
Recommendation of Attractions and
Activities
Using Collaborative Filtering and Implicit

Feedback

Magnus Settemsli Mogstad
John-Olav Storvold

Master of Science in Computer Science

Supervisor: Herindrasana Ramampiaro, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Title: Recommendation of tourist attractions
Students: Magnus Settemsli Mogstad, John-Olav Storvold

Problem description:

In a modern world, people travel more. They are busier scheduling their day to
day activities, and they value others’ opinion now more than ever. Intelligent
recommendation systems are becoming an indispensable tool for facilitating decision
making for the users, whether it is online shopping, recommending new music or
highlight movies you have yet to watch.

The current mindset for recommendation systems is to tailor their ability to provide
excellent recommendations within their targeted field. This project aspires to design
and develop a proof-of-concept that offers personalized recommendations within
multiple domain areas, which not only is achievable but frankly what people currently
is missing in their lives. The proof-of-concept will give personalized recommendation
within movies, museums, music events, nightlife, and restaurants.

Responsible professor: Heri Ramampiaro, IDI
Supervisor: Heri Ramampiaro, IDI

Abstract

Recommendation systems are becoming more and more popular and are
introduced to new domains all of the time. Therefore, the purpose of this
master’s thesis is to investigate if a recommender system into the domains
of attractions and activities is plausible both to create and if it is viable
towards the end user. We aim to proof-of-concept a recommendation
system which utilizes collaborative filtering, implicit feedback, and user
profiling. Further, an experiment is conducted with external users. The
experiment will collect data from the users, their thoughts of the service
and if they found the service viable and the recommendation given to be
credible.

In the first part of the thesis, there is an empirical study of the methods
and techniques used in recommendation systems. This study includes
methods used in modern recommendation services nowadays and is used
as a guideline when creating and discussing the service. The second part
of the thesis undertake the requirement, design and implementation parts
where we decide which methods to utilize, how we created the service
and what technologies used. Lastly, we discuss and evaluate our findings
regarding the service’s viability and credibility using the results obtained
in the conducted experiment.

The results of the proof-of-concept experiments show that the partici-
pants found the system credible, and the thesis will argue that such a
recommendation system is viable.

Sammendrag

Anbefalingsystemer blir mer og mer populært og det blir introdusert
innenfor nye domener hele tiden. Formålet med masteroppgaven er å
undersøke om det er mulig å lage et anbefalingssystem som fungerer på
flere domener innenfor attraksjoner og aktiviteter, og for å se om et slikt
system er noe sluttbrukerne synes fungerer. Målet med oppgaven er å
bevise at et prototype av slikt anbefalingsystem fungerer ved hjelp av
samarbeidsfilter, implisitt tilbakemeldinger og brukerprofiler. Et eksperi-
ment er også gjennomført med eksterne brukere. Igjennom eksperimentet
samler vi inn data fra brukeren, deres tanker om systemet, om de synes
systemet fungerte og at anbefalingene deres var troverdig.

I den første delen av masteroppgaven er det gjennomført en empirisk
studie om metodikken og teknikkene som er brukt i anbefalingssystemer.
Denne studien inkluderer metoder og teknikker som er brukt i dagens
anbefalingsystemer. Studien er veiledende for design og implementasjonen
av systemet. Den andre delen av oppgaven omhandler krav til systemet,
design og implementasjonen gjennomført, og hvilke metoder og teknologier
som ble brukt for å lage systemet. Til slutt så evaluerer og diskuterer
vi våre funn om tjenestens troverdighet og funksjonalitet ved hjelp av
resultatene som ble innhentet i et eksperiment.

Resultater fra eksperimentet viser at deltagerne fant anbefalingene til
prototypen troverdige, og oppgaven argumenteres det for at systemet
også fungerer.

Preface

This thesis concludes our Master of Science education in Computer
Science at The Norwegian University of Science and Technology (NTNU)
in Trondheim. The thesis was performed throughout our 10th semester,
spring 2016, at the Department of Computer and Information Science

Acknowledgments

First and foremost, we would like to thank Heri Ramampiaro for being our
supervisor. We are grateful that we could come to you with any questions
during this time. We would also like to than our friends and families
who have helped us both by participating in our experiment and help us
distribute our questionnaire and lastly helping us with proofreading our
thesis.

Contents

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Listings xvii

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Challenges and Current Situation . 2
1.3 Personalized Recommendations . 3
1.4 Research Questions . 3
1.5 Outline of Report . 4

2 Survey 5
2.1 Datasets . 5

2.1.1 Web Crawlers . 5
2.1.2 Publicly Open Datasets . 6
2.1.3 Third-Party Services . 6
2.1.4 Existing Dataset . 6

2.2 Previous Works . 7
2.2.1 Content-based Filtering . 8
2.2.2 Collaborative Filtering . 9
2.2.3 Hybrid Approach . 13
2.2.4 Other Recommender Systems 15

2.3 Clustering . 19
2.3.1 Data Representation in Clustering Algorithms 20
2.3.2 Number of Clusters . 20
2.3.3 K-Means . 20
2.3.4 Mean shift . 22

vii

2.3.5 BIRCH . 24
2.4 Dimensionality Reduction and Visualization 28

2.4.1 SNE . 29
2.4.2 t-SNE . 30

3 Approach 33
3.1 Requirements . 33

3.1.1 Functional Requirements . 33
3.1.2 System Requirements . 35

3.2 User Requirements . 46
3.2.1 Profile Requirements . 46
3.2.2 Modern Browser . 48
3.2.3 Geolocation . 48

3.3 API Requirements . 48
3.3.1 Dataset Maintenance . 48
3.3.2 Metadata in Dataset . 48
3.3.3 Possible Datasets . 49

3.4 Design . 49
3.4.1 Web Application . 50
3.4.2 Feedback . 53

4 Implementation 55
4.1 Recommendation system . 55

4.1.1 Node.js . 55
4.1.2 Express.js . 56
4.1.3 MongoDB . 57
4.1.4 Redis . 58
4.1.5 Socket.IO . 58
4.1.6 Clustering . 59
4.1.7 Recommendation . 59

4.2 Web application . 60
4.2.1 Socket.io . 60
4.2.2 Angular . 61
4.2.3 Leaflet.js and Mapbox . 62

4.3 Challenges . 63
4.3.1 In-Browser Update . 64
4.3.2 Normalization of External Data Sources 64

5 Evaluation 67
5.1 Current state . 67
5.2 User Experiment and System Testing 68

5.2.1 Validity of Experiment . 68

5.3 Experiment . 71
5.3.1 Experiment Recommendation Results 72
5.3.2 Evaluation of Clusters . 73

5.4 Evaluation and Discussion of the Implementation 74
5.5 Discussion of the Recommendation 75

6 Conclusion 79
6.1 Previous Work . 79
6.2 Visions for Proof-of-Concept System 80

6.2.1 Limitations of the System . 80
6.3 Future work . 81
6.4 Conclusion and Final Thoughts . 81

References 83

Appendices
A Survey 87

A.1 Example of Calculating Rating Using Pearson correlation 87
A.2 X-Means Clustering . 88
A.3 Visualization . 89

A.3.1 Convex and Non-Convex Dimensionality Reduction 89
A.3.2 MNIST Data Set Visualization 91

B Approach 93
B.1 Requirements . 93

B.1.1 User Profile Requirements 93
B.1.2 Interface . 95
B.1.3 Sequence Diagrams . 96
B.1.4 Clustering . 99

C Implementation 111
C.1 Front-end Screenshots . 111
C.2 Server Configuration . 113

D Evaluation 115
D.1 User Test . 115
D.2 Cluster Visualization . 117

List of Figures

2.1 Content-based recommender system architecture 8
2.2 A user-user collaborative filtering system architecture 11
2.3 The architecture of a location-based service recommendation model . . 18
2.4 Interface in the LBSRM system . 19
2.5 Overview of BIRCH . 25
2.6 Non-global and global BIRCH clustering vs Mini Batch K-Means 26
2.7 Taxonomy of dimensionality reduction techniques 28
2.8 Visualization by t-SNE of the MNIST data set 32

3.1 A sequence diagram for user registration 35
3.2 A sequence diagram for when user query the our service 37
3.3 Apple music user profile creation interface 39
3.4 A comparison of clustering methods . 41
3.5 Distribution of preference in music genres 41
3.6 Distribution of preference in movie genres 42
3.7 The sum of squared error with demographic data 45
3.8 The sum of squared error without demographic data 45
3.9 Proposed user registration page . 47
3.10 Proposed user interface with a map and a recommendation list 51
3.11 Proposed interface of the users profile page 52

4.1 System Architecture . 56
4.2 Flowchart for recommendations . 60
4.3 Screenshot of recommendation page . 61
4.4 Leaflet map with Mapbox tiles . 63

5.1 Experiment creation and update profile 72
5.2 Experiment change data source and credible recommendations 73
5.3 Visualization of user clusters using different techniques 77
5.4 Visualization of clusters in Restaurant using different techniques 78

A.1 Visualization by Sammon mapping of the MNIST data set 91

xi

A.2 Visualization by Isomap of the MNIST data set 92
A.3 Visualization by LLE of the MNIST data set 92

B.1 Settings interface mockup . 95
B.2 A sequence diagram for when users login into the system 96
B.3 A sequence diagram for when users updates their profile 97
B.4 A sequence diagram for when user hear or star an entity 98

C.1 Overview of recommendation page . 111
C.2 Overview of profile . 112
C.3 Overview of settings . 112
C.4 About service . 113

D.1 Visualization of clusters in movie and music category 117
D.2 Visualization of clusters in nightlife category 118
D.3 Visualization of clusters in music and museum categories 119
D.4 Visualization of clusters in music category 120

List of Tables

2.1 Tradeoffs between recommendation techniques 15
2.2 A comparison of clustering algorithms 27

3.1 Functional requirements for the system 34
3.2 Clustering with demographic data on movie category 43
3.3 Clustering without demographic data on movie category 44

A.1 A rating matrix on a 5-star scale . 87
A.2 Dimensionality reduction properties . 89

B.1 Clustering test with demographic data on museum category 99
B.2 Clustering test without demographic data on museum category 100
B.3 Clustering test with demographic data on music category 101
B.4 Clustering test without demographic data on music category 102
B.5 Clustering test with demographic data nightlife category 103
B.6 Clustering test without demographic data nightlife category 104
B.7 Clustering test with demographic data restaurant category 105
B.8 Clustering test without demographic data restaurant category 106
B.9 Clustering test with demographic data all categories 107
B.10 Clustering test without demographic data all categories 108

xiii

List of Algorithms

2.1 Amazon.com Item-Item recommendation 10
2.2 K-Means algorithm . 21
2.3 Mini Batch K-Means algorithm . 22
2.4 Simple version of t-Distributed Stochastic Neighbor Embedding . . . 31
A.1 X-Means algorithm . 88

xv

List of Listings

4.1 Pug template . 57
4.2 Dynamic re-rendering in Angular.js . 62
4.3 Normalized data format . 65
4.4 Normalizing data from foursquare.com 66

C.1 Unix script to instantiate web server . 114

xvii

List of Acronyms

API Application Programming Interface.

BIC Bayesian Information Criterion.

BIRCH Balanced iterative reducing and clustering using hierarchies.

CF Collaborative Filtering.

DOM Document Object Model.

HTML Hyper Text Markup Language.

HTTP Hypertext Transfer Protocol.

HTTPS Hypertext Transfer Protocol Secure.

k-means K-nearest neighbor.

NLP natural language processing.

npm Node Package Manager.

NTNU Norwegian University of Science and Technology.

RQ research question.

SNE Stochastic Neighbor Embedding.

TCP Transmission Control Protocol.

t-SNE t-Distributed Stochastic Neighbor Embedding.

UDP User Datagram Protocol.

UI User Interface.

WWW World Wide Web.

xix

Chapter1Introduction

Most of us have been in a situation when traveling where we have some time to
kill or a new place to discover. In the digital age we live in now, it is common to
use the internet to explore the possible sites to visit, who are in your vicinity. We
have applications like TripAdvisor, Stay.com, and others that try to give you a list
of tourist attraction in the city you are currently located, but none of them offer
the possibility of personalized recommendations of attractions or activities at your
location where the recommendations are based on your preferences and history from
other vacations.

1.1 Motivation

Every day people struggle from time to time when opting what activities they would
like to engage in. Sometimes these activities present themselves fairly naturally;
either from passively getting to know of if by word of mouth to something more
actively such as going online and searching for an event you would like to attend.
There is nothing wrong with using either of these ways to getting to know your
options, but there is one thing that neither of these methods does, and that is
guaranteeing that you will find what you are looking for nor ensure that the time
spent researching will pay off regarding attending said activity. We want to check
if it is possible to give personalized recommendations for attractions and activities.
There are a few applications out there that try to do the same. What differentiates
our goal from what they offer is that would like to combine the knowledge of what
we know about the person and the activities around the person’s location to give
the user recommendations, and display the locations of the results on a map for the
user. We would like to find out if it is possible to create a system which will make
intelligent decisions to give people recommend activities across multiple domains so
that the person will spend more of his or her time doing said activities than looking
for them.

Further, we hope that by checking if such a system is viable and that the required

1

2 1. INTRODUCTION

time spent on scheduling an evening will reduce drastically and at the same time be
part of how people would go about when planning a weekend or a trip. Hopefully,
the research we will conduct whether such a system is viable will turn out positive,
and we will get to a point where helpful suggestions will be given to the people using
the system during an experiment.

Moreover, we want to develop a fair strategy to recommend multiple domains given
how diverse and different some of the domains are from each other. Previous research
has mainly focused on one specific domain, i.e. e-commerce, fashion, books, and
movies. A good recommendation algorithm for our specific needs has to be general
and modular such that there is no need to maintain several independent systems.
We are motivated by the idea to have one particular system in place that easily can
be modified to add support for other domains in the future. Further, previous works
mention many different ways to achieve this both using explicit and implicit feedback.
For some domains, explicit feedback will prove to be the better way to give good
recommendations. In other cases, implicit feedback may prove to be the better both
for the user and the resulting recommendations.

1.2 Challenges and Current Situation

It is quite a challenge to proof-of-concept a service that provides the users with
recommendations of which attractions and activities to visit. The difficulty of our
task comes from the plurality, and not from the fact that there are no solutions to
it. There exists a lot of ways to create a recommendation system within any single
domain such as movies, books or music. Secondly, restricting what domains we
were to work on was a challenge itself. The importance was to limit the domains to
work with while at the same time maintain that degree of generality we are aiming
for. Lastly, the time limitation combined with the broad scope of the task is also a
challenging factor. With those in mind, we have limited our recommendations within
the domains movies, museums, music, nightlife and restaurants.

Further, it is a challenge to find a dataset containing attractions and activities; the
dataset must also hold metadata about the entities, which can be used to classify
them into categories and also distinguish them from similar ones by looking at their
metadata. An example of this would be two museums where one is about ancient
Egyptian art whereas the other one is a modern contemporary art. They are both
museums and both art, but they are vastly different from each other. In such a case,
it is important to be able to have a dataset that has a rich source of information.
There are a few companies around with such databases, although among the same
ones they have restrictions on usage. In light of this, we took advantage of some of
the more sturdy Application Programming Interface (API) available to us, such as

1.3. PERSONALIZED RECOMMENDATIONS 3

Google Places,1 Yelp,2 and Foursquare.3

1.3 Personalized Recommendations

We would like to proof of concept a service which offers users a personalized recom-
mendation of attractions and activities. We will do this by using implicit feedback
and by creating a modular recommendation system based on Collaborative Filtering
(CF), and utilize the user profile with the users preferences to help the system give
recommendations in the early life of the service.

The value of our research will be to attract attention to a currently unexplored
research field within recommender systems. Surprisingly, we do not know of any
existing services or applications that provide and recommend travel information. We
believe this might bridge a gap between tendencies of how people travel, and a lack
of service for it.

1.4 Research Questions

From the problem specification, we have the following main research question (RQ).

– RQ: How to build a proof-of-concept service to provide recommendations of
attractions and activities?

We have broken down the main research question into the following RQs to help us
with our research.

– RQ1: How are the recommendation techniques in today’s recommendation
systems?

– RQ2: How to develop techniques used to recommend attractions and activities?

– RQ3: How to provide up-to-date information necessary for such a recommen-
dation system?

– RQ4: How to implement a proof-of-concept recommendation service?

1https://developers.google.com/places/
2http://www.yelp.com/
3https://foursquare.com/

4 1. INTRODUCTION

1.5 Outline of Report

In this chapter, we presented our motivation for our work within this area of
recommendations and the proof-of-concept research we have done. We also mention
what challenges we have faced and try to specify our problem specification into several
research questions. In chapter 2, we present a survey of previous research within
the domain of recommendations and the different techniques used when creating a
recommender system. Chapter 3 presents our approach, requirements and design
for the application and discusses what methods to use in the different modules of
the application. In chapter 4, we talk about the specifics of our implementation and
mention key technologies and frameworks used to fulfill the system requirements.
Furthermore, we discuss how we have implemented the methods employed in the
recommendation service and modules.

Chapter 5 includes our evaluation and discussion of our recommender system. We
walk through the results from our user experiment. We also discuss some of the choices
we have made during the length of the research. Finally, chapter 6 concludes our
work and summarizes what we have learned. We talk about the existing limitations
of the implementation and compromises taken. Further, we list future promising
work to complement the work already done and our final thoughts on the research.

Chapter2Survey
In this survey chapter, we will try to review relevant literature used in our thesis. We
will talk about the options we found when researching the possibilities and what their
strengths and weaknesses are. We will talk about how and where to get datasets from,
methods used to create recommendation systems, other recommendations systems,
clustering methods and dimensionality reduction of data.

2.1 Datasets

For the tourist attraction recommendation system we will need to get hold of data
about the different tourist attractions, but the system will also have to be able to
keep up with the updated information about attractions to continue to give viable
attraction recommendations since the existing information may become outdated.
May it be due to new businesses replacing existing businesses, or that the original
company no longer exists. There’s a vast range of available options as to where you
could get your data from. We would like to mention the available options briefly and
why some of them are less relevant than others.

2.1.1 Web Crawlers

A web crawler was initially intended to search the World Wide Web (WWW)
systematically for the purpose of web indexing. However, you can tailor a web
crawler to target specific websites to extract information, which you then can use
to build a database. Using a web crawler is an excellent way to gather information
which is updated and a good starting point for our service. With the utilization
of this approach, we can face the problem that the websites we crawl data from,
does not contain updated information, and therefore our database might not contain
up-to-date information. Luckily, if we manage to create a useful web crawler to begin
with, we should be capable of customizing that web crawler to search for updated
information rather than all information.

5

6 2. SURVEY

2.1.2 Publicly Open Datasets

The second available option is to make use of a publicly available dataset. There are
a lot of them, and many are relatively recent ones and of a significant size. However,
a big concern is that even if they are recent, they still have a few years under the
belt, meaning they no longer can be regarded as updated information. Their initial
purpose is in a lot of the cases to be used for scientific research, and for that purpose
they are a great starting point. Notably in the early phases of a new project where
the task is a proof of concept to see if the proposed system is viable, where viability
is the ideal outcome rather than a complete service ready to be deployed. If the latter
is the case, you will have to find a way to make use of the existing database and take
it from there. It may be active users that are keeping your content updated by giving
feedback on whether the data is correct. Google currently gathers information about
businesses by questioning individuals who have been there through Google Maps.

2.1.3 Third-Party Services

An approach some recommendation services that are in production seems to favor the
use of existing third-party services and databases. There are a lot of companies that
have built their database for themselves over the years and offer their information
to others with the use of web API. A few websites to mention is TripAdvisor, Yelp,
Google Places, Foursquare, Songkick and so forth. The information you work with is
then managed by a third-party, relieving you from some of the responsibilities they
face when providing their service. However, the downside is that you will have to
work on their terms and you are not in control of the data should you want to be. It
might be costly to use their service based on the traffic on your service. They may
also be unavailable for a given moment for which your service will render useless.
Speaking of useless; What if they want a divorce? You will have to move on and
find a new service that fits your needs. That could potentially be quite costly, and
depending on which line of business you were working with, another third-party
service might not even exist. Lastly, you will have to deal with a delay as you will
have to ask their service for information every time a user wants a recommendation.

2.1.4 Existing Dataset

What is the best source of data for a recommendation system, and which solution
gives the most persistent and updated data? The web crawler is not an optimal
solution because you never know if the attractions in your dataset are currently
up-to-date and, in business, or closed, without crawling the data from a data provider
with persistent data. Public datasets are not a good solution if your system is to be
used as an online recommendation system. A user that wants real-time information,
and you can not guarantee that the data is useful at this point. Is the restaurant
still in business, or have they closed down since last time the crawler checked?

2.2. PREVIOUS WORKS 7

Furthermore, there does not exist any data set to our knowledge which provides us
with the data we will need to give recommendations in all of the domains used in
our system.

Therefore, we have come to the conclusion that the best solution for the recommen-
dation system is to use a third-party service data set to get information which is
persistent and updated. The different services the system will use for recommenda-
tions are Foursquare, Songkick and scrape data from Google Showtime.

2.2 Previous Works

Recommendation systems are a special type of information filtering systems. These
systems filter items from a large collection of data, and produce output data that
the user is likely to find interesting or useful[39]. There exists a lot of research in
the area of recommendation systems, but most of the research is within the field of
e-commerce. Almost every big market chain uses recommendation systems nowadays.
The reason for this is to give the users knowledge about products that they might
not have found on their own, and that is closely related to other products bought or
looked at.

The two main methods used for feedback in recommendation systems are implicit
feedback and explicit feedback. Implicit feedback is inferred from the users’ behavior
such as what attractions they look at, the duration they spent looking at the
attraction, and if they want to go or already have been. Explicit feedback is when
the users are asked to rate a place they have been. There exist many diverse ways to
measure using explicit feedback. One of the methods is binary rating. Google Places
allows their users to leave a rating between 0-5 for their service.

8 2. SURVEY

2.2.1 Content-based Filtering

Content-based filtering is a recommendation method that recommends items to the
user based on the content of the item. An item is recommended to the user if the
content of the item is related to the users’ likes and interests. Content-based filtering
uses training data which consists of items users found interesting. The items in the
training data all have distinct attributes. The attributes of the item specify the
item’s class based on the item rating by the users, or on data collected via implicit
or explicit feedback. The items used in the training data are usually represented as a
vector of n different values Xn = (x1, x2, ..., xn). The different attributes in the item
vector can have different types of values like binary, nominal or numerical values,
which is derived from the content of the item or the information about the users
preferences. With the training data, the learning methods task is to classify any new
items with a positive or a negative by returning a binary value or a numerical value.

A system built for content-based filtering finds items to recommend to the user
based on a correlation between the users’ preferences and the item. The system
recommends items by comparing the profile of the user with the content of each item
in the collection. Items the user find interesting can be determined by using both
explicit or implicit feedback. If the system uses explicit feedback, it requires the user
to rate the item on a set scale. With implicit feedback, the user interest is inferred
by the users actions. For instance, the length of time the user looks at the item. The
implicit feedback method improves the user experience, but it is harder to implement
and utilize.

Figure 2.1: Content-based recommender system architecture

2.2. PREVIOUS WORKS 9

2.2.2 Collaborative Filtering

CF is a popular recommendation algorithm that utilizes user ratings and user behavior
to predict what the user likes. CF works best when the user is required to rate the
different items, and through item ratings CF can predict what items the users will
appreciate[52]. The method focuses on matching people based on their preferences
and finding similar users to give recommendations.

A successful collaborative filtering system needs to meet the following conditions:

1. Not only a large user base, but also users who have a diverse taste

2. It must be easy to represent what you like to the system.

3. The algorithms must be able to identify users with similar interests.

In order for CF to find an approximation of what the users’ like and dislike, CF
requires the users to rate varied items. The system uses these ratings to match an
individual user with other users in the system. Additionally, the ratings give a clue
of what the users taste is in the domains the system contains. Even the unexplored
domains for a particular user is handled judging rated items of adjacent users. The
final phase is to recommend the things the users’ nearest neighbors have rated, but
have not rated themselves.

A challenge with CF is how to give weights to the items rated by your neighbors.
The user should be able to choose if they do not like recommended items, this
gives the system a better understanding of the users preferences and can give lower
weights to neighbors who like items the user do not like. Amazon.com uses item-
item collaborative filtering extensively to give the user recommendations on new
products they might find interesting. Amazon uses the Item-Item recommendation
algorithm[35] because it is scalable over a large customer base and product catalogs.
Moreover, it makes good recommendations to the users regardless of the number of
items rated and bought.

10 2. SURVEY

Algorithm 2.1 Amazon.com Item-Item recommendation
1: procedure Item-Item recommendation
2: for each item in product catalog, I1 do
3: for each costumer C who purchased I1 do
4: for each Item I2 purchased by costumer C do
5: Record that a customer purchased I1 and I2
6: end for
7: end for
8: for each item I2 do
9: Compute the similarity between I1 and I2
10: end for
11: end for
12: end procedure

Cold Start Problem

A problem with collaborative systems is that it suffers from a problem known as the
“cold start” problem. “Cold start” describe a potential problem in recommendation
systems in the early stages of system’s lifespan. In this initial phase, the system
has insufficient information about neither the users nor the items, which can result
in poor recommendations[47]. It might better not to give a recommendation to
the user at all if the data about the users preferences is too sparse to give a good
recommendation.

There are three types of cold start problems:

– Item: A new item has been added and does not have enough ratings to be
recommended to anyone.

– User: A new user has started using the system, but their likes and dislikes are
not known yet.

– Community: The problem with creating a recommendation system due to the
challenges in collecting enough data to give good recommendations.

User-User Collaborative Filtering

The User-User Collaborative Filtering is one of the first CF methods which recom-
mends items to the users automatically. User-User recommendation algorithm finds
other users who have the same taste and behavior as the current user. Further, those
items they have rated are used to predict which items the current user would like.
The User-User CF requires user models made up of a two-dimensional matrix; users
on one dimension and items on the other. The model holds all the ratings the users
have given. Finally, CF uses a similarity function s: UxU → R to calculate the
similarity between users.

2.2. PREVIOUS WORKS 11

Figure 2.2: A user-user collaborative filtering system architecture

Pearson Correlation
The Pearson Correlation is a method to compute the statistical correlation between
two users[28]. It uses the ratings to determine how closely related in taste the two
users are. Equationp. 2.1 represents the formula for Pearson Correlation.

s(u, v) =

∑
i∈Iu

⋂
Iv

(ru,i − ru)(rv,i − rv)√ ∑
i∈Iu

⋂
Iv

(ru,i − ru)2
√ ∑
i∈Iu

⋂
Iv

(rv,i − rv)2
(2.1)

Pearson correlation is not the correct method to utilize if the users have few rated
items in common. It is typical to set a threshold to an amount of shared items
both users have ranked before calculating the Pearson correlation between them.
The correlation formula will return a value between -1 and 1, where -1 is the total
negative correlation, 0 is no correlation, and 1 is the total positive correlation. In
other words, if two users have identical taste, the correlation between them equals 1.
Previous experiments have shown that a threshold of 50 is useful to improve prediction
accuracy. You can see an example using the Pearson correlation in appendix A.1.

12 2. SURVEY

Spearman Rank Correlation
The Spearman rank correlation is another method to find similar users from their
ratings and actions. The Spearman correlation ranks the items a user have rated in a
list ranking. For instance, the highest rated item has a rank of number one. Naturally,
the second highest rated item, no matter how close or far ranked comparatively to
the highest rated item, will have a rank of number two. Furthermore, items that
share the same rank will have an average rank accordingly to their positions. The
calculation of Spearman rank correlation is then equal to Pearson correlation with
the exception of using the items list ranking instead of their ratings.

Cosine Similarity
The Cosine similarity function is a vector-space approach that uses linear algebra
instead of a statistical approach to find similar users. The users are placed in a
|I|-dimensional vector space, and the similarity between the users is calculated by
determining the distance between the two user vectors in the vector space.

s(u, v) = ru ∗ rv
||ru||2||rv||2

=

∑
i

ru,i ∗ rv,i√∑
i

r2
v,i

√∑
i

r2
v,i

(2.2)

The items users have not rated is set to the value of zero as they then it will drop
out of the numerator. The cosine similarity is equivalent to the Pearson correlation
when the two users compared have rated the same items.

Other Similarity Functions
There has been an effort in both finding and using different similarity functions, but
they are not commonly used. The Pearson correlation produces the best results when
obtaining users who have similar taste.

Item-Item Collaborative Filtering

The User-User CF approach is an efficient method to use, but it suffers performance
scalability wise when the user base gets larger because searching for neighbors takes
O(|n|) time to compute[28]. A way to extend the usage of collaborative filtering to a
system with a large user base, and for it to realistically utilized on an e-commerce site,
the Item-Item collaborative filtering method was developed to face the scalability
problems. This method is one of the most used collaborative filtering techniques used
today in recommendation systems. Item-Item collaborative filtering uses similarities
between the rating pattern of items to give users recommendations. If two items get
the same ratings from different users, then it is likely that users who have the same
taste will like the item. This method is similar to a few content-based approaches,
but the similarity between items are deducted from the ratings the users give it and
not from the item data.

2.2. PREVIOUS WORKS 13

The Item-Item collaborative filtering method does not solve anything by itself as it
still needs to find similar items to give the users a recommendation. The method
finds it reasonable to pre-compute a matrix with data that tells how similar the
different items are. When users change ratings, the data in the matrix shifts so it
will need to be computed again within a reasonable time. Even if the computation is
not the newest, it is likely that users will receive good recommendations from the
system. Cosine similarity, conditional probability, and Pearson correlation are the
two most used methods to calculate the similarity between two items.

Cosine Similarity
Similarly to User-User collaborative filtering, Item-Item collaborative filtering can
also utilize the cosine similarity function (equation. 2.2) to calculate similarity. This
method is the one most used when it comes to finding similar items. It is simple,
fast and produces good results.

As seen in [40] we know that the cosine similarity seems to work better than other
similarity functions like the Pearson correlation(section 2.2.2) in high-dimensional
data. However, the cosine similarity is also somewhat affected by the curse of
dimensionality.

Conditional Probability
Conditional probability is used when trying to find similar items from unary ratings
such as shopping history. This method uses normalization that hinders the ability
for it to produce true predictions, but the method remains relevant by using pseudo-
predictions.

s(i, j) = Freq(i ∧ j)
Freq(i)(Freq(j))α (2.3)

Pearson Correlation
The Pearson correlation can also be used when finding the similarity between items
in item-item CF. But it does not produce as good results as cosine similarity when
finding similar items, as it does when used in user-user CF.

2.2.3 Hybrid Approach

In an attempt to find better recommendation systems, researchers have tried to
combine two or more recommendation algorithms into a hybrid solution. In some
of the experiments, a hybrid recommendation system has outperformed an individ-
ual recommendation algorithm. A hybrid system can be the solution in complex
recommendation systems to cover individual algorithms weaknesses. For instance,
Item-Item CF struggles to recommend an item when no one has rated it. In this
scenario, a content-based algorithm, which works with items without a rating, can
be used in combination with Item-Item CF. Most common hybrid recommendation

14 2. SURVEY

systems are built up using collaborative filtering and some other recommendation
method[24]. Burke[24] gives an analysis of hybrid approaches, and groups them into
seven different categories.

1. Weighted
The weighted method estimates a score of a recommended item by using all of the
available recommendation methods available in the system. It combines the generated
recommendations to give the user a list of recommended items.

2. Switching
The switching method switches between different recommendation methods and
ultimately ending up with using the method that is expected to give the best results
in the current situation.

3. Mixed
The mixed method presents the recommendation results from all the methods used.
The results are not shown in on a single list as with weighted, but each method
displays its results.

4. Feature combination
The feature combination method uses different features from many recommendation
algorithms to create one recommendation algorithm.

5. Cascade
The cascade method runs one recommendation algorithm. The second algorithm uses
the output of the first algorithm as its input. The produced output of the second
algorithm is the recommended items to the user.

6. Feature augmentation
Feature augmentation is when a recommendation method uses the output of another
algorithm as its feature input.

7. Meta-level
A recommendation algorithm train a model, the model is used as input for another
recommendation algorithm. The output from the second recommendation algorithm
is the recommended items for the user.

A hybrid method can help with some of the known problems the classical recom-
mendation techniques. Both content-based filtering and CF shows a decrease in
performance when used in a hybrid approach. The performance decrease is due both
methods need a database with ratings and users. Nevertheless, even with a loss in
performance, the hybrid approach is still very popular as a result of the robustness
of the hybrid approach when it comes to the recommendation.

2.2. PREVIOUS WORKS 15

Technique Advantages Weaknesses

Collaborative
filtering(CF)

Can identify cross-genre niches.
Domain knowledge not needed.

Adaptive: quality improves over time.
Implicit feedback sufficient.

New user ramp-up problem.
New item ramp-up problem.

“Gray sheep” problem.
Quality dependent on large

historical data set.
Stability vs plasticity problem.

Content-Based
Can identify cross-genre niches.
Domain knowledge not needed.
Implicit feedback sufficient.

New user ramp-up problem.
Quality dependent on large

historical data set.
Stability vs plasticity problem.

Demographic
Can identify cross-genre niches.
Domain knowledge not needed

Adaptive: quality improves over time

New user ramp-up problem.
Quality dependent on large

historical data set.
Stability vs plasticity problem.

"Gray sheep" problem.
Must gather demographic.

information.

Utility-based
No ramp-up required.

Sensitive to changes of preference.
Can include non-product features.

User must input utility function.
Suggestion ability

static (does not learn).

Knowledge-based

No ramp-up required.
Sensitive to changes of preference.
Can include non-product features.

Can map user needs
to products.

Suggestion ability
static (does not learn).

Knowledge engineering required.

Table 2.1: Tradeoffs between recommendation techniques [24]

2.2.4 Other Recommender Systems

As mentioned earlier, it does not exist much if any research in the area of recom-
mending tourist attractions using CF or content-based filtering. Luckily, there exists
a lot of research in the field of recommendation.

Recommender systems are defined by Pei Wang as “A system that has as its main
task, choosing certain objects that meet the requirements of users, where each of these
objects is stored in a computer system and characterize by a set of attributes”.[54]

16 2. SURVEY

Personalized Fashion Recommender System

In “Learning to Rank for Personalized Fashion Recommender Systems via Implicit
Feedback”[41], the research focuses on giving the user a recommendation of which
clothes the user should buy because it fits their style. The challenges this system
faced was the problem of clothes popularity, time and cultural grouping. The method
developed used different ways to gather data about what the user likes. Further, the
methods they used was to find the user’s interests by recording the products the
user looked at, keeping a database record with the clothes the user have marked
as loved, or the clothes the user marked as a purchase. To register this data, they
used implicit feedback from the users interaction with an application developed to
gather data about users cloth interest. The data collected is used to analyze the
recommendations given by the system.

Even though implicit feedback is popular when creating a recommendation system,
it has some challenges. Among other there is no way to give negative feedback, and
the different types of interaction need to be combined into a single numerical value.
The fashion recommendation system focuses on three distinct user interaction events;
click, wants and purchases. Events are naturally ordered; wants counts less than the
purchases. The system takes the seasons, trends, price, and popularity into account
when giving the user a recommendation. It also gives items a penalization function
by giving each event a particular value inside the range of possible scores. The
penalization is a way to give items a negative feedback when using implicit feedback.

The fashion system tries three different techniques to recommend clothes to the users.

Most Popular: Selects the most popular items, then uses dithering to randomize
the recommendation given to the users.

Binary Recommenders: Uses binary data for user interaction, and applies two
algorithms k-nearest neighbor item-based collaborative filtering and Bayesian Per-
sonalized Ranking (BPR).

Non-binary Recommenders: Bases the recommendation of clothes on the inferred
implicit scores. It uses the alternating least-squares with weighted λ-regularization
(ALS-WR) originally developed for the Netflix competition by using cross-validation
and k-nearest neighbor user-based collaborative filtering with cosine similarity.

Recommender Systems Applied to Electronic Books

Users tend to seek for recommendations from others who have previously had the
same needs[48]. Therefore, to gather data about user interests they started by
defining a collection of implicit parameters, comparatively analyzing their values,
and measuring their correlations. They infer the grade of interest that users may
have for certain items while interacting with an electronic book.[42] The process

2.2. PREVIOUS WORKS 17

allowed them to convert implicit feedback into explicit ratings that help with making
more precise recommendations. The use of implicit feedback from the user has its
grounds in that explicit feedback alter the user’s regular navigation and reading
patterns, due to the need to stop and rate the different books. To be able to give
correct recommendations at any time, a recommendation system requires continuous
learning about the user’s profiles.

The research focuses on books in different categories; each category contains ten
photo books, and each book has ten pictures. Thus, by adding a transparent layer to
the system they could record the user’s interactions with the system, to capture the
implicit parameters and determine the number of times a user looks at the different
categories. Each time the user looks at specific content or items, the system utilizes
implicit feedback to gather the necessary data. You can measure more precisely the
interactions the users have with the system using such layer. Allowing the system
to know which categories, content or items the users visited, and the time the user
spent looking at different content.

These are the measured parameters the system recorded.

1. Duration of the session: Indicates how long the user stays connected to the
system, and how long the user interacted with the content.

2. Number of clicks: Measures how many clicks the user used to evaluate the
content.

3. Reading time of a content: Describes how long a user takes to read or view
the content. It is important as it determines the user’s interest based on the average
time spent reading or viewing some content.

4. Reading time of a category: Determines how long a user spends reading
content in the different categories.

5. Number of accesses to a category or classification: How often a user have
visited one category.

6. Number of comments: Is used to determine the general interest in the content,
based on the amount of comments by the user.

7. Number of recommendations to a friend: A number of recommendations
indicate the interest of users of the content basing on some recommendations. If
a user recommends some content to another user, he believes the content will be
attractive to the user.

The study ended up with different relations used to give the user a recommendation.
It observed that all the explicit data they gathered about content was extensive. The
reason being users who liked a book rated it, while users who did not like it did not
bother rating it.

18 2. SURVEY

Building and evaluating a location-based service recommendation
system with a preference adjustment mechanism

The mobile commerce is a developing trend due to the success of e-commerce and
the development of wireless technologies over the recent years. The system goals
are to establish a location-based information recommendation model. Thus, by
integrating the attributes of user geographical location and personal preference[33].
The location-based service should provide to the user based recommendation based
on their specific geolocation. A source of the data used in the location-based service
is the user profile content; the user profile content contains values that describe
the user interests and preferences. In content-based recommendation, the user
profile is matched to the contents of different items, and the degree of similarity
is calculated to determine if the item should be recommended to the user. In the
location-based service recommendation, the model is divided into registration module,
recommendation module and preference adjustment module, and each of the modules
is interacting with each other through databases.

Figure 2.3: The architecture of a location-based service recommendation model
(LBSRM) [33]

The Registration Module:
Comes into play when the user creates a user profile. The user profile is used as a
basis for the initial recommendation since the user has no other preferences, and the
information in the user profile is used since there is no history stored in the database.

2.3. CLUSTERING 19

The Recommendation Module:
The recommendation module filters the information on the location of the user, and
then it conducts the recommendation process by ranking the different items in the
area. Learning of the users preferences is done when the feedback from the usage of
the system is received. This is archived with two adjustments. Firstly, a short-term
adjustment is performed with feedback gathered from the user. Secondly, a long-term
adjustment is performed over time by using Bayes’ decisions to predict the users’
long-term preference.

The recommendation results are displayed to the user with a top-N method, where
the best result is first, and the user can browse the item attributes item by item.
The users satisfaction with the recommendation system is measured in the precision
of the recommendations. The precision equation used in the system is as follows:

Precision = Correct ∩Recommended
Recommended

(2.4)

Figure 2.4: Interface in the LBSRM system [33]

2.3 Clustering

Clustering is an efficient tool used to group a set of n-dimensional feature space, into
a set of clusters. Clustering algorithms aim to find the maximum amount of similarity
in a cluster and to minimize the similarity between the clustered groups[32]. Cluster
analysis is defined as “a statistical classification technique for discovering whether
the individuals of a population fall into different groups by making quantitative

20 2. SURVEY

comparisons of multiple characteristics”. Broadly, you can divide the clustering
algorithms into two main groups: hierarchical and partitional [31].

In hierarchical clustering algorithms there two approaches. Firstly is an agglomerative
method where you start with each data point as a cluster of its own and then merges
the similar clusters together to create a hierarchy. The second approach is a divisive
top-down approach which starts with all the data points in one big cluster and
divides each cluster into two smaller clusters recursively. In partitional clustering,
algorithms are used to find all the clusters simultaneously as a partition of the data.

We will utilize a clustering method as a module in our recommendation system as
we believe this will allow us to provide better user recommendations. The method
will use the user’s profile information to match the users information with another
set of users who have the same preferences, and most likely will want to visit the
same places as you would. There exist a few clustering techniques, and a comparison
of their use cases and restrictions is available in the table 2.2.

2.3.1 Data Representation in Clustering Algorithms

The representation of the data is a critical factor that influences the performance of
the clustering algorithm. If the representation of the data is optimized, the clusters
are more likely to be more compact, and the clusters are more isolated from each other.
Unfortunately, there is no universal method to represent the data. A fair strategy is
to model the data representation with respect to available domain knowledge. If the
representation of the data is not good enough, the clustering method might not find
the natural clusters that normally would be present.

2.3.2 Number of Clusters

Deciding on the number of clusters is one of the most difficult problem areas in data
clustering. Most of the methods used to find the number of clusters is a problem
of model selection. Usually, simulation experiments of clustering algorithms with
different n values reveal which value of n is the best one. The value of n is chosen
based on problem specific criteria, and which n gives the highest purity in the clusters.
The purity of the clusters is used to check if the number of clusters is the optimal
number, and that the distances in the clusters are about the same.

2.3.3 K-Means

K-nearest neighbor (k-means) is a widely popular clustering algorithm as it is easy
to implement and simple to use. As a consequence of its simplicity, it has its share of
drawbacks. Firstly, it does not deal well with overlapping clusters, and the clusters
can be pulled out of center by outliers in the data. Secondly, it can get stuck in
local minima during execution. Under these circumstances, the resulting clusters are

2.3. CLUSTERING 21

dependent on which of the data points is chosen as the initial seeds. Also, there are
data requirements for using k-means as a clustering method. To begin with, you need
a populated set of n elements. All of these elements needs to be described using m
different attributes, which then is partitioned into K clusters. Xi = (xi1, xi2, ..., xim)
is used to represent the vector of the m attributes for user i.

Algorithm 2.2 K-Means algorithm
Require: n: number of clusters, Xi elements described by m attributes and i:

iteration limit
1: Select n points at random as cluster centers
2: while i not reached or same points are assigned to each cluster in consecutive rounds

do
3: for each object do
4: Assign the object to their closest cluster center according to the Euclidean

distance
5: end for
6: Calculate the centeroid or mean of all objects in each cluster
7: end while

From step 4 in the algorithm 2.2 it uses Euclidean distance the formula for calculating
the Euclidean distance in n-dimensions can be seen in equation 2.5.

d(p, q) =
√

(p1 − q1)2 + (p2 − q2)2 + ...+ (pi − qi)2 + ...+ (pn − qn)2 (2.5)

The intention of the K-Means clustering method is to minimize the sum of squared
error over all of the clusters found in the data set. Different initializations will most
likely lead to disparate cluster groups as K-Means converges to local minima.

Mini Batch K-Means

The Mini Batch K-Means is a version of the K-Means clustering method which
improves the time complexity on large datasets [38]. This method utilizes mini-
batches to reduce the computation time while still attempting to find an optimized
objective function. The mini-batches used are subsets of the data. These subsets
are sampled randomly in each iteration. The usage of these mini-batches helps to
reduce the amount of computation needed for the method to converge towards a
local solution. Compared to other algorithms, which reduce the convergence time of
k-means, Mini Batch K-Means produces results that are only slightly worse than the
standard algorithm[17].

Mini-batch k-means iterates between two steps much like the standard k-means
algorithm. The first step selects samples randomly from the dataset to form a
mini-batch, then these batches are assigned to the closest centroid. The second step

22 2. SURVEY

is to update the centroids with a new position. Algorithm 2.3 shows the pseudocode
for the Mini Batch K-Means algorithm.

Algorithm 2.3 Mini Batch K-Means algorithm
Require: k, mini-batch size b, iterations t, data set X
1: Initialize each c ∈ C with an x picked randomly from X
2: v ← 0
3: for i=0 to t do
4: M ← b examples picked randomly from X
5: for x ∈ M do
6: d[x] ← f(C, x) // Cache the center nearest to x
7: end for
8: for x ∈ M do
9: c ← d[x] // Get cached center for this x
10: v[c] ← v[c] + 1 // Update per-center counts
11: η ← 1 / v[c] // Get per-center learning rate
12: c ← (1 - η)c + ηx // Take gradient step
13: end for
14: end for

Another improved version of the k-means called X-Means can be read about in
appendix A.2

2.3.4 Mean shift

Mean shift is a general non-parametric clustering procedure. It takes no assumption
on the shape of the distribution nor the number of clusters. The idea behind the mean
shift algorithm is to treat the points in the d-dimensional feature space as an empirical
probability density function where dense regions in the feature space correspond
to the local maxima or modes of the underlying distribution [27]. The algorithm
takes advantage of the cluster centroids. The algorithm update the candidates for
centroids to be the mean of the points within a cluster. Furthermore, the different
candidates go through a post-processing stage to eliminate near duplicates to find
the final set of centroids. The algorithm sets the number of clusters, instead of using
a parameter which determines the size of the region to search through. This method
is not scalable as it requires several nearest neighbor searches during the execution
of the algorithm.
Given a candidate centroid xi for iteration t, the candidate is updated according to
Eq. 2.6.

xt+1
i = xti +m(xti) (2.6)

2.3. CLUSTERING 23

N(xi) is the sample neighborhood with a given distance between xi and m, also
known as the mean shift vector. This vector is computed for each centroid that
points towards a region of the maximum increase in the density of points [17]. The
m(xi) is in fig. 2.6 is computed with the equation shown in Eq. 2.7

m(xi) =
∑
xj∈N(xi)K(xj − xi)xj∑
xj∈N(xi)K(xj − xi)

(2.7)

Mean shift clustering utilizes bandwidth selection. There are four different techniques
used to find the bandwidth.

– Statistical method: This method finds the optimal bandwidth associated with
the kernel density estimator; this estimator is defined as the bandwidth that
achieves the best compromise between the bias and variance of the estimator
overall for x ∈ Rd [26].

– Stability of decomposition: The bandwidth is the center of the larger operating
range over which the same number of clusters are obtained.

– Objective function: The best bandwidth maximizes an objective function that
expresses the quality of the decomposition. The objective function typically
compares the inter- vs. intra-cluster or evaluates the isolation and connectivity
of clusters.

– Top-down: Top-down information provided by the user or by an upper-level
module can be used to control the kernel bandwidth.

A more efficient mean shift clustering method requires a resampling of the input
data with a regular grid. This technique is used in the context of density estimation
which leads to a binned estimator. Further, the reduction in the computation time is
achieved by employing algorithms for multidimensional range searching and used to
find data points falling in the neighborhood of a given kernel [26].

24 2. SURVEY

2.3.5 BIRCH

Balanced iterative reducing and clustering using hierarchies (BIRCH) incrementally
and dynamically clusters the incoming multi-dimensional data points to produce the
best possible clusters in the data. The BIRCH clustering method demonstrate that
it is especially suitable for substantially large databases. Its I/O cost is linear in the
size of the data set: a single scan of the dataset yields a good clustering, and one or
more additional passes can be used to improve the cluster quality[56]. There are a
few advantages to the BIRCH approach compared to other clustering methods.

– BIRCH is a local method, meaning that the cluster decisions is made without
scanning all the data points currently existing in the clusters. Instead, it uses
measurements that reflect the closeness of points, and at the same time being
incremental during the clustering process.

– BIRCH uses observations that the data space is usually not uniformly occu-
pied, hence not every data point is equally important for clustering purposes.
Furthermore, BIRCH sees dense regions of data points as one single cluster,
and points in sparse regions are treated as outliers and can be removed.

– BIRCH clustering and reduction process is organized and characterized by the
use of in-memory, height-balanced and highly-occupied tree structure.

−→x0 =
∑N
i=1
−→xi

N

R = (
∑N
i=1(−→xi −−→x0)2

N
) 1

2

D = (
∑N
i=1
∑N
j=1(−→xi −−→xj)2

(N(N − 1)) 1
2

(2.8)

BIRCH terminology of vector spaces i = 1, ..., N centroid −→x0, radius R and diameter
D for figure 2.8. R is the average distance from cluster members to the centroid. D
is the average pairwise distance within a cluster. These two, R and D, are alternative
measures of how tight the clusters are around the cluster centroid. The concept of
clustering feature and CF tree are the core elements in BIRCH incremental clustering
[56]. The CF tree is a height-balanced tree which has two different parameters:
branching factor B and threshold T. Each of the leaf node contains at most B entries,
and each of the nodes represents a cluster made up off all the subclusters represented
by its entries. All of the entries must satisfy a threshold requirement which threshold
radius and the entries needs to be less than T. The CF tree is a way to view the data
in a compact representation. Each of the entries in a leaf node is not a single data
point, but a sub-cluster.

2.3. CLUSTERING 25

Figure 2.5: Overview of BIRCH [56]

The figure 2.5 shows an overall concept of how BIRCH clusters the data points.
Phase 1 is to scan the data and build a CF tree using the available memory and
space on disk. The CF tree in phase 1 tries to reflect the information in the data
set as good as possible under the limit of the memory. The data is grouped as fine
subclusters, and sparse data points are removed as outliers. Phase 2 is an optional
phase in the BIRCH algorithm. This phase is supposed to provide a cushion between
phase 1 and 3; this is done because different clustering methods used in Phase 3
have different input size ranges and phase 2 tries to bridge this gap. After phase
3, we get a set of clusters that captures the major distribution pattern in the data,
but inaccuracies can exist due to of a misplacement problem with BIRCH. Phase 4,
which is also optional, uses the centroids of the clusters produced in earlier phases as
seeds and redistributes the data points to its closest seed to get a new set of clusters.

Experimental data tells us that BIRCH performs very well on several large datasets,
and is superior regarding quality speed and order-sensitivity to other clustering
algorithms previously used on large datasets. The settings of the parameters to a
proper setting is necessary for the efficiency of the BIRCH algorithm, but BIRCH
does not scale very well with high dimensional data. If the number of features is
greater than twenty, Mini Batch K-Means 2.3.3 will yield better results[17].

26 2. SURVEY

Figure 2.6: Non-global and global BIRCH clustering vs Mini Batch K-Means cluster-
ing1

1http://scikit-learn.org/stable/modules/clustering.html#birch, accessed 25.05.2016

2.3. CLUSTERING 27

Method name Parameters Scalability Usecase Geometry(metric
used)

K-Means Number of
clusters

Very large number
of samples, medium
number of clusters

General-purpose,
even cluster size,
flat geometry, not
too many clusters

Distances be-
tween points

Affinity prop-
agation

damping,
sample
preference

Not scalable with
large samples

Many clusters, un-
even cluster size,
non-flat geometry

Graph distance
(e.g. nearest-
neighbor graph)

Mean-shift Bandwidth Not scalable with
number of samples

Many clusters, un-
even cluster size,
non-flat geometry

Distance be-
tween points

Spectral clus-
tering

Number of
clusters

Medium number of
samples, small num-
ber of clusters

Few clusters, even
cluster size, non-
flat geometry

Graph distance
(e.g. nearest-
neighbor graph)

Ward hierar-
chical cluster-
ing

number of
clusters

Large number of
samples and num-
ber of clusters

Many clusters, pos-
sibly connectivity
constraints

Distance be-
tween points

Agglomerative
clustering

Number
of clusters,
linkage type
and distance

Large number of
samples and num-
ber of clusters

Many clusters,
possibly connec-
tivity constraints,
non Euclidean
distances

Any pairwise dis-
tance

DBSCAN Neighborhood
size

Very large number
of samples, medium
number of clusters

Non-flat geometry
uneven cluster sizes

Distances be-
tween nearest
points

Gaussian
mixtures

Many Not scalable Flat geometry,
good for density
estimation

Mahalanobis dis-
tances to centers

Birch Branching
factor,
threshold,
optional
global cluster

Large number of
clusters and number
of samples

Large dataset, out-
lier removal, data
reduction

Euclidean dis-
tance between
points

Table 2.2: A comparison of clustering algorithms [17]

28 2. SURVEY

2.4 Dimensionality Reduction and Visualization

Dimensionality reduction is important in many domains since it mitigates the curse
of dimensionality and other undesired properties of high-dimensional spaces. The last
decade it has been introduced a significant number of nonlinear techniques to deal
with complex nonlinear data. These complex nonlinear data are often real-world data
[37]. As shown in figure 2.7, it is common to divide the techniques into convex and
non-convex. The convex methods optimize the objective function used and do not
contain local optima, and the non-convex methods optimize the objective function
which holds local optima. See Appendix A.3.1 for more information about these
techniques. From the results obtained by “Dimensionality Reduction: A Comparative
Review” [37], the conclusion is that the nonlinear techniques are often not capable of
outperforming the traditional linear techniques.

Figure 2.7: Taxonomy of dimensionality reduction techniques [37]

There exist some nonlinear dimensionality reduction techniques that aim to preserve
the local structure of the data, some of the techniques are.

1. Sammon mapping

2. Curvilinear Components Analysis (CCA)

3. Stochastic Neighbor Embedding (SNE)

4. Isomap

5. Maximum Variance Unfolding (MVU)

6. Locally Linear Embedding (LLE)

7. Laplacian Eigenmaps

2.4. DIMENSIONALITY REDUCTION AND VISUALIZATION 29

Even with the strong performance you get from these methods on artificial data sets,
they are often not very successful at visualizing real, high-dimensional data. Most of
the techniques are not capable of retaining both the local and the global structure of
the data in a single map. For instance, some of the techniques are not capable of
separating handwritten digits into their natural clusters [36].

2.4.1 SNE

Stochastic Neighbor Embedding (SNE) starts by converting the high-dimensional
Euclidean distances between the data points into conditional probabilities which
represent the data points similarities. The similarity between two data points is
given with the conditional probability pi|j . The conditional probability will be high
for close data points, and infinite small for widely separated data points. σi is the
variance of the Gaussian that is centered on data point xi.

pi|j = exp(−||xi − xj ||2/2σ2
i)∑

k 6=i exp(−||xi − xk||2/2σ2
i) (2.9)

The mapping of the low dimensional data is yi and yj and it makes it possible to
compute a similar conditional probability qi|j .

qi|j = exp(−||yi − yj ||2)∑
k 6=i exp(−||yi − yk||2) (2.10)

If the mapping of the points yi and yj is correctly modeled, they will be similar
to the high-dimensional data points xi and xj and the conditional probability pi|j
and qi|j will be similar. SNE uses this as a motivation to find a low-dimensional
representation of the data which minimizes the mismatch between pi|j and qi|j . SNE
minimizes the sum of Kullback-Leibler divergences over all data points using gradient
descent method. The cost function C is given:

C =
∑
i

KL(Pi||Qi) =
∑
i

∑
j

pj|i log
pj|i

qj|i
(2.11)

SNE tends to find maps with a better global organization. Unfortunately, this
requires sensible choices of the initial amount of Gaussian noise and the rate at which
it decays. Moreover, these options interact with the amount of momentum and the
step size that are employed in the gradient descent. And therefore, there can be
useful to run several optimization’s on the data set to find the best parameters [36].

30 2. SURVEY

2.4.2 t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a dimensionality reduction
method capable of capturing most of the local structure of the high-dimensional data
very well while still reveals the global structure such as the presence of clusters at
several scales [36]. The t-SNE technique uses SNE to reduce the dimensionality of
the data. SNE constructs reasonably good visualizations. However, it’s weakness is
its cost function which is difficult to optimize and is referred to as the “crowding
problem”. The technique t-SNE aims to alleviate these problems. It uses another
cost function in two different ways. Firstly, it is that it uses a symmetric version
of the SNE cost function with simpler gradients. Secondly, it uses of Student-t
distribution rather than a Gaussian to compute the similarity between two points in
the low-dimensional space.

It is possible to minimize a single Kullback-Leibler divergence between a joint
probability distribution P in the high-dimensionality space, and a joint probability
distribution Q in the low-dimensionality space:

C = KL(P ||Q) =
∑
i

∑
j

pij log pij
qij

(2.12)

This is refereed to as symmetric SNE. It has the property that pij = pji and qij = qji
for ∀i,j . In symmetric SNE, the pairwise similarities in the low-dimensional map qij
are given by:

qij = exp(−||yi − yj ||2)∑
k 6=l exp(−||yk − yl||2) (2.13)

For the high-dimensional space pij :

pij = exp(−||xi − xj ||2/2σ2)∑
k 6=l exp(−||xk − xl||2/2σ2) (2.14)

Equation 2.14 causes problems when the data point xi is an outlier. In this case, the
value of pij will be extremely small for all j. The problem is then with the location
of its low-dimensional map point yi has little to no effect on the cost function used in
symmetric SNE. The problem is circumvented by defining the joint probability in the
high-dimensional space to be the symmetric conditional probability pij = pj|i+pi|j

2n .
The result of using this definition in the symmetric SNE is that each point xi makes
a contribution to the cost function.

Symmetric SNE is matching the joint probabilities in pairs of data points in the high
space and the low rather than the distances. It has a natural way of avoiding the

2.4. DIMENSIONALITY REDUCTION AND VISUALIZATION 31

crowding problem because the high space we convert the distances into probabilities
with a Gaussian distribution. Meanwhile in the low space, it uses a probability
distribution with heavier tails than the Gaussian to calculate the distance into
probabilities. The t-SNE uses a Student t-distribution with one degree of freedom
as a heavy-tailed distribution in the low dimensional map [36]. Due to the dainty
properties of the Student t-distribution, it makes the map representation from a
high-space to a low space almost invariant to changes. This means that clusters
interact in the same way with each other in the low space as in the high space.

Algorithm 2.4 Simple version of t-Distributed Stochastic Neighbor Embedding
Require: data set X = x1, x2, ..., xn, cost function parameters, perplexity Perp,

optimization parameters: number of iterations T, learning rate η, momentum
α(t)

1: Result: low-dimensional data representation ΥT = y1, y2, ..., yn
2: Begin
3: compute pairwise affinities pj|i with perplexity Perp using equation 2.9
4: set pij = pj|i+pi|j

2n
5: sample initial solution Υ0 = y1, y2, ..., yn from N(0, 10−4I)
6: for t=1 to T do
7: compute low-dimensional affinities qij
8: compute gradient δC

δΥ
9: set Υt = Υt−1 + η δCδΥ + α(t)(Υt−1 −Υt−2)
10: end for
11: End

A comparison of the result of the visualization techniques reveals the strong perfor-
mance of t-SNE compared to the other techniques you can see listed in 2.4 [36].

32 2. SURVEY

Figure 2.8: Visualization by t-SNE of the MNIST data set [36]

For figures of other visualization techniques using the MNIST data set on 6000
digits, see Appendix A.3.2. Were the different techniques are used on different data
sets used in “Visualization of Data using t-SNE” [36], we can see that the overall
performance of t-SNE is better than the previously used visualization techniques.
Although t-SNE performs well compared to other techniques for data visualization,
there are three potential weaknesses.

1. It is unclear how t-SNE performs on general dimensionality reduction tasks

2. The relatively local nature of t-SNE makes it sensitive to the curse of the
intrinsic dimensionality of the data

3. t-SNE is not guaranteed to converge to a global optimum of its cost function

Chapter3Approach

In the following chapter, we will discuss the systems requirements needed for the
system to function properly. We look closer at the different methods we thought
promising, and what conditions needs to be satisfied before moving forward. We will
also mention the design decisions we have taken, and what we require from the user
for the system to work as intended.

3.1 Requirements

For the system to work correctly, some requirements need to be met. Among others,
there are some preconditions the users will need to meet before they can use the
system, and both the client and server need to fulfill the system requirements before
the system can give results back to the user.

3.1.1 Functional Requirements

The functional requirements have each been given a priority rating in the scale
High-Medium-Low. High priority is most prioritized and essential for the system to
perform at the required level of the service. Medium prioritized requirements are
not necessary for the system to run, but they enhance the quality of the system and
will yield a better user experience when using the service. Low priority requirements
are non-essential requirements but are features which are nice to have, and likely
to be incorporated in later versions of the system. Table 3.1 lists all the functional
requirements for our recommendation system.

33

34 3. APPROACH

ID Name Description Priority

FR 1 User profile creation The user should be able to
create a profile in the system.

High

FR 1.2 User profile update

The user should be able
to update their profile
and their preferences in
the different categories.

High

FR 1.3 User profile deletion The user should be able
to delete their profile.

Medium

FR 1.4 Users radius of search
The user can change the
radius of their attraction
search.

Low

FR 2 No duplicated usernames The users cannot have
duplicated usernames.

High

FR 3 User login
The user should be able to
login using the username
and password created in FR 1.

High

FR 3.1 User logout The user can log out of the
system.

Medium

FR 4 Search for attractions
The user should be able to
search for attractions in
the system.

High

FR 4.1 Mark attraction as visited The user will be able to
mark an attraction as visited.

High

FR 4.2 Mark attraction as liked The user will be able to
mark an attraction as liked.

High

FR 5 Recommend attractions
Recommend attractions
similar users have
liked or have visited.

High

Table 3.1: Functional requirements for the system

3.1. REQUIREMENTS 35

Figure 3.1: A sequence diagram for user registration

3.1.2 System Requirements

The recommendation component itself is the most important part of our service
since it is responsible for finding suitable activities and attractions for the users.
The system does so by considering the user profile and user history to cluster users
together and give recommendations based on other users’ visits and likes. Here is a
brief description of system requirements from the system utilizing user-user CF to
provide recommendations to the users.

Figure 3.1 shows the interaction between the user and the recommendation system
during a registration process. More sequence diagrams are available in Appendix
B.3.

Geographical Search

The system will be geographical aware meaning the user searches for activities yield
results within a predefined radius either around the location of the user or a user’s
defined search area. The range of the search can not be adjusted by the user to
include a larger or smaller area at the time, but is likely to be included in later

36 3. APPROACH

versions of the system. For the system to be geographical aware, we need a solution
to getting the users location. We have delegated this requirement to the web client.

Implicit Feedback From User

We want feedback in our recommendation system to be easy, fun and straightforward.
The user should not feel that the feedback process holds them back in their interaction
with the service. Therefore, we have chosen implicit feedback as our way to gather
feedback from the users; the implicit feedback collected from the users are done by
letting them chose if they want to visit an attraction or if they have visited a specific
attraction. This method is almost an explicit feedback method since the user has to
click specific buttons to leave feedback, but it is classified as implicit feedback since
it is a fast and easy way for the user to register their interests in the system.

Clustering of users

For our vision of creating a user-user CF recommendation system, we will need to
find users who share interests and are closely related to each other. Therefore, we
will need to cluster the users actively based on both their user profile preferences
and their user history to get more precise groups. Our recommendation system has
to consider various categories when providing recommendations. Food taste does not
have an effect on your taste in music, not in an easily measurable way. Consequently,
we decided to cluster users for each category individually as we believe that will
result in the most optimal way to finding similar users like yourself which naturally
will lead to a better-suited basis for our recommendations.

Profile vector category i =
= preference category i + (0.25 ∗ numberofvisitstocategoryi)

(3.1)

History Awareness

The recommendation system will be history aware. For our purpose, it means that the
system will gather information about the users’ activities and use this information to
help recommend future activities and give more precise recommendations. Therefore,
the system will need to accumulate information from the user and store it in a
database such that the data easily can available to support in the recommendation
process.

3.1. REQUIREMENTS 37

Figure 3.2: A sequence diagram for when user query the our service

Client

The client in our service is a web application and should be able to support the
following listed features. These features are essential for the service to function
properly and give the user what is expected from the system.

Profile Creation
The client has to have a way for the user to create a user profile in our system. The
registration process should be an easy and clean process for the user to complete
without any help. When a user creates a profile, they will be asked to fill in a
username, password, their age group, gender, country and state of residence. If the
username already exists, the user should get an error message. Furthermore, when
the profile creation is complete, the user will immediately be taken to his or hers
profile page and asked to update their preferences. To help the user understand how
to use the service we believe a help section will suffice for the web application. See
Figure 3.9 for the mockup of the registration page.

38 3. APPROACH

Profile Page
The service client should not only be able to create a user profile, but it will also
have to feature a profile page to get more information about the user into the service.
We want the user to tell us what activities they like, dislike and are neutral too. The
limited number of choices are since we have a small number of users in the system to
start with, and therefore it would be hard to give good recommendations to the users
if we had a span from 0-9 or 0-99 of how much the user like one activity. Furthermore,
we ask the user to fill in individual characteristics such as age group, gender, country,
and state of residence. Finally, the user will be able to review previous heart or
starred activities or attractions, and remove them should the user no longer like them
in his or hers profile history. We will get back to the intention of heart and stars
from the users. Figure 3.11 shows the mockup for the profile page.

This approach to creating a service is like what Apple did it when they launched
their service Apple Music on June 30, 2015. They asked the user to create a profile
and to select two or more of their favorite music categories and artists. Requesting
for knowledge from the user is done to prevent the problems affiliated with the “cold
start” problem and give the users good recommendations from the beginning of the
service. See Figure 3.3 for an example of their interface.

Filtering and Distance of Search
The client will be able to get the location of the user and thereby filter the search
area. As such, the service only will recommend attractions which are within a certain
distance of the user. Ideally, the user would be able to change the scope of the search
by adjusting a search parameter. There is a huge difference whether the user is on
foot in a high-density city or has access to a car in a low-density area, but we have
decided not to accommodate this problem at this time, but is likely to be included
in an update to the service at a later time.

We do not require the user to be upfront about their location. Consequently, if the
user is unwilling to allow the web application to retrieve geolocation data, the user
will have to specify their location manually to for the recommendation system to
yield results and recommendations. The same fallback mechanism is used then the
user wants to explore other areas than currently located.

3.1. REQUIREMENTS 39

Figure 3.3: Apple music user profile creation interface1

Server

The requirements for our server to function and process the data required, and for
the system to serve recommendations to its users.

Clustering
We aim to use the users and their behavior as the backbone when providing recom-
mendations. We will need to cluster the users into groups where each group contains
users who have the same taste and interests. We created an anonymous survey
using Google survey [29] to gather real life user profiles. Both to test the clustering
methods and try to find the ideal number of clusters from a given number of users.
Google survey made it easy to collect data in a matter of minutes; the answers is also
continuously updated after every answer; you can easily get different graphs from
the survey that displays various parts of the responses. See figure 3.5 and 3.6. The
questionnaire asked for the same user data as what we ask for upon account creation.
A complete overview of information we asked the participants to fill is available in
Appendix B.1.1. An important factor to remember when clustering users, and using
a user-user CF to give recommendations, is to have the clusters not to be too narrow
or too broad. If the groups are too small, it will not contain enough diversity to give
good recommendations the users like and might not have considered. However, if
they are too large, you will have a too broad spectrum of items to choose from and

1Figure taken from http://appleinsider.com/articles/15/06/10/everything-you-need-to-know-
about-apple-music on 13.05.2016

40 3. APPROACH

the system then might consider recommending entities that are completely out of
the question.

We tested different parameters of clustering both with and without demographic
data and a different amount of user profiles. We did this to try to find out how many
clusters which were optimal given a known number of users. We used WEKA and the
user profiles we got from the survey answers when running our cluster simulations.
WEKA is a collection of machine learning algorithms for data mining tasks[55]. The
algorithms WEKA utilizes can be applied directly to the dataset. WEKA provides
clustering tools like simple K-Means (K-Nearest neighbor), DBSCAN and Hierarchical
clustering. In our tests, we used simple K-Means to cluster the user profiles from the
survey. The results can be seen in table 3.2, 3.3, and in the Appendix B.1.4. From
WEKA, we extracted the information: the sum of squared errors, the number of
iterations used to find clusters, the time used to cluster users and the minimum and
the maximum number of users in the clusters created. WEKA also requires a certain
format on the data set as you can see this in Appendix B.1.4.

Due to a potentially large user group in a tourist attraction system, the clustering
method needed in the system will have to handle a large amount of data in the five
different categories. The method chosen also needs to be fast and give good and
consistent results. With these requirements in mind, we decided to look closer at
the clustering methods K-Means, Mini Batch K-Means and Birch. We believe all of
these methods meets our clustering needs for the recommendation system. You can
see different clustering methods in table 2.2.

K-Means and Mini Batch K-Means is almost the equivalent algorithm although the
Mini Batch K-Means gives better runtime on a large dataset. The resulting clusters
small noticeable differences as seen in figure 3.4. One of the downsides of using the
K-Means and Mini Batch K-Means is that you will need to set the number of output
clusters as a parameter in the algorithm. Therefore, we will need to find an equation
which confidently will give the best number of clusters from the total number of users.
Results from simulation runs we did with the data gathered from the survey can be
seen in figure 3.7 and 3.8. We found that the equation 3.2 would scale the number of
clusters approximately to ideal number of clusters as the userbase increases.

The BIRCH method is another clustering technique we expect can be a useful
clustering method to be used in the system. The BIRCH method handles large
datasets, consider outliers in the data and it finds the number of clusters which
is optimal for the data. It is slower than the K-Means and Mini Batch K-Means
algorithms, and it might require for the dataset to run twice to find the best clusters.
After careful consideration, we have chosen to go forward with using the K-Means
method as our initial clustering algorithm. Should the number of users using the
system reach a higher level than anticipated and the clusters from K-Means does not

3.1. REQUIREMENTS 41

give satisfactory results, the change from K-Means to BIRCH can be accomplished
without to much additional work on the server side.

number of clusters =
⌈
log2(number of users)

⌉
(3.2)

Figure 3.4: A comparison of clusters between the K-Means and Mini Batch K-Means
methods2

Figure 3.5: Distribution of preference in music genres from survey3

2http://scikit-learn.org/stable/modules/clustering.html#mini-batch-k-means accessed
30.05.2016

42 3. APPROACH

Figure 3.6: Distribution of preference in movie genres from survey3

3Blue means like, red means neutral and orange means dislike

3.1. REQUIREMENTS 43

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build
model
[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 2042 6 0.08 79 137
3 1951 3 0.03 45 88
4 1856 5 0.01 43 79
5 1808 6 0.02 15 81
6 1725 6 0.02 16 54
7 1657 5 0.01 18 48
8 1635 5 0.04 14 45
9 1598 7 0.03 11 38
10 1583 5 0.01 5 40
11 1555 8 0.03 5 37
12 1535 6 0.02 6 35
13 1476 9 0.02 6 33
14 1451 6 0.1 4 27
15 1430 7 0.02 6 30
16 1411 7 0.02 3 30
17 1398 7 0.01 3 30
18 1383 6 0.01 3 26
19 1352 7 0.01 4 24
20 1321 8 0.02 4 24
25 1281 5 0.02 3 25
30 1211 8 0.04 1 19
40 1112 7 0.02 1 15

Table 3.2: Simple K-Means on Movies with sex, age and marital-status using Eu-
clidean distance, max iterations 500, 10 seeds using WEKA [55]

44 3. APPROACH

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build
model
[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 1780 6 0 79 137
3 1643 7 0 46 105
4 1520 6 0 22 85
5 1460 8 0.01 20 79
6 1414 7 0.01 16 74
7 1403 7 0.01 8 53
8 1392 5 0.02 9 41
9 1354 7 0.01 9 40
10 1342 6 0.01 5 39
11 1309 7 0.01 7 40
12 1291 9 0.01 4 45
13 1253 10 0.01 4 38
14 1232 7 0.01 4 34
15 1199 9 0.01 3 37
16 1196 9 0.02 2 37
17 1198 5 0.01 2 33
18 1176 6 0.01 2 34
19 1141 9 0.02 2 31
20 1113 9 0.01 3 32
25 1045 7 0.01 3 32
30 1017 6 0.02 1 29
40 893 11 0.03 1 13

Table 3.3: Simple K-Means on Movies without sex, age and marital-status using
Euclidean distance, max iterations 500, 10 seeds using WEKA [55]

For more clustering tests, see Appendix B.1.4.

3.1. REQUIREMENTS 45

Figure 3.7: The sum of squared error in the different categories with demographic
data using K-Means

Figure 3.8: The sum of squared error in the different categories without demographic
data using K-Means

46 3. APPROACH

3.2 User Requirements

There are some requirements needed from the user before he or she can use our
recommendation system. Here is a list of these, and the reason behind them.

3.2.1 Profile Requirements

For the user to be able to to use the tourist attraction recommendation system, the
user will need to create a user profile. This user profile contains information about the
users and their preferences in the different categories. As already mentioned in section
3.1.2, this user data is used to cluster related users taste wise to provide excellent
recommendations. Also, the users history are considered in the recommendation
module.

Not only are we asking the user to create a profile before using the system, but
the user is also encouraged to fill in his or her preferences upon account creation.
The reasoning behind this is to avoid the typical “cold start” problems associated
with recommendation systems. The quicker we learn our users likes, and dislikes,
the better the recommendations will become. Especially early on in the lifespan of
the service, the recommendations are susceptible to poor quality as the service has
insufficient information to work around. The ask the user to fill in their preferences
within five domain categories and their respective subcategories, the very same areas
the recommendation system will provide recommendations. These domains are the
following:

– Movies

– Museums

– Music

– Nightlife

– Restaurants

To see the categories, subcategories and what personal information the user can fill in
when creating or updating the user profile, see Appendix B.1.1. Due to a most likely
a spare number of users in the system, the preference ratings had to be simplistic.
We have decided to let category preferences stored in the user database as an integer
indicating whether or not they like(1), dislike(-1) or are neutral(0) to said category.

3.2. USER REQUIREMENTS 47

Figure 3.9: Proposed user registration page

It is required that the user can see and change their preferences in their user profile
page. The users will also see the list of the attractions they have liked and the list of
attractions they have visited. If a user has visited a tourist attraction or activity,
the system will show it as a starred attraction. The user will heart attractions they
would like to visit. See figure 3.9 and 3.11 for proposed user interface. The system
will learn more about the user over time as the user spend time marking entities as
hearts or stars. The recommendation system will have an easier time finding similar
users and providing user-user recommendations with this approach.

48 3. APPROACH

3.2.2 Modern Browser

For the user to be able to us the service we require the user to have a modern browser
to be able to view the content of the service. Many of the key technologies used in
the project depend on an adequately up-to-date browser.

3.2.3 Geolocation

We require the system to be able to collect the geolocation from the user, but the user
can opt not to give us access to their location. The recommendation system will take
advantage of knowing the users’ locations. The geolocation collected from the user’s
device will be used to set the users location, and it will be used to find activities and
attractions in the area near the users’ location. However, if the user does not wish to
give up their location, they will have the possibility to set their location manually by
moving the focus area for the applications map to their destination and find suitable
activities and attractions in the new area.

3.3 API Requirements

For the external database APIs, we require datasets which contain information about
the five categories and their subcategories such that the system will be able to give a
recommendation to a user in all of the categories. To our knowledge, there do not
exist a single external API that provides us with all the information that we need,
which is why we need to implement and support multiple sources of external data
from various APIs.

3.3.1 Dataset Maintenance

A key aspect of our service is that it will be working with real-time data from both
the user and from the database. Consequently, we require an up-to-date and well-
maintained database to strengthen our service. It is critical to avoid recommending
businesses that no longer exist since such recommendations reflect poorly on our
service, and might quickly lead to a diminishing user base.

3.3.2 Metadata in Dataset

Our service needs to be able to sort the entities and differentiate them from one
another. An example of this is that a restaurant is not just a restaurant. It might be
a steakhouse or an Indian restaurant, and these serve different cuisines which might
not be everyone’s preference. Accordingly, we require the metadata in the API is
well defined and contains the correct metadata for all of the categories.

3.4. DESIGN 49

3.3.3 Possible Datasets

Considering our categories, a well-maintained external source of information, and
provided utility and metadata, the APIs we took a closer look at was TripAdvisor,
Google Places, Foursquare, Songkick, and Yelp.

For our source of upcoming concerts and artists appearances, we found the third-party
service Songkick[18] to suit our needs. Songkick offered extensive and high-quality
content, which we immediately recognized. We are confident moving forward that
Songkick is the right fit. As for restaurants, museums and nightlife, we took a look
at TripAdvisor, Google Places, Foursquare, and Yelp. Tripadvisor[20] did not allow
access to their content API for the purpose of academic research it was the first to
be cut from our list as a possible source.

Yelp[22] was a strong contender to our primary source of data. However, after a
closer look and revealing questionable data quality of the data around the world, we
left Yelp out of our list. Yelp would be a perfect match for users from the US, but in
Norway Yelp would be far from optimal. With Google Places and Foursquare left,
and our primary choice ended up being Foursquare since we believed the user terms
of the API at Foursquare[4] is better than Google Places[5], and the maintenance the
data in Foursquare was as good or almost as good as Google Places. For providing
movie showings, we looked into collecting data from Google Showtime[6] via scraping
data of their service. A quick glimpse reveals that Google Showtime has its flaws, but
to our knowledge, there exist no other solution except perhaps going movie theaters’
web pages directly.

3.4 Design

The design of our application aims to be easy to use for both youths and seniors. We
use Bootstrap[21] to quickly develop a responsive web application, which not only
looks good on multiple platforms but is also feature stacked. For now, the priority is
to create a web application service, and Bootstrap eases the development process
both for computer and mobile platforms. Nonetheless, native apps are the ideal
direction for providing convenience for the mobile users, but Bootstrap became the
perfect compromise now in the initial stages of the development.

50 3. APPROACH

3.4.1 Web Application

The web application is the only way to use the tourist recommendation system we
have developed. We also discussed creating a native application but found that
not to be feasible with the schedule we have. We started creating the design by
drawing some mockups with different concepts. Ideally, we could have tested the
various design ideas in a user test to see if the users thought the design were easy
and intuitive to use. However, we ended up with not carrying it out because we
wanted to combine our system testing at the same time as getting feedback for our
web application. The final mockup designs can be seen in figures 3.9, 3.10, 3.11, and
in Appendix B.1.2.

Map

For our service to provide a better understanding of where an entity resides, we have
opted to incorporate an interactive map. The interactive map will have the ability
to show pins and highlight the museums, restaurants other recommendations to the
user. The map position will also serve as the location of the area to gather results.
Upon entering the page, the map will be centered to show where the user is located
given geolocation is available. From there and out, the user is free to discover other
areas and their hidden treasures by changing the location of the map. To implement
the interactive map into our web application, we looked many different frameworks
which offer drawing functionality directly onto the map. Among these, we took a
closer look at Google Maps and Leaflet.js.

Google Maps JavaScript API is one of the best enterprise options for displaying a
map. Google also provides a well-documented and feature-rich library with tons
of features[5]. Google also offers their API to the most popular platforms in use
today. Unfortunately, one of the downsides of using Google Maps is that the usage
of their API has its limitations and can be quite costly. The concern is not due to
the potential initial usage of the service, but it might get expensive if the service
gets popular.

Leaflet.js, on the other hand, is a lightweight open-source JavaScript framework for
interactive maps[7]. It is designed simplicity and usability in mind and supports
a vast range of map tile providers, such as Google Maps, OpenStreetMap[13], and
Mapbox. After a close examination, it seemed easier to render custom icons and
add features in forms of plugins on top of the Leaflet.js framework compared to the
likes of Google Maps JavaScript API. The Contributors behind LeafletJS also speaks
highly of it being mobile-friendly. Therefore, we have decided to go ahead with the
usage of Leaflet.js as our services interactive map framework. Further, we opted to
use Mapbox as our tile provider as we could customize our map layout and remove
cluttered terrain that you had with OpenStreetMap.

3.4. DESIGN 51

Figure 3.10: Proposed user interface with a map and a recommendation list

User Profile

The design for the user profile registration in the system is quite simple. On the
registration page, the user will only need to fill in information about age, gender, and
country and state of residence. See figure 3.9. From the mockup, we have removed
the possibility for the user to register their email reason being we want as many users
to register in the beginning, not make them feel like they are being monitored, and
leave the usage anonymous. Additionally, to comply with local privacy laws. The
user will also have the possibility to update their profile after the profile is created.

User preferences
The user has to be able to update their profile for the system to function properly
from the beginning. As you can see from the figure 3.11, we have decided to use
sliders for the user to manipulate their preferences. The users’ preferences give the
system an idea about a person interest and use it to provide recommendations. There
is a small number of users using the service. The preferences are given on a rating
between like(1), dislike(-1) or neutral(0).

52 3. APPROACH

Figure 3.11: Proposed interface of the users profile page

No Way To Trace The Users Back To One Individual
We have designed the user profile in such a way that we do not store any information
about the user which can identify the individual behind the account. Accordingly,
we have chosen not to take their date of birth, marital status, email, and the users
were encouraged under the user test to chose an ambiguous username. We also felt
we had a higher chance of people participating and remain true to themselves if
they were anonymous. In other words, their actions would not be compromised by
privacy concerns. However, we do take approximate age groups as that helps with
demographic filtering.

3.4. DESIGN 53

Visited And Liked Places
The user should also be able to see what activities and attractions they have visited
and whom they would like to visit. It should also be possible to remove attractions
and activities the users have visited and like from their list. From the mockup figure
3.11, we see how we envision the user to be able to see what attractions and activities
they have visited and would like to visit.

3.4.2 Feedback

To help the system learn more about the user and to better understand their
preferences, the system will require a method to get feedback from the users. After
some consideration, we found that the best way to gather feedback from the user
was through implicit feedback. We gather the implicit feedback from the attractions
visited and liked from the users. The user will mark an attraction as visited by giving
it a star, and the attraction as liked by giving it a heart.

Chapter4Implementation

In the following chapter, we will show in detail key technology used, our thought
process for using said technology and the contributions it gives to the project. We
will provide an overview of our high-level architecture and information flow. Further,
we will discuss the main activities throughout our development process and some of
the challenges we ran into as we progressed our work and ultimately what were our
solutions to them.

4.1 Recommendation system

The recommendation system is made up of the following system components; a
web server is running on Node.js, two databases powered by MongoDB and Redis
respectively in addition to a Python module running a clustering algorithm. The
overall system architecture can be viewed in figure 4.1.

4.1.1 Node.js

Our backend is running on Node.js[12], which is an event-driven, non-blocking
I/O model JavaScript runtime built on V8 that makes it lightweight and efficient.
V8 is part Google’s open source project “The Chromium Project” and delivers a
high-performance JavaScript engine. It is written in C++ and works by compiling
JavaScript to native machine code before executing it. The compiled code is then
dynamically optimized at runtime making Node.js an already thriving web server.
Following Node.js’ ecosystem is Node Package Manager (npm), a package manager
making it easier to add dependencies to Node.js libraries. Today, most of the well
recognized JavaScript libraries are available on npm in some way, shape or form. The
package manager makes it easier to deploy code elsewhere.

55

56 4. IMPLEMENTATION

Figure 4.1: System Architecture

4.1.2 Express.js

Express.js[3] is our fast and minimalistic web framework for Node.js. It provides a
thin layer of fundamental web application features. Features such as tools to handle
HTTP request and responses, and routing options to create everything from simple
web pages to RESTful services. Express.js offers functionality to add middleware to
Express.js’ runtime. Express.js is easily extendable with more features available as
plugins, thus making Express.js our number one choice when building a modern web
server.

Pug formerly known as Jade

Pug[15] is a high-performance template engine. The simple syntax allows writing web
pages with ease. At runtime, the page will be rendered and served with Express.js
in plain Hyper Text Markup Language (HTML). Another thing that makes pug
exceptionally useful, and essentially why the page has to be compiled and served at
runtime, is the ability for one template to inherit another template. This feature
brings consistency across the board as your navigation menu markup, or any other
typical boilerplate for that matter, can essentially be a standalone template. When
the time comes to update it, you will not have to update manually every single page,
but only the boilerplate code. Listing 4.1 shows pug’s syntax and inheritance. Notice

4.1. RECOMMENDATION SYSTEM 57

extends layout

block content
center

h2 About

div.col -xs -12. col -sm -12. col -md -8. col -md -offset -2
center

h3 Powered by:

div.col -xs -12. col -sm -6. col -md -6
center

img(src =" images / foursquare_logo .png ")

div.col -xs -12. col -sm -6. col -md -6
center

img(src =" images / songkick_logo .png ")

Listing 4.1: Pug template

how every aspect of standard HTML and boilerplate code is hidden away in “layout”
and that the rest of the template is devoted to changing the main content for this
specific page.

Passport

Passport.js[14] is our middleware authentication module for Express.js. In addition
to supporting traditional username and password, it offers support with a set of
authentication strategies such as Facebook, Twitter, OAuth, OpenID. We decided
to keep everything local strategy and stick with username and salted and hashed
password. We felt it gave us more freedom in the development process to write
registration and login modules ourselves. Passport.js works seamlessly with MongoDB
our database of choice. As with everything security related, you should avoid writing
it yourself and Passport.js truly became a plug-and-play library. With the broad range
of authentication strategies, we could easily expand to support popular third-party
authentication services such as Facebook in the future should we want to.

4.1.3 MongoDB

MongoDB[9] is a NoSQL document-oriented database, which uses a JSON-like
document structure. One of MonogDB’s strengths is that not every document has to
have the same structure. However, even if MongoDB does not enforce a schema, it is
up to the application developer to structure and index the documents as it has a
significant influence on the performance. MongoDB can easily be set up in a shared

58 4. IMPLEMENTATION

cluster. These two properties make MonogDB especially attractive for developers.
In a matter of minutes, you have a feature rich database up and running locally.
We decided to use MongoDB as our database being developer friendly and working
seamlessly with Javascript.

Mongoose

We use mongoose.js[10] as our javascript bindings to MongoDB database. Mongoose.js
provides with ways to extract, modify and store documents in our database. The
API allows us to provide callbacks on most database operations, which not only
makes operations themselves non-blocking to the Node.js runtime, but it also gives
us flexible error handling should something occur.

4.1.4 Redis

In the project, we have opted to utilize Redis[16], which is an open source NoSQL
in-memory data structure store. Redis supports a broad range of data structures and
queries. Redis has built-in support among other things replication, Lua scripting,
automatic cluster partitioning. Our aspiration was to optimize session and cookies
handling with Node.js and settled with using Redis for its performance benefits in
this regard. With the use of redis-connect as middleware in express.js and hosting
our Redis server, the web application seems to run slightly more optimally than it
otherwise would.

4.1.5 Socket.IO

Socket.IO is a real-time JavaScript library for web applications. It enables bidirec-
tional event-based communication over the WebSocket protocol, which is a Transmis-
sion Control Protocol (TCP) connection in your browser. Socket.IO is split into two
chunks: a client-side library and a server-side library for Node.js. They are nearly
identical regarding API.

We opted to add and use Socket.IO for our web application. One of the challenges
we faced mid-development was that we required getting our data from the server
to the client. We ended up defining a few events the backend is listening on. The
events make up a fixed data attributes attached which the backend expects with the
broadcasted event. The events enable us to send and to receive data from the web
client in the format we have specified ourselves.

4.1. RECOMMENDATION SYSTEM 59

4.1.6 Clustering

Our cluster algorithm is written in Python using scikit-learn and pymongo. We are
primarily clustering our users using k-means clustering into a predefined number of
clusters. The number of clusters is defined by equation 3.2. The primary reasons
for using k-means clustering is that it’s fast and give relatively good results. With
pymongo, we are connecting to the MongoDB database to gather data from the user.
These data of user preferences often referred to as features, are then translated into
vector space. Scikit-learn uses these features and runs the k-means clustering. The
results from scikit-learn are then written to our database. The recommendation
algorithm works with these results, albeit how the clustering is implemented, by
directly reading the cluster values from the database.

Scikit-learn

Scikit-learn is a straightforward and efficient tool for data mining and data analysis.
It is built using NumPy, SciPy, and matplotlib. The library provides a broad
range of implementations of algorithms to classifications, regressions, clusterings,
dimensionality reduction, model selection and preprocessing. It has provided a huge
benefactor to our timeline throughout the project.

4.1.7 Recommendation

The recommendation algorithm in place is rather simplistic. When a user queries an
external data source, for a concerts, restaurants or other entities, the recommendation
system returns the results of what the user is expecting along with any recommenda-
tion it has for the user. The proposed entities will show up in green text above the
rest of the results. The current implementation does not distinguish stars and hearts
to entities. The idea was valuing starts more than hearts, as stars meant that you had
visited before and vouched for the place as opposed to heart said you were interested.
See figure 4.3 for reference. Furthermore, we do not consider demographic variables
such as age, gender or nationality nor the current location. You are very much able
to search for entities all over the world, but the recommendations you receive are
limited to those with you in the same cluster, and in those areas they have explored.
Figure 4.2 explains how recommendations currently works. The solution we initially
had foreseen was considering age as a demographic filter and having country distinct
clusters and not the world as a whole. Moreover, we would only explore similar users
locally as a country itself can be quite large. Lastly, the recommendations would be
generated by mentioned pool of users of entities they have heart and star, and only
the entities close to your specified location were considered. Every time you changed
your profile or location, your cluster would automatically change to reflect your new
profile.

60 4. IMPLEMENTATION

Figure 4.2: Flowchart for recommendations

4.2 Web application

Our client is made up of the following components.

4.2.1 Socket.io

As previously mentioned, we use Socket.IO both on the backend and the frontend.
For the frontend, we have created a way for the user to query foursquare.com and
songkick.com entities. The frontend then generates an event for query the particular
service with data such as search phrase. The backend then receives the event with
the attached data, performs whatever operations it has to do and returns the results
back to the frontend. We have additionally specified a way for the user to alter the
query depending on what the user is seeking. Songkick.com for example, we have
support for both searching concerts and music related events locally without a search
phrase or global search for a distinct artist. For foursquare.com, we only support
local search with a given search phrase. See Appendix C.1 for a complete overview
of the UI for the web application.

4.2. WEB APPLICATION 61

Figure 4.3: Screenshot of recommendation page

4.2.2 Angular1

AngularJS[2] extends HTMLs vocabulary and turns your static HTML documents
with your angular code into a dynamic and expressive web application. The most
prominent feature of angular is the two-way data binding. Angular.js detect changes
in model section and triggers Document Object Model (DOM) manipulation when
the values differ. Thus, your web page stays up-to-date without having to re-render
the page. In-browser update works out neatly with our need for aggregating results
from our backend to be displayed at out frontend. These results are usually not
ready for the user at any given moment, and make the user wait or force a re-render
later was simply not an option. We solved automatic re-rendering in Angular.js by
writing a result service. An Angular.js service is a lazily instantiated and singleton
application component that can be code shared across the application. You can see
our simplified code achieve dynamic re-rendering in listing 4.2.

Last to be mentioned is an angular paradigm called directives. Directives are
additional functionality which is not loaded by default. These directives can be
standard angular libraries, or they can be third-party directives to make use easily of
external libraries from within the application code. In the current project, we have
used directives for Socket.IO and Leaflet.js, as they are both incredibly intertwined
when it comes to information flow.

1We explicitly talk about Angular with respect to version 1 as version 2 is vastly different.

62 4. IMPLEMENTATION

// Service in angular .
profileApp . factory (’ StarredStorage ’, function () {

var starred = [];
return {

add: function (data) { starred .push(data); },
get: function () { return starred ; },
remove : function (id) { starred . splice (id , 1); },
set: function (data) { angular .copy(data , starred); }

};
});

// Specifying a scope function to get data from service .
profileApp . controller (’ ResultsController ’,

function ($scope , StarredStorage , ...) {
$scope . starred = StarredStorage .get;
...

}

// Pug template getting data directly from service .
li(class =" media" ng - repeat =" star in starred ()")

div(class =" media -body ")
h6 {{ star.name }}
div.col -xs -6. col -md -6

...

Listing 4.2: Dynamic re-rendering in Angular.js

4.2.3 Leaflet.js and Mapbox

Leaflet[7] is a mobile-friendly interactive map JavaScript library with an incredible
community backing. Leaflet is well-documented and has a broad range of plugins
as well as is easy to customize the way you want. The library itself is just a way
to display, manipulate and add controls to the map, and you embed whatever tile
service you want. For example, you can use Google Maps should you wish a familiar
look for your users.

Mapbox

We opted to use our custom made tiles from a tile service called Mapbox[8]. Mapbox
enabled us to tailor our tiles for our application by highlighting streets and paths,
and we chose to remove cluttered information about terrain.

4.3. CHALLENGES 63

Figure 4.4: Leaflet map with Mapbox tiles

Leaflet in Angular

The folks at Google has recognized how popular Leaflet has become and maintains a
Leaflet.js directive, ui-leaflet[1], which enables us to interact with the map through
our angular application. The directive made it easy for us to center our map to an
entity location when a user clicked on a result. Further, it made it easy for us to
make pins on the map so that the user could clearly see the location of every result
given it was known.

4.3 Challenges

These are some of the challenges we faced throughout our implementation. The
challenges themselves are not particular advanced nor unique. However, we firmly
believe that believe the path to creating a good web recommendation system involves
solutions to these problems. There are countless solutions to these problems, and
knowing how rapid JavaScript community evolves, there are up and coming libraries
that solve these problems better than how we have archived. It remains to be said
as it plays a big part in how our web application turned out.

64 4. IMPLEMENTATION

4.3.1 In-Browser Update

Mid-development we recognized the complexity routing traffic between the server
and the client turned out to be. At present, we did not consider Angular.js and
Socket.IO as additions to our development stack.

We faced the issue that we wanted to run our cluster operations in the background,
but at the time, we were forced to deal with them between the Hypertext Transfer
Protocol (HTTP) requests and responses due to the limitations of the backend at
the time. That yielded considerable extra response time to page requests were we
wanted to make recommendations, which gave bad user experience. The solution
became the use of Socket.IO. Socket.IO provided us with a way to send data to the
client without having to re-render the page in addition to allowing us to send the
data at any time.

Our second problem became how we could get our recommendation data from our
socket at the client to render in the DOM. An alternative javascript library we
considered early was React.js. React.js abstracts the DOM with a virtual one.
That gives React.js the ability only to render the parts of the web page that have
changed. However, due to the necessary modifications and completely re-writing our
Pug-templates into React components, we decided to find another solution to our
problem.

We were recommended using Angular.js as it gave us the ability to manipulate DOM
on a high level. Not only was Angular.js a slightly less complicated library than
React.js, but Angular.js also turned out to be compatible with our existing pug
templates. Moving on, we were confident that our decision at the time was the right
one.

Knowing what we know now in hindsight when choosing pug as our templating
language, we might have spent the upfront time required to learn React.js, and more
likely had a better time developing the web application in the later parts of the
project. Needless to say, we’re both happy with how it turned out.

4.3.2 Normalization of External Data Sources

It quickly became apparent when selecting our data sources that we would have
to normalize to a unified format. Foursquare API and Songkick API had entirely
different ideas of how to format their data even if their data to a large extent are
similar. This is to be expected and didn’t come off as a surprise.

Interesting key factors in our design decisions is to preserve the source id of the entity
for the various external services. The mindset behind this decision is us having the
option to link to the external services for more information if that was the direction
we wanted to take the project. Another thing to note is that we kept categories to

4.3. CHALLENGES 65

{
"name ": "Name Of Entity ",
" source ": " example .com",
" source_id ": "4575 fc96bc9fec90c1a9a3eb3f560630 ",
" location ": {

"lat ": 63.4305 ,
"lng ": 10.3951 ,
"city ": "Trondheim , Norway "

},
" category ": "Some Category ",

}

Listing 4.3: Normalized data format

be a single value. On a general rule of thumb is that an entity has one category. A
bank is a bank, and a hairdresser is and will always be a hairdresser. Complications
arise when judging restaurants. A restaurant can be a “Hawaiian Barbeque” or a
mixture of “Steakhouse” and “Sushi”. In such case, it would much rather benefit the
recommendation system to have categories in an array of categories. We kept with
one category to keep logic simple as such design decision affects both the backend
and frontend. It remains to be said that for an ideal solution, every category is
recorded into an array, and the categories themselves are normalized should synonyms
exists. We will continue our discussion of normalizing categories in the future work
section in the conclusion chapter. Listing 4.4 shows how we normalized data from
foursquare.com.

66 4. IMPLEMENTATION

function parse(raw_data) {
var data = [];
if(raw_data . hasOwnProperty (’venues ’)) {

for(var i = 0; i < raw_data . venues . length ; i++) {
var venue = raw_data . venues [i];
var obj = {};
obj.name = venue. hasOwnProperty (" name ") ?

venue.name : " undefined ";
obj. source = ’foursquare .com ’;
obj. source_id = venue. hasOwnProperty ("id") ?

venue.id : " undefined ";
if(venue. hasOwnProperty (" location ")) {

obj. location = {};
obj. location .lat =

venue. location . hasOwnProperty (" lat ") ?
venue. location .lat : " undefined ";

obj. location .lng =
venue. location . hasOwnProperty (" lng ") ?

venue. location .lng : " undefined ";
if(venue. location . hasOwnProperty (" city ") &&

venue. location . hasOwnProperty (" country ")) {
obj. location .city =

venue. location .city. concat (
", ", venue. location . country

);
}

}
if(venue. hasOwnProperty (" categories ")) {

obj. category =
venue. categories . length > 0 ?

venue. categories [0]. shortName : " undefined ";
}
data.push(obj);

}
}
return data;

}

Listing 4.4: Normalizing data from foursquare.com

Chapter5Evaluation

In this chapter, we will present our assessment of the recommendation system. We
held a user experiment to see how the system operated under slight pressure, how
easy the web application was to use and whether or not if the recommendations
made was credible to the participants.

5.1 Current state

The implementation as it stands is a proof-of-concept as there were features left
out which you would expect from such a system. A few of the features also had
to be tweaked for the test environment, as sophisticated recommendation methods
reviewed in 2 chapter is more feasible with a large number of users. Firstly, we could
not get the system uptime required to evaluate it properly as such systems should be
up and running for months before the gathered data is of high value, and such that
the feedback would reflect the system credibility and performance. Secondly, even if
we keep the system alive for such extended period, we wouldn’t have any guarantee
that the system would gather the attention from the large pool of users needed to
get data which is credible. Finally, even if we did get a considerable number of users
as we desire, we could not expect them to keep a high-level of dedication given the
rough shape of the system.

A few of the planned tasks during the development of the system took longer than
initially planned and other features had to be cut from the final system. Specifically,
we removed the possibility to give recommendations in the categories movie and
nightlife. We could not get this particular implementation done in time for the user
test, and it is better not to support these categories if the recommendations are of a
low grade. Hence, we chose to finish and improve other features needed in the service
before running an experiment of the system with independent users.

67

68 5. EVALUATION

5.2 User Experiment and System Testing

From a developers standpoint, recommendations are hard to verify without per-
sonal interpretation, and that led to the aspiration of a user experiment to collect
feedback on how well the system performed. When the core functionality in the
recommendation system was ready, we sent out invitations for a user experiment. In
the experiment, we asked the participants to follow a number of step by step tasks
to get them to know the system and its functionality. These step by step tasks take
the user through account creation, changing their profile settings and all the way
to using the system and receive recommendations. The experiment was used to see
how the users would use the service, how easy they found it to use and see how the
recommendations presented to the user performed and if they were credible to the
participant. You can see the tasks the user had to perform in Appendix D.1.

As the final task, the participants had to answer a survey with questions about
what their overall feeling and thoughts of the performance of the service were.
Secondly, they were asked whether they thought of any improvements which could
have been made to the system to improve their overall user experience. Although
the results collected from the experiment were quite positive, it contained feedback
listing features which they felt could be improved upon to enhance the overall user
experience and system as a whole.

5.2.1 Validity of Experiment

When conducting an experiment, it is important to ensure that the validity of the
research is as high as possible. High validity means the result would be as accurate
as if you were to test on the general public. The two types of validity you will need
to consider when conducting an experiment is both internal and external validity.

Internal Validity

An experiment has good internal validity if the measurements obtained are indeed
due to your manipulations of the independent variable, and not to any other factors
[44]. Most common threats to good internal validity is:

– Differences between experimental and control group: Any differences
in the two groups may subsequently measure might not be attributable to your
manipulation of the experimental group.

– History: Events you have not noticed might interfere between your pre-test
and post-test observations.

5.2. USER EXPERIMENT AND SYSTEM TESTING 69

– Maturation: The performance might have increased regardless of any manip-
ulation you have done, the first test might give them practice and can affect
the results.

– Instrumentation: Faulty instruments used to measure the dependent variable
will affect the result.

– Experimental mortality: subjects might drop out before the study is finished
due to a number of different reasons.

– Reactivity and experimenter effects: People might change their behavior
as a reaction to being tested. Participants often want to help the researcher, or
to look good, and so try to respond what they hope is the ‘right’ data

External Validity

An experiment has good external validity if the results collected are not unique
to a particular set of circumstances, but are generalizable as in the same results
can be predicted for subsequent occasions and in other situations. The best way of
demonstrating generalizability is to repeat the experiment many times in different
situations [44]. These are some of the main threats to external validity in experiments:

– Over-reliance on special types of participants: The use of students as
subjects in the experiments. Since students are often younger and better
educated than the general population, with different personal values and
motivations. An experiments results might be generalizable to students, but it
might not be a representation of the general population. Experiments who use
volunteers are found that may not be generalizable to a wider population since
the volunteers have a certain characteristic that differentiates them from the
general population.

– Too few participants: The experiment does not have enough participants.
Therefore, it is impossible to show that a result is statistically significant.

– Non-representative participants: The need to make sure that the group
of participants is typical of the population that you wish to make statements
about.

– Non-representative test cases: The data on which an experiment is based
are typical of the kind of data files used in real-life

70 5. EVALUATION

Our Experiments Validity

When we conducted the proof of concept experiment for our system, we asked our
friends and fellow students to help us by taking part in the experiment. We ended
up with having a medium internal validity for our experiment. Here are the reasons
we have for saying the internal validity of the experiment is at a medium level:

– Experimental mortality is medium-high as all participants finished the experi-
ment and answered the questionnaire afterward.

– Those who took part in the experiment were known to us before such the
reactivity and experimenter effects were low since there exists a possibility
for them to ‘help’, and hence not be completely honest with their responses
although they were told to be completely honest both before and during the
experiment. On the other hand, it is worth noting that they were completely
anonymous and, in fact, encouraged to be so.

– The maturation of the experiment is also affected to be low-medium as most
of the participants have heard about and seen parts of the system during the
development phase, and it can affect the experiment in a negative manner.

The external validity of our experiment is at a low-to-medium level:

– Since we currently only rely on particular types of participants mostly students
studying computer science, the results collected during the experiment can be
affected to some degree as it does not test the general population’s thoughts,
but rather a particular part of society.

– The results collected during the research can also be criticized for a low number
of participants.

– The participants in the experiment are in the goal group as young people often
are the first people to embrace new services and applications.

Even though the validity of our experiment is not at the highest level, we believe
our experiment validity to be the best we could muster at the time it was conducted.
Many of the people invited to participate declined due to being busy and did not
have time to participate.

5.3. EXPERIMENT 71

5.3 Experiment

When the implementation of the recommendation system was finished, and all the
functional requirements for the service to function were met, we set up an experiment
to collect data from external users who were not involved in the development. This
was done to test if the system we have implemented proved to function and give
recommendations which appealed to the participants in the experiment. When
the participants were done with the tasks, they were set to do they were asked to
fill in a survey we had created using Google Survey. The survey was about their
user experience, the results they received during the experiment and if they felt
there were given credible recommendations. The experiment conducted had ten
individuals participating in testing the service and leaving their thoughts on the
system developed, as a proof-of-concept system.

You can see some of the results gathered from the experiment in Figure 5.1. As
you can see, we got excellent feedback on both the creation and updating of the
user profile to be easy and straightforward for the user. We worked especially hard
with both designing and implementing the creation and updating of the user profile
since we thought it might be a killer for the service if it were a daunting and a
time-consuming task to complete for the user. The survey allowed the participants
to leave written feedback about their experience with the system and the tasks they
had to execute during the experiment, and it seems that they thought the User
Interface (UI) looked good and was intuitive, but it could need some polish before
being production ready to the general public. Among the written feedback, these
messages were returning in most of the comments; “Quite easy to use, but some of
the symbols used was a bit hard to understand”, “Yes it was easy to use. The system
also provided suggestions I would normally not search for, which also is great.”, and
“Needs some polishing, but looks great!”.

The feedback we got about the UI is better than we could expect as we did not
run a mockup trail on the UI at the time we finished creating and discussing the
mockups. A potential mockup trial could have yielded better UI feedback in the
experimental trial. Additionally, UI development is much more time costly than a
mockup trial. However, we would have had to unique people participating in both of
those as the experience of the UI could otherwise render the experiment feedback of
the proof-of-concept with low validity.

72 5. EVALUATION

(a) Answers from experiment
about creating a new profile

(b) Answers from experiment about updating
user preferences

Figure 5.1: Answers from experiment about creation and updating user profile

5.3.1 Experiment Recommendation Results

As you can see in figure 5.2a, most of the participants from the experiment found
that the recommendations given to them to be credible, and they might want to
visit the attraction or activity. Those of the participants who responded other in the
survey left the feedback “Sometimes, and sometimes not” and “Kind of ”. Meaning
that to most of the participants the recommendations were credible, but to some
participants it was not. The feedback that some of the participants did not feel the
recommendations provided not to be credible can be connected to the limited number
of participants who were testing the system. Another reason can be that there is not
enough data about the users and their history collected by the system at this time.
If more data had been collected before the experiment such that the users could
have been clustered more precise together, hence giving better recommendations
to the users since there is more data to base the recommendations and clusters on.
Therefore, the results from the user-user collaborative filtering sometimes can give
unorthodox recommendations at the beginning of the system lifecycle.

Furthermore, an issue was that some of the test subjects answering that it was not
intuitive enough how to change between the different data sources used in the system.
This will need to be solved, see figure 5.2. This feedback might have been improved if
we were to create a tutorial on how to use the system and what the different buttons
in the system do and what their purpose is.

5.3. EXPERIMENT 73

(a) Answers from experiment if
recommendations was credible to user

(b) Answers from experiment
about changing the source of the data

Figure 5.2: Answers from experiment about changing data source and credible
recommendations

5.3.2 Evaluation of Clusters

The recommendation system relies on a clustering method to cluster users together
into groups of people with similar interests and preferences. In our system we use
k-means since it is fast and it provides good results, the downside of using k-means
is the manually setting the number of clusters in the result. After testing k-means
on the user data we collected using the survey we found that the equation 3.2 might
produce the number of clusters needed for the service to function at a satisfactory
level. One of the challenges we found when clustering user preferences and their
history is to keep the cluster sizes at a satisfying level such that the recommendation
process provides pleasing results toward the user. Therefore, the clusters need to be
big enough for the system to provide good results at the same time as they should
not be too big since the performance might drop when clusters are too big, and the
provided user recommendations are too diverse.

There are other clustering methods we could have used in the system such as mini-
batch k-means and BIRCH. Mini-batch k-means is faster than the original k-means
method, and the resulting clusters are not that different from the ordinary k-means.
However, the mini-batch k-means gives something back to the system performance
wise if the number of samples is larger than 10k(10 000).1 Our service would not get
that many users for our experiment we opted not to use mini-batch k-means as the
performance would not be that beneficial for the system and theoretically the results
we would end up with is better with k-means. Another approach to consider is using
the BIRCH clustering method. BIRCH provides good results when the dataset is
large in addition to being a good method to use if the data requires a high number
of clusters. It also finds the ideal number of clusters in runtime. Nevertheless, it is

1http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html#sklearn.cluster.KMeans

74 5. EVALUATION

slower and requires more memory than k-means we felt that it was a bit overpowered
at this stage. If the service was used by a large number of users, the change from
k-means to BIRCH might be a good choice.

We have tried to visualize the user profiles from our experiment using k-means,
mini-batch k-means, and BIRCH clustering, we used t-SNE to reduce the dimensions
of the data. We have visualized the results both with running the clustering before
the dimensionality reduction was applied, and the other way around. Trying to
visualize and see if the resulting clusters used in the system was credible or not.
We have reduced the dimensions into both two and three-dimensional spaces. We
thought we could use the visualization to see if the clusters found were connected but
discovered that with such low number of users it was hard to find groupings in the
visualization. Some of the clusters also were scattered all over the space. However,
we believe the reason for this to be the reduction of the data’s dimensionality and
the small number of users in the system. The visualizations can bee seen in Figure
5.3 and 5.4 and in Appendix D.2.

As you can see from the figures, k-means and mini-batch k-means gives few differences
in where they place the different clusters. BIRCH finds more clusters in the data than
the other two. This might mean that the participants preferences are diverse and
might not fit together in a cluster. The results from the survey after the experiment
implies that the participants found their recommendations credible. We believe the
reason for this difference in data is due to the limited number of participants and
that the vectors used to describe a user’s preferences might not be scaled correctly
when reflecting a user’s preferences and history and that BIRCH supports a large
number of clusters.

5.4 Evaluation and Discussion of the Implementation

One of our fears when conducting the experiment was that our developed service
would not stay up or feel nonresponsive. We had not tested it with a larger user load
before the experiment was conducted. Luckily, it performed great for all of the users,
and they did not have any remarks during the experiment with the system crashing
or not responding. The reason for this being one of our fears is that none of us have
much experience with developing web applications and that we may have made some
errors which we did not pick up during our testing of the service.

In hindsight, we probably could have chosen other frameworks which we have more
experience with when creating the service. We did not have much experience with
any of the more modern technologies in use today we opted to learn and use these
for our service since they will perform much better and are much more scalable than
the technologies we have used before. We used a lot of time getting to know how
the technologies worked, but when we got the hang of it the production got very

5.5. DISCUSSION OF THE RECOMMENDATION 75

productive, and the functionality needed by the service were developed faster and
faster. Even if the development got to a slow start, we are really happy for choosing
these technologies and frameworks to work with, as we have learned a lot about how
to develop a web-application with new and powerful frameworks.

5.5 Discussion of the Recommendation

The recommendation system we have developed is a user-user CF approach, a method
which uses people with similar user profiles to give the user recommendations. The
first step of the method is to group the users together into clusters of similar users.
When a user requests recommendations, the method looks up people in the same
cluster and their history to find recommendations for the user. This method might
not be the best choice if the service was to be deployed on an industrial scale
like TripAdvisor2 or Stay.com,3 as it can be some issues with scalability when the
amount of data increases. To our knowledge, there has not been created a service
like the one we are trying to prove is possible. Further, we felt that to give the
users recommendations which were useful from the beginning we needed to base the
recommendations provided using other users in your cluster have visited or liked.

One of the main reasons for us not choosing the item-item CF was that we need
to use APIs to get data about the different entities in the area of the user. This
might cause the API usage being quite costly and also to beeing a bottleneck for the
service as we do not store any data on our servers about the attractions or activities
to comply with the agreements of the API. This especially comes into play when to
iterate through entities and give recommendations to the users. If you were to change
to item-item CF, we might need to reconsider creating our own data set within the
different categories which we are fully in control to define and classify the categories.

Initially, we hoped to create a recommendation module with user-user CF and
context-based approach, as we thought a hybrid approach would be the best way to
give the best recommendations. As we had to use APIs as our data source, we have
no way of influencing how the entities in the API is classified before we encounter
them. Therefore, we did not find it plausible to finish creating the service with a
hybrid recommendation system within our timeframe, and we would have needed a
more dynamic approach to model the user in a vector space with the hybrid approach
then we have currently. For these reasons, our primary choice of recommendation
method is the user-user CF.

The recommendation module created need the particular domain it will give recom-
mendations on for it to function, but the module itself is dynamic in such a way
that the same module is used to provide recommendations in all of the categories.

2https://www.tripadvisor.com/
3http://www.stay.com/

76 5. EVALUATION

The feedback from our experiment shows that it works in most cases during the
conducted experiment.

5.5. DISCUSSION OF THE RECOMMENDATION 77

(a) K-Means

(b) Mini Batch K-Means

(c) BIRCH

Figure 5.3: Visualization of clusters in category museum using K-Means, MiniBatch
K-Means and BIRCH

78 5. EVALUATION

(a) K-Means

(b) Mini Batch K-Means

(c) BIRCH

Figure 5.4: Visualization of clusters in category museum using K-Means, MiniBatch
K-Means and BIRCH

Chapter6Conclusion

In the conclusion chapter, we will try to give the current status of our work at
this time. Give a short summation of what we have done and what we originally
envisioned for the project. We bring up the limitations in our service. Further, we
list a few bullet points of what we believe is the way moving forward with what we
have currently done. At the end of the chapter, we mention our final thoughts and
conclusion.

6.1 Previous Work

There exists a lot of research in the area of recommendation systems and the different
approaches used towards giving recommendations to the users of the system. To
summarize, we have looked closer into these three domains:

– Content-Based Filtering

– Collaborative filtering

– Hybrid

There are many different areas in today’s society which utilizes recommendations as
a way give their user’s suggestions they might not find on their own or would find
interesting. Recommendation systems are used in the area of e-commerce, where
it is used to give the user suggestions of what items they might want to buy. The
recommendation methods are integrated with Netflix to help the users find movies
they might like and to keep the user using their service. To our knowledge, there
is no other service which uses one or more of these methods to provide users with
recommendations on which attractions or activities they should visit in their vicinity.

Previously, Amazon1 have used the same approach to give recommendations as we do
in our system, but they have moved on to another type of CF in a combination with a

1https://www.amazon.com/

79

80 6. CONCLUSION

hybrid approach due to scalability and lack of robustness. A lot of the recommender
systems currently being used are hybrid systems since most of the times a hybrid
system will prove to be the best approach.

6.2 Visions for Proof-of-Concept System

When we started this research, we envisioned a proof-of-concept recommendation
system for attractions and activities in the user’s vicinity. To create this system we
wanted to utilize a hybrid approach for our recommendation module. The hybrid
approach we envisioned would use both context-based and user-user CF as we hoped
this would provide the users with the best possible recommendations.

Further, we envisioned a recommendation module which would be dynamic in such a
way that it would be capable of giving the users recommendation in all of the different
domains. The module would require the user interest in a particular category for
providing recommendations in that category for the user. The module will utilize the
same methods for providing recommendations to the user across all domains. Hence,
there is no specific module for recommendations in each of the categories.

Lastly, we envisioned to create a web application which could be used on any mobile
or tablet platforms. The other platforms like mobile or tablets should contain all
the methods and fields and not just a subset of the web application provided in a
browser.

6.2.1 Limitations of the System

Although we had high expectations and visions in the beginning of the research for
the system we wanted to check if viable. But there are some limitations to the system
when we performed the experiment. However from the experimental results gathered
we can see that the system performs well even with the limitations of the service.
We will try to mention most of the limitations of the system in this section.

For the service to function as close to envisioned as possible with the limited time,
we had to make a few compromises in the creation of the service. Consequently, we
do not support the user to change their password and retrieve their username as
these features is simply not implemented as they do not have any effect on how well
the system can give personal recommendations.

As for user to receive recommendations, the user will currently have to wait until a
user in the same cluster has either visited or liked an attraction or activity. These
attractions will then be added to their recommendation list such that the user will
keep these suggestions even if they were to change cluster at a later moment due to
the system learning more about them by using the user’s history. This is a limitation
we made to the service, and it will not affect the results of our experiment with the

6.3. FUTURE WORK 81

time limit we conducted. However, for the service to be usable for tests over an
extended period, changes are required to a more suitable method.

6.3 Future work

With the experiences made during this project, these bullet points are what we
suggest for future work.

– Hybrid Approach: Improve the recommendation method used in the service to
both utilize CF and Content-Based to provide better recommendations for the
users. The Content-Based module might require the usage of natural language
processing (NLP) to be able to categorize entities, and describe the metadata
of the entities. This aligns with what we have seen in previous work and what
state of the art recommendation systems are doing.

– Real-time recommendations: Fix the current recommendation module such
that the recommendations are gathered in real-time when the user queries the
service. Right now the recommendations performed ahead which became a
compromise to a more easily experiment testing.

– Improved clustering: Implement a more dynamic way to model the users to
achieve even better clustering. This entails looking at additional demographic
attributes, cluster users geographically, and dynamic categories.

– User Interface: Improve the UI such that more users find it easy to use.

– Extensive experiments: Run an experiment over a longer period and a larger
group of participants to maximize the experiment validity and check if results
still are reasonable.

6.4 Conclusion and Final Thoughts

As a conclusion to our research with the results collected in our experiment in mind,
we have concluded that we believe it to be possible to create a recommendation
system which gives users suggestions into the different domains of attractions and
activities. Although the research experiment we have conducted has few participants
and a small timeframe we believe it shows that the recommendation system will work
and can be used within these domains of attractions and activities. For us to give a
better conclusion whether the recommendation system is viable or not, we believe
that a longer and bigger experiment should be conducted to have more data to base
our conclusion. However, with the current data from the experiments conducted so
far we have an indication that the system is both feasible and yield reasonable good
recommendations.

82 6. CONCLUSION

We believe that this type of recommender system could become a commercial success.
Nowadays, typically young people could potentially be in the target group as they
do not plan their trips ahead or at all. This kind of system can make it easier for
them to plan while on the journey and help them find attractions or activities to
visit in the vicinity when they have reached their destination. The current system
developed values other people’s opinions of what you should visit as long as you have
similar preferences. Therefore, you would most likely be given a suggestion about a
place you would like, but might not have visited unless you were recommended to go
there. This service can become a valuable tool when traveling to new places looking
for attractions and activities worthwhile to see and explore.

References

[1] Angular Leaflet Directive. https://github.com/angular-ui/ui-leaflet. Accessed:
2016-06-06.

[2] AngularJS - html enhancement for web apps. https://angularjs.org/. Accessed:
2016-06-06.

[3] Express.js is a minimal and flexible web framework for node.js. http://expressjs.
com/en/index.html. Accessed: 2016-05-31.

[4] Foursquare developer Rate Limits. https://developer.foursquare.com/overview/
ratelimits. Accessed: 2016-6-1.

[5] Google Map JavaScript API. https://developers.google.com/maps/
documentation/javascript/. Accessed: 2015-12-15.

[6] Google movie showtime. https://www.google.com/movies. Accessed: 2016-6-1.

[7] LeafletJS is a lightweight javascript framework for interactive maps. http://
leafletjs.com/. Accessed: 2015-12-15.

[8] Mapbox a mapping platform for developers. https://www.mapbox.com/. Accessed:
2016-05-30.

[9] MongoDB is a cross-platform document-oriented nosql database. https://www.
mongodb.org/. Accessed: 2015-05-30.

[10] Mongoose.js elegant mongodb object modeling for node.js. http://mongoosejs.
com/. Accessed: 2016-05-30.

[11] Nginx. https://nginx.org/en/. Accessed: 2016-6-8.

[12] Node.js is a javascript runtime built on chrome’s v8 engine. https://nodejs.org/en/.
Accessed: 2016-05-30.

[13] OpenStreetMap is a collaborative mapping service maintained by the community.
https://www.openstreetmap.org/about. Accessed: 2015-12-15.

[14] Passport authentication for node.js. http://passportjs.org/. Accessed: 2016-05-31.

83

https://github.com/angular-ui/ui-leaflet
https://angularjs.org/
http://expressjs.com/en/index.html
http://expressjs.com/en/index.html
https://developer.foursquare.com/overview/ratelimits
https://developer.foursquare.com/overview/ratelimits
https://developers.google.com/maps/documentation/javascript/
https://developers.google.com/maps/documentation/javascript/
https://www.google.com/movies
http://leafletjs.com/
http://leafletjs.com/
https://www.mapbox.com/
https://www.mongodb.org/
https://www.mongodb.org/
http://mongoosejs.com/
http://mongoosejs.com/
https://nginx.org/en/
https://nodejs.org/en/
https://www.openstreetmap.org/about
http://passportjs.org/

84 REFERENCES

[15] Pug template engine. http://jade-lang.com/. Accessed: 2016-05-31.

[16] Redis.io. http://redis.io/. Accessed: 2016-06-01.

[17] Scikit-learn clustering simple and efficient tools for data mining and data analysis.
http://scikit-learn.org/stable/modules/clustering.html. Accessed: 2016-5-2.

[18] Songkick. http://www.songkick.com/developer. Accessed: 2016-6-11.

[19] Supercharge your Node.js Applications with Nginx. http://blog.modulus.io/
supercharge-your-nodejs-applications-with-nginx. Accessed: 2016-6-8.

[20] Tripadvisor API Access. https://developer-tripadvisor.com/content-api/
request-api-access/. Accessed: 2016-6-1.

[21] Twitter Bootstrap is a html, css and js for developing responsive websites. http:
//getbootstrap.com/. Accessed: 2015-12-15.

[22] Yelp. https://www.yelp.com/developers/documentation/v2/overview. Accessed:
2016-6-11.

[23] J. Bobadilla, F. Ortega, a. Hernando, and a. Gutiérrez. Recommender systems
survey. Knowledge-Based Systems, 46:109–132, 2013.

[24] Robin Burke. Hybrid recommender systems: Survey and experiments. User
Modeling and UserAdapted Interaction, 12(4):331–370, 2002.

[25] Keunho Choi, Donghee Yoo, Gunwoo Kim, and Yongmoo Suh. A hybrid online-
product recommendation system: Combining implicit rating-based collaborative
filtering and sequential pattern analysis. Electronic Commerce Research and
Applications, 11(4):309–317, 2012.

[26] Dorin Comaniciu and Peter Meer. Mean Shift: A Robust Approach toward
Feature Space Analysis. IEEE Transactions on patteren Analysis and machine
intelligence, 24(5):603–619, 2002.

[27] Konstantinos G Derpanis. Mean Shift Clustering. 1(2):1–4, 2005.

[28] Michael D. Ekstrand, John Riedl, and Joseph A. Konstan. Collaborative Fil-
tering Recommender Systems. Foundations and Trends® in Human–Computer
Interaction, 4(2):81–173, 2010.

[29] Google. Google forms - create and analyze surveys, for free,
https://www.google.com/forms/about/, 2015. [Online; accessed 15-December-
2015].

[30] Yifan Hu, Chris Volinsky, and Yehuda Koren. Collaborative filtering for implicit
feedback datasets. Proceedings - IEEE International Conference on Data Mining,
ICDM, (July):263–272, 2008.

[31] Anil K Jain. Data clustering: 50 years beyond K-means. Pattern Recognition
Letters, 31(8):651–666, 2010.

http://jade-lang.com/
http://redis.io/
http://scikit-learn.org/stable/modules/clustering.html
http://www.songkick.com/developer
http://blog.modulus.io/supercharge-your-nodejs-applications-with-nginx
http://blog.modulus.io/supercharge-your-nodejs-applications-with-nginx
https://developer-tripadvisor.com/content-api/request-api-access/
https://developer-tripadvisor.com/content-api/request-api-access/
http://getbootstrap.com/
http://getbootstrap.com/
https://www.yelp.com/developers/documentation/v2/overview

REFERENCES 85

[32] Kyoung-jae Kim and Hyunchul Ahn. A recommender system using GA K -means
clustering in an online shopping market. 34:1200–1209, 2008.

[33] Mu Hsing Kuo, Liang C. Chen, and Chien W. Liang. Building and evaluating
a location-based service recommendation system with a preference adjustment
mechanism. Expert Systems with Applications, 36(2 PART 2):3543–3554, 2009.

[34] T Lee, Y Park, and Y Park. A time-based approach to effective recommender
systems using implicit feedback. Expert Systems with Applications, 34(4):3055–
3062, 2008.

[35] Greg Linden, Brent Smith, and Jeremy York. Amazon.com Recommendations:
Item-to-Item Collaborative Filtering. {IEEE} Internet Computing, 7(1):76–80,
2003.

[36] Laurens Van Der Maaten and Geoffrey Hinton. Visualizing Data using t-SNE.
Journal of Machine Learning Research, 9(2579-2605):85, 2008.

[37] Laurens Van Der Maaten, Eric Postma, and Jaap van den Herik. Dimensionality
Reduction: A Comparative Review. J Mach Learn Res, 10:66–71, 2009.

[38] Chavant Megana M, Patil Asawari, Davil Lata, and Patil Ajinkya. Mini Batch
K-Means Clustering On Large Dataset. 04(07):1356–1358, 2015.

[39] Robin Van Meteren and Maarten Van Someren. Using Content-Based Filtering
for Recommendation. ECML/MLNET Workshop on Machine Learning and the
New Information Age, pages 47–56, 2000.

[40] Alexandros Nanopoulos, Milos Radovanović, and Mirjana Ivanović. On the
Existence of Obstinate Results in Vector Space Models. Proceedings of the 33rd
international ACM SIGIR conference on Research and development in information
retrieval, (Section 2):186—-193, 2010.

[41] Hai Thanh Nguyen, Thomas Almenningen, Martin Havig, Helge Langseth, and
Heri Ramampiaro. Learning to Rank for Personalised Fashion Recommender
Systems via Implicit Feedback. pages 51–61, 2014.

[42] Edward Rolando Núñez-Valdéz, Juan Manuel Cueva Lovelle, Oscar Sanjuán
Martínez, Vicente García-Díaz, Patricia Ordoñez De Pablos, and Carlos Enrique
Montenegro Marín. Implicit feedback techniques on recommender systems applied
to electronic books. Computers in Human Behavior, 28(4):1186–1193, 2012.

[43] Douglas W Oard and Jinmook Kim. Implicit Feedback for Recommender Systems.
Proceedings of the AAAI workshop on recommender systems, pages 81–83, 1998.

[44] Briony J Oates. Researching information systems and computing. Sage, 2005.

[45] Dan Pelleg and Andrew Moore. Accelerating exact k-means algorithms with
geometric reasoning. pages 277–281, 1999.

86 REFERENCES

[46] Dan Pelleg and Andrew W. Moore. X-means: Extending k-means with efficient
estimation of the number of clusters. pages 727–734, 2000.

[47] Shaghayegh Sahebi and William W Cohen. Community-based recommendations:
a solution to the cold start problem. Workshop on Recommender Systems and
the Social Web (RSWEB), held in conjunction with ACM RecSys’11,, 2011.

[48] Oscar Sanjuan Martínez, Cristina Pelayo G-Bustelo, Ruben González Crespo,
and Torres Franco Enrique. Using Recommendation System for E-learning
Environments at degree level. International Journal of Artificial Intelligence and
InteractiveMultimedia., 1:67–70, 2009.

[49] Seth Sorensen. Accuracy of Similarity Measures in Recommender Systems. 2012.

[50] Michael Steinbach, G Karypis, and V Kumar. A Comparison of Document
Clustering Techniques. KDD workshop on text mining, 400:1–2, 2000.

[51] Michael Steinbach, Vipin Kumar, and Levent Ertöz. The Challenges of Clustering
High Dimensional Data *. New Directions in Statistical Physics, pages 273–309,
2004.

[52] Loren Terveen and Will Hill. Beyond recommender systems: Helping people help
each other. HCI in the New Millennium, (1):1–21, 2001.

[53] Alexander Tuzhilin and Gediminas Adomavicius. Profiling in Personalizat ion
Applications Rule Discovery and Validat ion. New York, pages 377–381.

[54] Pei Wang. Why recommendation is special. Workshop on Recommender Systems,
part of the 15th National Conference on Artificial Intelligence (AAAI 1998), pages
111–113, 1998.

[55] WEKA. Weka 3 - data mining with open source machine learning software in java,
http://www.cs.waikato.ac.nz/ml/weka/, 2015. [Online; accessed 15-December-
2015].

[56] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: An efficient data
clustering method for very large databases. SIGMOD Rec., 25(2):103–114, June
1996.

AppendixASurvey
A.1 Example of Calculating Rating Using Pearson

correlation

Batman Begins Alice in
Wonderland

Dumb and
Dumber Equilibrium

User A 4 ? 3 5
User B ? 5 4 ?
User C 5 4 2 ?
User D 2 4 ? 3
User E 3 4 5 ?

Table A.1: A rating matrix on a 5-star scale [28]

A example from Ekstrand[28] of how to calculate User C predicted rating of the
movie Equilibrium, we will use the data is from the table A.1:

– Pearson Correlation
– Neighborhood size of 2
– Weighted average with mean offset

Cs mean rating is 3, 667, and there is only two users who have rated Equilibrium,
therefore the two users are used as the neighborhood s(C,A) = 0, 832 and s(C,D) =
−0, 515.

PC,e = r̄C + s(C,A)(rA,e − r̄A) + s(C,D)(rD,e − r̄D)
|s(C,A)|+ |s(C,D)

= 3, 667 + 0, 832 ∗ (5− 4) +−0, 515(2− 3)
0, 832 + 0, 515 (A.1)

= 4, 667

87

88 A. SURVEY

A.2 X-Means Clustering

X-means is an improved version of the k-means which utilizes statistical modeling
to estimate the optimized number of clusters. The estimation processes find n, the
number of clusters, at the end of each iteration in k-means. Local decisions are
about which subset of the current centroids should split themselves to fit the data
better [46]. The decision to divide the centroids is made by calculating the Bayesian
Information Criterion (BIC), see equation A.2. l̂j(D) is the log-likely-hood of the
data according to the j-th model and taken the maximum likely-hood point, and pj
is the number of parameters in Mj

BIC(Mj) = l̂j(D)− pj
2 ∗ logR (A.2)

The proposed X-means scales better than iterated k-means. The result from the
experiments shows that X-means runs twice as fast on large problems [46].

Algorithm A.1 X-Means algorithm
Require: Xi elements described by m attributes, i: number of centroids and I:

Upper bound
1: Improve-Params: Run conventional K-Means
2: Improve-Structure: Find where new centroids should appear. Done by letting

the centroids split in two, this is done using two strategies.
3: Strategy one One at a time: pick one centroid split it by placing a new centroid

nearby, run K-means and see if model score is better. If better accept new centroid,
if not return to previous structure

4: Strategy two Try half the centroids: Choose half the centroids using heuristic
criterion on how good a split will be.

5: if i > Imax then
Stop and report the best scoring model found during the search

6: else
Goto 1

7: end if

A.3. VISUALIZATION 89

A.3 Visualization

A table containing different dimensionality reduction methods used to visualize
high-dimensional data, it shows what parameters is needed to run the method, the
runtime of the method and how much memory needed for each method.

Technique Paramteric Parameters Computational Memory
PCA yes none O(D3) O(D2)
Class. scaling no none O(n3) O(n2)
Isomap no k O(n3) O(n2)
Kernel PCA no k(.,.) O(n3) O(n2)
MVU no k O((nk)3) O((nk)3)
Diffusion maps no σ, t O(n3) O(n2)
LLE no k O(pn2) O(pn2)
Laplacian Eigenmaps no k, σ O(pn2) O(pn2)
Hessian LLE no k O(pn2) O(pn2)
LTSA no k O(pn2) O(pn2)
Sammon mapping no none O(in2) O(n2)
Autoencoders yes net size O(inw) O(w)
LLC yes m, k O(imd3) O(nmd)
Manifold charing yes m O(imd3) O(nmd)

Table A.2: Properties of techniques for dimensionality reduction [37]

A.3.1 Convex and Non-Convex Dimensionality Reduction

Convex

Convex techniques for dimensionality reduction optimizes the objective function
used in the technique, the objective function does not contain a local optima i.e
the space is convex[37]. The objective function used in these techniques usually has
the form of a Rayleigh quotient: φ(Y) = Y TAY

Y TBY
. This objective function is a well

known function and it can be optimized by solving it’s generalized eigenproblem.
The convex dimensionality reduction techniques can be divided into two different
subcategories those who perform the eigendecomposition of a full matrix and those
who only perform it of a sparse matrix.

90 A. SURVEY

Techniques performing optimization on full matrix:

1. PCA / Classical scaling

2. Isomap

3. Kernel PCA

4. Maximum Variance Unfolding

5. Diffusion maps

Techniques performing optimization on sparse matrix:

1. LLE

2. Laplacian Eigenmaps

3. Hessian LLE

4. LTSA

Non-Convex

Techniques that construct low-dimensional data by optmizing a convex objective
function by means of an eigendecomposition.

Techniques performing optimization:

1. Sammon Mapping

2. Multilayer Autoencoders

3. LLC

4. Manifold Charting

A.3. VISUALIZATION 91

A.3.2 MNIST Data Set Visualization

Visualization of MNIST Data set using different dimensionality reduction techniques.

Figure A.1: Visualization by Sammon mapping of the MNIST data set [36]

92 A. SURVEY

Figure A.2: Visualization by Isomap of the MNIST data set [36]

Figure A.3: Visualization by LLE of the MNIST data set [36]

AppendixBApproach

B.1 Requirements

B.1.1 User Profile Requirements

The categories the user will have to give their preferences in to create a user profile
in the system:

– Personal information

◦ Age-group
∗ 0-9
∗ 10-19
∗ 20-29
∗ 30-39
∗ 40-49
∗ 50-59
∗ 60-69
∗ 70+

◦ Gender
∗ Man
∗ Woman
∗ Other

◦ Country
◦ State

– Movies

◦ Action
◦ Adventure

◦ Animation
◦ Biography
◦ Comedy
◦ Crime
◦ Documentary
◦ Drama
◦ Family
◦ Fantasy
◦ History
◦ Horror
◦ Musical
◦ Mystery
◦ Romance
◦ Sci-Fi
◦ Sports
◦ Thriller
◦ War
◦ Western

– Music

93

94 B. APPROACH

◦ Alternative
◦ Blues
◦ Children music
◦ Classics
◦ Country
◦ Dance & EDM
◦ Electronic
◦ Hip-hop and Rap
◦ Jazz
◦ Opera
◦ Pop
◦ R&B and Soul
◦ Reggae
◦ Rock

– Restaurants

◦ Burger
◦ Café
◦ Scandinavian
◦ General food
◦ Italian
◦ Sushi
◦ BBQ

◦ Indian
◦ Mexican
◦ Vegetarian
◦ Steakhouse
◦ Tapas
◦ Chinese & Oriental

– Museums

◦ Arts and Architecture museum
◦ Children museum
◦ Theme museum
◦ History museum
◦ Military museum
◦ Science museum

– Nightlife

◦ Pub
◦ Brewery
◦ Bar
◦ Sports bar
◦ Dive bar
◦ Wine bar
◦ Lounge
◦ Nightclub

B.1. REQUIREMENTS 95

B.1.2 Interface

Figure B.1: Settings interface mockup

96 B. APPROACH

B.1.3 Sequence Diagrams

Figure B.2: A sequence diagram for when users login into the system

B.1. REQUIREMENTS 97

Figure B.3: A sequence diagram for when users updates their profile

98 B. APPROACH

Figure B.4: A sequence diagram for when user hear or star an entity

B.1. REQUIREMENTS 99

B.1.4 Clustering

Clustering tests

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 799 4 0 sec 82 134
3 723 3 0.03 sec 57 94
4 646 3 0 sec 38 71
5 590 5 0 sec 16 69
6 589 5 0.01 sec 1 69
7 561 5 0 sec 1 59
8 547 5 0 sec 1 52
9 506 7 0 sec 13 45
10 525 6 0 sec 1 53
11 537 6 0 sec 1 60
12 516 6 0.01 sec 1 54
13 506 6 0 sec 1 54
14 479 6 0 sec 1 45
15 471 5 0 sec 1 45
20 440 5 0.01 sec 1 37
25 384 7 0.02 sec 1 23
30 357 6 0.01 sec 1 19
40 304 6 0.01 sec 1 16

Table B.1: Simple K-Means on Museums with sex, age and marital-status using
Euclidean distance, max iterations: 500 and 10 seeds using WEKA

100 B. APPROACH

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 629 4 0 sec 83 133
3 520 4 0 sec 46 93
4 505 2 0 sec 20 88
5 465 4 0 sec 10 66
6 419 5 0 sec 10 65
7 400 5 0 sec 10 64
8 384 5 0 sec 10 58
9 366 5 0 sec 8 56
10 355 3 0 sec 8 55
11 346 3 0 sec 6 53
12 336 3 0 sec 6 51
13 320 3 0 sec 6 51
14 311 3 0 sec 6 51
15 302 3 0 sec 5 51
20 251 5 0 sec 4 29
25 236 4 0.01 sec 1 30
30 218 5 0.01 sec 1 27
40 174 3 0.02 sec 1 18

Table B.2: Simple K-Means on Museums without sex, age and marital-status using
Euclidean distance, max iterations: 500 and 10 seeds using WEKA

B.1. REQUIREMENTS 101

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 1626 5 0 sec 82 134
3 1520 4 0 sec 61 93
4 1461 6 0 sec 41 82
5 1374 8 0 sec 26 64
6 1343 6 0 sec 20 52
7 1311 5 0 sec 22 46
8 1261 6 0 sec 20 46
9 1229 7 0.01 sec 14 45
10 1209 8 0.04 sec 10 42
11 1186 7 0.01 sec 8 41
12 1158 6 0.01 sec 6 35
13 1139 6 0.01 sec 6 28
14 1120 8 0.01 sec 6 24
15 1103 7 0.01 sec 7 24
20 1012 8 0.02 sec 6 21
25 1000 6 0.01 sec 1 22
30 911 7 0.03 sec 1 17
40 822 7 0.02 sec 1 14

Table B.3: Simple K-Means on Music with sex, age and marital-status using Euclidean
distance, max iterations: 500 and 10 seeds using WEKA

102 B. APPROACH

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 1285 5 0 sec 79 137
3 1219 5 0 sec 60 87
4 1127 7 0 sec 41 72
5 1114 5 0 sec 19 61
6 1069 5 0 sec 24 65
7 1026 5 0 sec 19 48
8 997 5 0 sec 18 49
9 997 4 0 sec 10 45
10 970 7 0 sec 11 39
11 936 8 0.01 sec 12 36
12 872 10 0.02 sec 8 42
13 887 6 0.01 sec 9 25
14 841 6 0.01 sec 7 25
15 827 6 0.01 sec 8 23
20 771 5 0.01 sec 3 20
25 728 6 0.01 sec 2 21
30 687 6 0.01 sec 1 18
40 624 7 0.01 sec 1 14

Table B.4: Simple K-Means on Music without sex, age and marital-status using
Euclidean distance, max iterations: 500 and 10 seeds using WEKA

B.1. REQUIREMENTS 103

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 959 4 0 sec 81 135
3 868 5 0 sec 44 97
4 846 4 0 sec 52 77
5 762 5 0 sec 20 62
6 742 5 0 sec 18 56
7 710 5 0 sec 18 54
8 674 6 0 sec 16 50
9 660 5 0 sec 11 44
10 628 4 0 sec 14 46
11 597 4 0 sec 12 39
12 563 5 0 sec 8 31
13 561 5 0 sec 2 32
14 555 4 0 sec 1 35
15 556 4 0.01 sec 1 34
20 509 4 0.01 sec 1 24
25 474 5 0.01 sec 1 19
30 428 5 0.01 sec 1 17
40 388 5 0.01 sec 1 14

Table B.5: Simple K-Means on Nightlife with sex, age and marital-status using
Euclidean distance, max iterations: 500 and 10 seeds using WEKA

104 B. APPROACH

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 738 4 0 sec 51 165
3 526 6 0 sec 46 98
4 454 6 0 sec 18 90
5 420 7 0 sec 17 71
6 447 5 0 sec 11 62
7 414 5 0 sec 11 74
8 401 5 0 sec 9 74
9 387 5 0 sec 7 67
10 350 5 0 sec 6 64
11 348 4 0 sec 5 66
12 344 4 0 sec 5 65
13 340 4 0 sec 2 65
14 335 4 0 sec 2 65
15 325 4 0 sec 2 54
20 271 4 0 sec 1 33
25 231 5 0 sec 1 27
30 215 4 0.01 sec 1 26
40 187 5 0.01 sec 1 26

Table B.6: Simple K-Means on Nightlife without sex, age and marital-status using
Euclidean distance, max iterations: 500 and 10 seeds using WEKA

B.1. REQUIREMENTS 105

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 1134 3 0 sec 59 157
3 1054 6 0 sec 51 106
4 968 4 0 sec 42 68
5 950 4 0 sec 11 62
6 922 9 0.01 sec 10 60
7 902 9 0.01 sec 9 58
8 917 9 0.01 sec 1 62
9 888 9 0.01 sec 1 59
10 875 5 0.01 sec 1 59
11 851 5 0 sec 1 59
12 813 10 0.01 sec 1 57
13 800 10 0.01 sec 1 51
14 794 4 0.01 sec 1 38
15 769 5 0.01 sec 1 32
20 728 5 0.01 sec 1 33
25 681 5 0.01 sec 1 28
30 636 6 0.01 sec 1 23
40 563 7 0.02 sec 1 18

Table B.7: Simple K-Means on Restaurant with sex, age and marital-status using
Euclidean distance, max iterations: 500 and 10 seeds using WEKA

106 B. APPROACH

Number of
clusters

Sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 819 3 0 sec 57 159
3 749 3 0 sec 52 112
4 677 3 0 sec 44 65
5 653 6 0 sec 13 58
6 627 6 0.01 sec 12 61
7 626 6 0.01 sec 6 62
8 610 5 0 sec 6 62
9 600 5 0.01 sec 4 62
10 586 4 0 sec 4 62
11 572 4 0 sec 4 51
12 551 5 0 sec 4 60
13 539 5 0 sec 4 60
14 522 4 0.01 sec 4 44
15 523 4 0 sec 3 42
20 490 7 0.02 sec 1 50
25 448 7 0.01 sec 1 50
30 405 8 0.03 sec 1 26
40 362 7 0.01 sec 1 26

Table B.8: Simple K-Means on Restaurant without sex, age and marital-status using
Euclidean distance, max iterations: 500 and 10 seeds using WEKA

B.1. REQUIREMENTS 107

Number of
clusters

sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 5513.0 10 0.1 seconds 106 110
3 5209.0 14 0.17 seconds 52 85
4 5074.0 11 0.24 seconds 48 71
5 4947.0 9 0.17 seconds 30 74
6 4878.0 11 0.32 seconds 16 55
7 4771.0 17 0.24 seconds 14 51
8 4741.0 9 0.19 seconds 8 51
9 4640.0 7 0.11 seconds 8 37
10 4553.0 7 0.16 seconds 6 38
11 4502.0 9 0.32 seconds 5 34
12 4455.0 7 0.15 seconds 7 35
13 4411.0 9 0.27 seconds 3 41
14 4361.0 10 0.31 seconds 3 35
15 4354.0 10 0.4 seconds 4 32
16 4301.0 7 0.23 seconds 3 38
17 4244.0 7 0.33 seconds 4 32
18 4218.0 7 0.32 seconds 1 33
19 4189.0 8 0.48 seconds 1 31
20 4156.0 9 0.41 seconds 1 24
21 4086.0 10 0.31 seconds 1 31
22 4039.0 8 0.27 seconds 1 23
23 4008.0 8 0.25 seconds 1 26
24 4017.0 9 0.37 seconds 1 23
25 3996.0 8 0.32 seconds 1 21
26 3922.0 9 0.41 seconds 1 23
27 3891.0 8 0.35 seconds 1 22
28 3893.0 7 0.26 seconds 1 23
29 3856.0 8 0.4 seconds 1 21
30 3831.0 11 0.54 seconds 1 22
100 2296.0 3 0.63 seconds 1 9

Table B.9: Simple K Means using Euclidean Distance, max iterations 500, 5 seeds
and all categories without demographic data

108 B. APPROACH

Number of
clusters

sum of
squared
errors

Iterations
used

Time to
build

model[sec]

Minimum
number

of instances
in one
cluster

Maximum
number

of instances
in one
cluster

2 5858.0 4 0.06 seconds 93 123
3 5598.0 10 0.3 seconds 52 110
4 5341.0 9 0.16 seconds 42 73
5 5185.0 14 0.3 seconds 29 67
6 5137.0 12 0.22 seconds 26 52
7 5099.0 9 0.35 seconds 17 57
8 5019.0 12 0.22 seconds 6 59
9 4924.0 8 0.17 seconds 6 43
10 4811.0 8 0.17 seconds 7 37
11 4783.0 9 0.29 seconds 6 35
12 4690.0 11 0.6 seconds 5 35
13 4702.0 7 0.22 seconds 4 33
14 4591.0 10 0.39 seconds 5 28
15 4564.0 12 0.43 seconds 4 31
16 4551.0 8 0.28 seconds 3 33
17 4540.0 9 0.35 seconds 3 30
18 4443.0 9 0.33 seconds 1 23
19 4406.0 10 0.35 seconds 1 26
20 4361.0 7 0.39 seconds 1 24
21 4313.0 9 0.47 seconds 2 29
22 4286.0 8 0.46 seconds 1 23
23 4279.0 7 0.46 seconds 1 25
24 4208.0 12 0.55 seconds 1 17
25 4187.0 7 0.37 seconds 1 17
26 4157.0 7 0.5 seconds 1 17
27 4126.0 8 0.48 seconds 1 15
28 4124.0 7 0.31 seconds 1 19
29 4080.0 7 0.39 seconds 1 18
30 4064.0 7 0.49 seconds 1 18
100 2433.0 4 0.7 seconds 1 11

Table B.10: Simple K Means using Euclidean Distance, max iterations 500, 5 seeds
and all categories with demographic data

B.1. REQUIREMENTS 109

WEKA-dataset

@relation userprofiles

@attribute Sex ’Mann’, ’Kvinne’, ’Annet’

@attribute age ’0-9’, ’10-19’, ’20-29’, ’30-39’, ’40-49’, ’50-59’, ’60-69’, ’70-79’, ’80-89’,
’90-99’

@attribute FilmAction ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmAdventure ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmAnimation ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmBiography ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmComdey ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmCrime ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmDocumentary ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmDrama ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmFamily ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmFantasy ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmHistory ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmHorror ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmMusical ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmMystery ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmRomace ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmSciFi ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmSport ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmThirller ’Liker ikke’, ’Neutral’, ’Liker’

@attribute FilmWar ’Liker ikke’, ’Neutral’, ’Liker’

...

...

...

@attribute ResturantScandinavian ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantGeneral ’Liker ikke’, ’Neutral’, ’Liker’

110 B. APPROACH

@attribute ResturantItalian ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantSushi ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantBBQ ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantIndian ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantMexican ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantVegetarian ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantSteakHouse ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantTapas ’Liker ikke’, ’Neutral’, ’Liker’

@attribute ResturantOriental ’Liker ikke’, ’Neutral’, ’Liker’

@data

’Mann’, ’30-39’, ’Liker’, ’Liker’, ’Liker’, ’Neutral’, ’Liker’, ’Liker’, ’Neutral’, ’Neutral’,
’Liker’, ’Neutral’, ’Neutral’, ’Liker ikke’, ’Liker ikke’, ’Neutral’, ’Neutral’, ’Liker’,
’Liker’, ’Neutral’, ’Liker’, ’Neutral’, ’Liker ikke’, ’Neutral’, ’Liker’, ’Neutral’, ’Liker’,
’Liker’, ’Neutral’, ’Liker ikke’, ’Neutral’, ’Liker ikke’, ’Liker’, ’Liker’, ’Liker’, ’Neutral’,
’Liker ikke’, ’Liker ikke’, ’Neutral’, ’Liker’, ’Liker ikke’, ’Liker’, ’Liker’, ’Liker’, ’Liker’,
’Liker’, ’Neutral’, ’Neutral’, ’Neutral’, ’Liker’, ’Liker’, ’Neutral’, ’Neutral’, ’Liker’,
’Liker’, ’Liker ikke’, ’Liker’, ’Neutral’, ’Neutral’, ’Liker ikke’, ’Liker’, ’Neutral’, ’Liker’

’Mann’, ’20-29’, ’Liker’, ’Liker’, ’Liker’, ’Liker ikke’, ’Liker’, ’Liker’, ’Liker ikke’,
’Liker’, ’Neutral’, ’Liker’, ’Liker’, ’Liker’, ’Neutral’, ’Liker’, ’Liker’, ’Liker’, ’Liker
ikke’, ’Liker’, ’Liker ikke’, ’Neutral’, ’Liker’, ’Neutral’, ’Liker’, ’Liker ikke’, ’Liker’,
’Liker’, ’Liker’, ’Liker ikke’, ’Liker ikke’, ’Liker ikke’, ’Liker ikke’, ’Liker’, ’Liker’,
’Neutral’, ’Liker ikke’, ’Liker ikke’, ’Liker’, ’Neutral’, ’Neutral’, ’Liker’, ’Liker’, ’Liker’,
’Liker’, ’Liker ikke’, ’Liker’, ’Liker’, ’Liker’, ’Liker’, ’Liker’, ’Neutral’, ’Liker ikke’,
’Liker’, ’Neutral’, ’Liker ikke’, ’Liker’, ’Liker’, ’Liker’, ’Liker ikke’, ’Liker’, ’Liker’,
’Liker’

AppendixCImplementation

C.1 Front-end Screenshots

Figure C.1: Overview of recommendation page

111

112 C. IMPLEMENTATION

Figure C.2: Overview of profile

Figure C.3: Overview of settings

C.2. SERVER CONFIGURATION 113

Figure C.4: About service

C.2 Server Configuration

For our user test and system test and we hosted our web application on DigitalOcean.
DigitalOcean offers cheap, flexible and reliable virtual machines in which you quickly
can set up and host a web server. You get root access to a Linux distro of your
choosing, and you can install and run your virtual machine with any software you
would like. We started out with a fresh Ubuntu 14.04 LTS. After we set up iptables,
a light-weight firewall that comes with the Linux kernel. We specified that TCP
connections on port 22, 80 and 4000 were allowed. Further, we installed Nginx, Redis,
and MongoDB. Nginx is the only topic of those three we have not briefly touched
and to be complete we will go into detail of what Nginx does for us.

Nginx[11] is a HTTP, reverse proxy server and a generic TCP/User Datagram
Protocol (UDP) proxy server. It excels at server static index files and provides a
robust server overall for incoming connections. Node.js, even being great having the
capability to handling incoming HTTP/S connections, has to step aside for Nginx
when it comes to performance as it can receive 1.9 times as many requests per seconds
compared to Node.js averaging at 1.608 requests/sec[19]. In our case, our Nginx
strictly acts as a reverse proxy to route Hypertext Transfer Protocol Secure (HTTPS)
traffic to our Node.js instance relieving our Node.js of encryption responsibilities
which can be a heavy burden.

Moving on, we install our npm modules dependencies and bower components de-

114 C. IMPLEMENTATION

#!/ bin/sh
export PATH =/ usr/local/bin:$PATH
export NODE_ENV = production
forever stopall
sleep 2
forever start --sourceDir /home/john/ webapps / tourism /bin/ www

Listing C.1: Unix script to instantiate web server

pendencies by running npm install and bower install. Lastly, we finish off the
installation process by installing our python package dependencies for numpy, py-
mongo, scikit-learn and scipy.

Forever.js and cron

We have taken precautions to ensure that our server always attempts to keep the
instance running. We run the Node.js instance with forever.js. Forever.js always
strives to run a given script continuously. In the case that runtime errors occur,
forever.js logs the appropriate stack traces for the instance id and fire up a new
instance to take the crashed instance’s place. In the event that the server itself goes
down, we have a cronjob in place to run a script that re-instantiates the web server
process after the server has come back up.

AppendixDEvaluation
D.1 User Test

Welcome to user testing of the tourist attraction recommendation system, you can
at anytime during the test withdraw.

Tasks you are going to execute:

1. Open the web page https://198.211.120.223:5443/

2. Click “Register” and enter your details.

– We don’t ask for or store sensitive information none of which can be traced back to
you. Please choose a username that can’t identify you.

3. You will be redirected to a settings page. Please edit your preferences accordingly to
your taste between a rating from dislike, neutral or like.

4. Head over to “map” in the navigation bar. “Map” is also where recommendations
will eventually show up.

– Keep in mind that what you’re looking at on the map is also the area location you’re
searching through. Feel free to head over to a different city should you chose to do
so.

5. Using Foursquare (F) as your source of data, find some attractions in the following
categories:

– Friendly reminder: Heart means you’d like to visit, and the star means you have
visited before. Try to find places you have been before and star them.

– Museums
– Restaurants (types: Indian, Steakhouse, Sushi, Kebab, etc.)

115

116 D. EVALUATION

– Feel free to search for something else you’d like.

6. Using Songkick (note) as your source of data, do the following:

– Click on the local data source (map pin), find something that seems interesting to
you and heart or star them.

– Click on (note means global) and search for your favorite artists. Heart or star as
you feel appropriate.

◦ For example Muse, Kygo or Bruce Springsteen.

7. Click on your username in the navigation bar. Please remove some entities from
hearted or starred.

8. Head back over to “map”. Recommendations should now have an effect, and when
you search, recommended activities and places should be present in the results with
green text.

9. Log out of the system.

10. Go to the survey and answer the questionnaire.

Thank you for participating.

D.2. CLUSTER VISUALIZATION 117

D.2 Cluster Visualization

(a) K-Means (b) K-Mean

(c) Mini Batch K-Means (d) Mini Batch K-Means

(e) BIRCH (f) BIRCH

Figure D.1: Visualization of clusters using K-Means, Mini Batch K-Means and
BIRCH (a),(c) and (e) is movie category and (b),(d) and (f) is music category

118 D. EVALUATION

(a) K-Means (b) Mini Batch K-Means

(c) BIRCH (d) K-Means

(e) Mini Batch K-Means (f) BIRCH

Figure D.2: Visualization of clusters in category nightlife using K-Means, Mini Batch
K-Means and BIRCH

D.2. CLUSTER VISUALIZATION 119

(a) K-Means (b) K-Means

(c) Mini Batch K-Means (d) Mini Batch K-Means

(e) BIRCH (f) BIRCH

Figure D.3: Visualization of clusters in music and museum categories using K-Means,
Mini Batch K-Means and BIRCH

120 D. EVALUATION

(a) K-Means (b) K-Means

(c) Mini Batch K-Means (d) Mini Batch K-Means

(e) BIRCH (f) BIRCH

Figure D.4: Visualization of clusters in category music using K-Means, Mini Batch
K-Means and BIRCH on data which has been reduced to either 2 or 3 dimensions
before clustering

	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	List of Acronyms
	Introduction
	Motivation
	Challenges and Current Situation
	Personalized Recommendations
	Research Questions
	Outline of Report

	Survey
	Datasets
	Web Crawlers
	Publicly Open Datasets
	Third-Party Services
	Existing Dataset

	Previous Works
	Content-based Filtering
	Collaborative Filtering
	Hybrid Approach
	Other Recommender Systems

	Clustering
	Data Representation in Clustering Algorithms
	Number of Clusters
	K-Means
	Mean shift
	BIRCH

	Dimensionality Reduction and Visualization
	SNE
	t-SNE

	Approach
	Requirements
	Functional Requirements
	System Requirements

	User Requirements
	Profile Requirements
	Modern Browser
	Geolocation

	API Requirements
	Dataset Maintenance
	Metadata in Dataset
	Possible Datasets

	Design
	Web Application
	Feedback

	Implementation
	Recommendation system
	Node.js
	Express.js
	MongoDB
	Redis
	Socket.IO
	Clustering
	Recommendation

	Web application
	Socket.io
	Angular
	Leaflet.js and Mapbox

	Challenges
	In-Browser Update
	Normalization of External Data Sources

	Evaluation
	Current state
	User Experiment and System Testing
	Validity of Experiment

	Experiment
	Experiment Recommendation Results
	Evaluation of Clusters

	Evaluation and Discussion of the Implementation
	Discussion of the Recommendation

	Conclusion
	Previous Work
	Visions for Proof-of-Concept System
	Limitations of the System

	Future work
	Conclusion and Final Thoughts

	References
	Survey
	Example of Calculating Rating Using Pearson correlation
	X-Means Clustering
	Visualization
	Convex and Non-Convex Dimensionality Reduction
	MNIST Data Set Visualization

	Approach
	Requirements
	User Profile Requirements
	Interface
	Sequence Diagrams
	Clustering

	Implementation
	Front-end Screenshots
	Server Configuration

	Evaluation
	User Test
	Cluster Visualization

