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Abstract

We use a level-set method to describe surfaces moving by mean curvature. The

Vu
[Vul

we prove uniqueness of solutions in the viscosity sense and singularities of the flow
are taken into consideration. Our work is based on the demanding proof of Evans
and Spruck, published in Journal of Differential geometry (1991).

interesting partial differential equation w; = |Vul|div < ) arises. In this thesis,
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Sammendrag

Vi beskriver overflater som beveger seg i forhold til den gjennomsnittlige kur-

vaturen med en metode som baserer seg pa nivaflater. En interessant partiell

differensialligning kan beskrive situasjonen, u; = |Vul|div (lg—Z) . I denne mas-

teroppgaven beviser vi at denne ligningen har en unik viskositetslgsning, og vi tar
hensyn til singulariteter. Arbeidet er basert pa et krevende bevis av Evans og
Spruck, gitt ut i Journal of Differential geometry (1991).
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1 Introduction

Mean curvature flow is an example of a geometric flow of hypersurfaces. In this
paper, we mainly study smooth surfaces in R3. We require that the surface moves
with velocity equal to the mean curvature in the normal direction.

In the paper [B], Brakke studied motion of grain boundaries, in which he intro-
duced motion by mean curvature for surfaces. There are other physical phenomena
which can be explained by mean curvature flow. These include surface tension phe-
nomena, horizons of black holes in general relativity, image processing and soap
films stretched across a wire frame. Gage and Hamilton [GH] and Grayson [G1]
showed that closed embedded curves in the plane remains embedded before they
shrink to a point. Huisken [H] showed that convex surfaces in R? remains convex
until they shrink to a point under the mean curvature flow. In fact, Huisken and
IImanen proved the Riemann Penrose inequality in [HI] studying the inverse mean
curvature flow, where the velocity is equal to the reciprocal of the mean curvature.
In these cases, a differential geometric approach to the problem has been used.

Here, we use a level-set method for the flow. The interesting mean curvature flow
equation arises,

. Vu
Uy = ‘VU‘dIV (W) .

The equation is not defined when Vu = 0. Introducing a notion of a weak solution,
namely a wviscosity solution turned out to be successful, see [ES]. Viscosity solu-
tions were first introduced in [CL]. We intend to discuss the problem by studying
this equation, and by gaining insight in the equation we derive some geometric
properties of the flow. In particular, we prove uniqueness of solutions. When
uniqueness is proved one can show several interesting properties of the flow, in-
cluding that two surfaces initially disjoint remain disjoint under the flow. Our
work regarding the level-set method is mainly based on the article by [ES].

There are two mathematical technicalities which arise in the proof of uniqueness of
solutions. These are properties of semi-convex functions and inf- and sup convolu-
tions. For semi-convex functions, the Alexandrov theorem is applied, which states
that a convex function is twice differentiable almost everywhere. The inf- and
sup convolutions are introduced to approximate the merely continuous function .
We base our discussion on these by using the celebrated Hopf-Lax formula, which



solves the Hamilton-Jacobi partial differential equation [E].

In section 2 we give an introduction to the mean curvature flow in the plane,
where calculations are easier. Then we derive the mean curvature for surfaces in
R3 before introducing the level-set method. In section 3 we introduce viscosity
solutions. Section 4 contains an introduction to inf- and sup convolutions. Fur-
ther, we prove that we have uniqueness for classical solutions, provided Vu # 0.
Finally, we give a proof of uniqueness of viscosity solutions. Having established
uniqueness, we give some geometrical properties of the flow in section 5. Here,
we will also make mention of the minimal surface equation, which turns out to be
the elliptic counterpart of the mean curvature flow equation, just as the laplace
equation is the elliptic counterpart to the heat equation.



2 The mean curvature flow equation

2.1 Curvature and the Curve-Shortening flow
2.1.1 Curvature

The concept of curvature can loosely be thought of as how much an object deviates
from being flat. If the object is a curve, the curvature tells us how much the curve
deviates from being a straight line. A curve C in R?® may be described as a smooth
vector valued function of one parameter, r(t) = (x(t),y(t), 2(t)) where t € I < R.
For each ¢, r(t) has a tangent vector, given by the derivative of r. The unit tangent
vector T is defined by

T(t) = Qi; = L)

It will be useful to parametrize r so that r has length one. The arclength of C' is

given by ds = vdt. We see that

dr
ds

dt

=1
ds

=V

under this choice of the parameter s.

Definition 2.1. The curvature of C, k, is given by

= [r"(s)]. (1)

The signed curvature k is given by the same equation if the unit tangent vector
rotates counterclockwise, and with a negative sign if the unit tangent vector rotates
clockwise.

The next example shows that the curvature of a straight line is zero, which fits

well with our intuition. Further, we calculate the curvature of a circle.

Example 2.2. (The circle and the straight line.)
The circle in R? of radius R can be parametrized by

r(t) = (Rcosf, Rsinf)
where 6 € [0, 27]. We have

dr

i (—Rsin6, Rcosf)



and %| = R. Hence, by choosing s = Rf we have

T(s) = <— sin %, cos %) .

The curvature is then

R R R R

Consider now a straight line. Since 7" has constant components, equation (1) gives
Kk = 0. O

‘ 1< s . s)‘ 1
k=|——=|(cos—=,sin— )| = —.

2.1.2 Curve-shortening flow

Here, we give an introduction to the mean curvature flow in R? based on the ideas
of Gage and Hamilton [GH|. The flow in the plane is often referred to as the
curve-shortening flow. As we will see, the flow has the property that the length of
a curve decreases, and the area bounded by a closed curve decreases. We consider
a vector

X :S' % [0,7] — R?
with the property that

0X
kN
a =k

where N is the inward pointing unit normal vector of a curve parametrized by
X (u,t). We can define the parametrization in terms of the arclength s by

o 10
ds  waou
where v = ‘%—f‘ Using the Frenet equations
T N
a = vkN, N = —vkT,
ou ou

we derive the evolution equation for the curvature and give some properties of the
flow.

To find the change of the length of a curve

i _[ b,
dt — Jq dt

we need the following lemma.



Lemma 2.3.

W g2,
dt v

Proof. We calculate using the Frenet equations

dv? oX 0X\ /00X oX (kN)
dt dt ou' ou/ ot ou’ ou (3u (7u
=2 gkzv— vk*T, —> —20k*(T, Tv) = —2v°k*.
U

]

Proposition 2.4. The length of a curve under the curve-shortening flow decreases,

dL
— = — JdeS < 0.
dt

Proof. By the previous lemma we find

L
L :J @ f ~Kodu = —Jk?ds.
at g dt o

0

We now compute the evolution equation for the curvature k = k(s,t). However,
as we will see in the next example, the operators 2 5, and ‘? do not commute.

Example 2.5. (The Grim Reaper.)
Consider a graph solution to the flow moving by translation,

F(z,t) = (x,t + y(z))

We calculate
F,==(1,y) F,y= = k%X,

while F;; = 0. The solution to the curve-shortening flow is given by

oF

= = (0.1 =kN. 2)



For a graph we have
Y’ (=y,1)

— - N=——L7_
1+ (y)2)*? VIt (y)?

Multiplying equation (2) by N gives k = \/1+1(7')2’ which can be rewritten into the
y

differential equation

y'(@) =1+ (Y (2)
This has a particular solution y(z) = — In cos (z), which is valid for x € (—7/2, 7/2).
The solution is often called the Grim Reaper, as seen in figure 1. n
’ — |
4.5 | S
| .
35 1
15 \\‘-.. ) / |
1t \\ — /// )
0.5 e
[-31.5 1 0.5 f}l 0.5 1 1.5

Figure 1: A translating solution of the curve-shortening flow.
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Lemma 2.6. The operators % and < are related in the following way

Remark. We see that the lemma holds true for example 2.5.

Proof. We let the operators act on a vector F' to get

1 k2 1
Fts: <_Fu> :_UFu+_Ftu
v
t

v v2

1
= k’F, + EFut = k’F,, + Fy.



We can now calculate, using the Frenet equations

keN + Ny = (EN), = Xpgs = K X5 + Xt
= E°N + (KX, + Xg), = k*N + (kN + kN, + k°T) _
= kN + kg N — kk,T
= (kos + k°) N — kk,T.

Since (N, T) = 0 and they are both unit vectors, we get the following evolution

equations

ky = kgs + K,
N; = —k,T.

The equation for curvature is of particular interest. From the equation we get
following proposition, which also turns out to be true for higher dimensions for
the mean curvature.

Proposition 2.7. Suppose (2 = R is a bounded domain and look at

ki = kes + k3, (s,1) € Q x (0,T]
k(s,0) = ko(s), seQ x{t=0},

where ko(s) > 0. Then k(s,t) > 0 for all (s,t) € Q x [0,T].

To prove this proposition, we need a version of the strong minimum principle for
parabolic equations presented on p.169 in [PW].

Theorem 2.8. (The strong minimum principle.)
Suppose that

ki — kss =0

for all (s,t) € E = {(s,t) : s € Q,t < t1} for some t; > 0. If k = M in E and
there is an sy so that k(sy,t1) = M, then k= M in E.



Proof. (Of proposition 2.7.) If k is not positive everywhere, we find the first point
(t1,s1) so that k(sy,t;) = 0. By continuity, & is strictly positive up until this point,
and so

ky — ke = k> >0

when t < t;. Using theorem 2.8 we find that £ = 0 when ¢ < t;. This contradicts
k(s,0) = ko(s) > 0.

]
Proposition 2.9. Let C be a closed curve parametrized by F(u,t). Then

aA _
dt

-2,

where A is the area enclosed by C'.

Proof. By Green’s theorem in the plane,

2A = fyda: + xdy = —f(F,vN> du

so that

207 == | BNy (B 4 PNy du
Sl

__ J kv + (F,—KoN + (F, —k,T) du.
Sl

The last term may be integrated by parts (the boundary term disappears) to get

“ f vk + (F, k20N + & (v — (F,0kN) du
S1

= —J vkdu = —Jkds = —27.
Sl

The last equality follows from the definition of k. Since k = T"(s) where T rotates
counterclockwise, the integral around the closed curve is equal to 2.

]



Example 2.10. (The circle under curve-shortening flow.)
In example 2.2 we found k = % and hence can write k = % with N pointing
inwards. Since k is independent on where we are on the circle, the circle keeps its

shape under the curve-shortening flow. With k(s,t) = k(t) = % we have

1. , 1
kt:_ﬁR:kss_‘_k:ﬁ
If R(0) = Ry we get

R(t) = A/ R — 2t,

and we see that the circle shrinks to a point when ¢t = RT%. We can also verify
proposition 2.9 by noting that
A(t) = 7R(t)* = n(Rj — 2t),
dA _
so that &* = —27. O

2.2 Normal curvature

Suppose S < R? is a surface and p € S. Let T,(S) be the tangent space at p, i.e.
the vector space of vectors tangent to S at p. If v is the normal vector to S at p

and v € T,,(5), the plane through p determined by v and v intersects S in a curve.
We call this curve r,, see figure 2.

Figure 2: The normal curvature at a point on a surface.
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Definition 2.11. The normal curvature, k,(v) at a point p € S is given by the
curvature of the curve parametrized by r,.

We denote k; = min, k,(v) and ky = max, k,(v). The mean curvature is defined
to be the sum of the two.

Definition 2.12. The mean curvature H at a point p on a surface S is given by

H =k + ko.

Suppose 0 € S and S is given by the surface z = f(z,y). We suppose further that
f=1fe=fy, = fuy =0at (0,0). Thus the tangent plane is spanned out by the
vectors (1,0,0) and (0,1,0) and we can take v = (0,0,1). A vector v € T,(S)
can be written (scosf, ssinf,0) where 6 € [0,27] and s € R. The curve r, is an
intersection of the surface z = f(x,y) and the plane determined by v and v. For
t € R and 6 € [0, 27] we can take

ro(t) = (tcos@,tsinb, f(tcosh,tsind)).

At the origin we have |r| = [(cos#,sinf,0)| = 1 so we easily calculate

kn(v) = ku(0) = [#(0)] = |(0,0, cos® 0 f,, + sin 0, )]
= cos? 0f,.(0,0) + sin? 6 f,,(0,0),

at the origin. This is sometimes referred to as Fuler’s formula. We see that
H(0,0) = f.2(0,0) + £,,(0,0).

Example 2.13. (Curvatures at the origin for an elliptic paraboloid.)

An elliptic paraboloid can be written

22 P
z= f(z,y) -2t
Using Fuler’s formula we find k,, = a% cos® 0 + b% sin? §. Hence, at the origin,
oo 2(a* + b?)
ab?
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2.3 Mean curvature

In this section, we use the Einstein summation convention used in [F]. We describe
a surface S in R? as the image of the vector function

X(ut,u?) = X (x(u', u?),y(u', u?), z(u', u?)).

In this section we assume that the first and second partial derivatives of X exist
and are continuous.

Suppose
r(t) = X (u'(t), u*(t))
describe a curve C' on the surface S. Then
dr  du' 0X N du? 0X ,6X )
dt ~ dt out | dt 0w " dui
As in the planar case, we except a relation between curvature and the arclength
s. We calculate

() - (& f;;>
()

gy
= gzjuz UJ

2lox P

ou?

X[ it de? /X ox
dt dt \ oul’ ou? dt

oul

or in differential form,

ds® = gijduiduj.

[ 0X 0X
95 =\ oui’ 0w

The metric

is called the first fundamental form.

Lemma 2.14. Suppose the surface S is a regular surface, so that the unit normal
at any point P € S satisfies

0X % 0X
a1 2,2
oul 6u2

Then the matriz G = (g;;)i; is a positive matriz.*

n fact, it is strictly positive, which means that 7 Gz > 0 with equality only for z = 0.
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Proof. Using the vector identity
<& x b7 cX d> = <CL, C> <b7 d> - <CL, d> <b7 C>

we get
0X 0X 0X 0X
S ==X —,=—= X —5
oul  ou?’ oul  Ou?
= g11922 — 9%2-

Since g1 = | £%]|* = 0 we have for all z € R?
TGx = $%911 + 22122012 + 1’3922
1 g11922 — 92
— (z1911 + $2912)2 9—12563 = 0.
11

g11
O

In view of this observation, the matrix G' has an inverse. We denote it by G~ =

(g"7); so that

9i59" = ij.

In order to give a rigorous definition of the normal curvature at a point P on a
dr _ ,i'0X
u

surface S, we look at the normal component of . By equation (3), ¢

so that
dQT i 8X n il Jl 52X
— = u’ —.
ds? out outou’

Taking the inner product with the unit normal v gives

-/

?X .
— J = L.t 0
<d2’> uu<u’&uﬂy = Lju' v .

Here,
?X
i = =,V

J outous

is called the second fundamental form on the surface
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Definition 2.15. Let v be a unit vector tangent to the surface S at a point P, so
that it can be written

0X

v=1"

out

The normal curvature of S at P in the direction of v is given by

kn(v) = Lijv'n’.

Remark. We see that this definition coincides with definition 2.11. If r = r(s) is
the curve created from intersecting S with the plane through p determined by v
and v we have for some s,

r(so) =p, 7'(s0) =v, 1"(s0) = £v.

Since

dr Z/a)( ﬁX
= U = U =7

ds  ou out

. y
we see that v* = «*. Hence

d'r
ds?

)

i o d?r
kn(’U) = LijU v = Liju u = @,V =+

the formula for curvature rediscovered.

We now give the formula for the mean curvature of a regular surface parametrized
by X.

Lemma 2.16. Suppose S is a regular surface. Then
H=1tr(G'L) = ¢"Ly.
Proof. We are trying to maximize and minimize

Lij v’

with the restriction that v = v*2X is of unit length. Note that

ou’

\v\2 = gijvivj.
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Writing z = (v',v?) the problem is to find

max z! Lz, and min 2! Lz.
T Gr=1 T Gzr=1

Using corollary A.7 we get
H=k +ky = max v' Lz + min 2" Lz =tr(G'L).

2T Gz=1 T Gx=1

Example 2.17. (Mean curvature for a torus.)

Consider a circle of radius 7 < 1 centered at (1,0) in the xz-plane. The circle may
be parametrized by

z=1+rcosd

z=r7rsind

for 0 < 6 < 27. Revolving the circle about the z-axis gives us the following
parametrization for the surface of a torus

X(0,0) = ((1+rcosf)cos e, (1+ rcos)sing,rsinb)

for 0 < 0, ¢ < 27. Upon differentiation we find

a1 1 r? 0 I (1+rcosf)cosf 0
Cr2(1+7rcosf)? [0 (1+7cosh)?]’ B 0 r|

Using H =tr(G~'L) we find

1+ 2rcosd
r(1+1rcosf)

For an explicit surface z = f(z,y) we calculate

o= 5. — M L.. = 1 f
T |V YT VR
(L4 f2) fow = 2fafy fay + (L + £3) fy
(1+ 2+ f2)% '

so that
H(z,y) = g” Ly =
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Example 2.18. (Mean curvature for the elliptic paraboloid.)

We check the calculations from example 2.13. An elliptic paraboloid may be

written z = (%)2 + (%)2 From equation (4) we calculate

a—22(1+4g—z>+b%(1+4§—i>

3
<1+4j—§+4g—i)2

H(l‘,y) =

and at the origin, H = 2(’;22;172) as before. From the expression of H(z,y) we see

that H(z,y) has a maximum at the origin. This fits well with our intuition. At
the origin the paraboloid clearly deviates more than any other point from being a
flat surface. See figure 3. ]

Figure 3: The paraboloid given by z = z* + 1.

For the level-set method, the surface evolves accordingly to u(z,y,z,t) = 0, i.e.
the surface is given implicitly. The next theorem shows how to calculate the mean
curvature for implicit surfaces.

Theorem 2.19. For a surface S given by u(z,y,z) = 0, the mean curvature is
given by
H(l‘7 Y, Z) = _d1V<V) (5)

provided Vu # 0. Here, v = % 15 the inward pointing unit normal vector.
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Proof. First, assume u, # 0. Then 2z can be written as a function of x and y, say
z = f(x,y). Since u(z,y, z) = 0, we get, by keeping x and y constant in turn,

o\ o, s
iz ), C0r  0zdr
AN
dy)., oy 0zdy
Solving for the partial derivatives of z = f(,y) yields f, = —%= and f, = —*

Further, by again keeping y constant, we get )

2 2
o 2uxuzuxz - uzuzz - uzumc

Jow =

3
uy

Similar calculations can be done to find expressions for f;, and f,,. Inserting the
partial derivatives of f into equation (5) gives the same result as the calculation
of —div(v). If f, = 0 at some point, we repeat the calculation by assuming either
fz #0or f, # 0. Since Vu # 0 was assumed, the partial derivaties of f cannot
all be zero at the same point.

2.4 The level set method

Let
Ft - {(.%',y, Z) € R3 : u(x7yazvt) = O}

Suppose first that, for all ¢ = 0, Ty = Q with Vu # 0 in Q, where Q < R3 x [0, ).

Then
Vu

v=——0
[Vl
chosen to be pointing inwards is a unit normal vector of I';. Consequently, from

theorem 5, we have H = —div <%> :

The idea is to follow the points on the surface X = (x(t),y(t), 2(t)) as time passes.
We define the motion by mean curvature as X = Hv. This means that the surface
moves with velocity equal to the mean curvature in the normal direction. Since
u(X,t) =0 in I'; we have

d

Zu(X(1),1) = 0.
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Hence, by the chain rule,

ou ou é’ Vu

Now, suppose we are given an initial surface
Ty ={zeR’:u(x) = g(x) = 0}.

and want to study how the surface evolves by mean curvature flow. That is, we
ask the question, how does the following set behave

Iy ={zeR’: uz,t) =0}.
As we will see, this is equivalent to solving the problem
= |Vu|div (IV |) (x,t) e R™ X [0, 0)

u(z,0) = g(z), (z,t)eR™ X{t=0}.

The problem now is that the equation is not defined where Vu = 0. Further, we
can not guarantee existence of a twice differentiable solution. We seek for a weak
solution, namely a wviscosity solution to overcome this difficulty.

Remark. Some C? solutions of the above equation are
|z|? + 4t, el +4t em  coshpy,  cosh (Jz|* + 4t) .

These are, however, not of particular interest, since their zero level sets are empty
or trivial. We should however note that, if u solves the equation then it seems
like ¢(u), for a smooth function ¢, also solves the equation. We will prove this
assertion in section 5 in the viscosity sense, only requiring ¢ to be continuous.

Example 2.20. (Mean curvature flow for the sphere, the plane, the
cylinder and the torus.)

A plane may be described as solutions to g(z,y,2) = ax + by + cz — d = 0 where
a,b,c,d e R. We see that g satisfies the mean curvature flow equation, so we can
take u = g. Hence

Iy =A{x:g(x) =0} =T,
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so nothing happens to the plane under mean curvature flow. Consider now the
initial surface Ty = {x € R : 2? + y? + 22 = R%}, the sphere of radius R. Under
mean curvature flow, the sphere’s radius shrinks. Letting R = R(t), we see that
R = 22, with R(0) = Ry. This can be seen by using the defining relation X = Hv.
The solution to the differential equation is given by

R(t) = A/ R% — 4t.

We verify also that u(z,y, z,t) = R(t)? — x? — y? — 2* satisfies the mean curvature

flow equation. The sphere shrinks to a point in finite time, ¢t = RT%;. A similar
calculation shows that a spherical cylinder shrinks to a line under mean curvature

flow. For the torus, we calculated from example 2.17

1+ 2rcosd
r(1+1rcosf)

We take 0 < r << 1 (if r is close to 1, the evolution can be similar to that of a
sphere, see [SS]). The expression does not depend on ¢, the angle from revolving a
circle about a line. The surface will remain a surface of revolution under the mean
curvature flow, but the cross section will not remain a circle, since H varies with
0. As the evolution goes on, the cross section will shrink to a point, and hence the
torus evolves under mean curvature flow until it becomes a circle. See figure 4, 5,
6 and 7 (we abbreviate MCF for mean curvature flow). O



./—’b.

Figure 4: MCF for the sphere.

e

Figure 5: MCF for the plane.

-*>

Figure 6: MCF for the cylinder

o

Figure 7: MCF for the torus.
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3 Viscosity solutions

3.1 Introduction

When looking at the mean curvature flow equation

{ut — |Vu| div (|§—u‘) (z,t) € R* X [0, ) 6

u(z,0) = g(x) (x,t) e R" X {t =0}

with only continuous u = u(z,t) it is clear that u does not satisfy equation (6)
in the classical sense. An often used technique to overcome this difficulty is to
multiply the equation with a test function. With integration by parts one can
pass the equation over to the test function in an integral form. However, with
trial and error, one quickly realizes that the method does not work here. This is
where the notion of wviscosity solutions enters. In section 3.1 and 3.2, we assume
that Vu # 0.

Definition 3.1. A bounded and continuous function w is said to be a viscosity
subsolution of equation (6) if for all ¢ € C* (R™ X [0, 0]),

. ( Vo
¢t < ’V(b‘ div (W)

at any point (x,t) where u— ¢ attains a local mazimum. Similarly, u is a viscosity

supersolution if
: Vo )
> |Vo|div | =

at any point (x,t) where u— ¢ attains a local minimum. The function u is called a
viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.
In addition, it is required that u(z,0) = g(x).

Remark.

a) We may assume that the local maximum is strict. To see this, replace ¢(x,t)
by ¢(z,t) — |x — zo|* — (t — to)*, where (xg, to) is the point where u — ¢ has
a local maximum. The same applies to the local minimum.
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b) The equations ¢, = |V¢|div <|V¢|) and —¢, = —|V¢|div (V—‘b‘> are not

equivalent in the viscosity sense.

c¢) We can remove the restriction of continuity by requiring only upper and
lower semi continuity for the viscosity sub- and supersolutions respectively.
For discussion, see [CIL].

One of the first things one should check when making a definition is consistency,
which is stated in the following lemma. We first note that the PDE in equation

(6) can be rewritten to
Ug, U,
Uy = (61] |Vu‘ ) a:za:j (7)

where we sum over 1 < 14,5 < n.

Lemma 3.2. (Consistency of viscosity solutions.)

If u e C*(R™ X[0,%0)) is a classical solution of equation (7), then u is a viscos-
ity solution. Further, if u is twice differentiable everywhere and u is a viscosity
solution, then u is a classical solution.

Proof. Suppose first that u is a classical solution. Pick ¢ € C? and (zg, to) so that
u — ¢ has a local minimum point at (zo,tp). By the infinitesimal calculus, ¢, = uy,
V¢ = Vu and

D*(u—¢) =0

at the point (zg,to). Hence, using equation (7)

(s Ug, U,
GOr=up = | 0y — |Vu|2 Uz

¢Ii¢l‘j qbarqum]
= ((52] - |v¢|2> ( a:lx] Qb:vl:v]) < ij ) Qb:c,-:c]-

b > ( 5 — cbxicbxg) boses
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at (zo,%p), which shows that w is a viscosity supersolution. A similar argument
can be used to show that w is a viscosity subsolution.

If u is a C? viscosity solution, let ¢ = u. Then v — ¢ has a maximum everywhere
and since u is a viscosity subsolution,

_ (YO v (Y
u = ¢ < |Vo|div (V(;ﬁ\) = |Vu|div (|Vu|> :

In addition, u — ¢ has a minumum everywhere and since wu is a viscosity super-

solution, u; > |Vu|div (%) at all points (x,t). This shows that u solves the
equation in the classical sense. O

Remark. In general, if a viscosity solution u is not twice differentiable everywhere,
we cannot say that u is a classical solution. However, if u is a twice differentiable
viscosity solution at a point (z,t), then u satisfies the equation in the classical
sense at the point (z,t). A proof of this is given in [E] for first order equations
and in [K] for general second order equations. The main idea behind the proof is
that if u is twice differentiable at some point, there exists a ¢ € C? so that u = ¢
at this point as shown in figure 8.

u(x)

Figure 8: Touching a C? function ¢.



24

3.2 The method of vanishing viscosity

The name wviscosity solution as a notion of a weak solution has its origin from the
method of vanishing viscosity. The idea is to add a viscosity term to a nonlinear
partial differential equation. For the ongoing discussion to work for more general
equations, suppose that

ul + F(Vus, D*u) = eAu,

where F' is a continuous function. One hopes that, as ¢ — 0, the function
u = lim_,qu€ is a viscosity solution to the equation u; + F(Vu, D?>u) = 0. For the
procedure to work, we need the following condition on F.

Definition 3.3. If F' satisfies
F(p,X) = F(p,Y)
whenever X <Y, we say that F' is degenerate elliptic.

Remark. For the mean curvature flow equation we have

DiDj

and we see that F' is degenerate elliptic.

Proposition 3.4. Suppose u¢ € C? solves

ul + F(Vu, D*uf) = ¢ Z aius (8)

T;xj)
3,j=1

where A = (a;j);; satisfies

A = 0l

for all £ € R™ and some constant 6 > 0. Further, suppose that F is continuous
and degenerate elliptic. If u¢ — w uniformly on compact subsets of R™ X {t = 0},
then u is a viscosity solution of

u; + F(Vu, D*u) = 0.
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Proof. Here, it is only shown that u is a viscosity supersolution. Using similar
arguments, one can show that u is a viscosity subsolution.

Suppose u — ¢ has a minimum at (zg,t). Find (z.,t.) so that u° — ¢ has a
minimum at (z.,t.) and (z,t.) — (zo,%). These points exist (possibly taking
some subsequence (x;,t.;)) since u° — u uniformly.

At (z.,t.) the first partial derivatives of ¢ and u¢ coincide, and
D (1 — ¢) > 0,

from the infinitesimal calculus. Hence, at the point (z.,t.),

o+ F (V(b, D2¢) =u, + F (Vue, D2¢)
> u, + F (Vue, Dzue)
= eaijuzixj
= 6&1']' (Uzzx] - ¢zlz]> + eaij¢ij
= Eaij(bmimj .
Passing to the limit ¢ — 0 using that F' is continuous yields at (xo, to)

¢+ F (Vo,D?¢) =0

which shows that u is a viscosity supersolution.

This section ends with an example illustrating proposition 3.4.

Example 3.5. (The method of vanishing viscosity.)
Consider the problem

uf + 3(us)? = eus,, (z,t) e R X[0,0)
u'(z,0) = 2%, (2,t) e R X{t =0}

Here, F(p, X) = F(p) so that F' is automatically degenerate elliptic. For ¢ = 0,
the solution is given by the Hopf-Lax formula which is discussed in section 4.2,

IL‘2

142t

u(z,t) =
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Let
—u (2.1)
v(x,t) =e 2 :
Then v(z,t) solves the heat equation with diffusion constant e,

Vi = EUypy

a2
v(x,0) =e2¢.

The solution to the heat equation may be found using fourier analysis,

1 -y (z—y)?
U(Qj,t) — e 2 @ 4et dy
\/4’/T6
_ em e i W1 2t)2dy

m
\/WJ

e 26(1+2t)

_22

= 626(1 2t)

)
e “dz

1
V142t

Here, we have completed the square and used the gaussian integral, SO_O " e dzy =
v/m. We can now invert the formula for v(z,t) to find a formula for u¢(z,t). Note
that v(z,t) = 0 for all x,t. For a strictly positive v(z,0), this is always the case
for the heat equation, since we integrate a positive function. This fact is crucial
for the example, since we are working with logarithms. Hence, we get

u(x,t) = —2¢ln (v(x,t))
=eln(1 + 2¢) +

2

142t

As € — 0 we see that u®(z,t) — 175 Since u is a classical solution to the original
equation, u is a viscosity solution by the consistency lemma 3.2. O]

3.3 The problem with zero gradient.

The partial differential equation describing mean curvature flow only makes sense
at points where Vu # 0. Thus, we need to somehow extend definition 3.1 to hold
at points where Vo(zg,%y) = 0. Suppose u € C*(R™ x [0, 20)) satisfies

Ug, Uy,
ug < (% - W) Uz, - (9)
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The idea is to look at the behavior of u close to the point (o, tg) with Vu(zg, ty) =
0, where equation (9) is not defined.

If Vu(zo, to) = 0, suppose there are points (2, tx) — (g, o) so that Vu(xy, tx) # 0
for all kK € N. Then, at (xy, tx),

for
o = U, (T, th)
¢ |VU([Ek,tk)|

Since |n¥| < 1, {nF}s is a bounded set of numbers, by the Bolzano- Weierstrass
theorem (C.4) we can extract a convergent subsequence

ky
N, —
with |n;| < 1. Passing to the limit k; — o0 in equation (10) gives, at (o, to),

for some n € R™ with |n| < 1.

On the other hand, if we cannot find points (z, tx) — (%o, to) with Vu(zy, tr) # 0,
there is a 0 > 0 so that

Vu =0
when |z — zo|? + (t — t9)? < J. Fix t =ty and find R > 0 as large as possible so
that Vu = 0 in Bg(xg). Since u € C?, Vu = D?*u = 0 on dBg(xq). However, there

are points arbitrary close to 0Br(xg), say for example y € R™, at which Vu # 0.
Here, equation (9) holds. Hence, for £ € 0Br(xy),

Uz, (Y, bo)ua, (Y, to)
Vu(y, to)|®

< 0ijUa; (Y o)

— OijUs,e; (§,t0) = 0

(€, t0) — iy, to) < <5ij - ) Uga; (y,to)

upon passing to the limit y — £ € dBg(ro). Here we used the fact that u €
C?(R™ x [0,0)). Since u does not vary with z in Br(zo), we get

w(z,tg) <0
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for all x € Br(zg) and in particular u;(xg,t) < 0. Hence, for any n € R™, we have
at (1'0, to),

We are now able to give the complete definition of a viscosity solution of equation

(6).

Definition 3.6. Suppose u is a continuous and bounded function. We say that u
is a viscosity subsolution of (6) if for all ¢ € C?,

P Pa,
gbt < (51] - |V¢|2) quixj (11)

at any point (x,t) where u — ¢ attains a local mazimum, provided Vo(xg,ty) # 0.
Further,

Gr < (045 — NiMj) Daiar (12)
for some n € R™ with |n| <1 at any point (x,t) where u — ¢ attains a local mazi-
mum and V¢(xg,ty) = 0.

Similarly, u is a viscosity supersolution if the reversed inequality in equation (11)
holds where w — ¢ attains a local minimum and Vé(xo,to) # 0. If Vo(xo,t9) = 0,
the reversed inequality in equation (12) should hold.

If w is both a wviscosity sub- and supersolution, and u(z,0) = g(x), we say that u
is a wviscosity solution of (6).

3.4 Semi-Jets
3.4.1 An equivalent viscosity definition

We introduce an equivalent definition of viscosity solutions. First, we give the
definition of the parabolic semi-jets of a function.

Definition 3.7. Suppose u is bounded and continuous. If (zo,ty) € R™ X [0, 0)
and
1
u(z,t) < u(zo,to) +q(t —to) +p- (x —x0) + 5(1’ —20)TA(x — 20) + o(|t — to| + |2 — 0[?)
when x — xg, t — to, we say that (q,p, A) € P>Tu(xo,ty). Similarly, if
1

u(x,t) = u(zo, to) + q(t —to) +p- (x —x0) + 5(1‘ —20) T A(x — x0) + o([t — to| + |7 — x0|?)
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when © — 1o, t — to, we say that (q,p, A) € P> u(wo,to). In both cases, p € R",
g€ R and A is a symmetric n x n matriz.

Proposition 3.8. The following properties for the parabolic semi-jets holds.
(i) If ue C*R™ x [0,0)), then

P2’+u(ac0,t0) M P2’7u(x07t0) = (ut(.T(),t()), Vu(xo,to),D2u(x0,t0)) .

(ii)
P>*u(zg, tg) = —P>~ (—u)(z0, to).

Proof. (i) follows by expanding u in a Taylor series around (xg, to). (ii) follows by
a direct computation. O

Definition 3.9. A continuous and bounded function u is a viscosity subsolution
at (zg, to) of equation (6) if

PiPj )
q < <5ij - |p_|2]) aj, ifp#0,

q < (05 —mim;)ai;,  ifp=0,

or some n € R™, provided (q,p, A) € P>Tu(xg,ty) with |n| < 1.
Ui n

A continuous and bounded function w is a viscosity supersolution at (zo,ty) of
equation (6) if

PiPj )
q = <5ij - |p_|2J) aj, ifp#0,

q = (0;; —mim;)ai;, ifp=0,

for some n € R™, provided (q,p, A) € P> u(xo,ty) with |n| < 1. Finally, u is a
viscosity solution if it is both a viscosity subsolution and a viscosity supersolution.
In addition, it is required that u(x,0) = g(x).
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It is easy to see that definition 3.1 and 3.9 are equivalent. We show here the basic
idea. Suppose that for (xg, t5) € R™ X [0, 00) we have for ¢ € C*(R" x [0, o0))

(u = ¢)(x0,t0) = (u— ¢)(x,1) (13)

for all (x,t) close to (zg,ty). Expanding ¢ from equation (13) in a Taylor series
around (g, ty) gives

U(l‘,t) < U($0,t0) + VQS(JT(),to) . ([L’ — $0) + ¢t($0,t0)(t — to)

1
+ §(x — xo)TD2¢(x0, to)(x — o) + o[t — to| + |x — m0|?),

which shows that (¢¢(xo, o), Vé(zo,to), D*¢(x0,t0)) € P> u(xg,ty). Similar rea-
soning holds when (u — ¢) has a minimum at (xg, o).

This observation gives us the following way to calculate the parabolic semi-jet of
a function.

P> u(xo, ) = { (¢4(w0, t0), Vo(xo, to), D*d(w0, o)) : 3¢ € C? such that

u — ¢ has a maximum at (o, to)},

P2 u(xg, to) = { (¢t(3:0,t0), V¢($0,to),D2¢($0,t0)) : 3¢ € C? such that

u — ¢ has a minimum at (o, to)}.

This follows from the remark under the consistency lemma 3.2. In the following
example, we omit the ¢t-variable for simplicity. A common notation is then to re-
place the parabolic semi-jet P>* by the ordinary semi-jet J%=.

Example 3.10. (Calculations of semi-jets.)
Suppose u(z) = |z| for z € R. Since w is smooth at any point except = = 0, we
have

JFru(x) = J2u(z) = ({1} x 0) U ({~1} x 0)
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for all z € R\{0}. At z = 0, note that J*>"u(0) = &, since there can be no smooth
¢ so that u — ¢ has a maximum at z = 0.

For J?~u(0), we look for ¢ € C* such that u — ¢ has a minimum at z = 0. For
this, we may suppose ¢(0) = u(0) = 0. We note first that |¢/(0)| > 1 is out of the
question, see figure 9.

If [¢'(0)] = 1 as in figure 10, we have ¢”(0) < 0. We must ensure ¢ < u for all
x # 0 so we see that ¢ has negative curvature at the origin. Finally, if |¢'(0)] < 1
we can allow positive curvature for ¢, see figure 11. In total we have

J*7u(0) = ({1} x (—=00,0]) U ({1} x (=0,0]) U ((=1,1) x R).

Figure 9: |¢/(0)] > 1 Figure 10: |¢/(0)] =1 Figure 11: |¢/(0)] <1
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3.4.2 A stability estimate

The closures of P>+ and P%*~ are defined as follows. If (q,p, A) € P*%u(xg,to)
there exists (zy,tx) — (70, t0) and (¢*, p¥, A*) — (q,p, A) so that

(¢, p", A") € PP u(ay, ty)
for each k € N. We define P?~ in a similar manner.

Lemma 3.11. Stability. B
Suppose u is a viscosity subsolution of equation (6) and (q,p, A) € P> u(xg, o).
Then

DiDj )
q< (5@' — W) aj, ifp#0,

q < (0ij — niny)aij, if p=0,
for some n € R™ with |n| < 1. A similar result holds for viscosity supersolutions.
Proof. Since (q,p, A) € P>*u(xg,to) there are (¢*, p*, A*) — (¢, p, A) so that
q" < (5z'j - %k%k) afj

where

k

We will use that if A, B are matrices and A¥ — A, B¥ — B pointwise each entry
then

: kEpk\ _ 1 kpk _ ; k i k) —

lim tr (A*B*) = lim ) AjB}; Z (klgrolo Ad> <klgrolo Bh> tr (AB) .

k—o0 k—00 4~ -
il 0

First, if p # 0 then p* # 0 for large enough k. Hence, 7 — £y and

Pl
Now, if p = 0 there is a subsequence

kj

Yt N
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with |n;| < 1. This follow from the Bolzano-Weierstrass theorem (C.4) since |vF| <
1 for all k. We pass to the limit k; — o0 to get the result. The proof is similar for
the viscosity supersolutions.

]
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4 Uniqueness of viscosity solutions

4.1 Uniqueness of C? solutions

We want to show that, given the initial function g, equation (6) has a unique so-
lution. We first do it for a simplified case, when u € C*(R™ x [0,00)) and Vu # 0.
Finally, we remove this restriction by assuming only that u is continuous and
bounded. It is clear that for the latter part, we need to use the notion of viscosity
solutions.

Theorem 4.1. Suppose u,v € C*(R™x [0, 00)) with nonzero gradients and u(x,0) <
v(x,0). Finally assume u < v when |x| +t = R for some R > 0. Then

u<v
in R™ X [0, 0).

Remark. The condition u < v when |z| +¢ > R will be explained later. An intu-
itive argument for this assumption is that we are looking at geometrical objects.

Proof. Let
Q={(x,t) e R" x [0,00) : || +t < R}
and define
w(z,t) = u(x,t) —v(x,t) — et,
for € > 0.

When |z] +t = R we have
w(z,t) = u(z,t) —v(x,t) —et < —et <0
and
w(x,0) = u(z,0) —v(z,0) <O0.

Hence, w < 0 on 0f).
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Suppose now that w has a local maximum point in . At this point, Vw =
Vu — Vv =0 and D*w = D?(u —v) < 0 from the infinitesimal calculus. Further,
wy = 0. This gives

O<w =u —v ) Yotz U ) Yz O v
Swy=u—v—€= (0 — ——= | Uz, — | 0ij — —5 | Vaia; —
[Vul o [Vl o

Ug: Uy -

where the last inequality follows from proposition A.4. We have showed that w
can not attain a local maximum in 2. Thus

w(z,t) = u(x,t) —v(z,t) — et < max w = 0

in 2. Passing to the limit € — 0 gives u < v in (2.

4.2 Inf-and sup convolutions

We want to define an approximation to merely continuous functions. The approxi-
mated version should be twice differentiable almost everywhere, and coincide with
the original function in some limit. We also want the approximation to preserve
viscosity properties.

Definition 4.2. Suppose u is continuous and bounded, say —M < u < M. For
e > 0, we define
1
(o) = s fulns) = - (oo + (- 5)}

yeR™ s=0 2¢

yeR™ s=0

1
ue(x7t) = inf {U(y, S) + i (|l‘ - y|2 + (t - S>2)} )
to be the sup- and inf convolution of u, respectively.

Proposition 4.3. The following properties holds for the inf- and sup convolutions:
(Z) —<—UE)(1’,t) = u€<$,t).
(ii) The supremum for u¢ and the infimum for u. are attained on a compact set.
(iii) ue < u < u.

() —M < u,u < M.
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(v) If we have found points (y,s) € R™ x [0,00) so that
1
U€(l’,t) = U(y78) - 2_6 (|ZL‘ - y|2 + (t - 8)2)

then | —y|, |t — s| < 2v/Me. A similar assertion holds for u®. From this we
see that definition 4.2 is only valid for t = 2/ Me.

Proof. The calculation

—(—u)(z,t) = — sup {— (u(y, s) + L (lz = yl* + (t - 5)2)>}

yeR™,s>0 2¢

—  inf {u(y,s)+2l€(|$_y’2+(t—3)2)}

yeR™ s=0

shows that (7) holds true.

To prove (ii) we only prove the assertion for u®. Property (i) tells us that it
is enough to work with one of the convolutions. Define f(y,s;z,t) = u(y) —
> (Jz —y[> + (t — 5)?), where (z,t) are kept fixed. We calculate

1
yo,t) = i - — —yl? t—5)?%) —» —
flysie,t) > min u— oo (o —yl* + (E = 5)%) — —o0

when |y|,s — oco. It then follows that since f is continuous, it must attains its
maximum on a compact set, which shows that the supremum in the definition of
uf is a maximum.

For (ii1) we simply take y = z and s = ¢ in the definition.

We show (iv) for the sup convolution. The first inequality, u = —M follows from
(71). Fix (z,t) € R™ x [0,00). Then

u(y ) = 5 (|o =P + (1= ) < uy. 9

for all (y,s) € R™ x [0,00). Hence,

u(x,t) < sup wu(y,s) = M.

yeR™ s>0

We prove the assertion (v) for the sup-convolution. If

u(z,t) = u(y,s) — % (Jo —yl>+ (t—5)?)
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we see from (iv) that

[z =y + (t — 5)* = 2€ (u(x, 1) — u(y, s))
< 4eM.

Example 4.4. (The Hopf-Lax formula.)
The solution of the Hamilton-Jacobi equation

u+ H(Vu) =0

where H is convex is given by

u(z,t) = inf {u(y, 0) +tL (%)}

yeR™

where L is the Lagrangian of H. We refer to [E] for formal treatment of the
Hopf-Lax formula. For H(p) = Zp?, it turns out that L = H and the solution is

2
then

1
u(e,t) = inf {u<y,o> - yP}

yeR™

and we see the clear relation with the inf-convolution of u given in definition 4.2.
Taking u(z,0) = |z|?, we obtain the solution

|z 2
u(z,t) =
(z,1) 1+ 2t
in correspondence with example 3.5, the method of vanishing viscosity. O

Lemma 4.5. The functions u. and uc are locally Lipschitz continuous.

Proof. We prove the result for u. which is enough by proposition 4.3 (i). Find
(y,s) so that

1
u€(IL’,t) = U(y,S) + i (|l’ o y|2 + (t - S>2) :
Then we have

U (T, ) — ue(x,t) =

1
inf {U(Z,T) +3

2ER™ 70 €

(12 =2 + (t_7)2)} —u(y,s) — 2% (Jz —y)* + (t —5)%) .
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Choose now z = y and 7 = s so that
. 1 . 1. .

Note that |z —y| < 2v/Me from proposition 4.3 (v). If Q@ < R" x [0, c0) is compact,
the Cauchy-Schwarz’ inequality yields for x,z € Q
1
ue(2,t) — ue(x, t) < - <mz}zxx + \/ME) |z —z| = C|z — x|.
€ e

Interchanging the role of x and z, we see that u. is Lipschitz continuous in the
space variable. A similar proof shows that u is Lipschitz in the time variable.
m

We want to show that u, u. — u uniformly on compact sets. We derive this by
applying Dini’s theorem.

Theorem 4.6. (Dini’s theorem.)

Suppose {fn}_, is a monotone sequence of continuous functions defined on a
compact set Q@ < R"™ x [0,00). Further, suppose that f, — f pointwise, with f
being continuous. Then the convergence is uniform in 2.

Proof. We suppose without loss of generality f = 0 and {f,}~_, is nonincreasing.
Set

A, ={zeQ: f,(z) <e}.
Since {f,}2_, is nonincreasing, we have
A1CA2CA3C...

and further

Q= G A,
n=1

The last statement follows from the pointwise convergence: if x € ), there is an n
so that f,(z) < e which shows that z is in the countable union. By the Heine-Borel
theorem (C.2) there is an N € N so that

N
Q=] A, = Ay
n=1

Hence, given € > 0, there is an N > 0 so that f,(x) < € for all z € 2, which shows
that f, — 0 uniformly in €.
]
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Proposition 4.7. The inf- and sup convolutions satisfy
Ue, US — U
uniformly on compact subsets of R™ x [0, c0).

Proof. We prove the assertion for u¢. By proposition 4.3 (ii) we can write

u(z,t) = sup {u(y, s) — 2% (lz —yl* + (t - 5)2)}

(y,8)eQ

where  is a compact subset of R™ x [0, c0).

Let (z,t) € 2 and find y, s, € 2 so that

(1) = ulyer50) — 5 (|7~ wl? + (= 5.)%)

From proposition 4.3 (v), y. — « and s, — t when € — 0. Continuity of u then
gives

u(z,t) = lir% U(Ye, Se) = lir% u(z, ).
By proposition 4.3 (iii), u¢ > u for any € > 0, and we see that u‘(z) decreases
pointwise to u(z). Since the limit function u is continuous, we can apply theorem
4.6 to see that u° — u uniformly on (2. m

We see that the functions u¢ and u, satisfy many of the desired properties that we
searched for. However, we aim for them to be twice differentiable in some sense,
and we want to know under what conditions they are viscosity solutions of the
mean curvature flow equation.

Lemma 4.8. The sup convolution u® is semi-convex in space with semi-convexity
constant C' = % Similarly, u. is semi-concave in space with the semi-concavity

constant %

Proof. We use definition B.1 to show that u¢ is semi-convex. That is, we want to
show that, for any z,h € R",

1
u(z + h,t) — 2u(z,t) + u(x — h,t) = —=|h[*
€
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First, find (y,s) € R" x [0,0) so that

1
(1) = uly,s) = o (le =yl + (t = 5)%).
From the definition we can take
1
o h)= s futem) - L (o= b+ 7))
€

zeR™ 7>0

1
>u(y,s)—%(|m—y+h|2+(t—s)2)

and similarly

u(z — h,t) = u(y,s) |z —y —h|* + (t = s)?).

- 3% (
Using these estimates, we calculate
u(z + h,t) — 2u(x,t) + u(z — h,t)

1 1
> (e —y+h> =2z —y]*+ |z —y—h|*) =—;!h|2,

2

which shows that u° is semi-convex in space with semi-convexity constant %

O
The next theorem shows that if u is a viscosity solution of
wp = |V div (g—w) (z,t) € R* X [0, ) "
u(z,0) = g(z) (z,t) e R* X{t = 0}

then u€ is a viscosity subsolution and u, is a viscosity supersolution of the same
equation.

Theorem 4.9. Suppose u is a viscosity solution of equation (14). Then u® (u.) is
a wviscosity subsolution (supersolution) on R™ x (2+/Me, ).

Remark. Recall that definition 4.2 is only valid for ¢ > 2v/Me. We actually need a
strict inequality to preserve the viscosity property, which is seen in the proof below.

Proof. We show that the theorem holds for viscosity supersolutions. Suppose
ue — ¢ has a local minimum for ¢ € C? at the point (z¢,%y) where ty > 2v/Me.
Find (yo, o) close to (g, o) so that

1
ue(zo, to) = u(Yo, So) + % (lzo — wol* + (to — 50)?) -
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Further, from the definition of u,, pick (y, s) close to (z,t) so that

(1) > uly, s) + 2% (o —yP + (t - 5)?).

Since u. — ¢ has a local minimum at (xg, tg) we have (uc —@)(xo, to) < (ue—¢)(x,t)
for all (x,t) close to (xg,ty). This gives

L (|m0 —yol? + (t — 3)2)

w(Yo, s0) — @0, to) + 2%
Suly,s) — 0l 0) + o (fr— 9l + (1= 5)?).

Now, pick x =y + (xg — yo), t = s + (to — So) to find

~ ~

(u = @) (Yo, 50) < (u—9)(y,s)

where ¢(y,s) = ¢(y + xo — yo, 5 + to — s0). Since this holds for all (y,s) close
to (yo,So) and the partial derivatives of ¢ at (yo,So) coincide with the partial
derivatives of ¢ at (xg,to) the result follows, as u is a viscosity solution.

O

4.3 Uniqueness of viscosity solutions

For convenience, we divide the proof into different parts. The first part introduces
a technique called ”doubling the number of variables” and uses the inf-and sup
convolutions of a continuous and bounded function. We then show that the vis-
cosity property is preserved under the convolution. Finally, we complete the proof
of the theorem and compare our method to the well known Ishii’s lemma. The
statement of the theorem is similar to the one given in section 4.1.

Theorem 4.10. Suppose u is a viscosity subsolution and v is a viscosity superso-
lution of equation (6) with w < v when t = 0. Assume further that w and v are
constant and uw < v when |z| +t = R for some R > 0.

Then

U<V

in R™ X [0, 00).
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Proof.

e Doubling the number of variables.

As in the proof of the uniqueness of C? solutions, we define
Q={(x,t) eR" x [0,0) : |z| +t < R}
and we want to show that u < v in 2. Now suppose

mgx(u—v)50>0.

For small & > 0 and (z, s) € Q2 we have maxgo (u — v — as) > 4. We now introduce
the inf-and sup convolution of u. Since u® > v and v, < v we have

mgx(ue—vg—as) > 3 > 0.

Given ¢ > 0, let

1
B(w,y,t,5) = u(z,1) = vely, s) —as = = (jz = yl* +(t = s)?) (15)
where x,y € R™, t,s > 0. The idea is that this function has a maximum, attained
on a compact set. To see this note that

sup D>
(,y,t,5)ER?™ X [0,00)2

by equation (15). To see why this is a maximum, and that this is attained in
some compact set, note that for large |z, |y|, |s| and ¢t we have u¢ = u, v. = v and
u® < ve by assumption. This gives

d - —w

when |z|, |y|, s,t — o0. Hence, the supremum is attained in some large ball. Since
® is continuous, it attains its maximum on a compact set.

We now wish to apply theorem 4.9 which tells us that if u = u(x,t) is a viscosity
subsolution, then u(x,t) is a viscosity subsolution for ¢ > 2v/Me, where M is
the maximum of w. A similar result holds for viscosity supersolutions. Denote
(%0, Yo, to, So) by the maximum point of ®.
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e The viscosity property persists under the convolutions.

We show that the maximum point of ® satisfies tg, s9 > C'y/€, where C' = 2v/ M. It
then follows from theorem 4.9 that u¢ and v, are viscosity sub- and supersolutions
close to the maximum point, respectively.

Suppose for contradiction that ¢y < C'y/e. Then

u (2o, to) — ve(Yo, S0) — u(z0,0) — v(yo, S0)

as € — (0 in view of proposition 4.7 and the continuity of u. By the definition of ®
in equation (15) we have

|z —y|* + (t — s)? <(5( max (u —v.— as)+ max cb),
R27 x[0,00)2 R27 x[0,00)2

so that
|zo — yo| < Co1, [to — so| < Coz
for a constant C' > 0. Since u and v are continuous,
u(xo, to) — ve(Yo, So) —> u(xo,0) — v(x0, 0)
as €,0 — 0. Recall that u < v when t = 0 by assumption. Hence, passing to the

limit €, — 0 we get

2 < (20, Yo, to, 50) < u (2o, t0) — ve(Yo, 50)

— u(xg, 0) — v(xg,0) < 0.

This contradicts € > 0 so we must have t, > C'y/e.

e Semi-convex functions and matrices.

We see that ® is semi-convex, since u¢ — v, is semi-convex. As ® has a maximum
at (o, Yo, to, So) we have from corollary B.5 that there exists & = (v, yx, tr, Sk) —
(0, Yo, to, So) so that

®, u®, v, are twice differentiable in the sense of Alexandrov at &
Vit ®(&r) = 0

1
D2 (&) < Lo
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We now find points (xy, yk, tk, sx) for which

Lyt (£ 9)?)

(I)(I',y, t? S) = ’LLE([B,t) - Ue(ya S) — as — 5
is twice differentiable. For convenience, write
p* = Vu(zp, ty), P* = Voe(y, si),
¢ = uf(zy, ty), 7" = ves(yr, sx),
X* = D2y, 1), Y* = D% (yp, si).

Differentiating, we see that

_ 4
Pkapk - 5|$0 - y0|2(x0 - yo) =p

-7 —>q-q=a
We may assume that these limits exists, in the view that the inf- and sup convo-

lutions are Lipshitz continuous, see lemma 4.5. For the second derivatives, note
that

Xk 0 12 I I 1
Di,yq)(xkaymtkaslc) = [ 0 _Yk] - F|$k _yk|2 l_[ I ] < E]Zn-

In the view that u¢ — v, is semi-convex, we also have for any € > 0

[X’“ 0

1
0 —Yk] = —Efgn.

In view of these two inequalities, we see that there exists a limit X* — X and
Y* — Y. Further, letting k — oo in the first equation, we see that

X<Y

]

annihilates vectors in R?". We now plan to use the viscosity property of u¢ and
ve. The problem arrives when xy = 19, because then p = 0. However, in view of
the matrix inequalities we see that

1[ < X* 0 <1] 12 o I —1I 2122 o I =1
e mS | g _yk \E2n+7|xk_ykz| 7] +€T|xk_yk| 7 I

since the matrix
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The last term is added by noting that for a symmetric matrix A, we have A% > 0.
Choose now

J

S
€ = k) 24]xg — yi|?

This yields

TR b G I DO P TR
53716 Yk 2n X O _Yk; \an 51:74: Yk _I I

and we see that X =Y =0 if 2y = yo.

Now, using that u° and v, are viscosity sub- and supersolutions close to the maxi-
mum point, we have

(Q7p7X) € P2’+U€([E07t0),
((ja ]57 Y) € PQﬁUe(g/O? 50)'

Using the stability result for viscosity solutions, lemma 3.11, we get

q < (@j*pipg)Xi' if wg # yo
p|
q<0 ifzg=1yp

and

]

bip; .
= <5ij —ﬁ) Yij if o # yo

q_ = O lf Ty = y(].
Since ¢ — ¢ = a we get the contradiction
a<0

regardless of whether xq = yo or not. We conclude that v < v in €.
O

Remark. We have actually shown, in doing this proof, a version of Ishii’s lemma,
or the theorem of sums, which is one of the main tools when studying viscosity
solutions. It was first proven in [CIL], and the elliptic version stated in [K] is
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given here: Suppose u and v are continuous in €. For ¢ € C* (€2 x Q) suppose
(20, Yo) € 2 x Q is a maximum for the function

u(z) +v(y) — ¢(z,y).

Then, for each p > 1 there are symmetric matrices X, Y such that

(ngb(l‘O: y0)7 X) € j2’+u(x0), (Dy(¢(l‘0, yO)a Y) € j2’+’l)(y0)

and

s 1ot [ 9] <[y V| < Dot + 1 (0200000
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5 Geometric properties of the mean curvature
flow

5.1 Mean curvature flow for compact sets

In this section, we present some geometric properties of the mean curvature flow.
Recall that we are given

Io={reR":g(x) =0}

for some continuous function g : R" — R. We also assume that ¢ is constant when
|z| = r for some r > 0. We then look for

Iy ={xeR":u(z,t) =0}

where u is the unique weak solution to the mean curvature flow equation,

{ut — |Vuldiv (%) (2,8) < R" X[0,0) o)

u(z,0) = g(z) (x,t) e R* X {t =0}

Lemma 5.1. Suppose u is a viscosity solution of the mean curvature flow equation
(16). Further, suppose f is a continuous function. Then

v=f(u)

is also a wiscosity solution of equation (16).

Proof. We only prove that f is a viscosity subsolution under the assumption that
f is strictly increasing.
Suppose first that f is smooth, so that it has an inverse h = f~! and f’ > 0.
Choose ¢ € C? so that

0= (v—¢)(z0,%0) = (v —¢)(x,1)

for all (x,t) close to (zg,ty). We rearrange the equation and compose both sides
with h to get

(u = R(¢)(x0,t0) = (u— h(¢)(z, 1)

for all (x,t) close to (xg,ty). Using the fact that u is a viscosity solution,
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/ ¢xz¢xa " / .

The term involving h”(¢) is zero, since if p # 0 we have

= PiPj
2, <5“‘ L ) Py

3,j=1

W Ipl* - <2p1> = 0.

Hence, in both cases we can divide by A’ > 0 which shows that v = f(u) is a
viscosity subsolution.

For continuous and strictly increasing functions f, we find a smooth sequence of
functions {fx}72, with f{ > 0 for all &k and f; — f. A simple application of the
stability lemma 3.11 shows that f is a viscosity subsolution. O

We mention two methods to show existence of solutions of the mean curvature
flow equation. One is given by the Perron method, see for example [CIL]. One
can also look at an approximation of the original equation. The idea is that the
theory of uniformly elliptic partial differential equations gives existence of smooth
solutions [LSU]. Considering

up = (1+0)5~-—M Uy, = tr(AgD*u)
t iJ 62 n |VU|2 T 0,¢e

before letting 6, ¢ — 0, we can show that
o' Ap x> 0|x)?,

for all x € R™. Thus Ay, satisfies the uniform ellipticity condition, and the equa-
tion is uniformly elliptic.

Theorem 5.2. Suppose g : R® — R is continuous. Further, assume that g is
constant when |x| = r for some r > 0. Then there ezists a continuous viscosity
solution u of equation (16) so that u is constant when |x|+t = R for some R > 0.
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In order to derive geometric properties of the flow, given only the initial surface
[y, we need to show that the subsequent surfaces {I';};>0 are well defined.

Theorem 5.3. T'y, fort > 0 is well defined. More precisely, suppose that u and
v are viscosity solutions of the mean curvature flow equation, with u(x,0) = g(z),

v(x,0) = f(x). If
Lo ={z:g(x) =0} ={z: f(z) = 0}
then

[y ={z:u(x,t) =0} = {z:v(x,t) =0}.

Remark. This shows that the flow is independent of the choice of our initial func-
tion, as long as our choice agrees on [,.

Proof. Suppose first that f,g > 0. Find a continuous function ® so that
®(g(x)) = f(z), zeR”

® >0, zeR"{0}.

By lemma 5.1 the function ®(u) solves the same equation with ®(u) = ®(g) at
t = 0. By the comparison principle, theorem 4.10, we have

D(u)y=2v=0

on R"x[0,0). We see that if u(x,t) = 0 then v(x,t) = 0. Repeating the procedure,
but now choosing ® so that

O(f(x) =g, xeR"

which shows that v(z,t) = 0 implies u(z,t) = 0.

For general g : R — R note that |u| is a viscosity solution with |u| = |g| at ¢ = 0.
Since

Po = {z:g(z) =0} = {z : |g(2)| = 0}

we may consider the positive function |g| in the proof. The same argument holds
for f.
m
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We want to use the comparison principle for solutions of the mean curvature flow
equation to show a similar type of statement for the geometric flow. The next
proposition tells us that, if a compact set sits in a bigger compact set, and the two
sets evolve by mean curvature flow, the smaller set will always lie inside the bigger
set. In addition, the distance between initially disjoint surfaces increases under
the flow. We put the proof from [ES] with some modifications. In both cases we
use the distance function to describe the initial function g. It is defined by

dist(A, B) = inf {|x —y| : x € A,y € B}.
Proposition 5.4. Suppose I'g, Ag are nonempty compact subsets of R™.
(1) Ty < Ay implies
Iy c Ay

for all times t = 0.

(i) If To and Ay are disjoint, then
dist(I'g, Ag) < dist(I'y, Ay)
up until a time T where either I'r = & or Ay = .

Proof. For (i), let u(z,0) = g(z), v(z,0) = f(z) where u,v are viscosity solutions
of equation (16). Here, the zero-level sets of u(-,t) correspond to I'; and the zero-
level sets of v(-,t) correspond to A;. By theorem 5.3 we can take

since we notice that I'y and Ag are really the sets where g and f are zero, respec-
tively. Since I'g = Ay we have g(x) > f(z) for all x € R". By the comparison
principle, theorem 4.10,

u(z,t) = v(z,t) =0
for all (z,t) € R™ x [0,00). Hence, if x € T'; we see that v(z,t) = 0 which implies
Ft C At'

For the second statement, we can take the initial function g with a zero level-set
corresponding to I'g. We also want it to be related to the set Ay and the distance
between 'y and Ay.
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We find a Lipschitz continuous function g : R™ — R so that
o I'o={z:g(z) =0}, Ao = {z: g(z) = 1}
e g(x) =2forze A= {x:|x| =r for large r > 0}

1
l9(z) —g(y)| < m’l’ —

for all x # y.

Such a function g exists, for example let

@)= min dg@) +—rJz—y
IO = erpongon | TV dist(I"g, Ao) vl

Considering different possibilities for z, we see that I'y and Ay are the sets where
g = 0 and g = 1 respectively.

Again, we apply theorem 5.3. Let u be the solution of the mean curvature flow
equation with u(z,0) = g(z). Then

Iy ={z:u(x,t) =0}, Ay = {z: u(z,t) = 1}.

From a contraction property given in theorem 3.3 in [ES] which follows from the
comparison principle, we can extract that

1

diSt(Fo, Ao) |I B y’

uz,t) —uly, )] <

for all x # y.
Before we reach the critical time 7', we can find points x € I';, z = A; so that

|..'Zf — Z| = diSt(Ft, At)
Then, since u =0 on I'; and u = 1 on A; we have

1 dlSt (Ft7 At)

1= ) — ) S sy 10— 2 = o
u(®,) = u(zt) dist(F07A0)|x i dist(T'o, Ao)

]

In the paper [G1], Grayson showed that, for n = 2, any embedded curve converges
to a convex curve under the mean curvature flow before contracting to a point.
This, along with the previous proposition leave us with a peculiar example.
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Example 5.5. (Why the snake does not move by mean curvature.)

In example 2.10 we calculated that, for n = 2, the unit circle shrinks into a point
after t = % seconds. By the previous observation, if we take a closed spiral-shaped
curve inside the unit circle, it will unwrap itself in less than half a second, become
convex and shrink to a point. See figure 12. O

The unit circle
A closed spiral

Figure 12: The snake unwraps itself under mean curvature flow.

Example 5.5 could not happen in higher dimensions than n = 2. In the paper
[G2], Grayson created an example, for which a smooth initial surface changed its
topology under the mean curvature flow. Figure 13 shows a dumbbell, the initial
surface. Under the mean curvature flow, provided the cylinder separating the two
bells is long and narrow enough, the surface will develop a singularity. Here, the
two bells are separated, creating two convex bodies. By the work of [H], the two
convex bodies will then shrink to a point.

We remark that the geometric applications only work for codimension one. Thus,
we can not use these results for curves in R3.

Example 5.6. (Codimensions.)
Let

To={(z,y,2): 2+ 4> =9,2=0}, Ag={(z,9,2): (x—2)*+2> =9,y =0}

describe circles in R?. In example 2.10 we calculated the evolution of circles under
mean curvature flow,

Iy ={(z,y,2) R T =9-2t,2=0}, A ={(z,9y,2): (x—2)2+z2=9—2t,y20}.
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Figure 13: Under the mean curvature flow, the surface will evolve smoothly until
a time when the two ends pinch of the cylinder.

At time t = 4 we see that (1,0,0) € 'y M Ay, but T'g M Ag is empty. This clearly
violates proposition 5.1 (ii).

On the other hand, taking

To={y+2>=4, -1<2<1}
Ao ={(z —4) + " + 2% =4},

to be a cylinder and a sphere respectively, we have

Dy={f+22=4-2t, -1<x <1}
Ay ={(z =42 +y* +2° =4 — 4t}.

The closest point from the cylinder to the sphere is clearly given at x = 1 for the
cylinder. Further, by symmetry, the distance does not depend on where on the
circle y? + 22 = 4 — 2t we are. A calculation shows that

dist(['y, Ag)? = 17 — 6t — 44/(13 — 2t)(1 — 1)

for 0 < ¢ <1 (at time ¢ = 1 the sphere has contracted to a point). We see that the
distance is increasing with time, in correspondence with proposition 5.1 (ii). [J
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5.2 Minimal surfaces and decrease in surface area

A minimal surface is a surface that minimizes its area. If we consider all smooth
surfaces z = u(z,y) in a bounded domain €2, we want to minimize

u) = J A1+ |Vul?dzdy. (17)

The following theorem states the relationship between minimal surfaces and mean
curvature.

Theorem 5.7. Suppose that u € C%(Q) minimizes the integral in equation (17)
among all similar functions with the same boundary values. Then H = 0 for
the surface z = u(x,y). Hence, a minimal surface is a surface with zero mean
curvature.

Proof. Let n e C2(Q) with = 0 on 0§2. By assumption, A(u+ en) has a minimum
at € = 0 so that

d
iA(u + e77)|6=0 =0.

We calculate

; AN
aA(u +en) = Jf m

Using Green’s identity and n = 0 on 0f) gives

H ( 1 +TVU|2> ddy =0.

Since this holds for all n € C2(Q) the variational lemma (C.1) yields
Uga (1 + 12) = 2ugliytigy + tyy (1 +ul) = 0.

This is often called the minimal surface equation. Comparing with the expression
for H in equation (4), the minimal surface has zero mean curvature. ]

We note that minimal surfaces under mean curvature flow satisfy X =Hv= 0, so
that nothing happens to minimal surfaces under mean curvature flow. As we have
already seen, the plane satisfies H = 0, so the plane is a minimal surface. We give
here some other examples.
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Figure 14: The cateniod. Figure 15: The helicoid.

Example 5.8. (Minimal surfaces.)
The catenoid is defined by

x = acosh (v/a) cosu,
y = acosh (v/a)sinu,

z =,

where a is a non-zero real constant, v € R and u € [—m, 7]. The catenoid can be
written explicitly as

a

/x2 + 2
2z = acosh™ (_y)
and we see that the catenoid is a minimal surface. The helicoid is given by

r(u,v) = (ucosv,usinv, cv),

where a < v < b and u € [—m, 7| for some constants a, b and c. It is also a minimal
surface. Further, it is a ruled surface, it can be written

r(u,v) = b(v) + uy(v),
where b is the base curve and v is the director curve. In our case, we see that ~
describes the unit circle, y(v) = (cosv,sinv,0). See figure 14 and 15. O

In the plane, we found that the area of a closed curve is decreasing with a rate of
21 under mean curvature flow. Here, we show a similar result for the surface area
of a graph solution of the mean curvature flow equation, z = u(z,y). We mention
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that this result holds true for a parametric surface moving under mean curvature
flow, see [H]. As when experimenting with soap films, we keep the boundary fixed
for all times. We note that in this case,

Ty ={(z,y,2) e R®: z = u(z,y,t)}

and the mean curvature flow equation reduces to

Vu
T VU H = T+ [Vu? div | —— .
Uy |Vul |Vul 1v< 1+|Vu|2>

Proposition 5.9. Suppose ue C?. Let Q < R™ x [0,00) and consider

ur = /1 + |Vul? div (ﬁ) , (x,t)eQ

u(z,t) = f(x), (x,t) e

| u(z,0) = g(x).
Then the surface area

Al) = | I+ [VuPdsdy
15 decreasing with time.

Proof. We calculate, using Green’s theorem

(Vu, Vuy) dzdy

dA _J 1
dt Qq/l—i—‘VU‘Z
Uy . Vu
= ———=(Vu,v dS—fudlv —— | dxdy.
(iq/l—i-|Vu]2< ’ 0 <V1—|—|Vu|2> Y

The boundary term vanishes, since u is kept fixed in time on 0f). We use the
evolution equation to manipulate the last term,

A
C;_t = _f H?\/1+ |Vu|2dzdy < 0.
Q
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6 Concluding remarks and further work.

Most of the work in this thesis has been made in connection with viscosity solutions
and uniqueness of solutions. By investigating properties of semi-convex functions
and inf- and sup convolutions, we were also able to see the connection between the
mean curvature flow equation and other second order partial differential equations,
where uniqueness is often showed by an application of the Ishii lemma.

Expanding the ideas from the previous section, one can find the minimal sur-
faces corresponding to a given boundary. Simply putting any surface touching the
boundary and letting it flow by mean curvature flow, yields a minimal surface once
the evolution stops. This theorem is summarized in theorem 2.1 in Huisken [H2].

In further work, it would be interesting to include the Gaussian curvature and
other geometric quantities, controlling moving surfaces. Here, interesting equa-
tions and problems appear and for non-local equations involving the fractional
Laplacian this seems to be terra incognita.
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Appendices

A Matrices

From elementary linear algebra, a real matrix A = (A4;;);; is symmetric if A;; =
Aji. A symmetric matrix can be diagonalized by using an orthogonal matrix
S consisting of the eigenvectors of A. If A is the matrix consisting of the the
eigenvalues of A on its diagonal, and zero otherwise, we can write

A = STAS.
That S is orthogonal means that ST = 51,

Remark. If f: R" — R is in C?*(R") then D?f is symmetric.

For example, when n = 2, D?f is the matrix given by

( f:cx facy )
fy:c fyy

Since f € C?, fuy = fyu s0 D*f is symmetric.

Definition A.1. For a symmetric matriz A, if
§TAE >0,

for all € € R™, we say that A > 0 or A is positive.

Example A.2. The identity matrix is positive. If z = (21, 29, ..., x,) then

n
oI = fo = 0.
i=1

The matrix A = (a;;),; given by

Dipj

Clij = (52 — D)
Pl
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is a positive matrix.

ITA{E = Z ZT; (5U — pzp]) fL‘j

2
ij p|
and so, by the Cauchy-Schwarz’ inequality

P & Aw =) @by |pl* 2y — Y wipip;

) 1,J

= [of* [p|* ~ (pr> <;:rjpj>

2
— |of |pl? - (2 p)

- (54) (54) -

From the definition, one can extract the following property of a positive ma-
trix.

]

Lemma A.3. If A > 0, the eigenvalues of A are non-negative.

Proof. Write A = STAS. Then
0 < ETAE = €7STASE = (SETA(SE) = 2T A,
where x = S¢. Further,

n

JZTAJI = Z J]k(A.T)k = Z ZkuZAkl'
k=11=1

k=1

Since A is a diagonal matrix, the only terms that are nonzero are the terms where
k = 1. Hence,

0<az’Ax = Z A3

k=1
This holds for all z € R (¢ was arbritrary), so A\, = 0 for k = 1,..,n. ]



Since all the eigenvalues of a positive matrix are positive, define the matrix

Vi 0 ... 0

0 /M ... 0

0 0 ... v\
to be Az. Indeed, AZAz = A.

Proposition A.4. Suppose A >0 and B = 0 are matrices. Then tr(AB) = 0

In proposition A.4, the trace of a matrix A, denoted tr(A) is given by

To prove proposition A.4, we need the following lemma.
Lemma A.5. If A > 0, then tr(DADT) > 0 for all n x n matrices D.

Proof. Look at

(DA)ik(D" )i

M=

(DAD");; =

=
Il
—

i M: =

(DA>ikDik

Z Dy Ay Diy,.
=1
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This seems fairly similar to the product xTAx = > 2y wAgxy. Letting D

be the vector containing the ith row of D, D = (d;1, d;s, ..., dsr,), We see that
(DAD");; = (DHYTAD = 0

since A > 0. Hence, all the diagonal elements of DAD?T are positive, so the trace

is positive.

Proof. (Of proposition A.4)
Note first that for any n x n matrices A and B we have

- Zn:(AB)kk = Zn: Zn:Az/gBkl Z Z Bu Ay = Z BA); = tr(BA).

k=1 k=11=1 I=1k=1 =1

O
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Writing A = STA2A2S gives
tr(AB) = tr(STA2A2SB)
— tr((A29)TB(AZS)).
With C' = Az S we see that
tr(AB) = tr(CT BC) = tr(CBCT) > 0,
by lemma A.5 since B is positive. O]

We use the square root matrix A2 to optimize a quadratic form 27 Az. If B > 0
1 1 1 1

we can define B2 = STA2S, so that B2B2 = B.

Proposition A.6. Suppose B = 0 and A is a symmetric matriz. Then

max ! Az = max \;
2T Bx=1 i

where {\;}?_, are the eigenvalues of B™'A. Similarly, the minimum of the above
expression is given by the minimum eigenvalue of B~ A.

Proof. (For maximum)
Let y = B2z so that yTy = 1 under the restriction 27 Bz = 1. This gives

max z! Az = max {yTB*%AB*%y} = ma {yTSTASy}.
zT Bx=1 yTy=1 yTy=1
Here, we have written
B 2AB 7 = STAS
since B"2AB™? is a symmetric matrix. Now, defining z = Sy gives 27z = 1 and

further

n
max z! Az = max 2T Az = Z /\iziz < max \;.
T Bx=1 zTz=1 i )

Noting that

implies
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for y = B3z shows that the matrices B-2AB~% and B~'A share the same
eigenvalues.

]

Corollary A.7. Under the same assumptions, if n = 2 we have
_max vl Ax + anéimril o' Az = tr(B™'A).
Proof. Since B :AB7: is symmetric, write
B 3AB 7 = STAS.
The eigenvalues A1, Ay of A satisfies

max ' Az + min T Az = M\ + Ao
2T Bx=1 2T Bx=1

by the previous proposition. Using tr(AB) =tr(BA) we get

A+ Ay = tr(STAS) = tr(B 2 AB %) = tr(B ' A).
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B Semi-convex functions

We suppose in this section that €2 is a bounded domain, and 2 < R™.

Definition B.1. A function f : Q — R is said to be semi-conver with semi-
convezity constant C' > 0 if

flx +h)—2f(x) + f(x — h) = —C|h|?
for all x,h € Q.

A perhaps more common way to define semi-convex functions is that f(z) + £|z|?
is convex. As we will use both definitions in the rest of the appendix, we show
that the two are equivalent.

Proposition B.2. If f is continuous then f satisfies the condition given in defi-
nition B.1 if and only if f(z) + $|z|? is convex.

Proof. Suppose first f(z) + $|z|? is convex, so that

[l e (P + ). (8

¢ ¢
2 2 1

T < L@ + s+

Let x = z+ hand y = 2 — h. Thenxzﬁzzandso

Fle b B) = 2f(2) 4 flz = h) > Clel = 5 (24 B+ |2 = hP) = ~Clh

For the other direction, it is easy to verify that equation (18) is valid when f
satisfies the condition in definition B.1. Since f is continuous, f(z) + $|z|? is
convex.

]

We mention two theorems about semi-convex functions. The first one says that
a semi-convex function is twice differentiable almost everywhere in the sense of
Alexandrov.

Theorem B.3. (The Alexandrov theorem)
If f:Q — R is semi-convex, then, for almost every x € Q2 there is a p € R™ and a
symmetric matriz X so that, as h — 0

F() = fa) + o =y + 5 (= B Xz~ B) + of|AP?).
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Lemma B.4. (Jensen’s lemma)
Let ¢ : 2 — R be semi-convexr and let xy be a strict local mazimum point of ¢. Set
op(x) = ¢(x) + (x,p) for x,p e Q. Then, forr,é >0, the set

K = {:1: € B,(xo) : Ip € Bs such that ¢, has a local maz at $}

has positive measure.

A proof of the Alexandrov theorem can be found in [EG]. We give here a proof
of Jensen’s lemma, which states that, if we perturb a semi-convex function which
achieves a local maximum, we can get functions with local maximum close to the
original maximum point. In a given ball around the original point, the set of max-
imum points for the perturbed function has positive measure. It should be clear
why we need ¢ to be semi-convex and not convex, since a convex function cannot
achieve a strict local maximum (recall that D?f > 0 for convex functions f).

Proof. (Of lemma B.4.)

We suppose o = 0, otherwise we can consider ¢, () = ¢,(z + ).

Assume first ¢ € C?(Q2). We choose 7 > 0 so that ¢ has a unique maximum in B5,..
Find € > 0 so that

#(0) > sup {p(x)} + e =M +e.
x€0B,

The supremum is clearly attained, since ¢ is continuous. Further, we choose > 0
so that

5<i.
2r

Then, for x € B, and p € B; the Cauchy-Schwarz’ inequality gives

Op(x) = o(x) + (p,xy < M + |p||lz| < M + %

At £ = 0 we see that

p(0) = ¢(0) > M + € > sup {¢,(2)}.

TEOB,

Hence, there is a point x € Br\ﬁBr_, z # 0, for which ¢,(x) > M, so any maximum
point of ¢, lies in the interior of B,. Since this holds for all p € Bs, and for local
maximum x € B, we have

Vop(x) = Vo(x) +p =0,
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we see that By « V¢(K). Since ¢ is semi-convex, ¢(x) + 5|z|? is convex so that
—M < D*p < 0in K. This gives

|Bs| < |Vo(K)| = LW{) dr < L \Det (D2¢(x))]dx < [\"|K].

The second inequality uses the change-of-variables formula from [EG]. We have
shown that K has positive measure, provided ¢ € C?(1Q).

For the general case, replace ¢ by ¢¢ = ¢ = p., where p. is the standard mollifier.
Set

Kiy={re B, : 3p € By such that gbll)/l has a local maximum at z}.

We now show that

0
| Ky K.

m=11

i

IfeeNo_,UpZ, K then x € K/, for infinitely many m. Thus, for infinitely

many m, there exists p,, € Bs such that @17{:1 has a maximum at x. In particular,
we can find a subsequence {my};._; with the properties that

Pmy — D, DE Bs

gbl/ ™k has a max at x for all k
Py

Qszl){n”;k — ¢, locally uniformly.

Using these properties, we see that x € K.

Now let A,, = J,2,, K. We see that
Al DAQDAgD...

and |A;| < |B,| < c0. From chapter 3 in [MW] we get

0

A 4

m=1

= lim |A,,|.
m—00
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Since A, = J,2,, K1y © Ki/m we have

o0 0
K| > ﬂ UKl/l

m=1Il=m

> lim [Ky/m| = 0.
m—00

The last inequality follows from the fact that K/, has positive measure, indepen-
dent on m by the previous case.
O

From Jensen’s lemma and the Alexandrov theorem we get the following corollary.

Corollary B.5. Suppose f : Q2 — R" is semi-convex and f has a local mazimum
at xg. Then there are x;, — xo so that

Vf(zr) — 0

when k — 0.

Proof. Set
~ 1
flo) = @)~ 5

Then f is also semi-convex and it has a strict maximum at zo. By Jensen’s lemma
and the Alexandrov theorem, there are

|z — 202

xy € Bi(xo)

(0)

=

pL€ B
so that
fo(x) = f(x) = (o, )

has a local maximum at xp with f twice differentiable at z;. By the infinitesimal
calculus we have

Vi (ak) = VF ) + 10— 0) = V(o) + e+ 3 (ox — 0
1

:pk+E($k—ZE0) — 0
as k — oo. Further,

D?f(ay) = DAf(ex) + ~1 = D*f, () + ~1 <

1
k k EI'
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C Some useful results from real analysis

C.1 The variational lemma
Lemma C.1. (The variational lemma.)

Let Q be a bounded domain in R™ and suppose F' is continuous in ). Further,
suppose

L F2)é(x)dz = 0

for all test functions ¢ € CF(2). Then

F=0.

Proof. Fix xq € Q and choose

$(z) = pe(z — 20)

where 0 < e <dist(zg, 02) and note that ¢ € C°(Q2). Here, p, is the standard
mollifier in R™. The mollification of F' at xy is then

F.(z9) = f F(z)pe(x — xp)dz =0
Q
by assumption. We also have
F(zg) = lin(l) F(zo) = 0.

Since xy was arbitrary, F' = 0 in (). m

C.2 Results from real analysis

Theorem C.2. (The Heine-Borel theorem.)
A set E < R™ is compact if and only if any collection O of open sets that covers
E contains a finite subcover that also covers E.

A proof of theorem C.2 can be found in [MW] chapter 11.
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Lemma C.3. (Monotone convergence theorem for sequences.)
Suppose the sequence of real numbers {a,}_, is bounded for each n. Further,
suppose {an}>_, is a monotone sequence. Then there exists a limit L = lim,, o a,.

Proof. We suppose without loss of generality that {a,} is increasing. Set L =
sup,, a,. By definition of L, for any € > 0, there is an N € N so that

L—e<ayp.
We estimate, for n > N
L—e<an<a,<L+e
Put differently, for any € > 0 we have
la, — L| <€

for alln > N. O

Theorem C.4. (The Bolzano-Weierstrass theorem.)
Suppose the sequence of real numbers {a,}>_, is bounded for each n. Then there
exists a convergent subsequence {an, }7o_;.

Proof. Our plan is to construct a monotone subsequence of {a,}, which will also
be a bounded sequence. The result then follows from lemma C.3.
Suppose first that the set
Sy ={a, :n> N}
obtains its maximum for all N € N. Choose n; < ny < ns < ... and set

ap, = Maxan,
n>1

We see that the sequence {a,,} is decreasing. If Sy fails to reach its maximum,
put

anl = AN +1-

Then, since Sy has no maximum, we can find ny > n; so that a,, > a,,. Contin-
uing this process gives an increasing sequence {a,, }. ]
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