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Figure 5.23: The movement of the test segment in system I and II for elements 1, 15, 30, and 46. Both 

systems have the same amplitude and settling time. The only difference is the driving frequency. 
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6 Discussion 

6.1 Quality of Measured Data 

Measurement errors occur in all experimental data. Each part of the experimental model 

consists of uncertainties, which together affect the measurements. The constructed model, the 

strain gauges, connecting wires between strain gauges and the amplifier, the amplifier, and even 

the data filtration process are all sources of uncertainties. Each affects the output data to a 

different degree. However, the major contributions come from the model itself, strain gauges, 

and the filtration.  

6.1.1 Factors That Limit the Validity of the Constructed Model 

The model is associated with a number of limitations that arise as a result of its simple design, 

yet complex behavior. As shown in figure 4.3, the model is attached to utility clamps or steel 

wires in order to prevent element 1 from moving. However, utility clamps tend to oscillate after 

the mass is released. As a result, the entire system oscillates with the same frequency. This 

causes a ringing behavior, which appears clearly on the plots of the experimental results. The 

ringing behavior can be observed in figure 5.3 for time interval 19.1 19.2.t   It can also be 

observed in figure 5.10 for time interval 14.47 14.7.t   The effect of such behavior is 

reduced, but not eliminated after introduction of a steel wire. The contribution of the ringing 

effect to the overall uncertainty in experimental results is difficult to determine.  

Multiple elements, attached together with bolts, behave differently than expected during release 

of the mass. It was assumed that each element would only oscillate vertically, but observations 

indicate that the elements “jump up” and swing like a pendulum. This behavior is primarily 

observed in the last elements, including the BHA. Strain gauges used in the experiments 

measure only the axial strain, and not the bending strain. Moreover, they are extremely sensitive 

to movement and temperature changes. As a result, the pendulum behavior interrupts the 

measurements of the strain gauges. The contribution of this interruption to the overall 

uncertainty is difficult to determine, but it is known to cause the ringing behavior observed in 

the experimental results.  

Comparison of the continuous plexiglas pipe and the test segment with 20 elements in figure 

5.21 clearly indicates the effect on the ringing behavior. A continuous pipe eliminates the 
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jumping effect after the release of the weight and reduces the pendulum behavior to a certain 

degree. 

Basically, the model is constructed with an assumption that the steel elements behave like point-

masses rather than pipes. Even though the modulus of elasticity of steel is much greater than 

that of plexiglas, the steel elements will expand. It is difficult to determine the effect of such 

strain on the experimental results, because no strain measurements were recorded on the steel 

elements.  

6.1.2 Noise That Affects the Strain Gauge systems 

Section 3.3 provides several techniques to minimize noise that affects the strain gauges. All 

electrostatic and electromagnetic noises affect the system in different ways. It is therefore 

difficult, if not impossible, to eliminate the effect of the noise on the experimental results. 

However, several techniques are introduced to minimize such effects. First, the strain gauges 

are glued with an insulating adhesive to the plexiglas elements. The adhesive functions as 

temperature insulator, but can also minimize electrostatic noise to a limited degree. Second, the 

connecting wires are twisted together as pairs and insulated with a thermoplastic PVC 

(alternative c in figure 3.11). Third, the steel elements are wrapped into an insulating tape in 

order to reduce its effect on the strain gauges.  

6.1.3 Effect of the Filtration Process 

The filtrating process is an important part of the data evaluation because a significant amount 

of data is filtered out. Choosing the right filtration method is therefore crucial for the outcome 

of the experiments. The main argument behind choosing the Savitzky-Golay filtering method 

is its ability to preserve the high-frequency components of the signal. It is also effective at 

preserving the shape of the peaks that appear in the measurements. However, choosing an 

appropriate polynomial order and a frame size is only based on visual observations. As shown 

in figure 5.1, several cases are evaluated in order to produce a convenient filtration. A trial-

and-error process leads to choosing a polynomial order of 5p   and a frame size of 51.N   

This combination filters most of the noise, and at the same time, preserves the overall shape of 

the curve.  

Further, one may argue that the trial-and-error process, based only on visual observations, is a 

highly simplified method to filter out the noise. Such method will probably filter out some of 
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the high-frequency signals along with the noise. This may change the understanding of the 

experimental results. However, because of the lack of a systematic method to determine and 

measure the sources of noise, it is difficult to implement other more effective methods.   

6.2 Quality of the Analytical Model 

The lumped element model approximates the spatially distributed drill string by a topology of 

discrete entities. This allows the derivation of a simple analytical model that describes axial 

vibrations in a vertical drill string. However, the model presents a significant simplification of 

the continuous drill string. There are three key factors in the analytical model that must be 

analyzed. 

The model assumes that each element consists of a point mass and a spring, whereas all the 

mass is concentrated in one point mass. This simplifies the physical behavior of the element 

and allows neglecting its size and shape. Thus, neglecting the moment of inertia and rotational 

properties. It is, however, difficult to find a material that satisfies the properties of a point mass. 

The use of a steel pipe as a point mass limits this assumption because each steel pipe has a 

length and shape. Therefore, the steel pipes undergo strain during loading of the mass. 

Moreover, because the steel pipes are connected with bolts to the plexiglas elements, there is a 

high possibility that they take up angular momentum. The effect of this is unknown because 

measurements of bending stress are not made.  

Further, the analytical model assumes that the sum of all external friction forces is integrated 

into the viscous friction force. Clearly, equation (2.14) from section 2.2.1 shows that the 

magnitude of the viscous friction force varies only with the viscosity of the liquid. This means 

that the viscosity parameter behaves more like the friction factor of the system rather than a 

parameter related only to the viscous fluid. It is therefore necessary to adjust the magnitude of 

the viscosity in order to satisfy the requirements of the damping ratio. This adjustment, 

however, resulted in unrealistically high viscosity factors, especially in the overdamped system.  

For the test segment in experiment I.I, a viscosity factor of 180 Pa s    is determined. 

Theoretically, it requires a heavy viscous fluid with properties close to peanut butter in order to 

replicate such high damping ratio (Liquid Control, 2016). However, it is observed that the 

viscosity factor reduces as the number of elements increases. This is seen in the test segments 

in experiment I.II and I.III, where the viscosity factor is reduced to 55 Pa s    and 

25 Pa s,    respectively, in order to create the same damping ratio. 
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In addition, determining the size of the “invisible” borehole is crucial for the outcome of the 

damping ratio. The argument behind determining the size of the borehole is the relation between 

a 5
89   borehole drilled with a 1

25   drill string. This resulted in an OD 52.5 mm  for the 

borehole. Increasing the size of the borehole, for the same viscosity, reduces the value of the 

damping ratio, and vice versa.  

6.3 Further Work 

Further experiments should be developed for the transient state scenario in order to verify the 

initial conditions. Experiment I.III should be conducted alongside further experiments where 

the number of elements is increased, i.e. 100,  150,  200 etc.i   Conducting the experiment in 

an actual borehole with a viscous fluid should be considered. A combination of a sufficient 

number of elements and an actual borehole would result in an appropriate choice of the viscous 

fluid. Experimenting with different loaded mass should also be considered. 

The ringing behavior that occurs after release of the mass should be further examined. 

Necessary measures should be implemented in order to either minimize its effect, or determine 

its magnitude in order to adjust the data. Such measures include the use of a better equipment 

to attach the test segment to, i.e. steel beams or a concrete ceiling. This will eliminate the 

oscillations of the entire test segment after the release of the mass. A better mechanism to attach 

and release the loaded mass of the last element should also be considered. If necessary, a 

continuous pipe should be considered rather than multiple elements. 

Furthermore, plexiglas elements should be replaced by metal pipes, for example aluminum. 

Plexiglas pipes undergo elastic deformation at small strain, but the way they behave cannot 

completely replicate the behavior of a metal pipe. It is important to choose pipes with small 

thickness when metals like aluminum is considered. This will allow the pipes to expand to a 

greater extent, and therefore present a better replication of a spring. On the other hand, the 

thickness of the steel pipes should be increased in order to maintain the mass ratio between steel 

and aluminum pipes. 

Experiments related to scenario 1 and 2 should be performed in accordance with the guidelines 

given in this paper. Regarding the step response, it is necessary to implement a sufficient 

amount of elements in order to increase the response time of the last several elements. 

Furthermore, this will simplify the process of designing a mechanical motor which can generate 

a displacement change faster than the response time of the last elements. 
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If the validity of the model is proven for these particular scenarios, then further steps is to 

implement the theoretical model for more sophisticated geometries, such as deviated wells. 

Development of the model is based on a simple geometry, and must be expanded in order to 

apply to different geometries. Further expansion must include parameters such as Coulomb’s 

friction between the borehole and the drill string, and angular momentum at the connection 

points between the elements. Because of the deviation, Newton’s way of approaching the 

solution complicates the process. Therefore, more simplified methods, such as an Euler-

Lagrange method should be considered. 
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7 Conclusion 

A study of axial vibrations in a vertical drill string is conducted using a -n coupled spring-mass-

damper model. The main motivation behind this is to describe the axial vibrations using a 

simple mathematical model that allows for a substantial interpretation and application of control 

theory. In other words, the analytical model used to describe test segments in this thesis can 

easily apply to other vertical drill string models, with a few adjustments. For this reason, this 

thesis investigates to what extent the lumped element model can be used to replicate and predict 

axial vibrations in a vertical drill string.  

It is found that the lumped element model cannot be verified on the basis of a comparison of 

the experimental results and the analytical model for the transient state. The analytical model 

cannot replicate and predict axial vibrations in a vertical drill string. Further, the comparison of 

test segments and the analytical model has led to the following two additional conclusions. 

Firstly, there is no correlation between the underdamped system and test segments with 6 and 

20 elements, respectively (experiment I.I and I.II). The same applies to the overdamped system 

and the test segment with 6 elements. However, a weak correlation between the overdamped 

system and the test segment with 20 elements is observed for the last three elements.  

Secondly, a ringing behavior is observed in the test segments, which causes some of the 

oscillations that occurs after release of the mass. The effect of this is minimized by using a 

continuous drill string (experiment II) or by attaching the test segment to a firm object. 

The experiments on the test segments are conducted on the basis of a simplified model. This is 

an oversimplification of the real life drill string. As a direct consequence of such choice of 

model, the study encountered three main limitations.  

Firstly, the conclusions reached in this thesis may not necessarily apply to different models with 

complex geometries. Such models give a better representation of a real life drill string. Hence, 

the study should be extended to more complex geometries. 

Secondly, the experiments only account for the transient state of the system. Physical 

experiments with step response and sinusoidal driving forces should also be conducted in 

accordance with the guidance given in this paper.  

Finally, the number of elements in the test segment is inversely proportional to the damping 

ratio. A small number of elements requires an extremely high viscosity fluid in the borehole. 



72 

 

An increase in the number of elements in the test segment will alleviate this requirement and 

bring simulations closer to reality. The borehole size is also inversely proportional to the 

damping ratio. Therefore, a sufficient high number of elements in a test segment should be used 

in future experiments. 

This thesis admires the previous research efforts by others. It shows that there is still much to 

be done to substantiate the use of a lumped element model to replicate and predict axial 

vibrations in a vertical drill string. Several improvements are proposed to pave the way for 

future research in this area. 
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Nomenclature and Abbreviations 

Roman Symbols 

A   Amplitude of the oscillations for an underdamped system 

cA  Cross-sectional area of an element 

c  Damping factor of the viscous piston 

sc   Speed of sound in a specific material 

1C  Constant related to the ordinary solution of the homogeneous differential equation  

2C  Constant related to the ordinary solution of the homogeneous differential equation  

C   n n  diagonal matrix representing the spring constant of elements 

I.C.C   1n  vector describing the initial conditions of the transient state 

D   Diameter of a solid body 

D  n n  diagonal matrix of eigenvectors 

E  Modulus of elasticity (Young’s modulus) 

f  Frequency 

f  Vector with dimensions 1n  representing the driving force of the system 

sF  Spring force, given by Hooke’s law, acting on a point mass 

g  Gravity of Earth 

g   Vector with dimensions 1n  representing the gravity force of all elements 

i  Element number 

I  Identity vector with dimensions 1n   

k  Spring constant given by Hooke’s law 

ik  The spring constant of the spring that is connected above element i   

k   n n  tridiagonal matrix  representing spring constants of n  springs 

L   Length of a test segment 

iL  Length of element i   

0L   Initial length of element i  

m  Mass of an element/point mass 

im  Mass of element i  

nm  Mass of element i n  

M   Diagonal matrix with dimensions n n  representing the mass of all elements  
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n  Number of elements in the spring-mass-damper model 

rn   Refractive index of a material 

N   Frame size, i.e. data window during filtration of a data set 

p  Polynomial order 

q  Displacement of an element/point mass 

0q  Initial displacement of element/point mass, i.e. equilibrium position 

iq  Displacement of element i  

q  Velocity of an element 

q  Acceleration of an element 

Q  Position of origin for the one-dimensional coordinate system (assumed at drill deck) 

iQ   Initial displacement of element i  for the transient state 

sQ   Initial displacement of element 1 as a result of the step 

dQ  Amplitude of the driving force 

Q   1n  vector  representing Initial displacement of all elements for the transient state 

r  Variable forming the characteristic equation of a 2nd order differential equation  

holeR  Radius of the borehole 

R  Electrical resistance (only chapter 3) 

GR   Resistance change measured by a strain gauge (only chapter 3) 

iR  The external forces/viscous friction force acting on element i   

wireR   Wire resistance in a Wheatstone bridge (only chapter 3) 

t  Time 

T  Period of a pressure wave/longitudinal mode 

iu  Velocity of drilling fluid at element i   

pv  Velocity of the drill string when POOH 

v   Arbitrary, nonzero and real column vector for the generalized eigenvalue problem 

EXV   Excitation voltage of a Wheatstone bridge 

oV  Output voltage of a Wheatstone bridge 

offsetV   Offset voltage 

rV   Voltage ratio between voltage change in the circuit and excitation voltage 

V   1n  vector of eigenvectors 
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w  1n  vector representing the gravitational force caused by a loaded mass 

x  Displacement of an element in the new coordinate system 

ix  Displacement of element i  

ox   Transient/ordinary solution of n - coupled spring-mass-damper system 

px   Steady-state/particular solution of n - coupled spring-mass-damper system 

x  Velocity of an element 

x  Acceleration of an element 

y   1n  vector representing the displacement of all elements  

y  1n  vector representing the velocity of all elements 

y  1n  vector representing the acceleration of all elements 

  

Greek Symbols 

   Ratio between outer radius of the drill string and radius of the borehole 

i  Ratio of the outer radius of the drillpipe and radius of the borehole 

n  Ratio of the outer radius of the drill collar and radius of the borehole 

i holeR  Outer radius of the drill string at element i   

   Buoyancy factor 

,1i  Variable representing 
2 1i i i i       in the transient solution 

,2i  Variable representing 
2 1i i i i       in the transient solution 

j  Phase shift for element j i  

j   Amplification factor for element j i  

   Change in the value of a variable 

   Change of any changeable quantity 

L  Change in length of a material 

R  Change in resistance (only chapter 3) 

   Strain 

T   Strain in transverse direction of the applied force 

   Scalar used in the eigenvalue decomposition 

   Viscosity of drilling fluid 

   Poisson’s ratio 
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plexiglas   Poisson’s ratio, plexiglas 

   Bending strain in the transverse direction of applied force 

   Axial stress acting on a cross-sectional area 

   Damping factor/ratio 

i  Damping factor/ratio of element i  

   Summation operator 

w   Shear stress at wellbore wall 

   Phase shift 

i   Phase shift of element i  

i   Induced phase shift relative to the driving force, for element i  

ij   Variable summarizing the amplitudes of all elements for sinusoidal driving force 

kj   Variable summarizing the amplitudes of all elements for sinusoidal driving force 

   Angular frequency of the driving force 

0  Natural frequency of a system, i.e. frequency of an undamped harmonic oscillator 

d  Damped angular frequency of a system 

,d i  Damped angular frequency of element i  

i  Natural angular frequency of element i   

   Unit ohm 

  

Abbreviations 

AC Alternating current  

AI Analog input channel 

ADC Analog to digital converter 

AO Analog output channel 

BB Burr-Brown (integrated circuits manufacturer) 

BHA Bottom hole assembly 

DAQ Data acquisition 

DC Direct current 

DIO Digital input/output channel 

GF Gage factor 



81 

 

GND Ground 

HBM Hottinger Baldwin Messtechnik GmbH (strain gauge manufacturer) 

HWDP Heavyweight drillpipe 

ID Inner diameter  

INA Instrumentation amplifier 

LabVIEW Laboratory Virtual Instrument Engineering Workbench 

MATLAB Matrix Laboratory 

MD Measured depth 

NI National Instruments  

OD Outer diameter 

POOH Pull out of the hole, i.e. to remove the drill string from the wellbore 

PVC Polyvinyl Chloride – a thermostatic insulator 

ROP Rate of penetration 
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Appendices 

A Viscous Friction Force 

The viscous friction force acts in opposite direction of the movement of the drill string. 
iR  is 

the viscous force acting on element i  of the drill string. Figure A-1 illustrates a moving drill 

string when POOH. The velocity profile of the drill mud shows the impact of the moving drill 

string. The velocity of the drill mud is higher between the drill collar and the borehole wall 

because the distance is smaller, i.e. ( ) ( ).hole p hole hole c holeR R R R     Hence, the force acting 

on the drill collar is larger than the one acting on the drillpipe. 

 

Figure A-1: The viscous forces acting on the drillpipe and the drill collar when POOH. holeR  is the 

radius of the borehole, p holeR  and c holeR  are radiuses of the drillpipe and drill the collar, respectively. 

In order to derive a useful equation for the viscous friction force, it is necessary to generate the 

following assumptions, where we assume that 

 the mud pump is turned off and no circulation in the mud. 

 the fluid is Newtonian, i.e. 

hole

w

R

v

r 


 


    

 the flow is laminar, steady and axial symmetric 

 the flow component is only parallel to the movement of the drillpipe, i.e. no flow in 

horizontal plane (figure A-1). 
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 no slip condition at the wellbore wall, 
hole ,r R  so that  hole 0iu R  . In annulus, no slip 

condition on inner pipe as well, i.e.  hole ,i i iu R q   where 
holeiR  is the outer radius of 

the drill string and 
iq  is the velocity of the drill string ( pv  in figure A-1). 

Investigating the Navier-Stokes momentum equation in three-dimensional cylindrical 

coordinates, in the z-direction (Morrison, 2011). 

2 2

2 2 2

1 1
.z z z z z z z

r z z

uu u u u u u up
u u r g

t r r z z r r r r z


  

 

           
            

            
 (A.1) 

By applying the assumptions, equation (A.1) reduces to 

1 1
,iup

r
z r r r

   
  

   
 (A.2) 

where 
iu  is the axial velocity component around element .i  Solving the differential equation: 

2

1

1

2

1 2

1

2

1
2

ln .

i

i

i

i

u r p
r r

r z

u r p
r c

r z

cr p
u r

z r

u Ur c r c







  
   

  

 
 

 

 
    

 

  

 

 

 (A.3) 

Here, 
1

,
4

p
U

z





 

1c  and 
2c  are constants calculated from the boundary conditions given under 

the assumptions. Implementing the boundary conditions into equation (A.3): 

2 2

hole 1 hole 2 2 hole 1 hole0 ln lnUR c R c c UR c R        (A.4) 

 2 2

hole 1 hole 2lni iq U R c R c     (A.5) 

Inserting equation (A.4) into (A.5) gives the following solution: 

 
 

2 2

hole

1

1

ln

i i

i

q UR
c





 
  (A.6) 

Equation (A.4) into (A.3) gives then: 

2

2

hole 1

hole hole

1 lni

r r
u UR c

R R

    
       
     

 (A.7) 
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Next step is to determine the pressure gradient, .
p

z




 It can be determined from the volumetric 

flow rate in the well: 

2 2

holen nQ R q   (A.8) 

where 
nR  is the outer radius of the drill collar (

holecR  in figure A-1). This is also equal to 

taking the integral of the velocity profile over the annulus (Hovda, 2015). 

    

       

    
   

 

1 1
2 2 3

hole hole 1

2 2 4 2 2 2

hole hole 1

2
2 2 22

hole2 4 2 2 2 2hole
hole hole

2 2 ln

1 1 1 1
2 1 1 1 ln

4 2 4 2

1 1
1 2 1 1 2

2 ln

i i i

R

i
R

i i i i i

i i i

i i i i

i

Q ru r dr R UR d c d

R UR c

UR qR
UR UR

  
       

     

 
   



    

    
             

    

   
      

  

iq

  
  
  

  

  

This leads to: 

 
   

 

2
2 2 22

hole2 4 2hole
hole

1 1
1 2 .

2 ln

i i i

i i i

i

UR qR
Q UR q

 
 



   
     
 
 

 (A.9) 

It was necessary to make the assumption that 
n iq q  in order to derive a useful expression for 

the viscous friction force. From equation (A.8) and (A.9), we get an expression for :U  

   

     

2 2 2

22 4 2
hole

2 ln 1
   where   .

1 ln 1

i n i ii i
i

i i i

q
U

R

   


  

  
  

  
 (A.10) 

Inserting equation (A.10) into (A.7) gives an expression for the velocity: 

 
 

2 2

hole hole

1 1
1 ln

ln

i i

i i i

i

r r
u q

R R

 




       
       

       

 (A.11) 

The derivative of (A.11) is: 

 
 

2

2

hole

1 1 2
.

ln

i ii i
i

i

u
q r

r r R

  



  
  
 
 

 (A.12) 

The viscous friction force acting on element   ii L  is given by: 
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hole2

i hole

i
i i

R

u
R R L

r 

 


 


 (A.13) 

Finally, by inserting equations (A.11) and (A.12) into (A.13), we can derive an expression for 

the viscous friction force acting on element   ii L  (Hovda, 2015). 
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 (A.14) 
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B Complex Number Representation 

Recalling equation (2.20) and (2.21) from section 2.2.4: 

 2

1 12 sin ,i i i i i i i dx x x V k Q t        (2.20) 

The method used to determine 
iA  and the phase shift ,i  is by using the relation between sine- 

and cosine functions and the exponential function with the imaginary argument. This relation 

is known as Euler’s formula and states that 

cos sin ,ixe x i x    (B.1) 

where 1i    is the imaginary unit. Obviously, ixe  is a complex quantity with cos x  as the 

real part and sini x  as the imaginary part. Observing that equation (2.21) is the imaginary part 

of the complex function  ii t

iAe
 

 and the right-hand side of equation (2.20) is the imaginary 

part of 1 1 .i t

i dV k Q e   Hence, by taking the expression 

   ii t

ix t Ae
 

   (B.2) 

and substituting it into the modified version of the equation (2.20), i.e.: 

2

1 12 ,i t

i i i i i i i dx x x V k Q e        (B.3) 

then the ‘imaginary part’ of equation (B.2) is a solution of (2.21) if equation (B.2) is a solution 

of (B.3). Therefore, substituting gives: 

   2 2

12 .ii t i t

i i i i i i di Ae V k Q e
     


        

Dividing out the common factor i te   and re-arranging to obtain 

1

2 2
.

2
ii i i d

i

i i i

V k Q
Ae

i



   
 

 
   

Inverting this and expanding the exponential function using equation (B.1): 

 
2 2

1

21 1
cos sin .ii i i i

i i

i i i i d

i
e i

A A V k Q

    
   

       

By evaluating the equation, it is possible to see that 

   sin .i i ix t A t    (2.21) 
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2 2

1 1

21 1
cos   and  sin .i i i

i i

i i i d i i i dA V k Q A V k Q

   
 


    (B.4) 

Squaring each of equation (B.4), adding and re-arranging gives: 

 
   

 

2 22 2

2 2

22

1

21
cos sin .

i i i

i i

i i i d
A V k Q

   
 

 
    (B.5) 

Hence 

 
1

2
2 2 2 2

.i i d
i

i

V k Q
A

c  



 

 
(B.6) 

By dividing the imaginary part of equation (B.4) by the real part of equation (B.4), we obtain:  

2 2
arctan ,i

i

c


 

 
  

 
  

where 2 .i ic    
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C LabVIEW Program 

C.1 Front Panel 

 

Figure C-1: Front panel of the LabVIEW program. Channel 1-4 indicate the measuring elements. Two 

columns are aligned to each channel. Left one is for time and right one for measured resistance in the 

strain gauge circuit. The function stop (F) breaks the measuring process The offset nulling the circuit is 

done by the function Zero. 

Figure C-1 illustrates the front panel of the LabVIEW program. It is primarily used to run the 

measurements, stop the measuring process (stop (F)), and to offset nulling the circuit (Zero). 

The program measures with an accuracy of 7 decimals.  
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C.2 Block Diagram 

Figure C-2 illustrates the block diagram of the LabVIEW program.  

 

Figure C-2: The block diagram of the LabVIEW program.  
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D Savitzky-Golay Filtering Method 

MathWorks (2016) describes the Savitzky-Golay filtering method as: 

Savitzky-Golay smoothing filters (also called digital smoothing polynomial filters or least-

squares smoothing filters) are typically used to "smooth out" a noisy signal whose frequency 

span (without noise) is large. In this type of application, Savitzky-Golay smoothing filters 

perform much better than standard averaging finite impulse response (FIR) filters, which tend 

to filter out a significant portion of the signal's high frequency content along with the noise. 

Although Savitzky-Golay filters are more effective at preserving the pertinent high frequency 

components of the signal. Savitzky-Golay filters are optimal in the sense that they minimize the 

least-squares error in fitting a polynomial to frames of noisy data. 

Basically, Savitzky & Golay (1964) showed that a set of integers, i.e. 
1, , , , ,n n n nA A A A  

 can 

be derived and used as weighting coefficients to perform the smoothing process. These 

weighting coefficients are known as convolution integers. Savitzky and Golay proved that the 

use of these convolution integers are equivalent with the process of fitting the data to a 

polynomial. In comparison, the method is computationally more effective and much faster. 

Hence, the smoothed data point,   ,k s
y  by the Savitzky-Golay algorithm is given by the 

following equation (Efstathiou, 2000): 

 
1

n

i k

i n
k ns

i

i n

A y

y

A











  (D.1) 

 


