
Computationally efficient Bayesian
approximation of fractional Gaussian
noise using AR1 processes

Eirik Myrvoll-Nilsen

Master of Science in Physics and Mathematics

Supervisor: Håvard Rue, MATH

Department of Mathematical Sciences

Submission date: September 2016

Norwegian University of Science and Technology

Abstract

The goal of this thesis is to explore a way of performing efficient Bayesian inference of fractional
Gaussian noise series using the R-INLA framework. Finding the MLE of the Hurst exponent and
the innovation variance of an FGN can easily be implemented for INLA using a latent Gaussian
model. However, since the variables of an FGN process are conditionally dependent, the INLA
program will run so slow that it is not deemed viable as a method for performing Bayesian
inference. To combat this another approach is considered, namely to approximate the FGN as
a weighted sum of AR1 models with parameters that are determined by numerical optimization
techniques. The AR1 models and the weighted sum forms another latent field for the LGM, one
that has more variables, but less conditional dependence. This approximation is revealed to be
much faster, but also more inaccurate than the previous model, as the accuracy of the estimation
was found to be biased and connected to the true value of the Hurst exponent. This could be
improved if the process of finding the parameters for the AR1 models was repeated with more
precision.

I

II

Sammendrag

I denne oppgaven utforskes en ny metode for å oppnå Bayesiansk inferens av fraksjonelt Gaussisk
støy ved å bruke R-INLA rammeverket. Å finne sannsynlighetsmaksimeringsestimatoren av
Hurst eksponenten og innovasjonsvariansen til en FGN kan enkelt bli implementert for INLA
ved å bruke en latent Gaussisk modell. Siden variablene i en FGN prosess er betinget avhengige
vil INLA kjøre så sakte at denne metoden dermed ikke vil være nyttig i praksis. I håp om å
øke hastigheten blir FGN prosessen approksimert som en vektet sum av et endelig antall AR1
modeller som blir funnet fra numeriske metoder. AR1 tidsrekkene og den vektede summen
utgjør et nytt underliggende felt i den latente Gaussiske modellen. Den har flere variabler,
men disse er i større grad betinget uavhengige. Denne tilnærmingen blir målt til å være langt
raskere, men ikke like nøyaktig som den ordinære modellen. Unøyaktigheten i modllen er særlig
knyttet til den sanne Hurst eksponenten som skal bli målt. Dette kan i teorien bli forbedret om
optimeringsprosedyren hvor vektene og parametrene for AR1 modellene blir funnet blir gjentatt
med større presisjon.

III

Preface

The master thesis presented consists of 30 ECTS credits and completes my Master of science
degree in physics and mathematics at The Norwegian University of Science and Technology
(NTNU). It was written at the Department of Mathematical Sciences under the supervision of
Håvard Rue.

I would especially like to thank my advisor Håvard Rue for all the help, guidance and inspiration
he provided throughout the course of this work, which was greatly appreciated.

I would also like to thank Sigrunn Holbek Sørbye at the University of Tromsø for valuable
feedback and for introducing me to examples regarding climate dynamics.

IV

Contents

1 Introduction 1

2 Time series and long-memory 3
2.1 Time series analysis . 3

2.1.3 Basic time series processes . 4
2.1.5 Integrated series . 6

2.2 Spectral analysis . 7
2.2.1 Fourier analysis . 7
2.2.4 Spectral densities . 8
2.2.5 Periodogram . 8

2.3 Long-memory processes . 9
2.3.3 Definitions of long-memory . 11
2.3.7 Stochastic integration . 12

2.4 Fractional Brownian motion . 13
2.5 Fractional Gaussian noise . 14
2.6 Fractional differencing and ARFIMA models . 15
2.7 Simulations of long-memory processes . 17

2.7.1 Stochastic representation . 17
2.7.2 Wood-Chan . 18

3 Estimation methods for fractional Gaussian noise 24
3.1 Introduction . 24
3.2 Maximum likelihood estimation . 24
3.3 Bayesian inference . 26

3.3.1 Latent Gaussian modeling . 27
3.3.2 Implementing an rgeneric model . 28

3.4 Improving the rgeneric model . 32

4 AR1 approximations of FGN models 37
4.1 Motivation . 37
4.2 Aggregation of AR1 processes . 37
4.3 AR1 approximation with numerical optimization 41

4.3.1 Kullback-Leibler divergence . 46
4.4 Aggregated rgeneric model . 51

V

5 Speed and accuracy analysis 56
5.1 Time consumption of the AR1 approximation . 56
5.2 Deviation from MLE . 58
5.3 Examples . 61

5.3.1 NileMin data . 61
5.3.2 HadCRUT4 data . 64

6 Concluding remarks 68

A rgeneric tutorial 70
A.1 rgeneric function composition . 71
A.2 Examples . 75

A.2.1 iid model . 75
A.2.2 Linear model . 78
A.2.3 Non-zero mean model . 80
A.2.4 Cyclic 2nd order random walk . 82
A.2.5 Autoregressive model of order 1 . 85

VI

Chapter 1

Introduction

Fractional Gaussian noise (FGN) is a stationary time series process that exhibit the long-memory
property. There are different definitions of this property, but models displaying it typically exhibit
a slower than exponential decay of dependence between two points as the distance between them
increases. FGN processes are therefore well suited to model processes of long interdependence
between points in time and are frequently used in fields such as finance, hydrology and climate
dynamics.

The decay of dependence of a fractional Gaussian noise process is explained only by a single
parameter, the Hurst exponent. Methods of estimating this parameter has been thoroughly
discussed in many studies, but yet there is not an efficient methodology for performing Bayesian
inference of long FGN series, nor is there a computational Bayesian framework that properly
support FGN terms in a linear predictor explaining the data.

Bayesian inference about the Hurst exponent can be performed by restating the likelihood func-
tion of the FGN as a latent field in a Bayesian hierarchical model, more specifically a latent
Gaussian model (LGM). Inference from these models can be obtained by the integrated nested
Laplace approximation (INLA) method, which is supported by a computational Bayesian frame-
work called R-INLA that is compatible with the programming environment R. FGN models are
easily implemented for INLA as LGMs, but since the temporal points of an FGN processes are
by nature very dependent, the latent field will have a dense precision matrix which restricts the
efficiency of INLA.

It is known that the sum of short term processes will exhibit long-memory when the parameters
are drawn randomly from a distribution. The aim of this thesis is to investigate the method of
approximating an FGN as a sum of AR1 processes, such that the associated latent field of the
LGM will have a sparse precision matrix that allows for faster computations with INLA.

Chapter 2 introduces theory essential to the understanding of fractional Gaussian noise and
other long-memory processes. Different models of long-memory is presented and the associated
properties are discussed. Methods of simulating fractional Gaussian noise processes will also be
established.

Chapter 3 concerns the problem of estimating the Hurst exponent. Different methods is presented
and compared by accuracy and efficiency. This chapter also discusses Bayesian inference and

1

latent Gaussian modeling and how it can be applied to fractional Gaussian noise. The maximum
likelihood estimator for the Hurst exponent is obtained by implementing a suitable LGM for
INLA. The results are compared to non-Bayesian methods.

Chapter 4 introduces the concept of aggregation, or the theory that the sum of short term
memory processes whose parameter are drawn randomly from a distribution will exhibit long-
memory properties. Attempts are then made to approximate a long-memory process as a sum
of weighted AR1 processes in the hopes of constructing an LGM that is more compatible with
INLA. This is done by finding the optimal weights and coefficients of the AR1 process with
numerical optimization methods. The latent model associated with the approximation is then
implemented for INLA.

Chapter 5 performs analysis of both the speed and accuracy of the approximated latent field. The
runtime and deviation from the exact MLE is measured against the number of AR1 components
used, the length of the observed series and the Hurst exponent to be estimated. The model is
then applied to real-life examples regarding the famous Nile water level data and the HadCRUT4
dataset for annual global average temperature anomalies.

2

Chapter 2

Time series and long-memory

2.1 Time series analysis

To understand fractional Gaussian noise and long-memory processes it is necessary to introduce
fundamental theory about time series and stochastic processes. The first concept to be introduced
in this thesis is the random variable. This is a variable whose value is subject to variation due to
chance or randomness. The random variable X can take any value or state x from a state space
Ω each with an associated probability, denoted

P (X = x). (2.1)

A series of random variables can be collected into a stochastic process (26)

{X(t) | t ∈ T}. (2.2)

Each random variable X(t) represents the state at point t in a set of indexes T. If the indexes
are interpreted as time the process is known as a time series process. If T is countable the
process is a discrete-time series process. If on the other hand, T is a continuous sub-interval
of R it is a continuous-time series process. A realization of a time series process, {x(t), t ∈ T}
is a deterministic outcome of the process, often referred to simply as a time series. The thesis
will focus on time series in discrete time, where {xt} will denote {X(t) | t ∈ T} and T =
{0,±1,±2, ...}.

The mean value of time series processes is a function of time, and defined as

µt = E[Xt]. (2.3)

Similarly, the variance function and covariance function between the points Xt1 and Xt2 are
defined as follows in 2.4 and 2.5

σ2t = E
[
(Xt − µt)2

]
(2.4)

γ(t1, t2) = E [(Xt1 − µt1)(Xt2 − µt2)] . (2.5)

3

The correlation function between Xt1 and Xt2 is found from scaling the covariance function 2.5
by the product of the standard deviations at time t1 and t2,

ρ(t1, t2) =
γ(t1, t2)√
σ2t1σ

2
t2

. (2.6)

When the properties of a time series do not change with time, the series is said to be stationary.
More specifically, a time series is an nth order weakly stationary time series if it has time-invariant
joint moments up to order n. A 2nd-order weakly stationary time series will have constant mean
E[Xt] = µ <∞, variance Var(Xt) = σ2 <∞ and covariance Cov(Xt, Xt+k) = γ(k). If the joint
distribution is time-invariant it is said to be strongly stationary. The definitions for strong and
weak stationarity are stated more clearly in Def: 2.1.1 and Def: 2.1.2.

Definition 2.1.1 (Strong stationarity). A time series process {X(t) | t ∈ T} is strongly sta-
tionary if the joint distribution is time-invariant, i.e. for any t1, ..., tn, k, t1 + k, ..., tn + k the
equation

FXt1 ,...,Xtn
(x1, ..., xn) = FXt1+k,...,Xtn+k

(x1, ..., xn) (2.7)

holds for all n = 1, 2,

Definition 2.1.2 (Weak stationarity). A time series process {X(t) | t ∈ T} is weakly stationary
of order n if all its joint moments up to order n exist and are time invariant.

For a stationary time series process {xt}, the covariance and correlation between two points Xt

and Xs depend only on the time difference, or lag k = |t − s| between them and not where the
points are located in the series. They are then called the autocovariance- and autocorrelation
functions (ACF), defined in Equations 2.8 and 2.9:

γk = Cov(Xt, Xt+k) (2.8)

ρk =
γk
γ0
. (2.9)

2.1.3 Basic time series processes

This thesis will feature different types of time series processes. The most basic ones include white
noise and random walk, which can also be considered to be the simplest case of the more general
moving average- and autoregressive classes of processes, respectively.

White Noise

White noise is a zero-mean stochastic process {εt} with constant variance σ2ε < ∞ and a prob-
ability density function (pdf) that does not depend on t, implying that Cov(εt, εs) = 0, t 6= s.
The most common pdf used to model white noise is the normal distribution

εt ∼ N
(
0, σ2ε

)
. (2.10)

4

Random walk

A random walk process {xt} is a time series where each step xt can be determined from its
previous step,

xt = µ+ xt−1 + εt. (2.11)

The stochastic variable xt is found by adding the drift term µ to the previous step along with a
white noise term εt ∼ N (0, σ2ε). If there is no drift present in the model, i.e. µ = 0, the random
walk process has mean zero E[xt] = 0. An important random walk process is the Brownian
motion, defined in Def: 2.1.4.

Definition 2.1.4 (Brownian motion). The stochastic process B(t) is a Brownian motion if it is
almost surely continuous, B(0) = 0, its increments are independent and

B(t)−B(s) ∼ N (0, σ2|t− s|). (2.12)

Autoregressive (AR) processes

An autoregressive process of order p, {xt} is a time series where the state at time t depends on
the states at the p earlier steps in time,

xt = φ1xt−1 + · · ·+ φpxt−p + εt, (2.13)

where {εt} denotes a white noise process with fixed variance σ2ε ,

εt ∼ N (0, σ2ε) (2.14)

and {φi}pi are non-zero coefficients of R. By introducing the backshift operator B, defined such
that Bxt = xt−1, Eq. 2.13 can be restated as

(1− φ1B − · · · − φpBp)xt = εt. (2.15)

The polynomial (1− φ1B − · · · − φpBp), denoted by the function φp(B), is called a linear filter.
For the AR(p) process to be stationary, the roots of φp(B) = 0 must lie outside of the unit circle.
xt is known to be conditionally independent of xs, i.e.

π(xt, xs|x−ts) = π(xt|x−ts)π(xs|x−ts), (2.16)

for any pair of s and t such that |t − s| > p, where x−ts denotes the vector of all elements in
the series, except xt and xs. This is an important property for this thesis as it is shown in e.g.
(27) that this property will result in a sparse precision matrix with bandwith p for the joint pdf
which is well suited for efficient matrix operations. This thesis puts emphasis on AR processes
of the first order only,

(1− φ1B)xt = εt, (2.17)

which is stationary if |φ1| < 1 with autocorrelation function

ρk = φk1. (2.18)

5

Moving average (MA) processes

A time series is a moving average process of order q if it can be represented by the difference
equation

xt = εt + θ1εt−1 + · · ·+ θqεt−q = θq(B)εt, (2.19)

where {εt} is white noise with fixed variance and {θi}qi=1 are non-zero coefficients of R. Since
Var(xt) = 1 + θ21 + · · · + θ2q < ∞, a moving average process is always stationary, and it is also
invertible if the roots of θq(B) = 0 lie outside the unit circle.

Autoregressive moving average (ARMA) processes

A process represented by the linear difference equation

φp(B)xt = θq(B)εt, (2.20)

with white noise {εt} and linear filters φp(B) and θq(B) is called an autoregressive moving
average process of order p and q. The process has properties of both AR and MA processes and
is stationary if the roots of φp(B) = 0 lie outside the unit circle and also invertible if the roots
of θq(B) = 0 lie outside the unit circle. It is also assumed that φp(B) = 0 and θq(B) = 0 share
no common roots.

2.1.5 Integrated series

Sometimes a non-stationary times series xt can achieve stationarity by differencing,

zt = (1−B)xt = xt − xt−1. (2.21)

This is done to account for trends such as drift or seasonal variation in a model. A time series
{xt} that has to be differenced d times to become stationary

zt = (1−B)dxt (2.22)

is called an integrated series of order d, denoted xt ∼ I(d). A popular model that incorporate
integrated series is the autoregressive integrated moving average (ARIMA) model, which for
parameters p, d and q is described by the difference equation

φp(B)(1−B)dxt = θq(B). (2.23)

Some simple, but useful properties of integrated series will be stated, see e.g. (8) for context. If
yt is defined such that if differenced D times it forms the process xt ∼ I(d),

(1−B)Dyt = xt, (2.24)

6

then yt is an integrated series of order d+D

yt ∼ I(d+D). (2.25)

If zt ∼ I(d′) and is independent of xt, then

xt + zt ∼ I
(
max(d, d′)

)
. (2.26)

These properties apply for any d ∈ R, and not just positive integers, which is the concept for what
is called fractional integrated series, a class of models that can be shown to exhibit long-memory
properties, and is revisited in section 2.6.

2.2 Spectral analysis

For now, every time series discussed have only been represented in the time-domain, i.e. xt as a
function of time. It is often beneficial to consider the alternative frequency- or spectral domain
as well, as it is particularly suited for analysis of data with high frequencies.

2.2.1 Fourier analysis

From Fourier analysis it is known that a function can be written as a unique linear combination
of trigonometric functions, meaning that a realization of a stochastic process consists of trigono-
metric functions with a particular frequency. These trigonometric functions are found using the
Fourier transform (Def: 2.2.2) and transform the time series from the time domain to the spectral
domain. Conversely, one can use the inverse Fourier transform (Def: 2.2.3) to transform the time
serise from the spectral domain to the time domain.

Definition 2.2.2 (Fourier transform). The Fourier transform of a time series {xt} is a function
F : R → C defined as

F(x)(λ) =

∞∑
t=−∞

e−iλtxt. (2.27)

This operation transforms the {xt} from a real-valued function of t to a complex function of λ.

Definition 2.2.3 (Inverse Fourier transform). The inverse Fourier transform returns the Fourier
transformation back to the time domain,

xt =
1

2π

∫ ∞
−∞

eiλtF(x)(λ)dλ. (2.28)

It can be shown (see for example (23) for proof) that there will be no loss of information when
performing either the Fourier transform or the inverse Fourier transform.

7

2.2.4 Spectral densities

The spectral density f(λ) of a time series xt is defined as the Fourier transform of the autoco-
variance function,

f(λ) =

∞∑
t=−∞

γ(λ)eitλ (2.29)

and yields information about which frequencies of xt that contribute the most to the variance.
The spectral density exists if

∞∑
t=−∞

|γ(t)| <∞. (2.30)

For an AR1 process,
xt = φ1xt−1 + εt (2.31)

where εt ∼ N (0, σ2ε) the spectral density is found from 2.29 to be

f(λ) =
1

2π

σ2ε
1− 2φ1 cos(λ) + φ21

(2.32)

and is displayed in Fig: 2.1. It is evident that for φ1 > 0 most of the mass of the spectral
density is distributed along the lower frequencies and for φ1 < 0 the higher frequencies are more
prominent.

It can be shown (see section 12.2.1 of (31)) that the spectrum of ARMA(p, q) models is

f(λ) =
σ2ε
2π

∣∣∣∣∣θq
(
e−iλ

)
φp (e−iλ)

∣∣∣∣∣ . (2.33)

The frequencies λ for which the numerator of 2.33 is zero are called zeros, while the frequencies
of which the denominator is zero are called poles.

2.2.5 Periodogram

Periodogram analysis is used to search for periodicities in a spectrum and can be used to estimate
the spectral density. Given a time series of n observations, the periodogram I(λ) is defined as
the modulus-squared of the discrete Fourier transform,

I(λj) =
1

2π

∣∣∣∣∣
n∑
t=1

(xt − x̄n)eitλj

∣∣∣∣∣
2

, (2.34)

where λj = 2πj/n for j = 1, 2, ..., (n−1)/2 are the Fourier frequencies and x̄ is the sample mean.
It is shown in (25) that 2.34 is equivalent to

8

−3 −2 −1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Spectral density

Frequency

D
en

si
ty

φ1 = 0.7
φ1 = − 0.7

Figure 2.1: The spectral density of an AR1 series with positive and negative coefficients respectively.

I(λ) =
1

2π

n−1∑
k=−(n−1)

γ̃(k)eikλj (2.35)

with sample covariances

γ̂(k) =
1

n

n−|k|∑
t=1

(xt − x̄)(xt+|k| − x̄). (2.36)

(14) shows that the periodogram is an asymptotically unbiased estimator of the spectral density,
i.e.

lim
n→∞

E
[
I(λ)

]
= f(λ). (2.37)

2.3 Long-memory processes

In 1951 the British hydrologist Harold Edwin Hurst published (13) a study of the behaviour of
the rescaled range for the yearly variation of the water level of the Nile. The rescaled range, or
R/S statistic, is a statistical measure of variability defined as

(R/S)t =
Rt
St
, (2.38)

9

where Rt is the range of the cumulative mean adjusted series zt =
∑t

i=1(xt − x̄),

Rt = max(z1, z2, ..., zt)−min(z1, z2, ..., zt) (2.39)

and St is the standard deviation series of {xt}

St =

√√√√1

t

t∑
i=1

(
xk − x̄k

)2 (2.40)

with

x̄k =
1

k

k∑
i=1

xi. (2.41)

Assuming the yearly variations to be a Brownian process it was expected that the R/S statistic
would show an asymptotic growth of order n1/2, but the study revealed instead an asymptotic
growth of ≈ n0.82. This was not the first time observations of this nature occurred (Kolmogorov
observed this when studying turbulence in 1941 (18)), but the phenomenon remained unexplained
until a series of papers made by Benoit Mandelbrot and his colleagues in the 1960s.

The Hurst exponent

Sparked by the findings of Hurst (13), Mandelbrot and van Ness introduced in 1968 (21) what is
known as long-memory processes (or long range dependence). These processes are described only
by a single parameter, known as both the Hurst exponent or the Hurst coefficient, named after
Hurst for his observations of this phenomenon. This parameter is defined from the R/S statistic
as shown in Eq: 2.42 and explains the behaviour of the ACF, or memory of the process. If
0.5 < H < 1, the process has a persistent ACF and long-memory properties, and if 0 < H < 0.5
the process has anti-persistent behaviour. A Hurst exponent of H = 0.5 has no memory and
show no correlation between its points. Some of the definitions used for long-memory processes
will be stated and discussed in section 2.3.3.

E
[
R(n)

S(n)

]
∝ nH as n→∞, (2.42)

Self similarity

Self-similarity, or self-affinity is a property associated with long-memory processes and was
introduced by Kolmogorov in 1941 (18). The theory was applied to long-memory processes in
1968 by Mandelbrot and van Ness (21). Let {xt}nt=0 be a stationary stochastic process in discrete
time, divided in groups of m > 1. Let x(m)

t denote the average of the tth group,

x
(m)
t =

1

m

tm∑
k=(t−1)m+1

xk, t = 1, 2, ..., n/m. (2.43)

10

Self-similarity can then be defined if each variable xt of the time series is connected to the
corresponding group average x(m)

t , see Def: 2.3.1.

Definition 2.3.1 (Self-similarity). A stationary process {xt}nt=0 is self-similar with Hurst expo-
nent H if xt and m1−Hx

(m)
t are equal in distribution for all t = 1, ..., n/m and m > 1.

This can also be extended to apply for continuous stochastic processes, see Def: 2.3.2.

Definition 2.3.2 (Continuous self-similarity). A stationary continuous process Y = {Y (t) : 0 ≤
t < ∞} is self-similar with Hurst exponent H if Y (at) and a1−HY (t) have the same identical
finite-dimensional distributions for all a > 0.

Similarities can be drawn between self-similar long-memory processes and fractals (6). The Hurst
exponent H, is a global characteristic of the long-memory process, while the fractal dimension
D is a local one. Due to the self-similarity, the local properties are reflected onto the global
properties. For a self-similar long-memory process of which the time t is the only variable, thus
the space only has k = 1 dimension and the relationship

D +H = n+ 1 (2.44)

simplifies to D = 2−H.

2.3.3 Definitions of long-memory

Although the concept of long-memory has always been concerned about the slow decay in the
dependence between points (or "memory") of the series, many formal definitions have been used
throughout the years. This thesis will present a number of different definitions, all of which are
presented and given context in (12), and thoroughly reviewed in (11).

Definition 2.3.4 (Covariance). A stationary time series, xt with autocovariance function γx(k)
and Hurst exponent H ∈ (0.5, 1) has long-memory in the covariance sense if

γx(k)
k→∞−−−→ Cxk

2H−2 (2.45)

for some constant Cx.

Definition 2.3.4 defines the long-memory property as a hyperbolic decay of the ACF, consistent
with the general consensus of long-memory. For H ∈ (0.5, 1) the ACF described in Eq: 2.45
decays so slowly that the sum diverges to infinity,

∞∑
k=0

γH(k) =∞. (2.46)

The covariance definition can also be expressed in the spectral domain, leading to Definition
2.3.5.

11

Definition 2.3.5 (Spectral). A stationary time series, xt with spectral density function fx(λ)
and Hurst exponent H ∈ (0.5, 1) has long-memory in the spectral sense if

fx(λ)
λ→0−−−→ Cfλ

1−2H (2.47)

for some constant Cf .

The one-to-one correspondence between the time and spectral domain ensures that the spectral
and covariance sense of the long-memory definition are equivalent.

Definition 2.3.6 (self-similar). A stationary time series, xt with Hurst exponent H ∈ (0.5, 1)
has long-memory in the self-similar sense if

m2−2HCov
(
x
(m)
t , x

(m)
t+k

)
≈ Cmk2H−2 (2.48)

as k,m −→∞ where x(m)
t = 1

m(xtm−m+1 + · · ·+ xtm) with m ∈ N and constant Cm.

The self-similar definition of long-memory originated in (21) where the self-similarity condition
was first introduced to long-memory series. It was shown that the fractional Brownian motion,
a common long-memory process, possess this property.

2.3.7 Stochastic integration

Stochastic integrals are characterized by a random integrator. For the purposes of this thesis,
the integrator denoted B will be the Brownian motion stochastic process. This causes problems
as the paths of a Brownian motion are highly irregular, and one cannot therefore assume the
trajectories to be differentiable. The paths also do not have bounded variation with probability 1
preventing us from calculating the integral as a pathwise Lebesgue-Stieltjes integral (15).

Consider a continuous function of time φ(t) assumed to be simple on the finite interval [a, b].
This means that we can create a strictly increasing sequence of possible input variables {tj}bj=a
where we for t ∈ (tj , tj+1] denote φ(s) = φj . We then get a corresponding sequence of function
evaluation of the sequence of tj , namely {φ(tj)}tb−1tj=ta

. The stochastic integral of φ on the interval
t ∈ [a, b] has the natural definition:∫ b

a
φ(s)dB(s) =

l−1∑
j=0

φj
(
B(tj+1)−B(tj)

)
. (2.49)

A sequence of square integrable functions {ψn} is said to converge in L2-norm to a square
integrable function ψ if

lim
n→∞

∫ (
ψ(s)− ψn(s)

)2ds = 0. (2.50)

It can be shown that every square integrable function can be written as a limit in L2-norm of a
sequence of simple functions. If ψn are simple for every n we could define the stochastic integral
as

12

∫
ψ(s)dB(s) := lim

n→∞

∫
ψn(s)dB(s). (2.51)

This turns out to not be generally viable, as we are required to pose very restrictive constraints.
A more detailed explanation of stochastic integration can be found in (15) and (4).

2.4 Fractional Brownian motion

Fractional Brownian motion (FBM) is a long-memory generalization of the widely used Brownian
motion defined in Def: 2.1.4 and was first introduced in (17). Whereas the Brownian motion
process, B(t) at time t assumes independent Gaussian increments,

B(t2)−B(t1) ∼ N (0, |t2 − t1|), (2.52)

the FBM, denoted BH(t) allows for dependence between them. This dependence is explained
solely by the Hurst exponent, H. The formal definition of FBMs was originally presented in (21)
and is stated in Def: 2.4.1.

Definition 2.4.1 (Fractional Brownian motion). Let 0 < H < 1, b0 be an arbitrary real number
and B(t) be a Brownian motion as defined in Def: 2.1.4. We call the following random function
BH(t) the fractional Brownian motion with parameter H and starting value b0 at time t = 0.
For t > 0, BH(t) is defined by

BH(0) = b0

BH(t)−BH(0) =
1

Γ(H + 1/2)

(∫ 0

−∞

[
(t− s)H−1/2 − (−s)H−1/2

]
dB(s)

−
∫ t

−∞
(t− s)H−1/2dB(s)

)
. (2.53)

It can be shown (see (24) for proof) that a process is an FBM if it satisfies the following condi-
tions:

• BH(0) = 0 and E[BH(0)] = 0 for t ≥ 0

• BH(t) has stationary increments, i.e. BH(t)−BH(s) ∼ BH(t− s)

• Var
(
BH(t)

)
= σ2|t|2H

• Var
(
BH(t)−BH(s)

)
= σ2|t− s|2H

• Cov
(
BH(t), BH(s)

)
= σ2

2

(
|t|2H + |s|2H − |t− s|2H

)
H denotes the Hurst exponent and σ2 is called the innovation variance. If σ2 = 1 the series is
considered a standard fractional Brownian motion. From the covariance function it is evident
that the FBM increments are positively and negatively correlated for H > 1/2 and H < 1/2,

13

respectively. For H = 1/2, there is no correlation and the FBM reduces to an ordinary Brownian
motion process. The distribution of an FBM at time t is

BH(t) ∼ N
(
0, σ2|t|2H

)
. (2.54)

From 2.54 one finds the FBM to be self-similar,

BH(ct) ∼ c2HBH(t) (2.55)

and having long-memory in the self-similar sense with Hurst exponent H.

2.5 Fractional Gaussian noise

Fractional Gaussian noise (FGN) is a stationary long-memory process defined as the increment
process of a fractional Brownian motion,

X(t) = BH(t+ 1)−BH(t). (2.56)

Its conception was motivated by the attempts of (21) to define the concept of the derivative of
a Brownian motion process. For ordinary Brownian motion increments it is evident from 2.1.4
that X(t) ∼ N (0, σ2). The autocovariance function of an FGN process with Hurst exponent H
(see (14)) is of the form

γH(t) =
σ2

2

[
|t− 1|2H − 2|t|2H + |t+ 1|2H

]
(2.57)

for t ∈ T. Equation 2.57 claims independence for the FGN process if H = 1/2 and t 6= 0. By
performing Taylor expansion of 2.57 around the origin we find the Taylor approximation of the
autocovariance as t→ ∞ to be

γH(t) ∼ H(2H − 1)t2H−2. (2.58)

From 2.58 we can deduct that FGN processes have long-memory with Hurst exponent H, with a
persistent ACF for 1/2 < H < 1, and an anti-persistent ACF for 1/2 < H < 1. This is displayed
by simulations in Fig: 2.3 and Fig: 2.5. In (14) it is established that the spectral density of
fractional Gaussian noise is given by

f(λ) = 2 sin(πH)Γ(2H + 1)(1− cosλ)
[
|λ|−2H−1 +B(λ,H)

]
, (2.59)

where for −π ≤ λ ≤ π,

B(λ,H) =
∞∑
j=1

[
(2πj + λ)−2H−1 + (2πj − λ)−2H−1

]
. (2.60)

The spectral density function is represented in Fig: 2.2 where a pole can be located at frequency
λ = 0. The infinite sum of 2.60 is computed for a suitable number of terms as to preserve both
accuracy and computational speed.

14

−1.0 −0.5 0.0 0.5 1.0

2
4

6
8

10
12

14

Spectral density

Frequency

D
en

si
ty

H = 0.8

H = 0.7

H = 0.6

Figure 2.2: The spectral density function of FGN processes with different Hurst exponents. A pole is
located at frequency λ = 0.

2.6 Fractional differencing and ARFIMA models

Let {xt} be an integrated series of order d, denoted as before by

xt ∼ I(d). (2.61)

This section explores what happens when d is no longer an integer, introducing fractional in-
tegrated series. To understand the concept of fractional integrated series, consider the example
constructed by Granger in 1980 (8), where {xt} is explained by the difference equation

(1−B)dxt = εt. (2.62)

There are no autoregressive or moving average parts in the model, and the only filter acting on
the model is the integrating filter of order d, α(B) = (1 − B)d. Let d = 1/2 and suppose there
is a filter α(B) such that when it is applied twice one gets the order one differencing,

α(B)2xt = (1−B)xt. (2.63)

Such a filter does exist, and when it is applied only once it results in ’half-differencing’, or
fractional differencing of order 1/2. This logic can be extended to any d ∈ R. An integrated

15

series that requires fractional differencing to become a stationary process is called a fractional
integrated series.

If an ARMA(p, q) process requires fractional differencing of order d to achieve stationarity, then
the process is called an autoregressive fractionally integrated moving average (ARFIMA) series
with parameters p, d and q, defined by the difference equation

φp(B)(1−B)dxt = θq(B)εt, d ∈ R\N. (2.64)

Granger (8) shows that the differencing operator (1−B) of an integrated series can be expanded
with the generalized binomial coefficient,

(1−B)d =
∞∑
k=0

(
d

k

)
(−B)k =

∞∑
k=0

∏k−1
a=0(d− a)(−B)k

k!
. (2.65)

As an example, consider the simple ARFIMA(0, d, 0) process, defined in terms of the differencing
operator as

(1−B)dxt = εt, (2.66)

where εt ∼ N (0, σ2ε). Using the generalized binomial coefficient one may rewrite equation 2.66
as

xt − dxt−1 +
d(d− 1)

2!
xt−2 − . . . = εt. (2.67)

Granger and Joyeux (9) showed that the autocovariance between xt and xt−k when d < 1/2
is

cov(xt, xt−k) =
σ2ε
2π

sin(πd)
Γ(k + d)

Γ(k + 1− d)
Γ(1− 2d). (2.68)

Thus, the variance increases as d increases and becomes infinite for d ≥ 1/2, giving rise to
long-memory series. The MA(∞) and AR(∞) representation of the model,

xt =

∞∑
j=0

bjεt−j and
∞∑
j=0

ajxt−j = εt (2.69)

are found to have coefficients

bj =
Γ(j + d)

Γ(d)Γ(j + 1)
and aj =

Γ(j − d)

Γ(d)Γ(j + 1)
(2.70)

respectively. Granger (8) states that by using Sterling’s theorem, we can approximate Γ(j +
a)/Γ(j + b) by ja−b for large j. One can then approximate the MA(∞), AR(∞) and the auto-
correlation

ρk =
Γ(1− d)

Γ(d)

Γ(k + d)

Γ(k + 1− d)
, (2.71)

by

16

ρj ≈ A1j
2d−1 (2.72)

bj ≈ A2j
d−1 (2.73)

|aj | ≈ A3j
−(1+d) (2.74)

with some constants A1, A2 and A3. The ARFIMA(0, d, 0) model shows the same hyperbolic
decay in its ACF as an FGN process with Hurst exponent H = d + 1/2. Definition 2.3.4 then
implies that the ARFIMA(0, d, 0) model exhibits long-memory in the covariance sense with Hurst
exponent H = d+1/2. Granger also discusses that the same conditions 2.72, 2.73 and 2.74 apply
for the more general ARFIMA(p, d, q) model, but with different constants.

2.7 Simulations of long-memory processes

This thesis will mainly focus on estimation techniques and how they compare. In order to measure
the accuracy of such techniques it is important to know how to simulate FGN processes. The
simulations assume discrete time as we are unable to maintain the assumption of continuous time
for a simulation process. Recall that an FGN process X̃ can be obtained from an FBM series B̃
by differencing,

X̃(t) = B̃(t+ 1)− B̃(t) (2.75)

and conversely, an FBM can be obtained from an FGN from the cumulative sums

B̃H(i/n) =
i∑

k=0

X̃(i/n), (2.76)

where n is the length of a series. One can therefore obtain a simulation of an FGN either by
first simulating an FBM and retrieve the FGN process by differencing, or by simply simulating
the FGN directly. Due to its stationarity it is preferred to simulate from FGN series rather than
FBM series. Also, the FGN has a Toeplitz covariance matrix, i.e.

Σ =

a b c d e
f a b c d
g f a b c
h g f a b
i h g f a

 (2.77)

which allows for more efficient sampling. To demonstrate the difference, one method of each
approach will be conducted and compared.

2.7.1 Stochastic representation

The first method simulates an FGN by obtaining it from a simulated FBM, and the most ap-
parent way to simulate an FBM would be to discretize the stochastic integral from its definition

17

2.53. We apply the approximation technique illustrated in equation 2.49 which leads to the
approximation

B̃H(n) = CH

(
0∑

k=−b

[
(n− k)H−

1
2 − (−k)H−

1
2

]
B1(k) +

n∑
k=0

(n− k)H−
1
2B2(k)

)
(2.78)

where B1 and B2 are mutually independent vectors of b + 1 and n + 1 i.i.d. standard normal
variables respectively. Increasing the number of temporal points will increase the precision at the
cost of a more computationally intensive algorithm. This method is generally not an efficient way
to generate an FBM due to the required approximations and is mainly included for its simplicity
and historical value.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

5
0.

0
0.

5
1.

0
1.

5
2.

0

Anti−persistent FBM

time

V
al

ue

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

Anti−persistent FGN

time

V
al

ue

Figure 2.3: n = 1000 length simulation of an FBM by the method of stochastic representation for
H = 0.20 with corresponding FGN.

Illustrations of simulated FBM processes with Hurst exponents H = 0.20, H = 0.50 and H =
0.90 are given in Figures: 2.3, 2.4 and 2.5, along with their corresponding FGN series.

2.7.2 Wood-Chan

Another approach to simulate FGNs was originally proposed by Davis and Harte (3) and later
improved by Wood and Chan (33), and is applicable to any stationary Gaussian process. The
algorithm is explained thoroughly in (2). The idea is to embed the covariance matrix Σ, in
a circulant matrix C of size m = 2g, g ∈ N∗ before generating a vector Y = (Y0, ..., Ym−1)

> ∼
N (0, C). An appropriate construction of C ensures that we are able to generate (Y0, ..., YN−1)

> ∼

18

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0
Memoryless FBM

time

V
al

ue

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

10
−

0.
05

0.
00

0.
05

0.
10

Memoryless FGN

time

V
al

ue

Figure 2.4: n = 1000 length simulation of an FBM by the method of stochastic representation for
H = 0.50 with corresponding FGN.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

6
−

0.
4

−
0.

2
0.

0

Persistent FBM

time

V
al

ue

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
6

−
0.

00
2

0.
00

2
Persistent FGN

time

V
al

ue

Figure 2.5: n = 1000 length simulation of an FBM by the method of stochastic representation for
H = 0.90 with corresponding FGN.

N (0,Σ). We define the circulant matrix C:

C =

c0 c1 . . . cm−1
cm−1 c0 . . . cm−2
...

...
. . .

...
c1 c2 . . . c0

 where cj =

{
γ(jn), 0 ≤ j < m/2

γ(m−jn), m/2 < j < m− 1 ≤ x
.

The size of C is explained from the variable m = 2g. This is chosen to be the first power of two,
such that C is positive definite,

m ≥ 2(n− 1). (2.79)

For an FGN, this condition is satisfied for the value m = 2 · 2θ, where 2θ is the first power of two

19

superior to N . A result from (1) is used to decompose C as C = QΛQ∗ with Λ as the diagonal
matrix with the eigenvalues of C along the diagonal, and Q is the unitary matrix defined by

(Q)j,k)m
− 1

2 exp

(
−2iπ

jk

m

)
, for j, k = 0, ...,m− 1. (2.80)

Draw Z ∼ N (0, Im). If Y = QΛ1/2Q∗Z we have that Y ∼ N (0, C) due to Q being unitary.
Simulating an FGN can be done by following these summarizing steps:

• Compute estimates of the eigenvalues of C, for example by

λk =
m−1∑
j=0

cj exp

(
−2iπ

jk

m

)
, for k = 0, ...,m− 1, (2.81)

which may be calculated using Fast Fourier Transform.

• Fast simulation of W = Q∗Z. This can be done by decomposing Q∗Z into both real and
imaginary parts. Let the elements of the first half of vectorW , denotedWi for i ∈ 1, ...m2 −1
be the complex conjugate of the elements in the second half {Wi : i = m

2 , ...,m− 1}. The
first and last element denotes the real value and the purely imaginary value respectively.
This is simulated by first generating two independent variables U, V ∼ N (0, 1) and letting
W0 = U and Wm

2
= V . The remaining values are sampled similarly by drawing Uj , Vj ∼

N (0, 1) for every 1 ≤ j < m
2 , then the remaining Wj is computed as follows:

Wj =
1√
2

(
Uj + iVj

)
Wm−j =

1√
2

(
Uj − iVj

)
.

• Reconstruct X by calculating

X

(
k

n

)
=

1√
m

m−1∑
j=0

√
λjWj exp

(
−2iπ

jk

m

)
, for k = 0, ...,m− 1. (2.82)

using the Fast Fourier Transform.

With a complexity of n log(n) this algorithm provides an efficient way of simulating exact FGNs,
even for larger values of n. The speed of this algorithm is illustrated by the time plots included in
Fig: 2.6 and Fig: 2.7 which compare the speed of Wood-Chan’s method to that of the stochastic
representation. As can be seen, the Wood-Chan method is far superior in regards to speed
compared to the stochastic representation method, especially for larger values of n.

20

1000 2000 3000 4000 5000 6000

0
10

20
30

40
50

60

Stochastic representation

N

T
im

e

Figure 2.6: Stochastic representation: Number of seconds to complete a simulation versus the length
N of the simulated series.

0 10000 20000 30000 40000 50000 60000

1.
0

1.
2

1.
4

1.
6

Wood−Chan

N

T
im

e

Figure 2.7: Wood-Chan: Number of seconds to complete a simulation versus the length N of the
simulated series.

21

The simulations were generated using the code included in (2) and the resulting FGN simulations
and corresponding FBMs for H = 0.20, H = 0.50 and H = 0.90 are included in Figures: 2.8,
2.9and 2.10, respectively.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Anti−persistent FBM

time

V
al

ue

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

Anti−persistent FGN

time
V

al
ue

Figure 2.8: n = 1000 length simulation of an FGN by the Wood-Chan method for H = 0.20 with
corresponding FBM.

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
6

−
0.

2
0.

0
0.

2

Memoryless FBM

time

V
al

ue

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

05
0.

00
0.

05

Memoryless FGN

time

V
al

ue

Figure 2.9: n = 1000 length simulation of an FGN by the Wood-Chan method for H = 0.50 with
corresponding FBM.

22

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

1
0.

0
0.

1
0.

2
0.

3

Persistent FBM

time

V
al

ue

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

00
6

−
0.

00
2

0.
00

2

Persistent FGN

time

V
al

ue

Figure 2.10: n = 1000 length simulation of an FGN by the Wood-Chan method for H = 0.90 with
corresponding FBM.

23

Chapter 3

Estimation methods for fractional
Gaussian noise

3.1 Introduction

This chapter introduces methods to identify fractional Gaussian noise processes by estimating
the Hurst exponent and the innovation variance. The simplest method of estimating the Hurst
exponent of an FGN is to obtain it directly from its origin, the R/S statistic defined in section
2.3. This method is included in the R package FGN as the function HurstK and provides a very
fast, but sometimes inaccurate estimate of H due to sensitivity to outliers.

This thesis will introduce likelihood based estimators which will be applied to examples and
compared. Of particular interest is the use of integrated nested Laplace approximations (INLA)
(28), available for R at http://www.r-inla.org to compute the maximum likelihood estima-
tors.

3.2 Maximum likelihood estimation

The Hurst exponent H and the innovation variance σ2 can be obtained by maximizing the
likelihood function of the FGN process. As FGNs are stationary Gaussian processes the likelihood
function for the observations y = (y1, ..., yn) is found to be

L(H,σ2;y) = (2π)−n/2
∣∣Σ (H,σ2)∣∣−1/2 exp

(
−1

2
y>Σ

(
H,σ2

)−1 y) , (3.1)

where Σ(H,σ2) is the autocovariance matrix,

24

0.0 0.2 0.4 0.6 0.8

25
00

30
00

35
00

40
00

log−likelihood function, n=1000, H=0.6

H

lo
g−

lik
el

ih
oo

d

Figure 3.1: The log-likelihood function for a standard fractional Gaussian noise of length n = 1000 with
true Hurst exponent H = 0.6 evaluated for H ∈ (0, 1).

Σ(H,σ2) =

γH(0) γH(1) . . . γH(n− 1)
γH(1) γH(0) γH(n)

...
. . .

...
γH(n− 1) γH(n− 2) . . . γH(0)

 (3.2)

obtained from the ACF given in Eq: 2.57. The log-likelihood function for an FGN with true
Hurst exponent H = 0.6 is illustrated in Fig: 3.1. Finding both the innovation parameter and
the Hurst exponent is done by using numerical algorithms and can be tedious as one is required
to invert the autocovariance matrix and obtain its determinant. This can be avoided by using an
approximation rather than evaluating the exact MLE. A common approximation technique for
evaluating the MLE of an FGN processes is the Whittle’s approximate likelihood first introduced
by Peter Whittle in 1951 (32) and is explained in greater detail in e.g. (14). The likelihood
approximation converges to the exact likelihood as N → ∞. We obtain the estimate for the
Hurst exponent by minimizing

Q(H) =

∫ π

−π

I(λ)

fH(λ)
dλ, (3.3)

where I is the periodogram described in Eq: 2.34 and fH is the spectral density stated in Eq: 2.59.
This is done by approximating Eq: 3.3 with a Riemann sum where the periodogram and spectral
density are evaluated at the Fourier frequencies λk = 2πk/m with, for example m = N . Using

25

symmetry in I and f , we obtain H̃ by minimizing

Q̃(H) =

N/2∑
k=1

I(λk)

fH(λk)
. (3.4)

The warfima function from the FGN package in R is used to evaluate Whittle’s approximate
likelihood for the FGN simulations generated by Wood-Chan’s method in section 2.7.2 with
length n = 1000 and true Hurst exponents H1 = 0.20, H2 = 0.50 and H3 = 0.90. The function
yields estimations H̃1 = 0.2015, H̃2 = 0.4907 and H̃3 = 0.9316 for H respectively.

3.3 Bayesian inference

Contrary to classical statistical methods where unknown model parameters are treated as fixed
constants, Bayesian models treat the parameters as random variables. Bayesian statisticians also
interpret probability as a subjective state of belief rather than an objective truth. This allows
for prior knowledge and expertise to be incorporated into the model which will be updated in
the light of new data. The prior knowledge about a parameter θ is explained by the prior
distribution

θ ∼ π(θ). (3.5)

Since the observations y = (y1, y2, ..., yn) are associated with a likelihood function with parameter
θ

y ∼ π(y | θ) = L(θ | y), (3.6)

the beliefs about θ is updated by combining information about the data y and the prior distri-
bution according to Bayes’ law,

π(θ | y) =
f(θ,y)

f(y)
=

π(θ)π(y | θ)∫
π(y | θ)π(θ)dθ

. (3.7)

From Eq: 3.7 the posterior distribution of θ is retrieved,

π(θ | y) ∝ π(θ)π(y | θ) (3.8)

from which inference about θ is primarily based on. If the prior distribution is uniform, i.e.
no prior knowledge is known about θ, then finding the mode of the posterior distribution is
equivalent of finding the MLE of θ. The maximum likelihood problem of section 3.2 can be
stated as a Bayesian model, and this thesis will present a class of Bayesian models that are
particularly suited for such problems, namely the latent Gaussian models.

26

3.3.1 Latent Gaussian modeling

Latent Gaussian models (LGMs) is a class of hierarchical Bayesian models that encompass many
widely used statistical models. They are discussed in e.g. (28), but will be stated here for clarity.
LGMs are expressed as a three-stage hierarchical model, in which the first stage explains the
observations y = y1, .., yn, which are assumed to be conditionally independent given an under-
lying Gaussian random field of unobserved variables x = x1, ..., xn and a set of hyperparameters
θ1 = θ1, ..., θk,

π(y | x,θ1) =

n∏
i=1

π(yi | x,θ1). (3.9)

The second stage concerns the specification of the latent Gaussian field,

x | θ2 ∼ N
(
µ(θ2),Σ(θ2)

)
(3.10)

where the dependence structure of the data is explained. The latent field is controlled by another
set of hyperparameters θ2 = θk+1, ..., θk+m, and the final stage of the LGM is to assign priors to
all hyperparameters θ = (θ1,θ2),

θi ∼ π(θi), i = 1, 2, ..., k +m. (3.11)

To restate the MLE problem for FGN processes one notes that the likelihood of an FGN process
is Gaussian and stated in Eq: 3.1. When working with LGMs it is often preferred to use the
precision κ = 1/σ2 and precision matrix Q = Σ−1 rather than the variance and covariance
matrix. Let the latent field x = (x1, ..., xn) then be defined as

π(x | κ,H) = (2π)−n/2 |Q(H,κ)|1/2 exp

(
−1

2
x>Q(H,κ)x

)
, (3.12)

where the innovation precision κ and Hurst exponent H are the hyperparameters of the LGM. If
they are assigned uniform priors, then finding the values of H and κ that maximize the likelihood
function of an FGN is equivalent to finding the mode of the posterior marginal distribution of
H and κ that ensures the best fit of the latent field of the LGM.

For LGMs to be effective in practice, it is important that the number of hyperparameters is
small and that the latent field is a sparse Gaussian Markov random field (GMRF). GMRFs
are Gaussian fields that possess the Markov property, i.e. most pairs of variables (xi, xj) are
conditionally independent given the remaining variables which are denoted x−ij

π(xi, xj | x−ij) = π(xi | x−ij)π(xj | x−ij). (3.13)

The dependency structure of a GMRF x = (x1, x2, ..., xn)> can be described by the labelled
graph G = (V, E), illustrated in Fig: 3.2. The nodes V = {1, 2, ..., n} correspond to the variables
of the GMRF and the edges E are defined such that there is no edge between node i and j if and

27

only if xi and xj are conditionally independent given the remaining variables. If two variables xi
and xj in a GMRF are conditionally dependent it is shown in e.g. (27) that the corresponding
element of the precision matrix is zero Qij = 0. This means that a GMRF with a poorly
connected graph will result in a sparse precision matrix that allows for faster computations.
Unfortunately, FGNs and other long-memory processes lack the Markov property due to the
high degree of interdependence between its points. This results in a fully connected graph and
a dense precision matrix that are not eligible for efficient algorithms.

Bayesian inference about the posterior marginal distributions can be achieved by using INLA
(28), which is designed to work for latent Gaussian models with sparse latent fields. This method
aims to approximate the posterior marginal distributions numerically instead of relying on sim-
ulations which is the common approach for such problems. INLA includes a variety of features,
but unfortunately none of the built-in model templates supports the specific model described
for FGN processes in section 3.3.1. The model must therefore be constructed manually with the
customizable rgeneric model which is included in INLA. A tutorial for the rgeneric model is
included in Appendix: A.

Figure 3.2: Graph of a GMRF with a low degree of conditional independence between its variables.

3.3.2 Implementing an rgeneric model

The latent Gaussian model for general FGN processes constructed in section 3.3.1 will now be
defined in rgeneric. INLA will then be used to find the best fit for κ and H according to the
given data. It is important to note the difference between internal and external scaling for the
hyperparameters. The internal scaling ensures that INLA operates in a stable and unconstrained
parameter space on R. This scaling might differ from the external scaling in which the hyper-
parameters are usually treated. A suitable internal scaling for the innovation precision κ is the
log-scale,

θ1 = log κ (3.14)

28

and for the Hurst exponent the logit-scale is chosen,

θ2 = log
H

1−H
. (3.15)

Due to the slow decrease of the autocovariance function we have a dense graph and precision
matrix describing the dependencies of the latent variables

G =

1 1 . . . 1
1 1 1
...

. . .
...

1 1 . . . 1

 , Q = Σ−1.

We need to assign suitable prior distributions for the hyperparameters in order to achieve
Bayesian inference for their posterior marginals. Since H ∈ (0, 1) and no prior knowledge is
known, the author has chosen a Uniform prior for the Hurst exponential,

π(H) = Unif(0, 1). (3.16)

For the precision parameter a Gamma prior distribution with parameters a and b was cho-
sen,

π(κ) = Gamma(a, b). (3.17)

For this particular rgeneric function let a = 1.0 and b = 0.01. rgeneric requires us to compute
the joint prior for the hyperparameters in internal scaling. This is found by using the change-of-
variables formula and yields,

π(θ1, θ2) = π
(
eθ1
) eθ1+θ2

(1 + eθ2)
2 =

κH

1 + eθ2
π(κ). (3.18)

The code associated with this example is included in listing: 3.1 and should run with an asymp-
totic runtime of O(n3). The model is applied to the Nile water level data (13) discussed in section
2.3, and the resulting plots for the posterior marginal distributions of κ and H are included in
Fig: 3.3 and Fig: 3.4 respectively. The estimation obtained for the Hurst exponent is

ĤINLA = 0.8336, (3.19)

which is close to what we get from the R/S statistic and improves upon the result from Whittle’s
approximate likelihood,

ĤR/S = 0.8250 ĤWhittle = 0.8992. (3.20)

The dense dependence structure makes finding the determinant and computing the inverse ma-
trix very computationally expensive, but by taking advantage of the Toeplitz structure of the
autocovariance matrix one hopes to significantly improve the speed of INLA.

29

1 2 3 4

0
5

10
15

20
25

30

Innovation precision

κ

de
ns

ity

Figure 3.3: Marginal posterior distribution of the innovation precision κ = 1/σ2 hyperparameter for
the Nile data obtained by INLA using the rgeneric model.

0.5 0.6 0.7 0.8 0.9

0.
5

0.
6

0.
7

0.
8

0.
9

Hurst exponent

H

D
en

si
ty

Figure 3.4: Marginal posterior distribution for the Hurst exponent hyperparameter for the Nile data
obtained by INLA using the rgeneric model and compared to the R/S estimate represented by the red
line.

30

Listing 3.1: Implementation of the rgeneric function associated with the rgeneric model in INLA.

fgn . r g en e r i c = func t i on (
cmd = c (" graph " , "Q" ,"mu" , " i n i t i a l " , " l og . norm . const " ,
" l og . p r i o r " , " qu i t ") , theta = NULL, args = NULL)

{
l i b r a r y (l t s a)
l i b r a r y (HKprocess)
i n t e r p r e t . theta = func t i on (theta) {

kappa = exp (theta [1])
H = exp (theta [2]) /(1+exp (theta [2]))
r e turn (l i s t (H=H, kappa=kappa))

}
mu = func t i on (n , theta) {

re turn (numeric (0))
}
graph = func t i on (n , theta) {

re turn (matrix (1 , nrow=n , nco l=n))
}
Q = func t i on (n , theta) {

params = i n t e r p r e t . theta (theta)
kappa = params$kappa
H = params$H
acor r = acfHKp(H = H, maxlag = n−1)
Q = t o e p l i t z (c (acor r))
re turn (kappa ∗ s o l v e (Q))

}
log . norm . const = func t i on (n , theta) {

re turn (numeric (0))
}
l og . p r i o r = func t i on (n , theta) {

params = i n t e r p r e t . theta (theta)
re turn (theta [1] + dgamma(params$kappa , 1 . 0 , 0 . 0 1 , l og=T)

+ theta [2] − 2∗ l og (1+exp (theta [2])))
}
i n i t i a l = func t i on (n , theta) {

re turn (c (4 , 0 .))
}
qu i t = func t i on (n , theta) {

re turn ()
}
cmd = match . arg (cmd)
va l = do . c a l l (cmd , args = l i s t (

n = as . i n t e g e r (args$n) ,
theta = theta))

re turn (va l)
}

31

3.4 Improving the rgeneric model

As stated in Eq: 2.77, the autocovariance matrix of an FGN process described in Eq: 3.2 is a
Toeplitz matrix. This allows for more efficient algorithms for computing the determinant and
inverse matrix, which are the most expensive computations in this program when the precision
matrix is dense. The two improvements considered in this thesis is the Trench inversion and
Levinson-Durbin algorithms.

Trench inversion

The Trench inversion algorithm provides a fast way of computing the inverse of a symmetric
positive definite Toeplitz matrix. A detailed explanation and proof of the theory behind the
algorithm is found in (30) and (7). The algorithm is stated in Alg: 1 and starts by performing
the Durbin algorithm (Alg: 2) to achieve the vector y that solves the linear system Tn−1y =
−(r0, r1, ..., rn)> for the n− 1× n− 1 subblock of T ,

Tn−1 =

r0 r1 r2 · · · rn−1
r1 r0 r1 · · · rn−2
...

...
...

. . .
...

rn−1 rn−2 rn−3 · · · r0

 . (3.21)

The computational complexity for the Trench-Inversion algorithm is 13n2/4 flops, including the
2n2 flops spent on the Durbin algorithm. The Trench inversion algorithm can be performed by
using the TrenchInverse function from the ltsa package in R.

Algorithm 1 Trench inversion algorithm: Given real numbers r = r0, .., rn such that Tn =(
r|i−j|

)
∈ Rn×n is positive definite, the algorithm computes B = T−1n .

1: procedure Trench-inversion(T, r)
2: Use Alg: 2 to solve Tn−1y = −(r1, ..., rn−1)

>

3: γ = 1/
(

1 + r
(
1 : (n− 1)

)>y(1 : (n− 1)
))

4: v
(
1 : (n− 1)

)
= γy

(
(n− 1) : −1 : 1

)
5: B(1, 1) = γ
6: B(1, 2 : n) = v

(
(n− 1) : −1 : 1

)
7: for i in 2 : floor

(
(n− 1)/2

)
+ 1 do

8: for j in i : (n− i+ 1) do
9: B(i, j) = B(i− 1, j − 1) +

(
v(n+ 1− j)v(n+ 1− i)− v(i− 1)v(j − 1)

)
/γ

return B

32

Algorithm 2 Durbin algorithm: Given real numbers r = r0, .., rn such that Tn =
(
r|i−j|

)
∈ Rn×n

is positive definite, the following algorithm computes y ∈ Rn such that Tny = −r.
1: procedure Durbin(T, r)
2: y(1) = −r(1)
3: β = 1
4: α = −r(1)
5: for k in 1 : (n− 1) do
6: β = (1− α2)β
7: α = −(r(k + 1) + r(k : −1 : 1)>y(1 : k))/β
8: z(1 : k) = y(1 : k) + αy(k : −1 : 1)

9: y(1 : (k + 1)) =

[
z(1 : k)
α

]
return y

Levinson-Durbin recursion

The Levinson-Durbin recurison is an algorithm that recursively finds the solution to a system of
linear equations,

y = Ax (3.22)

where A is a Toeplitz matrix. The procedure was first designed by Norman Levinson in 1947
(20) and then improved by James Durbin in 1960 (5). The version of the algorithm used here is
the further improved version by W.F. Trench in 1964 (30). The algorithm is described in Alg: 3
(7) and require 4n2 flops. The Levinson-Durbin algorithm is used to find the determinant of the
precision matrix more efficiently which can be extracted from the ltza function in the R package
HKprocess.

Algorithm 3 Levinson-Durbin algorithm: Given b ∈ Rn and real numbers r = r0, .., rn such
that Tn =

(
r|i−j|

)
∈ Rn×n is positive definite, the following algorithm computes x ∈ Rn such

that Tnx = b.
1: procedure Levinson-Durbin(T,b)
2: y(1) = −r(1)
3: x(1) = b(1)
4: β = 1
5: α = −r(1)
6: for k in 1 : (n− 1) do
7: β = (1− α2)β
8: µ =

(
b(k + 1)− r(1 : k)>x(k : −1 : 1)

)
/β

9: z(1 : k) = y(1 : k + αy(k : −1 : 1))

10: y(1 : (k + 1)) =

[
z(1 : k)
µ

]
return y

33

Comparing efficiency

The Trench inversion algorithm is used to reduce the cost of inverting the autocovariance matrix
fromO(n3) toO(n2) flops. To make sure that INLA computes the normalizing constant efficiently
it is encouraged to implement the log.norm.const function manually. With the Levinson-
Durbin algorithm one is able to reduce the cost of computing the determinant to O(n2) flops.
The function acfHKp from the HKprocess package is used to compute the autocovariances of the
FGN process. The R code including the improvements is included in listing: 3.2.

To compare the algorithms we draw different sized samples of data using the Wood-Chan al-
gorithm and use INLA to analyze each set of data. The time spent by each implementation
is illustrated in Figures 3.5 and 3.6. As can be seen, the second algorithm was a significant
improvement over the original one. However, as the FGN processes are rather long by nature,
the rgeneric process still proves too slow to become a viable tool for FGN analysis. Running our
improved rgeneric model on the Nile data with length n = 663 requires a runtime of around
10 minutes on a fairly good computer. It is the density of the graph and precision matrix that
is the main concern and primary limitation of the INLA program for such models. Methods of
circumventing this problem will be explored in the next chapter.

34

Listing 3.2: Implementation of the revised rgeneric function associated with the rgeneric model in INLA.

fgn . r g en e r i c 2 = func t i on (
cmd = c (" graph " , "Q" ,"mu" , " i n i t i a l " , " l og . norm . const " ,
" l og . p r i o r " , " qu i t ") , theta = NULL, args = NULL)

{
l i b r a r y (l t s a)
l i b r a r y (HKprocess)
i n t e r p r e t . theta = func t i on (theta) {

re turn (l i s t (kappa = exp (theta [1]) ,
H = exp (theta [2]) /(1+exp (theta [2]))))

}
mu = func t i on (n , theta) { re turn (numeric (0)) }
graph = func t i on (n , theta , ntheta) {

re turn (matrix (1 , nrow=n , nco l=n))
}
Q = func t i on (n , theta) {

params = i n t e r p r e t . theta (theta)
kappa = params$kappa
H = params$H
acor r = acfHKp(H = H, maxlag = n−1)
Q = t o e p l i t z (c (acor r))
re turn (kappa ∗ TrenchInverse (Q))

}
log . norm . const = func t i on (n , theta) {

params = i n t e r p r e t . theta (theta)
acor r = acfHKp(H = params$H , maxlag = n−1)
l ogde t = l t z a (acorr , rep (0 , n))
ledd1 = −n/2∗ l og (2∗ pi)
ledd2 = −0.5∗ as . numeric (l ogde t [4])
ledd3 = n/2∗ l og (parms$kappa)
re turn (ledd1+ledd2+ledd3)

}
log . p r i o r = func t i on (n , theta) {

params = i n t e r p r e t . theta (theta)
re turn (theta [1] + dgamma(params$kappa , 1 . 0 , 0 . 0 1 , l og=T)

+ theta [2] − 2∗ l og (1+exp (theta [2])))
}
i n i t i a l = func t i on (n , theta) {

re turn (c (4 , 0 .)) }
qu i t = func t i on (n , theta) { re turn () }
cmd = match . arg (cmd)
va l = do . c a l l (cmd , args = l i s t (

n = as . i n t e g e r (args$n) ,
theta = theta))

re turn (va l)
}

35

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Standard rgeneric

length

C
om

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
)

Figure 3.5: Plot of the time consumption of the standard rgeneric model created in section 3.3.2 when
applied to simulations of length n.

0 200 400 600 800

0
20

0
40

0
60

0
80

0

Improved rgeneric

length

C
om

pu
ta

tio
na

l t
im

e
(s

ec
on

ds
)

Figure 3.6: Plot of the time consumption of the improved rgeneric model created in section 3.4 when
applied to simulations of length n.

36

Chapter 4

AR1 approximations of FGN models

4.1 Motivation

In 1980, Clive William John Granger (8) explored the aggregation of short term memory processes
and discovered that the sum of AR1 processes where the correlation parameter is sampled from
a Beta distribution exhibits long-memory properties. This chapter will try to use this result to
explore the possibility of explaining long-memory processes by a sum of short term memory AR1
processes.

The goal is to restate any FGN process as a sum of a limited number of AR1 processes by finding
the processes that best approximate the FGN process in terms of its Hurst exponent H. If this
is possible, the latent Gaussian field described in section 3.3.1 can be replaced with a larger field,
but with a sparse corresponding precision matrix due to conditional independence. This could
hypothetically decrease the runtime of INLA significantly.

4.2 Aggregation of AR1 processes

The contents of this section is largely based upon the work of C.W.J Granger (8). Recall that
an ARMA(p, q) model is a time series model described by

φp(B)xt = θq(B)εt, (4.1)

where φp(B) = (1 − φ1B)(1 − φ2B) · · · (1 − φpB) is a polynomial of degree p and θq(B) =
(1 − θ1B)(1 − θ2B) · · · (1 − θqB) is a polynomial of degree q. Granger and Morris established
in 1976 (10) that the sum of two ARMA series with parameters (p1, q1) and (p2, q2) becomes
another ARMA model,

ARMA(p1, q1) + ARMA(p2, q2) = ARMA(x, y) (4.2)

where the parameters x, y are explained by

x ≤ p1 + p2, y ≤ max(p1 + q2, p2 + q1). (4.3)

37

The inequalities of Eq: 4.3 is necessary to account for the possibility of common roots between
φp(B) = 0 and θq(B) = 0 that will cancel each other out. For k mutual roots Eq: 4.3 be-
comes

x = p1 + p2 − k y ≤ max(p1 + p2 − k, q2 + q1 − k). (4.4)

The remaining inequality of 4.4 is still required in some exceptions. To show one situation where
this will occur consider the following example by Granger and Morris (10). Suppose

(1− φB)xt = εt, i.e. xt ∼ AR(1)

(1 + φB)yt = ηt, i.e. yt ∼ AR(1)

with equal innovations, var(ε) = var(η) = σ2. If zt = xt + yt, then

(1− φB)(1 + φB)zt = (1 + φB)εt + (1− φB)ηt. (4.5)

The right hand side of Eq: 4.5, denoted ψt has variance var(ψ) = 2(1 + φ2)σ2 with zero autoco-
variance for any lag k > 0. This means that zt is an AR2 process rather than an ARMA(2, 1)
process as Eq: 4.3 would suggest. If two series generated by

xjt = φjxj,t−1 + εjt, j = 1, 2 (4.6)

and ε1t and ε2t are independent zero-mean white noise series, then the sum

yt = x1t + x2t, (4.7)

follows an ARMA(2,1). Similarly, if N AR(1) models are added as follows,

x̄t =
N∑
j=1

xjt (4.8)

then the aggregate series would follow an ARMA(N,N − 1) model. An important result arises
when investigating the spectrum of such aggregations. From Equation 2.32 we find the power
spectrum of each xjt is to be (in complex form)

fj(λ) =
1

|1− φjz|2
var(εjt)

2π
, z = e−iλ. (4.9)

As each xit is independent from any other xjt, then the spectrum of the aggregate series x̄ is
given by

f̄(λ) =

N∑
j=1

fj(λ) (4.10)

Assuming further that φj are random variables (29) such that φ ∼ F (φ), and that var(εjt)
are drawn from another independent distribution. Then the spectral density of the aggregated
process of Eq: 4.10 can be approximated as

f̄(λ) ≈ N

2π
E[var(εjt)]

∫
1

|1− φz|2
dF (φ). (4.11)

38

If φ can take only m < N discrete values on the interval (−1, 1), then f̄(λ) is a spectrum of an
ARMA(m,m− 1) model. If no such restriction applies and φ can take any continuous value on
(−1, 1), then there are no ARMA models with finite parameters that fits the spectrum f̄(λ). To
proceed it is assumed that φ ∈ (0, 1) follows a Beta distribution on the form

dF (φ) =

{
2

B(p,q)φ
2p−1(1− φ2)q−1dφ, 0 ≤ φ ≤ 1

0 otherwise,
(4.12)

where p, q > 0. As one can write

1

|1− φz|2
=

1

(1− φ)2

[
1 + φz

1− φz
+

1 + φz̄

1− φz̄

]
, (4.13)

and since
1 + φz

1− φz
= 1 + 2

∞∑
j=1

(φz)j , (4.14)

we are able to deduct from Eq: 4.11 and Eq: 4.12 that the coefficient of zk in f̄(λ), denoted here
as µ̄k has to be

µ̄k =
2

B(p, q)

∫ 1

0
φ2p+k−1(1− φ2)q−2dφ. (4.15)

µ̄k is known to be the autocovariance of x̄t at lag k. If q > 1 we get

µ̄k =
Γ(q − 1)

B(p, q)
· Γ(p+ k/2)

Γ(p+ k/2 + q − 1)
, (4.16)

which gives the approximation
µ̄k = Ck1−q (4.17)

for large values of k and a constant C. This means that x̄t exhibits long-memory in the covariance
sense (Def: 2.3.4) and is a fractionally integrated series of order d = 1− q/2,

x̄t ∼ I(1− q/2). (4.18)

Note that the order of integration, d = 1− q/2 is solely dependent on q, meaning that the shape
of dF (φ) holds no relevance except for around φ = 1. This discovery was first made by C.W.J.
Granger in 1980 (8). Creating long-memory processes by aggregating AR1 processes as described
here can be used to simulate fractional Gaussian noise series (12). Let {xi,t} denote a set of AR1
series of length n, each defined by the difference equation

xi,t = φixi,t−1 + εt i = 1, 2, ..., N, (4.19)

where εt is white noise and
φi ∼ Beta(p, q). (4.20)

Further, define the aggregation series xt as

39

xt =
1√
N

N∑
i=1

xi,t. (4.21)

From Eq: 4.17 Granger shows that the series defined by Eq: 4.21 exhibit long-memory. It is shown
in e.g. Haldrup and Vera-Valddés (12) that the scaled partial sum

Xn(ξ) = σ−1n

[nξ]∑
t=1

xt, (4.22)

with σ2n = E
[(∑n

t=1 xt
)2] and ξ ∈ [0, 1], converges in distribution to BH(ξ), an FBM with Hurst

exponent H = 1
2(3−q). Hence, the generation of an FBM series with Hurst exponent H by AR1

aggregation can be summarized as follows:

• Sample N AR coefficients {φi}Ni=1 from the density function, in our case it is the Beta
distribution with parameters p and q = 3− 2H.

• Generate N AR1 series of length n using the sampled coefficients. The error terms εi,t are
sampled from independent standard Gaussian distributions.

• Aggregate the AR1 series according to Eq: 4.21 to get the FGN simulation.

• For an FBM series one can aggregate the generated series according to equation Eq: 4.22.

As an example we try to create a long-memory FGN with H = 0.9. We start by generating
N = 100, 000 AR1 processes of length n = 400, with mutual innovation variance equal to
σ2ε = 1. The coefficients are sampled from a beta distribution

φi ∼ Beta(1.4, 3− 2H) i = 1, 2, ..., N. (4.23)

After aggregating the AR1 processes we estimate H by using the INLA method implemented
in section 3.4. The posterior marginal distribution was computed by INLA with the improved
rgeneric model implemented in listing: 3.2 and is illustrated in Fig: 4.1. The mode was found to
be ĤINLA = 0.9163.

40

0.7 0.8 0.9 1.0

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

Hurst exponent

H

D
en

si
ty

Figure 4.1: Posterior marginal distribution of Hurst exponent for an aggregated series of 100,000 AR1
processes of length 400.

4.3 AR1 approximation with numerical optimization

It has been established that an FGN can be approximated by a sum of N AR1 processes, with
parameters drawn from a Beta distributions. As N grows larger, the sum becomes a better
approximation, but also more costly in terms of efficiency and memory. The goal now is to
disaggregate a long-memory series of unknown Hurst exponent and innovation variance into a
sum of N weighted AR1 processes that are scaled to achieve unit variance,

x̄t =

N∑
i=1

√
wi

√
1− φ2i xi,t (4.24)

where all weights sum to 1 and the AR1 processes are explained by the difference equation

xi,t = φixi,t−1 + εt i = 1, 2, ..., N, (4.25)

with noise terms of fixed unit variance. The challenge will be to choose the AR1 series whose
sum best replicate an FGN process with Hurst exponent H, while keeping the number of AR1
components sufficiently low.

If we have a mapping between H and the set of parameters and weights, we can use INLA to
find the H whose corresponding set of weights and parameters best fit the likelihood of the given

41

data. Such a mapping is difficult to find analytically, but can be approximated by performing
numerical optimization methods to find the corresponding set of weights and parameters for
a discrete set of values for H as to sufficiently represent the interval (0.5, 1). The continuous
mapping is then found by using splines to interpolate the resulting parameters.

For a given set of N parameters with corresponding weights, the Hurst exponent is estimated by
finding the average MLE of R replicated aggregation series

Ĥ =
1

R

R∑
r=1

Ĥr, (4.26)

where each Ĥr was found by using the FitFGN function from the FGN package in R. In this thesis,
the number of replications was set to R = 10 so that a reasonable computational time could
be achieved, but it can be increased to improve accuracy. The length of each generated AR1
series was set to n = 1000 for the same reason, but can also be increased for a more accurate
result. The optimization problem for given N and H consists of finding the set of parameters
φ = φ1, ..., φN and weights w = w1, ..., wN that minimize the cost function

f(φ,w) = (Ĥ −H)2 (4.27)

subject to constraints

N∑
j=1

wj = 1, φi ∈ (0, 1), wi > 0, i = 1, 2, ..., N. (4.28)

To ease the opimization problem the author has chosen to re-parametrise the parameters {φi}Ni=1

in terms of variables {ui}Ni=1 such that ui ∈ (−∞,∞) and φ1 > φ2 > · · · > φN . The parametriza-
tion chosen for the φs is

φi =
1

1 +
∑i

j=1 e
−uj

. (4.29)

For the weights it is important to notice that the sum-to-one constraint reduces the degrees of
freedom of the weights to N − 1, meaning that one of the weights follow from the value of the
others, i.e. wi = 1 −

∑
j 6=iwj . The parametrization for the weights {wi}Ni=1 was also chosen to

be a function of unconstrained variables {vi}Ni=1, where the first variable v1 is set to 1,

wi =
evi∑N
j=1 e

vj
∀i = 1, 2, ..., N. (4.30)

From Eq: 4.30 it is evident that the N weights all sum to one and are determined by N − 1
unconstrained variables on R. As an example, consider the case of N = 3 AR1 components. The

42

parametrization for the parameters is chosen according to Eq: 4.29,

φ1 =
1

1 + e−u1

φ2 =
1

1 + e−u1 + e−u2

φ3 =
1

1 + e−u1 + e−u2 + e−u3

resulting in parameters φ1 > φ2 > φ3, where φi ∈ (0, 1) for all i = 1, 2, 3. The parametrization
for the weights follows from Eq: 4.30 with v1 = 1 becomes

w1 =
e1

e1 + ev2 + ev3

w2 =
ev2

e1 + ev2 + ev3

w3 =
ev3

e1 + ev2 + ev3
.

To ensure a continuous function the random number generator is seeded the same number (123)
for all iterations and with a constant number of 100 burn-in samples. The AR1(φ) processes are
generated by the arima.sim function in R and is scaled as to create a variance of 1,

arima.sim(n = 1000, model = list(ar = c(alpha), n.start = 100)
* sqrt(1 - alpha^2) * sqrt(weight[i]).

The optimization is done by the R function optim and repeated for all H = 0.50, 0.51, ..., 0.99.
The domain of H could of course be extended to cover all of (0,1), but was reduced to save time
since this thesis focuses primarily on long-memory processes with H ∈ (0.5, 1). The resulting
weights and parameters for N = 3 AR1 components are included in tables 4.1 and 4.2 and
displayed graphically in Fig: 4.2. The process is repeated for N = 2, 4, 5, ..., 8 where the results
are displayed in figures 4.3 through 4.8. The sudden spike at H = 0.99 when N = 3 is due
to the convergence difficulties that occur as H approaches unity. This value is omitted for the
other values of N as it was deemed too inaccurate to be featured in the results. By interpolating
the results as functions of H we have a continuous mapping from the H space to the parameter
space, which we are able to use in an rgeneric function.

43

H φ1 φ2 φ3 w1 w2 w3

0.50 0.009 0.009 0.009 0.197 0.355 0.448
0.51 0.019 0.018 0.017 0.121 0.186 0.693
0.52 0.039 0.033 0.032 0.094 0.132 0.774
0.53 0.064 0.05 0.047 0.085 0.117 0.797
0.54 0.092 0.068 0.063 0.082 0.111 0.807
0.55 0.122 0.086 0.078 0.08 0.107 0.812
0.56 0.154 0.104 0.093 0.079 0.106 0.815
0.57 0.185 0.122 0.107 0.079 0.105 0.816
0.58 0.217 0.14 0.122 0.079 0.105 0.816
0.59 0.248 0.157 0.136 0.079 0.105 0.815
0.60 0.278 0.175 0.15 0.08 0.106 0.814
0.61 0.308 0.193 0.163 0.08 0.107 0.813
0.62 0.336 0.211 0.177 0.081 0.107 0.811
0.63 0.363 0.228 0.19 0.082 0.109 0.809
0.64 0.39 0.246 0.203 0.083 0.11 0.808
0.65 0.415 0.263 0.216 0.084 0.111 0.805
0.66 0.439 0.28 0.229 0.084 0.112 0.803
0.67 0.462 0.296 0.242 0.085 0.114 0.801
0.68 0.484 0.313 0.255 0.086 0.115 0.799
0.69 0.504 0.329 0.267 0.087 0.117 0.796
0.70 0.524 0.346 0.28 0.088 0.118 0.794
0.71 0.543 0.362 0.292 0.089 0.12 0.791
0.72 0.562 0.377 0.305 0.09 0.121 0.789
0.73 0.579 0.393 0.317 0.091 0.123 0.786
0.74 0.596 0.408 0.329 0.092 0.125 0.783

Table 4.1: Values of the parameters for H ∈ [0.5, 0.74] with N = 3 AR1 processes.

44

H φ1 φ2 φ3 1 2 3

0.75 0.611 0.423 0.342 0.093 0.126 0.781
0.76 0.627 0.438 0.354 0.094 0.128 0.778
0.77 0.641 0.453 0.366 0.095 0.13 0.775
0.78 0.655 0.468 0.378 0.096 0.132 0.773
0.79 0.668 0.482 0.39 0.097 0.133 0.77
0.80 0.681 0.496 0.402 0.098 0.135 0.767
0.81 0.694 0.51 0.414 0.099 0.137 0.764
0.82 0.705 0.523 0.426 0.1 0.139 0.762
0.83 0.717 0.537 0.438 0.1 0.141 0.759
0.84 0.728 0.55 0.45 0.101 0.143 0.756
0.85 0.738 0.563 0.461 0.102 0.145 0.753
0.86 0.748 0.576 0.473 0.103 0.147 0.75
0.87 0.758 0.588 0.485 0.104 0.149 0.747
0.88 0.767 0.601 0.497 0.105 0.151 0.744
0.89 0.776 0.613 0.509 0.106 0.153 0.741
0.90 0.785 0.625 0.521 0.107 0.155 0.738
0.91 0.794 0.637 0.533 0.108 0.157 0.734
0.92 0.802 0.649 0.545 0.109 0.159 0.731
0.93 0.81 0.661 0.557 0.11 0.162 0.728
0.94 0.819 0.674 0.57 0.111 0.164 0.724
0.95 0.827 0.686 0.583 0.113 0.167 0.721
0.96 0.835 0.699 0.597 0.114 0.17 0.717
0.97 0.845 0.714 0.612 0.115 0.173 0.712
0.98 0.857 0.732 0.633 0.117 0.177 0.707
0.99 0.885 0.78 0.687 0.12 0.186 0.694

Table 4.2: Values of the parameters for H ∈ [0.75, 0.99] with N = 3 AR1 processes.

45

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Parameter values for N=3

H

a1 a2 a3 w1 w2 w3

Figure 4.2: The parameters and weights for the sum of N = 3 AR1 processes as a function of H.

4.3.1 Kullback-Leibler divergence

TheKullback-Leibler divergence (KLD) was introduced by Solomon Kullback and Richard Leibler
in 1951 (19) and is a measure of distance between two probability distributions P and Q. It is
also used in information theory as a measure of the amount of information lost when using one
distribution to approximate another. It is important to note that the KLD is not a true metric
as it is neither symmetric nor does the triangle inequality hold. The Kullback-Leibler divergence
from the approximate distribution Q to the true distribution P is defined as

DKL(P ‖ Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx, (4.31)

where p and q are the density functions of P and Q respectively. It can be shown that maximizing
the log-likelihood function,

Ĥ = argmax
H

n∑
i=1

logL(xi | H) (4.32)

46

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Parameter values for: N = 2

H

a1
w1

a2
w2

Figure 4.3: Weigts and parameters for N = 2 AR1 components.

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Parameter values for: N = 4

H

a1
w1

a2
w2

a3
w3

a4
w4

Figure 4.4: Weigts and parameters for N = 4 AR1 components.

is equivalent of minimizing the KLD from the estimation L(x|Ĥ) to the true distribution L(x|H∗)

47

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Parameter values for: N = 5

H

a1
w1

a2
w2

a3
w3

a4
w4

a5
w5

Figure 4.5: Weigts and parameters for N = 5 AR1 components.

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Parameter values for: N = 6

H

a1
w1

a2
w2

a3
w3

a4
w4

a5
w5

a6
w6

Figure 4.6: Weigts and parameters for N = 6 AR1 components.

by using that

DKL
(
L(x | H∗) ‖ L(x | Ĥ)

) Ĥ∝ −E[logL(x | Ĥ)
]
, (4.33)

48

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Parameter values for: N = 7

H

a1
w1

a2
w2

a3
w3

a4
w4

a5
w5

a6
w6

a7
w7

Figure 4.7: Weigts and parameters for N = 7 AR1 components.

0.5 0.6 0.7 0.8 0.9 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

Parameter values for: N = 8

H

a1
w1

a2
w2

a3
w3

a4
w4

a5
w5

a6
w6

a7
w7

a8
w8

Figure 4.8: Weigts and parameters for N = 82 AR1 components.

where E
[

logL(x|Ĥ)
]
is the mean of the estimated log-likelihood with respect to the distribution

49

L(x|H∗). Minimizing the KLD is done by finding the Ĥ that maximizes

E
[

logL(x | Ĥ)
]

=

∫ ∞
−∞

logL(x | Ĥ)L(x | H∗)dx. (4.34)

The integral of Eq: 4.34 is approximated by a sum with the empirical observations

E
[

logL(x | Ĥ)
]
≈ 1

n

n∑
i=1

logL(xi | Ĥ) (4.35)

which leads to the same optimization problem as in Eq: 4.32. In our optimization procedure the
true distribution corresponds to the sum of AR1 processes, while the approximate distribution
is the FGN. This gives the interpretation that the fitted parameters in the sum of AR1 processes
minimize the KLD to the FGN. It would be more natural to reverse the role of the sum of AR1’s
and the FGN, so that the true distribution is the FGN and the sum of AR1’s is the approximate
distribution. However, with such an approach the fitting procedure would be much more involved
and computational demanding, and for these reasons deferred to further work.

50

4.4 Aggregated rgeneric model

The link between the FGN with Hurst exponent H and set of weighted AR1 processes established
in section 4.3 allows us to create an rgeneric model based on the aggregated AR1 components that
approximate the previous model, but is more compatible with INLA. To capture the dependence
structure between the AR1 components and the aggregated process the latent field is defined in
blocks as a multivariate Gaussian Markov random field (MGMRF) (27),

x =
(
z,x(1),x(2), ...,x(N)

)
(4.36)

where x(i) = (x
(i)
1 , ..., x

(i)
n) represents the AR1 components,

x
(i)
t = φix

(i)
t−1 + εt, i = 1, 2, ..., N, (4.37)

and
z = κ−1/2

(√
w1x(1) + ...+

√
wNx(N) + τ

)
(4.38)

is the aggregation series with added small noise τ in the exp(15) range. The MGMRF yields a
precision matrix with a block matrix structure,

Q =

Qz,z Qz,1 . . . Qz,N
Qz,1 Q1,1 . . . Q1,N
...

. . .
Qz,N QN,1 . . . QN,N

 . (4.39)

For simplicity, consider at first the case of only N = 2 AR1 processes. The precision matrix is
evaluated from the joint distribution

π
(
x(1),x(2), z

)
= π

(
x(1)

)
π
(
x(2) | x(1)

)
π
(
z | x(1),x(2)

)
, (4.40)

with
π
(
x(1)

)
= (2π)−n/2|QAR1(φ1)| exp

(
−1

2
x(1)>QAR1(π1)x

(1)

)
, (4.41)

π
(
x(2) | x(1)

)
= (2π)−n/2|QAR1(φ1)| exp

(
−1

2
x(2)>QAR1(φ2)x

(2)

)
(4.42)

and
π
(
z | x(1),x(2)

)
= (2π)−n/2τn/2 exp

(
u>τIu

)
(4.43)

where u =
(
z− σ

(√
w1x

(1) +
√
w2x

(2)
))

and I is the identity matrix. By expanding Eq: 4.40
the blocks of the precision matrix becomes

Qz,z = τI

Qz,1 = −κ−1/2
√
w1τI

Qz,2 = −κ−1/2
√
w2τI

Q1,1 = QAR1(φ1) + κ−1w1τI

Q1,2 = κ−1
√
w1
√
w2τI

Q2,2 = QAR1(φ2) + κ−1w2τI

51

The sparsity of Q is displayed in Fig: 4.9, where it is observed that most blocks are diagonal
matrices, with the exception of the blocks that includes the AR1 precision matrix. Extending
the example to any N using the same approach, the blocks of Eq: 4.39 are found to be

Qz,z = τI

Qz,j = −κ−1/2√wjτI
Qi,i = QAR1(φi) + κ−1wiτI

Qi,j = κ−1
√
wi
√
wjτI,

where 0 ≤ i, j ≤ N . This yields a similar sparsity structure as Fig: 4.9 with diagonal matrices
Qz,z, Qz,i and Qi,j , and the Qi,is are tridiagonal. The latent field for this model contains more
variables compared to the previous one, but the precision matrix now has a very sparse structure
that allows INLA to perform much better.

Figure 4.9: The sparsity structure of Q. Block (2,2) and (3,3) are tridiagonal while the other blocks
are diagonal matrices.

The parametrization chosen for the internal variables resembles those of section 3.3.2, but it is
here assumed that H ∈ (0.5, 1),

θ2 = logit(2H − 1). (4.44)

The internal representation of the innovation precision remains the same,

θ1 = log(κ). (4.45)

The prior distributions assigned to the hyperparameters are also the same, but adjusted for the
new interval of H

π(H,κ) = Unif(0.5, 1) ·Gamma(a, b) (4.46)

52

The normalizing constant of π
(
x(1),x(2), z

)
is found to be

C = (2π)3n/2τn/2
(

1

1− φ21

)n−1
2
(

1

1− φ22

)n−1
2

, (4.47)

whose logarithm is also included in the rgeneric definition. Similarly, for a general N the
normalizing constant is found similarly to be

C = (2π)(N+1)/2τn/2
(

1

1− φ21

)n−1
2

· · ·
(

1

1− φ2N

)n−1
2

. (4.48)

To reduce the cost of the rgeneric function, the interpolated spline functions obtained in section
4.3 is determined outside of the function and then passed on as input, here as object funks. The
function also requires the number N of AR1 components used in the model and the length n of
the FGN data,

model = inla.rgeneric.define(rgeneric.general,n=n,N=N,funks=funks).

The code associated with the rgeneric definition is included in 4.1.

53

Listing 4.1: rgeneric function definition of the disaggregated FGN process.

d i s aggrega ted . fgn . r g e n e r i c = func t i on (
cmd = c (" graph " , "Q" ,"mu" , " i n i t i a l " , " l og . norm . const " ,
" l og . p r i o r " , " qu i t ") , theta = NULL, args = NULL)

{
tau = exp (15)

map = func t i on (H,N, funks) {
params = numeric (2∗N)
f o r (i in 1 : (2∗N)) {

params [i] = funks [[i]] (H)
}
return (params)

}
i n t e r p r e t . theta = func t i on (theta) {
H = 0.5 + 0 .5 / (1 + exp(− theta [2]))
kappa = exp (theta [1])
r e turn (l i s t (H = H, kappa = kappa))

}
mu = func t i on (n , N, funks , theta) {

re turn (numeric (0))
}
ar1maker = func t i on (rho , n) {

tauu = 1 / (1 − rho ^ 2)
i = c (1L , n , 2L : (n − 1L) , 1L : (n − 1L))
j = c (1L , n , 2L : (n − 1L) , 2L : n)
xx = tauu ∗

c (1L , 1L , rep (1 + rho ^ 2 , n − 2L) , rep(−rho , n − 1L))
re turn (sparseMatr ix (i = i , j = j , x = xx ,

g iveCsparse = FALSE, symmetric = TRUE))
}
graph = func t i on (n , N, funks , theta) {

i n i t = i n i t i a l (n ,N, funks , theta)
G = Q(n , N, funks , i n i t)
G[G != 0] = 1
return (G)

}
log . norm . const = func t i on (n ,N, funks , theta) {

hyperparams = i n t e r p r e t . theta (theta)
param = map(hyperparams$H ,N, funks)
sum = n/2∗ l og (tau)
f o r (i in 1 :N) {

sum = sum −(n−1)/2∗ l og (1−param [i]^2)
}
re turn (sum)

}
log . p r i o r = func t i on (n , N, funks , theta) {

params = i n t e r p r e t . theta (theta)
re turn (theta [1] + dgamma(params$kappa , 1 , 0 . 01 , l og = T)

− theta [2] − 2 ∗ l og (1 + exp (theta [2])))
}

54

Q = func t i on (n , N, funks , theta) {
hyperparam = in t e r p r e t . theta (theta)
H = hyperparam$H
kappa = hyperparam$kappa
param = map(hyperparam$H ,N, funks)
N=length (param) /2
alphas = param [1 :N]
weights = param [(N+1) : (2∗N)]
Q = Diagonal (n , rep (tau , n))
f o r (i in 1 :N) {
Q = cBind (R1 , Diagonal (n , rep(− s q r t (1 / kappa)

∗ s q r t (weights [i]) ∗ tau , n)))
}
f o r (i in 2 : (N+1)) {
R = numeric (0)
i f (1 <=(i −1)) {

f o r (j in 1 : (i −1)) {
R = cBind (R,Q[(1+(j−1)∗n) : (j ∗n) ,(1+(i −1)∗n) : (i ∗n)])

}
}
R = cBind (R, ar1maker (a lphas [i −1] , n)

+ Diagonal (n , rep (1 / kappa ∗ weights [i −1] ∗ tau , n)))
i f ((N+1)>=(i +1)) {

f o r (j in (i +1) : (N+1)) {
R = cBind (R, Diagonal (n , rep (1 / kappa ∗ s q r t (weights [i −1])

∗ s q r t (weights [j −1]) ∗ tau , n)))
}

}
Q = rBind (Q,R)

}
return (Q)

}
i n i t i a l = func t i on (n , N, funks , theta) {

re turn (c (4 , 0 .))
}
qu i t = func t i on (n , N, funks , theta) {

re turn ()
}
cmd = match . arg (cmd)
va l = do . c a l l (cmd , args = l i s t (

n = as . i n t e g e r (args$n) , N = as . i n t e g e r (args$N) ,
funks = args$funks , theta = theta))

re turn (va l)
}

55

Chapter 5

Speed and accuracy analysis

5.1 Time consumption of the AR1 approximation

How the efficiency of INLA with the AR1 approximated latent model depends on the length and
Hurst exponent of the data as well as the number of AR1 components is charted by applying
the model to simulations where only one of the variables are changing and the others are kept
constant. 20 simulations are generated for each step of the variable under consideration from
which the mean and 95% confidence intervals are computed.

The time consumption of INLA when using the AR1 approximated model seems to linearly
increase in time as the length of the simulated series increases. This behaviour is displayed in
Fig: 5.1 when N = 5 AR1 components are used and the simulated series are sampled with true
Hurst exponent H = 0.8.

One can also see a clear trend when the number of AR1 components is varied and the length and
Hurst exponent are kept constant. Fig: 5.2 shows the results for simulations with length n = 700
and true Hurst exponent H = 0.8 and reveals a trend that seems slightly stronger than linear as
N increases.

When the length of the simulations and the number of AR1 components are fixated and the Hurst
exponent is the only changing variable there does not appear to be any clear trend. The time
consumption as a function of H with constant H = 0.8 and N = 5 is illustrated in Fig: 5.3.

56

600 800 1000 1200 1400

40
60

80
10

0

Time consumption

n

S
ec

on
ds

Figure 5.1: The time consumption of the rgeneric function plotted against the length, n of 20 simulated
FGN series for fixed H = 0.8 and N = 5 plotted with the corresponding mean and 95% confidence
intervals.

2 3 4 5 6 7 8

20
40

60
80

10
0

12
0

Time consumption

N

S
ec

on
ds

Figure 5.2: The time consumption of the rgeneric function plotted against the number of AR1 compo-
nents, N of simulated 20 FGN series for fixed H = 0.8 and n = 700 plotted with the corresponding mean
and 95% confidence intervals.

57

0.65 0.70 0.75 0.80 0.85 0.90

35
40

45
50

55
60

Time consumption

H

S
ec

on
ds

Figure 5.3: The time consumption of the rgeneric function plotted against the Hurst exponent, H of
simulated 20 FGN series with fixed n = 700 and N = 5 plotted with the corresponding mean and 95%
confidence intervals.

5.2 Deviation from MLE

A well approximated model should yield a Hurst exponent that approaches the maximum likeli-
hood estimator for H as n and N grows larger. To measure the accuracy, the estimated Hurst
exponent obtained from the approximated model is compared with the exact MLE computed
from the FitFGN function from the R package FGN. The deviation from the MLE is examined as a
function of the number of AR1 components, the length of the observed FGN and the true Hurst
exponent that is to be estimated, and similarly to the time consumption analysis, the procedure
is repeated separately with only one variable is changing at a time.

When the length increases with constant Hurst exponent and number of AR1 components, the
deviation from the exact MLE reveals consistent overestimation, but since the overestimation
remains constant for different lengths it is likely to be caused by one of the other variables. The
result of a simulation process with Hurst exponent H = 0.8 and N = 5 AR1 components is
illustrated in Fig: 5.4. 20 replications was computed for each step of the length variable and the
associated means and 95% confidence interval is also included in the figure.

The results for both the rgeneric estimation and the exact MLE when the samples are drawn
from an increasing Hurst exponent varies with constant length n = 700 and with N = 5 AR1
components is plotted in Fig: 5.5 together with the MLE and the true value from which the
simulations are drawn from. The deviation between the MLE and the rgeneric approximate
is illustrated more clearly in Fig: 5.6. Both plots indicate that the results are biased, as the
approximated model seems to underestimate the estimation for the Hurst exponent when the true
Hurst exponent is low and overestimate if it is larger. The author suggests a more thorough revisit
to the optimization procedure in section 4.3 with longer AR1 series and more replications.

58

To chart the accuracy of the approximated model as the number of AR1 components increases 20
FGN samples were generated and each analyzed using different number of AR1 components. The
resulting estimation means from 20 simulations of length n = 700 around true Hurst exponent
H = 0.8 is illustrated in Fig: 5.7 and compares the estimate to the exact MLE. The estimation
from approximated model should in theory approach the exact MLE as more components are
used, but simulations suggests that the deviation suddenly increase when too many components
are used. This is likely due to convergence issues when finding the weights and parameters
in section 4.3 with the optim function for too many variables. A revisit to the optimization
procedure with a more dense discretization of H ∈ (0.5, 1) is therefore recommended.

600 800 1000 1200 1400

−
0.

04
0.

00
0.

04
0.

08

Hurst exponent deviation from MLE

n

D
ev

ia
tio

n

Figure 5.4: The deviation between the MLE and the corresponding N = 5 AR1 component rgeneric
approximate of 20 simulations of varying length n and fixated Hurst exponent H = 0.8. The mean and
95% confidence intervals of the approximations are also included.

59

0.65 0.70 0.75 0.80 0.85 0.90

0.
60

0.
70

0.
80

0.
90

rgeneric and mle

H

es
tim

at
e

rgeneric mle true

Figure 5.5: The mean of N = 5 AR1 component rgeneric approximations for 20 simulations of length
n = 700 and different values of H plotted with the mean of the corresponding MLE and true Hurst
exponent.

0.65 0.70 0.75 0.80 0.85 0.90

−
0.

05
0.

00
0.

05

Hurst exponent deviation from MLE

H

D
ev

ia
tio

n

Figure 5.6: The deviation between the MLE and the corresponding N = 5 AR1 component rgeneric
approximate of 20 simulations of length n = 700 and varying Hurst exponent H. The mean and 95%
confidence intervals are also included.

60

2 3 4 5 6 7 8

0.
78

0.
79

0.
80

0.
81

0.
82

0.
83

rgeneric and mle

N

es
tim

at
e

rgeneric mle true

Figure 5.7: The mean of rgeneric approximations with varying number of AR1 components N of the
same 20 simulations of length n = 700 and true H = 0.8 plottet with the mean of the MLE of the
simulations.

5.3 Examples

5.3.1 NileMin data

The Nile data from chapter 3 is revisited and analyzed with the new rgeneric model. The
marginal posterior distributions for the Hurst exponent and the innovation precision computed
with N = 5 AR1 components is included in Fig: 5.8 and Fig: 5.9. The modes of the posterior
marginal distributions yields

Ĥapprox = 0.8670 and κ̂approx = 1.3579 (5.1)

which, consistent with the analysis of section 5.2, is an overestimation for both H and κ which
was for the original rgeneric model found to be

ĤINLA = 0.8336 and σ̂2INLA = 1.2482.

The accuracy when increasing the number of AR1 components is illustrated in Fig: 5.10 and
Fig: 5.11. The new rgeneric model seems to overestimate regardless of the number of AR1
components, which is consistent with the accuracy analysis of section 5 for Hurst exponents of
this size. The speed however, proves to be far superior for the new rgeneric model. The time
consumption for different number of AR1 components is included in Fig: 5.12, and shows that
the new rgeneric model is far superior to the old in terms of speed for all N ≤ 8.

61

0.6 0.7 0.8 0.9 1.0

0.
75

0.
80

0.
85

0.
90

Hurst exponent

H

D
en

si
ty

Figure 5.8: NileMin: The posterior marginal distribution of the Hurst exponent generated with the new
rgeneric model for N = 5 AR1 components. The mode is compared to the corresponding result from the
original rgeneric model.

1.0 1.5 2.0 2.5

0
50

10
0

15
0

20
0

25
0

Innovation parameter

κ

D
en

si
ty

Figure 5.9: NileMin: The posterior marginal distribution of the innovation variance generated with the
new rgeneric model for N = 5 AR1 components. The mode is compared to the corresponding result from
the original rgeneric model.

62

2 3 4 5 6 7 8

0.
84

0.
85

0.
86

0.
87

0.
88

0.
89

Hurst exponent

N

H

Figure 5.10: NileMin: The computed values for the Hurst exponent when using N AR1 components in
the rgeneric model, compared to the corresponding H obtained from the original rgeneric model.

2 3 4 5 6 7 8

1.
26

1.
28

1.
30

1.
32

1.
34

1.
36

1.
38

Innovation precision

N

κ

Figure 5.11: NileMin: The computed values for the innovation precision when using N AR1 components
in the rgeneric model, compared to the corresponding κ obtained from the original rgeneric model.

63

2 3 4 5 6 7 8

20
40

60
80

10
0

Computational time

N

T
im

e

Figure 5.12: NileMin: The time consumption of INLA with the rgeneric model plotted against the
number of AR1 components used.

5.3.2 HadCRUT4 data

HadCRUT is a series of datasets of monthly global temperature measurements that combines
data of both land and marine temperatures. The dataset containing the sea surface temperature,
HadSST3 is compiled by the Hadley Centre of the UK Met Office and the dataset containing
land surface air temperature, CRUTEM4 is compiled by the Climatic Research Unit (CRU) of
the University of East Anglia.

HadCRUT4 (22) is the most current version and has a more comprehensive error model than
the previous versions. HadCRUT4 contains monthly and yearly average of the temperature
anomaly computed from the mean temperature value of the period 1961-1990. The Had-
CRUT4 yearly average temperature anomaly observations for the northern and southern hemi-
sphere as well as the global temperature variations is included in Fig: 5.13 which is available at
https://crudata.uea.ac.uk.

We wish to analyze the global yearly average temperature. A non-linear trend is observed in
the data, so a random walk effect of order 2 is therefore added to the linear predictor describing
the observations. The precision hyperparameter of the RW2 model is assigned a Gamma(1, 0.01)
prior distribution. The remaining noise is assumed to be an FGN process so an AR1 approxi-
mated rgeneric effect is added as well. The formula is constructed as

formula = y ~ -1 + f(idy, model = "rw2",scale.model = TRUE,
hyper = list(prec=list(prior="loggamma",param=c(1,0.01))))
+ f(idx, model=rgenericmodel)

64

−1.0

−0.5

0.0

0.5

1.0

1.5

Northern Hemisphere

1860 1880 1900 1920 1940 1960 1980 2000

−1.0

−0.5

0.0

0.5

1.0

1.5

Southern Hemisphere

H
a
d

C
R

U
T

4
 T

e
m

p
e

ra
tu

re
 a

n
o

m
a

ly
 (

°
C

)

−1.0

−0.5

0.0

0.5

1.0

1.5

Global

1860 1880 1900 1920 1940 1960 1980 2000

Figure 5.13: HadCRUT4: Contains the yearly average temperature for the northern and southern
hemisphere between year 1850 and 2016. The global average is also included. This plot was taken from
https://crudata.uea.ac.uk/cru/data/temperature/HadCRUT4.pdf.

where the rgeneric model is constructed from the defining function in listing: 4.1. For N = 4
components for the rgeneric model the INLA analysis was computed in 9.764 seconds. The
mean of the latent variables for the RW2 model is plotted in Fig: 5.14 with corresponding 95%
confidence interval included. The RW2 model appears to have captured the trend very well.
The rgeneric model of the remaining noise yields a Hurst exponent and innovation variance of
Ĥ = 0.6914 and σ̂2 = 97.613 respectively. The posterior marginal plots are also included in
Fig: 5.15 and Fig: 5.16. The process is repeated for N = 2, 3, ..., 8 and the Hurst exponent for
each N is displayed in Fig: 5.17.

65

1850 1900 1950 2000

−
0.

4
0.

0
0.

2
0.

4
0.

6
0.

8

Temperature deviation

Year

D
ev

ia
tio

n

Figure 5.14: HadCRUT4: Posterior marginal means with corresponding 95% confidence interval for
the latent RW2 field.

0.5 0.6 0.7 0.8 0.9 1.0

0.
76

0.
78

0.
80

0.
82

0.
84

Hurst exponent

H

D
en

si
ty

Figure 5.15: Posterior marginals of the Hurst exponent of the RW2 and FGN combined model with
the HadCRUT4 dataset.

66

0.5 0.6 0.7 0.8 0.9 1.0

0.
76

0.
78

0.
80

0.
82

0.
84

Hurst exponent

H

D
en

si
ty

Figure 5.16: Posterior marginals of the innovation variance of the RW2 and FGN combined model with
the HadCRUT4 dataset.

2 3 4 5 6 7 8

0.
68

0
0.

69
0

0.
70

0

H estimate vs N

N

H

Figure 5.17: HadCRUT4: Hurst estimate for different number of AR1 components.

67

Chapter 6

Concluding remarks

In this thesis, attempts to create a viable tool for performing Bayesian inference for fractional
Gaussian noise have been made. Restating the likelihood of an FGN as a latent field in a latent
Gaussian model allows the MLE to be found using the integrated nested Laplace approximation
method. However, this proves too slow to be used in practice, especially for longer time series.
The efficiency was improved by using numerical optimization methods to find a continuous
mapping from H ∈ (0.5, 1) to a set of corresponding weights {wi} and parameters {φi} such that
the sum of N AR1 series given by

x̄t =
N∑
i=1

√
wi

√
1− φ2i xi,t, (6.1)

yields the MLE Ĥ = H. The latent field of the latent Gaussian model is then replaced to contain
all AR1 series and the weighted sum, yielding a sparse precision matrix that significantly improves
the computational efficiency of the INLA method. The mapping and the new latent field allows
INLA to find the H whose corresponding weights and parameters best fit the data.

There are two primary benefits of this approach. First, it reduces the runtime of INLA to be
linear with respect to the length of the FGN series, making Bayesian inference easily obtainable
even for long FGN series. Second, it is compatible with the R-INLA framework which makes it
possible to combine the FGN term with other terms in the linear predictor, like seasonal effects,
non-linear effects of covariates etc.

The speed and accuracy of the new approach was thoroughly tested, and while the speed displayed
a remarkable improvement, the method proved unsuccessful in achieving sufficient accuracy. The
analysis revealed bias in the estimation results for the Hurst exponent, underestimating if the
estimated Hurst exponent was small, and overestimating if it was high.

The inaccuracy of the model is likely to stem from the restrictions imposed on the optimization
problem of section 4.3 to ensure a reasonable convergence rate. Due to technical limitations
and time constrictions, the length of the sampled of AR1 processes was only n = 1, 000. Also,
the mean of the MLE was only computed from R = 10 MLE replications. Increasing either
the length of the AR1 processes or the number of replications for the MLE should improve the

68

approximation. Also, the accuracy can be further improved if a more dense discretization can
be chosen to represent the domain of the Hurst exponent, H ∈ (0.5, 1).

Despite the inaccuracy, the AR1 approximation approach does seem promising. Implementing
support for long-memory processes and FGN series in particular, provides a new computational
Bayesian framework to analyze long-memory processes, both in a temporal and spatial context.
This methodology will have a wide range of applications, among others, in analyzing climate
data. The results of this thesis should be perceived more as a ’proof-of-concept’ rather than a
complete and rigorous procedure as there is still work to be done for this method to be a viable
tool for FGN analysis.

69

Appendix A

rgeneric tutorial

rgeneric is a model in INLA that aims to construct any latent Gaussian model compatible with
INLA. It allows the user to define custom latent models that are not yet implemented in INLA
either as a built-in model templates or from one of the simpler generic functions so that it can be
included in the linear predictor. It was previously only available for Linux and Mac platforms,
but support for Windows has also been introduced. The properties of the rgeneric model is
evaluated in an external C-program which communicates with R by pipes. This will result in a
somewhat slower performance compared to the more traditional models in INLA.

To use this model we first define an rgeneric function which includes our definition of the model,
this will then be used with the inla.rgeneric.define function to create an rgeneric model
compatible with INLA. For a simple rgeneric function called ’my.rgeneric’ the model is obtained
from

model = inla.rgeneric.define(my.rgeneric, <args>),

where <args> are parameters of the rgeneric function, for instance the dimension size or the
number of parameters. The model is then passed on as any other model in INLA

formula = y ~ f(x, model = model).

70

A.1 rgeneric function composition

The rgeneric function must contain the functions that each return necessary information depend-
ing on the hyperparameters. These functions are

• graph, which returns the graph of the latent field

• Q, which returns the precision matrix of the latent field given the hyperparameters

• mu, which returnts the mean of the latent field

• log.norm.const, which returns the logarithm of the normalizing constant of the latent
field

• log.prior, which returns the logarithm of the joint prior of the internal hyperparameters

• initial, which returns the initial values for the internal hyperparameters

Internal hyperparameters refers to the hyperparameters of the model in its internal scaling. It
is important to distinct between the internal and external scaling for the hyperparameters as
the most efficient operating space might differ from the space in which the hyperparameters are
most familiar. It is important that the internal scaling allows INLA to operate in a stable and
unconstrained parameter space on R. It is often useful to create a function that transforms
the hyperparameters from the internal-scale to the user-scale. As an example, consider a model
where the precision κ > 0 is the only hyperparameter, e.g. a random walk model. The common
internal scaling chosen for the precision is the log-scale, and it can be returned to the usual
scaling by equation A.1.

κ = exp(θ) (A.1)

A function that returns the internal hyperparameter to the original scale according to Equation
A.1 is included in listing: A.1.

Listing A.1: Function that returns the precision parameter from log-scale.

i n t e r p r e t . theta = func t i on (theta) #theta i s a l i s t
{

re turn (kappa = exp (theta [1]))
}

The complete skeleton-function for the rgeneric function is provided in listing: A.2. The functions
that make up cmd must be implemented and are explained in greater detail below.

71

Listing A.2: R skeleton function of the my.rgeneric.function.

my. r g en e r i c . f unc t i on = func t i on (
cmd = c (" graph " , "Q" , "mu" , " log . norm . const " ,
" l og . p r i o r " , " i n i t i a l " , " qu i t ") ,
theta = NULL, args = NULL)
{

graph = func t i on (n , theta) { . . . }
Q = func t i on (n , theta) { . . . }
mu = func t i on (n , theta) { . . . }
l og . norm . const = func t i on (n , theta) { . . . }
l og . p r i o r = func t i on (n , theta) { . . . }
i n i t i a l = func t i on (n , theta) { . . . }
qu i t = func t i on (n , theta) { . . . }

cmd = match . arg (cmd)
va l = do . c a l l (cmd , args = l i s t (n = as . i n t e g e r (args$n) ,

theta = theta))
re turn (va l)

}

graph

1 2

3

4

5

Figure A.1: Graph of a latent GMRF.

The graph function must return a matrix representing the graph of the latent GMRF. This
information does not depend on the hyperparameters. These matrices are symmetric for all
purposes and INLA requires only the lower triangular to be implemented. Consider for example,
the graph shown in Fig:A.1. The corresponding matrix to be implemented is

72

G =

1 1 0 0 0
1 1 1 1 0
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1

 .

Q

This function returns the precision matrix, Q(θ) and tells us how each latent variable depend
on each other. As for the graph function this matrix is returned as a matrix with the lower
triangular included. To show this with an example, consider the 1st order random walk model
with precision matrix:

Q = κ

1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 1
0 0 0 −1 1

 .

The precision parameter, κ is extracted from its internal-scale by the interpret.theta function
defined in listing: A.1. The function setting up this matrix is implemented in listing: A.3.

Listing A.3: Q function for the RW1 model. function

Q = func t i on (n , theta)
{

params = i n t e r p r e t . theta (theta)
kappa = params$kappa
i = c (1 : n , 1 : (n−1) ,1)
j = c (1 : n , 2 : n ,n)
x = kappa ∗ c (rep (2 , n) , rep (−1 ,n−1) , −1)

Q = sparseMatr ix (i=i , j=j , x=x , g iveCsparse=F, symmetric=T)
}
return (Q)

}

mu

The mu function returns the mean vector of the model. For most cases, the mean is zero,
but models with non-zero mean values that can also depend on the hyperparameters are also
supported by rgeneric. To return a zero mean one could return numeric(0) as is shown in listing:
A.4, or equivalently rep(0,n). An example with this function is included in section: A.2.3.

73

Listing A.4: mu function for a zero mean model.

mu = func t i on (n , theta)
{

re turn (numeric (0))
}

log.norm.const

This function returns the logarithm of the normalizing constant. If the precision matrix is not
improper, i.e. of full rank, we can make INLA compute the normalizing constant rather than
providing that information here. This is done by letting this function return numeric(0). For
Intrinsic GMRFs however, we are required to provide the log normalizing constant for the purpose
of providing information about the rank deficiency of the precision matrix. It is of particular
importance to include how the normalizing constant depends on the hyperparameters, but if one
wishes to compute the marginal likelihood one needs to add any constant terms as well.

As an example we consider the normalizing constant of the iid model,

(2π)−
n
2 |Q|1/2 exp

(
−1

2
x>Qx

)
. (A.2)

The precision matrix is here a diagonal matrix with the precision hyperparameter, κ along its
diagonal. As we are only concerned with the terms depending on the hyperparameter we neglect
the constant term, (2π)−

n
2 and include only the determinant |Q|1/2 = κn/2. The transformation

between the internal-scale and the user-scale for the iid model coincides with that of the RW1
model. We can therefore reuse the function for extracting this parameter that we implemented
in listing: A.1. The implementation of log.norm.const is included below in listing: A.5.

Listing A.5: log.norm.const function to obtain the log normalizing constant for the internal hyper-
parameter.

l og . norm . const = func t i on (n , theta)
{

params = i n t e r p r e t . theta (theta)
kappa = params$kappa
return (n/2∗ l og (kappa))

}

log.prior

This function returns the logarithm of the joint prior distribution assigned to the internal hy-
perparameters. If there are no hyperparameters the function must return numeric(0). It is
important that the prior is assigned to the hyperparameters in internal scaling and proper trans-
formation techniques must be applied if the prior is instead provided for the hyperparameter(s)
in external scaling. Consider the case of a single hyperparameter, the precision κ. If we have

74

assigned a πκ(κ) prior to the precision κ, then the change-of-variable formula yields the prior for
θ = log(κ),

πθ(θ) = πκ(eθ)eθ. (A.3)

The logarithm of πθ(θ) is then returned. An example with more than one hyperparameter can
be found in Section A.2.5 where the AR1 model is implemented.

initial

This function returns the initial values for the internal hyperparameters, θ. If there are no
hyperparameters this function must return numeric(0). An example with two hyperparameters
with initial values 1 and 2 is included in listing A.6.

Listing A.6: An initial function that sets the initial values for both hyperparameters to 1.

i n i t i a l = func t i on (n , theta)
{

re turn (rep (1 , 2))
}

quit

This functions explains what to do after all computations are done before closing the C-program.
If there are nothing to be done here (and there usually isn’t) this function returns nothing.

Listing A.7: The trivial quit function.

qu i t = func t i on (n , theta)
{

re turn (i n v i s i b l e ())
}

A.2 Examples

A.2.1 iid model

For the iid model all variables in the latent field are independent. This leads to a diagonal graph
and precision matrix, as well as a very simple joint density,

π(x | τ) =

n∏
i=1

1√
2π

√
τ exp

(τ
2
x2i

)
. (A.4)

75

Eq:A.4 yields the log normalizing constant to be

logC =
n

2
log(τ) + const. (A.5)

We assume for the following example, a gamma distribution for the latent hyperparameter τ .
The following implementation is written by Håvard Rue and can be found in the current docu-
mentation for the rgeneric model.

Listing A.8: The rgeneric function for an iid model.

i n l a . r g e n e r i c . i i d . model = func t i on (cmd = c (" graph " , "Q" , "mu" ,
" i n i t i a l " , " l og . norm . const " , " l og . p r i o r " , " qu i t ") ,
theta = NULL, args = NULL)

{
i n t e r p r e t . theta = func t i on (n , theta) {

re turn (l i s t (prec = exp (theta [1L])))
}
graph = func t i on (n , theta) {

G = Diagonal (n , x= rep (1 , n))
re turn (G)

}
Q = func t i on (n , theta) {

prec = i n t e r p r e t . theta (n , theta) $prec
Q = Diagonal (n , x= rep (prec , n))
re turn (Q)

}
mu = func t i on (n , theta) {

re turn (numeric (0))
}
l og . norm . const = func t i on (n , theta) {

prec = i n t e r p r e t . theta (n , theta) $prec
va l = sum(dnorm(rep (0 , n) , sd = 1/ sq r t (prec) , l og=TRUE))
re turn (va l)

}
l og . p r i o r = func t i on (n , theta) {

prec = i n t e r p r e t . theta (n , theta) $prec
va l = dgamma(prec , shape = 1 , ra t e = 0 .01 , l og=TRUE) + theta [1L]
re turn (va l)

}
i n i t i a l = func t i on (n , theta) {

re turn (1)
}
qu i t = func t i on (n , theta) {

re turn (i n v i s i b l e ())
}
cmd = match . arg (cmd)
va l = do . c a l l (cmd , args=l i s t (n=as . i n t e g e r (args$n) , theta=theta))
re turn (va l)

}

76

We now test this implementation on the example from the documentation of the iid model in
INLA. We observe realizations from a binomial distribution

y ∼ binom(n, p). (A.6)

The probability of success parameter p is given through the logit link by the latent hyperparam-
eter, η

p =
eη

1 + eη
(A.7)

with each η drawn from a zero-mean Gaussian distribution standard deviation of 0.5. We are
interested in η and perform analysis with INLA using an rgeneric model. The R code associated
with the example follows, and the result is included in Fig:A.2.

n=30
Ntrials = sample(c(80:100), size=n, replace=TRUE)
eta = rnorm(n,0,0.5)
prob = exp(eta)/(1 + exp(eta))
y = rbinom(n, size=Ntrials, prob = prob)
data=data.frame(y=y,z=1:n)

model = inla.rgeneric.define(inla.rgeneric.iid.model,n=n,ntheta=1)
formula = y ~ f(z, model = model)
result=inla(formula,data=data,family="binomial",Ntrials=Ntrials,

control.family = list(link="logit"))

77

0 5 10 15 20 25 30

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

iid model

Index

et
a

Figure A.2: Plot of the realizations of iid η, observed by binomial realizations through a logit link.

A.2.2 Linear model

The linear model is the simplest of all models supported by INLA. The model aims to specify a
fixed linear effect

η = βzi (A.8)

where β is assigned a normal distribution with constant mean µ and precision τ . For this
model β is considered the only latent variable, and there are no hyperparameters since µ and
τ are deterministic. The function defining the linear model follows for a N (0, 1) prior for β
follows.

78

Listing A.9: Implementation of the rgeneric function for the linear example.

my. r l i n e a r = func t i on (
cmd = c (" graph " , "Q" , "mu" , " i n i t i a l " ,

" l og . norm . const " , " l og . p r i o r " , " qu i t ") ,
theta = NULL, args = NULL)

{
graph = func t i on (n) { re turn (Diagonal (1 , x=1) }
Q = func t i on (n) { re turn (Diagonal (1 , x=1)) }
mu = func t i on (n) { re turn (numeric (0)) }
l og . norm . const = func t i on (n) {

return (dnorm(0 , sd = 1 , l og = TRUE))
}
log . p r i o r = func t i on (n) { return (numeric (0)) }
i n i t i a l = func t i on (n) { return (numeric (0)) }
qu i t = func t i on (n) { return (i n v i s i b l e ()) }
cmd = match . arg (cmd)
va l = do . c a l l (cmd , args = args)
re turn (va l)

}

The model is used to perform a linear fit of data drawn from a uniform distribution, observed
with Gaussian noise with σ = 0.1. The call is included below, and a plot of the result is included
in Fig:A.3.

n = 50
z = runif(n)
y = z + rnorm(n, sd = 0.1)
data = data.frame(y,z, idx = rep(1, n))

model = inla.rgeneric.define(my.rlinear,n=n)
formula = y ~ f(idx, z, model = model)
result = inla(formula,data=data,family="gaussian")

79

−1 0 1

0
1

2
3

Linear model

w

y

Figure A.3: Plot of linear fit against observations with Gaussian noise.

A.2.3 Non-zero mean model

As an alternative to model a behaviour in terms of complicated links, graphs and precision
matrices, one can implement a model where the mean is selected to express the desired behaviour
directly. For this example, define the model for the latent field

x ∼ N
(
µ(x | θ), τ−1I

)
, (A.9)

where the precision τ is a known large constant and

µ(x | θ) =

{
0, 0 ≤ x ≤ 10

1− eθx, x > 10

is the mean of the model. The mean depends on the covariate x and the hyperparameter θ.
The latent field models the behaviour of function 1 − eθx starting at z = 11 with small noise
of precision τ . There is no dependence between the latent parameters. For a mean model
with precision κ = 1000 and a Gamma(1, 0.01) the rgeneric function has been implemented and
included in listing: A.10.

80

Listing A.10: Implementation of the rgeneric function modelled after 1− eθz as a mean model.

i n l a . r g e n e r i c .mu. model = func t i on (
cmd = c (" graph " , "Q" , "mu" , " i n i t i a l " ,
" l og . norm . const " , " l og . p r i o r " , " qu i t ") ,
theta = NULL, args = NULL)

{
i n t e r p r e t . theta = func t i on (theta) {

re turn (l i s t (prec = exp (theta [1L])))
}
graph = func t i on (n , theta) {

re turn (Diagonal (n , x = rep (1 , n)))
}
Q = func t i on (n , theta) {

prec = 1000#Pre c i s i on
Q = Diagonal (n , x= rep (prec , n))
re turn (Q)

}
mu = func t i on (n , theta) {

prec = i n t e r p r e t . theta (theta)
s p l i t = n%/%3
z1 = rep (0 , s p l i t)
z2 = seq (−0.5 ,0 , l ength . out = n−s p l i t)
z = c (z1 , z2)
means0 = rep (0 , s p l i t)
means1 = 1−exp (z2∗ theta)
means = c (means0 , means1)
s t o p i f n o t (l ength (means)==n)
return (means)

}
l og . norm . const = func t i on (n , theta) { re turn (numeric (0)) }
l og . p r i o r = func t i on (n , theta) {

prec = i n t e r p r e t . theta (theta)
va l = dgamma(prec , shape = 1 , ra t e = 0 .01 , l og=TRUE) + theta [1L]
re turn (va l)

}
i n i t i a l = func t i on (n , theta) { re turn (rep (1 , 1)) }
qu i t = func t i on (n , theta) { re turn (i n v i s i b l e ()) }
cmd = match . arg (cmd)
va l = do . c a l l (cmd , args =

l i s t (n = as . i n t e g e r (args$n) , theta = theta))
re turn (va l)

}

This model is used to fit a sample of n = 30 observations drawn according to Eq:A.9. The
results are included in figure A.4 with 95% confidence intervals included.

81

0 5 10 15 20 25 30

0.
0

0.
1

0.
2

0.
3

0.
4

Mean model

Index

y

Figure A.4: Plot of the marginal means with observations and 95% confidence interval included.

A.2.4 Cyclic 2nd order random walk

The cyclic RW2 model is a model of a single hyperparameter and a rank deficiency of 1. The
example here will revolve around analyzing the famous Tokyo Rainfall data (16) where we will
assume a G(1, 0.0001) prior distribution for the precision parameter κ. Before implementing the
rgeneric function to define the model some key values are stated. The cyclic RW2 model has
graph and precision matrix is defined as

G =

1 1 1 0 0 · · · 1 1
1 1 1 1 0 · · · 0 1
1 1 1 1 1 · · · 0 0
0 1 1 1 1 · · · 0 0
...

...
...

...
.

...
...

1 0 0 . . . 1 1 1 1
1 1 0 . . . 0 1 1 1

, Q = κ

6 −4 1 0 · · · 1 −4
−4 6 −4 1 · · · 0 1
1 −4 6 −4 · · · 0 0
0 1 −4 6 · · · 0 0
...

...
...

.
...

...
1 0 0 . . . −4 6 −4
−4 1 0 . . . 1 −4 6

.

82

The log normalizing constant can be shown to be

lnC =
n− 1

2
ln(κ) + const, (A.10)

where the constant term is ignored in the implementation of the rgeneric function which follows
in listing: A.11.

Listing A.11: Implementation of the rgeneric function for the Tokyo Rainfall data under the RW2C
model assumptions.

my. r g en e r i c = func t i on (
cmd = c (" graph " , "Q" , " i n i t i a l " , "mu" ," log . norm . const " ,

" l og . p r i o r " , " qu i t ") ,
theta = NULL, args = NULL)
{

i n t e r p r e t . theta = func t i on (theta) { re turn (exp (theta [1])) }
mu = func t i on (n , theta) { re turn (numeric (0)) }
graph = func t i on (n , theta) {

G = Q(n , N, funks , i n i t i a l (n ,N, funks , theta))
G[G != 0] = 1
return (G)

}
Q = func t i on (n , theta) {

kappa = i n t e r p r e t . theta (theta)
i = c (1 : n , 1 : (n−1) , 1 : (n−2) , 1 , 1 , 2)
j = c (1 : n , 2 : n , 3 : n ,n−1,n , n)
x = kappa ∗ c (rep (6 , n) , rep (−4 ,n−1) , rep (1 , n−2) , 1 ,−4 ,1)
Q = sparseMatr ix (i=i , j=j , x=x , g iveCsparse=F, symmetric=T)
return (Q)

}
log . norm . const = func t i on (n , theta) {

kappa = i n t e r p r e t . theta (theta)
re turn (−(n−1)/2∗ l og (2∗ pi) + (n−1)/2∗ l og (kappa))

}
l og . p r i o r = func t i on (n , theta) {

kappa = i n t e r p r e t . theta (theta)
re turn (dgamma(kappa , shape=1, ra t e =0.0001 , l og=T) + log (kappa))

}
i n i t i a l = func t i on (n , theta) { re turn (rep (1 , 1)) }
qu i t = func t i on (n , theta) { re turn () }
cmd = match . arg (cmd)
va l = do . c a l l (cmd , args = l i s t (
n = as . i n t e g e r (args$n) ,
theta = theta))
re turn (va l)

}

83

The rgeneric model is used to fit the binary Tokyo Rainfall data, where a probit link has been
used between the probability parameter and the latent field. A graph of the results are included
in figure A.5, and the associated call is included below.

data("Tokyo")
time = Tokyo$time

model = inla.rgeneric.define(my.rgeneric,n=366)
formula = y ~ -1 + f(time, model = model)
result = inla(formula,family="binomial",

Ntrials=Tokyo$n,data=Tokyo,
control.family=list(link="probit"))

0 100 200 300

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

RW2 model

Days

P
ro

ba
bi

lit
y

of
 r

ai
n

Figure A.5: Plot of the mean marginals computed by INLA using the rgeneric model. The 95%
confidence intervals are also included along with observations.

84

A.2.5 Autoregressive model of order 1

To study a model with more than one hyperparameter we consider the AR1 model. The marginal
precision τ and the lag-one correlation ρ is transformed from the internal-scale by the equations
A.11 and A.12.

τ = exp(θ1) (A.11)

ρ = 2
exp(θ2)

1 + exp(θ2)
− 1. (A.12)

Further, the graph and precision matrix is defined as

G =

1 1
1 1 1

1 1 1
.

1 1 1
1 1

, Q = κ

1 −ρ
−ρ 1 + ρ2 −ρ

−ρ 1 + ρ2 −ρ
.

−ρ 1 + ρ2 −ρ
−ρ 1

.

The log normalizing constant is here

logC =
n

2
log(τI) +

1

2
log(1− ρ2) (A.13)

where τI is the innovation precision, defined as τI = τ/(1 − ρ2). The precision is assigned a
Gamma(a, b) prior whilst the θ2 parameter is assigned a N (µ, κ) prior. As the Gamma prior is
not scaled to fit the internal-scale for the hyperparameter we use the change-og-variable formula
to obtain the prior for θ1. The joint prior, π(θ = (θ1, θ2)) becomes

π(θ) = Gamma(exp(θ1) ; a, b) exp(θ1)×N (θ2 ; µ, κ). (A.14)

For this example, we use a = b = 1, µ = 0 and κ = 1. The rgeneric definition follows in listing
A.12 and is a trimmed version of the example found in the INLA documentation for the AR1
model.

85

Listing A.12: Implementation of the rgeneric function for an AR1 example.

my. r g en e r i c = func t i on (cmd = c (" graph " , "Q" , "mu" , " i n i t i a l " ,
" l og . norm . const " , " l og . p r i o r " , " qu i t ") ,
theta = NULL, args = NULL)

{
i n t e r p r e t . theta = func t i on (n , theta) {

re turn (l i s t (prec = exp (theta [1L]) ,
rho = 2∗ exp (theta [2L]) /(1+exp (theta [2L])) − 1 . 0))

}
graph = func t i on (n , theta) {

i = c (1L : (n−1L))
j = c (1L , n , 2L : (n−1L) ,2L : n)= 1
G = sparseMatr ix (i=i , j=j , x=x , g iveCsparse = FALSE)
return (G)

}
Q = func t i on (n , theta) {

param = in t e r p r e t . theta (n , theta)
i = c (1L , n , 2L : (n−1L) ,1L : (n−1L))

j = c (1L , n , 2L : (n−1L) ,2L : n)
x = param$prec/(1−param$rho^2) ∗

c (1L , 1L , rep (1+param\$rho ^2 , n−2L) , rep(−param\$rho , n−1L))
Q = sparseMatr ix (i=i , j=j , x=x , g iveCsparse=FALSE)

return (Q)
}
mu = func t i on (n , theta) { re turn (numeric (0)) }
l og . norm . const = func t i on (n , theta) {

param = in t e r p r e t . theta (n , theta)
prec . innovat ion = param$prec / (1 . 0 − param$rho^2)
va l = n ∗ (− 0 .5 ∗ l og (2∗ pi) + 0 .5 ∗ l og (prec . innovat ion))

+ 0 .5 ∗ l og (1 . 0 − param$rho^2)
re turn (va l)

}
l og . p r i o r = func t i on (n , theta) {

param = in t e r p r e t . theta (n , theta)
va l = (dgamma(param$prec , shape = 1 , ra t e = 1 , l og=TRUE)
+ theta [1L] + dnorm(theta [2L] , mean = 0 , sd = 1 , l og=TRUE))
re turn (va l)

}
i n i t i a l = func t i on (n , theta) {

re turn (rep (1 , 2))
}
qu i t = func t i on (n , theta) { re turn (i n v i s i b l e ()) }
cmd = match . arg (cmd)
va l = do . c a l l (cmd , args =

l i s t (n = as . i n t e g e r (args \$n) , theta = theta))
re turn (va l)

}

86

The rgeneric is used to fit a set of data points drawn from an AR1 process, observed with
Gaussian noise. The results are displayed in figure A.6.

n = 100
rho=0.9
x = arima.sim(n, model = list(ar = rho)) * sqrt(1-rho^2)
y = x + rnorm(n, sd = 0.1)
model = inla.rgeneric.define(inla.rgeneric.ar1.model, n=n)
formula = y ~ -1 + f(idx, model=model)
r = inla(formula, data = data.frame(y, idx = 1:n), family = "gaussian")

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2

AR1 model

Index

y

Figure A.6: Plot of the marginal means computed by INLA using the rgeneric model. The 95%
confidence intervals are also included along with observations.

87

Bibliography

[1] P. Brockwell and R. Davis. Time Series: Theory and Methods. Springer-Verlag New York,
2 edition, 1991.

[2] J.F Coeurjolly. Simulation and identification of the fractional brownian motion: A biblio-
graphical and comparative study. Journal of Stat. Software, 2000.

[3] R.B. Davies and D.S. Harte. Tests for hurst effect. Biometrika, 74:95–101, 1987.

[4] Ton Dieker. Simulation of fractional brownian motion. Master’s thesis, University of Twente,
2004.

[5] J. Durbin. The fitting of time series models. Rev. Inst. Int. Stat., 28:233–243, 1960.

[6] T. Gneiting and M. Schlather. Stochastic models which separate fractal dimension and hurst
effect. arXiv:physics/0109031 [physics.data-an], 2001.

[7] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns Hopkins University Press,
third edition, 1983.

[8] C.W.J. Granger. Long memory relationships and the aggregation of dynamic models. Jour-
nal of econometrics, 14:227–238, 1980.

[9] C.W.J. Granger and R. Joyeux. An introduction to long memory time series and fractional
differencing. Journal of Time Series Analysis 1, pages 1–15, 1980.

[10] C.W.J. Granger and Morris M.J. Time series modelling and interpretation. Journal of the
Royal Statistical Society, 1976.

[11] D. Guegan. How can we define the concept of long-memory? an econometric survey. Econo-
metric Reviews, 24 (2):113–149, 2005.

[12] N. Haldrup and Vera-Valdés J.E. Timelong memory, fractional integration and cross-
sectional aggregation. CREATES Research Papers, 2015.

[13] H. E. Hurst. Long-term storage capacity of reservoirs. Transactions of American Society of
Civil Engineers, 16:770–799, 1951.

[14] Beran J. Statistics for Long-Memory Processes. Chapman & Hall/CRC, 1 edition, 1994.

[15] I. Karatzas and S. Schreve. Brownian Motion and Stochastic Calculus. Springer-Verlag New
York, 2 edition, 1998.

88

[16] G. Kitagawa. Non-Gaussian state-space modeling of nonstationary time series, volume 82.
Taylor & Francis Group, 1987.

[17] A. Kolmogorov. Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen
Raum. Dokl. Akad. Nauk SSSR, 1940.

[18] A. Kolmogorov. Dissipation of energy in a locally isotropic turbulence. Proceedings of the
USSR Academy of Sciences, pages 16–18, 1941.

[19] S. Kullback and R.A. Leibler. On information and sufficiency. Annals of Mathematical
statistics, 22(1):79–86, 1951.

[20] N. Levinson. The wiener rms error criterion in filter design and prediction. J. Math. Phys,
25:261–278, 1947.

[21] B. Mandelbrot and J.W. Ness. Fractional brownian motions, fractional noises and applica-
tions. SIAM Review, 18:1088–1107, 1968.

[22] C.P. Morice, J.J. Kennedy, N.A. Rayner, and P.D. Jones. Quantifying uncertainties in
global and regional temperature change using an ensemble of observational estimates: the
hadcrut4 data set. Journal of Geophysical Research - Atmospheres, D8, 2012.

[23] Lars Tjensvold Olsen. Estimators of long range dependence - a survey of finite samples and
robustness. Master’s thesis, Universitety of Agder, 2012.

[24] W. Palma. Long-memory time series - Theory and mehod, volume 1. Wiley, 2007.

[25] M.B. Priestly. Spectral Analysis and Time Series, volume I and II. Academic Press, 1982.

[26] S.M. Ross. Introduction to probability models. Academic Press, 11 edition, 2014.

[27] H. Rue and L. Held. Gaussian Markov Random Fields: Theory and Applications. Chapman
& Hall/CRC, first edition, 2005.

[28] H. Rue, S. Martino, and N. Chopin. Approximate bayesian inference for latent gaussian
models using integrated nested laplace approximations (with discussion). Journal of the
Royal Statistical Society, Series B, 2009.

[29] H. Theil. Linear Aggregation of Economic Relations, volume VII. North-Holland Publishing
Co., Amsterdam, 1954.

[30] W.F. Trench. An alorithm for the inversion of finite toeplitz matrices. Journal of the Society
for Industrial and Applied Mathematics, 12:515–522, 1964.

[31] W. Wei. Time Series Analysis: Univariate and Multivariate Methods. Pearson Addison
Wesley, second edition, 2006.

[32] P. Whittle. Hypothesis testing in time series analysis. Uppsala, Almqvist & Wiksells bok-
trykkeri, 1951.

[33] A. Wood and G. Chang. Simulation of stationary gaussian processes in [0, 1]d. Journal of
Comutational and Graphical Statistics, 3, 1994.

89

