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Preface
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Abstract

We use a level-set method to describe surfaces moving by mean curvature. The

interesting partial differential equation ut “ |∇u|div
´

∇u
|∇u|

¯

arises. In this thesis,

we prove uniqueness of solutions in the viscosity sense and singularities of the flow
are taken into consideration. Our work is based on the demanding proof of Evans
and Spruck, published in Journal of Differential geometry (1991).
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Sammendrag

Vi beskriver overflater som beveger seg i forhold til den gjennomsnittlige kur-
vaturen med en metode som baserer seg p̊a niv̊aflater. En interessant partiell

differensialligning kan beskrive situasjonen, ut “ |∇u|div
´

∇u
|∇u|

¯

. I denne mas-

teroppgaven beviser vi at denne ligningen har en unik viskositetsløsning, og vi tar
hensyn til singulariteter. Arbeidet er basert p̊a et krevende bevis av Evans og
Spruck, gitt ut i Journal of Differential geometry (1991).
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1 Introduction

Mean curvature flow is an example of a geometric flow of hypersurfaces. In this
paper, we mainly study smooth surfaces in R3. We require that the surface moves
with velocity equal to the mean curvature in the normal direction.

In the paper [B], Brakke studied motion of grain boundaries, in which he intro-
duced motion by mean curvature for surfaces. There are other physical phenomena
which can be explained by mean curvature flow. These include surface tension phe-
nomena, horizons of black holes in general relativity, image processing and soap
films stretched across a wire frame. Gage and Hamilton [GH] and Grayson [G1]
showed that closed embedded curves in the plane remains embedded before they
shrink to a point. Huisken [H] showed that convex surfaces in R3 remains convex
until they shrink to a point under the mean curvature flow. In fact, Huisken and
Ilmanen proved the Riemann Penrose inequality in [HI] studying the inverse mean
curvature flow, where the velocity is equal to the reciprocal of the mean curvature.
In these cases, a differential geometric approach to the problem has been used.

Here, we use a level-set method for the flow. The interesting mean curvature flow
equation arises,

ut “ |∇u|div

ˆ

∇u
|∇u|

˙

.

The equation is not defined when ∇u “ 0. Introducing a notion of a weak solution,
namely a viscosity solution turned out to be successful, see [ES]. Viscosity solu-
tions were first introduced in [CL]. We intend to discuss the problem by studying
this equation, and by gaining insight in the equation we derive some geometric
properties of the flow. In particular, we prove uniqueness of solutions. When
uniqueness is proved one can show several interesting properties of the flow, in-
cluding that two surfaces initially disjoint remain disjoint under the flow. Our
work regarding the level-set method is mainly based on the article by [ES].

There are two mathematical technicalities which arise in the proof of uniqueness of
solutions. These are properties of semi-convex functions and inf- and sup convolu-
tions. For semi-convex functions, the Alexandrov theorem is applied, which states
that a convex function is twice differentiable almost everywhere. The inf- and
sup convolutions are introduced to approximate the merely continuous function u.
We base our discussion on these by using the celebrated Hopf-Lax formula, which
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solves the Hamilton-Jacobi partial differential equation [E].

In section 2 we give an introduction to the mean curvature flow in the plane,
where calculations are easier. Then we derive the mean curvature for surfaces in
R3 before introducing the level-set method. In section 3 we introduce viscosity
solutions. Section 4 contains an introduction to inf- and sup convolutions. Fur-
ther, we prove that we have uniqueness for classical solutions, provided ∇u ‰ 0.
Finally, we give a proof of uniqueness of viscosity solutions. Having established
uniqueness, we give some geometrical properties of the flow in section 5. Here,
we will also make mention of the minimal surface equation, which turns out to be
the elliptic counterpart of the mean curvature flow equation, just as the laplace
equation is the elliptic counterpart to the heat equation.
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2 The mean curvature flow equation

2.1 Curvature and the Curve-Shortening flow

2.1.1 Curvature

The concept of curvature can loosely be thought of as how much an object deviates
from being flat. If the object is a curve, the curvature tells us how much the curve
deviates from being a straight line. A curve C in R3 may be described as a smooth
vector valued function of one parameter, rptq “ pxptq, yptq, zptqq where t P I Ă R.
For each t, rptq has a tangent vector, given by the derivative of r. The unit tangent
vector T is defined by

T ptq “
9rptq

| 9rptq|
”

1

v
9rptq.

It will be useful to parametrize r so that 9r has length one. The arclength of C is
given by ds “ vdt. We see that

ˇ

ˇ

ˇ

ˇ

dr

ds

ˇ

ˇ

ˇ

ˇ

“ v

ˇ

ˇ

ˇ

ˇ

dt

ds

ˇ

ˇ

ˇ

ˇ

“ 1

under this choice of the parameter s.

Definition 2.1. The curvature of C, κ, is given by

κ “

ˇ

ˇ

ˇ

ˇ

dT

ds

ˇ

ˇ

ˇ

ˇ

“ |r2psq|. (1)

The signed curvature k is given by the same equation if the unit tangent vector
rotates counterclockwise, and with a negative sign if the unit tangent vector rotates
clockwise.

The next example shows that the curvature of a straight line is zero, which fits
well with our intuition. Further, we calculate the curvature of a circle.

Example 2.2. (The circle and the straight line.)
The circle in R2 of radius R can be parametrized by

rptq “ pR cos θ, R sin θq

where θ P r0, 2πs. We have

dr

dθ
“ p´R sin θ, R cos θq
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and |dr
dθ
| “ R. Hence, by choosing s “ Rθ we have

T psq “
´

´ sin
s

R
, cos

s

R

¯

.

The curvature is then

κ “

ˇ

ˇ

ˇ

ˇ

´
1

R

´

cos
s

R
, sin

s

R

¯

ˇ

ˇ

ˇ

ˇ

“
1

R
.

Consider now a straight line. Since T has constant components, equation (1) gives
κ “ 0.

2.1.2 Curve-shortening flow

Here, we give an introduction to the mean curvature flow in R2 based on the ideas
of Gage and Hamilton [GH]. The flow in the plane is often referred to as the
curve-shortening flow. As we will see, the flow has the property that the length of
a curve decreases, and the area bounded by a closed curve decreases. We consider
a vector

X : S1
ˆ r0, T s Ñ R2

with the property that

BX

Bt
“ kN

where N is the inward pointing unit normal vector of a curve parametrized by
Xpu, tq. We can define the parametrization in terms of the arclength s by

B

Bs
“

1

v

B

Bu

where v “
ˇ

ˇ

BX
Bu

ˇ

ˇ. Using the Frenet equations

BT

Bu
“ vkN,

BN

Bu
“ ´vkT,

we derive the evolution equation for the curvature and give some properties of the
flow.

To find the change of the length of a curve

dL

dt
“

ż

S1

dv

dt
du

we need the following lemma.
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Lemma 2.3.

dv

dt
“ ´k2v.

Proof. We calculate using the Frenet equations

dv2

dt
“

d

dt

B

BX

Bu
,
BX

Bu

F

“ 2

B

B

Bt

BX

Bu
,
BX

Bu

F

“ 2

B

BpkNq

Bu
,
BX

Bu

F

“ 2

B

Bk

Bu
N ´ vk2T,

BX

Bu

F

“ ´2vk2
xT, Tvy “ ´2v2k2.

Proposition 2.4. The length of a curve under the curve-shortening flow decreases,

dL

dt
“ ´

ż

k2ds ď 0.

Proof. By the previous lemma we find

dL

dt
“

ż

S1

dv

dt
du “

ż

S1

´k2vdu “ ´

ż

k2ds.

We now compute the evolution equation for the curvature k “ kps, tq. However,
as we will see in the next example, the operators B

Bs
and B

Bt
do not commute.

Example 2.5. (The Grim Reaper.)
Consider a graph solution to the flow moving by translation,

F px, tq “ px, t` ypxqq

We calculate

Fs “
1

v
p1, y1q Fst “

d
`

1
v

˘

dt
p1, y1q “ k2Xs

while Fts “ 0. The solution to the curve-shortening flow is given by

BF

Bt
“ p0, 1q “ kN. (2)
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For a graph we have

k “
y2

p1` py1q2q3{2
, N “

p´y1, 1q
a

1` py1q2

Multiplying equation (2) by N gives k “ 1?
1`py1q2

, which can be rewritten into the

differential equation

y2pxq “ 1` py1pxqq
2
.

This has a particular solution ypxq “ ´ ln cos pxq, which is valid for x P p´π{2, π{2q.
The solution is often called the Grim Reaper, as seen in figure 1.

Figure 1: A translating solution of the curve-shortening flow.

Lemma 2.6. The operators B

Bs
and B

Bt
are related in the following way

B

Bt

B

Bs
“ k2 B

Bs
`
B

Bs

B

Bt
.

Remark. We see that the lemma holds true for example 2.5.

Proof. We let the operators act on a vector F to get

Fts “

ˆ

1

v
Fu

˙

t

“
k2v

v2
Fu `

1

v
Ftu

“ k2Fs `
1

v
Fut “ k2Fss ` Fst.
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We can now calculate, using the Frenet equations

ktN ` kNt “ pkNqt “ Xtss “ k2Xss `Xsts

“ k3N `
`

k2Xs `Xst

˘

s
“ k3N `

`

ksN ` kNs ` k
2T

˘

s

“ k3N ` kssN ´ kksT

“
`

kss ` k
3
˘

N ´ kksT.

Since xN, T y “ 0 and they are both unit vectors, we get the following evolution
equations

kt “ kss ` k
3,

Nt “ ´ksT.

The equation for curvature is of particular interest. From the equation we get
following proposition, which also turns out to be true for higher dimensions for
the mean curvature.

Proposition 2.7. Suppose Ω Ă R is a bounded domain and look at

"

kt “ kss ` k
3, ps, tq P Ωˆ p0, T s

kps, 0q “ k0psq, s P Ωˆ tt “ 0u,

where k0psq ą 0. Then kps, tq ą 0 for all ps, tq P Ωˆ r0, T s.

To prove this proposition, we need a version of the strong minimum principle for
parabolic equations presented on p.169 in [PW].

Theorem 2.8. (The strong minimum principle.)
Suppose that

kt ´ kss ě 0

for all ps, tq P E “ tps, tq : s P Ω, t ď t1u for some t1 ą 0. If k ě M in E and
there is an s1 so that kps1, t1q “M , then k ”M in E.
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Proof. (Of proposition 2.7.) If k is not positive everywhere, we find the first point
pt1, s1q so that kps1, t1q “ 0. By continuity, k is strictly positive up until this point,
and so

kt ´ kss “ k3
ě 0

when t ď t1. Using theorem 2.8 we find that k ” 0 when t ď t1. This contradicts
kps, 0q “ k0psq ą 0.

Proposition 2.9. Let C be a closed curve parametrized by F pu, tq. Then

dA

dt
“ ´2π,

where A is the area enclosed by C.

Proof. By Green’s theorem in the plane,

2A “

ż

ydx` xdy “ ´

ż

xF, vNy du

so that

2
dA

dt
“ ´

ż

S1

xFt, vNy ` xF, vtNy ` xF, vNty du

“ ´

ż

S1

kv `
@

F,´k2vN
D

` xF,´kuT y du.

The last term may be integrated by parts (the boundary term disappears) to get

dA

dt
“ ´

1

2

ż

S1

vk `
@

F, k2vN
D

` k
`

v ´
@

F, vk2N
D˘

du

“ ´

ż

S1

vkdu “ ´

ż

kds “ ´2π.

The last equality follows from the definition of k. Since k “ T 1psq where T rotates
counterclockwise, the integral around the closed curve is equal to 2π.
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Example 2.10. (The circle under curve-shortening flow.)
In example 2.2 we found κ “ 1

R
and hence can write k “ 1

R
with N pointing

inwards. Since k is independent on where we are on the circle, the circle keeps its
shape under the curve-shortening flow. With kps, tq “ kptq “ 1

Rptq
we have

kt “ ´
1

R2
9R “ kss ` k

3
“

1

R3
.

If Rp0q “ R0 we get

Rptq “
b

R2
0 ´ 2t,

and we see that the circle shrinks to a point when t “
R2

0

2
. We can also verify

proposition 2.9 by noting that

Aptq “ πRptq2 “ πpR2
0 ´ 2tq,

so that dA
dt
“ ´2π.

2.2 Normal curvature

Suppose S Ă R3 is a surface and p P S. Let TppSq be the tangent space at p, i.e.
the vector space of vectors tangent to S at p. If ν is the normal vector to S at p
and v P TppSq, the plane through p determined by v and ν intersects S in a curve.
We call this curve rv, see figure 2.

Figure 2: The normal curvature at a point on a surface.
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Definition 2.11. The normal curvature, knpvq at a point p P S is given by the
curvature of the curve parametrized by rv.

We denote k1 “ minv knpvq and k2 “ maxv knpvq. The mean curvature is defined
to be the sum of the two.

Definition 2.12. The mean curvature H at a point p on a surface S is given by

H “ k1 ` k2.

Suppose 0 P S and S is given by the surface z “ fpx, yq. We suppose further that
f “ fx “ fy “ fxy “ 0 at p0, 0q. Thus the tangent plane is spanned out by the
vectors p1, 0, 0q and p0, 1, 0q and we can take ν “ p0, 0, 1q. A vector v P TppSq
can be written ps cos θ, s sin θ, 0q where θ P r0, 2πs and s P R. The curve rv is an
intersection of the surface z “ fpx, yq and the plane determined by ν and v. For
t P R and θ P r0, 2πs we can take

rvptq “ pt cos θ, t sin θ, fpt cos θ, t sin θqq .

At the origin we have | 9r| “ |pcos θ, sin θ, 0q| “ 1 so we easily calculate

knpvq “ knpθq “ |:rp0q| “
ˇ

ˇp0, 0, cos2 θfxx ` sin2 θfyyq
ˇ

ˇ

“ cos2 θfxxp0, 0q ` sin2 θfyyp0, 0q,

at the origin. This is sometimes referred to as Euler’s formula. We see that
Hp0, 0q “ fxxp0, 0q ` fyyp0, 0q.

Example 2.13. (Curvatures at the origin for an elliptic paraboloid.)

An elliptic paraboloid can be written

z “ fpx, yq “
x2

a2
`
y2

b2
.

Using Euler’s formula we find kn “
2
a2

cos2 θ ` 2
b2

sin2 θ. Hence, at the origin,

H “
2pa2 ` b2q

a2b2
.
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2.3 Mean curvature

In this section, we use the Einstein summation convention used in [F]. We describe
a surface S in R3 as the image of the vector function

Xpu1, u2
q “ Xpxpu1, u2

q, ypu1, u2
q, zpu1, u2

qq.

In this section we assume that the first and second partial derivatives of X exist
and are continuous.

Suppose

rptq “ Xpu1
ptq, u2

ptqq

describe a curve C on the surface S. Then

dr

dt
“
du1

dt

BX

Bu1
`
du2

dt

BX

Bu2
“ ui

1 BX

Bui
. (3)

As in the planar case, we except a relation between curvature and the arclength
s. We calculate

ˆ

ds

dt

˙2

“

B

dr

dt
,
dr

dt

F

“

ˆ

du1

dt

˙2 ˇ
ˇ

ˇ

ˇ

BX

Bu1

ˇ

ˇ

ˇ

ˇ

2

` 2
du1

dt

du2

dt

B

BX

Bu1
,
BX

Bu2

F

`

ˆ

du2

dt

˙2 ˇ
ˇ

ˇ

ˇ

BX

Bu2

ˇ

ˇ

ˇ

ˇ

2

” giju
i1uj

1

or in differential form,

ds2
“ gijdu

iduj.

The metric

gij “

B

BX

Bui
,
BX

Buj

F

is called the first fundamental form.

Lemma 2.14. Suppose the surface S is a regular surface, so that the unit normal
at any point P P S satisfies

νpP q “
BX
Bu1
ˆ BX
Bu2

ˇ

ˇ

BX
Bu1
ˆ BX
Bu2

ˇ

ˇ

‰ 0.

Then the matrix G “ pgijqij is a positive matrix.1

1In fact, it is strictly positive, which means that xTGx ě 0 with equality only for x “ 0.
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Proof. Using the vector identity

xaˆ b, cˆ dy “ xa, cy xb, dy ´ xa, dy xb, cy

we get

0 ď

B

BX

Bu1
ˆ
BX

Bu2
,
BX

Bu1
ˆ
BX

Bu2

F

“ g11g22 ´ g
2
12.

Since g11 “ }
BX
Bu1
}2 ě 0 we have for all x P R2

xTGx “ x2
1g11 ` 2x1x2g12 ` x

2
2g22

“
1

g11

px1g11 ` x2g12q
2
`
g11g22 ´ g

2
12

g11

x2
2 ě 0.

In view of this observation, the matrix G has an inverse. We denote it by G´1 “

pgijqij so that

gijg
ij
“ δij.

In order to give a rigorous definition of the normal curvature at a point P on a
surface S, we look at the normal component of d2r

ds2
. By equation (3), dr

ds
“ ui

1 BX
Bui

so that

d2r

ds2
“ ui

2 BX

Bui
` ui

1

uj
1 B2X

BuiBuj
.

Taking the inner product with the unit normal ν gives

B

d2r

ds2
, ν

F

“ ui
1

uj
1

B

B2X

BuiBuj
, ν

F

” Liju
i1uj

1

.

Here,

Lij “

B

B2X

BuiBuj
, ν

F

is called the second fundamental form on the surface.
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Definition 2.15. Let v be a unit vector tangent to the surface S at a point P , so
that it can be written

v “ vi
BX

Bui

The normal curvature of S at P in the direction of v is given by

knpvq “ Lijv
ivj.

Remark. We see that this definition coincides with definition 2.11. If r “ rpsq is
the curve created from intersecting S with the plane through p determined by v
and ν we have for some s0,

rps0q “ p, r1ps0q “ v, r2ps0q “ ˘ν.

Since

dr

ds
“ ui

1 BX

Bui
“ v “ vi

BX

Bui

we see that vi “ ui
1

. Hence

knpvq “ Lijv
ivj “ Liju

i1uj
1

“

B

d2r

ds2
, ν

F

“ ˘

ˇ

ˇ

ˇ

ˇ

d2r

ds2

ˇ

ˇ

ˇ

ˇ

,

the formula for curvature rediscovered.

We now give the formula for the mean curvature of a regular surface parametrized
by X.

Lemma 2.16. Suppose S is a regular surface. Then

H “ trpG´1Lq “ gijLij.

Proof. We are trying to maximize and minimize

Lijv
ivj

with the restriction that v “ vi BX
Bui

is of unit length. Note that

|v|2 “ gijv
ivj.
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Writing x “ pv1, v2q the problem is to find

max
xTGx“1

xTLx, and min
xTGx“1

xTLx.

Using corollary A.7 we get

H “ k1 ` k2 “ max
xTGx“1

xTLx` min
xTGx“1

xTLx “ trpG´1Lq.

Example 2.17. (Mean curvature for a torus.)

Consider a circle of radius r ă 1 centered at p1, 0q in the xz-plane. The circle may
be parametrized by

x “ 1` r cos θ

z “ r sin θ

for 0 ď θ ď 2π. Revolving the circle about the z-axis gives us the following
parametrization for the surface of a torus

Xpθ, φq “ pp1` r cos θq cosφ, p1` r cos θq sinφ, r sin θq

for 0 ď θ, φ ď 2π. Upon differentiation we find

G´1
“

1

r2 p1` r cos θq2

„

r2 0
0 p1` r cos θq2



, L “

„

p1` r cos θq cos θ 0
0 r



.

Using H “tr(G´1L) we find

H “
1` 2r cos θ

rp1` r cos θq
.

For an explicit surface z “ fpx, yq we calculate

gij “ δij ´
fxifxj

1` |∇f |2
, Lij “

1
a

1` |∇f |2
fxixj

so that

Hpx, yq “ gijLij “
p1` f 2

y qfxx ´ 2fxfyfxy ` p1` f
2
xqfyy

p1` f 2
x ` f

2
y q

3
2

. (4)
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Example 2.18. (Mean curvature for the elliptic paraboloid.)

We check the calculations from example 2.13. An elliptic paraboloid may be

written z “
`

x
a

˘2
`
`

y
b

˘2
. From equation (4) we calculate

Hpx, yq “

2
a2

´

1` 4y
2

b4

¯

` 2
b2

´

1` 4x
2

a4

¯

´

1` 4x
2

a4
` 4y

2

b4

¯
3
2

and at the origin, H “
2pa2`b2q
a2b2

as before. From the expression of Hpx, yq we see
that Hpx, yq has a maximum at the origin. This fits well with our intuition. At
the origin the paraboloid clearly deviates more than any other point from being a
flat surface. See figure 3.

Figure 3: The paraboloid given by z “ x2 ` y2.

For the level-set method, the surface evolves accordingly to upx, y, z, tq “ 0, i.e.
the surface is given implicitly. The next theorem shows how to calculate the mean
curvature for implicit surfaces.

Theorem 2.19. For a surface S given by upx, y, zq “ 0, the mean curvature is
given by

Hpx, y, zq “ ´divpνq (5)

provided ∇u ‰ 0. Here, ν “ ∇u
|∇u| is the inward pointing unit normal vector.
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Proof. First, assume uz ‰ 0. Then z can be written as a function of x and y, say
z “ fpx, yq. Since upx, y, zq “ 0, we get, by keeping x and y constant in turn,

ˆ

Bu

Bx

˙

y

“
Bu

Bx
`
Bu

Bz

Bz

Bx
“ 0

ˆ

Bu

By

˙

x

“
Bu

By
`
Bu

Bz

Bz

By
“ 0.

Solving for the partial derivatives of z “ fpx, yq yields fx “ ´
ux
uz

and fy “ ´
uy
uz

.
Further, by again keeping y constant, we get

fxx “
2uxuzuxz ´ u

2
xuzz ´ u

2
zuxx

u3
z

.

Similar calculations can be done to find expressions for fxy and fyy. Inserting the
partial derivatives of f into equation (5) gives the same result as the calculation
of ´divpνq. If fz “ 0 at some point, we repeat the calculation by assuming either
fx ‰ 0 or fy ‰ 0. Since ∇u ‰ 0 was assumed, the partial derivaties of f cannot
all be zero at the same point.

2.4 The level set method

Let

Γt “
 

px, y, zq P R3 : upx, y, z, tq “ 0
(

.

Suppose first that, for all t ě 0, Γt Ă Ω with ∇u ‰ 0 in Ω, where Ω Ă R3ˆ r0,8q.
Then

ν “
∇u
|∇u|

chosen to be pointing inwards is a unit normal vector of Γt. Consequently, from

theorem 5, we have H “ ´div
´

∇u
|∇u|

¯

.

The idea is to follow the points on the surface X “ pxptq, yptq, zptqq as time passes.
We define the motion by mean curvature as 9X “ Hν. This means that the surface
moves with velocity equal to the mean curvature in the normal direction. Since
upX, tq “ 0 in Γt we have

d

dt
upXptq, tq “ 0.
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Hence, by the chain rule,

0 “
Bu

Bt
` 9X ¨∇u “ Bu

Bt
`Hν ¨∇u “ Bu

Bt
´ |∇u| div

ˆ

∇u
|∇u|

˙

.

Now, suppose we are given an initial surface

Γ0 “
 

x P R3 : upxq “ gpxq “ 0
(

.

and want to study how the surface evolves by mean curvature flow. That is, we
ask the question, how does the following set behave

Γt “
 

x P R3 : upx, tq “ 0
(

.

As we will see, this is equivalent to solving the problem

$

’

&

’

%

ut “ |∇u| div
´

∇u
|∇u|

¯

, px, tq P Rn
Ś

r0,8q

upx, 0q “ gpxq, px, tq P Rn
Ś

tt “ 0u.

The problem now is that the equation is not defined where ∇u “ 0. Further, we
can not guarantee existence of a twice differentiable solution. We seek for a weak
solution, namely a viscosity solution to overcome this difficulty.

Remark. Some C2 solutions of the above equation are

|x|2 ` 4t, e|x|
2`4t, ex1 , coshx1, cosh

`

|x|2 ` 4t
˘

.

These are, however, not of particular interest, since their zero level sets are empty
or trivial. We should however note that, if u solves the equation then it seems
like φpuq, for a smooth function φ, also solves the equation. We will prove this
assertion in section 5 in the viscosity sense, only requiring φ to be continuous.

Example 2.20. (Mean curvature flow for the sphere, the plane, the
cylinder and the torus.)

A plane may be described as solutions to gpx, y, zq “ ax ` by ` cz ´ d “ 0 where
a, b, c, d P R. We see that g satisfies the mean curvature flow equation, so we can
take u “ g. Hence

Γt “ tx : gpxq “ 0u “ Γ0,
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so nothing happens to the plane under mean curvature flow. Consider now the
initial surface Γ0 “ tx P R3 : x2 ` y2 ` z2 “ R2

0u, the sphere of radius R. Under
mean curvature flow, the sphere’s radius shrinks. Letting R “ Rptq, we see that
9R “ ´2

R
, with Rp0q “ R0. This can be seen by using the defining relation 9X “ Hν.

The solution to the differential equation is given by

Rptq “
b

R2
0 ´ 4t.

We verify also that upx, y, z, tq “ Rptq2´ x2´ y2´ z2 satisfies the mean curvature

flow equation. The sphere shrinks to a point in finite time, t “
R2

0

4
. A similar

calculation shows that a spherical cylinder shrinks to a line under mean curvature
flow. For the torus, we calculated from example 2.17

H “
1` 2r cos θ

rp1` r cos θq
.

We take 0 ă r ăă 1 (if r is close to 1, the evolution can be similar to that of a
sphere, see [SS]). The expression does not depend on φ, the angle from revolving a
circle about a line. The surface will remain a surface of revolution under the mean
curvature flow, but the cross section will not remain a circle, since H varies with
θ. As the evolution goes on, the cross section will shrink to a point, and hence the
torus evolves under mean curvature flow until it becomes a circle. See figure 4, 5,
6 and 7 (we abbreviate MCF for mean curvature flow).
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Figure 4: MCF for the sphere.

Figure 5: MCF for the plane.

Figure 6: MCF for the cylinder

Figure 7: MCF for the torus.
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3 Viscosity solutions

3.1 Introduction

When looking at the mean curvature flow equation

#

ut “ |∇u| div
´

∇u
|∇u|

¯

px, tq P Rn
Ś

r0,8q

upx, 0q “ gpxq px, tq P Rn
Ś

tt “ 0u
(6)

with only continuous u “ upx, tq it is clear that u does not satisfy equation (6)
in the classical sense. An often used technique to overcome this difficulty is to
multiply the equation with a test function. With integration by parts one can
pass the equation over to the test function in an integral form. However, with
trial and error, one quickly realizes that the method does not work here. This is
where the notion of viscosity solutions enters. In section 3.1 and 3.2, we assume
that ∇u ‰ 0.

Definition 3.1. A bounded and continuous function u is said to be a viscosity
subsolution of equation (6) if for all φ P C2 pRn

Ś

r0,8sq,

φt ď |∇φ| div

ˆ

∇φ
|∇φ|

˙

at any point px, tq where u´φ attains a local maximum. Similarly, u is a viscosity
supersolution if

φt ě |∇φ| div

ˆ

∇φ
|∇φ|

˙

at any point px, tq where u´φ attains a local minimum. The function u is called a
viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.
In addition, it is required that upx, 0q “ gpxq.

Remark.

a) We may assume that the local maximum is strict. To see this, replace φpx, tq
by φpx, tq ´ |x´ x0|

4 ´ pt´ t0q
4, where px0, t0q is the point where u´ φ has

a local maximum. The same applies to the local minimum.
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b) The equations φt “ |∇φ| div
´

∇φ
|∇φ|

¯

and ´φt “ ´ |∇φ| div
´

∇φ
|∇φ|

¯

are not

equivalent in the viscosity sense.

c) We can remove the restriction of continuity by requiring only upper and
lower semi continuity for the viscosity sub- and supersolutions respectively.
For discussion, see [CIL].

One of the first things one should check when making a definition is consistency,
which is stated in the following lemma. We first note that the PDE in equation
(6) can be rewritten to

ut “

ˆ

δij ´
uxiuxj

|∇u|2

˙

uxixj (7)

where we sum over 1 ď i, j ď n.

Lemma 3.2. (Consistency of viscosity solutions.)
If u P C2

`

Rn
Ś

r0,8q
˘

is a classical solution of equation (7), then u is a viscos-
ity solution. Further, if u is twice differentiable everywhere and u is a viscosity
solution, then u is a classical solution.

Proof. Suppose first that u is a classical solution. Pick φ P C2 and px0, t0q so that
u´φ has a local minimum point at px0, t0q. By the infinitesimal calculus, φt “ ut,
∇φ “ ∇u and

D2
pu´ φq ě 0

at the point px0, t0q. Hence, using equation (7)

φt “ ut “

ˆ

δij ´
uxiuxj

|∇u|2

˙

uxixj

“

ˆ

δij ´
φxiφxj

|∇φ|2

˙

`

uxixj ´ φxixj
˘

`

ˆ

δij ´
φxiφxj

|∇φ|2

˙

φxixj

” trpAD2
pu´ φqq `

ˆ

δij ´
φxiφxj

|∇φ|2

˙

φxixj .

By proposition A.4 and example A.2 we get

φt ě

ˆ

δij ´
φxiφxj

|∇φ|2

˙

φxixj
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at px0, t0q, which shows that u is a viscosity supersolution. A similar argument
can be used to show that u is a viscosity subsolution.

If u is a C2 viscosity solution, let φ “ u. Then u´ φ has a maximum everywhere
and since u is a viscosity subsolution,

ut “ φt ď |∇φ| div

ˆ

∇φ
|∇φ|

˙

“ |∇u| div

ˆ

∇u
|∇u|

˙

.

In addition, u ´ φ has a minumum everywhere and since u is a viscosity super-

solution, ut ě |∇u| div
´

∇u
|∇u|

¯

at all points px, tq. This shows that u solves the

equation in the classical sense.

Remark. In general, if a viscosity solution u is not twice differentiable everywhere,
we cannot say that u is a classical solution. However, if u is a twice differentiable
viscosity solution at a point px, tq, then u satisfies the equation in the classical
sense at the point px, tq. A proof of this is given in [E] for first order equations
and in [K] for general second order equations. The main idea behind the proof is
that if u is twice differentiable at some point, there exists a φ P C2 so that u “ φ
at this point as shown in figure 8.

Figure 8: Touching a C2 function φ.
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3.2 The method of vanishing viscosity

The name viscosity solution as a notion of a weak solution has its origin from the
method of vanishing viscosity. The idea is to add a viscosity term to a nonlinear
partial differential equation. For the ongoing discussion to work for more general
equations, suppose that

uεt ` F p∇uε, D2uεq “ ε∆uε,

where F is a continuous function. One hopes that, as ε Ñ 0, the function
u “ limεÑ0 u

ε is a viscosity solution to the equation ut`F p∇u,D2uq “ 0. For the
procedure to work, we need the following condition on F .

Definition 3.3. If F satisfies

F pp,Xq ě F pp, Y q

whenever X ď Y , we say that F is degenerate elliptic.

Remark. For the mean curvature flow equation we have

F pp,Xq “ ´

ˆ

δij `
pipj
|∇p|

˙

Xij

and we see that F is degenerate elliptic.

Proposition 3.4. Suppose uε P C2 solves

uεt ` F p∇uε, D2uεq “ ε
n
ÿ

i,j“1

aiju
ε
xixj

, (8)

where A “ paijqij satisfies

ξTAξ ě θ|ξ|2

for all ξ P Rn and some constant θ ą 0. Further, suppose that F is continuous
and degenerate elliptic. If uε Ñ u uniformly on compact subsets of Rn

Ś

tt “ 0u,
then u is a viscosity solution of

ut ` F p∇u,D2uq “ 0.
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Proof. Here, it is only shown that u is a viscosity supersolution. Using similar
arguments, one can show that u is a viscosity subsolution.

Suppose u ´ φ has a minimum at px0, t0q. Find pxε, tεq so that uε ´ φ has a
minimum at pxε, tεq and pxε, tεq Ñ px0, t0q. These points exist (possibly taking
some subsequence pxεj , tεjq) since uε Ñ u uniformly.

At pxε, tεq the first partial derivatives of φ and uε coincide, and

D2
puε ´ φq ě 0,

from the infinitesimal calculus. Hence, at the point pxε, tεq,

φt ` F
`

∇φ,D2φ
˘

“ uεt ` F
`

∇uε, D2φ
˘

ě uεt ` F
`

∇uε, D2uε
˘

“ εaiju
ε
xixj

“ εaij

´

uεxixj ´ φxixj

¯

` εaijφxixj

ě εaijφxixj .

Passing to the limit εÑ 0 using that F is continuous yields at px0, t0q

φt ` F
`

∇φ,D2φ
˘

ě 0

which shows that u is a viscosity supersolution.

This section ends with an example illustrating proposition 3.4.

Example 3.5. (The method of vanishing viscosity.)
Consider the problem

"

uεt `
1
2
puεxq

2 “ εuεxx, px, tq P R
Ś

r0,8q
uεpx, 0q “ x2, px, tq P R

Ś

tt “ 0u

Here, F pp,Xq “ F ppq so that F is automatically degenerate elliptic. For ε “ 0,
the solution is given by the Hopf-Lax formula which is discussed in section 4.2,

upx, tq “
x2

1` 2t
.
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Let

vpx, tq “ e
´uεpx,tq

2ε .

Then vpx, tq solves the heat equation with diffusion constant ε,

vt “ εvxx

vpx, 0q “ e
´x2

2ε .

The solution to the heat equation may be found using fourier analysis,

vpx, tq “
1

?
4πεt

ż 8

´8

e
´y2

2ε e´
px´yq2

4εt dy

“ e
´x2

2εp1´2tq
1

?
4πεt

ż 8

´8

e´
1`2t
4εt

py´ x
1`2t

q2dy

“ e
´x2

2εp1´2tq
1

a

πp1` 2tq

ż 8

´8

e´z
2

dz

“
1

?
1` 2t

e´
x2

2εp1`2tq .

Here, we have completed the square and used the gaussian integral,
ş8

´8
e´z

2
dz “

?
π. We can now invert the formula for vpx, tq to find a formula for uεpx, tq. Note

that vpx, tq ě 0 for all x, t. For a strictly positive vpx, 0q, this is always the case
for the heat equation, since we integrate a positive function. This fact is crucial
for the example, since we are working with logarithms. Hence, we get

uεpx, tq “ ´2ε ln pvpx, tqq

“ ε lnp1` 2tq `
x2

1` 2t
.

As εÑ 0 we see that uεpx, tq Ñ x2

1`2t
. Since u is a classical solution to the original

equation, u is a viscosity solution by the consistency lemma 3.2.

3.3 The problem with zero gradient.

The partial differential equation describing mean curvature flow only makes sense
at points where ∇u ‰ 0. Thus, we need to somehow extend definition 3.1 to hold
at points where ∇φpx0, t0q “ 0. Suppose u P C2pRn ˆ r0,8qq satisfies

ut ď

ˆ

δij ´
uxiuxj

|∇u|2

˙

uxixj . (9)



27

The idea is to look at the behavior of u close to the point px0, t0q with ∇upx0, t0q “
0, where equation (9) is not defined.

If∇upx0, t0q “ 0, suppose there are points pxk, tkq Ñ px0, t0q so that∇upxk, tkq ‰ 0
for all k P N. Then, at pxk, tkq,

ut ď pδij ´ η
k
i η

k
j quxixj (10)

for

ηki “
uxipxk, tkq

|∇upxk, tkq|
.

Since |ηki | ď 1, tηki uk is a bounded set of numbers, by the Bolzano- Weierstrass
theorem (C.4) we can extract a convergent subsequence

ηkli Ñ ηi

with |ηi| ď 1. Passing to the limit kl Ñ 8 in equation (10) gives, at px0, t0q,

ut ď pδij ´ ηiηjquxixj

for some η P Rn with |η| ď 1.

On the other hand, if we cannot find points pxk, tkq Ñ px0, t0q with ∇upxk, tkq ‰ 0,
there is a δ ą 0 so that

∇u “ 0

when |x ´ x0|
2 ` pt ´ t0q

2 ă δ. Fix t “ t0 and find R ą 0 as large as possible so
that ∇u “ 0 in BRpx0q. Since u P C2, ∇u “ D2u “ 0 on BBRpx0q. However, there
are points arbitrary close to BBRpx0q, say for example y P Rn, at which ∇u ‰ 0.
Here, equation (9) holds. Hence, for ξ P BBRpx0q,

utpξ, t0q Ð utpy, t0q ď

ˆ

δij ´
uxipy, t0quxjpy, t0q

|∇upy, t0q|2

˙

uxixjpy, t0q

ď δijuxixjpy, t0q

Ñ δijuxixjpξ, t0q “ 0

upon passing to the limit y Ñ ξ P BBRpx0q. Here we used the fact that u P
C2pRn ˆ r0,8qq. Since u does not vary with x in BRpx0q, we get

utpx, t0q ď 0
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for all x P BRpx0q and in particular utpx0, t0q ď 0. Hence, for any η P Rn, we have
at px0, t0q,

ut ď pδij ´ ηiηjquxixj .

We are now able to give the complete definition of a viscosity solution of equation
(6).

Definition 3.6. Suppose u is a continuous and bounded function. We say that u
is a viscosity subsolution of (6) if for all φ P C2,

φt ď

ˆ

δij ´
φxiφxj

|∇φ|2

˙

φxixj (11)

at any point px, tq where u´ φ attains a local maximum, provided ∇φpx0, t0q ‰ 0.
Further,

φt ď pδij ´ ηiηjqφxixj (12)

for some η P Rn with |η| ď 1 at any point px, tq where u´ φ attains a local maxi-
mum and ∇φpx0, t0q “ 0.
Similarly, u is a viscosity supersolution if the reversed inequality in equation (11)
holds where u´ φ attains a local minimum and ∇φpx0, t0q ‰ 0. If ∇φpx0, t0q “ 0,
the reversed inequality in equation (12) should hold.

If u is both a viscosity sub- and supersolution, and upx, 0q “ gpxq, we say that u
is a viscosity solution of (6).

3.4 Semi-Jets

3.4.1 An equivalent viscosity definition

We introduce an equivalent definition of viscosity solutions. First, we give the
definition of the parabolic semi-jets of a function.

Definition 3.7. Suppose u is bounded and continuous. If px0, t0q P Rn
Ś

r0,8q
and

upx, tq ď upx0, t0q ` qpt´ t0q ` p ¨ px´ x0q `
1

2
px´ x0q

TApx´ x0q ` op|t´ t0| ` |x´ x0|
2
q

when xÑ x0, tÑ t0, we say that pq, p, Aq P P 2,`upx0, t0q. Similarly, if

upx, tq ě upx0, t0q ` qpt´ t0q ` p ¨ px´ x0q `
1

2
px´ x0q

TApx´ x0q ` op|t´ t0| ` |x´ x0|
2
q
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when x Ñ x0, t Ñ t0, we say that pq, p, Aq P P 2,´upx0, t0q. In both cases, p P Rn,
q P R and A is a symmetric nˆ n matrix.

Proposition 3.8. The following properties for the parabolic semi-jets holds.

(i) If u P C2pRn ˆ r0,8qq, then

P 2,`upx0, t0qX P 2,´upx0, t0q “
`

utpx0, t0q,∇upx0, t0q, D
2upx0, t0q

˘

.

(ii)

P 2,`upx0, t0q “ ´P
2,´
p´uqpx0, t0q.

Proof. (i) follows by expanding u in a Taylor series around px0, t0q. (ii) follows by
a direct computation.

Definition 3.9. A continuous and bounded function u is a viscosity subsolution
at px0, t0q of equation (6) if

q ď

ˆ

δij ´
pipj

|p|2

˙

aij, if p ‰ 0,

q ď pδij ´ ηiηjqaij, if p “ 0,

for some η P Rn, provided pq, p, Aq P P 2,`upx0, t0q with |η| ď 1.

A continuous and bounded function u is a viscosity supersolution at px0, t0q of
equation (6) if

q ě

ˆ

δij ´
pipj

|p|2

˙

aij, if p ‰ 0,

q ě pδij ´ ηiηjqaij, if p “ 0,

for some η P Rn, provided pq, p, Aq P P 2,´upx0, t0q with |η| ď 1. Finally, u is a
viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.
In addition, it is required that upx, 0q “ gpxq.
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It is easy to see that definition 3.1 and 3.9 are equivalent. We show here the basic
idea. Suppose that for px0, t0q P Rn

Ś

r0,8q we have for φ P C2pRnˆr0,8qq

pu´ φqpx0, t0q ě pu´ φqpx, tq (13)

for all px, tq close to px0, t0q. Expanding φ from equation (13) in a Taylor series
around px0, t0q gives

upx, tq ď upx0, t0q `∇φpx0, t0q ¨ px´ x0q ` φtpx0, t0qpt´ t0q

`
1

2
px´ x0q

TD2φpx0, t0qpx´ x0q ` op|t´ t0| ` |x´ x0|
2
q,

which shows that pφtpx0, t0q,∇φpx0, t0q, D
2φpx0, t0qq P P

2,`upx0, t0q. Similar rea-
soning holds when pu´ φq has a minimum at px0, t0q.

This observation gives us the following way to calculate the parabolic semi-jet of
a function.

P 2,`upx0, t0q “
!

`

φtpx0, t0q,∇φpx0, t0q, D
2φpx0, t0q

˘

: Dφ P C2 such that

u´ φ has a maximum at px0, t0q
)

,

P 2,´upx0, t0q “
!

`

φtpx0, t0q,∇φpx0, t0q, D
2φpx0, t0q

˘

: Dφ P C2 such that

u´ φ has a minimum at px0, t0q
)

.

This follows from the remark under the consistency lemma 3.2. In the following
example, we omit the t-variable for simplicity. A common notation is then to re-
place the parabolic semi-jet P 2,˘ by the ordinary semi-jet J2,˘.

Example 3.10. (Calculations of semi-jets.)
Suppose upxq “ |x| for x P R. Since u is smooth at any point except x “ 0, we
have

J2,`upxq “ J2,´upxq “ pt1u ˆ 0qY pt´1u ˆ 0q
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for all x P Rzt0u. At x “ 0, note that J2,`up0q “ ∅, since there can be no smooth
φ so that u´ φ has a maximum at x “ 0.
For J2,´up0q, we look for φ P C2 such that u ´ φ has a minimum at x “ 0. For
this, we may suppose φp0q “ up0q “ 0. We note first that |φ1p0q| ą 1 is out of the
question, see figure 9.

If |φ1p0q| “ 1 as in figure 10, we have φ2p0q ă 0. We must ensure φ ă u for all
x ‰ 0 so we see that φ has negative curvature at the origin. Finally, if |φ1p0q| ă 1
we can allow positive curvature for φ, see figure 11. In total we have

J2,´up0q “ pt1u ˆ p´8, 0sqY pt´1u ˆ p´8, 0sqY pp´1, 1q ˆ Rq .

Figure 9: |φ1p0q| ą 1 Figure 10: |φ1p0q| “ 1 Figure 11: |φ1p0q| ă 1
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3.4.2 A stability estimate

The closures of P 2,` and P 2,´ are defined as follows. If pq, p, Aq P P̄ 2,`upx0, t0q
there exists pxk, tkq Ñ px0, t0q and pqk, pk, Akq Ñ pq, p, Aq so that

pqk, pk, Akq P P 2,`upxk, tkq

for each k P N. We define P̄ 2,´ in a similar manner.

Lemma 3.11. Stability.
Suppose u is a viscosity subsolution of equation (6) and pq, p, Aq P P̄ 2,`upx0, t0q.
Then

q ď

ˆ

δij ´
pipj

|p|2

˙

aij, if p ‰ 0,

q ď pδij ´ ηiηjqaij, if p “ 0,

for some η P Rn with |η| ď 1. A similar result holds for viscosity supersolutions.

Proof. Since pq, p, Aq P P̄ 2,`upx0, t0q there are pqk, pk, Akq Ñ pq, p, Aq so that

qk ď
`

δij ´ γ
k
i γ

k
j

˘

akij

where

γki “

#

pki
|pk|
, pk ‰ 0

ηki , pk “ 0, |η| ď 1

We will use that if A,B are matrices and Ak Ñ A,Bk Ñ B pointwise each entry
then

lim
kÑ8

tr
`

AkBk
˘

“ lim
kÑ8

ÿ

i,l

AkilB
k
li “

ÿ

i,l

´

lim
kÑ8

Akil

¯´

lim
kÑ8

Bk
li

¯

“ tr pABq .

First, if p ‰ 0 then pk ‰ 0 for large enough k. Hence, γki Ñ
pi
|p|

and

q ď

ˆ

δij ´
pipj

|p|2

˙

aij, if p ‰ 0.

Now, if p “ 0 there is a subsequence

γ
kj
i Ñ ηi
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with |ηi| ď 1. This follow from the Bolzano-Weierstrass theorem (C.4) since |γki | ď
1 for all k. We pass to the limit kj Ñ 8 to get the result. The proof is similar for
the viscosity supersolutions.
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4 Uniqueness of viscosity solutions

4.1 Uniqueness of C2 solutions

We want to show that, given the initial function g, equation (6) has a unique so-
lution. We first do it for a simplified case, when u P C2pRn ˆ r0,8qq and ∇u ‰ 0.
Finally, we remove this restriction by assuming only that u is continuous and
bounded. It is clear that for the latter part, we need to use the notion of viscosity
solutions.

Theorem 4.1. Suppose u, v P C2pRnˆr0,8qq with nonzero gradients and upx, 0q ď
vpx, 0q. Finally assume u ď v when |x| ` t ě R for some R ą 0. Then

u ď v

in Rn
Ś

r0,8q.

Remark. The condition u ď v when |x| ` t ě R will be explained later. An intu-
itive argument for this assumption is that we are looking at geometrical objects.

Proof. Let

Ω “ tpx, tq P Rn
ˆ r0,8q : |x| ` t ď Ru

and define

wpx, tq “ upx, tq ´ vpx, tq ´ εt,

for ε ą 0.

When |x| ` t “ R we have

wpx, tq “ upx, tq ´ vpx, tq ´ εt ď ´εt ď 0

and

wpx, 0q “ upx, 0q ´ vpx, 0q ď 0.

Hence, w ď 0 on BΩ.
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Suppose now that w has a local maximum point in Ω. At this point, ∇w “

∇u´∇v “ 0 and D2w “ D2pu´ vq ď 0 from the infinitesimal calculus. Further,
wt ě 0. This gives

0 ď wt “ ut ´ vt ´ ε “

ˆ

δij ´
uxiuxj

|∇u|2

˙

uxixj ´

ˆ

δij ´
vxivxj

|∇v|2

˙

vxixj ´ ε

“

ˆ

δij ´
uxiuxj

|∇u|2

˙

puxixj ´ vxixjq ´ ε ď ´ε,

where the last inequality follows from proposition A.4. We have showed that w
can not attain a local maximum in Ω. Thus

wpx, tq “ upx, tq ´ vpx, tq ´ εt ď max
BΩ

w “ 0

in Ω. Passing to the limit εÑ 0 gives u ď v in Ω.

4.2 Inf-and sup convolutions

We want to define an approximation to merely continuous functions. The approxi-
mated version should be twice differentiable almost everywhere, and coincide with
the original function in some limit. We also want the approximation to preserve
viscosity properties.

Definition 4.2. Suppose u is continuous and bounded, say ´M ď u ď M . For
ε ą 0, we define

uεpx, tq “ sup
yPRn,sě0

"

upy, sq ´
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

*

uεpx, tq “ inf
yPRn,sě0

"

upy, sq `
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

*

,

to be the sup- and inf convolution of u, respectively.

Proposition 4.3. The following properties holds for the inf- and sup convolutions:

(i) ´p´uεqpx, tq “ uεpx, tq.

(ii) The supremum for uε and the infimum for uε are attained on a compact set.

(iii) uε ď u ď uε.

(iv) ´M ď uε, u
ε ďM .
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(v) If we have found points py, sq P Rn ˆ r0,8q so that

uεpx, tq “ upy, sq ´
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

then |x´ y|, |t´ s| ď 2
?
Mε. A similar assertion holds for uε. From this we

see that definition 4.2 is only valid for t ě 2
?
Mε.

Proof. The calculation

´p´uεqpx, tq “ ´ sup
yPRn,sě0

"

´

ˆ

upy, sq `
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

˙*

“ inf
yPRn,sě0

"

upy, sq `
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

*

shows that piq holds true.

To prove piiq we only prove the assertion for uε. Property piq tells us that it
is enough to work with one of the convolutions. Define fpy, s;x, tq “ upyq ´
1
2ε
p|x´ y|2 ` pt´ sq2q, where px, tq are kept fixed. We calculate

fpy, s;x, tq ě min
Rnˆr0,8q

u´
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

Ñ ´8

when |y|, s Ñ 8. It then follows that since f is continuous, it must attains its
maximum on a compact set, which shows that the supremum in the definition of
uε is a maximum.

For piiiq we simply take y “ x and s “ t in the definition.

We show pivq for the sup convolution. The first inequality, uε ě ´M follows from
piiiq. Fix px, tq P Rn ˆ r0,8q. Then

upy, sq ´
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

ď upy, sq

for all py, sq P Rn ˆ r0,8q. Hence,

uεpx, tq ď sup
yPRn,sě0

upy, sq “M.

We prove the assertion pvq for the sup-convolution. If

uεpx, tq “ upy, sq ´
1

2ε

`

|x´ y|2 ` pt´ sq2
˘
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we see from pivq that

|x´ y|2 ` pt´ sq2 “ 2ε puεpx, tq ´ upy, sqq

ď 4εM.

Example 4.4. (The Hopf-Lax formula.)
The solution of the Hamilton-Jacobi equation

ut `Hp∇uq “ 0

where H is convex is given by

upx, tq “ inf
yPRn

!

upy, 0q ` tL
´x´ y

t

¯)

where L is the Lagrangian of H. We refer to [E] for formal treatment of the
Hopf-Lax formula. For Hppq “ 1

2
p2, it turns out that L “ H and the solution is

then

upx, tq “ inf
yPRn

"

upy, 0q `
1

2t
|x´ y|2

*

and we see the clear relation with the inf-convolution of u given in definition 4.2.
Taking upx, 0q “ |x|2, we obtain the solution

upx, tq “
|x|2

1` 2t
,

in correspondence with example 3.5, the method of vanishing viscosity.

Lemma 4.5. The functions uε and uε are locally Lipschitz continuous.

Proof. We prove the result for uε which is enough by proposition 4.3 (i). Find
py, sq so that

uεpx, tq “ upy, sq `
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

.

Then we have

uεpx̂, tq ´ uεpx, tq “

inf
zPRn,τě0

"

upz, τq `
1

2ε

`

|x̂´ z|2 ` pt´ τq2
˘

*

´ upy, sq ´
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

.
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Choose now z “ y and τ “ s so that

uεpx̂, tq ´ uεpx, tq ď
1

2ε

`

|y ´ x̂|2 ´ |y ´ x|2
˘

“
1

2ε

`

|x̂´ x|2 ` 2 xx̂´ x, x´ yy
˘

.

Note that |x´y| ď 2
?
Mε from proposition 4.3 pvq. If Ω Ă Rnˆr0,8q is compact,

the Cauchy-Schwarz’ inequality yields for x, x̂ P Ω

uεpx̂, tq ´ uεpx, tq ď
1

ε

´

max
xPΩ

x`
?
Mε

¯

|x̂´ x| ” C|x̂´ x|.

Interchanging the role of x and x̂, we see that uε is Lipschitz continuous in the
space variable. A similar proof shows that u is Lipschitz in the time variable.

We want to show that uε, uε Ñ u uniformly on compact sets. We derive this by
applying Dini’s theorem.

Theorem 4.6. (Dini’s theorem.)
Suppose tfnu

8
n“1 is a monotone sequence of continuous functions defined on a

compact set Ω Ă Rn ˆ r0,8q. Further, suppose that fn Ñ f pointwise, with f
being continuous. Then the convergence is uniform in Ω.

Proof. We suppose without loss of generality f “ 0 and tfnu
8
n“1 is nonincreasing.

Set

An “ tx P Ω : fnpxq ă εu.

Since tfnu
8
n“1 is nonincreasing, we have

A1 Ă A2 Ă A3 Ă ...

and further

Ω “
8
ď

n“1

An.

The last statement follows from the pointwise convergence: if x P Ω, there is an n
so that fnpxq ă ε which shows that x is in the countable union. By the Heine-Borel
theorem (C.2) there is an N P N so that

Ω “
N
ď

n“1

An “ AN .

Hence, given ε ą 0, there is an N ą 0 so that fnpxq ă ε for all x P Ω, which shows
that fn Ñ 0 uniformly in Ω.
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Proposition 4.7. The inf- and sup convolutions satisfy

uε, u
ε
Ñ u

uniformly on compact subsets of Rn ˆ r0,8q.

Proof. We prove the assertion for uε. By proposition 4.3 (ii) we can write

uεpx, tq “ sup
py,sqPΩ

"

upy, sq ´
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

*

where Ω is a compact subset of Rn ˆ r0,8q.

Let px, tq P Ω and find yε, sε P Ω so that

uεpx, tq “ upyε, sεq ´
1

2ε

`

|x´ yε|
2
` pt´ sεq

2
˘

.

From proposition 4.3 (v), yε Ñ x and sε Ñ t when ε Ñ 0. Continuity of u then
gives

upx, tq “ lim
εÑ0

upyε, sεq ě lim
εÑ0

uεpx, tq.

By proposition 4.3 (iii), uε ě u for any ε ą 0, and we see that uεpxq decreases
pointwise to upxq. Since the limit function u is continuous, we can apply theorem
4.6 to see that uε Ñ u uniformly on Ω.

We see that the functions uε and uε satisfy many of the desired properties that we
searched for. However, we aim for them to be twice differentiable in some sense,
and we want to know under what conditions they are viscosity solutions of the
mean curvature flow equation.

Lemma 4.8. The sup convolution uε is semi-convex in space with semi-convexity
constant C “ 1

ε
. Similarly, uε is semi-concave in space with the semi-concavity

constant 1
ε
.

Proof. We use definition B.1 to show that uε is semi-convex. That is, we want to
show that, for any x, h P Rn,

uεpx` h, tq ´ 2uεpx, tq ` uεpx´ h, tq ě ´
1

ε
|h|2.
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First, find py, sq P Rn ˆ r0,8q so that

uεpx, tq “ upy, sq ´
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

.

From the definition we can take

uεpx` h, tq “ sup
zPRn,τą0

"

upz, τq ´
1

2ε

`

|x´ z ` h|2 ` pt´ τq2
˘

*

ě upy, sq ´
1

2ε

`

|x´ y ` h|2 ` pt´ sq2
˘

and similarly

uεpx´ h, tq ě upy, sq ´
1

2ε

`

|x´ y ´ h|2 ` pt´ sq2
˘

.

Using these estimates, we calculate

uεpx` h, tq ´ 2uεpx, tq ` uεpx´ h, tq

ě ´
1

2ε

`

|x´ y ` h|2 ´ 2|x´ y|2 ` |x´ y ´ h|2
˘

“ ´
1

ε
|h|2,

which shows that uε is semi-convex in space with semi-convexity constant 1
ε
.

The next theorem shows that if u is a viscosity solution of
#

ut “ |∇u| div
´

∇u
|∇u|

¯

px, tq P Rn
Ś

r0,8q

upx, 0q “ gpxq px, tq P Rn
Ś

tt “ 0u
(14)

then uε is a viscosity subsolution and uε is a viscosity supersolution of the same
equation.

Theorem 4.9. Suppose u is a viscosity solution of equation (14). Then uε (uε) is
a viscosity subsolution (supersolution) on Rn ˆ p2

?
Mε,8q.

Remark. Recall that definition 4.2 is only valid for t ě 2
?
Mε. We actually need a

strict inequality to preserve the viscosity property, which is seen in the proof below.

Proof. We show that the theorem holds for viscosity supersolutions. Suppose
uε ´ φ has a local minimum for φ P C2 at the point px0, t0q where t0 ą 2

?
Mε.

Find py0, s0q close to px0, t0q so that

uεpx0, t0q “ upy0, s0q `
1

2ε

`

|x0 ´ y0|
2
` pt0 ´ s0q

2
˘

.
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Further, from the definition of uε, pick py, sq close to px, tq so that

uεpx, tq ě upy, sq `
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

.

Since uε´φ has a local minimum at px0, t0q we have puε´φqpx0, t0q ď puε´φqpx, tq
for all px, tq close to px0, t0q. This gives

upy0, s0q ´ φpx0, t0q `
1

2ε

`

|x0 ´ y0|
2
` pt´ sq2

˘

ď upy, sq ´ φpx, tq `
1

2ε

`

|x´ y|2 ` pt´ sq2
˘

.

Now, pick x “ y ` px0 ´ y0q, t “ s` pt0 ´ s0q to find

pu´ φ̂qpy0, s0q ď pu´ φ̂qpy, sq

where φ̂py, sq “ φpy ` x0 ´ y0, s ` t0 ´ s0q. Since this holds for all py, sq close
to py0, s0q and the partial derivatives of φ̂ at py0, s0q coincide with the partial
derivatives of φ at px0, t0q the result follows, as u is a viscosity solution.

4.3 Uniqueness of viscosity solutions

For convenience, we divide the proof into different parts. The first part introduces
a technique called ”doubling the number of variables” and uses the inf-and sup
convolutions of a continuous and bounded function. We then show that the vis-
cosity property is preserved under the convolution. Finally, we complete the proof
of the theorem and compare our method to the well known Ishii’s lemma. The
statement of the theorem is similar to the one given in section 4.1.

Theorem 4.10. Suppose u is a viscosity subsolution and v is a viscosity superso-
lution of equation (6) with u ď v when t “ 0. Assume further that u and v are
constant and u ď v when |x| ` t ě R for some R ą 0.
Then

u ď v

in Rn
Ś

r0,8q.
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Proof.

• Doubling the number of variables.

As in the proof of the uniqueness of C2 solutions, we define

Ω “ tpx, tq P Rn
ˆ r0,8q : |x| ` t ď Ru

and we want to show that u ď v in Ω. Now suppose

max
Ω
pu´ vq ” θ ą 0.

For small α ą 0 and px, sq P Ω we have maxΩ pu´ v ´ αsq ě
θ
2
. We now introduce

the inf-and sup convolution of u. Since uε ě u and vε ď v we have

max
Ω
puε ´ vε ´ αsq ě

θ

2
ą 0.

Given δ ą 0, let

Φpx, y, t, sq “ uεpx, tq ´ vεpy, sq ´ αs´
1

δ

`

|x´ y|4 ` pt´ sq2
˘

(15)

where x, y P Rn, t, s ą 0. The idea is that this function has a maximum, attained
on a compact set. To see this note that

sup
px,y,t,sqPR2n

Ś

r0,8q2
Φ ě

θ

2
ą 0

by equation (15). To see why this is a maximum, and that this is attained in
some compact set, note that for large |x|, |y|, |s| and t we have uε “ u, vε “ v and
uε ă vε by assumption. This gives

Φ Ñ ´8

when |x|, |y|, s, tÑ 8. Hence, the supremum is attained in some large ball. Since
Φ is continuous, it attains its maximum on a compact set.

We now wish to apply theorem 4.9 which tells us that if u “ upx, tq is a viscosity
subsolution, then uεpx, tq is a viscosity subsolution for t ą 2

?
Mε, where M is

the maximum of u. A similar result holds for viscosity supersolutions. Denote
px0, y0, t0, s0q by the maximum point of Φ.
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• The viscosity property persists under the convolutions.

We show that the maximum point of Φ satisfies t0, s0 ą C
?
ε, where C “ 2

?
M . It

then follows from theorem 4.9 that uε and vε are viscosity sub- and supersolutions
close to the maximum point, respectively.

Suppose for contradiction that t0 ď C
?
ε. Then

uεpx0, t0q ´ vεpy0, s0q ÝÑ upx0, 0q ´ vpy0, s0q

as εÑ 0 in view of proposition 4.7 and the continuity of u. By the definition of Φ
in equation (15) we have

|x´ y|4 ` pt´ sq2 ď δ

ˆ

max
R2nˆr0,8q2

puε ´ vε ´ αsq ` max
R2nˆr0,8q2

Φ

˙

.

so that

|x0 ´ y0| ď C̃δ
1
4 , |t0 ´ s0| ď C̃δ

1
2

for a constant C̃ ą 0. Since u and v are continuous,

uεpx0, t0q ´ vεpy0, s0q ÝÑ upx0, 0q ´ vpx0, 0q

as ε, δ Ñ 0. Recall that u ď v when t “ 0 by assumption. Hence, passing to the
limit ε, δ Ñ 0 we get

θ

2
ď Φpx0, y0, t0, s0q ď uεpx0, t0q ´ vεpy0, s0q

ÝÑ upx0, 0q ´ vpx0, 0q ď 0.

This contradicts θ ą 0 so we must have t0 ą C
?
ε.

• Semi-convex functions and matrices.

We see that Φ is semi-convex, since uε ´ vε is semi-convex. As Φ has a maximum
at px0, y0, t0, s0q we have from corollary B.5 that there exists ξk “ pxk, yk, tk, skq Ñ
px0, y0, t0, s0q so that

Φ, uε, vε are twice differentiable in the sense of Alexandrov at ξk

∇x,y,t,sΦpξkq Ñ 0

D2
x,yΦpξkq ď

1

k
I2n.
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We now find points pxk, yk, tk, skq for which

Φpx, y, t, sq “ uεpx, tq ´ vεpy, sq ´ αs´
1

δ

`

|x´ y|4 ` pt´ sq2
˘

is twice differentiable. For convenience, write

pk “ ∇uεpxk, tkq, p̄k “ ∇vεpyk, skq,
qk “ uεtpxk, tkq, q̄k “ vε,tpyk, skq,

Xk
“ D2uεpxk, tkq, Y k

“ D2vεpyk, skq.

Differentiating, we see that

pk, p̄k Ñ
4

δ
|x0 ´ y0|

2
px0 ´ y0q ” p

qk ´ q̄k Ñ q ´ q̄ “ α.

We may assume that these limits exists, in the view that the inf- and sup convo-
lutions are Lipshitz continuous, see lemma 4.5. For the second derivatives, note
that

D2
x,yΦpxk, yk, tk, skq “

„

Xk 0
0 ´Y k



´
12

δ
|xk ´ yk|

2

„

I ´I
´I I



ď
1

k
I2n.

In the view that uε ´ vε is semi-convex, we also have for any ε ą 0
„

Xk 0
0 ´Y k



ě ´
1

ε
I2n.

In view of these two inequalities, we see that there exists a limit Xk Ñ X and
Y k Ñ Y . Further, letting k Ñ 8 in the first equation, we see that

X ď Y

since the matrix
„

I ´I
´I I



annihilates vectors in R2n. We now plan to use the viscosity property of uε and
vε. The problem arrives when x0 “ y0, because then p “ 0. However, in view of
the matrix inequalities we see that

´
1

ε
I2n ď

„

Xk 0
0 ´Y k



ď
1

k
I2n `

12

δ
|xk ´ yk|

2

„

I ´I
´I I



` ε
2 ¨ 122

δ2
|xk ´ yk|

4

„

I ´I
´I I



.
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The last term is added by noting that for a symmetric matrix A, we have A2 ě 0.
Choose now

ε “ εpkq “
δ

24|xk ´ yk|2
.

This yields

´
24

δ
|xk ´ yk|

2I2n ď

„

Xk 0
0 ´Y k



ď
1

k
I2n `

24

δ
|xk ´ yk|

2

„

I ´I
´I I



and we see that X “ Y “ 0 if x0 “ y0.

Now, using that uε and vε are viscosity sub- and supersolutions close to the maxi-
mum point, we have

pq, p,Xq P P̄ 2,`uεpx0, t0q,

pq̄, p̄, Y q P P̄ 2,´vεpy0, s0q.

Using the stability result for viscosity solutions, lemma 3.11, we get

q ď

ˆ

δij ´
pipj
|p|2

˙

Xij if x0 ‰ y0

q ď 0 if x0 “ y0

and

q̄ ě

ˆ

δij ´
pipj
|p|2

˙

Yij if x0 ‰ y0

q̄ ě 0 if x0 “ y0.

Since q ´ q̄ “ α we get the contradiction

α ď 0

regardless of whether x0 “ y0 or not. We conclude that u ď v in Ω.

Remark. We have actually shown, in doing this proof, a version of Ishii’s lemma,
or the theorem of sums, which is one of the main tools when studying viscosity
solutions. It was first proven in [CIL], and the elliptic version stated in [K] is
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given here: Suppose u and v are continuous in Ω̄. For φ P C2
`

Ω̄ˆ Ω̄
˘

suppose
px0, y0q P Ω̄ˆ Ω̄ is a maximum for the function

upxq ` vpyq ´ φpx, yq.

Then, for each µ ą 1 there are symmetric matrices X, Y such that

pDxφpx0, y0q, Xq P J̄
2,`upx0q, pDypφpx0, y0q, Y q P J̄

2,`vpy0q

and

´
`

µ` }D2φpx0, y0q}
˘

„

I 0
0 I



ď

„

X 0
0 Y



ď D2φpx0, t0q `
1

µ

`

D2φpx0, t0q
˘2
.
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5 Geometric properties of the mean curvature

flow

5.1 Mean curvature flow for compact sets

In this section, we present some geometric properties of the mean curvature flow.
Recall that we are given

Γ0 “ tx P Rn : gpxq “ 0u

for some continuous function g : Rn Ñ R. We also assume that g is constant when
|x| ě r for some r ą 0. We then look for

Γt “ tx P Rn : upx, tq “ 0u

where u is the unique weak solution to the mean curvature flow equation,

#

ut “ |∇u| div
´

∇u
|∇u|

¯

px, tq P Rn
Ś

r0,8q

upx, 0q “ gpxq px, tq P Rn
Ś

tt “ 0u
(16)

Lemma 5.1. Suppose u is a viscosity solution of the mean curvature flow equation
(16). Further, suppose f is a continuous function. Then

v “ fpuq

is also a viscosity solution of equation (16).

Proof. We only prove that f is a viscosity subsolution under the assumption that
f is strictly increasing.
Suppose first that f is smooth, so that it has an inverse h “ f´1 and f 1 ą 0.
Choose φ P C2 so that

0 “ pv ´ φqpx0, t0q ě pv ´ φqpx, tq

for all px, tq close to px0, t0q. We rearrange the equation and compose both sides
with h to get

pu´ hpφqpx0, t0q ě pu´ hpφqpx, tq

for all px, tq close to px0, t0q. Using the fact that u is a viscosity solution,
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h1φt ď

ˆ

δij ´
φxiφxj
|∇φ|2

˙

`

h2φxiφxj ` h
1φxixj

˘

, if ∇φ ‰ 0

h1φt ď pδij ´ ηiηjqh
1φxixj , ∇φ “ 0, |η| “ 1.

The term involving h2pφq is zero, since if p ‰ 0 we have

n
ÿ

i,j“1

ˆ

δij ´
pipj
|p|2

˙

pipj

“
1

|p|2

¨

˝|p|4 ´

˜

n
ÿ

i“1

p2
i

¸2
˛

‚“ 0.

Hence, in both cases we can divide by h1 ą 0 which shows that v “ fpuq is a
viscosity subsolution.

For continuous and strictly increasing functions f , we find a smooth sequence of
functions tfku

8
k“1 with f 1k ą 0 for all k and fk Ñ f . A simple application of the

stability lemma 3.11 shows that f is a viscosity subsolution.

We mention two methods to show existence of solutions of the mean curvature
flow equation. One is given by the Perron method, see for example [CIL]. One
can also look at an approximation of the original equation. The idea is that the
theory of uniformly elliptic partial differential equations gives existence of smooth
solutions [LSU]. Considering

ut “

ˆ

p1` θqδij ´
uxiuxj

ε2 ` |∇u|2

˙

uxixj ” trpAθ,εD
2uq

before letting θ, εÑ 0, we can show that

xTAθ,εx ě θ|x|2,

for all x P Rn. Thus Aθ,ε satisfies the uniform ellipticity condition, and the equa-
tion is uniformly elliptic.

Theorem 5.2. Suppose g : Rn Ñ R is continuous. Further, assume that g is
constant when |x| ě r for some r ą 0. Then there exists a continuous viscosity
solution u of equation (16) so that u is constant when |x|` t ě R for some R ą 0.
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In order to derive geometric properties of the flow, given only the initial surface
Γ0, we need to show that the subsequent surfaces tΓtutě0 are well defined.

Theorem 5.3. Γt, for t ě 0 is well defined. More precisely, suppose that u and
v are viscosity solutions of the mean curvature flow equation, with upx, 0q “ gpxq,
vpx, 0q “ fpxq. If

Γ0 “ tx : gpxq “ 0u “ tx : fpxq “ 0u

then

Γt “ tx : upx, tq “ 0u “ tx : vpx, tq “ 0u.

Remark. This shows that the flow is independent of the choice of our initial func-
tion, as long as our choice agrees on Γ0.

Proof. Suppose first that f, g ě 0. Find a continuous function Φ so that

Φpgpxqq ě fpxq, x P Rn

Φp0q “ 0

Φ ą 0, x P Rn
zt0u.

By lemma 5.1 the function Φpuq solves the same equation with Φpuq “ Φpgq at
t “ 0. By the comparison principle, theorem 4.10, we have

Φpuq ě v ě 0

on Rnˆr0,8q. We see that if upx, tq “ 0 then vpx, tq “ 0. Repeating the procedure,
but now choosing Φ so that

Φpfpxqq ě g, x P Rn

which shows that vpx, tq “ 0 implies upx, tq “ 0.

For general g : Rn Ñ R note that |u| is a viscosity solution with |u| “ |g| at t “ 0.
Since

Γ0 “ tx : gpxq “ 0u “ tx : |gpxq| “ 0u

we may consider the positive function |g| in the proof. The same argument holds
for f .
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We want to use the comparison principle for solutions of the mean curvature flow
equation to show a similar type of statement for the geometric flow. The next
proposition tells us that, if a compact set sits in a bigger compact set, and the two
sets evolve by mean curvature flow, the smaller set will always lie inside the bigger
set. In addition, the distance between initially disjoint surfaces increases under
the flow. We put the proof from [ES] with some modifications. In both cases we
use the distance function to describe the initial function g. It is defined by

distpA,Bq “ inf t|x´ y| : x P A, y P Bu .

Proposition 5.4. Suppose Γ0,Λ0 are nonempty compact subsets of Rn.

(i) Γ0 Ă Λ0 implies

Γt Ă Λt

for all times t ě 0.

(ii) If Γ0 and Λ0 are disjoint, then

distpΓ0,Λ0q ď distpΓt,Λtq

up until a time T where either ΓT “ H or Λt “ H.

Proof. For piq, let upx, 0q “ gpxq, vpx, 0q “ fpxq where u, v are viscosity solutions
of equation (16). Here, the zero-level sets of up¨, tq correspond to Γt and the zero-
level sets of vp¨, tq correspond to Λt. By theorem 5.3 we can take

gpxq “ distpx,Γ0q ě 0,

fpxq “ distpx,Λ0q ě 0

since we notice that Γ0 and Λ0 are really the sets where g and f are zero, respec-
tively. Since Γ0 Ă Λ0 we have gpxq ě fpxq for all x P Rn. By the comparison
principle, theorem 4.10,

upx, tq ě vpx, tq ě 0

for all px, tq P Rn ˆ r0,8q. Hence, if x P Γt we see that vpx, tq “ 0 which implies
Γt Ă Λt.

For the second statement, we can take the initial function g with a zero level-set
corresponding to Γ0. We also want it to be related to the set Λ0 and the distance
between Γ0 and Λ0.
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We find a Lipschitz continuous function g : Rn Ñ R so that

‚ Γ0 “ tx : gpxq “ 0u,Λ0 “ tx : gpxq “ 1u

‚ gpxq “ 2 for x P A “ tx : |x| ě r for large r ą 0u

‚

|gpxq ´ gpyq| ď
1

distpΓ0,Λ0q
|x´ y|

for all x ‰ y.

Such a function g exists, for example let

gpxq “ min
yPΓ0YΛ0YA

"

gpyq `
1

distpΓ0,Λ0q
|x´ y|

*

.

Considering different possibilities for x, we see that Γ0 and Λ0 are the sets where
g “ 0 and g “ 1 respectively.

Again, we apply theorem 5.3. Let u be the solution of the mean curvature flow
equation with upx, 0q “ gpxq. Then

Γt “ tx : upx, tq “ 0u,Λt “ tx : upx, tq “ 1u.

From a contraction property given in theorem 3.3 in [ES] which follows from the
comparison principle, we can extract that

|upx, tq ´ upy, tq| ď
1

distpΓ0,Λ0q
|x´ y|

for all x ‰ y.
Before we reach the critical time T , we can find points x P Γt, z “ Λt so that

|x´ z| “ distpΓt,Λtq.

Then, since u “ 0 on Γt and u “ 1 on Λt we have

1 “ upx, tq ´ upz, tq ď
1

distpΓ0,Λ0q
|x´ z| “

distpΓt,Λtq

distpΓ0,Λ0q
.

In the paper [G1], Grayson showed that, for n “ 2, any embedded curve converges
to a convex curve under the mean curvature flow before contracting to a point.
This, along with the previous proposition leave us with a peculiar example.
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Example 5.5. (Why the snake does not move by mean curvature.)
In example 2.10 we calculated that, for n “ 2, the unit circle shrinks into a point
after t “ 1

2
seconds. By the previous observation, if we take a closed spiral-shaped

curve inside the unit circle, it will unwrap itself in less than half a second, become
convex and shrink to a point. See figure 12.

Figure 12: The snake unwraps itself under mean curvature flow.

Example 5.5 could not happen in higher dimensions than n “ 2. In the paper
[G2], Grayson created an example, for which a smooth initial surface changed its
topology under the mean curvature flow. Figure 13 shows a dumbbell, the initial
surface. Under the mean curvature flow, provided the cylinder separating the two
bells is long and narrow enough, the surface will develop a singularity. Here, the
two bells are separated, creating two convex bodies. By the work of [H], the two
convex bodies will then shrink to a point.

We remark that the geometric applications only work for codimension one. Thus,
we can not use these results for curves in R3.

Example 5.6. (Codimensions.)
Let

Γ0 “ tpx, y, zq : x2
` y2

“ 9, z “ 0u, Λ0 “ tpx, y, zq : px´ 2q2 ` z2
“ 9, y “ 0u

describe circles in R3. In example 2.10 we calculated the evolution of circles under
mean curvature flow,

Γt “ tpx, y, zq : x2
` y2

“ 9´ 2t, z “ 0u, Λt “ tpx, y, zq : px´ 2q2 ` z2
“ 9´ 2t, y “ 0u.
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Figure 13: Under the mean curvature flow, the surface will evolve smoothly until
a time when the two ends pinch of the cylinder.

At time t “ 4 we see that p1, 0, 0q P ΓtX Λt, but Γ0X Λ0 is empty. This clearly
violates proposition 5.1 (ii).

On the other hand, taking

Γ0 “ ty
2
` z2

“ 4, ´1 ď x ď 1u

Λ0 “ tpx´ 4q2 ` y2
` z2

“ 4u,

to be a cylinder and a sphere respectively, we have

Γt “ ty
2
` z2

“ 4´ 2t, ´1 ď x ď 1u

Λt “ tpx´ 4q2 ` y2
` z2

“ 4´ 4tu.

The closest point from the cylinder to the sphere is clearly given at x “ 1 for the
cylinder. Further, by symmetry, the distance does not depend on where on the
circle y2 ` z2 “ 4´ 2t we are. A calculation shows that

distpΓt,Λtq
2
“ 17´ 6t´ 4

a

p13´ 2tqp1´ tq

for 0 ď t ď 1 (at time t “ 1 the sphere has contracted to a point). We see that the
distance is increasing with time, in correspondence with proposition 5.1 (ii).
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5.2 Minimal surfaces and decrease in surface area

A minimal surface is a surface that minimizes its area. If we consider all smooth
surfaces z “ upx, yq in a bounded domain Ω, we want to minimize

Apuq “

ĳ

Ω

a

1` |∇u|2dxdy. (17)

The following theorem states the relationship between minimal surfaces and mean
curvature.

Theorem 5.7. Suppose that u P C2pΩ̄q minimizes the integral in equation (17)
among all similar functions with the same boundary values. Then H “ 0 for
the surface z “ upx, yq. Hence, a minimal surface is a surface with zero mean
curvature.

Proof. Let η P C2
0pΩ̄q with η “ 0 on BΩ. By assumption, Apu`εηq has a minimum

at ε “ 0 so that

d

dε
Apu` εηq

ˇ

ˇ

ε“0
“ 0.

We calculate

d

dε
Apu` εηq

ˇ

ˇ

ε“0
“

ĳ

Ω

x∇u,∇ηy
a

1` |∇u|2
dxdy.

Using Green’s identity and η “ 0 on BΩ gives

ĳ

Ω

η∇ ¨

˜

∇u
a

1` |∇u|2

¸

dxdy “ 0.

Since this holds for all η P C2
0pΩ̄q the variational lemma (C.1) yields

uxxp1` u
2
yq ´ 2uxuyuxy ` uyyp1` u

2
xq “ 0.

This is often called the minimal surface equation. Comparing with the expression
for H in equation (4), the minimal surface has zero mean curvature.

We note that minimal surfaces under mean curvature flow satisfy 9X “ Hν “ 0, so
that nothing happens to minimal surfaces under mean curvature flow. As we have
already seen, the plane satisfies H “ 0, so the plane is a minimal surface. We give
here some other examples.
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Figure 14: The cateniod. Figure 15: The helicoid.

Example 5.8. (Minimal surfaces.)
The catenoid is defined by

x “ a cosh pv{aq cosu,

y “ a cosh pv{aq sinu,

z “ v,

where a is a non-zero real constant, v P R and u P r´π, πs. The catenoid can be
written explicitly as

z “ a cosh´1

˜

a

x2 ` y2

a

¸

and we see that the catenoid is a minimal surface. The helicoid is given by

rpu, vq “ pu cos v, u sin v, cvq,

where a ď v ď b and u P r´π, πs for some constants a, b and c. It is also a minimal
surface. Further, it is a ruled surface, it can be written

rpu, vq “ bpvq ` uγpvq,

where b is the base curve and γ is the director curve. In our case, we see that γ
describes the unit circle, γpvq “ pcos v, sin v, 0q. See figure 14 and 15.

In the plane, we found that the area of a closed curve is decreasing with a rate of
2π under mean curvature flow. Here, we show a similar result for the surface area
of a graph solution of the mean curvature flow equation, z “ upx, yq. We mention
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that this result holds true for a parametric surface moving under mean curvature
flow, see [H]. As when experimenting with soap films, we keep the boundary fixed
for all times. We note that in this case,

Γt “
 

px, y, zq P R3 : z “ upx, y, tq
(

and the mean curvature flow equation reduces to

ut “ ´
a

1` |∇u|2 H “
a

1` |∇u|2 div

˜

∇u
a

1` |∇u|2

¸

.

Proposition 5.9. Suppose u P C2. Let Ω Ă Rn ˆ r0,8q and consider
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ut “
a

1` |∇u|2 div

ˆ

∇u?
1`|∇u|2

˙

, px, tq P Ω

upx, tq “ fpxq, px, tq P BΩ

upx, 0q “ gpxq.

Then the surface area

Aptq “

ż

Ω

a

1` |∇u|2dxdy

is decreasing with time.

Proof. We calculate, using Green’s theorem

dA

dt
“

ż

Ω

1
a

1` |∇u|2
x∇u,∇uty dxdy

“

¿

BΩ

ut
a

1` |∇u|2
x∇u, νy dS ´

ż

Ω

utdiv

˜

∇u
a

1` |∇u|2

¸

dxdy.

The boundary term vanishes, since u is kept fixed in time on BΩ. We use the
evolution equation to manipulate the last term,

dA

dt
“ ´

ż

Ω

H2
a

1` |∇u|2dxdy ď 0.
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6 Concluding remarks and further work.

Most of the work in this thesis has been made in connection with viscosity solutions
and uniqueness of solutions. By investigating properties of semi-convex functions
and inf- and sup convolutions, we were also able to see the connection between the
mean curvature flow equation and other second order partial differential equations,
where uniqueness is often showed by an application of the Ishii lemma.

Expanding the ideas from the previous section, one can find the minimal sur-
faces corresponding to a given boundary. Simply putting any surface touching the
boundary and letting it flow by mean curvature flow, yields a minimal surface once
the evolution stops. This theorem is summarized in theorem 2.1 in Huisken [H2].

In further work, it would be interesting to include the Gaussian curvature and
other geometric quantities, controlling moving surfaces. Here, interesting equa-
tions and problems appear and for non-local equations involving the fractional
Laplacian this seems to be terra incognita.
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Appendices

A Matrices

From elementary linear algebra, a real matrix A “ pAijqij is symmetric if Aij “
Aji. A symmetric matrix can be diagonalized by using an orthogonal matrix
S consisting of the eigenvectors of A. If Λ is the matrix consisting of the the
eigenvalues of A on its diagonal, and zero otherwise, we can write

A “ STΛS.

That S is orthogonal means that ST “ S´1.

Remark. If f : Rn Ñ R is in C2pRnq then D2f is symmetric.

For example, when n “ 2, D2f is the matrix given by

ˆ

fxx fxy
fyx fyy

˙

Since f P C2, fxy “ fyx so D2f is symmetric.

Definition A.1. For a symmetric matrix A, if

ξTAξ ě 0,

for all ξ P Rn, we say that A ě 0 or A is positive.

Example A.2. The identity matrix is positive. If x “ px1, x2, ..., xnq then

xT Ix “
n
ÿ

i“1

x2
i ě 0.

The matrix A “ paijqij given by

aij “ δij ´
pipj

|p|2



62

is a positive matrix.

xTAx “
ÿ

i,j

xi

ˆ

δij ´
pipj

|p|2

˙

xj

and so, by the Cauchy-Schwarz’ inequality

|p|2 xTAx “
ÿ

i,j

xiδij |p|
2 xj ´

ÿ

i,j

xipipjxj

“ |x|2 |p|2 ´

˜

ÿ

i

xipi

¸˜

ÿ

j

xjpj

¸

“ |x|2 |p|2 ´

˜

ÿ

i

xipi

¸2

ě |x|2 |p|2 ´

˜

ÿ

i

x2
i

¸˜

ÿ

i

p2
i

¸

“ 0.

From the definition, one can extract the following property of a positive ma-
trix.

Lemma A.3. If A ě 0, the eigenvalues of A are non-negative.

Proof. Write A “ STΛS. Then

0 ď ξTAξ “ ξTSTΛSξ “ pSξqTΛpSξq “ xTΛx,

where x “ Sξ. Further,

xTΛx “
n
ÿ

k“1

xkpΛxqk “
n
ÿ

k“1

n
ÿ

l“1

xkxlΛkl.

Since Λ is a diagonal matrix, the only terms that are nonzero are the terms where
k “ l. Hence,

0 ď xTΛx “
n
ÿ

k“1

λkx
2
k.

This holds for all x P Rn (ξ was arbritrary), so λk ě 0 for k “ 1, .., n.
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Since all the eigenvalues of a positive matrix are positive, define the matrix

?
λ1 0 . . . 0
0

?
λ1 . . . 0

...
...

. . .
...

0 0 . . .
?
λn

to be Λ
1
2 . Indeed, Λ

1
2 Λ

1
2 “ Λ.

Proposition A.4. Suppose A ě 0 and B ě 0 are matrices. Then trpABq ě 0.

In proposition A.4, the trace of a matrix A, denoted tr(A) is given by

trpAq “
n
ÿ

i“1

Aii.

To prove proposition A.4, we need the following lemma.

Lemma A.5. If A ě 0, then trpDADT q ě 0 for all nˆ n matrices D.

Proof. Look at

pDADT
qii “

n
ÿ

k“1

pDAqikpD
T
qki

“

n
ÿ

k“1

pDAqikDik

“

n
ÿ

k“1

n
ÿ

l“1

DilAlkDik.

This seems fairly similar to the product xTAx “
řn
k“1

řn
l“1 xlAlkxk. Letting Di

be the vector containing the ith row of D, Di “ pdi1, di2, ..., dinq, we see that

pDADT
qii “ pD

i
q
TADi

ě 0

since A ě 0. Hence, all the diagonal elements of DADT are positive, so the trace
is positive.

Proof. (Of proposition A.4)
Note first that for any nˆ n matrices A and B we have

trpABq “
n
ÿ

k“1

pABqkk “
n
ÿ

k“1

n
ÿ

l“1

AlkBkl “

n
ÿ

l“1

n
ÿ

k“1

BklAlk “
n
ÿ

l“1

pBAqll “ trpBAq.
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Writing A “ STΛ
1
2 Λ

1
2S gives

trpABq “ trpSTΛ
1
2 Λ

1
2SBq

“ tr
`

pΛ
1
2SqTBpΛ

1
2Sq

˘

.

With C “ Λ
1
2S we see that

trpABq “ trpCTBCq “ trpCBCT
q ě 0,

by lemma A.5 since B is positive.

We use the square root matrix Λ
1
2 to optimize a quadratic form xTAx. If B ě 0

we can define B
1
2 “ STΛ

1
2S, so that B

1
2B

1
2 “ B.

Proposition A.6. Suppose B ě 0 and A is a symmetric matrix. Then

max
xTBx“1

xTAx “ max
i
λi

where tλiu
n
i“1 are the eigenvalues of B´1A. Similarly, the minimum of the above

expression is given by the minimum eigenvalue of B´1A.

Proof. (For maximum)

Let y “ B
1
2x so that yTy “ 1 under the restriction xTBx “ 1. This gives

max
xTBx“1

xTAx “ max
yT y“1

!

yTB´
1
2AB´

1
2y
)

“ max
yT y“1

 

yTSTΛSy
(

.

Here, we have written

B´
1
2AB´

1
2 “ STΛS

since B´
1
2AB´

1
2 is a symmetric matrix. Now, defining z “ Sy gives zT z “ 1 and

further

max
xTBx“1

xTAx “ max
zT z“1

zTΛz “
n
ÿ

i“1

λiz
2
i ď max

i
λi.

Noting that

B´
1
2AB´

1
2 “ λx

implies

B´1Ay “ λy
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for y “ B´
1
2x shows that the matrices B´

1
2AB´

1
2 and B´1A share the same

eigenvalues.

Corollary A.7. Under the same assumptions, if n “ 2 we have

max
xTBx“1

xTAx` min
xTBx“1

xTAx “ trpB´1Aq.

Proof. Since B´
1
2AB´

1
2 is symmetric, write

B´
1
2AB´

1
2 “ STΛS.

The eigenvalues λ1, λ2 of Λ satisfies

max
xTBx“1

xTAx` min
xTBx“1

xTAx “ λ1 ` λ2

by the previous proposition. Using trpABq “trpBAq we get

λ1 ` λ2 “ trpSTΛSq “ trpB´
1
2AB´

1
2 q “ trpB´1Aq.
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B Semi-convex functions

We suppose in this section that Ω is a bounded domain, and Ω Ă Rn.

Definition B.1. A function f : Ω Ñ R is said to be semi-convex with semi-
convexity constant C ą 0 if

fpx` hq ´ 2fpxq ` fpx´ hq ě ´C|h|2

for all x, h P Ω.

A perhaps more common way to define semi-convex functions is that fpxq` C
2
|x|2

is convex. As we will use both definitions in the rest of the appendix, we show
that the two are equivalent.

Proposition B.2. If f is continuous then f satisfies the condition given in defi-
nition B.1 if and only if fpxq ` C

2
|x|2 is convex.

Proof. Suppose first fpxq ` C
2
|x|2 is convex, so that

f
´x` y

2

¯

`
C

2

ˇ

ˇ

ˇ

x` y

2

ˇ

ˇ

ˇ

2

ď
1

2
pfpxq ` fpyqq `

C

4

`

|x|2 ` |y|2
˘

. (18)

Let x “ z ` h and y “ z ´ h. Then x`y
2
“ z and so

fpz ` hq ´ 2fpzq ` fpz ´ hq ě C|z|2 ´
C

2

`

|z ` h|2 ` |z ´ h|2
˘

“ ´C|h|2.

For the other direction, it is easy to verify that equation (18) is valid when f
satisfies the condition in definition B.1. Since f is continuous, fpxq ` C

2
|x|2 is

convex.

We mention two theorems about semi-convex functions. The first one says that
a semi-convex function is twice differentiable almost everywhere in the sense of
Alexandrov.

Theorem B.3. (The Alexandrov theorem)
If f : Ω Ñ R is semi-convex, then, for almost every x P Ω there is a p P Rn and a
symmetric matrix X so that, as hÑ 0

fpxq “ fpaq ` xp, x´ hy `
1

2
px´ hqTXpx´ hq ` op|h|2q.
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Lemma B.4. (Jensen’s lemma)
Let φ : Ω Ñ R be semi-convex and let x0 be a strict local maximum point of φ. Set
φppxq “ φpxq ` xx, py for x, p P Ω. Then, for r, δ ą 0, the set

K “
 

x P B̄rpx0q : Dp P Bδ such that φp has a local max at x
(

has positive measure.

A proof of the Alexandrov theorem can be found in [EG]. We give here a proof
of Jensen’s lemma, which states that, if we perturb a semi-convex function which
achieves a local maximum, we can get functions with local maximum close to the
original maximum point. In a given ball around the original point, the set of max-
imum points for the perturbed function has positive measure. It should be clear
why we need φ to be semi-convex and not convex, since a convex function cannot
achieve a strict local maximum (recall that D2f ě 0 for convex functions f).

Proof. (Of lemma B.4.)
We suppose x0 “ 0, otherwise we can consider φ̃ppxq “ φppx` x0q.
Assume first φ P C2pΩq. We choose r ą 0 so that φ has a unique maximum in B̄r.
Find ε ą 0 so that

φp0q ą sup
xPBBr

tφpxqu ` ε ”M ` ε.

The supremum is clearly attained, since φ is continuous. Further, we choose δ ą 0
so that

δ ď
ε

2r
.

Then, for x P BBr and p P B̄δ the Cauchy-Schwarz’ inequality gives

φppxq “ φpxq ` xp, xy ďM ` |p||x| ďM `
ε

2
.

At x “ 0 we see that

φpp0q “ φp0q ąM ` ε ą sup
xPBBr

tφppxqu .

Hence, there is a point x P B̄rzBBr, x ‰ 0, for which φppxq ąM , so any maximum
point of φp lies in the interior of B̄r. Since this holds for all p P B̄δ, and for local
maximum x P Br we have

∇φppxq “ ∇φpxq ` p “ 0,
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we see that Bδ Ă ∇φpKq. Since φ is semi-convex, φpxq ` λ
2
|x|2 is convex so that

´λI ď D2φ ď 0 in K. This gives

|Bδ| ď |∇φpKq| “
ż

∇φpKq
dx ď

ż

K

ˇ

ˇDet
`

D2φpxq
˘
ˇ

ˇ dx ď |λ|n|K|.

The second inequality uses the change-of-variables formula from [EG]. We have
shown that K has positive measure, provided φ P C2pΩq.

For the general case, replace φ by φε “ φ ˚ ρε, where ρε is the standard mollifier.
Set

K1{l “ tx P B̄r : Dp P Bδ such that φ1{l
p has a local maximum at xu.

We now show that

8
č

m“1

8
ď

l“m

K1{l Ă K.

If x P
Ş8

m“1

Ť8

l“mK1{l then x P K1{m for infinitely many m. Thus, for infinitely

many m, there exists pm P Bδ such that φ
1{m
pm has a maximum at x. In particular,

we can find a subsequence tmku
8
k“1 with the properties that

pmk Ñ p, p P Bδ

φ1{mk
pmk

has a max at x for all k

φ1{mk
pmk

Ñ φp locally uniformly.

Using these properties, we see that x P K.

Now let Am “
Ť8

l“mK1{l. We see that

A1 Ą A2 Ą A3 Ą ...

and |A1| ď |Br| ă 8. From chapter 3 in [MW] we get

ˇ

ˇ

ˇ

ˇ

ˇ

8
č

m“1

Am

ˇ

ˇ

ˇ

ˇ

ˇ

“ lim
mÑ8

|Am|.
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Since Am “
Ť8

l“mK1{l Ą K1{m we have

|K| ě

ˇ

ˇ

ˇ

ˇ

ˇ

8
č

m“1

8
ď

l“m

K1{l

ˇ

ˇ

ˇ

ˇ

ˇ

ě lim
mÑ8

|K1{m| ě 0.

The last inequality follows from the fact that K1{m has positive measure, indepen-
dent on m by the previous case.

From Jensen’s lemma and the Alexandrov theorem we get the following corollary.

Corollary B.5. Suppose f : Ω Ñ Rn is semi-convex and f has a local maximum
at x0. Then there are xk Ñ x0 so that

∇fpxkq Ñ 0

D2fpxkq ď
1

k
I Ñ 0

when k Ñ 8.

Proof. Set

f̃pxq “ fpxq ´
1

2k
|x´ x0|

2.

Then f̃ is also semi-convex and it has a strict maximum at x0. By Jensen’s lemma
and the Alexandrov theorem, there are

xk P B 1
k
px0q

pk P B 1
k
p0q

so that

f̃ppxq “ f̃pxq ´ xpk, xy

has a local maximum at xk with f twice differentiable at xk. By the infinitesimal
calculus we have

∇fpxkq “ ∇f̃pxkq `
1

k
pxk ´ x0q “ ∇fppxkq ` pk `

1

k
pxk ´ x0q

“ pk `
1

k
pxk ´ x0q Ñ 0

as k Ñ 8. Further,

D2fpxkq “ D2f̃pxkq `
1

k
I “ D2f̃ppxkq `

1

k
I ď

1

k
I.
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C Some useful results from real analysis

C.1 The variational lemma

Lemma C.1. (The variational lemma.)
Let Ω be a bounded domain in Rn and suppose F is continuous in Ω. Further,
suppose

ż

Ω

F pxqφpxqdx “ 0

for all test functions φ P C80 pΩq. Then

F ” 0.

Proof. Fix x0 P Ω and choose

φpxq “ ρεpx´ x0q

where 0 ă ε ădistpx0, BΩq and note that φ P C80 pΩq. Here, ρε is the standard
mollifier in Rn. The mollification of F at x0 is then

Fεpx0q “

ż

Ω

F pxqρεpx´ x0qdx “ 0

by assumption. We also have

F px0q “ lim
εÑ0

Fεpx0q “ 0.

Since x0 was arbitrary, F “ 0 in Ω.

C.2 Results from real analysis

Theorem C.2. (The Heine-Borel theorem.)
A set E Ă Rn is compact if and only if any collection O of open sets that covers
E contains a finite subcover that also covers E.

A proof of theorem C.2 can be found in [MW] chapter 11.
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Lemma C.3. (Monotone convergence theorem for sequences.)
Suppose the sequence of real numbers tanu

8
n“1 is bounded for each n. Further,

suppose tanu
8
n“1 is a monotone sequence. Then there exists a limit L “ limnÑ8 an.

Proof. We suppose without loss of generality that tanu is increasing. Set L “

supn an. By definition of L, for any ε ą 0, there is an N P N so that

L´ ε ă aN .

We estimate, for n ě N

L´ ε ă aN ď an ď L` ε.

Put differently, for any ε ą 0 we have

|an ´ L| ď ε

for all n ě N .

Theorem C.4. (The Bolzano-Weierstrass theorem.)
Suppose the sequence of real numbers tanu

8
n“1 is bounded for each n. Then there

exists a convergent subsequence tanku
8
k“1.

Proof. Our plan is to construct a monotone subsequence of tanu, which will also
be a bounded sequence. The result then follows from lemma C.3.

Suppose first that the set

SN “ tan : n ą Nu

obtains its maximum for all N P N. Choose n1 ă n2 ă n3 ă ... and set

an1 “ max
ną1

an

ank “ max
nąnk´1

an.

We see that the sequence tanku is decreasing. If SN fails to reach its maximum,
put

an1 “ aN`1.

Then, since SN has no maximum, we can find n2 ą n1 so that an2 ą an1 . Contin-
uing this process gives an increasing sequence tanku.
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