation is then transferred to QUEST, together
with resulting operation and process timings. A grand model of the whole body shop
is set up in QUEST, with underlying data for all detailed models. The logic for flow of
parts, buffer control, and overall logistics can then be implemented, simulated, analyzed,
and optimized. This is a quite traditional separation of process control from production
control. It is a time-efficient method for developing factory layout, process logic, and
production logic for large batch size production. However, the method loses efficiency for
simulating a production system characterized by low or single piece batch size; such as
mixed or chaotic production. non-deterministic processes, or autonomous control entities.

DELMIA V5, like QUEST, is aimed at simulation, validation, and optimization of
the control logic in automated production (Caie 2008). While QUEST may model the
production setup and simulate an implementation of the logic of the production control
system, V5 takes further steps towards realistic interaction of the modelled control sys-
tem, providing realistic virtual integration of the programming aspects of PLCs, sensors,
and device controllers. This amounts to a validation at a deeper level of a production
control design, based on a library of many frequently used types and brands of produc-
tion automation devices, such as PLCs, sensors, and device controllers. V5 aims at a
maximum possible level of realistic validation in production control systems based on
traditional control paradigms rooted in deterministic logic and with standardized con-
trol equipment. The work presented in this paper aims at goals of similar nature, but
for paradigms of production control based on distributed autonomy and intelligence at
all levels in the control system. While V5 may get close to formally validating the logic

172 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 3

operation of deterministic production control systems, realistic real-time emulation and
simulation of a control system allowing massive distribution and autonomy may yield
only a qualitative and verification.

A distinctive difference which separates agent-based control systems from more tradi-
tional ones is that they are characterized by emergent rather than deterministic behaviour
(Vrba and Maŕık 2005a). It is impossible to pose a realistic, deterministic model for a
production entity controlled by a truly autonomous agent. Such a deterministic model
would be a necessity for the scheduling of events in a standard DES. Real-time, realistic
emulation at the device level is thus necessary, since there is no essential logic to model
for a distributed, autonomous control system; there is only the actual control code to
execute on the real-time emulation.

In distributed and autonomous production control, it is quite easy to argue for the
advantages of time-driven, realistic simulation. Vrba and Maŕık (2005b) uses the term
agent-based simulation for this type of simulation. An agent-based simulation system was
described by Maŕık et al. (2005), and is a software-platform or -framework for developing
and modelling an agent-based control system, and deploying it in the system of emulated
production devices.

1.2. Related Work

Kim et al. (2000) implemented virtual machines for simulation of shop-floor control and
operator training. They emphasize on the need for real machine emulation, providing an
operator or the shop-floor control system with the realistic or real interface. However, the
implementation of the virtual machines are based on the Java Web Server, Java Servlets,
and communicate over HTTP/XML, which does not add up to a fast response, real-time
system. Though functionally giving the appearance and true emulation of a machine, the
whole range of machines requiring even soft real-time control will be excluded by such
platform and communication technologies.

Park et al. (2009) presents an overview of principles for verification of PLC programs
and commercial software for simulating production control. Though not strictly limited
to PLCs, their work is focused on simulation-based verification methodology for PLC
programs. The suggested method describes how to build state machines for emulation of
the input-output of all production devices connected to the (real or simulated) PLC. By
analyzing the logged state changes and IO-signalling, it can be established whether the
PLC program satisfied the specified behaviour or if it must be improved. This resembles
the methods of the present paper, but rather than building a pocket of IO-emulation
for an isolated PLC, the present work tries to build a physically realistic model of all
devices to be controlled by the entire (distributed) production control system. By suitably
providing interfaces in software for the simulated PLC, or hardware for the real PLC, it
may in fact be hosted on an emulation system based on the presented work, as part of
the production control system. A further distinction between the presented work and the
work of Park et al. (2009) is the emphasis on qualitative and quantitative verification,
respectively. When using the real hardware PLC with the real production or process
control program, executing with the emulated device IO state machines, this is a very
thorough test of the isolated operation of the PLC program. In contrast, the approach
presented in this paper may suffer from computational exhaustion in the device emulator.
Additionally, the deployment systems and topology of the production control in the
present work may not be the same in real-time simulation as the systems and topologies
used in the production system.

Using the Blender Game Engine for Real-Time Emulation of . . . 173

4 Morten Lind and Amund Skavhaug

Pannequin and Thomas (2010) describe Emulica, an architecture and implementation
of a system for emulation of the production operating system on which the production
control system can execute. Their framework focus on the process and flow control where
parts are of transformed into products; like assembling and disassembling processes.
Their emulation is at the abstract process level, providing an interface with methods of
the nature of “Do the assembly” or “Move the part”. Their framework is not concerned
with controlling the devices and machines, performing the requests, and the related real-
time aspects. In contrast, the work presented here achieves emulation of the real-time,
geometric, mechanical, and control aspects of production devices.

1.3. Outline

The remainder of this paper is organized as follows: Section 2 gives an overview of the
basic software tools and technologies used. Section 3 gives an operational overview of
the demonstration system for which the emulation system was built. In Section 4 the
architectural design of the implementation is explained. Section 5 presents some design
and implementation details. Discussion and conclusion is presented in Section 7.

2. Tools and Technologies

The main software platforms for achieving the emulation system has been Blender 3D
for modelling and its game engine as execution platform; the Ice

TM

communication mid-
dleware; and the Python interpreter. This section gives an brief introduction to these
third-party software systems on which the current implementation rely.

2.1. Implementation Overview

The implementation of the systems for emulation and simulation is done entirely with
Python1. The implementation is quite large and Python is a good choice as a code-
efficient and intuitive language.

The separate systems that have been implemented and integrated as part of this work
are2:

• Math3D (∼ 1000 lines of code) is a basic Euclidean mathematics library for work-
ing with positions, vectors, orientations, rotations, reference systems, homogeneous
transforms, and linear interpolations.

• PyMoCo (∼ 2000 lines of code) is a motion controller framework implementing kine-
matics and various robot motion controllers, supporting real-time code and sensor
interaction. The framework was developed and tested by Lind et al. (2010).

• Emulation System (∼ 2000 lines of code) is the code layer for all devices that can be
part of a model of a production installation. For a given modelled device, a controller
is implemented in the emulation layer, and the emulated controller must recognize the
device configuration from the model. Any interactive device system is represented over
the production control network by at least one Ice-server.

1http://python.org
2Generated using David A. Wheeler’s ’SLOCCount’; confer http://www.dwheeler.com/sloccount/.

174 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 5

• Production Control System (∼ 2000 lines of code) is the software layer of application
control of the production installation; be it emulated or in reality. It is the objective of
the production control system to operate the devices, cooperating among themselves.

2.2. Middleware and Distributed Framework

The choise of network communication and connectivity, i.e. the middleware, for a dis-
tributed control system is a central issue; especially so for one with real-time require-
ments.

The chosen middleware and distributed control framework was developed by Olivier
Roulet-Dubonnet, and will be described in a later publication. The software is avail-
able for download and review from the ColdHMS project page on SourceForge1. The
framework is called IceHMS in reference to the Ice

TM

(Internet communication engine)
middleware and Holonic Manufacturing Systems. The reference to HMS is due to the
original inspiration for the framework.

Ice
TM

is well motivated (Henning 2006, 2007), well described (Henning 2004), and
well documented2. Good examples, performance towards the limit of no overhead3, high
availability, and clear semantics and syntax made Ice

TM

an favourable candidate.
A determining factor for choosing Ice

TM

is the cross-language and cross-platform prop-
erties. This will allow separate developer groups to stick with the platform and language
they favour, or chose the platform and language best suited for their pertinent system
implementation.

2.3. Blender Game Engine

Blender4 is a (mesh) modelling and animation software studio. It comes with a quite
advanced and efficient game engine, and integrates the Bullet physics library5.

Through the embedded Python interpreter, the game engine is wide open for imple-
menting real-time interaction of external control software with the internal game engine
logic. The game physics may be utilized whenenver some mechanical part is under un-
controlled motion, like sliding or falling.

3. Demonstration System

The prototype production system, around which the demonstration emulation and simu-
lation system is designed and implemented, is described by Lind et al. (2009). A prelim-
inary status of the implementation was presented by Lind and Roulet-Dubonnet (2010).

The demonstrator is a realistic case of the logistics around production painting systems.
The painting system consists of a chained trolley-conveyor, carrying workpiece carriers
through the sites of the processes; such as washing, drying, painting, heating, and hard-
ening. At certain areas along this main conveyor the up- and downloading of workpieces,
and the occasional change of carriers take place. Workpieces are up- and downloaded

1http://sourceforge.net/projects/coldhms/
2http://zeroc.com/download/Ice/3.4/Ice-3.4.1.pdf
3http://zeroc.com/articles/IcePerformanceWhitePaper.pdf
4http://blender.org
5http://bulletphysics.org

Using the Blender Game Engine for Real-Time Emulation of . . . 175

6 Morten Lind and Amund Skavhaug

1

2

3

4

5

6

7

Figure 1. Rendered image from the Blender 3D model of the demonstration system.

for natural reasons, since every workpiece is to take only one tour of the painting sys-
tem. Carriers are switched whenever a changeover rolls in a workpiece type with which
the present carrier type is incompatible. The implemented demonstrator system only
concerns uploading of workpieces.

The demonstration system is an extended version of the prototype system and is seen
in Figure 1. In the order of flow of workpieces in the production system, the following
gives a description of the mechanical devices and their operation.

(1) Workpiece machining, such as bending, turning, milling, extrusion, cutting, etc.,
is performed to single-piece order, in the CNC-machines at the far left.

(2) From a CNC-machine, workpieces drop from the outlet into a box fixed on a
turntable. The turntables have two opposing boxes, one servicing a CNC-machine
and the other servicing a robot.

(3) A vision system observes the box on the turntable-position that services the
robot. As long as workpieces are localized in the box, the robot system can chose
one and pick it.

(4) The robot opposing the CNC-machine at a turntable serves to arrange the work-
pieces into a specified layout on a docked AGV.

(5) The AGVs are made with a flat top-plate covered with a non-slip material suitable
for workpieces to rest freely and steady onto during transport. They are able to
dock into the faintly marked (yellow) buffer and (green) task areas on the floor,
near the robots.

(6) On the far right, two robots are placed for handling workpieces off the AGVs and
attaching them onto painting system carriers on the overhead Power-and-Free
(PnF) conveyor.

(7) The PnF-conveyor is a decoupling installation from the main painting system
conveyor; the latter is not modelled in the demonstration system. Empty carriers
are transferred from the main conveyor to the PnF-conveyor and filled carriers
the opposite way. A set of PnF-stops and associated presence-sensors enables the
conveyor control system to manage the PnF-trolleys.

To give an impression of the resulting operation of the implemented demonstration
system, some short video clips have been made. They may be downloaded in Xvid and
Ogg Theora formats from https://automatics.no-ip.org/~ml/intellifeed-emu/.

176 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 7

Node

Production Controller

Device Controller

Communication Interface

Legend

Device Bus

Network Connection

Figure 2. Example of connectivity in a distributed control system.

4. Emulation System Design

This section gives an overview of the architecture and design of the emulation system,
and the technologies used for implementing it.

4.1. Architectural Overview

Conceptually the device controllers of the production system needs to be encapsulated
in an emulation platform, and exposed appropriately to the production control system
for simulation. An overview of the structure of a distributed control system, and how it
is wrapped up for being emulated, is given here

4.1.1. Distributed Control Systems

Figure 2 shows an abstract view of a distributed production control system. The only
concepts represented are control nodes, production controllers, device controllers, and
connections. In addition there are two kinds of communications of different nature.

Most device controllers present a general communication interface, through which the
production controllers may connect. The same kind of connection enables production
controllers to interconnect for coordination and cooperation. Some device controllers are
naturally distributed, and they communicate by some closed network or bus. This latter
connection type is not of particular interest when developing a production control system,
but this internal device controller network may be important when emulating the device.

There are no general constraints on the network connection topology. The specific types
of production controllers to connect is naturally limited by semantics and types. This is
determined by the setup in a production system, where the organization into factories,
plants, lines, stations, and cells will play a large part in the particular connectivity and
partitioning of the control nodes and production controllers.

4.1.2. Emulation and Simulation System

The objective of creating a system of emulated device controllers for the production
controllers, shown in Figure 2, has been achieved with an architecture based on the
Blender game engine. Figure 3 shows this architecture with the game engine residing on
some central node. All device controllers are emulated in the embedded Python inter-
preter in the game engine. The embedded Python interpreter has access to the virtual
reality of all the Blender objects modelled in the scene.

Using the Blender Game Engine for Real-Time Emulation of . . . 177

8 Morten Lind and Amund Skavhaug

Legend

Node

Game Engine

Production Controller

Game Object

Game Sensor
Game Actuator
Game Controller
Ice Interface

Python Interpreter

Figure 3. Overview of the architecture and connectivity in an emulated system.

Due to the versatility of the Python interpreter, the liberty given to it by the Blender
game engine, and the cross-language capability of Ice

TM

, it is possible to provide the
same interfaces and functionality on the emulated device controllers, as on the real.
Performance factors are described in the following:

• The frame-rate of the game engine decreases with increasing number and complexity
of emulated device.

• Increasing the number of device controllers, or their communication load, may saturate
the network bandwidth and latency capacities of the game engine node.

• Increasing the number of objects with enabled game physics decreases the frame-rate
of the game engine.

These limitations on the game engine node capacities implies a bound to the production
system complexity that will be feasible for emulation.

4.2. Blender

The Blender 3D application comprises modeller, animation engine, game engine. In the
modeller, 3D geometric objects are drawn and annotated with information, configuration,
and setup for animation, game execution, and physics. Game physics is a feature to be
used in either animation or game mode.

4.2.1. Modelling

Modelling a production installation means making geometries representing visual ob-
jects, collision objects, physics objects, objects for mechanical sensors, etc., for the shop-
floor scene. In addition, purely virtual objects must be modelled for the sake of emulating
reality. Examples of the latter, purely virtual objects, are given here:

• For a vision system to localize certain workpiece types, a camera house object may
be modelled for pure visualization. For the virtual vision system to operate an object
is used to represent the frustum. Thus, the operation of the vision system is to find
all object of the requested workpiece type within the frustum. Tests for visibility from
the camera is done by ray-casting from the apex of the frustum to filter out occluded
workpieces.

• A proximity sensor can be modelled by adding an invisible object, with an associated
collision sensor, the mesh of which spans the region of sensing. If the sensing should
be selective on material properties, like capacitive or inductive sensors, the objects to

178 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 9

sense should be marked with a material property to be distinguishable.

4.2.2. Game Engine

The game engine, once started, turns every model object of the current scene into
a game object. A game object may contain any number of game sensors, game con-
trollers, and game actuators. These are pure Blender game engine concepts, unrelated to
production devices.

The game sensors of various types relate the associated game object to user input,
message reception, collisions, timing events, ray tracing, and actuator events. The game
actuators affect objects in the scene, like moving, creating, destroying, changing proper-
ties, etc. The simple game controllers are Boolean operators, which test their connected
game-sensors and translates the resulting truth value to triggering of the connected game
actuators.

For simple usage of the game engine the Boolean controllers may be adequate. However,
for implementing advanced behaviour, the game controller can be chosen to be a callable
object in a Python module. This type of controller will, when triggered by any sensor,
execute the callable Python object in the Python interpreter embedded in the game
engine. There is no limit to what a Python callable is allowed to access, in the game
engine as well as with the general operating system environment.

A game controller on some object can access all state information in all of the sensors,
regardless of how it was triggered. For instance, a game sensor set up for triggering its
game controllers on some event in the game engine is an efficient event-based method for
activating the controllers. Functionally the same behaviour may be achieved by polling of
the sensor by the interested controllers. This can be more flexible, whenever the controller
has multiple concerns, not all of which are related to the mentioned sensor.

4.2.3. Game Physics

Game physics gives realistic dynamic behaviour for objects under its control. It gives a
generic method to emulate reality for objects which are not under explicit motion control
in reality. I.e. objects that in the real world have no controller or mechanical manipulator.
There are plenty of examples thereof, like passive joints and links in robots; workpieces
falling from machines, grippers, or conveyors; obstacles being bumped into by AGVs;
textile or other flexible material which is only partially fixed; etc.

One strategy for such free objects in the emulated production system is to explicitly
control them. I.e. to implement controllers that execute the behaviour of the free objects.
This requires a great deal of object-specific knowledge accessible to the controller.

Consider the example of machined workpieces dropping out of a machining station.
Such workpieces may have highly complex geometries, and they may even be a one-shot
batch. The stable stances of such workpieces on a flat support may be easily enumerated.
The transitions from the dropping phase-space state (trajectory) to the final stance may
be somewhat more complicated, even when landing on a flat surface; at this point friction
and elasticity, or even plasticity, come into play. Finally, since there will typically be
several workpiece in the container under the machine outlet, most of the workpieces drop
on top of some structure of other workpieces, scattering and bouncing before settling
in the structure. Generating offline-knowledge for the controller to use for generating
realistic scenarios in real-time for such, typical situations seems impossible in the general
case. If possible, the solution will be very unrealistic; the knowledge of the controller
will be more a kind of simulation scenario, specific not only for the workpieces but also
for the environment; or there are some very simplifying features or assumptions of the

Using the Blender Game Engine for Real-Time Emulation of . . . 179

10 Morten Lind and Amund Skavhaug

specific workpieces and the specific container.
The game physics in Blender gives the opportunity to undertake an alternative strategy.

By modelling a collision body as a compound of convex rigid bodies, alongside the visible,
geometric skin of the workpiece, it is possible to achieve physically realistic dynamic
behaviour of the workpieces with their environment and among them.

There are some drawbacks with using game physics.

• The Bullet physics library does not feature static friction. This may not seem severe
at first, but it implies unrealistic scenarios for parts lying at rest on a support. If the
support accelerates however weakly horizontally or has even the slightest inclination,
the supported parts slide on the surface.

• The physics computation, even for a moderate amount of bodies, is quite heavy; and
it must be kept in mind that this computational load can currently not be distributed
out of the game engine process. To achieve acceptable performance for a complex pro-
duction scenario with physics based dynamics, high-performance computing hardware
may be necessary.

The two drawbacks of using game physics can be resolved by the same solution. The
solution is based on separating the physics dynamics body from the workpiece geometry
and appearance, and to be able to freeze the workpiece geometry to where it settles, free-
ing up the physics dynamics body for use by other workpiece geometries. By maintaining
a pool of and reservation system for physics dynamics bodies in the game engine, only
a limited number is necessary, and thus limits the load on the CPU. Simultaneously it
resolves the problem with slipping workpieces, since they will freeze onto their supporting
surface when below some motion threshold.

5. Device Emulator Designs

This section describes and discusses some aspects of lower level (mechanistic) design,
towards implementation.

The controllers of devices in the real production system are the targets for implemen-
tation of device emulators. A device emulator interacts with the game model, i.e. its own
device model, other device emulators, and other modelled elements, in much the same
way as the real device interacts with its surroundings in reality.

A device is modelled geometrically with Blender, and annotated appropriately for
functionality. The device control emulator is then implemented in Python and associated
with the geometrical models in the game engine.

5.1. Implicitly Controlled Devices

The virtual production reality in the game engine contains activities for which there
are no explicit controllers in the real production system. Such natural activity in reality
may play an implicit role in the design of the production control. An example is that
workpieces released from a gripper will drop downwards, and it will come to rest if
supported by a level surface or a fixture. This mechanism is implicitly used in most
pick-and-place systems in production automation.

As suggested in Section 4.2.3, and depending on the implicated complexity, the strategy
of resolving the dynamic control of free objects may, or may not, involve game physics.
Thus, either the controllers of the solution takes on the explicit dynamics of the emulated

180 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 11

stopControl
 : StopController

7: releaseOne()

1: setBlocking()

stopBeam
 : GameObject

2: insert()

8: retract()

14: insert()

trolley1
 : GameObject

trolleyControl1
 : TrolleyController

3: stopCollision()

9: stopCleared()

trolley2
 : GameObject

trolleyControl2
 : TrolleyController

5: trolleyCollision()

11: trolleyCleared()

15: stopCollision()

stopSensor
 : GameObject

13: trolleyCleared()

chain
 : ChainController

4: blocked()

10: unBlocked()

6: blocked()

12: unBlocked()

16: blocked()

Figure 4. Communication diagram for the simple scenario of two trolleys approaching a PnF-
stop. Exposed game engine controllers are shown in light blue, unexposed controllers in blue, and
game engine objects in orange.

subsystem in its entirety, or the dynamics of the subsystem objects are left entirely to
game physics. As it turns out, a hybrid solution is possible, where a set of controllers
manages the deployment and activation-states of physics enabled devices.

In the following, two mechanisms for handling uncontrolled objects will be exemplified.
One deals with trolleys on the PnF-conveyor, using direct, unexposed controllers for
driving the trolleys and interacting with other trolleys and PnF-stops. The exact same
mechanism is applicable on pallet conveyors. The other example is game physics control
of workpiece objects.

5.1.1. PnF-Trolleys

The dynamics of the PnF-trolleys in the PnF-conveyor of the demonstrator system,
the elevated red track in Figure 1, are handled by direct, unexposed control. The control
of the trolleys are unexposed to the production control system, and simply realizes the
physical constraints under which they move on the conveyor.

Trolley controllers move their game objects upon reception of motion updates from the
conveyor chain controller. In case a trolley is blocked, it unsubscribes from such motion
updates. Trolleys can be physically blocked by either bumping into the blocking-beam of a
PnF-stop, or by bumping into the rear of other blocked trolleys. Either situation generates
a collision event from the trolley game object, and the trolley controller unsubscribes from
the motion updates. Whenever the interference from the preceding collision is cleared,
the trolley controller receives another collision event from the trolley game object, and
it resubscribes to motion updates.

The motion updates, tied to the frame-rate of the game engine, from the chain drive
gives enough information to the trolley controller, that it can update its position along
the conveyor track. The conveyor track is simply modelled as a closed polygon-mesh in
Blender. In the demonstrator, the conveyor is a single circular loop, but for more advanced
overhead- or pallet-conveyors, branches in the track may occur, and diversion-controllers
must be implemented for the intersections on the paths.

Figure 4 is a communication diagram for controllers and game objects in a scenario
involving one PnF-stop and two PnF-trolleys. The scenario assumes initially that two
trolleys are approaching the PnF-stop.

(1) The PnF-stop is ordered, by external activation from the production control, into
the blocking state.

Using the Blender Game Engine for Real-Time Emulation of . . . 181

12 Morten Lind and Amund Skavhaug

(2) The stop controller inserts its stop beam into the track.
(3) As the first trolley interferes with the beam, its collision sensor triggers the trolley

controller.
(4) The trolley controller unsubscribes from motion updates from the conveyor chain

controller.
(5) As the second trolley gets into collision with the first trolley, its collision sensor

triggers.
(6) The second trolley controller unsubscribes from motion updates from the chain

controller. The state is now that both trolleys are blocked at the PnF-stop.
(7) The external production control orders the PnF-stop controller to release one

trolley.
(8) The PnF-stop controller orders the retraction of the beam from the track.
(9) This collision sensor of the first trolley triggers its controller, signalling that the

stop beam interference has been cleared.
(10) The trolley controller resubscribes to motion updates from the chain drive con-

troller, and it starts moving the trolley again.
(11) As the first trolley moves out of interference with the second trolley, the controller

for the second trolley gets triggered, signalling the cleared interference.
(12) The second trolley controller resubscribes for motion updates.
(13) The presence sensor at the PnF-stop now triggers as the first trolley completely

passes the PnF-stop.
(14) The PnF-stop controller reacts to this by re-inserting the beam into the track.
(15) As the second trolley object reaches the beam, its collision sensor triggers the

controller.
(16) The second trolley controller unsubscribes for motion updates.

Thus the final state is that the first trolley is moving along downstream of the PnF-
stop, while the second trolley remains blocked at the PnF-stop.

The dynamics of the trolleys could have been designed by using constrained motion
of physics objects, and would then have been even more realistic. However, the chosen
design of direct control is sufficiently generic and less CPU-intensive.

5.1.2. Workpieces

The simplicity of the control logic and emulation of trolley- and pallet-conveyors, being
fixed installations within one production application and varying little across applica-
tions, favours the direct control strategy. Workpiece types and environments, on the other
hand, may exhibit high variation even within a single production application in flexible
manufacturing. If opting for the direct control approach, as mentioned in Section 4.2.3,
the designers and implementers of the emulation system faces high complexity of knowl-
edge management regarding stable states, mechanical interactions, and dynamic control
of the workpieces.

For these reasons, the game physics approach is a natural choice for workpiece manage-
ment. To limit the computational load, the hybrid approach was chosen. The technique is
to manage a limited pool of dynamic bodies, where attachment and control of a workpiece
skin is done on request.

The following describes a scenario where a new workpiece is requested to enter the
production scene. In the production demonstrator, cf. Figure 1, this occurs at the CNC-
machines on the far left.

The scenario in Figure 5 involves the singleton objects for workpiece management and
workpiece body pool. A workpiece body object is a compound of physics enabled objects,

182 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 13

wpProd
 : WorkpieceProducer

1: workpieceOrder()

wpMan
 : WorkpieceManager

2: addWorkpiece()

bodyPool
 : BodyPool

5: attachBody()
skin

: GameObject
3: new()

6: _getFreeBody()

wpBody
: WorkpieceBody

7: attach()

body
: GameObject

4: newWorkpiece()

9: setPose()

11: restoreDynamics()

10: setParent()

8: getPose()

Figure 5. Communication diagram for entering a new workpiece into the emulation.

and is owned by a workpiece body controller. The body controller handles the logic of
suspending and resuming dynamics for its body object, as well as placing the body at,
and attaching the workpiece skin to it. For every site in the production scene where
workpieces can be generated, there exist a workpiece producer. The workpiece producer
initiates the whole process of creating and handling a newly created workpiece skin, as
the following description illustrates.

(1) From the external production control, an order to create a new workpiece arrives
at the workpiece producer.

(2) The workpiece manager is instructed to create a new skin.
(3) A new skin object comes to existence in the game engine.
(4) Any new skin starts its life cycle by informing the workpiece manager that it has

come into existence.
(5) The body pool is instructed by the workpiece manager to attach a body of the

correct type for handling the dynamics of the free skin.
(6) The body pool internally allocates a free body controller of the appropriate type.
(7) The body controller is handed a reference to the pertinent skin.
(8) The pose of the given skin is retrieved.
(9) The body object is set in pose to coincide with the skin.

(10) The skin is parented to the body, which effectively makes it move with the body.
(11) Finally the physic dynamics of the body object is reestablished, making it interact

in a mechanically realistic manner with its surroundings.

The implemented logic that takes over after the described scenario, in the workpiece
body control, is to first test whether the body is released in collision. If so, the dynamics
is immediately suspended, the workpiece skin is frozen onto one of the objects it interferes
with, and the body is freed at once. This behaviour is deliberately implemented for easy
emulation of an attachment process. On the other hand, if the body is not initially in
collision, dynamics ensures that the workpiece will start falling, tumbling, sliding, as long
as the amount of motion exceeds a certain threshold. When the amount of motion goes
below the threshold, the same method of freezing the workpiece skin is employed, as if
there was an initial collision.

5.2. AGV Control

The devices internal to a minimally modelled AGV are a velocity controller and a lo-
calizer. These devices are easily emulated in the game engine. The velocity controller
presents an interface with a single method for setting a 2D velocity screw, composed
of two linear and one angular velocity components. At every time frame, the position
and orientation of the AGV object is displaced according to the 2D velocity screw. The

Using the Blender Game Engine for Real-Time Emulation of . . . 183

14 Morten Lind and Amund Skavhaug

localizer presents an interface of one method for retrieving the world pose of the AGV,
which is read out as the pose of a central geometry of the AGV in the game engine.

These basic devices are realistically emulated in terms of interface, but too ideal in
terms of precision and stability. A real velocity controller runs on data from odometers
and inertial sensors, the precision and stability of which may be far from ideal. The real
external positioning system uses vision-systems for recognition and tracking of LEDs on
the AGVs, for which there may be abundant calibration and stability issues. Thus, it
is mostly the interface and the nature of the data from the emulated devices that are
realistic, rather than the detailed behaviour.

Based on these basic emulated devices, the AGV controller itself, composed of more ab-
stract controllers like motion control, tasking control, traffic and navigation management,
etc., may be implemented outside of the game engine. This is an example of crossing the
game engine boundary for implementing the devices, and will help distribute the com-
putational load on the game engine node in the system of simulation nodes. In a real
application, this implies that the whole AGV controller system, except for the funda-
mental velocity controller and localizer, can be ported directly from the simulation to
the real AGV platforms.

It is worth noting that even the velocity controller could be decomposed and moved to
an external node. This requires leaving the set of motor controllers, and the odometers
as the elementary devices to be emulated. Though this design may eventually alleviate
further the computational load on the game engine node, the frequency of communica-
tion among velocity controller, odometers, and motor controllers may be so high that
the communication load on the game engine node becomes the limiting factor for per-
formance. This may not only be the case for the emulation system, but may also be true
for the real AGVs.

5.3. Robot Control

The robot controllers and kinematics are based on a framework called PyMoCo (Python
Motion Control). For a general description of PyMoCo, confer Lind et al. (2010), and
for a demonstration in application, confer Schrimpf et al. (2010). Motion control in the
PyMoCo framework is based on UDP-socket interaction with the native robot low-level
controller.

Each robot low-level emulator in the emulation system initializes by finding the game
engine objects belonging to its particular robot, gets allocated a socket port pair, and
starts up listening for control input on the game engine node host. At some node in the
production control, a program can be started for setting up a motion controller with
PyMoCo, or any other motion control method, and provide a motion control interface
over Ice

TM

to the production control system at large.
The implemented design for robot control in the emulation system is shown in Fig-

ure 6. At the highest level, the Task Handler receives macroscopic motion commands,
which amounts to moving the robot tool frame linearly to a given 3D-pose. The Task
Handler sets up the Task Space Interpolator for the Joint Data Controller to use. The Joint
Data Controller requests task space poses from the Task Space Interpolator in real time,
and uses the Inverse Jacobian to compute the corresponding joint motion to achieve the
interpolated task space pose. The computed joint target is sent to the Low-Level Con-
troller , which, as a game engine controller, resides inside the game engine. In case of the
real low-level controller, the joint targets are adjusted and immediately distributed to the
individual servos of the robot arm. In the emulated robot device, the Forward Kinematics

184 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 15

Motion Control

Low-Level Control

Task Handler

Task Space Interpolator

Joint Data Controller

Inverse JacobianForward Kinematics

Low-Level Controller

Robot Parts/Servos

0 1 2 3 4 5 6

Figure 6. Object diagram for the implemented design for motion control.

is used to compute where to place the geometric objects, representing the parts of the
robot, according to the given joint target.

The discussion pertaining to deployment and distribution of control elements for AGVs
applies equally to the robot emulation; confer Section 5.2. It is possible, but with high
computational load ensuing, to implement the motion control inside the game engine.
This computational load of the game engine node is traded off for higher communication
load, by having the motion control outside of the game engine. In effect, this leaves
the low-level control and the associated computation of kinematics in every time frame
inside the game engine. The separation at this level, i.e. low-level control inside and
motion control outside of the game engine, is natural since that separation exists in
real robot controllers. However, at no considerable extra communication overhead, the
forward kinematics computation could be moved outside the game engine by simply
sending poses of robot parts rather than joint data over the low-level controller input
socket. In the current implementation this has not been considered due to the implied
violation of the philosophy of having raw devices truly emulated in the game engine.

6. Performance Indication Experiments

As touched upon in Sections 4.1.2, 4.2.3, and 5.2, a number of parameters and circum-
stances affect the performance of an emulation setup, and thereby the entire surrounding
simulation. Whether an obtained actual performance is acceptable for a given emulation
and simulation setup will depend on the real-time nature of the pertinent application.

Absolute performance of a system setup executing with the Blender game engine is
heavily depending on the quality and performance of many parts of the computer system
setup as a whole. As is often the case in such situations, it is better to focus on the
relative behaviour of certain interesting or indicating observable quantities as a function
of problem size; conveying an impression of the performance scalability of the principles
and technologies.

6.1. Test Considerations

With the possible exception of physics-enabled, colliding objects, it is clearly most in-
teresting to make performance test of scalability on independent devices. The perfor-
mance observables will be presented as amortized values, to clearly emphasize deviations
from linear scaling. Complexity arising from interaction between controllers of emulated

Using the Blender Game Engine for Real-Time Emulation of . . . 185

16 Morten Lind and Amund Skavhaug

production devices is not to be attributed to the emulation system, but rather to the
simulated production control system.

Real-time emulation clearly distinguishes itself from discrete event simulation by not
controlling real time. The factors that may be controlled inter-dependently in real-time
emulation, and are critical indicators for performance, are CPU-load and frame-rate1 The
Blender Game Engine has a switch called “Enable All Frames”, which when set drives the
emulation in a “free-running mode”. When set, the frame-rate is in principle unlimited,
and determined by the system resources such as performance and availability of network,
CPU, GPU, RAM, bus speeds, etc. Depending on the nature of the executing emulation
together with all other resource loads on the, possibly distributed, computing system,
one of these will, at any given time, be the limiting factor on the achieved frame-rate. If
“Enable All Frames” is unset, a parameter in the game engine sets a fixed upper limit
of the frame-rate. Naturally, any of the aforementioned system resources may be fully
loaded at a lower frame-rate; which then becomes the actual frame-rate in the emulation.

This leads to two pure performance indication principles.

• CPU Consumption: With “Enable All Frames” unset and a fixed target frame-rate,
the CPU consumption for a set of tasks, of a given duration, may be considered a
performance indicator of the game engine among the tasks. The CPU consumption is
measured by reading the process resource statistics from the operating system before
and after the task, and is taken as the sum of both system and user times consumed for
the task period. Obviously, a lower CPU consumption is considered better performance.

• Achieved Frame-Rate: With “Enable All Frames” set and continuous monitoring
of frame-rate and task specific state or quantity, these may be correlated to give a
performance indication. A higher frame-rate indicates better performance. Since frame-
rate is not an easy quantity to amortize over a problem size value, a more appropriate
measure is the reciprocal of the frame-rate; the emulation cycle time.

Both of the CPU consumption and the achieved cycle time are easy to test for scalability
by amortizing them over the problem size.

6.2. Experiment Setups

Three production-relevant experiment setups have been used for performance-testing
the use of the Blender game engine. Two of these setups are presented in the following
sections and they are used to test directly the scalability in terms of number of devices
and physics-enabled objects in the game engine.

The experiment setup that is not presented in detail here was set up for running a
variable number of emulated robot controllers. The robots were controlled from a remote
PC, over a switched 100Mb/s network, in one single process running the corresponding
motion controllers. The task for each motion controller was to drive its robot through
a fixed number of pick-and-place cycles and with all tasks running simultaneously. Such
a setup characterizes a performance test of the motion control framework set up on the
motion control PC, rather than a performance test of the game engine setup. The motion
control PC managed to control up to ten robots before being too loaded to respond in a
reasonable real-time manner; i.e. when the motion of the robots in the game engine scene
started to exhibit an observably jagged motion. Up to this maximum of robots, only a

1The frame-rate is the frequency with which the scene is displayed and the maximum triggering-rate of the game
sensors.

186 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 17

very slight increase in amortized CPU consumption was observed on the motion control
PC. It has not been investigated if the total CPU load on either the motion control PC
or the game engine PC was the limiting factor. This will be an objective for a future
experiment.

The remaining two experiment setups that were isolated to, and targeted the internals
of the game engine, were both deployed on four different hardware setups with near-
identical systems environments. All four systems used the Debian GNU/Linux “testing”
distribution and the same versions of Blender, Python, ZeroC Ice

TM

, etc. The config-
urations of the systems environments were left very close to the defaults for a freshly
installed Debian GNU/Linux system. This is not by any means a guarantee that the
performance test results may be used for comparing the four hardware platforms; since
the installation process performs a lot of auto-detection and auto-configuration, and be-
cause drivers for different hardware peripherals may exploit or disregard a multitude of
features. However, it does indicate what is to be expected out-of-the-box and it makes it
quite easy to repeat and verify the results.

The four hardware platforms consisted of two desktop PCs and two laptops; all with
enough RAM that no paging occurred during any experiment. The rough platform spec-
ifications are given here with a mnemonic label for each hardware system:

• i7-860+gtx260 A high-end desktop with the Intel i7-860 processor and a graphics
card based on the NVidia GTX260 GPU. This is the absolute top line of the four
systems in any respect.

• d525+gt218 A very low-end mini-desktop PC, with the Intel Atom D525 processor
and an integrated NVidia GT218 GPU. Though the GPU is fair, the processor makes
this the system with the lowest expectations,

• t8300+gm965 A Lenovo Thinkpad X61 laptop with the Intel Core 2 Duo T8300
processor and the integrated GMA X3100 GPU in the Intel GM965 chipset.

• t7300+gm965 The same configuration as the Thinkpad X61, but with a lower per-
forming Intel Core 2 Duo T7300 processor. The laptop is a Lenovo 3000 V200.

All experiments presented in the following sections are based on one single run of
the setup for each system, with “Enable All Frames” set and continuous logging of the
number of devices or objects together with the actual frame-rate. Statistics is generated
by steadily increasing the number of objects while ensuring that an as compact as possible
coverage of the achievable domain is sampled.

6.3. Experiment Setup: Internally Controlled AGVs

The most central question for any production emulation scenario is how the performance
scales with the number of active, production related, controlled devices in the game
engine. An emulation experiment has been set up, where the number of emulated AGVs
is automatically and continuously increased with regular intervals. The experiment is
carried out in one single emulation run, with frequent logging of the number of AGVs
and measured frame-rate. The setup is displayed in Figure 7(a).

The measurements were made in the range of 1 to 100 AGVs, and the results are
displayed in Figure 7(b) as amortized cycle time against number of AGVs. In order to
increase identifiability of the higher-count end of the measurements, the lower, peaking
tail at the low-count end has been truncated at approximately 20 AGVs. The reason
that the amortized cycle time peaks at the low-count end is that few devices each gets
a considerable contribution in the amortization of the constant load of the game engine;

Using the Blender Game Engine for Real-Time Emulation of . . . 187

18 Morten Lind and Amund Skavhaug

(a) AGV performance experiment scene.

20 40 60 80 100
Number of AGVs

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

0.0018

0.0020

Am
or

tiz
ed

 c
yc

le
 ti

m
e

[s
]

Internally Controlled AGVs
CPU + GPU
d525 + gt218
i7-860 + gtx260
t7300 + gm965
t8300 + gm965

(b) Amortized cycle time over number of AGVs.

Figure 7. Game engine setup and result for performance of internally controlled AGVs.

i.e. the part of the game engine load not associated with AGV control.
It is not surprising that the high-end desktop PC, i7-860+gtx260, is far superior to the

other systems. The desktop systems, i7-860+gtx260 and d525+gt218, exhibit an expected
behaviour with a slight super-linear computation time, i.e. slightly increasing amortized
cycle time. It is, however, surprising that the two laptop systems, t8300+gm965 and
t7300+gm965, exhibit a slight decrease in amortized cycle time, i.e. sub-linear increase
in computation time.

6.4. Experiment Setup: Physics-Enabled Objects

Though physics-enabled objects, categorized as “Dynamic Body”, “Rigid Body”, and
“Soft Body” in game engine terms, are not strictly necessary for most production system
emulations, it may be an important contribution to the realism of the emulation, and in
many cases it directly alleviates the need for implementing an artificial virtual-physical
workpiece management system. In certain production settings, or aspects thereof, the
physical properties of bouncing, tumbling, slipping, and sliding are of paramount impor-
tance to the usefulness of an emulation of the production system. This section presents
an experiment setup and two experiments for performance testing of physics-enabled
objects. This may be characterized not as an isolated performance test of the Blender
game engine, but rather as a combined test with the integrated Bullet physics library.

A device type that is found abundantly in production settings due to its low cost,
flexibility, and reliability, is the Vibrating Feeder. It is well suited for performance testing
of physics-enabled objects, because it bases its operation massively on physics properties
like friction and elastic collisions, involving many interacting or separated workpieces.

A simple model of a vibrating feeder is made up by a surface of friction bounded on
the sides by low-friction inclined plates. By simply toggling the feeder plate between
two narrowly displaced positions in any game engine time frame, objects will vibrate or
bounce, depending on the size and direction of the displacement. Many aspects and pa-
rameters are possible to model, such as frequency, number of positions and the pattern of
motion among them. Such effects and parameters will affect the motion of the supported
objects, very much so in the game engine as in a real vibrating feeder. For the purpose

188 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 19

(a) Physics objects performance experiment
scene for limited inter-object collisions.

0 20 40 60 80 100 120 140 160
Number of Objects

0.0000

0.0005

0.0010

0.0015

0.0020

Am
or

tiz
ed

 c
yc

le
 ti

m
e

[s
]

Physics: Independent Objects
CPU + GPU
d525 + gt218
i7-860 + gtx260
t7300 + gm965
t8300 + gm965

(b) Amortized cycle time over number of objects for light (rate
controlled) inter-object collisions..

(c) Physics objects performance experiment
scene for heavy inter-object collisions.

0 20 40 60 80 100 120
Number of Objects

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Am
or

tiz
ed

 c
yc

le
 ti

m
e

[s
]

Physics: Colliding Objects
CPU + GPU
d525 + gt218
i7-860 + gtx260
t7300 + gm965
t8300 + gm965

(d) Amortized cycle time over number of objects for heavy (bar-
rier controlled) inter-object collisions..

Figure 8. Game engine setup and results for performance of physics-enabled objects. The two
cases refer to controlling the number of physics-enabled objects, O-rings on a vibrating feeder,
by either putting barriers into the flow of O-rings or increasing the production rate of O-rings.

of the experiments presented here, it suffices that an adequate direction and length of
displacement may be configured in the local reference system of the feeder surface.

There are two experiments performed in the vibrating feeder setup. The first experi-
ment sets up the objects for being fed separately along the feeder surface, in principle
only interacting with the feeder surface; the Free Flow experiment. This setup is shown
in the screen-dump in Figure 8(a). The second experiment provokes massive inter-object
collisions in addition to the interaction of each object with the feeder surface; the Barrier
experiment. This is obtained with the same setup, but with a set of barriers configured
to be slid into the flow of objects, creating pockets where objects are trapped. The ex-
periment setup is seen with the barriers shifted into the object-flow in Figure 8(c). To

Using the Blender Game Engine for Real-Time Emulation of . . . 189

20 Morten Lind and Amund Skavhaug

the far right in the scenes is seen an emulated machine, that produce workpieces1 at a
dynamically controlled rate. The O-rings drop from the machine outlet onto the vibrat-
ing surface, being transported along to the far left where they drop freely over the end
of the feeder into a box where they are consumed; and destroyed as game engine objects.

The free flow experiment is carried out by a continuous increase of the steady state
number of objects on the feeder, by manually adjusting the production rate of the O-ring
producer. The process is allowed to run from a few objects and until the frame-rate drops
to a few Hertz. The barrier experiment runs automatically with constant production rate
of O-rings, and the barrier pockets fill up and trickle over one by one. As the last barrier
overflows, and objects begin to fall off the feeder, the number of objects enters a steady
state and the experiment is stopped.

The two experiments are highly relevant to real application scenarios of production,
where transport and dynamic storage of small workpieces are frequent uses of vibrating
feeders.

Results for the experiments are seen in Figures 8(b) and 8(d). The results exhibit much
the same characteristics as was the case for the experiment setup with AGVs and the
same comments and conclusions apply here.

7. Discussion and Conclusion

The game engine for use in real-time emulation and simulation of production systems is
an example of preadaptation; a term borrowed from evolutionary biology. The designers
and developers of the Blender game engine did not consider the domain of production
control simulation. However, as there is a large overlap in geometric, logic, and real-time
concerns of a 3D computer-game and production device emulation, the game engine
platform turns out to nicely support this domain.

The proposed principle of a clean separation of device-emulation and production-
control is considered a major contribution of this paper. The level of complexity of the
demonstrator and implementation is almost complete with regard to architecture and
design. There seems to be no hindrances for expanding to the complexity-level of the
real production system; i.e. scenarios involving changeovers where painting system car-
riers, robot grippers, and workpiece types are changing during operation. Specifically, a
few extra, uncomplicated devices will have to be added to the emulation system, whereas
the real complexity of the full-scale scenario will appear at the production-control level.

The currently implemented production control system for testing the emulation system
follows the operations described in Section 3. It does not perform any kind of scheduling
and there exist only few instances of device reservation. These are central concepts for
a production system that support device and machine utilization across several coinci-
dent product-setups over the same production resources. In future work, the production-
control system will be targeted for full implementation, and the emulation system will
be of central value for that development.

While the implemented AGV-system serves the purpose for logistics operation in the
demonstration, it is much too simplified for realistic emulated operation. The value of the
current implementation of the emulation system is also apparent here, used as develop-
ment and test platform for implementing missing functionalities; e.g. trajectory planning
and control, external localization system, and obstacle identification and avoidance.

1The workpiece used is an O-ring modelled by a torus with approximately 1600 polygon faces.

190 M. Lind and A. Skavhaug (2011)

International Journal of Production Research 21

The implemented demonstration runs at several tens of Hertz on a modest, contem-
porary PC. While a severely wrongly balanced load of computation may impair the
frame-rate to the level of being unusable for robot control or interference detection, this
is easily avoidable. The ever increasing power of common PCs together with game en-
gines taking advantage of new and emerging parallel processor architectures, e.g. GPUs,
will enable acceptable performance of real-time emulation of entire flexible factories.

Production system engineers may take advantage of an emulation-setup, such as the
demonstrator presented in this paper, as a training platform for conceptual design, im-
plementation, commissioning, and run-in of a new production control system. Remaining
issues during real commissioning may even have been foreseen during emulation-training;
which is highly preferable to dealing with unknown issues during expensive downtime of
a production installation.

Three experiments have been carried out and presented to address the performance
of the emulation execution in the game engine; confer Section 6. Each experiment was
carried out on four different computers, comprising two desktop PCs and two laptops.
All experiments exhibit a reassuring, near-linear performance complexity. A consistent
slightly sub-linear complexity in all experiments on the laptop platforms is the most
surprising result from the experiments. This phenomenon has not been explained or in-
vestigated. There are two immediately plausible explanations, which will be investigated
in the future:

• Even though the operating system and run-time environments are close to identical
on all four computer platforms, the laptops are identified automatically as targets for
power saving. Thus, with increased load on the system resources during an experiment,
the number of active power saving features decrease, and the system performance
increases.

• The GPUs of the laptop systems are inferior to those of the desktop systems, and
they are the limiting factor at low problem sizes where the game engine runs with a
high frame-rate. As the problem size increase, the CPUs become more loaded and they
eventually become the limiting factor at the higher problem sizes.

Both explanations are consistent with poor performance at low problem sizes and with the
slightly sub-linear overall behaviour. The test results lead to the overall conclusion that
there are, within the domains tested, no super-linear effects that hampers the scalability
of performance with the problem size in an emulation.

The suitability of the developed principles, architecture and chosen technologies, has
been successfully demonstrated by implementation for a medium sized section of a pro-
duction system. Hence, we conclude that our approach is applicable as a development
support within the domain of distributed, autonomous production control.

Acknowledgements

The authors wishes to thank The Norwegian Research Council for funding this work
through the IntelliFeed research project. Thanks also go to the industrial project partners
Glen Dimplex Nordic AS and Scandinavian Business Seating AS for good input and
interaction. Finally, thanks to Production Technology, SINTEF Raufoss Manufacturing
AS for good support throughout the project.

Using the Blender Game Engine for Real-Time Emulation of . . . 191

22 REFERENCES

References

Caie, J., 2008. Discrete Manufacturers Driving Results with DELMIA V5 Automation
Platform [online]. : ARC Advisory Group. ARC White Paper on behalf of Dassault
Systèmes [2011-04-01].

Hall, K.H., Staron, R.J., and Vrba, P., 2005. Experience with Holonic and Agent-
Based Control Systems and Their Adoption by Industry. In: V. Maŕık, R.W. Brennan
and M. Pěchouček, eds. HoloMAS, Vol. 3593 of Lecture Notes in Computer Science
Springer, 1–10.

Henning, M., 2004. A New Approach To Object-Oriented Middleware. IEEE Internet
Computing, 8 (1), 66–75.

Henning, M., 2006. The Rise and Fall of CORBA. ACM Queue, 4 (5), 28–34.
Henning, M., 2007. API Design Matters. ACM Queue, 5 (4), 24–36.
Kim, H., Zhou, C., and Du, H.X., 2000. Virtual Machines for Message Based, Real-

Time and Interactive Simulation. In: Winter Simulation Conference, Vol. 2, Orlando,
Florida, USA San Diego, California, USA: Society for Computer Simulation Interna-
tional, 1529–1532.

Lind, M. and Roulet-Dubonnet, O., 2010. Emulation of Manufacturing Devices for Sim-
ulation of Distributed Real-Time Control. In: T.K. Lien, ed. Proceedings of the 3rd
CIRP Conference on Assembly Technologies and Systems, Trondheim, Norway NO-
7005, Trondheim, Norway: Tapir Academic Press, 67–72.

Lind, M., et al., 2009. Holonic Manufacturing Paint Shop. In: V. Maŕık, T. Strasser and
A. Zoitl, eds. Holonic and Multi-Agent Systems for Manufacturing, Vol. 5696 of Lecture
Notes in Computer Science Springer Berlin / Heidelberg, 203–214.

Lind, M., Schrimpf, J., and Ulleberg, T., 2010. Open Real-Time Robot Controller Frame-
work. In: T.K. Lien, ed. Proceedings of the 3rd CIRP Conference on Assembly Tech-
nologies and Systems, Trondheim, Norway NO-7005, Trondheim, Norway: Tapir Aca-
demic Press, 13–18.

Maŕık, V., Vrba, P., and Fletcher, M., 2005. Agent-Based Simulation: MAST Case Study.
Emerging Solutions for Future Manufacturing Systems, 159, 61–72.

Moon, D.H., et al., 2006. A case study of the body shop design in an automotive factory
using 3D simulation. International Journal of Production Research, 44 (18–19), 4121–
4135.

Pannequin, R. and Thomas, A., 2010. Emulica: an emulation-based benchmarking frame-
work for production control experiments. In: 10th IFAC Workshop on Intelligent Man-
ufacturing Systems, Lisbon, Portugal, Jul.. IFAC.

Park, C.M., Park, S., and Wang, G.N., 2009. Control logic verification for an automotive
body assembly line using simulation. International Journal of Production Research, 47
(24), 6835–6853.

Schrimpf, J., et al., 2010. Real-Time Sensor Servoing using Line-of-Sight Path Generation
and Tool Orientation Control. In: T.K. Lien, ed. Proceedings of the 3rd CIRP Con-
ference on Assembly Technologies and Systems, Trondheim, Norway NO-7005, Trond-
heim, Norway: Tapir Academic Press, 19–23.

Smith, J.S., 2003. Survey on the Use of Simulation for Manufacturing System Design
and Operation. Journal of Manufacturing Systems, 22 (2), 157–171.

Valckenaers, P. and Van Brussel, H., 2005. Holonic Manufacturing Execution Systems.
CIRP Annals - Manufacturing Technology, 54 (1), 427–432.

Vrba, P. and Maŕık, V., 2005a. From Holonic Control to Virtual Enterprises: The Multi-
Agent Approach. In: R. Zurawski, ed. The Industrial Information Technology Hand-

192 M. Lind and A. Skavhaug (2011)

REFERENCES 23

book. CRC Press.
Vrba, P. and Maŕık, V., 2005b. Simulation in Agent-based Manufacturing Control Sys-

tems. In: Proceedings of the IEEE International Conference on Systems, Man and
Cybernetics, Vol. 2, Oct.. IEEE, 1718–1723.

Using the Blender Game Engine for Real-Time Emulation of . . . 193

194

PyMoCo – Python-Based Robot Motion Control 195

4.10 PyMoCo – Python-Based Robot Motion Control

Morten Lind and Johannes Schrimpf. PyMoCo – Python-Based Robot Motion
Control. Journal of Software Engineering for Robotics, 2011. ISSN 2035-3928.
In preparation

Declaration of co-authorship

The analysis, design, and implementation of the PyMoCo motion control framework is
the main effort of Morten Lind. Several persons have been peripherally involved during
its development. The single most contributing person among these is Johannes Schrimpf.
Many of the underlying ideas and mechanisms of PyMoCo has come to expression by
conversations during cooperative development in unrelated work.

By far, most of the mechanistic design, and the entire implementation is the contribution
from Morten Lind. All of the live testing, i.e. controlling a real robot system, and
debugging have been performed in close collaboration between Morten Lind and Johannes
Schrimpf.

The entire development of the hardware and software system for intercepting the native
Nachi controller, the first “accessor” which was the kickoff to start development of
PyMoCo, is credited to Johannes Schrimpf.

Morten Lind is the sole writer of the paper, and designer and producer of all graphics and
diagrams. Several reviews and comments during the final revisions was contributed by
Johannes Schrimpf. Trygve Thomessen contributed some important comments about the
Nachi controller description and supported the publishing of the paper. Valuable com-
ments about reorganizing some of the contents were also contributed by Terje Lien to the
final, submitted version. Submission and preparation of the manuscript was contributed
by Morten Lind.

196 M. Lind and J. Schrimpf (2011)

Journal of Software Engineering for Robotics 0(0), – 201x, 0-0
ISSN: 2035-3928

PyMoCo – Python-Based Robot Motion Control
Morten Lind1,∗ Johannes Schrimpf2

1 Department of Production and Quality Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway
2 Department of Engineering Cybernetics, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Abstract—Design and experience with a framework for external motion control of industrial robots is presented. The framework is
implemented entirely in Python. It serves as a proof of concept for performing motion control in Python, from a PC with connection
to an industrial robot controller. Robotic applications requiring advanced, custom motion control, and a high level of integration with
sensors and other external systems, may thus benefit from the efficiency of Python in terms of reduced development time and code
complexity. The framework, dubbed PyMoCo, supplies a set of canonical motion controllers, which are comparable to those found
in contemporary industrial robot controllers. Designing and implementing new motion controllers, and integrating or extending the
included canonical motion controllers, is part of the architectural design of PyMoCo. Laboratory applications of sensor- and vision-
based control demonstrate the usability of PyMoCo as a motion control framework and Python as a robotics application platform. For
motion control applications with a control frequency not exceeding a couple of hundred Hertz, computation deadlines no shorter than
some milliseconds, and latency and jitter at the order of some milliseconds, PyMoCo may be considered a feasible framework.

Index Terms—Motion control, networked robots, real-time distributed, frameworks

1 INTRODUCTION

1.1 Motivation
Advanced motion control applications for industrial
robot controllers are hard and time consuming to de-
velop and integrate with other equipment, information
systems, and sensor systems. They are mostly associ-
ated with all of the following technical challenges and
burdens such as complex mathematics and distributed
deployment. The mathematics involved with 3D geom-
etry and rigid body motion for describing tool motion
and the kinematic Jacobian relation between joint space
motion and operational space motion, are quite complex
(see Stramigioli and Bruyninckx (2001) [1] and Dam et
al. (1998) [2]). Robot controllers, like other embedded
systems integrated in a robotic application, are to be
configured, programmed, and started using its own set
of technologies and systems. The mathematical com-
plexity is inherent when operating controllable linked
mechanisms, but the software system aspects of devel-
oping and integrating a set of hardware devices has the
potential to be alleviated considerably compared by con-
sidering alternative deployment, control, and application

• The presented work has been financially supported, and supported with
equipment, by the SFI Norman programme, funded by the Research
Council of Norway.

• Corresponding author eaddress: morten.lind@ntnu.no

platforms.
An increasing number of industrial robot controllers

allow access to what may be called the Low-Level Con-
troller (LLC). A low-level controller can be described as
an entity providing a real-time interface for addressing
the joint configuration space of the robot arm at an
intermediate-level frequency; in the range from 100Hz
to 1kHz. Applications that utilize interfaces of such
characteristics are usually implemented with compiled,
intermediate-level languages, such as C or C++, and
deployed on some real-time operating system (OS) plat-
form, such as VxWorks, QNX, OS-9, RTAI+Linux. The
obvious reasons for these choices are among hard re-
quirements to real-time performance; efficiency of com-
putation with low cycle times; and latencies on the time
scale of microseconds.

In the robot application and system domain character-
ized by

• non-critical operations,
• moderate tolerance in the motion tasks,
• moderate tolerance to real-time performance,
• and of moderate control cycle time,

a simple and high-level, but general, programming plat-
form may be viable to use. Experimentation with and
development of advanced motion control applications
on such a programming platform may be highly efficient
compared to integration and development in the appli-

www.joser.org - © 201x by M. Lind, J. Schrimpf

PyMoCo – Python-Based Robot Motion Control 197

2

cation platform of the native robot controller. This has
led to the presented attempt at enabling general motion
control application development and execution in the
Python Programming Language1 in user-space of the OS;
resulting in a framework called PyMoCo.

1.2 Technologies For Implementation
The choice of Python as the programming language and
run-time platform was based on a number of factors,
such as:
• All involved developers and immediately potential

users of PyMoCo had experience and expertise with
Python.

• The software that PyMoCo was required to be in-
tegrated with in the laboratory was mostly imple-
mented in Python.

• Python is object oriented, and the code is highly
compact and tidy.

• Several mechanisms exist for increasing perfor-
mance for selected sections of code: NumPy2,
Cython3, CXX4.

• Python is in widespread use and has a good scien-
tific computing community5.

• The standard library of Python is extensive.
• Many off-the-shelf software-technologies that are

generally relevant for robotics applications include,
or have third party, bindings to Python. E.g. ROS6,
Blender7, ZeroC Ice™8, OpenCV9.

Other programming languages and run-time platforms
may be equally justified for implementing and running
PyMoCo, and the choice of Python was circumstantial.
I.e. there is nothing inherent in Python which makes
it the obvious choice, and there is no element of the
design or architecture of PyMoCo which ties it to the
Python language or run-time platform. However, some
of the above mentioned reasons ensured that Python was
adequate.

While, e.g., the standard Linux kernel has gained in
real-time performance by the PREEMPT RT patch (see
e.g. Sally (2010) [3]), there is no near-future outlook that
anything better than soft real-time performance will be
supported by the Python interpreter. This leaves Py-
MoCo aimed only at non-critical applications that have
moderate soft real-time and computational requirements.
For laboratory experimenting, testing, and prototype

1. http://www.python.org
2. http://docs.scipy.org/doc/numpy
3. http://cython.org
4. http://cxx.sourceforge.net
5. http://www.scipy.org
6. http://ros.org
7. http://blender.org
8. http://zeroc.com
9. http://opencvlibrary.sourceforge.net

systems development, the computational and real-time
performance of PyMoCo have shown to be adequate.
This limit on applicability is traded off for an increase
in application development efficiency.

In most fields of robot applications there is a tradition
for requirements of extremely high reliability, stability,
and safety. In fields such as robotic surgery these are
all necessary factors due to the potential consequences.
However, in manufacturing automation the requirement
to reliability is solely attributed to the profit loss and the
loss of customer confidence associated with downtime
on tightly coupled, high-throughput production lines.
In the not so distant future, a long-awaited change of
paradigm in production automation and manufacturing
control may be applied, putting more emphasis on flex-
ibility and capability than reliability and performance
of individual subsystems and production devices (Leitão
(2009) [4]). Such a change of paradigm may render
the currently closed domain of robot application- and
motion-control open for non-real-time platforms like
Python and control frameworks like PyMoCo, respec-
tively.

1.3 Background
In the traditional robot controller, illustrated in Fig-
ure 1(a), only the application control level is accessible
for user applications, with very limited access to the mo-
tion control level. Newer robot controllers allow a wider,
but still restricted, control to lower levels from external
computational entities. The future may see “barebone”
robot controllers, as illustrated in Figure 1(b), where only
the low-level controller is provided and the application
and motion control levels must be provided by the
customer, an automation supplier, or sold separately by
the controller manufacturer.

There are several robot controllers which provide ac-
cess to the low-level controller. Some of the low-level
controllers are tolerant in terms of real-time requirements
and control frequency, and are directly usable with
PyMoCo. Others are highly demanding, requiring hard
real-time and control frequencies in the order of 1kHz.
Using PyMoCo with such “hard” low-level controllers
require the implementation of a “decoupling”-controller,
which must provide a less demanding interface for
PyMoCo, while, by various strategies, meet the demands
of the low-level controller. At the cost of degrading the
potential performance of a class of the low-level con-
trollers, it is thus possible to use PyMoCo universally in
principle. However, as PyMoCo may not itself meet the
requirements of a corresponding class of applications, it
should not pretend to be considered universal in a wider
sense.

Kröger and Wahl (2010) [5] give a contemporary
overview of the directly available low-level accessibility

198 M. Lind and J. Schrimpf (2011)

3

Industrial Robot Controller

Application Control

Motion Control

 0.1Hz - 10Hz

Low-Level Control

 100Hz - 1kHz

Servo Servo

 1kHz - 10kHz

Servo ...

(a) A traditional industrial robot controller
“stack” architecture.

Barebone Robot Controller

Low-Level Control

Servo

 1kHz - 10kHz

Servo Servo ...

Custom Application Control

Custom Motion Control 1Custom Motion Control 2

 100Hz - 1kHz 100Hz - 1kHz

(b) A ”barebone” type of architecture for a robot
controller.

Fig. 1: Simplified structural illustrations of the traditional
industrial robot controller and the “barebone” robot con-
troller. The barebone controller will hopefully become
commercially and widely available in the future.

in some industrial robot controllers. Dallefrate et al. (2005)
[6]) used the Mitsubishi PA-10, a slim robot arm with 7
DoF and an highly open controller. It may be controlled
either in operational space at 100Hz, or by joint velocity
or torque control in 1kHz over ARCNET.

1.4 Scope and Limitations of PyMoCo
PyMoCo can be used in control of industrial robots, the
controller of which
• offer a real-time interface to joint level motion con-

trol, and
• where the computation cycle time of

1.5 Related Work
Laboratory research and development for gaining low-
level access to industrial robot controllers aims at a

multitude of levels. It is fundamental field work, paving
the way for increasing the value and widening the
applicability of general robot motion control frameworks
and platforms.

One approach is to simply use the existing facilities
in the native robot controller at hand, and obtain the
best possible result without intrusion. Cederberg et al.
(2002) [7] used ABB S4C+ controller and obtained a 10Hz
control frequency.

Obtaining sufficient insight into the workings of the
proprietary controller components, by experimentation,
by getting help from the manufacturer, or both, leads
to another approach. This approach may be taken to
either enhance the capability and performance for appli-
cations deployed on the native controller, as described
by Blomdell et al. (2005) [8], or it may be used to open
a peephole for directly addressing the native low-level
controller, as mentioned in the present paper.

An extreme approach is to “cut the cables”, by which
the full flexibility and capability of the robot arm become
accessible at the cost of an obligation to also handle the
full complexity of low-level and servo control. This im-
plies designing and implementing everything, interfac-
ing downwards to power amplifiers and joint encoders,
and upwards to the application layer. An example of
such an attempt is described by Jensen (1998) [9].

The users of such industrial robots with accessible
low-level controllers are open frameworks and platforms
for robot application- and motion-control. Among sev-
eral frameworks and platforms, the Orocos framework
(Bruyninckx (2001) [10] and Bruyninckx et al. (2003) [11])
is a survivor in terms of active development, commu-
nity involvement, availability, and universality. Orocos
provides tools and facilities for communicating with and
controlling robots, through motion control, and upwards
for implementing real-time application control. PyMoCo
may not even pretend to compete with Orocos in perfor-
mance and capability; the main reason being the absence
of hard real-time capability of Python.

1.6 Notation and Symbols
The symbols and notation used by the mathematical
descriptions in this paper are summarized in Table 1.
The notation is by no means strictly specified, but is
illustrated and explained by examples. Further semantics
of the symbols and notation is explained in the text near
the place of usage.

The most unusual of the conventions that may be
extracted from Table 1 is the way of expressing the
coordinate transform, a homogeneous transform, from
one reference frame to another. The notation BT , rep-
resenting the transformation of coordinates from T to
B reference, is normally expressed as T TB . The nota-
tion used in this paper is akin to the standard way

PyMoCo – Python-Based Robot Motion Control 199

4

q Abstract joint space configuration.

S, A, E Joint configuration spaces: serial, actuator and
encoder.

STA, ATE . . . Joint space transforms among S, A, and E .
Sq, Aq, Eq Joint space configuration q expressed in S, A,

and E .
Sqi, Aqi, Eqi Component i of Sq, Aq, and Eq.

E3 3D Euclidean space.

v, x̂ E3 vector and unit vector.

Lini , Louti Inward and outward reference frames for link
i.

W , B, T Reference frames for world, base and tool.

Ttool, Li, Ji, Homogeneous transforms for tool, link i, and
joint i.

Bv, BT Vector v expressed in B and homogeneous
transform from T to B coordinates.

TABLE 1: Notational conventions used in this paper.

of expressing a vector, v, in a reference frame, F , by
attaching the reference frame symbol as pre-superscript,
i.e. Fv. Analogous to the expression of a vector in
a reference frame, a reference frame, A, is considered
to be expressed in another reference frame, B, by its
homogeneous transform, denoted by BA

The design diagrams in this paper are based on the
Object Management Group (OMG) Unified Modeling
Language (UML).

1.7 Paper Outline
Section 2 touches upon some fundamental prerequisite
software systems for the PyMoCo framework. These
have not been described elsewhere, but are not con-
sidered constituents of PyMoCo. Section 3 contains the
substance of this paper, describing the design and imple-
mentation all around the PyMoCo framework. Section 4
shortly describes the applications in which PyMoCo has
hitherto been used. Section 5 presents a discussion on
the current design of PyMoCo, and directions for future
work. Lastly, Section 6 summarizes on the conclusions
regarding the use and feasibility of PyMoCo.

2 PREREQUISITES TO PYMOCO

A necessary prerequisite for experimentation and testing
of real motion control is a robot controller with low-
level access. The original robot used with PyMoCo is
the Nachi SC15F robot arm and the modifications to
the Nachi AX10 controller for low-level access is briefly
described.

Another natural prerequisite for motion control of
articulated robots is a computational toolbox for rigid
bodies in 3D Euclidean space. Thus, the Python Math3D
module is shortly described.

Nachi SC15F
Nachi AX10

Low-Level Controller
Native NACHI

High-Level Controller
Native NACHI

USB

USB

O
LI

M
E
X

 S
B

C
G

N
U

/L
in

u
xE
th

e
rn

e
t/

U
D

P

Accessor

Fig. 2: Modified setup for the Nachi AX10 controller. A
Single-Board Computer (SBC) hosting GNU/Linux OS is
inserted to intercept the USB connection between high-
level and low-level controllers.

2.1 The Nachi AX10 Controller
In the Nachi AX10 controller, the application and mo-
tion controllers, from the frequency hierarchy view of
Figure 1(a), make up the high-level control node. The
high-level controller is connected by a standard USB to
the low-level controller. The exchange of commanded
joint encoder positions from the motion controller and
the actual values from the low-level controller happens
at a configurable frequency, defaulting to 100Hz.

The setup used for achieving external motion control
of the native low-level controller is illustrated in Fig-
ure 2. The solution was based on installing a Single-
Board Computer (SBC) which could effectively intercept
the communication between the high- and low-level
nodes and expose it over Ethernet/UDP. By knowing the
structure of the exchanged control packages over USB,
the commanded and actual joint encoder values may be
read off and manipulated freely.

2.1.1 Components and Operation
A UML component representation of the native Nachi
controller is given in Figure 3(a). The high-level and low-
level controllers are in each their components, connected
by the interface provided from the low-level controller.
The ensemble of functionality and facilities available in
the application environment in the high-level compo-
nent, AX10HLC, is modelled as the interface AX10HLC. The
communication with the low-level component, AX10LLC,
is modelled as the interface AX10LLC.

With knowledge of the protocol, the communication
between the native controller components was inter-
cepted, and the component diagram in Figure 3(b) shows
the modified Nachi AX10 controller. The intercepting
access controller, AX10Accessor, uses the interface AX10LLC
downwards from the native low-level controller and
provides the same interface upwards to the high-level
controller.

200 M. Lind and J. Schrimpf (2011)

5

<<component>>

AX10HLC

<<component>>

AX10LLC

AX10LLC

AX10HLC

(a) The native controller, divided
into the high-level and low-level
controller components.

<<component>>

AX10Accessor

<<component>>

AX10LLC

<<component>>

AX10HLC

AX10LLC

AX10LLC

AX10HLC

AX10Accessor

(b) The modified controller, reusing
the native controller components,
while intercepting their connection
by an accessor component.

Fig. 3: Component diagrams for the native and modified
versions of the Nachi AX10 industrial robot controller.

The interface AX10Accessor models the implemented
Ethernet/UDP communication protocol, provided to an
external computer. There are in practice no limitation on
what the accessor component, and hence the external
control application, can do to the communication be-
tween the high-level and low-level controllers, as long as
it is not disrupted, compromised, or violates kinematics
and dynamics limitations.

Pure low-level control is thus established in the modi-
fied controller, see Figure 3(b), by letting the AX10Accessor
feed back the same commanded encoder values to the
AX10HLC in the exchange over the upper AX10LLC inter-
face. Simultaneously and synchronously, the AX10Accessor
directly forwards the latest received encoder command
values, received over the AX10Accessor interface, to the
AX10LLC over the lower AX10LLC interface.

2.1.2 Characteristics and Performance
The setup and communication mechanisms described in
Section 2.1.1 was fundamental to initial experimentation
with trajectory generation and motion control. Using
Python as a platform for trajectory and motion gener-
ation, experimental code was developed for executing
of motion by addressing the AX10Accessor. It was quickly
realized that the low-level controller was unrealistically
tolerant to accelerations in the trajectories. In fact, there
was no need for ramping up or down of velocity pro-
files, and no need for corner blending. This conceived
the theory that the low-level controller was filtering
the received input commands to build a smooth and
acceptable trajectory within a moving time window. This
would necessarily imply that there would be some fixed
delay in the execution of the motion, compared to the
stream of commanded joint positions.

A response analysis was set up for three different
externally controllable robot controllers, to clarify their

math3d
<<model library>>

<<entity>>

Vector

<<entity>>

Orientation
Transform

<<entity>>

Quaternion

10..1

1

0..1

Fig. 4: Class diagram for the basic MATH3D classes for
representing positions, vectors, orientations, rotations,
and homogeneous transforms.

characteristics (Lind et al. [12]). The results showed
that the modified Nachi controller has a tracking delay,
the delay with which an actual joint position trails the
commanded, of approximately 120ms. The response time,
the time from a commanded, large step to a joint starts
affecting the actual joint value, turned out in the range
of 40ms to 50ms. The values found were constant over
a wide range of parameters for the dynamics of the
commanded motion.

These values for tracking delay and response time are
quite high, and their independence from the dynamic
characteristics of the trajectory support the conjecture of
a trajectory filter in the low-level controller. This made
sense with the observation that the tolerance to the
generated trajectories was very high.

2.2 PyMath3D: SE(3) Computations in Python
Due to the lack of a general, stand-alone library for
3D Euclidean space computations, i.e. computations on
SE(3), the “PyMath3D” library was implemented. The
PyMath3D library provides the Python package MATH3D.
There are various resources for the same functionality,
but it is tied to the respective systems or libraries in
which they are contained; e.g. OpenGL, Orocos, and
Blender.

PyMath3D is quite minimal, representing the cardinal
objects for positions, vectors, orientations, rotations, and
homogeneous transforms. For different purposes, orien-
tations are represented by both matrices, in the Orientation
class, and quaternions, in the Quaternion class. Positions
and vectors are represented by the same class, Vector.
To distinguish positions from vectors, a Vector object has
a protected member, isPosition, for use when deriving or
transforming a Vector object.

The relations among the fundamental classes of
MATH3D are seen in Figure 4.

Basic interpolation on SE(3) and its subspaces are im-
plemented in the sub-package INTERPOLATION. Interpola-
tion classes for E3, SO(3), and SE(3) are implemented in

PyMoCo – Python-Based Robot Motion Control 201

6

math3d
<<model library>>

interpolation

<<entity>>

Quaternion

<<entity>>

R3Interpolator

<<entity>>

SE3Interpolator

<<entity>>

SO3Interpolator

<<entity>>

Orientation

<<entity>>

Vector

1

0..1

1

0..1

Fig. 5: The MATH3D.INTERPOLATION package elements, and
their relation to elementary classes from MATH3D.

R3Interpolator, SO3Interpolator, and SE3Interpolator, respectively.
R3Interpolator implements the natural linear interpolation
on E3, SE3Interpolator implements the spherical linear in-
terpolation (Slerp) on SO(3), while SE3Interpolator is the
direct combination of the two subspace interpolators.
The class relations for the INTERPOLATION package is seen
in Figure 5.

A good guide to 3D Euclidean mathematics is found
in Stramigioli and Bryninckx [1] and a good guide for
understanding the spherical linear interpolation is found
in Dam et al. [2].

3 DESIGN AND IMPLEMENTATION

This section presents the design and implementation
of PyMoCo as it has evolved to its current state. The
description is organized along the three packages pro-
viding the bulk of the entity functionality of PyMoCo.

3.1 Application Architecture Overview
The basic architecture of a PyMoCo application is il-
lustrated by the UML object diagram in Figure 6. It is
centred around a specific Controller instance, which may be
any of the canonical controllers in Section 3.5, any further
specialization of these provided by an application devel-
oper, or any free implementation specializing the base
class Controller. The controller is connected to a low-level
publisher, a LLCPublisher instance. For performing kine-
matics related computations, the controller is associated
with a FrameComputer instance. The low-level publisher
is responsible for publishing the joint status, such as
encoder readings, to any subscriber in the PyMoCo
application. The controller, frame computer, and low-
level publisher instances are associated with a special-
ization of a RobotDefinition instance. The robot definition

PyMoCo Application

Robot Controller

:ExternalEntity

:FrameComputer

:ExternalEntity

:LLCPublisher

:RobotDefinition

:InputPublisher

:LLC

:LLCAccessor

:Controller

:InputPublisher

Fig. 6: UML object diagram for illustrating the basic
architecture of a PyMoCo application.

provides fundamental information about kinematics of
the specific robot, facilities for transforming among joint
spaces and encoder spaces, and communicating with the
robot controller accessor.

The LLCAccessor instance is a specialized entity for the
real-time interaction with the pertinent robot used in the
PyMoCo application. The LLCAccessor class for a native
robot controller may reside in the PyMoCo process, in
another process on the same computer, on a remote com-
puter, or on the computer in the native robot controller. It
acts as a driver for a specific robot in PyMoCo, providing
the high-frequency, real-time mechanism for exchanging
joint status and control commands between the PyMoCo
control application and the native robot controller.

The input publishers, represented by their base class
InputPublisher, are similar in principle and operation to
the low-level controller publisher (the LLCPublisher) but
their specializations are for the purpose of publishing
measurement and information from all external systems
available in the application setup.

3.2 Package Overview
PyMoCo consists of the top level PYMOCO package, with
four subpackages. An overview of the individual pack-
ages are given in the following, and the package diagram
in Figure 7 summarizes the inter-package dependencies.

INPUT

The input mechanisms for external entities,
such as sensors and information services, are
implemented in this package.

ROBOT

Utilities and definitions relating to specific
robots. The use of a specific robot requires
defining and implementing it here.

KINEMATICS

General kinematics facilities. Classes for joints

202 M. Lind and J. Schrimpf (2011)

7

pymoco
<<framework>>

applications
<<toplevel>>

kinematics

robot

moco

input

Fig. 7: Package overview of PyMoCo and the main
relations for applications using it.

and kinematics computation are implemented
here.

MOCO

Base classes for motion controllers and the
canonical motion controllers. Currently there
are six canonical motion controllers.

The INPUT package is a container for standard in-
put mechanisms from external equipment. Notably it
contains the LLCPublisher class for distributing status in-
formation from the connected low-level controller. An
important role played by a LLCPublisher object is to let
motion controllers synchronize their motion computa-
tion with the low-level controller. A ForcePublisher class is
implemented in the INPUT package, for supporting the
general input from a force-torque sensor. Both input
classes are based on the publisher-subscriber pattern.

In the following sections, the remaining packages and
their underlying analysis will be described.

3.3 Robot Utilities: The ROBOT Package
The ROBOT package contains the robot-specific functional-
ities, information, and definitions. A robot controller that
is to be used with PyMoCo must have definitions and
functional implementations set up to support interfaces
in the ROBOT package. A standard way of making a
robot available is to implement a specialization of the
ROBOT.RobotDefinition; thus encapsulating the functionality
for the specific robot, and exposing a compliant interface.

3.3.1 Joint Configuration Spaces
A basic assumption in PyMoCo kinematics is that, deal-
ing with standard industrial robot arms, all defined
robots may be represented by a serial kinematics. The
space of serial kinematics joint configurations, S, is thus
generally available. The serial space operates with the
direct angular and linear positions of the (abstract) joints
in the serial backbone kinematics structure for the robot.

For reasons of stiffness and moment of inertia, many
intermediate to large industrial robots are not entirely

S

ATS

{{

ETS

��
A

STA

::

ETA

** E
ATE

jj

STE

SS

Fig. 8: Joint spaces for serial (S), actuator (A), encoder
(E) representations and translation operators.

serial in structure, having a parallel linkage on the upper
arm, connecting shoulder and elbow. Some of the larger
robots also have a lower-arm parallel linkage, connecting
elbow and wrist. Also abundant are robots with retracted
servo motors located at the elbow, which control the
three wrist joints by axles through the lower arm. The
retraction of these motors does nothing for stiffness, but
lowers the moment of inertia. Both of these mechanisms
affects the real, actuator-related kinematics of the robot.
The actuator configurations space, A, is the domain of
actuator positions in the true mechanical structure.

The encoder configuration space, E , is closely related
to the actuator space, representing the encoder values for
the actuator positions. The raw low-level controller may
not communicate in the domain of angular and linear
positions, but in encoder positions. There will typically
be some gain-offset relation between the actuator angles
and the actuator input encoders.

The motion control and kinematics computations will
work naturally with S, while underneath the low-level
controller will typically require and provide robot arm
configurations only in E . Thus, at least a bijective map-
ping between S and E must be defined. The actuator
space, though not necessarily used directly, is simply an
intermediate space, true to the mechanical structure of
the controlled robot. In certain situations, however, for
more complicated linkages than the parallelogram or for
reasons relating to kinematic limits, it may be necessary
for specific motion controllers to use the actuator space.

Mappings relating the three joint spaces are illustrated
in the graph in Figure 8. It is a requirement to the
implementation of the RobotDefinition class for a specific
robot to implement the six mappings to translate among
the three joint spaces.

The serial configuration, Sq, of the robot mechanism
is necessary for performing kinematic computations in
the controller. The transform STE may be used com-

PyMoCo – Python-Based Robot Motion Control 203

8

putationally in the PyMoCo-controller, when receiving
an encoder configuration from the low-level controller,
Eq, to translate into a serial representation, Sq, by the
operation

Sq = STE
Eq (1)

Similarly, when a PyMoCo-controller has a new com-
puted serial configuration to submit as the commanded
encoder configuration to the low-level controller, the
inverse relation is applied as

Eq = ETS
Sq (2)

The transforms STA and ATS , are typically linear
operators of rank equal to the DoF of the robot arm.
However, non-linear operators may be the case for a
specific model of a robot, as long as they are bijective
and continuous or, preferably, diffeomorphisms between
E and S. The fundamental assumption of the existence
of a serial equivalent to the real mechanical, actuated
structure must be kept in mind, since this is a matter of
definition of the existence of the bijective transforms. The
linear transforms may be represented by non-singular
N×N matrices, with N being the number of DoF of the
robot arm.

Couplings other than the direct correspondences be-
tween A and S will be reflected as off-diagonal elements
in the matrix representations of STA and ATS .

The operator forms of ATE and ETA will typically be
a simple gain-offset (i.e. affine) relation. Robots using
simple linear encoders attached to the input side of the
actuator gearboxes fulfil such a relationship. It may be
characterized by real vectors g,o ∈ RN in an affine
transform

Eq = diag(g)Aq+ o (3)

The values of g and o for a specific robot depends
on the characteristics of the encoders and on the cali-
bration. They may either be read out from the native
robot controller or obtained by external observation and
modelling of the robot.

The transforms between E and S, STE and ETS , are
the most useful. The exemplification surrounding Equa-
tions 1 and 2 indicates that, for most cases STE and ETS
are the only ones necessary. They may be implemented
by simply copying and sequencing the implementations
for the transforms STA and ATE , and ETA and ATS ,
respectively. However, depending on the structure of
the mechanism, there might be further optimizations
than just reducing the call overhead. This possibility for
optimization has not been investigated, and for simple,
serial mechanisms it is not expected that any such opti-
mizations exist.

3.3.2 Robot Link and Joint Transforms
Section 3.4 explains how the kinematic system in Py-
MoCo is designed and which conventions are used. The
kinematic structures and computations belong in the
FrameComputer from the KINEMATICS package. However, it is
the responsibility of the specific RobotDefinition classes to
be able to create the correct joint and link objects for the
kinematics; since the specific robot information is located
with the ROBOT package.

Example: Nachi SC15F
As an example of the joint spaces transform for practical
purposes the Nachi SC15F robot is considered here. It is
the only robot yet to have been in real use with PyMoCo.

The coupling transform from actuator space to serial
space, STA, may be read off the native controller, and
has the following shape

STA =

1 0 0 0 0 0
0 1 0 0 0 0
0 −1 1 0 0 0
0 0 0 1 0 0
0 0 0 3ε4 1 0
0 0 0 3ε5 0 1

(4)

The parallel linkage is easily identified by the off-
diagonal element STA[2,1] = −1; enumeration starting
at 0. This transforms such that

Sq2 = Aq2 − Aq1 (5)

The fact that STA[2,1] = −1 stems from the balance
of the parallel linkage, forming a parallelogram. Had
this parallel linkage not been a parallelogram, but of
a more general trapezoid shape, the right hand side of
Equation 5 would be a non-linear function of Aq1 and
Aq2.

The other coupling mechanism, by which joint 3 has
a slight impact on joints 4 and 5, due to rotation of
the lower arm around the axles for the latter joints, is
manifested by small off-diagonal elements 3ε4 and 3ε5,
respectively. The equations for serial joints 4 and 5 thus
become

Sq4 = Aq4 +
Aq3

3ε4 (6)
Sq5 = Aq5 +

Aq3
3ε5 (7)

The transform from actuator space to encoder space,
ETA, simply follow the affine transformation in Equa-
tion 3, where g and o may be directly read off the native
controller according to the actual calibration.

3.4 Kinematics Utilities: The KINEMATICS Package
Though the underlying creation of objects from the
kinematic modelling in PyMoCo resides with the spe-
cialized RobotDefinition classes in the ROBOT package, it is
natural to describe the model and conventions used

204 M. Lind and J. Schrimpf (2011)

9

Fig. 9: The layout of link frames, and link and joint
transforms for links 1 (labelled i) and 2 (labelled i + 1)
of the Nachi SC15F. For clarity, link 2 is shown slightly
rotated from its home position, and offset upwards from
its attachment to link 1. Link frames are shown by red,
green, and blue sticks, symbolizing x̂, ŷ, and ẑ directions,
respectively.

for the kinematic implementation with the KINEMATICS

package. The computations using the implemented and
configured kinematics for a specific robot resides in the
specializations of the Joint classes and the FrameComputer
class, all residing in the KINEMATICS package.

Figure 9 shows two consecutive links, rendered trans-
parent and separated for clarity, from a crude 3D model
of the Nachi SC15F. The links are annotated with link
frames, and joint and link transforms, which follow a
convention to be described in the following.

The kinematic model underlying the current imple-
mentation, and the conventions used in the specialized
robot definitions and kinematics are not computation-
ally optimal; when compared to other representation
schemes like Denavit-Hartenberg or Hayati-Roberts. The
emphasis has been on flexibility and ease of modelling,
description, and implementation. Though this may, in
some cases, hamper even the soft real-time requirements
of applications based on PyMoCo, it has not been the
case so far.

For modelling and maintaining code and configura-
tion, a clean separation between joint and link trans-
forms is advantageous. The clean separation between
joint and link transforms is expressed even in the im-
plementation. In PyMoCo, efficiency is compromised
for the cause of flexibility and pure mapping between
conceptual modelling and implementation. The resulting

model and implementation adheres to the conceptual
description by Waldron and Schmiedeler (2008) [13],
and all lower-pair joint types can be easily and directly
implemented.

3.4.1 Kinematic Model and Formalism
The kinematics model is explained in terms of link
frames, L, joint transforms, J, and link transforms, L.
Link frames are coordinate frames fixed in some link.
Link transforms are homogeneous transforms between
internal frames in a given link. Joint transforms are ho-
mogeneous transforms of one or more parameters, which
are joint space coordinates. A joint transform defines the
relation between link frames of two consecutive links.

The number of joints i symbolized by N , and joints
transforms are described by an ordered set {Ji}N−1i=0 and
in a serial structure there are a set of N+1 links, with
an ordered set of link transforms {Li}Ni=0.

For link number i there will be two internal link
frames for a serial kinematic structure. These are symbol-
ized by Lin

i and Lout
i . The superscripts in and out refers

to whether the link frame is the inward or outward frame
with respect to the kinematic chain, starting at the base.
The base and tool of the kinematic frame are symbolized
by B and T , respectively. The base frame is taken to be
equal to the inward frame of link 0, B = Lin

0 , and the
tool frame will be attached to the last outward frame by
a tool transform, Ttool, such that Ttool=

Lout
N T . The total

set of frames for the kinematics of a robot is described
by an ordered set

{
Lin
i ,Lout

i

}N
i=0
∪ {T }.

The link transform for link i, Li, is static and trans-
forms Lout

i coordinates to Lin
i coordinates. It is defined

by the relation between the link frames of the pertinent
link as follows

Li =
Lin

i Lout
i (8)

The definition of a joint transforms follow a rule simi-
lar to the definition of the link transforms. However, joint
transforms are, not surprisingly, dynamic. Currently in
PyMoCo, each joint is functionally dependent of a single
parameter. The i’th joint transform is dependent of the
i’th joint value, Sqi, from the serial kinematics space; i.e.
Ji = Ji(

Sqi). The joint transforms defines the kinematic
chain connection between an immediately succeeding
inward link frame to an immediately preceding outward
link frame as follows

Lout
i Lin

i+1 = Ji(
Sqi) (9)

A joint transform need not necessarily depend on only
one joint configuration value. However, as it will be-
come clear in Section 3.4.2, the current implementation
depends on the ordering and numbering of the joint and
link transforms, for performing the combined computa-
tion of the kinematic chain.

PyMoCo – Python-Based Robot Motion Control 205

10

The precise definition of forward kinematics, or direct
kinematics, vary a among the authors in the literature
of the field of robotics. PyMoCo uses a variant, which
may be dubbed frame forward kinematics, which honours
a principle of separation of kinematic structure and geo-
metric link models. In the frame forward kinematics, link
frames and tool frame, i.e. the set

{
Lin
i ,Lout

i

}N
i=0
∪ {T },

are computed as functions of the serial joint space con-
figuration. This may be formulated as

{
Lin
i (Sq),Lout

i (Sq)
}N
i=0
∪
{
T (Sq)

}
(10)

The actual representation of the forward kinematics
in Equation 10 must be expressed in some coordinate
frame, which may conveniently be taken to be the robot
base, B, or the world frame,W . The actual representation
as computed by the forward kinematics may thus be
expressed more precisely as

{BLin
i (Sq), BLout

i (Sq)
}N
i=0
∪
{BT (Sq)

}
(11)

The base frame has been chosen as reference for con-
venience, avoiding the extra transform to world coordi-
nates, WB, which can be considered irrelevant for the
kinematics of the robot.

3.4.2 Computational Implementation
Based on the model and formalism presented in Sec-
tion 3.4.1, this section presents design-aspects of kine-
matic computation and its corresponding implementa-
tion.

From the basic formulation and definition the internal
link frames and the tool frame of the robot may be
computed in base coordinates according to the following
recursive formulae; with obvious limits on n

BLin
0 = I (12)

BLout
n = BLin

n Ln (13)
BLin

n = BLout
n−1Jn−1(

Sqn−1) (14)
BT = BLout

N Ttool (15)

The recursions in Equations 12 to 15 may be trivially
unravelled to the following explicit forms

BLin
0 = I (16)

BLout
n =

(
n−1∏

i=0

LiJi(
Sqi)

)
Ln (17)

BLin
n =

n∏

i=0

LiJi(
Sqi) (18)

BT =

(
N−1∏

i=0

LiJi(
Sqi)

)
LNTtool (19)

For reasons of clarity, the dependence of joint space
configurations have been omitted from Equations 12

kinematics

RevoluteJoint PrismaticJoint

FrameComputer

+ inverseJacobian()
+ setQ()
+ jacobian()
+ getToolFrame()

RobotDefinition

Transform

Joint

+ setQ()
+ transform()
+ array()

#robDef

1 *

#jointXForms

N0..1

#linkXForms

N+1

*

Fig. 10: Class diagram of the central classes in the
KINEMATICS package.

to 19, except for the single components of the joint
transforms. The joint transform dependencies are the el-
ementary dependencies on the joint space configuration.
From the indices in the products of the explicit forms in
Equations 16 to 19, the dependencies of the link and tool
frame transforms to base reference, on which joint space
configuration components they depend.

Figure 10 illustrates the KINEMATICS package classes,
and some of their most important relations. As is clear
from the figure, the central class of the KINEMATICS pack-
age is the FrameComputer class.

The Joint class implements an abstract joint, with con-
crete joint classes inheriting from the Joint class. Imple-
mented with PyMoCo are specialized joint classes for the
most common two types of joints in industrial robotics,
RevoluteJoint and PrismaticJoint. Most industrial robots use
only revolute joints, but in applications they are often
placed on a set of external, prismatic servo axes for reach,
transport, or relocation.

The abstract Joint class imposes the implementation of
a method, setQ, for setting the joint variable, and the
methods transform() and array() for retrieving the computed
joint transform. The operations of retrieving the joint
transform may be given an optional joint value, implying
a call to setQ(). A call to setQ() caches the computed joint
transform, and subsequent calls to retrieval methods,
without setting a joint value, or setting the same joint
value, results in no new computation.

The methods transform() and array() return the same
homogeneous transform, but for convenience in different
form. transform() returns an object of class MATH3D.Transform,
whereas array() returns a more efficient (4, 4) NumPy
array,

The FrameComputer class implements the kinematics re-
lations between joint configuration space and the space
of link and tool frames for the robot, with which it
has been set up. The implementation is a realization
of the formulae in Equations 16 to 19. An instance of
a FrameComputer needs a specific RobotDefinition at creation
time; stored as member robDef. From robDef the FrameCom-
puter object acquires reference to a set of link transforms,

206 M. Lind and J. Schrimpf (2011)

11

linkXForms, and a dedicated copy of a set of joint transform
objects, jointXForms. The link transforms are constants,
and hence several FrameComputer objects may share the
same set of link frames. The joint transform objects are
parametrized, state-full object, of the base class Joint, and
hence, each FrameComputer object must have a dedicated
copy.

A FrameComputer object caches its state induced by the
caching joint transformations, and its computed values
from the last joint space configuration given. Thus sub-
sequent calls require little computation, provided they
do not set a new joint space configuration.

The notable, operational methods of the FrameComputer
class are

setQ
Sets a given serial space configuration, and
performs the full computation of the forward
kinematics.

getToolFrame
Retrieves the tool frame according to the com-
puted forward kinematics.

jacobian
Computes and returns the Jacobian, according
to the computed forward kinematics.

inverseJacobian
Computes and returns the inverse of the Jaco-
bian, acquired by implicitly calling jacobian.

In addition to the listed methods of the FrameComputer
class, a range of more specific methods exists for retriev-
ing any computed link frame, and for dynamically con-
figuring the tool transform. All retrieval methods take
an optional new serial space configuration, by which
an implicit computation of the forward kinematics is
performed accordingly.

At the interface of the FrameComputer class, transforms
from the MATH3D package are used per default. How-
ever, for efficiency, all computation and caching is in-
ternally performed on corresponding (4, 4) arrays from
the NumPy package. For all retrieval methods returning
link frame poses, represented by transforms to world
or base coordinates, these are also per default given
by transforms from the MATH3D package. By an optional
parameter to these retrieval methods, the returned object
will be a (4, 4) NumPy array. This may reduce conversion
overhead for surrounding client code for the FrameCom-
puter object that also operate with NumPy arrays.

3.5 Motion Controllers: The MOCO Package
The environment and facilities for implementing mo-
tion controllers are the essential features of PyMoCo; in
contrast to supplying implemented motion controllers.
When regarded apart from the facilities and the en-
vironment, basic motion controllers can be extremely

easy to implement. Naturally, any number of specific
control issues may arise from, for instance, complex,
incomplete, or noisy sensor inputs. Other issues may
arise from an application in need of a complex system
of motion controller covering different aspects, to behave
well, cooperate, and be coordinated.

The current design of PyMoCo distinguishes one spe-
cific motion controller in any given run-time situation,
as the one that has the communication to the robot
controller, through the low-level access to the operated
robot; see Section 2.1. This may appear to be an artifi-
cially tough constraint, but it addresses the requirement
that the low-level accessor must be fed control com-
mands at a regular rate. Failing to meet the deadline
for sending a control command, may, depending on the
low-level controller or low-level accessor logic, imply
shutting down the robot servo system. Thus, in PyMoCo,
there must always be a dedicated motion controller,
responsible for the obligations to the low-level controller.
A more flexible mechanism for coordination and coop-
eration among several motion controllers, to share the
responsibility of meeting the requirements from the low-
level controller, or accessor, is possible to implement
with PyMoCo, but none are included, at its current state.

The current design has two flaws, related to the lack
of the aforementioned mechanism for sharing responsi-
bility, which must be addressed in future analysis and
design:
• No mechanism is supplied or devised for switching

motion controller in case the low-level accessor is
intolerant towards a period of absent control com-
mands.

• No mechanism enforces access control, to ensure
that only one motion controller is actually active at
any time.

Neither of these flaws present any conceptual problems,
but requires an elaborate addition to the design. For the
current use, with the Nachi AX10 controller, modified
with the SBC hosting the AX10Accessor, there is no real
problem with switching controller, since it is tolerant to
any length of disruption in the control command stream.

3.5.1 Controller Base Classes

The important relation of the motion controller base
classes, Controller and KinematicsController, are shown in the
class diagram in Figure 11.

The most general controller base is the Controller class. It
subscribes to an associated object of the LLCPublisher class,
for receiving status updates from the low-level controller,
by invocation of its llcNotify() method. For specialized mo-
tion controllers, it provides protected methods for setting
joint space configurations or adding an increment to the
actual joint configuration, as reported by the associated

PyMoCo – Python-Based Robot Motion Control 207

12

moco

KinematicsController

+ setToolXForm()
+ getToolXForm()

RobotDefinition

LLCPublisher

FrameComputer

Controller

+ llcNotify()
setSerialIncrement()
setSerialConfig()
setActuatorConfig()
setEncoderConfig()
setEncoderIncrement()
setActuatorIncrement() #robDef

1
*

#frameComp

#llcp

10..1

1*

Fig. 11: Base classes for controllers, and their main
relations.

LLCPublisher instance. The associated RobotDefinition instance
provides kinematic information and conversion opera-
tions for the specific connected robot. The methods to set
or increment the commanded joint space configuration
uses joint speed limits from the associated RobotDefinition
instance for scaling a commanded joint step into one
tolerated by the operated robot, if necessary.

The KinematicsController class provides some further fa-
cilities for specialized motion controllers that relate to
operational space; i.e. rigid body manipulation of the
tool frame, T . It gives access to a FrameComputer instance
for inherited controllers to use, and specific methods,
setToolXForm and getToolXForm, for accessing the applied
tool transform, Ttool. The tool transform is important
for the application layer to manipulate through the
motion control layer, since it is the application that has
the knowledge of tool setups, tool changes, and tool
transform calibration and corrections.

3.5.2 Specific, Canonical Controllers
As previously stated, the specific, canonical motion con-
trollers are not a necessity for PyMoCo as a framework.
But insofar as a selection of highly applicable and ver-
satile motion controllers may be identified that are not
specific to any application in particular, they may be
hosted and distributed with PyMoCo; if for nothing else,
just to serve as examples. The categorization “canonical
motion controller” should be considered similar in na-
ture to the set of general motion controllers offered by
the application platform of a standard industrial robot
controller.

Figure 12 illustrates the inheritance hierarchy, and
prominent functional interface methods, of all the con-
troller classes. For each controller there is a variety of
administrative methods for synchronization, aborting,
etc., which are not shown in the interfaces in Figure 12.

There are currently six canonical controllers imple-
mented with PyMoCo which fall pair-wise into three
categories.
• Two are standard, non-interactive, linear controllers

in joint and operational space. Such linear con-
trollers are expected to be found in any standard
industrial robot controller.

• Two are specializations of the operational space lin-
ear controller, but open for real-time corrections of
tool or path transforms. Such real-time interactive-
ness is typically provided to, or available for pur-
chase by, users of robot controllers with advanced
processing applications.

• The last two are real-time interactive velocity con-
trollers in joint and operational spaces. They are
useful in sensor-based control applications, but rare
to come by in industrial robot controllers due to
their demand for real-time interactivity.

The design of these controllers in PyMoCo will be
explained in the following sections.

3.5.3 Linear Motion Controllers

JointLinearController and ToolLinearController represent what
are probably the two most common motion controllers
found in traditional industrial robot controllers. They
lend themselves well towards playing back offline-
generated paths from simple applications.

The functional methods are JointLinearCon-
troller.setJointTarget() and ToolLinearController.setTargetPose().
The functional methods takes a specification of a target
to be obtained by a linear motion in the addressed
spaces. Both controllers take optional parameters, with
reasonable default values, for specifying maximum
accelerations for ramping the speed up and down at the
start and end of the path. Another optional parameter
gives the target speed to use on the main path. The
controllers are stable towards unattainable combinations
of acceleration limits, path lengths, and target speeds;
preference is given to respect acceleration limit and
total path length.

JointLinearController addresses the serial space, S. The
given target speed and maximum acceleration is used
for limiting the motion on the joint that has the longest
travel to the given target. These limits are applied not in
the serial, but in the actuator joint configuration space,
A, since this is the space for physical speed limits on the
joint motors.

ToolLinearController addresses the space of 3D poses,
SE(3). Like the JointLinearController, maximum accelera-
tion and target speed is given as optional parameters,
but are interpreted as positional scalar Euclidean (L2-
norm) speed and acceleration values for the motion.
This exposes a common problem in robotics. There are

208 M. Lind and J. Schrimpf (2011)

13

moco

JointVelocityController

+ setJointVelocity()

ToolVelocityController

+ setTwist()

ToolLinearController

+ setTargetPose()

JointLinearController

+ setJointTarget()

ToolCorrectionController

+ setToolCorrection()

Controller KinematicsController

PathCorrectionController

+ setPathCorrection()

Fig. 12: Class diagram for the canonical motion controllers in PyMoCo.

no universal speed and scalar acceleration defined for
SE(3), and PyMoCo simply restrict the speed and ac-
celeration considerations to SE(3)/SO(3); effectively E3.
A resolution for this mixed rotation and displacement
measure problem could be brought by introducing a
set of suitable length scales from the tool transform,
whereby a sensible measure may be introduced on se(3);
the Lie algebra of SE(3). The measure would, however,
be subject to dynamic changes, if the tool is corrected
under motion.

Both motion controllers support proper abortion of an
active motion, by the method abort(). During abortion,
the desired acceleration limit and the commanded path
are respected, and the robot is brought to rest as fast as
these allow. Such abortion or cancellation mechanisms
are common features in contemporary robot controllers.

In the current implementation, there is no support for
corner, path, or trajectory blending in PyMoCo. As a
result, the robot arm will come to rest at the endpoints
of every linear segment of a composed path. This is a
severe lack of functionality for many applications, and
it must be addressed in the near future, if PyMoCo is
to be considered a viable replacement for the motion
control layer of an industrial robot controller. Though
slightly mathematically involved, blending algorithms
allowing for advanced control of the motion in the
blend, have been available for almost two decades. Lloyd
and Hayward (1991) [14] introduced the use of blend
functions, and describes how the shape of a blend can
be flexibly controlled. The main strength of their scheme
is that the blend is easy to compute, but the drawback is
that it is only described for the positional trajectories; i.e.
in E3. Extending this to blending also orientation was
demonstrated later on by Volpe (1993) [15] and Lloyd
and Hayward (1993) [16].

Another observation of the implementation is the
absence of jerk limitation. The trajectories generated
use simple acceleration pulses of the maximum allowed
acceleration, implying infinite jerk at both ends of the
ramp-up and the ramp-down pulses. Finite-jerk con-
trol, as described by Kröger and Wahl (2006) [17], or
continuous-jerk control, as described by Kröger and

Wahl (2010) [18], is considered a control task below the
motion control level addressed by PyMoCo. The jerk
control time scale is, for industrial robot control, too
small, compared to the 10ms-order timescale of motion
control in PyMoCo. Jerk control is considered relevant at
the 1ms-order timescale inside the low-level controller, or
even at the individual joint servo controllers.

3.5.4 Real-Time Correction Controllers
The ToolCorrectionController and PathCorrectionController classes
are specializations of the ToolLinearController, which can
effectuate asynchronous, real-time corrections of the tool
transform and the specified linear path, respectively.
This functionality is mostly aimed at processing, in
which a process model have offline- or online-generated
nominal trajectories and a process controller corrects the
robot tool or operation path, based on real-time sensor
feedback at execution-time. Though this functionality is
probably quite application oriented, it is widely usable
across many process application areas.

The basic operation of following a linear path, with
given speed and acceleration limit, is directly used from
the ToolLinearController base class. Superposed on the mo-
tion, a tool or path correction may be applied, by the
method setToolCorrection or setPathCorrection, respectively. As
the main parameter the controller methods take the
correction transform, which may be left out to reset
the correction to the identity. By another parameter, the
dynamics of the correction is addressed in terms of the
time of duration to obtain the correction. Since successive
corrections are assumed to be small, no ramp-up and
ramp-down of the joint speeds are performed on the
superposed correction motion.

Any ongoing correction motion may be interrupted by
setting a new correction target, or aborted by calling the
abortCorrection() on either controller.

3.5.5 Velocity Controllers
The velocity controllers are the most fundamental and
primitive. They are useful, if not necessary, in full-
information, real-time sensor-based control applications.
Due to their primitiveness, a typical application may

PyMoCo – Python-Based Robot Motion Control 209

14

not directly use these motion controllers, in the same
direct way as the linear controllers. Thus, an application
is supposed to set up an application motion controller, for
managing or controlling the primitive velocity controller.

Both velocity controllers support asynchronous update
of the commanded velocity. For every control update
the velocity controller sends to the low-level controller,
the most recent velocity command is applied in the
computation.

The functional method setTwist of the ToolVelocityController
is addressed with a target in se(3). The representation
for the target is chosen conventionally as an array of six
floating point numbers, the first three representing the
components of linear and the last three representing the
components of angular velocities of the tool frame.

The setTwist takes two further optional parameters,
expressing in which reference frame the given twist is
expressed and in which reference frame the given twist is
attached. The valid reference frames for both parameters
are “Tool” and “Base”, with “Base” being the default for
both. The reference frame for expression of the given
twist coordinates is of little functional importance, since
any external application may transform it to any suitable
or required reference frame. In contrast, the selection
of attachment reference frame gives highly different
behaviour. Attaching the twist to the “Base” reference
system gives a normal, intuitive behaviour with the tool
centre following a linear path with constant speed, and
the tool orientation rotating at constant angular speed
around an axis fixed with the base reference frame.
When attaching the twist instead in the “Tool” reference
system, the twist will be transformed in every frame
along with the tool motion, resulting in a helical motion
of the tool centre with corresponding rotation.

4 APPLICATIONS
PyMoCo has been used in a real-time simulation for
a production control system application, and in two
real sensor- and vision-based control applications. This
section shortly described the three applications.

PyMoCo has been most extensively used in a real-time
simulation and emulation system, aimed at development
of flexible and intelligent production control systems.
The simulation and emulation principles are described
by Lind and Dubonnet (2010) [19] and in its more com-
plete version will be described by Lind and Skavhaug
(2011) [20]. The response time and tracking delay, see
Section 2.1.2, of the low-level controller are not modelled
in the emulator. Since the simulated application uses
only the ToolLinearController class and does not involve any
sensor-based control, the absence of modelled delays is
irrelevant.

A real path-tracking application, based on PyMoCo
and vision-based control, is described in detail by

Schrimpf et al. (2010) [21] and is analysed further in
Schrimpf et al. (2011) [22]. The application uses the
ToolLinearController class for positioning the robot tool dur-
ing setup and initialization for tasking, and the ToolVeloc-
ityController class for the vision-based control loop during
tasking motion. The geometric task-setup in the appli-
cation consists of a surface with a path drawn with a
marker. The surface is bulging, shaped into a smooth
hilly landscape. A tool-mounted camera observes the
tool centre frame, positioned in free space in extension of
the tool flange. Through the camera field of view pass
the rays of four lasers pointers, directed along the ob-
servation direction and originating from the tool flange.
Vision algorithms enable the observation of the marked
path and, by the laser spots, the relative inclination in
of the tool centre frame to the surface. The objectives for
the application are to drive the tool centre at constant
speed on the observed path while maintaining a fixed
orientation of the tool frame to the surface at the tool
centre.

A real 6D compliance-control application using a tool-
mounted force-torque sensor was shortly described by
Lind et al. (2010) [12]. The work presented there was
based on an early, monolithic revision of the Compli-
anceController class, which basically contained a copy of
the functionality of the canonical ToolVelocityController. In a
later revision, the ComplianceController class was refactored
to instead used an associated ToolVelocityController object.
This naturally improved the overall code and design
reuse; specifically it reduced the code complexity of the
ComplianceController class.

A complete overview of the deployed components,
their dependencies, and their node associations is seen
in Figure 13. On the right is seen the three components
of the Nachi AX10 controller, the main controller, the
accessor, and the low-level controller, each deployed in
a dedicated node. At the top is seen the force reader
component deployed on a remote PC, serving dedicated
data acquisition from the force-torque sensor. The main
node is a PC with Debian GNU/Linux, hosting the
PyMoCo and application components.

The sequence diagram in Figure 14 shows the impor-
tant mechanisms of interactions around the Compliance-
Controller and ToolVelocityController objects under operation.
In the sequence diagram, the PyMoCo node is modelled
as the system, with the ForceReader and LLCAccessor objects
playing roles of external actors. The velocity loop is
driven by the reception of status package from the
low-level accessor, and the force loop is driven by the
reception of force reader updates. The two loops run
asynchronously, and the only interaction, the call to the
setTwist() of the ToolVelocityController object, may happen at
any state in the cycle of the ToolVelocityController object.

210 M. Lind and J. Schrimpf (2011)

15

PyMoCo:PC

<<component>>

LLCPublisher

<<component>>

RobotDefinition

ForceReader:PC

Low-Level Controller:SBC

Main Controller:PC

Interceptor:SBC

<<component>>

ComplianceController<<component>>

ForcePublisher

<<component>>

AX10Accessor

<<component>>

AX10LLC

<<component>>

AX10HLC

<<component>>

ToolVelocityController

<<UDP>>

<<USB>>

<<USB>>

<<UDP>>

<<component>>

ForceReader

Fig. 13: Deployment diagram for the compliance control application.

:ToolVelocityController:FrameComputer

Force loop
Velocity loop

:ForceReader
:LLCAccessor

inverseJacobian()

applyTwist()

setSerialIncrement()

forcePacket forceNotify()

filterWrench()

wrenchToTwist()

llcPacketllcNotify()

llcPacketsetTwist()

:ComplianceController
:LLCPublisher

UDP packet emission

:ForcePublisher

UDP packet emission

Fig. 14: The main loop sequence for the force-torque compliance control application.

5 DISCUSSION AND FUTURE WORK

The PyMoCo framework evolved out of experimenting
with modifications to a Nachi AX10 controller. As Py-
MoCo has reached a sufficient level of sophistication and
stability, it has become desirable to use it for production
automation prototype setups in the laboratory. Thus, the
current main focus of future development is to support
production control applications with PyMoCo, which
may be based on other industrial robot controllers than
the Nachi AX10.

The current design suffers from leaving the detailed
communication management with the generic classes
Controller and LLCPublisher. A refactoring of the mecha-
nism for communicating with different robot types is
thus necessary for PyMoCo to become available with
a wider range of robot controllers. The functionality of
detailed communication must be moved to classes that in
return support the interfaces of the two generic classes.
This will enable differentiation for communicating with
different robot controller, accessors, hardware, protocols,
and setups. The analysis and design for such refactoring
is work in progress. PyMoCo is currently being adapted
for use with the Universal Robots10 UR-6-85-5-A, and in
the near future with KUKA robots over the Robot Sensor
Interface.

The linear correction controllers, the ToolCorrectionCon-

10. http://www.universal-robots.com

troller and PathCorrectionController classes described in Sec-
tion 3.5.4, are of quite general use in simple process con-
trol. However, they are also of very rigid functionality,
compared to what is generally required. A more flexible,
though slightly less efficient PluginCorrectionController class,
applying the plug-in architectural pattern, is under de-
sign. It will support the registration of specializations of
a CorrectionPlugin class, which will be implemented by the
domain experts for special correction control in a given
application. An example of highly specialized correction
control is weaving or grove tracking in arc-welding.

For many applications, especially in laboratory proto-
typing and experimentation, operation cycle times is not
a matter of vital concern. However, if PyMoCo should
contend to be a motion control framework for real
applications, for instance in production control systems,
there is an imperative need for facilities to support
corner, path, and trajectory blending; as discussed in
3.5.3. The tolerated operation cycle time for a robot
in a simple production automation setup is typically
low, even though it is composed of many linear motion
segments. Meeting such tolerances may be achievable
only with efficient trajectory or path blending.

An important point that has not been investigated in
the presented work is trajectory accuracy and tolerance
of the tool controllers. Among notable conditions that
have a negative impact on path or trajectory accuracy
are high trajectory speed, low control frequency, and low

PyMoCo – Python-Based Robot Motion Control 211

16

operation-point dexterity. No features in the canonical
controllers support the specification of path or trajectory
tolerance, and no strategies have been implemented for
handling with path and trajectory deviations. In the fu-
ture, basic strategies will be implemented for managing
accuracy in real-time; such as lowering speed, reiteration
of the inverse Jacobian solution in a control step, and
optimal extrapolation of a given control step. Related
facilities for online and offline pre-checking of a desired
trajectory, or computing deviation statistics, will also be
analysed and designed.

It is a known fact that Python, by its nature as a
dynamically typed language running on an interpreter,
is inferior to compiled implementations based on, say,
C/C++. It is thus expected that PyMoCo will meet a
limit of performance in setups with sufficiently short
cycle times or narrow deadlines, whereby it will fail to
meet the real-time requirements of the application or of
the low-level controller. The contingency plan for dealing
with deficient computational efficiency, is to use one or
more of the following techniques and technologies:
• Use the Python KDL bindings from Orocos.
• Re-implement the Python code in C/C++ as Python

extension modules, possibly with the aid of CXX.
• Annotate the real-time critical code in PyMoCo with

type information for use with Cython.

6 CONCLUSION

Details and specifics of PyMoCo design has been pre-
sented. Technological hindrances toward general appli-
cation to all industrial robots and all application re-
quirements have been touched upon to the degree that
it can be projected. The major objectives for future,
and current development, have been stated to be re-
design of robot communication mechanisms, real-time
trajectory segment blending for linear controllers, and
management of motion accuracy and tolerance. For tol-
erant, non-critical operations we conclude that PyMoCo
and Python are an effective, maybe even efficient, pair
for rapid prototype implementation. This has already
been established by a force-torque compliance control
application and a vision-based path-tracking application.

ACKNOWLEDGEMENTS

The authors are grateful to Trygve Thomessen at PPM
AS11 for supporting the development towards access to
low-level control in the Nachi AX10 controller, and for
valuable comments in the process or writing this paper.

Thanks goes to Thomas Ulleberg at Department for
Production Technology, SINTEF Raufoss Manufacturing
AS, for good support and involvement.

11. http://ppm.no

The Department of Production and Quality Control12,
Norwegian University of Science and Technology, has
been hosting and supporting the project of PyMoCo
development. Professor Terje Lien is the person at the
department responsible for the continual support, and
for this we owe our gratitude.

REFERENCES

[1] S. Stramigioli and H. Bruyninckx, “Geometry and screw
theory for robotics,” 2001, tutorial T9 at ICRA 2001.
[Online]. Available: http://students.sabanciuniv.edu/acsatici/
public files/GeometryandScrewTheoryforRobotics.pdf 1.1, 2.2

[2] E. B. Dam, M. Koch, and M. Lillholm, “Quaternions, interpolation
and animation,” Department of Computer Science, University of
Copenhagen, Tech. Rep. DIKU-TR-98/5, 1998. [Online]. Available:
http://www.diku.dk/DOWNLOAD/98-5.pdf 1.1, 2.2

[3] G. Sally, “Real time,” in Pro Linux Embedded Systems. Apress,
2010, ch. 12, pp. 257–271. 1.2

[4] P. Leitão, “Agent-based distributed manufacturing control: A
state-of-the-art survey,” Engineering Applications of Artificial Intel-
ligence, vol. 22, no. 7, pp. 979–991, Oct. 2009. 1.2

[5] T. Kröger and F. M. Wahl, “Low-level control of robot
manipulators: A brief survey on sensor-guided control and on-
line trajectory generation,” in ICRA 2010 Workshop on Innovative
Robot Control Architectures for Demanding (Research) Applications,
D. Kubus, K. Nilsson, and R. Johansson, Eds. Technical
University of Braunschweig, 2010, pp. 46–53. [Online]. Available:
http://www.rob.cs.tu-bs.de/en/news/icra2010 1.3

[6] D. Dallefrate, D. Colombo, and L. M. Tosatti, “Development
of robot controllers based on PC hardware and open
source software,” in Seventh Real-Time Linux Workshop,
Nov. 2005. [Online]. Available: https://www.osadl.org/Papers.
rtlws-2005-papers.0.html#PAPER DarioDallefrate 1.3

[7] P. Cederberg, M. Olsson, and G. Bolmsjö, “Remote control of
a standard ABB robot system in real time using the Robot
Application Protocol (RAP),” in Proceedings of the 33rd International
Symposium on Robotics, Oct. 2002. 1.5

[8] A. Blomdell, G. Bolmsjö, T. Brogårdh, P. Cederberg, M. Isaks-
son, R. Johansson, M. Haage, K. Nilsson, M. Olsson, T. Olsson,
A. Robertsson, and J. Wang, “Extending an Industrial Robot Con-
troller: Implementation and Applications of a Fast Open Sensor
Interface,” IEEE Robotics Automation Magazine, vol. 12, no. 3, pp.
85–94, Sep. 2005. 1.5

[9] S. M. Jensen, “Open Modular Controller,” in Proceedings of the 29th
International Symposium on Robotics, 1998. 1.5

[10] H. Bruyninckx, “Open robot control software: the orocos project,”
in Proceedings of the 2001 IEEE International Conference on Robotics
and Automation, vol. 3, 2001, pp. 2523–2528. 1.5

[11] H. Bruyninckx, P. Soetens, and B. Koninckx, “The real-time mo-
tion control core of the Orocos project,” in Proceedings of the 2003
IEEE International Conference on Robotics and Automation, vol. 2,
Sep. 2003, pp. 2766–2771. 1.5

[12] M. Lind, J. Schrimpf, and T. Ulleberg, “Open Real-Time Robot
Controller Framework,” in Proceedings of the 3rd CIRP Conference
on Assembly Technologies and Systems, T. K. Lien, Ed. NO-7005,
Trondheim, Norway: Tapir Academic Press, Jun. 2010, pp. 13–18.
2.1.2, 4

[13] K. Waldron and J. Schmiedeler, “Kinematics,” in Springer
Handbook of Robotics, B. Siciliano and O. Khatib, Eds. Springer
Berlin Heidelberg, 2008, pp. 9–33. [Online]. Available: http:
//www.springerlink.com/content/r6m219/ 3.4

[14] J. Lloyd and V. Hayward, “Real-time trajectory generation using
blend functions,” in Proceedings of the 1991 IEEE International
Conference on Robotics and Automation, vol. 1, Apr. 1991, pp. 784–
789. 3.5.3

12. http://www.ntnu.edu/ipk

212 M. Lind and J. Schrimpf (2011)

17

[15] R. Volpe, “Task space velocity blending for real-time trajectory
generation,” in Proceedings of the 1993 IEEE International Conference
on Robotics and Automation, vol. 2, May 1993, pp. 680–687. 3.5.3

[16] J. Lloyd and V. Hayward, “Trajectory generation for sensor-driven
and time-varying tasks,” International Journal of Robotics Research,
vol. 12, no. 4, p. 380, Aug. 1993. 3.5.3

[17] T. Kröger, A. Tomiczek, and F. M. Wahl, “Towards on-line trajec-
tory computation,” in Proceedings of the 2006 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct. 2006, pp. 736 –741.
3.5.3

[18] T. Kröger and F. M. Wahl, “Online trajectory generation: Basic
concepts for instantaneous reactions to unforeseen events,” IEEE
Transactions on Robotics, vol. 26, no. 1, pp. 94 –111, Feb. 2010. 3.5.3

[19] M. Lind and O. Roulet-Dubonnet, “Emulation of Manufacturing
Devices for Simulation of Distributed Real-Time Control,” in
Proceedings of the 3rd CIRP Conference on Assembly Technologies and
Systems, T. K. Lien, Ed. NO-7005, Trondheim, Norway: Tapir
Academic Press, Jun. 2010, pp. 67–72. 4

[20] M. Lind and A. Skavhaug, “Using the blender game engine for
real-time emulation of production devices,” International Journal of
Production Research, vol. 0, no. 0, pp. 1–17, 2011, online available,
iFirst. 4

[21] J. Schrimpf, M. Lind, T. Ulleberg, C. Zhang, and G. Mathisen,
“Real-Time Sensor Servoing using Line-of-Sight Path Generation
and Tool Orientation Control,” in Proceedings of the 3rd CIRP
Conference on Assembly Technologies and Systems, T. K. Lien, Ed.
NO-7005, Trondheim, Norway: Tapir Academic Press, Jun. 2010,
pp. 19–23. 4

[22] J. Schrimpf, M. Lind, and G. Mathisen, “Time-Analysis of a Real-
Time Sensor-Servoing System using Line-of-Sight Path Tracking,”
in Proceedings of the IEEE/RJS 2011 International Conference on
Intelligent Robots and Systems, Sep. 2011, accepted. 4

Morten Lind received his M.Sc. in computer
science and physics from The Maersk McKinney
Moller Institute at The University of Southern
Denmark in 2000. The ensuing years were used
for practical research with robot systems integra-
tion and control at the same institute, followed
by a period of research and development at the
Department of Production Technology, SINTEF
Raufoss Manufacturing AS. He is currently fin-
ishing his Ph.D.-thesis at the Department of Pro-
duction and Quality Engineering, The Norwegian

University of Science and Technology. His professional interests are
widely in the area of soft real-time control in production automation;
in particular distributed cooperation and coordination of production
devices, and control of industrial robots and AGVs.

Johannes Schrimpf received his M.Sc. in en-
gineering cybernetics from Darmstadt University
of Technology and from the Norwegian Univer-
sity of Science and Technology as part of a
double degree program in 2009. Since 2010
he attends a Ph.D. programme at the Norwe-
gian University of Science and Technology at
the Department of Engineering Cybernetics. His
studies focus on real-time sensor-based multi-
robot control in manufacturing.

PyMoCo – Python-Based Robot Motion Control 213

214 Bibliography of Included Publications

Chapter 5

Conclusions

This chapter summarizes conclusions and contributions of the PhD work presented with
this thesis. Finally some future directions regarding the presented work are presented.

5.1 Main Conclusions

There are two main conclusions to be drawn within the presented PhD work, which both
are substantiated by implementations and experiments:

Real-Time Production Emulation. For the sake of developing, experimenting, and vali-
dating distributed, notably agent-based, control systems in production control, it
was demonstrated by a full implementation that the Blender Game Engine is suit-
able as platform for hosting a device-level real-time emulator for an entire shop-
floor. The ZeroC Ice communication middleware has been found very stable as
the foundation of a developed middleware for agent-based control systems; called
IceHMS. The real-time emulator in the Blender Game Engine is, through imple-
mentation in the embedded Python Interpreter, able to present real-time control
interfaces through the IceHMS middleware. An Ethernet-distributed control sys-
tem, using the device interfaces, was developed to demonstrate the satisfactory
operation of the emulated shop-floor system. The principles for developing a real-
time emulator in the Blender Game Engine are described by Lind and Skavhaug
[2011] and Lind and Roulet-Dubonnet [2010].

Robot Motion Control. It is possible to control the motion of an industrial robot arm in
soft real-time at ∼100Hz from a controller implemented on a Python Interpreter
running on a standard GNU/Linux system on a standard PC or laptop. The native
robot controller must allow a high-frequency access to the low-level joint control of
the robot over some fast communication hardware such as Ethernet. The motion
control framework PyMoCo, presented by Lind and Schrimpf [2011] and Lind et al.

216 Chapter 5. Conclusions

[2010], provides a set of “canonical” motion controllers, as are commonly found in
industrial robot controllers, and the framework have been put to laboratory use as
a facility in several production-oriented applications.

A third conclusion is drawn by a literature study conducted as part of this PhD thesis:

Real-Time Linux for Production Control. It is concluded that Real-Time Linux with a
GNU system on standard, industrial, or embedded PCs are suitable for taking part
in the direct control in production systems. It is further strongly suggested that
it may be necessary to bring operating systems as powerful as GNU/Linux and
computers as powerful as PCs into such direct control of production devices and
systems, for realizing highly agile and intelligent production control.

5.2 Summary of Contributions

The most substantial and tangible contributions of this PhD work reside in produced
software, the development of which was entirely or mainly driven and undertaken by the
author. In addition, during the PhD scholarship the author contributed to several related
software development projects led by collaborators.

The number of lines of code produced by software development projects is often a poor
measure for estimating the relative effort and, especially, usefulness of the final software
products. However, if disregarding variations in code complexity, it may give a good
indication of the comprehensiveness of the code base for a given software product. I.e.
the number of code lines may provide a first indication of the estimated effort for a
new developer or user to take the software to use. Therefore, the overview of produced
software within this PhD work, given in the following, mentions the approximate number
of code lines for each project1. In the following is given a short summary of each of these
software development projects.

The Math3D library comprises about 1000 lines of Python code for basic 3D mathematics
operations on the SE(3). It is of central importance to most of the other software projects
developed in the PhD work, in providing fundamental and general computational utilities.
The Math3D library is notably valuable for

� being of very general nature;

� an efficient implementation based on NumPy [NumPy Website] matrix and array
representations and operations;

� and its implementation of interpolation on SE(3) by the Slerp method in the
orientation subspace SO(3); confer e.g. Dam et al. [1998] for a good overview of
Quaternions and interpolation of orientation.

1Generated using “SLOCCount” by David A. Wheeler. Confer [SLOCCount Website].

5.3. Future Work 217

It is distributed freely under the GPL and available from [PyMath3D Launchpad Website].

The PyMoCo framework for real-time motion control of industrial robots comprises about
3000 lines of Python code. It is adequate for use with any industrial robot arm to which
the controller provides low-level access to joint position control at ∼ 100Hz. The aim
with PyMoCo is to establish a framework for fast and flexible development of robotics
applications that need advanced real-time interactive control from other systems; such
as real-time sensor and vision systems. It provides a set of canonical motion controllers
for direct configuration and use, as well as fundamental resources for the development
of specialized motion controllers for integration with external, real-time information or
sensor systems. PyMoCo is in use in laboratory prototype systems and under continual
development for more efficiency and versatility. It is released under the GPL and available
at [PyMoCo Launchpad Website].

A real-time emulator for an extended version of the IntelliFeed demonstrator was designed
and implemented using the Blender Game Engine. Its embedded Python Interpreter was
used extensively as execution platform. The code is split in a general resource library,
“emulib”, comprising about 600 lines of Python code, and a case specific code base
comprising about 1500 lines of Python code. The emulator design emphasizes the realistic
and real-time nature of all devices in the demonstrator, and provides an implementation of
all emulated devices for supporting the network-exposed interfaces of the corresponding
real devices.

The original main motivation for the development of an emulator for the IntelliFeed
demonstrator was to make a platform for implementation of real-time shop-floor control
available, prior to the completion of the installation of the physical demonstrator in the
laboratory. Using the emulator, such a shop-floor control system was implemented for
the control of the extended IntelliFeed demonstrator. This experimental control system
comprises about 1500 lines of Python code.

5.3 Future Work

The immediately most useful contribution of the presented PhD work is the PyMoCo
framework for motion control of industrial robot arms. Its conception evolved out of
experiments with a Nachi AX10 controller, extended with a single-board computer acting
as an “accessor” to the low-level joint position control. The communication mechanism
in PyMoCo still bears some remnant design from this single scenario, and a back-end
design for more general and flexible communication mechanisms is in progress.

Advanced future laboratory projects for production automation, regarding such subjects
as redundant manipulators and multi-robot manipulation control, are expected to lead to
large extensions in functionality and facilities in the PyMoCo framework, as they progress.
PyMoCo is hoped to evolve to become a comprehensive framework for prototyping the
robot motion control and interaction in advanced production applications.

218 Chapter 5. Conclusions

The well described extended IntelliFeed demonstrator is modelled as the single case for
the principles of using the Blender Game Engine as a platform for realistic real-time shop-
floor emulation. As this development evolved, more and more code was moved from the
application library of modules and packages to the separate emulib, a library for generic
functionality of real-time device modelling and emulation. This process of separating
the general facilities into the emulib library is not entirely completed, and will proceed
in the future. When complete, the emulib library will hold a code base and facilities
for easily modelling and emulating many kinds of production devices, and it will enable
fast development and setup of an emulator for a production shop-floor. Along with this
process of separation of general functionality and facilities, and with more prototype
cases, a clearer and more detailed documentation of the principles of using the Blender
Game Engine for real-time emulation of production systems is expected to emerge.

If it is proven easy to set up a realistic real-time shop-floor emulator, it is expected to
have a major impact on the development of highly agile and complex control systems for
prototype and pilot installations in production automation. This is a goal for future work
with the principles and the code base for production system emulation with the Blender
Game Engine.

It has been indicated in this PhD thesis that there are natural performance limits associ-
ated with the centralized architecture of the Blender Game Engine for production system
emulation. This impacts the feasibility of the described principle of using the Blender
Game Engine for emulating large-scale, factory-wide production systems. An objective
of future research will be to investigate how a run-time management system may be
designed for distributing a real-time emulation of a large scale production system over
several Blender Game Engine nodes. This may enable the necessary scalability in the
technology for emulating production systems of any scale and size.

References

S. Arthur, C. Emde, and N. McGuire. Assessment of the Realtime Preemption
Patches (RT-Preempt) and their impact on the general purpose performance of
the system. In Ninth Real-Time Linux Workshop, Nov. 2007. URL http://www.

realtimelinuxfoundation.org/events/rtlws-2007/ws.html.

F. Auinger, R. Brennan, J. Christensen, J. L. M. Lastra, and V. Vyatkin. Requirements
and solutions to software encapsulation and engineering in next generation manufac-
turing systems: OOONEIDA approach. International Journal of Computer Integrated
Manufacturing, 18(7):572–585, 2005. doi: 10.1080/09511920500069507.

J. Baumgartner and S. Schoenegger. POWERLINK and Real-Time Linux: A Perfect
Match for Highest Performance in Real Applications. In Twelfth Real-Time Linux
Workshop, Oct. 2010. URL https://www.osadl.org/fileadmin/dam/rtlws/12/

Baumgartner.pdf.

P. Blanc, I. Demongodin, and P. Castagna. A holonic approach for manufacturing exe-
cution system design: An industrial application. Engineering Applications of Artificial
Intelligence, 21(3):315–330, 2008. ISSN 0952-1976. doi: 10.1016/j.engappai.2008.
01.007.

H. Bruyninckx, P. Soetens, and B. Koninckx. The Real-Time Motion Control Core of The
Orocos Project. In International Conference on Robotics and Automation, volume 2,
pages 2766–2771. IEEE, Sept. 2003. doi: 10.1109/ROBOT.2003.1242011.

G. Bruzzone, M. Caccia, G. Ravera, and A. Bertone. Standard Linux for embedded real-
time robotics and manufacturing control systems. Robotics and Computer-Integrated
Manufacturing, 25(1):178–190, 2009. ISSN 0736-5845. doi: 10.1016/j.rcim.2007.07.
016.

J. J. Craig. Introduction to Robotics: Mechanics and Control. Pearson Prentice Hall,
Upper Saddle River, New Jersey, USA, 3rd edition, 2004. ISBN 0-13-123629-6.

D. Dallefrate, D. Colombo, and L. M. Tosatti. Development of robot controllers based
on PC hardware and open source software. In Seventh Real-Time Linux Workshop,
Nov. 2005. URL https://www.osadl.org/Papers.rtlws-2005-papers.0.html#

PAPER_DarioDallefrate.

219

http://www.realtimelinuxfoundation.org/events/rtlws-2007/ws.html
http://www.realtimelinuxfoundation.org/events/rtlws-2007/ws.html
https://www.osadl.org/fileadmin/dam/rtlws/12/Baumgartner.pdf
https://www.osadl.org/fileadmin/dam/rtlws/12/Baumgartner.pdf
https://www.osadl.org/Papers.rtlws-2005-papers.0.html#PAPER_DarioDallefrate
https://www.osadl.org/Papers.rtlws-2005-papers.0.html#PAPER_DarioDallefrate

220 References

E. B. Dam, M. Koch, and M. Lillholm. Quaternions, interpolation and animation. Tech-
nical Report DIKU-TR-98/5, Department of Computer Science, University of Copen-
hagen, 1998. URL http://www.diku.dk/DOWNLOAD/98-5.pdf.

S.-T. Dietrich and D. Walker. The Evolution of Real-Time Linux. In Seventh Real-Time
Linux Workshop, Nov. 2005. URL https://www.osadl.org/fileadmin/events/

rtlws-2005/SvenThorstenDietrich.pdf.

D. M. Dilts, N. P. Boyd, and H. H. Whorms. The Evolution of Control Architectures for
Automated Manufacturing Systems. Journal of Manufacturing Systems, 10(1):79–93,
1991. ISSN 0278-6125. doi: 10.1016/0278-6125(91)90049-8.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns. Addison-Wesley,
Boston, MA, Jan. 1995. ISBN 0201633612.

F. Haghighirad, A. Makui, and B. Ashtiani. Chaos in Production Planning. Journal of
Applied Mathematics and Informatics, 26:739–750, 2008.

J. Hatvany. Intelligence and cooperation in heterarchic manufacturing systems. Robotics
and Computer-Integrated Manufacturing, 2(2):101–104, 1985. ISSN 0736-5845. doi:
10.1016/0736-5845(85)90065-1.

I. Hegny, O. Hummer, A. Zoitl, G. Koppensteiner, and M. Merdan. Integrating Software
Agents and IEC 61499 Realtime Control for Reconfigurable Distributed Manufacturing
Systems. International Symposium on Industrial Embedded Systems, pages 249–252,
June 2008. doi: 10.1109/SIES.2008.4577710.

S. Josifovska. What next for the PLC? Manufacturing Engineer, 83(4):10–11, Aug. 2004.
ISSN 0956-9944.

W. Kastner, C. Csebits, and M. Mayer. Linux in factory automation? internet controlling
of fieldbus systems! In International Conference on Emerging Technologies and Factory
Automation, volume 1, pages 27–31. IEEE, IEEE, 1999.

T. D. Khanh, P. Smoĺık, and P. Ṕı̌sa. An Open Implementation of Profibus
DP. In Eleventh Real-Time Linux Workshop, Sept. 2009. URL http://www.

realtimelinuxfoundation.org/events/rtlws-2009/ws.html.

P. Leitão. Agent-based distributed manufacturing control: A state-of-the-art survey.
Engineering Applications of Artificial Intelligence, 22(7):979–991, Oct. 2009. ISSN
0952-1976. doi: 10.1016/j.engappai.2008.09.005.

OMG. OMG Unified Modeling Language� (OMG UML), Superstructure, Version 2.4
, 2010. URL http://www.omg.org/spec/UML/2.4/Superstructure/Beta2/PDF.
Online.

P. B. Petersen. The misplaced origin of just-in-time production methods. Management
Decision, 40(1):82–88, 2002.

http://www.diku.dk/DOWNLOAD/98-5.pdf
https://www.osadl.org/fileadmin/events/rtlws-2005/SvenThorstenDietrich.pdf
https://www.osadl.org/fileadmin/events/rtlws-2005/SvenThorstenDietrich.pdf
http://www.realtimelinuxfoundation.org/events/rtlws-2009/ws.html
http://www.realtimelinuxfoundation.org/events/rtlws-2009/ws.html
http://www.omg.org/spec/UML/2.4/Superstructure/Beta2/PDF

References 221

E. S. Raymond. The cathedral and the bazaar. First Monday, 3(3), Mar.
1998. URL http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/

article/view/578. Online.

R. Rio. Moving Through the Barriers of Chaotic Manufacturing. ARC Brief on be-
half of nMetric, Nov. 2007. URL http://www.nmetric.com/pdfs/ARC_Chaotic_

Maufacturing.pdf.

S. Rostedt and D. V. Hart. Internals of the RT Patch. In A. J. Hutton and C. C. Ross,
editors, Proceedings of the Linux Symposium, volume 2, pages 161–172, June 2007.

A. Rullán. Programmable Logic Controllers versus Personal Computers for Process Con-
trol. Computers and Industrial Engineering, 33(1-2):421–424, 1997. ISSN 0360-8352.
doi: 10.1016/S0360-8352(97)00127-7. Proceedings of the 21st International Confer-
ence on Computers and Industrial Engineering.

G. Sally. Pro Linux Embedded Systems. Apress, 2010. ISBN 978-1-4302-7226-7. doi:
10.1007/978-1-4302-7226-7.

R. J. Schilling. Fundamentals of Robotics: Analysis and Control. Prentice Hall, Engle-
wood Cliffs, New Jersey, USA, 1st edition, 1990. ISBN 0-13-344433-3.

S. Shingō. A Study of the Toyota Production System From an Industrial Engineer-
ing Viewpoint. Productivity Press, Cambridge, Massachusetts, USA, 1989. ISBN
0-915299-17-8.

J. S. Smith. Survey on the Use of Simulation for Manufacturing System Design and
Operation. Journal of Manufacturing Systems, 22(2):157–171, 2003. ISSN 0278-
6125. doi: 10.1016/S0278-6125(03)90013-6.

F. W. Taylor. The Principles of Scientific Management. Harper & Brothers, New York,
New York, USA, 1913.

K. Thramboulidis. The Function Block Model in Embedded Control and Automation
From IEC61131 to IEC61499 . WSEAS Transactions on Computers, 8(9), Sept. 2009.
ISSN 1109-2750.

H. Van Brussel, J. Wyns, P. Valckenaers, L. Bongaerts, and P. Peeters. AReference
architecture for holonic manufacturing systems: PROSA. Computers in Industry, 37
(3):255–274, 1998.

P. Vrba and V. Maŕık. From Holonic Control to Virtual Enterprises: The Multi-Agent
Approach. In R. Zurawski, editor, The Industrial Information Technology Handbook.
CRC Press, 2005. ISBN 0-8493-1985-4.

http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/578
http://firstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/578
http://www.nmetric.com/pdfs/ARC_Chaotic_Maufacturing.pdf
http://www.nmetric.com/pdfs/ARC_Chaotic_Maufacturing.pdf

222 References

Web References

4DIAC Website. URL http://www.fordiac.org/. Home of 4DIAC, open source for
distributed industrial automation.

Blender Website. URL http://www.blender.org/. The Blender 3D modelling, anima-
tion, and game engine studio.

Bullet Physics Website. URL http://bulletphysics.org/. The home of ”Bullet
Physics Library”, for game physics simulation.

IBM 1984 Archive Website. URL http://www-03.ibm.com/ibm/history/history/

year_1984.html. The IBM history archive, 1984.

IMS Website. URL http://www.ims.org/. Home of Intelligent Manufacturing Sys-
tems, an industry-led, International business innovation and research and development
program.

Linux for Devices Website. URL http://www.linuxfordevices.com/. All About
Linuxpowered Devices.

NumPy Website. URL http://numpy.org/. NumPy is the fundamental package needed
for scientific computing with Python.

OSADL Website. URL https://www.osadl.org/. The ”Open Source Automation
Development Lab”, open source software for automation and other industries.

O3neida Website. URL http://www.oooneida.org/. Home of O3neida, a network
of networks focused on fostering distributed industrial automation based upon open
standards.

Pengutronix Website. URL http://pengutronix.de/. Pengutronix supports customers
within industrial embedded Linux projects.

PyMath3D Launchpad Website. URL https://launchpad.net/pymath3d. Python
Math3D.

PyMoCo Launchpad Website. URL https://launchpad.net/pymoco. Python Robot
Motion Control.

Python Website. URL http://www.python.org/. The Python Programming Language.

223

http://www.fordiac.org/
http://www.blender.org/
http://bulletphysics.org/
http://www-03.ibm.com/ibm/history/history/year_1984.html
http://www-03.ibm.com/ibm/history/history/year_1984.html
http://www.ims.org/
http://www.linuxfordevices.com/
http://numpy.org/
https://www.osadl.org/
http://www.oooneida.org/
http://pengutronix.de/
https://launchpad.net/pymath3d
https://launchpad.net/pymoco
http://www.python.org/

224 Web References

Qt Website. URL http://qt.nokia.com/. Qt is a cross-platform application and UI
framework.

Real-Time Linux Wiki Website. URL https://rt.wiki.kernel.org/. The home of
real-time Linux.

SLOCCount Website. URL http://www.dwheeler.com/sloccount/. The home of
”SLOCCount”, a set of tools for counting physical Source Lines of Code (SLOC) in a
large number of languages of a potentially large set of programs.

Steinhoff Website. URL http://www.steinhoff.de/. Steinhoff Automation &
Fieldbus-Systems, software components and fieldbus controllers for system applica-
tion developers.

Tordivel Website. URL http://www.tordivel.com/. Home of the Scorpion Vision
Software®.

ZeroC Inc. Website. URL http://www.zeroc.com/. Home of the Internet Communi-
cation Engine, Ice�.

http://qt.nokia.com/
https://rt.wiki.kernel.org/
http://www.dwheeler.com/sloccount/
http://www.steinhoff.de/
http://www.tordivel.com/
http://www.zeroc.com/

Appendix A

Production Control System Code

Selected, central interface to the production emulation system are included and code
excerpts from the prototype production control system are included and briefly described
in this appendix.

A.1 Interfaces to Emulated Devices

In this section, selected interfaces to controllable devices in the emulated production
system are presented. These interfaces are not particularly application specific. The
interfaces are well described by in-lined comments.

225

226 Appendix A. Production Control System Code

A.1.1 Workpiece Producer Interface

interface WorkpieceProducer extends Holon {
/**

Interface to a producer of workpiece. A workpiece is
indistinguishable from a pickable part ; but there may
exist part types which can not be produced.

**/

/// Get the workpiece type that this producer can produce.
idempotent string getWpType();

/// Wait for an active production order to complete. If
/// not completed withing a time of ”timeout” seconds have
/// passed, ”False” is returned ; otherwise ”True”
idempotent bool waitForIdle (float timeout);

/// Order the production of ”number” workpieces, to be
/// produced at the given ”frequency” in Hertz. If a
/// produce command is already proceeding, ”False” will be
/// returned .
bool produce(int number, float frequency);

};

Workpiece Producer Interface

A.1. Interfaces to Emulated Devices 227

A.1.2 Turntable Control Interface

interface TurnTableController extends hms::DeviceAdapter{
/**

Interface for controlling a simple turntable . The
turntable has a number of stopping positions , in which
the controller may stop the table rotation . There is no
absolute encoding of the positions , and only relative
motion in terms of a number of stops to pass through
from the current position is possible .

**/

/// Command a rotation through ”nStops” stop
/// positions . Asynchronous.
bool rotate (int nStops);

/// Blocks the calling thread until a commanded rotation
/// completes. Unblocks immediately if there is no
/// commanded rotation. Wait a maximum time of
/// timeout. Returns true if the rotation operation ended
/// withing the timeout limit .
idempotent bool waitForCompletion(float timeout);

/// Sets the angular velocity , ”alpha” in m/s, to be
/// maintained during a rotation operation .
bool setAngularVelocity (float alpha);

/// Get the currently configured angular velocity .
idempotent float getAngularVelocity ();

};

Turntable Control Interface

228 Appendix A. Production Control System Code

A.1.3 Tool Control Interfaces

ToolController Interface

interface ToolController extends hms::DeviceAdapter{
/**

Base interface for all tool control interfaces . Only
supports the static transformation internal to the
tool ; between tool center frame and tool attachment
frame.

**/

/// Retrieve the transformation between the tool attachment
/// frame and the tool center frame.
idempotent hms::math3di::Transform getToolTransform();

};

ToolController Interface

A.1. Interfaces to Emulated Devices 229

BinaryTwoFingerGripper Interface

interface BinaryTwoFingerGripper extends ToolController {
/**

Interface to the controller of a standard two−finger
gripper with binary positions for the fingers ;
i .e. either open or closed .

**/

/// Command opening of the gripper. Asynchronous.
bool openGripper();

/// Command closing of the gripper. Asynchronous.
bool closeGripper ();

/// Wait for a closing operation to complete; ensuring a
/// secure grip . If the close operation ends after a time
/// of ”timeout”, in seconds, has passed, ”False” is
/// returned .
idempotent bool waitForClosed(float timeout);

/// Query if the gripper is in open.
idempotent bool isOpen();

/// Query if the gripper is closed .
idempotent bool isClosed ();

};

BinaryTwoFingerGripper Interface

230 Appendix A. Production Control System Code

A.1.4 PnF-Conveyor Control Interfaces

PnFDrive Interface

interface PnFDrive extends hms::DeviceAdapter {
/**

Interface for the control of the drive chain of a
PnF−conveyor. Speed of the drive is the only
implemented control.

**/

/// Get the current speed, in m/s, of the drive chain .
idempotent float getSpeed();

/// Set the speed of the drive chain ; in m/s.
void setSpeed(float speed);

};

PnFDrive Interface

A.1. Interfaces to Emulated Devices 231

PnFStop Interface

interface PnFStop extends hms::DeviceAdapter {
/**

Inteface for controlling a PnF−stop on a
PnF−conveyor. A stop has an integrated proximity
sensor , which can determine if a trolley is in position
at the PnF−stop. All methods with a ”timeout”
parameter will return ”True” if the given call succeeds
within the given time in seconds.

**/

/// Get the named location on the conveyor.
idempotent string location ();

/// Query if the stop is in blocking state .
idempotent bool isBlocking ();

/// Query the proximity sensor , to determine if a trolley
/// is at the stop.
idempotent bool hasTrolleyContact ();

/// Query the controller if the PnF−stop is blocking and
/// there is a trolley at the proximity sensor .
idempotent bool hasBlockedTrolley ();

/// Set the stop in blocking mode. Trolleys will be
/// stopped against the PnF−stop. Returns whether a change
/// was made to the blocking state .
bool block ();

/// Unblock the stop. Trolleys will pass freely . Returns
/// whether a change was made to the blocking state .
bool unBlock();

/// Block the PnF−stop and wait for a trolley to arrive .
/// If ”timeout” second passed reached before any trolley
/// was blocked, False is returned ; True otherwise . Option
/// for asynchronous invokation .
[”ami”] bool waitForBlockedTrolley (float timeout);

/// Unblock the stop, and wait for a trolley to leave the
/// proximity sensor . If a trolley has not left within
/// ”timeout” seconds, False is returned ; True
/// otherwise . Leaves the stop in unblocking
/// state . Optionally asynchronous method invocation by
/// callback .
[”ami”] bool waitForTrolleyLeave (float timeout);

/// Release a single trolley from the stop. If ”timeout”
/// seconds passes while waiting for a blocked trolley to be
/// release , False is returned ; True otherwise . The stop
/// is left in blocking state . Option for asynchronous invokation .

PnFStop Interface

232 Appendix A. Production Control System Code

[”ami”] bool releaseTrolley (float timeout);
};

PnFStop Interface

A.1. Interfaces to Emulated Devices 233

A.1.5 Transport Control Interfaces

Dock Interface

/// States of a Dock
enum DockState {Free, Booked, Full};

interface Dock extends ResourceHolon {
/**

A dock is a registered target pose of an AGV on the
shop−floor. The dock manages reservation for allowing
or rejecting entrance of an AGV. Before entering, an
AGV must have obtained reservation.

**/

/// Get the dock’s associated pose on the shop−floor in
/// world coordinates .
idempotent agvsys :: Pose getPose();

/// Get the operational cell name that the dock is
/// associated with; if any. Simple string originating
/// from the fundamental configuration .
idempotent string getCellName();

/// Get the type of dock. Simple string originaging from
/// the fundamental configuration .
idempotent string getDockType();

/// Get access to the fundamental configuration
/// information for the dock,
idempotent DockInfo* getDockInfo();

/// Get the current state of the dock.
idempotent DockState getDockState();

/// Query if a given AGV has reservation of the dock.
idempotent bool haveReservation(AGV* reserver);

/// Notify that the given AGV is entering the dock. If the
/// given AGV is not holding reservation , False is
/// returned ; otherwise True is returned . In success , the
/// dock switches to the full state .
bool enter(AGV *reserver);

/// Request reservation of the dock. If the given AGV is
/// already the reserver , or if the dock is currently
/// free , the dock is reserved to the AGV and True is
/// returned ; otherwise False is returned .
bool reserve (AGV* reserver);

/// Release the dock from reservation to the given AGV. If
/// the AGV is holding reservations , True is returned and

Dock Interface

234 Appendix A. Production Control System Code

/// the dock changes state to free . Otherwise False is
/// returned .
bool release (AGV* reserver);

};

Dock Interface

A.1. Interfaces to Emulated Devices 235

AGV Interface

/// Externally controlled load states of an AGV.
enum AGVLoadState {Loaded, Loading, UnLoaded, UnLoading};

/// Internally controlled operational states of an AGV.
enum AGVOperationState {Idle, Buffered, Buffering , Tasking};

/// Internally controlled reservation states of an AGV.
enum AGVReservationState {Reserved, Available};

/// Internally controlled target motion states of an AGV.
enum AGVTargetState {NoTarget, DockTarget, FreeTarget};

interface AGV extends ResourceHolon {
/**

Administrative and task−control interface for an AGV as
a transport unit . Task command methods take two
specific parameters, ” buffer ” and ” reserver ”, with the
following semantics: The buffer argument should be set
to true if the motion is not a transport−related task ,
wherby the motion task has low priority and may be
interrupted . The reserver argument must be the
reservation ID of the current reserver of the AGV;
otherwise the task will not be acknowledged. If the AGV
is unreserved , a reserver ID of 0 may be given and the
AGV acknowledges the task but remain unreserved.

**/

/// Set the target pose for the AGV, for free motion
/// without a specified task .
bool goToTarget(agvsys::Pose target , bool buffer , int reserver);

/// Set a dock as a target for the AGV.
bool goToDock(Dock *targetDock, bool buffer, int reserver);

/// Get the localizer pose for the AGV.
idempotent agvsys :: Pose getPose();

/// Wait for completion of the currently active motion
/// command. Returns ”true” if the AGV went idle before
/// the given ”timeout” time; in seconcs.
idempotent bool waitForIdle (float timeout);

/// Set and get the load state of the AGV.
bool setLoadState(AGVLoadState loadState);
idempotent AGVLoadState getLoadState();

/// Get and set the payload specification .
string getPayloadSpec();
void setPayloadSpec(string payloadSpec);

/// Get the operation state of the AGV.

AGV Interface

236 Appendix A. Production Control System Code

idempotent AGVOperationState getOperationState();

/// Get the reservation state of the AGV.
idempotent AGVReservationState getReservationState();

/// Get the target motion state of the AGV.
idempotent AGVTargetState getTargetState();

/// Query the AGV for a specific reserver .
idempotent bool haveReservation(int reserver);

/// Release a reservation of the AGV. Only the current
/// reserver may release the reservation .
bool release (int reserver);

/// Attemt to reserve an AGV with a desired ” reserver ”
/// ID. If ” reserver ” matches the current reserver ID, it
/// is a no−op. Otherwise, success is only achieved if the
/// AGV is currently unreserved .
bool reserve (int reserver);

};

AGV Interface

A.1. Interfaces to Emulated Devices 237

TransportManager Interface

interface TransportManager extends SupervisorHolon {
/**

Interface to a transport manager, which takes partial
control of all AGVs. Any number of buffer docks may be
registered with the transport manager. An idle AGV,

matching the load state associated with a buffer dock,
may be sent to the dock on expectation of a future
request . Ordinary docks for tasking are registered with
their associated production system managers.

**/

/// Register a dock, ”dck”, as a buffer dock associated
/// with the load state given in ”loadState”.
bool registerBufferDock (Dock* dck, AGVLoadState loadState);

/// Unregister the bufferdock ”dck” from the given load state .
bool unregisterBufferDock(Dock* dck, AGVLoadState loadState);

/// Request reservation on an AGV in the given ”loadState”
/// and with given ”payloadSpec”, to be reserved to the
/// specified ” reserver ” ID. The caller is responsible for
/// releasing its reservation of the AGV and updating its
/// load state and payload specification . The
/// ”payloadSpec” argument is an arbitrary string for
/// encoding the payload inventory of an AGV. If
/// ”payloadSpec” is ”*”, any payload specification of an
/// AGV will match. If an unreserved AGV can not be found,
/// None is returned . Otherwise an interface to an AGV
/// with reservation ID as requested is returned .
AGV* requestAGV(int reserver, AGVLoadState loadState, string payloadSpec);

};

TransportManager Interface

238 Appendix A. Production Control System Code

A.1.6 Robot Control Interfaces

RobotInfo Interface

interface RobotInfo extends hms::DeviceAdapter {
/**

Lowest level , administrative interface to a robot. An
information service for a network connected robot with
in− and out−ports, robot type, pose, tool methods, etc.

**/

/// Get the in− and out−ports to communicated with the
/// robot over UDP/Ethernet.
idempotent int llcOutPort ();
idempotent int llcInPort ();

/// Get the robot type.
idempotent string robotType();

/// Get the base pose in world coordinates .
idempotent hms::math3di::Transform baseWorldPose();

/// Set a given tool , specified by a proxy to its
/// controller in ” toolController ”, with a given
/// attachment, ”attachXForm”.
void setTool(hms::toolcon :: BinaryTwoFingerGripper toolController ,

hms::math3di::Transform attachXForm);

/// Query if the robot already has an attached tool .
idempotent bool hasTool();

/// Get the attahced tool . Returns None if no tool is
/// attached.
idempotent hms::toolcon :: BinaryTwoFingerGripper* tool();

/// Get the attachment transform for the tool . I .e.\ the
/// transform from the tool base frame to the robot
/// end−effector frame.
idempotent hms::math3di::Transform attachXForm();

};

RobotInfo Interface

A.1. Interfaces to Emulated Devices 239

ControllerManager Interface

interface ControllerManager extends hms::DeviceAdapter {
/**

Administrative interface for a robot controller . Basic
information about robot base location . Control
interface to, and configuration of the attached tool is
exposed. Currently only the binary two−finger gripper
is supported, and for simplification it is given
directly by its type. Access to interfaces on
configured motion controllers . No reservation system is
currently implemented, so care must be taken for
avoiding race conditions .

**/

/// Get the base pose of the robot in world coordinates .
idempotent hms::math3di::Transform getBaseWorldPose();

/// Get a tool−linar controller for the robot.
hms::robcon:: LinearController * getLinearController ();

/// Attach a specific tool , given by a proxy for its
/// controller in ” toolController ”, with a given
/// attachment transform, ”attachXForm”, between robot
/// end−effector and tool base frames.
void useTool(hms::toolcon :: BinaryTwoFingerGripper toolController ,

hms::math3di::Transform attachXForm);

/// Get the attached tool , if any. If no tool is attached,
/// None is returned .
idempotent hms::toolcon :: BinaryTwoFingerGripper* getTool();

};

ControllerManager Interface

240 Appendix A. Production Control System Code

LinearController Interface

interface LinearController extends KinematicsController {
/**

Interface to a tool−linear controller for a robot. The
controller may be commanded to go linearly to a target
in the tool space, and gives access to the configured
speed on the linear part of the motion. The motion
operation is asynchronous and have associated methods
for querying for or synchronizing to completion.

**/

/// Go to the operational space home−pose for the robot.*/
void goHome();

/// Set and get the linear target speed for motion
/// commands.
void setLinSpeed(double linSpeed);
double getLinSpeed();

/// Move the tool linearly with the configured speed to
/// the pose given in ”tool ”, with coordinate reference
/// given in ” reference ”. ”Base” and ”World” are supported
/// as references . If an active motion is proceeding, the
/// request is rejected and ”False” is returned , otherwise
/// it is acknowledged and ”True” is returned .
bool goTo(hms::math3di::Transform tool, string reference);

/// Wait for completion of an active motion. If an active
/// motion does not complete within the given ”timeout”,
/// in seconds, ”False” is returned ; otherwise ”True” is
/// returned .
idempotent bool waitForIdle (float timeout);

/// Query methods for an active , executing motion and for
/// the inverse .
idempotent bool isExecuting ();
idempotent bool isIdle ();

/// Get the instantaneous pose of the tool . ” reference ”
/// must be ”Base” or ”World”.
idempotent hms::math3di::Transform getPose(string reference);

/// Get the home pose of the tool , in ”Base” reference ,
/// and the home joint−configuration for the robot.
idempotent hms::math3di::Transform homePose();
idempotent hms::math3di::Vector homeConfig();

};

LinearController Interface

A.2. Control System Code Excerpts 241

A.2 Control System Code Excerpts

This sub-appendix includes selected controller classes from the higher level production
control system.

242 Appendix A. Production Control System Code

A.2.1 SupplyCell Class

import time
import threading

import numpy
import math3d

import icehms
from hms.mlagvsys import AGVLoadState, AGVOperationState, DockState

from picker import Picker
from utils import options , transportManager, ti2t , t2ti , pose2transform

class SupplyCell(threading .Thread):
””” A supply cell object is an orchestrator for the producing and
providing of workpieces from a CNC machine, or other controllable
outlet such as a storage system, and bin−picking the workpieces
from a box on a turntable . The workpieces are placed in a layout
on a docked AGV, reserved for the supply cell .”””

def init (self , vision , controllerManager , dock,
partType, partRegistry , partSupplier , turnTable):

self . logLevel = 2
self . dock = dock
self . vision = vision
self . turnTable = turnTable
self . partType = partType
self . ps = partSupplier
self . cm = controllerManager
threading .Thread. init (self , name=’SupplyCell ’ \

+ self . cm.getDescriptor (). get(’ Cell ’ , ’<NoCell>’))
self .daemon = True
self . stop = False
self . agv = None
self . agvPose = None
self . lc = self . cm. getLinearController ()
self . tool = self . cm.getTool()
self . via = ti2t(self . lc .homePose())
self . via .pos.y += .1
self . via . orient . rotateZ(numpy.pi/2)
self . via = t2ti(self . via)
self . dObjDrop = 0.05
self . picker = Picker(self . cm, self . vision , self . partType, partRegistry)
self . nFillStorage = options. getint (’ SupplyCell ’ , ’ nFillStorage ’)
self . nFillAGV = options. getint (’ SupplyCell ’ , ’nFillAGV’)
self . supplyFrequency = options. getfloat (’ SupplyCell ’ , ’supplyFrequency’)
self . liftOffFromDrop = options. getfloat (’ SupplyCell ’ , ’ liftOffFromDrop’)
Inclination limit on parts to pick .
#self . inclLim = numpy.pi / 3.0
self . inclLim = numpy.pi / 2.0 # Grab anything!

def log (self , msg, level =2):

SupplyCell Class

A.2. Control System Code Excerpts 243

if level <= self. logLevel :
print self .name+’ : ’+msg

def acquireAGV(self , waitForArrival =True):
””” Acquire an unloaded AGV from the transport manager,
until one is reserved .”””
Only request an AGV, if there is not already one reserved and
associated.
if not self . agv is None:

self . log (’Warning: Requesting AGV while holding one reserved !. ’ , 2)
return False

Continue the requesting of an AGV from the transport
manager, until the cell is stopping or an AGV is reserved .
self . log (’Requesting unloaded AGV.’, 4)
while (not self . stop) and self . agv is None:

self . log (’ Iterating request of unloaded AGV.’, 5)
#self . agv=transportManager.requestUnLoadedAGV(id(self))
self . agv=transportManager.requestAGV(id(self), AGVLoadState.UnLoaded, ’’)
Give som time for an AGV to be released.
time. sleep (2.0)

Return if the cell is stopping .
if self . stop :

return False
else :

Command the AGV to the dock, and set appropriate load
state.
self . log (’Got reservation on an AGV.’, 4)
self . agv.goToDock(self. dock, buffer =False, reserver =id(self))
self . agv.setLoadState(AGVLoadState.Loading)
self . agv.setPayloadSpec(self . partType)
If requested, block until the AGV has arrived.
if waitForArrival :

self . agv. waitForIdle (1000.0)
self . log (’Requested AGV arrived’, 4)

return True

def releaseAGV(self):
””” Release the currently reserved AGV.”””
Only release, if there is a reserved AGV.
if not self . agv is None:

Set the correct load−state in which the AGV is
dismissed and release it .
self . log (’ Releasing the reserved AGV.’, 4)
self . agv.setLoadState(AGVLoadState.Loaded)
self . agv. release (id(self))
self . agv = None

else :
self . log (’Warning: Called without having an AGV!’, 2)

def getGrabableParts(self):
””” Return all grabable parts . The strategy is to filter away
all visible parts having a ’too horizontal ’ z−direction of its
refrence frame. Such parts will have horizontal approach of

SupplyCell Class

244 Appendix A. Production Control System Code

the tool , and hence high probability for a collision .”””
Get all visible workpiece poses.
partTs = []
partTs=self . vision .getWorldPoses(’WpType:’+self. partType)
Determine the parts that are accessible for grasping by a
limit on the inclination of their z−direction relative to
the world up or down directions .
grabPartTs = []
for pT in partTs:

zp = math3d.Vector(pT.orient[2])
azp = zp.angle(math3d.Vector.e2)
Check the inclination limit for determining
grabability.
if azp < self . inclLim or numpy.pi − azp < self. inclLim :

grabPartTs.append(pT)
return grabPartTs

def selectPart (self):
””” Select and return the transform for a grabable part for
picking .”””
Get all grabable parts .
grabPartTs = self . getGrabableParts ()
If any parts, return the one with highes reference
position. Otherwise return None.
if len(grabPartTs) > 0:

return ti2t (max(grabPartTs, key = lambda part: part.pos [2]))
else :

return None

def supplyWorkpieces(self):
””” The turntable is rotated for getting an empty box under
the producer. Then the producer is ordered to produce. It is
thus not the ordered products which are supplied for picking ,
but an earlier batch in the box which is immediately rotated
to the picker .”””
Wait for possibly ongoing rotation and produce operations .
self . turnTable .waitForCompletion(100.0)
self . ps . waitForIdle (100.)
Rotate a new box to the producer and await arraival .
self . turnTable . rotate (1)
self . turnTable .waitForCompletion(100.0)
Command the producing of parts
self . ps .produce(self . nFillStorage , self . supplyFrequency)

def dropOnAGV(self, partSlot=0):
””” Dispose of a grasped workpiece by dropping it into the
commanded slot in the pattern to fill on the AGV. Return the
drop pose.”””
Get the AGV pose and compute the (elevated) drop position
for the part slot .
tagv = pose2transform(self . agv.getPose())
tdrop = math3d.Transform(tagv)
tdrop.pos.z = 0.50

SupplyCell Class

A.2. Control System Code Excerpts 245

tdrop.pos += (partSlot * self . dObjDrop − 0) * tdrop.orient .vecX
tdrop. orient . rotateZ(numpy.pi/2)
tdrop. orient .rotateY(numpy.pi)
tdrop. orient .rotateX(.01)
Perform the motion to the drop pose.
self . lc .setLinSpeed(.5)
self . lc .goTo(t2ti(tdrop), ’World’)
self . lc . waitForIdle (100.)
Drop the workpiece.
self . tool .openGripper()
Go to the the lift−off position above the drop pose.
tdrop.pos.z += self. liftOffFromDrop
self . lc .goTo(t2ti(tdrop), ’World’)
self . lc . waitForIdle (100.)

def fillAGV (self):
””” Orchestrate the filling of an AGV by selecting, picking ,
and dropping workpieces .”””
Reset the slot and number counters.
agvPosCnt = 0
N = self . nFillAGV
while N>0 and not self. stop :

Select a part to pick , refill workpiece storage if necessary
selPartT = self . selectPart ()
if selPartT is None:

self . supplyWorkpieces()
selPartT = self . selectPart ()
if selPartT is None:

self . log (’No grabable part after resupply . ’ ,1)
return False

Command picking of the part, and go to home position.
self . picker . pick(selPartT)
self . lc .goTo(self . via , ’ ’)
self . lc . waitForIdle (100.)
Command dropping of the part in the next part slot and go to home.
self . dropOnAGV(agvPosCnt)
self . lc .goTo(self . via , ’ ’)
self . lc . waitForIdle (100.)
Update counters and re−iterate.
agvPosCnt = (agvPosCnt + 1)%9
N−=1

return True

def stop(self):
””” Command for ending the supply cell operation .”””
self . stop = True

def run(self):
self . lc .goTo(self . via , ’ ’)
while not self . stop :

Acquire a new AGV
self . acquireAGV(waitForArrival=False)
Resupply the storage, while waiting for the AGV.

SupplyCell Class

246 Appendix A. Production Control System Code

while len(self . getGrabableParts ()) < 2:
self . supplyWorkpieces()

Await the arrival of the AGV.
self . agv. waitForIdle (1000.0)
Perform the filling of the AGV and release it .
self . fillAGV ()
self . releaseAGV()

SupplyCell Class

A.2. Control System Code Excerpts 247

A.2.2 UploadCell Class

import time
import threading

import numpy
import math3d

import icehms
from hms.mlagvsys import AGVLoadState, AGVOperationState, DockState

from picker import Picker
from utils import options , transportManager, ti2t , t2ti

class UploadCell(threading .Thread):

def init (self , controllerManager , carrierManager ,
dockVision, partType, partRegistry , dock, logLevel=2):

self . logLevel = logLevel
self . stop = False
self . conMan, self . carMan, self . dockVision , self . partType, self . dock \

= controllerManager, carrierManager , dockVision, partType, dock
threading .Thread. init (self , name=’UploadCell ’+self. conMan.getName())
self .daemon = True
Find out what side of the carrier this upload cell belongs.
if self .name.find(’ Left ’)>0:

self . side = ’ left ’
elif self .name.find(’Right’)>0:

self . side = ’ right ’
Register with the carrier manager on the correct side .
self . carMan. registerUploadCell (self , self . side)
Variable for holding the interface to a reserved AGV.
self . agv = None
Get a handle on the tool and robot linear controllers .
self . tool =self . conMan.getTool()
self . linCon = self . conMan.getLinearController ()
Cpmpute a via pose between AGV and the carrier.
via = ti2t(self . linCon .homePose())
via . orient .rotateYB(numpy.pi/2)
if self . side == ’left ’ :

via .pos += math3d.Vector(−1.0,0.6,−0.75)
elif self . side == ’right’ :

via .pos += math3d.Vector(−1.0,−0.6,−0.75)
self . via = t2ti(via)
Setup the picker.
self . picker = Picker(self . conMan,

self . dockVision , self . partType,
partRegistry , via=self . via)

Get the retract length for the approach for uploading a
workpiece to a site on the carrier .
self . approachRetract = options. getfloat (’UploadCell’ , ’approachRetract’)
Running variable for counting the number of uploads on a
carrier.

UploadCell Class

248 Appendix A. Production Control System Code

self . nUploaded = 0

def log (self , msg, level =2):
if level <= self. logLevel :

print self .name+’ : ’+msg

def acquireAGV(self , waitForArrival =True):
””” Acquire a loaded AGV from the transport manager.
Keep requesting until one is reserved .”””
Only request an AGV, if there is not already one reserved and
associated.
if not self . agv is None:

self . log (’Warning: Requesting AGV while holding one reserved !. ’ , 2)
return False

Continue the requesting of an AGV from the transport
manager, until the cell is stopping or an AGV is reserved .
self . log (’Requesting unloaded AGV.’, 4)
while (not self . stop) and self . agv is None:

self . log (’ Iterating request of unloaded AGV.’, 5)
#self . agv=transportManager.requestLoadedAGV(id(self))
self . agv=transportManager.requestAGV(id(self),

AGVLoadState.Loaded, self. partType)
Give som time for an AGV to be released.
time. sleep (2.0)

Return if the cell is stopping .
if self . stop :

return False
else :

Command the AGV to the dock, and set appropriate load
state.
self . log (’Got reservation on an AGV.’, 4)
self . agv.goToDock(self. dock, buffer =False, reserver =id(self))
self . agv.setLoadState(AGVLoadState.UnLoading)
If requested, block until the AGV has arrived.
if waitForArrival :

self . agv. waitForIdle (1000.0)
self . log (’Requested AGV arrived’, 4)

return True

def releaseAGV(self):
””” Release the currently reserved AGV.”””
if not self . agv is None:

self . agv.setLoadState(AGVLoadState.UnLoaded)
self . agv. release (id(self))
self . agv = None

def agvWorkpieceCount(self):
””” Return a count of remaining identifiable workpieces on the
AGV.”””
return len(self . dockVision .getWorldPoses(’WpType:’+self. partType))

def uploadWorkpiece(self):
””” Upload the currently picked workpiece to the carrier .”””

UploadCell Class

A.2. Control System Code Excerpts 249

Get a site. The call blocks until a new carrier arrives , if
there are no remaining sites for this uploader ’ s side .
wpT= self. carMan.getSite(self . side)
Compute the pose to put the workpiece onto the site .
putT = wpT.copy()
if putT.orient .vecY.y < 0.0:

putT.orient .rotateXT(−numpy.pi/2)
putT.orient .rotateZT(−numpy.pi/3.9)

else :
putT.orient .rotateXT(numpy.pi/2)
putT.orient .rotateZT(−2.2*numpy.pi/3)

Compute the approach pose for attaching the workpiece.
apprT = putT.copy()
apprT.pos += self. approachRetract * wpT.orient.vecZ
Perform the motions for attaching the workpiece.
self . linCon .setLinSpeed(1.0)
self . linCon .goTo(t2ti(apprT),’World’)
self . linCon .goTo(t2ti(putT),’World’)
self . linCon . waitForIdle (100.)
self . linCon .setLinSpeed(0.1)
self . linCon .goTo(t2ti(putT),’World’)
self . linCon . waitForIdle (100.)
self . tool .openGripper()
self . nUploaded += 1
self . linCon .setLinSpeed(1.0)
self . linCon .goTo(self . via , ’ ’)
self . linCon . waitForIdle (100.)
Notify the carrier manager of the filled site .
self . carMan. siteFilled (wpT)

def stop(self):
self . stop = True

def run(self):
Initially command the robot to the via point for operation .
self . linCon .goTo(self . via , ’ ’)
while not self . stop :

Ensure that an ordered AGV has docked.
if not self . agv is None:

self . agv. waitForIdle (1000.0)
Try picking a workpiece.
if not self . picker . pick ():

If unsuccessful pick , get a new AGV
self . releaseAGV()
self . acquireAGV(waitForArrival=False)

else :
If no further workpieces , wait for a new AGV while
uploading.
if self . agvWorkpieceCount() == 0:

self . releaseAGV()
self . acquireAGV(waitForArrival=False)

Perform the uploading.
self . uploadWorkpiece()

UploadCell Class

250 Appendix A. Production Control System Code

A.2.3 Picker Class

import copy

import icehms
from hms import math3di

from utils import ti2t , t2ti

class Picker(object):
””” A picker is an association of a robot, a vision system, and a
part type. The part type must be registered with a part registry ,
for retrieving grasping information . An optional via point can be
given , for the robot to move to after a pick .”””

def init (self , controllerManager , vision ,
partType, partRegistry , via=None):

self . via = via
self . cm = controllerManager
self . v = vision
self . lc = self . cm. getLinearController ()
self . t = self . cm.getTool()
self . partType = partType
self . partHolon = partRegistry . getPart(self . partType)
self . grasps = [ti2t (g) for g in self . partHolon.getGrasps ()]
self . tb2w = ti2t(self . cm.getBaseWorldPose())
self . tw2b = self . tb2w. inverse ()

def selectGrasp (self , tp):
””” Strategy for selecting grasp, given the part pose.”””
ztipz = [(tp*g. orient .vecZ).z for g in self . grasps]
i = min(enumerate(ztipz), key=lambda x:x[1])[0]
return self . grasps [i]

def pick(self , partT=None):
””” The method to command a pick of a part of the given
type. If a part transform, ’partT’ in world coordinates , is
not given , select a part found with the vision system.”””
Prepare.
self . t .openGripper()
self . lc . waitForIdle (20.)
If a part transform is not given , chose one.
if partT is None:

partTs = self . v .getWorldPoses(’WpType:’+self. partType)
if len(partTs) > 0:

partT = partTs[0]
else :

return False
if type(partT) == math3di.Transform:

tPartT = ti2t(partT)
else :

tPartT = partT
Transform to robot base reference

Picker Class

A.2. Control System Code Excerpts 251

tPartB = self . tw2b*tPartT
Select a grasp and transfrom to robot base coordinates .
self . g = self . selectGrasp (tPartT)
tGraspB = tPartB * self . g
Set a high via speed and go to approach.
self . lc .setLinSpeed(.7)
tAppr = copy.copy(tGraspB)
tAppr.pos −= 0.05*tAppr.orient.vecZ
self . lc .goTo(t2ti(tAppr), ’ ’)
self . lc . waitForIdle (20.)
Set a low speed, move to the grasp, and pick .
self . lc .setLinSpeed(0.3)
self . lc .goTo(t2ti(tGraspB),’ ’)
self . lc . waitForIdle (20.)
self . t . closeGripper ()
self . t .waitForClosed(10000.)
Lift out to approach via .
self . lc .goTo(t2ti(tAppr), ’ ’)
self . lc . waitForIdle (20.)
Move away to via, if configured .
self . lc .setLinSpeed(.7)
if not self . via is None:

self . lc .goTo(self . via , ’ ’)
self . lc . waitForIdle (20.)

return True

Picker Class

252 Appendix A. Production Control System Code

A.2.4 TransportManager Class

import threading
import time
import random

import icehms
import hms
from hms import mlagvsys, math3di
from hms.mlagvsys import AGVOperationState, AGVReservationState, AGVLoadState

class TransportManager(mlagvsys.TransportManager, icehms.Holon):

def init (self):
icehms.Holon. init (self ,name=’TransportManager’)
Separate task thread for updating the list of known AGVs.
self . logLevel = 2
self . stop = False
Lock for any resource access .
self . resourceLock = threading.Lock()
The register of buffer docks.
self . bufferDocks={}
The list of known AGVs.
self . agvs = []

def log (self , msg, level =2):
if level <= self. logLevel :

print self .name+’ : ’+msg

def updateResources(self):
””” Refresh the list of known AGVs in the system. Some may
have shut down, and new may have been deployed.”””
with self . resourceLock :

Refresh the list of AGVs available.
self . agvs = [mlagvsys.AGVPrx.checkedCast(x)

for x in self . icemgr. findHolons(’ :: hms::mlagvsys :: AGV’)]

def registerBufferDock (self , dck, loadState , current=None):
””” Register ’dck’ as a buffer dock for idle AGVs of the given
’ loadState ’. ”””
if not loadState in self . bufferDocks :

self . bufferDocks [loadState] = []
if not dck in self . bufferDocks [loadState]:

self . bufferDocks [loadState]. append(dck)
return True

else :
return False

def unregisterBufferDock(self , dck, loadState , current=None):
””” Unregister ’dck’ as a buffer dock for idle AGVs of the given
’ loadState ’. ”””
if not loadState in self . bufferDocks :

return False

TransportManager Class

A.2. Control System Code Excerpts 253

if dock in self . bufferDocks [loadState]:
self . bufferDocks [loadState]. remove(dck)
if len(self . bufferDocks [loadState]) == 0:

del self . bufferDocks [loadState]
return True

else :
return False

def requestAGV(self, reserver , loadState , payloadSpec=’*’, current=None):
””” Request for reservation of an AGV. This includes no
ordering of motion, but only reservation . One attempt is made
to find an AGV which is available and in the requested
’ loadState ’. Upon success, the AGV is reserved to the
’ reserver ’ id and an inteface to the AGV is
returned . Otherwise None is returned .”””
reserved = None
random.shuffle (self . agvs)
with self . resourceLock :

for a in self . agvs :
if (a.getOperationState() != AGVOperationState.Tasking

and a. getReservationState () == AGVReservationState.Available
and a.getLoadState() == loadState):
if (loadState != AGVLoadState.UnLoaded and

payloadSpec != ’*’ and
a.getPayloadSpec() != payloadSpec):
The requested ”payloadSpec” was not set to
any payload (”*”) and it did not match the
payloadSpec of the AGV. So continue
searching.
continue

else :
reserved = a
a. reserve (reserver)
break

return reserved

def getBufferables (self):
””” Return a list of AGVs that are idle and available ;
i .e. suitable for buffering .”””
return [a for a in self . agvs if

(a.getOperationState() == AGVOperationState.Idle and
a. getReservationState () == AGVReservationState.Available)]

def bufferAGVs(self):
””” Send idle , available AGVs to appropriate buffers .”””
with self . resourceLock :

iaAGVs = self. getBufferables ()
for a in iaAGVs:

self . log (’TransportManager: Buffering available , idle AGV’, 5)
Check the AGV for its load state , and send to a random,
appropriate buffer dock.
if (a.getLoadState() == AGVLoadState.Loaded

and AGVLoadState.Loaded in self. bufferDocks):

TransportManager Class

254 Appendix A. Production Control System Code

a.goToDock(random.choice(
self . bufferDocks [AGVLoadState.Loaded]),

buffer =True, reserver =0)
elif (a.getLoadState() == AGVLoadState.UnLoaded

and AGVLoadState.UnLoaded in self. bufferDocks):
a.goToDock(

random.choice(
self . bufferDocks [AGVLoadState.UnLoaded]),

buffer =True, reserver =0)

def run(self):
Do an initial search for AGVs.
self . log (’ Initial update of resources ’ , 4)
self . updateResources()
Timer for the the resource updater.
tResUpd = time.time()

while not self . stop :
Update AGV list at very low frequency
if time.time() − tResUpd > 10.0:

self . updateResources()
tResUpd = time.time()

Continually buffer idle , available AGVs.
self . bufferAGVs()
Run tasks at low frequency.
time. sleep (1.0)

TransportManager Class

A.2. Control System Code Excerpts 255

A.2.5 AGV Class

import threading
import time

import numpy
import Ice

import icehms
from hms import mlagvsys, agvsys
from hms.mlagvsys import \

AGVLoadState, AGVOperationState, AGVReservationState, AGVTargetState

from utils import pose2transform

class DockMotion(threading.Thread):
def init (self , agv, dock):

self . agv, self . dock = agv, dock
self . target = pose2transform(self . dock.getPose())
self . dockReserved = False
self . entered = False
threading .Thread. init (self , name=’DockMotion’+agv.name)
self .daemon = True
self . stop = False
self . vlin = 0.75 # m/s
self . standoffstart = 1.5 # m
self . standoffdist = 1.0 # m
self . enterdist = 0.7 # m
self . vrot = 1.5 # rad/s
self . ltol = 0.05 # m
self . rtol = 0.02 # m
self . start ()

def dockReserved(self):
self . agv. log (’DockMotion: received dock reservation notification ’ ,4)
self . dockReserved = True

def stop(self):
self . stop = True

def run(self):
while not self . stop :

pose=pose2transform(self . agv. loc .getPose())
tvec = self . target .pos − pose.pos
tdist = tvec.length ()
if (not self . entered) and self . dockReserved and tdist < self . enterdist :

self . agv. log (’DockMotion: target dist (%.2f) within enter dist (%.2f)’
% (tdist , self . enterdist),4)

self . dock.enter(self . agv.proxy)
self . entered = True

heading = pose.orient .vecX
vcut = min(self . vlin , tvec*heading)
vlin = max(0.0,vcut)

AGV Class

256 Appendix A. Production Control System Code

if tdist <0.05:
ang = heading.sangle(self . target . orient .vecX)

else :
ang = heading.sangle(tvec)

vrot = min(self . vrot , 2*ang)
if tdist < self . ltol and abs(ang) < self . rtol :

self . agv. vc . setPolarVelocity (agvsys. PolarVelocity (0.0,0.0))
break

else :
if (not self . dockReserved) and tdist < self . standoffstart :

self . agv. log (’DockMotion: target dist (%.2f) within standoff ’
+ ’ start (%.2f) and dock not reserved ’
% (tdist , self . standoffstart), 4)

vlin *= ((tdist − self . standoffdist)
/(self . standoffstart − self . standoffdist))

self . agv. vc . setPolarVelocity (agvsys. PolarVelocity (vlin , vrot))
time. sleep (0.2)

if not self . stop :
Notify AGV
self . agv. tcDoneFlag.set ()

class FreeMotion(threading.Thread):
””” A motion task for obtaining a freely specified pose in world
coordinates . ’ target ’ must be given as a agvsys.Pose object .”””
def init (self , agv, target):

threading .Thread. init (self , name=’FreeMotion’+agv.name)
self .daemon = True
self . agv = agv
Store target as a math3d.Transform
self . target = pose2transform(target)
self . stop = False
self . vlin = 0.75
self . vrot = 1.5
self . ltol = 0.05
self . rtol = 0.02
self . start ()

def stop(self):
self . stop = False

def run(self):
while not self . stop :

pose=pose2transform(self . agv. loc .getPose())
tvec = self . target .pos − pose.pos
tdist = tvec.length ()
heading = pose.orient .vecX
vcut = min(self . vlin , tvec*heading)
vlin = max(0.0,vcut)
if tdist <0.05:

ang = heading.sangle(self . target . orient .vecX)
else :

ang = heading.sangle(tvec)

AGV Class

A.2. Control System Code Excerpts 257

vrot = min(self . vrot , 2*ang)
if tdist < self . ltol and abs(ang) < self . rtol :

self . agv. vc . setPolarVelocity (agvsys. PolarVelocity (0.0,0.0))
break

else :
self . agv. vc . setPolarVelocity (agvsys. PolarVelocity (vlin , vrot))

time. sleep (0.2)
if not self . stop :

Notify AGV
self . agv. tcDoneFlag.set ()

class AGV(mlagvsys.AGV, icehms.Holon):

def init (self , vc, loc , logLevel=3):
icehms.Holon. init (self , name=’AGV ’+vc.getName(), logLevel=logLevel)
self . vc = vc
self . loc = loc
self . target = None
self . reserver = 0
self . payloadSpec = ’’
self . stop = False
self . idle = threading.Event()
self . loadState = AGVLoadState.UnLoaded
self . opState = AGVOperationState.Idle
self . resvState = AGVReservationState.Available
self . targetState = AGVTargetState.NoTarget
self . targetController = None
self . targetDock = None
self . targetLock = threading.RLock()
self . tcDoneFlag = threading.Event()

def getattr (self , name):
if name == ’idle’:

return self . idle . isSet ()
elif name == ’reserved’:

return self . reserver !=0
else :

return self . dict [name]

def setattr (self , name, val):
if name == ’idle’:

if bool(val):
self . idle . set ()

else :
self . idle . clear ()

else :
object . setattr (self , name, val)

def targetControllerDone (self):
””” Handler for state updates on accomplished target control .”””
with self . targetLock :

Flag for now idle.

AGV Class

258 Appendix A. Production Control System Code

self . idle . set ()
If the operation was buffering , then switch to
buffered.
if self . opState == AGVOperationState.Buffering:

self . opState = AGVOperationState.Buffered
else :

self . opState = AGVOperationState.Idle

def goToTarget(self , target , buffer =True, reserver =0, current=None):
””” Setup a task for going to a freely specified target .”””
self . log (’Request for target pose’ ,4)
Reserver must have reservation and the AGV must not be tasking.
if reserver != self . reserver or self . opState == AGVOperationState.Tasking:

Log the reason for rejection .
if reserver != self . reserver :

self . log (’Request rejected due to mismatch in reservation . ’ , 3)
if self . opState == AGVOperationState.Tasking:

self . log (’Request rejected due to tasking . ’ , 3)
Reject the task.
return False

with self . targetLock :
Release a current target dock if reserved .
if ((not self . targetDock is None)

and self . targetDock.haveReservation(self .proxy)):
self . log (’ Releasing current target dock: ”%s”’%str(self . targetDock), 4)
self . targetDock. release (self .proxy)
self . targetDock = None

Stop the current target control , if existing .
if not self . targetController is None:

self . log (’Stopping current target controller . ’ , 4)
self . targetController . stop()
self . targetController . join ()

Save the new target.
self . target = target
Update target and operation states
self . targetState = AGVTargetState.FreeTarget
if buffer :

self . opState = AGVOperationState.Buffering
else :

self . opState = AGVOperationState.Tasking
Start operating.
self . idle . clear ()
Start target controller .
self . targetController = FreeMotion(self , target)
self . log (’New target controller : ”%s”’%str(self . targetController), 4)
return True

def goToDock(self, targetDock, buffer =True, reserver =0, current=None):
””” Setup of task for going to the specified dock.”””
self . log (’Request for target dock’, 4)
Reserver must have reservation and the AGV must not be tasking.
if reserver != self . reserver or self . opState == AGVOperationState.Tasking:

Log the reason for rejection .

AGV Class

A.2. Control System Code Excerpts 259

if reserver != self . reserver :
self . log (’Request rejected due to mismatch in reservation . ’ , 3)

if self . opState == AGVOperationState.Tasking:
self . log (’Request rejected due to tasking . ’ , 3)

Reject the task.
return False

with self . targetLock :
Release a current target dock if reserved .
if ((not self . targetDock is None)

and self . targetDock.haveReservation(self .proxy)):
self . log (’ Releasing current target dock: ”%s”’%str(self . targetDock), 4)
self . targetDock. release (self .proxy)
self . targetDock = None

Stop the current target control , if existing .
if not self . targetController is None:

self . log (’Stopping current target controller . ’ , 4)
self . targetController . stop()
self . targetController . join ()

Save the new target.
self . targetDock = targetDock
Update target and operation states
self . targetState = AGVTargetState.DockTarget
if buffer :

self . opState = AGVOperationState.Buffering
else :

self . opState = AGVOperationState.Tasking
Start operating.
self . idle . clear ()
Start target controller .
self . targetController = DockMotion(self, self . targetDock)
self . log (’New target controller : ”%s”’%str(self . targetController), 4)
return True

def getPose(self , current=None):
””” Return the instantaneous pose of the AGV in world
coordinates , according to the localizer .”””
return self . loc .getPose()

def stop(self):
””” Shutdown method for the AGV.”””
Stop a current target controller .
if not self . targetController is None:

self . targetController . stop()
self . targetController . join ()

Flag for stopping to the thread.
self . stop = True

def waitForIdle (self , timeout=None, current=None):
””” Utility for clients to be blocked until the AGV is
idle . Wait a maximum of ’timeout’ seconds for the current
operation to complete. Returns the idle status .”””
self . idle .wait(timeout)
return self . idle . isSet ()

AGV Class

260 Appendix A. Production Control System Code

def getLoadState(self , current=None):
””” Get the current load state .”””
return self . loadState

def setLoadState(self , loadState , current=None):
””” Set the load state . (Only used in external logic .)”””
self . loadState = loadState
if loadState == AGVLoadState.UnLoaded:

self . payloadSpec = ’’
return True

def getPayloadSpec(self , current=None):
””” Get the current payload specification .”””
return self . payloadSpec

def setPayloadSpec(self , payloadSpec, current=None):
””” Set the payload specification . (Only used in external
logic .)”””
self . payloadSpec = payloadSpec

def getOperationState(self , current=None):
””” Get the current operation state .”””
return self . opState

def getReservationState (self , current=None):
””” Get the current reservation status .”””
return self . resvState

def getTargetState(self , current=None):
””” Return the current target state . This specifies if there
is no target , the target is a dock, or the target is a general
pose.”””
return self . targetState

def release (self , reserver , current=None):
””” Release a reservation of the AGV. If the addressing
’ reserver ’ does not match the current reserver , False is
returned .”””
if self . reserver == reserver:

self . reserver = 0
self . resvState = AGVReservationState.Available
return True

else :
return False

def reserve (self , reserver , current=None):
””” Request reservation of the AGV. If the AGV is already
reserved , or if the ’ reserver ’ is not the current reserver ,
False is returned .”””
if self . reserver == 0 or self . reserver == reserver:

self . reserver = reserver
self . resvState = AGVReservationState.Reserved

AGV Class

A.2. Control System Code Excerpts 261

return True
else :

return False

def haveReservation(self , reserver , current=None):
””” Query if a given ’ reserver ’ is the current reserver of the
AGV.”””
return self . reserver == reserver

def run(self):
while not self . stop :

if self . tcDoneFlag. isSet ():
The current target controller is done. Handle the
arrival to target .
self . targetControllerDone ()
self . tcDoneFlag. clear ()

if not self . idle :
Under operation. Handle running tasks.
if not self . targetController is None:

self . log (’Have target controller ’ ,4)
if self . targetController . isAlive ():

self . log (’Target controller alive ’ ,4)
Check if the target is an unreserved dock.
if type(self . targetController) == DockMotion \

and not self . targetController . dockReserved:
with self . targetLock :

Try to obtain reservation
self . log (’Trying to reserve dock: ”%s”’

% str(self . targetDock), 4)
if (not self . targetDock is None

and self . targetDock. reserve (self .proxy)):
Reservation has been obtained.
Notify the target dock controller .
self . targetController .dockReserved()

Moderate frequency activity when not idle .
time. sleep (1.0)

else :
Low frequency when idle.
time. sleep (1.0)

AGV Class

262 Appendix A. Production Control System Code

A.2.6 CarrierManager Class

import threading
import time

import numpy

from utils import options , ti2t , t2ti

class CarrierManager(threading .Thread):
””” Class for the manager of the carrier at the upload
PnF−stop. Upload cells may register to cover the sites of a
particular side of a carrier . An upload cell is given , on request ,

the 3D pose of any side requested . If no sites are free for the
pertinent side , the call is blocked until notified about new
sites . It is part of the carrier managers life cycle to recognize
the situation where all sites with potential to be filled , with
respect to the registered uploaders , have been filled , and react
by acquiring a new carrier .”””

def init (self , carrierVision , conveyorManager):
threading .Thread. init (self , name=’CarrierManager’)
self .daemon = True
self . carVis = carrierVision
self . convMan = conveyorManager
self . sites = {’ left ’ :[], ’ right ’ :[]}
self . reservedSites = []
self . sitesCond = threading.Condition()
self . filledEvent = threading.Event()
self . stop = False
self . uploaders = {}
#self . uploaderWait = {}
self . nUploadsPerCarrier = options. getint (’CarrierManager’ , ’nUploadsPerCarrier ’)

def partitionSites (self):
””” Separate all identifiable sites of a carrier into two sides .”””
with self . sitesCond :

siteTs = [ti2t (s) for s in self . carVis .getWorldPoses(’’)]
Separate sites for left and right by center
centerX = numpy.average([s.pos.x for s in siteTs])
leftTs = [s for s in siteTs if s .pos.x > centerX]
rightTs = [s for s in siteTs if s .pos.x < centerX]
Sort and trim site lists to fit number of desired uloads .
rightTs . sort (key=lambda s:s.pos.z)
halfNUploads = (self . nUploadsPerCarrier + 1) // 2
if halfNUploads < len(rightTs):

rightTs = rightTs [: halfNUploads]
leftTs . sort (key=lambda s:s.pos.z)
if halfNUploads < len(leftTs):

leftTs = leftTs [: halfNUploads]
self . sites [’ left ’] = leftTs
self . sites [’ right ’] = rightTs

CarrierManager Class

A.2. Control System Code Excerpts 263

def siteCount (self):
””” Count the remaining sites for the carrier to be full . This
comprises all reserved sites and free sites for which an
uploader is registered .”””
count = len(self . reservedSites)
for side in self . uploaders :

count += len(self . sites [side])
return count

def registerUploadCell (self , uploader , side):
””” Register an upload cell for a given side of a carrier .”””
self . uploaders [side] = uploader
#self . uploaderWait[uploader] = False

def getSite (self , side):
””” Return a site for the given ’ side ’ of the carrier . If
there are no sites available , block and wait for a
notification about new sites . If then still no sites are found
for the ’ side ’, None is returned . Otherwise, the site pose is
returned . The site is moved to the reserved sites list .”””
with self . sitesCond :

if len(self . sites [side]) == 0:
No available sites , wait for notification about new
sites on a new carrier .
self . sitesCond .wait()

if len(self . sites [side]) > 0:
Pop a site from available sites for the ’ side ’, and
add it to the reserved list .
site = self . sites [side]. pop(0)
self . reservedSites .append(site)
return site

else :
If still no new sites , return None.
return None

def siteFilled (self , site):
””” Notification from a client , that a reserved site have been
filled . The site is removed from the reserved sites list .”””
self . reservedSites .remove(site)

def stop(self):
self . stop = True

def run(self):
while not self . stop :

with self . sitesCond :
Check if all potential sites are filled .
if self . siteCount () == 0:

Acquire a new carrier.
self . convMan. shiftCarrier ()
Separate sites for the upload clients .
self . partitionSites ()
Notify upload clients that the new carrier is

CarrierManager Class

264 Appendix A. Production Control System Code

ready for upload.
self . sitesCond . notifyAll ()

time. sleep (1.0)

CarrierManager Class

A.2. Control System Code Excerpts 265

A.2.7 ConveyorManager Class

import threading
import time

from utils import iceMgr

import icehms
from hms import blenderpnf

class ConveyorManager(threading.Thread):
””” Class for managing the trolleys on the conveyor by
orchestrating the PnF−stops. The main purpose is to support the
request for a new carrier at the upload PnF−stop, while ensuring
that the upload buffer PnF−stop is replenished .”””

def init (self):
threading .Thread. init (self , name=’CarrierManager’)
self .daemon = True
Get all PnF−stops.
self . pnfStops = [

blenderpnf .PnFStopPrx.checkedCast(x).ice timeout(60000)
for x in iceMgr.findHolons(’ :: hms::blenderpnf :: PnFStop’)]

Get the PnF−drive units. Should only be one.
self . pnfDrives = [

blenderpnf .PnFDrivePrx.checkedCast(x)
for x in iceMgr.findHolons(’ :: hms::blenderpnf :: PnFDrive’)]

Setup named PnF−stops as object attributes.
for s in self . pnfStops:

self . dict [’ %s’%s.getDeviceName()] = s
The paint buffer stop should always let trolleys through,
to recycle the carriers without transfer .
self . PaintBuffer .unBlock()
self . stop = False

def shiftCarrier (self , wait=True):
””” The method to shift the carriers , ensuring that a new
carrier is posed at the upload PnF−stop and that the upload
buffer PnF−stop is replenished with a carrier .”””
Free a current upload carrier .
if self . Upload.hasBlockedTrolley ():

self . Upload. releaseTrolley (60.)
Interruption point
if self . stop :

return False
Make sure there is a trolley at the upload buffer .
if not self . UploadBuffer. hasBlockedTrolley ():

Release a trolley from storage .
self . CarrierStorage . releaseTrolley (60.)
Interruption point
if self . stop :

return False
Check that no trolley has arrived to upload. This may have

ConveyorManager Class

266 Appendix A. Production Control System Code

happened, if the previously released trolley had another
trolley blocked on it . If no trolley at upload, send one
from the upload buffer.
if not self . Upload.hasBlockedTrolley ():

Release a trolley from upload buffer .
self . UploadBuffer. releaseTrolley (60.)
Interruption point
if self . stop :

return False
Now replenish the upload buffer with a carrier from storage .
self . CarrierStorage . releaseTrolley (60.)

Optionally wait until the new carrier has arrived at upload.
if wait :

Await a carrier at arriving at Upload.
self . Upload. waitForBlockedTrolley (60.)

return True

def stop(self):
self . stop = True

def run(self):
while not self . stop :

time. sleep (1)

ConveyorManager Class

	Front Matter
	Dedication
	Acknowledgements
	Abstract
	Acronyms and Abbreviations
	Contents

	Introduction
	Problem Domain
	Project Background and Outline
	Project Background
	Project Evolution and Circumstances

	PhD Thesis Outline

	Philosophical Considerations on Production Control
	Terminology
	A Brief History of Production
	A Battle of Paradigms for the Future
	Hierarchic, Heterarchic, and Holarchic Control
	From Flexibility and Batch to Agility and Chaos
	Automation Principles of Agile Production

	Account of PhD Work
	Linux-PCs in Production Control
	Issues with common PCs in Manufacturing Control
	PCs to Take Over or Inter-Operate with PLCs
	Real-Time Control with GNU/Linux
	Examples of PC Control for Devices

	Real-Time Production Device Emulation
	Considerations for Real-Time Device Emulation
	Real-Time Emulation with the Blender Game Engine
	Examples of Real-Time Emulated Systems

	Real-Time Production System Emulation
	Simulation vs. Control of Emulated Devices
	From Device to System Emulation
	Performance Considerations
	Distribution of Emulation Functionality

	Experimental Production Control System
	Overview
	Supply Operations
	Upload Operation
	Transport System
	Carrier and Conveyor Management

	Included Publications
	Bibliography of Included Publications
	Paper: Instrumented fixtures for on-line correction of welding paths
	Paper: Holonic Manufacturing Paint Shop
	Paper: Development of a Holonic Free-Roaming AGV System for …
	Paper: Open Real-Time Robot Controller Framework
	Paper: Real-Time Sensor Servoing using Line-of-Sight …
	Paper: Development of a Low-Cost Prototype AGV
	Paper: Emulation of Manufacturing Devices for Simulation of …
	Paper: Holonic shop-floor application for handling, feeding and …
	Paper: Using the Blender Game Engine for Real-Time Emulation of …
	Paper: PyMoCo – Python-Based Robot Motion Control

	Conclusions
	Main Conclusions
	Summary of Contributions
	Future Work

	References
	Web References
	Production Control System Code
	Interfaces to Emulated Devices
	Workpiece Producer Interface
	Turntable Control Interface
	Tool Control Interfaces
	PnF-Conveyor Control Interfaces
	Transport Control Interfaces
	Robot Control Interfaces

	Control System Code Excerpts
	SupplyCell Class
	UploadCell Class
	Picker Class
	TransportManager Class
	AGV Class
	CarrierManager Class
	ConveyorManager Class

