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Problem Description

The primary aim of the thesis is to design, implement and evaluate a personalized rec-
ommender system in the touristic domain. In order to do this, it is necessary to get an
overview of existing work done in the field of recommendation systems, both in general
and within the touristic domain.
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Abstract

Recommender systems have cemented themselves in the daily online activities of most
people, and they have been successfully applied across a range of different domains. How-
ever, they have yet to make the big breakthrough in complex areas such as tourism and gas-
tronomy. A reason for this is that the attributes of items within these domains are seldom
readily quantifiable, and people’s opinions on items like hotels and restaurants are depen-
dent on a large number of factors. A successful recommender system in such a complex
domain could have a great impact on further advancements of this technology.

In this thesis, we present RestRec: a novel, personalized, context-aware, hybrid recom-
mender system for restaurants. We perform a literature review showing that even though
contextual information has huge potential, it has been largely ignored in research. In order
to learn more about what factors affect people’s choices in restaurants, and the nature of
their social settings when attending them, we conduct a survey. The subsequent results
are then incorporated into our system with the purpose of improving recommendations.
Furthermore, we address the cold-start user problem which pertains to the difficulty of
providing high quality recommendations to new users where little information exists. This
problem is particularly dominant in the restaurant domain where the majority of users
are cold-start users. To address the effects of a cold start, we employ a combination of
collaborative filtering with demographic information and content-based filtering.

To evaluate RestRec we perform user-based evaluation conducted on friends, family,
and fellow students. Our experiments show that we are indeed successful in identifying
patterns with regards to social setting and use this to make better recommendations. The
overall predictive accuracy of the system exceeds 70 %, showing the feasibility of our
approach.
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Sammendrag

Anbefalingssystemer har etablert seg i de daglige nettaktivitetene til folk flest og har blitt
innført med suksess i en rekke domener. Likevel har de fortsatt til gode å gjøre det store
gjennombruddet i komplekse områder, som for eksempel turisme og gastronomi. En årsak
til dette er at egenskapene til elementer innenfor disse domenene sjelden er lett kvantifis-
erbare, og folks oppfatninger av hoteller og restauranter er avhengige av en rekke faktorer.
Et vellykket anbefalingssystem i et så komplekst domene kan ha betydning for videre
fremskritt for denne type system.

I denne masteroppgaven presenterer vi RestRec: et personlig, kontekstbevisst anbefal-
ingssystem for restauranter. Vi utfører en litteræranalyse som viser at selv om kontekstuell
informasjon har stort potensial, har det i stor grad blitt ignorert innen forskningen. For å
identifisere hvilke faktorer som spiller inn i folks valg av restauranter og deres sosiale set-
ting under besøket, utfører vi en spørreundersøkelse. Resultatene fra denne undersøkelsen
blir brukt til å forbedre anbefalingene våre. Videre prøver vi å takle kaldstart-problemet
som er knyttet til utfordringen med å tilby gode anbefalinger til nye brukere som man vet
lite om. Dette problemet er spesielt fremtredende i restaurant-domenet hvor de fleste av
brukerne er kaldstart-brukere. For å takle problemet, bruker vi en kombinasjon av samar-
beidsfiltrering med demografisk informasjon og innholdsbasert filtrering.

For å evaluere RestRec utfører vi brukertester på venner, familie, og medstudenter.
Eksperimentene våre viser at vi lykkes med å identifisere mønstre med hensyn til sosial
setting, og at vi klarer å bruke dette til å lage bedre anbefalinger. Systemet har en treff-
sikkerhet på over 70 %, noe som viser anvendbarheten av vår metode.
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Chapter 1
Introduction

In this chapter we give an introduction to some of the basic premises that the rest of
this thesis builds upon. We provide motivation for the work to be done, followed by a
presentation of the problem description along with research goals, scope, and limitations.

1.1 Motivation
Since the Internet saw the light of day, it has become an integral part of our society and
how we lead our lives. Statistics presented by the International Telecommunication Union
(2015) show that in the period 1997 to 2014, the number of worldwide Internet users has
increased from 2 % to 40 % (11 % and 78 % in the developed world). This, added with
the commercialization of the Internet and the digitalization of our society, results in what
we today refer to as Big Data — large pools of data that can be captured, communicated,
aggregated, stored, and analyzed (McKinsey & Company, 2011).

As we spend more and more of both our professional and private lives connected to
the Internet, the amount of available data is exploding. According to Mervis (2012), 1.2
zettabytes of new data is generated each year, and recent studies suggest that we use as
much as 6 hours online every day via PCs, laptops, smartphones, and tablets (Mander,
2015). Companies all over the world are collecting vast amounts of data on their cus-
tomers in the hope of being able to improve their user experiences and ultimately increase
their revenues. One would perhaps expect this to be beneficial to everyone, as companies
will be able to target their customers more accurately, and users will have access to more
information. However, this is not the whole truth.

Indeed, in the era of Big Data, it is becoming increasingly difficult for the regular
Internet-user to successfully navigate the sea of information on the World Wide Web ef-
fectively. For example, a user browsing an online movie service does not wish to go
through tens, or perhaps hundreds, of uninteresting movies before finding an acceptable
one. The overwhelming amount of options makes it harder for the user to find exactly
the wanted item, a state termed information overload (Adomavicius & Tuzhilin, 2005)
(see Figure 1.1). This is already a reality in several domains, for example multimedia and

1



Chapter 1. Introduction

tourism. In order for actors in these areas to be successful and competitive, they need
their users to be satisfied with their services. Fueled by this need to combat information
overload, recent years have witnessed an increase of research in the area of recommender
systems (Resnick & Varian, 1997).

Figure 1.1: Calvin and Hobbes’ take on information overload (Watterson, 2005).

Recommender systems are software tools that aim at helping their users to make the
best choice within a certain domain. Some recommender systems are personalized, mean-
ing that different users or user groups receive diverse recommendations, while others are
non-personalized. An example of the former is the system employed in the online book-
store Amazon1, where each user sees a personalized store based on their interests (Linden,
Smith, & York, 2003). Non-personalized recommendations are much simpler to generate
and typical examples include top ten selections of books and CD’s.

In the field of tourism most people know sites like Expedia2, Hotels.com3, and Tri-
pAdvisor4. These sites all include some form of recommender system to present the user
with popular products and good deals, but currently they do not provide the user with truly
personalized recommendations. Rather than seeing the user as an individual with its own
interests, they assume that all users are similar. A reason for this is the inherent complexity
of items within this domain. People’s opinions on items such as hotels and restaurants are
dependent on a large number of factors, making it hard to offer good personal recommen-
dations.

Some reasons on why established recommendation techniques cannot be directly ap-
plied to the tourism domain are mentioned by Felfernig, Gordea, Jannach, Teppan, and
Zanker (2006). Collaborative filtering is a widely used approach in recommender systems,
but works best when there exists a broad user community and each user has already rated
a significant number of items. Given the fact that travel planning activities are notice-
ably less common than for example buying a book or watching a movie, and the items
themselves may have a far more complex structure, it is difficult to establish reasonable
user profiles. In addition, a single trip arrangement may consist of several, independently
configurable services. Typically only pre-defined packages are available online, for ex-
ample ”all-inclusive” or ”flight and hotel”. There is also the concept of context (Anand

1Amazon: www.amazon.com
2Expedia: www.expedia.com
3Hotels.com: www.hotels.com
4TripAdvisor: www.tripadvisor.com
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1.2 Problem description

& Mobasher, 2007), or what situation the user is in when requesting recommendations.
Users interact with systems within a particular context, and ratings for an item in one con-
text may be completely different in another. Consider for example a male user going to a
sports bar with a group of friends versus going with a date. It is likely that the user would
rate the bar higher in the first scenario.

A successful recommender system in such a complex domain could make a big differ-
ence in the way we plan vacations and reduce the amount of resources needed.

1.2 Problem description
Based on the information provided in the previous section, we make the following obser-
vation: Recommender systems have been successfully introduced in many systems across
a range of domains, but they have yet to make a breakthrough in complex areas such as
tourism and gastronomy.

People travel more than ever and according to a survey done by Gesellschaft für Kon-
sumforschung (2014), around 90 % of travel bookings today involve going online. When
in a new country or location people tend to make use of the Internet for tips on what to do
or where to go, and recommender systems play a huge part in this process. In view of this,
we can see that a working recommender system in tourism could have a significant impact
on the industry. Thus, we formulate the main research question for this thesis as follows:

How can we build an intelligent, personalized recommender system that works
in the touristic domain by making use of established recommendation tech-
niques?

To reach a conclusion regarding this main question, it is helpful to first split it into several
smaller problems that will be addressed. The idea is that the individual solutions to each of
these subquestions can be put together to form a complete solution to the main question.

RQ1: What challenges are there, and what methods have been developed to meet
them?

RQ2: What kind of systems already exist, and what are their strengths and short-
comings?

RQ3: How can we find and use data to describe the items to be recommended?

RQ4: How can we identify the user’s situation and use it to improve recommenda-
tions?

1.3 Scope and limitations
Tourism is a big and complex domain, and due to the time constraints for this work, we
have to narrow the scope down to a more manageable size. Going out for a meal at a
restaurant is very common when being a tourist, thus we consider restaurant recommen-
dation to be a proper subset of touristic recommendation. Choosing a restaurant to eat

3
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at, whether it is an important dinner with business associates, or simply a casual dinner
with friends and family, is a familiar situation for most people. Sometimes the amount of
variables to consider can be quite large and the decision-making process can quickly lay
claim to valuable time, time perhaps better spent on other affairs.

We stress that even though restaurant recommendation is a small part of the tourism
domain, we do not believe it to be an oversimplification of the original problem statement.
Restaurants are complex items requiring complex user profiles, and it is not something the
average person uses every day. The problems with touristic recommendation mentioned
in Section 1.1 still very much apply, and just like people travelling more than ever, the
culture of going out for food is increasing day by day. This has contributed to the fact that
restaurant recommendation is currently an important research field.

The focus of the work described in this thesis is on the recommendation of restaurants,
and how to handle a cold start system. A cold start is the term used to describe a sys-
tem in its start-phase where it is difficult to make recommendations due to lack of data.
Furthermore, we examine the possibility of including contextual information in restaurant
recommendations. We survey the field of recommender systems and how they are ap-
plied with regards to restaurants. Finally, we design and implement our own system called
RestRec, and we gather data with the purpose of testing the system. The results of this
process are analyzed and explained.

For simplicity, only restaurants in New York City are considered. The data collected
for the testing phase is provided by persons in the local community and mostly students.
As a consequence of this we will not be able to test the system for various demographic
groups. Text analysis and sentiment analysis of for example textual reviews will not be
done.

1.4 Thesis structure
The rest of this thesis is organized as follows:

In Chapter 2 we give an introduction to the field of recommender systems and the
theory that lies beneath. The cold start problem is introduced, and much of what is written
here will be brought up in later chapters.

Chapter 3 is a study of related work and current state-of-the-art within recommender
systems. Projects, research, and solutions that are of importance to the work described in
this thesis are presented and explained.

Chapter 4 introduces the RestRec system. Architecture and communication between
the different components are expounded, design and technological choices are justified,
and the data domain is explained.

In Chapter 5 we evaluate the system by verifying that it provides sound recommenda-
tions. The data is examined and various statistics are shown and explained. Furthermore,
we discuss our findings in relation to the research questions described in Chapter 1.

Finally, Chapter 6 forms the conclusion of the work described in this thesis, along with
suggestions for possible future work.
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Chapter 2
Background

This chapter will go into more detail on how recommender systems work. We begin in
Section 2.1 by presenting some of the reasons as to why one would want to implement
these systems. Sections 2.2 and 2.3 introduce similarity models and classification. These
are core concepts and vital to any working recommender system. In Sections 2.4 and 2.5
we describe how feedback from the users and contextual information can be used to im-
prove future recommendations. Next, in Section 2.6, we introduce some of the challenges
related to recommender systems. Finally, in Section 2.7, we present various methods of
evaluating recommender systems.

2.1 Recommender systems
Recommender Systems (RSs) are software tools for providing a user with suggestions on
how to solve a specific problem (Lops, de Gemmis, & Semeraro, 2011). They help users
deal with information overload, and have become an important field of research since they
were introduced in the early 90s (Goldberg, Nichols, Oki, & Terry, 1992). A few examples
of what RSs can help us with are to decide what music to listen to, movies to watch, news
articles to read, items to buy, and what to eat. An item in the context of RSs refer to what
the system recommends to users.

Most RSs focus on the recommendation of items within a specific domain and their
implementations are geared and customized towards being as useful as possible for those
items. They are mainly directed towards users that are not familiar with or have insufficient
knowledge about the type of items being recommended to make an informed decision.

In addition to being useful for consumers, Lops et al. (2011) list several reasons as to
why service providers may want to implement these systems:

• Increase sales. This is perhaps the most obvious reason. When the system gets to
know the user, it can recommend more specific items, thus increasing the chance of
the user buying.
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• Increase diversity. The system can recommend items that the user has not previously
looked into, but is likely to be interested in.

• Increase satisfaction. A well designed system can affect the user experience by
providing relevant and interesting suggestions.

• Better understand what customers want. The service provider may decide to use
the acquired user information for other purposes, like improving the management of
the production. For instance, in the travel domain the management can advertise a
specific region to a new group of users.

When implementing an RS, there are a few different options to choose from with re-
gards to exactly how the recommendations are made. Most of today’s systems employ
content-based filtering or collaborative filtering, or even a mixture of the two, resulting in
what we call hybrid systems.

2.1.1 Content-based filtering
In content-based filtering (CBF) both item and user profile are described by a set of at-
tributes, and the recommended items are ranked based on how similar they are to the
user’s attribute profile (Lops et al., 2011). This type of RS is very popular due to its sim-
plicity, and it can be used to recommend items such as websites, music, movies, books,
restaurants and hotels.

The steps one has to consider when building a content-based system are the following
(assuming the designer has access the data needed):

1. Building the item profile of a set of attributes describing the items to be recom-
mended.

2. Building the user profile using the same set of attributes.

3. Devising a measure to compute the similarity between user and item.

4. Ranking the items with respect to similarity, and provide them to the user.

5. Devising a method for refining the user profile based on feedback.

Due to this method being based solely on content, it has several desirable properties
such as good scalability, that is the system works well independent of how many users
there are in the system. Furthermore, it works well for predicting items that are new to the
system, as the only thing needed is to calculate the similarity between the item and the user
profile. This presupposes that the item profile is already built. CBF is easy to understand
and the user can easily comprehend why a specific item is recommended, making the
system more trustworthy to the user.

On the other hand, there are some drawbacks. As a consequence of the recommenda-
tions being based exclusively on the user’s profile, they may become overspecialized. For
example if a user has liked several movies of the same movie series, the system will lean
towards recommending the rest of the movies from that series and nothing else. This is an
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example where there is too little variation in the output of the system, and the recommen-
dations become boring. Another drawback is the difficulty of building the item profile. To
extract the features of an item and get all the different aspects can be a demanding task.
For example when constructing an item profile for a website it is difficult to represent the
user experience or the aesthetic details, which are essential attributes to consider when
rating websites.

2.1.2 Collaborative filtering
Collaborative filtering (CF) is fundamentally different from CBF (Balabanović & Shoham,
1997). Instead of creating recommendations based on the similarity between user and item,
they recommend items that users of similar preferences have rated favorably in the past.
There are three steps to this process of recommending:

1. Users are clustered based on their user profiles.

2. A ranked list of the most popular items in the cluster is made.

3. The top item that the user has not seen before is recommended to the user.

The main advantage of CF is that it does not need to know anything about the items in
order to make recommendations. Recommendations are based exclusively on the similar-
ities between users, meaning that it is possible to recommend very complex items.

However, the lack of content information can be a disadvantage. Consider for example
a travel website recommender where one user likes Expedia and another user likes Tri-
pAdvisor. The system will not cluster those users in the same group even though Expedia
and TripAdvisor are very similar items. A pure CF system will only group users if they
have rated some of the same items. Another disadvantage with this method is if there is a
user with a rare taste of items compared to the other users in the system. This will result
in recommending unsuitable items for that user since it is badly clustered. Lastly, there
is the problem of introducing new items in the database. There is no way a new item can
be recommended to a user until another user has rated it. This is known as the cold start
problem which we will explain in more detail later.

2.1.3 Hybrid solutions
Pure CF is able to solve all of the problems related to CBF. By making use of other users’
ratings, we can deal with any kind of items and recommend items dissimilar to those seen
in the past. Similarly, by doing content analysis we can deal with the problems specific to
CF mentioned earlier.

This brings us to the concept of hybrid RSs, systems that combine multiple techniques
together to achieve some synergy between them (Burke, 2002). It is for example very
popular to combine collaborative and content-based techniques as they complement each
other very well. A system like this can base the recommendations on both the individual
user’s profile, and groups of users with similar rating history. In special cases, the system
can even swap between collaborative recommending and content-based recommending. If
there are only one user in the system it can use content-based methods, and when the RS
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fails to extract distinguishing features from items, it falls back on collaborative filtering.
Burke (2002) has identified seven types of hybridization methods:

• Weighted - Outputs from the chosen techniques (in the form of scores or votes) are
combined with different degrees of importance to offer final recommendation.

• Switching - The type of situation affect which technique the system uses.

• Mixed - Recommendations from several techniques are presented simultaneously to
the user.

• Feature combination - Features from different recommendation sources are com-
bined as input to a single technique.

• Feature augmentation - The output from one technique is used as an input feature to
another.

• Cascade - One recommender refines the recommendations given by an other.

• Meta-level - The model learned by one recommender is used as input to an other.

2.1.4 Other methods
Two other techniques of creating RSs worth mentioning are demographic systems and
knowledge-based systems. They are not as widely used as CF or CBF, but they are still
useful and are more often than not included in hybrid RSs.

Demographic systems

A demographic RS rely on demographic information about users, such as gender, age,
geographical location, marital status, occupation and income, etc (Krulwich, 1997). Given
this input, it is possible to calculate the set of demographic clusters to which the user are
most likely to belong, and have the data available for the resulting clusters serve as the
basis for the user profile. Recommendations are then done for each cluster, like in CF.

Knowledge-based systems

Knowledge-based RSs use the features of the items and knowledge about how these meet
the user’s needs to try to match an item to the the user’s need (Burke, 2000). This knowl-
edge will sometimes contain explicit functional knowledge about how certain product fea-
tures meet user needs. For example when a user buys a camera in an online store, the
system knows that the user may be interested in a camera bag as well.

2.2 Similarity models
In order for systems who employ CF or CBF to work, it is necessary to be able to calculate
various similarities between users and items. In information retrieval systems, similarity
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models are used to find relevant documents based on a query. RSs carry out the same ac-
tion, except with more variations in relation to similarity models. A query is not restricted
to being either a user profile or an item, and the same goes for the documents. The selected
approach depends on the purpose and implementation of the specific system. For example
in collaborative systems, we may be interested in finding users that are similar to a specific
user. And in content-based systems, we may want to find items that are similar to another
item.

Consider U the set of users where u 2 U, and D the set of items where d 2 D. The
similarities we may be interested in are sim(u, d), sim(u

i

, u

j

), and sim(d
i

, d

j

). There
are a variety of ways to calculate these, but the most popular approaches are Euclidean
distance, Pearson correlation, and cosine similarity (Adomavicius & Tuzhilin, 2005).

Euclidean distance This is the simplest way of calculating similarity between two data
points. It sums up the distance between every pair of attributes in the data x and y. In
Equation 2.1, n is the dimensionality of the data points.

sim(x, y) =

rX
n

k=1
(x

k

� y

k

)2 (2.1)

Pearson correlation Given the covariance ⌃(x,y) of data points x and y, and their stan-
dard deviations �

x

and �

y

, we compute the Pearson correlation as:

sim(x, y) =
⌃(x, y)

�

x

⇥ �

y

(2.2)

The Pearson correlation is a measure of the linear correlation between two variables, giving
a value in the range of [-1,1] where 1 is total correlation and -1 is total negative correlation.

Cosine similarity In the cosine-based approach (Equation. 2.3) the two items x and y
are treated as two vectors in n-dimensional space. The similarity between x and y can then
be measured by calculating the cosine of the angle between them.

sim(x, y) =
x · y

||x||||y|| (2.3)

The cosine similarity also gives a value in the range [-1,1] and can be interpreted the same
way as the Pearson correlation in Equation 2.2.

Weighting Traditionally, these are the most used methods in RSs, but there are many
different variations on how to weight the terms. Consider a system where we want to
predict the rating r

c,s

for user c and item s. This value is usually computed as an aggregate
of the ratings of some other group of users, usually the N most similar. The simplest is

r

c,s

=
1

N

X

ĉ2C

r

ĉ,s

(2.4)
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where C is the set of users that have rated item s. Intuitively, this equation translates into
”the predicted rating r of user c for item s is the average rating of some set of other users
for item s”.

However, Equation 2.4 has an obvious limitation: it places the same amount of impor-
tance on every user, something that is not always desirable. We can account for this by
including a similarity measure:

r

c,s

= k

X

ĉ2C

sim(c, ĉ)⇥ r

ĉ,s

(2.5)

One problem with using the weighted sum in Equation 2.5 is that users may be using the
rating scale differently. The adjusted weighted sum

r

c,s

= r

c

+ k

X

ĉ2C

sim(c, ĉ)⇥ (r
ĉ,s

� r

ĉ

) (2.6)

tackles this by making use of the user’s deviation from his or hers average rating, instead
of using the absolute values of ratings. In both Equation 2.5 and Equation 2.6 k serves as
a normalizing factor.

2.3 Classification
Classification is a machine learning technique to predict group membership for data in-
stances. In other words, it is a mapping between feature space and label space. Without
these algorithms we would not be able to predict whether a user would like a certain item
or not, and are consequently a key component to RSs.

Classification has two distinct meanings. We may be given a set of observations with
the aim of establishing the existence of classes or clusters in the data. Or we may know for
certain that there are so many classes, and the aim is to establish a rule whereby we can
classify a new observation into one of the existing classes. The former type is known as
unsupervised learning (or clustering) (Jain, Murty, & Flynn, 1999), the latter as supervised
learning (Michie, Spiegelhalter, & Taylor, 1994). For example in a content-based RS,
a supervised method can be used to calculate an estimate of the probability that a user
will like an item. This probability can then be used to sort a list of recommendations.
In a collaborative system, clustering can be used to form groups of users with similar
preferences.

The following section will go through a few popular classification algorithms, both
supervised and unsupervised.

2.3.1 Naive Bayes
Bayesian classifiers are supervised and based on the definition of conditional probability
and Bayes theorem (Duda & Hart, 1973). Given a record R with N features, the goal is to
predict the class C by finding the value C that maximizes the probability of the class given
the data. When applying Bayes theorem, we get

P (C|R1, R2, ..., RN

) = P (R1, R2, ..., RN

|C)P (C) (2.7)
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The naive Bayes classifier makes strong independence assumptions between the features.
For example, a fruit may be considered to be a banana if it is yellow, bent, and approxi-
mately 20 cm long. The classifier considers each of these features to contribute indepen-
dently to the fact that the fruit is indeed a banana, regardless of any correlations between
the features (thus the name naive Bayes). This assumption lets us rewrite the conditional
probability as

P (R1, R2, ..., RN

|C) = P (R1|C)P (R2|C)...P (R
N

|C) (2.8)

Naive Bayes is frequently used due to being fast and easy to implement, even though it
places last or near last in many head-to-head classification papers (Rennie, Shih, Teevan,
& Karger, 2003). The biggest drawback of naive Bayes is the assumption that features are
independent, and in many domains this is simply not true. For example in text classifica-
tion, a word is not independent of the word in front of it.

2.3.2 Support vector machines
Support Vector Machines (SVM) are supervised learning models that analyze and recog-
nize patterns (Hearst, Dumais, Osman, Platt, & Scholkopf, 1998). Unlike naive Bayes,
SVM is a non-probabilistic classifier. Given a set of training data belonging to one of two
categories, the SVM builds a model that assigns new input to one category or the other. In
other words, it is a binary classifier.

In its simplest, linear form, an SVM is a hyperplane that separates a set of positive
examples from a set of negative examples with maximum margin. See Figure 2.1 for an
illustration of the concept. The formula for the output is

u = ~w · ~x� b (2.9)

where ~w is the normal vector to the hyperplane and ~x is the input features vector. We then
want to maximize the following margin, m:

m =
1

||~w|| (2.10)

SVM have increased in popularity in recent years and they have been shown empir-
ically to perform well on problems such as handwritten character recognition (Cortes &
Vapnik, 1995), face detection (Osuna, Freund, & Girosit, 1997), and text categorization
(Joachims, 1998).

2.3.3 k-Nearest neighbor
This algorithm works by memorizing the training data and using them to predict the label
of unseen cases. Given a point to be classified, kNN finds the k closest cases from the
training set and assigns it the predominant label amongst the neighbors (Cover & Hart,
1967) (see Figure 2.2). Closeness can for example be calculated by use of similarity
models as shown in Section 2.2. The kNN classifier is amongst the simplest of all machine
learning algorithms, and the most challenging part is how to determine the value of k. If it
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Figure 2.1: Illustration of SVM (“Illustration of SVM,” n.d.).

Figure 2.2: Illustration of kNN with k=3. As 2 out of the 3 closest cases are labeled B, the new case
is labeled B (“Illustration of KNN,” n.d.).

is too low the classifier will be sensitive to noise points, but if it is too big the neighborhood
might include too many points from other classes. kNN is what we call a lazy learner,
meaning that it does not construct a model on which to base future classifications. Every
time a new point is to be classified it has to calculate the k nearest neighbors, implying that
kNN does not scale well. This algorithm is frequently used in CF due to its simplicity and
conceptual relation to CF.

2.3.4 k-Means
k-Means is an unsupervised classification algorithm, meaning that it tries to assign items
to a group such that items within a group is more similar than items in another group (Jain
et al., 1999). Simply put, the algorithm aims to partition n observations into k clusters in
which each observation belong to the cluster with the nearest mean.

k-Means is an iterative algorithm. It begins by randomly selecting k centroids which is
to be the centers of the clusters, and then assigns each item to the centroid that is closest
to it. In every step it tries to minimize the distance from each item to its corresponding
centroid as shown in Equation 2.11. This process is continued until a convergence criterion
is met, for example until no item changes cluster or the squared error within each cluster
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is sufficiently low.

E =
X

k

X

n2S

d(n, k) (2.11)

The k-Means algorithm is popular because it is easy to implement, and its time com-
plexity is O(n), where n is the number of items. Clustering is sure to increase efficiency
of the RS, but it is unlikely to help improve accuracy and it has several shortcomings.
For instance, the user needs to select an appropriate k, indicating the need for some prior
knowledge of the data. It is also very sensitive to the initial placings of the centroids. An
example of a result of clustering is shown in Figure 2.3.

Figure 2.3: The result of a cluster analysis shown as the coloring of the squares into three clusters
(“The result of a cluster analysis,” n.d.).

2.4 Feedback
Feedback is an important part of any good RS. In order to make useful and reliable rec-
ommendations to the user, the system must learn to know the user. This is achieved by
observing and storing how the user interacts with the system and the items. All feedback
can be stored in the recommender database and used for generating new recommendations
in the next session.

There are two different techniques for recording a user’s feedback: explicit feedback
and implicit feedback (Lops et al., 2011). Furthermore, it is possible to divide between
two kinds of feedback: positive feedback (inferring features liked by the user) and negative
feedback (inferring features the user does not like). Most systems implement both of these
methods. Table 2.1 shows a few examples of common types of feedback.

2.4.1 Explicit feedback
When a system requires the user to explicitly evaluate items, it makes use of what we call
explicit feedback. There are mainly three different kinds of explicit feedback:
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Table 2.1: Examples of explicit and implicit feedback.

Explicit feedback Implicit feedback
Rating Dwell time
Like/dislike Bookmarking
Review Mouse input/keyboard input

• Binary - items are classified by a binary scale, as either relevant or non-relevant. A
well-known example of this is the Facebook1 like/dislike button.

• Ratings - a discrete numeric scale is used to rank items. Examples of this can be to
have the user rate items on a scale from one to 10, roll a dice, or give an amount of
“stars”. Alternatively, the numeric scale may represent symbolic ratings. In ques-
tionnaires, each response have a numeric value attached to them.

• Text comments - text comments are widely used amongst e-commerce providers.
They enable users to write textual comments about items, thus helping new users in
the decision-making process. They contain much information, but are hard for an
automated system to process. Advanced sentiment analysis software is needed to
analyse whether the comment is positive or negative towards the item, and to what
degree.

These methods are easy to implement, but explicit feedback generally place an increased
cognitive load on the user, and may not even be able to capture the user’s feelings about
an item. Another catch is that most users do not bother with providing explicit feedback
unless they have to, making it hard for the system to provide accurate recommendations.

2.4.2 Implicit feedback
Implicit feedback does not require any active user involvement. The way the user interacts
with the system reveals much about the user’s preferences, and the system can take advan-
tage of this. Implicit feedback works by assigning a score to different user actions on an
item, such as saving/deleting the item, reading time, and mouse movements. Purchase his-
tory, browsing history, and search patterns are also important types of implicit feedback.
For example if a user listens to many songs by the same artist, the user probably likes that
artist.

This kind of feedback is more prone to noise because the users are generally unaware
of the process taking place, but over time the system learns more and more about the user’s
true preferences.

2.5 Contextual recommendation
Lieberman and Selker (2000) define context as ”everything that affects the computation
except its explicit input and output”. Should for example a travel RS provide the same

1Facebook: www.facebook.com
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recommendations in both winter and summer? And should a restaurant RS recommend
the same restaurant to both groups and single individuals?

Context has been largely ignored in research into RSs (Anand & Mobasher, 2007).
Most existing approaches focus on recommending the most relevant items to users without
taking into account any additional contextual information, such as time, location, or the
company of other people (Lops et al., 2011). They ignore the notion of ”situated actions”,
the fact that the user may interact with the system within a particular context and ratings
within one context may be completely different from ratings within another context.

Consider a user that buys and rates books of science fiction for himself, work-related
books on computer science topics, and books for his children. Combining this user’s
interest in books into a single representation that aggregates all of these genres is clearly
a bad idea, yet this is what most systems will do. Any children’s books the user may
have bought should not have an impact on recommendations of computer related books.
The ideal contextual RS would therefore be able to reliably label each user action with a
context.

Context-aware RSs (CARS) try to address these problems. They model and predict user
tastes and preferences by incorporating available contextual information into the recom-
mendation process as explicit additional categories of data. This contextual information
can be obtained in a number of ways, including:

• Explicitly - The user explicitly provides contextual data by answering direct ques-
tions or eliciting this information through other means. For example, a website may
obtain contextual information by asking the user to fill out a form.

• Implicitly - Context is obtained implicitly from the data or the environment. For
example, the location of the user can be obtained through the GPS device in the
mobile phone, or temporal information can be obtained from the timestamp of a
transaction. The advantage of this approach is that nothing needs to be done in these
cases in terms of interacting with the user.

• Inferred - Contextual information can be inferred by use of statistical or data mining
methods. For example, the household identity of a person flipping through the TV
channels (husband, wife, son, etc.) may not be explicitly known to a cable TV
company, but it can be inferred by observing the TV programs watched and the
channels visited by use of data mining methods.

2.6 Challenges

As with any other research field, there are many and various challenges to consider when
building an RS. Some have been there from the start, while others are emerging as the
technology improves. In this section we will introduce two of the more prominent chal-
lenges, namely that of cold start and scalability. We also mention two emerging challenges:
privacy and proactive recommendations.
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2.6.1 Cold start
A big problem for RSs is the so-called cold start problem, and it pertains to the sparsity
of information (Lika, Kolomvatsos, & Hadjiefthymiades, 2014) about users and items. To
adapt to a user, the system needs to know what the user liked in the past. However, when a
new user joins the system, nothing is known about the user, thus it is not possible to make
recommendations.

Systems based on CF are built on community preferences, such as ratings. Conse-
quently, if an item does not have any ratings it will never be recommended to anyone. This
problem occurs mostly when the user population is small compared to the item base or it
is a new item in the system. It is also problematic to do proper clustering when the amount
of ratings in general are low, and bad clustering leads to bad recommendations.

RS designers tend to solve this problem by either getting users to rate items at the start,
or by getting them to answer some demographic questions (and then using stereotypes as
a starting point, for example elderly people like classical music).

2.6.2 Scalability
The biggest problem for scaling an RS is the amount of operations involved in computing
distances. One possible way to solve this is by use of clustering algorithms, or we can
reduce the dimensionality of the data.

It is common in RSs to have datasets that are both high-dimensional and sparse (Lops
et al., 2011), so it is essential to be able to reduce the dimensionality of the data. This is
necessary for clustering algorithms because of noise in the features, and the computational
complexity associated with high dimensionality. It is also helpful to reduce the dimensions
when the feature vectors contain a limited number of values for each object and there is
much density between each value. Most of the values will be zero when for example
describing the interest relation between an item and a user because most users have just
made up their mind about a very small portion of all the objects.

Two popular dimensionality reduction methods are Principal Component Analysis
(PCA) (Jolliffe, 2002) and Singular Value Decomposition (SVD) (Golub & Reinsch, 1970).
These methods map users and items into a dense and reduced latent space that captures
their most prominent features. They provide better recommendations than traditional
neighborhood methods (Herlocker, Konstan, Borchers, & Riedl, 1999) as they reduce the
level of sparsity and improve scalability (Koren, 2008).

Principal Component Analysis

This is a classical statistical method to find patterns in high dimensionality datasets, such
as the ones used in RSs. The method points out the covariance structure of the set of
variables in the data and identifies the principal directions in which the data varies. This
allows us to obtain an ordered list of components that account for the largest amount of
variance in the data. The dimensions can then be reduced by neglecting those components
with a small contribution to the variance.

The variance is computed by finding the eigenvectors and the corresponding eigenval-
ues to each dimension. The dimensions with the highest eigenvalues are the dimensions
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Figure 2.4: PCA applied to a Gaussian distribution. The two vectors are the principal components
of the data (“PCA applied to a Gaussian distribution,” n.d.).

with most variance and thus are most important (see Figure 2.4).
The positive aspect with PCA is that it is powerful and can be used on very large

datasets. On the other hand, non-linear structures are hard to model with PCA, and the
original data also needs to be drawn from a Gaussian distribution. When this assumption
does not hold true, there is no warranty that the principal components are meaningful.

Singular Value Decomposition

This method is very similar to PCA in the way that both methods seek to find the princi-
pal components. SVD, however, uses a slightly different approach. Instead of using the
eigenvalues to compute the variance in each dimension, it uses the singular value for each
dimension. The variances are given by squaring the singular values. The singular values
can be seen as the square roots of the eigenvalues of the ”squared matrix” AA

T .
The advantage of this method is that it computes optimal dimension reduction. There

are also incremental algorithms to compute an approximated decomposition. In that way,
when new users or ratings arise in the system, it does not need to compute the decom-
position from scratch. The drawback is that it is computationally hard and is sensitive to
outliers.

2.6.3 Emerging challenges
Most RSs developed so far follow a ”pull” model, meaning that the user has to explicitly
request recommendations. However, in the modern society where computers are ubiqui-
tous and smartphones are everywhere, it seems natural to imagine that an RS should be
able to detect implicit requests, resulting in proactive RSs (Yeung & Yang, 2010). The
challenge then consists of not only predicting what to recommend, but also when to rec-
ommend it.
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Another challenge is that of privacy. Privacy and security are increasing concerns
regarding RSs (Lam, Frankowski, & Riedl, 2006). The very fundament of the technology
is based on knowing as much as possible about the users. In the attempt to increase the
quality of these systems, they collect as much user data as possible. This will clearly have
a negative impact on the privacy of the users, and they may start to feel that the system
knows too much about them. Therefore, it is important to address this issue in the research
community. There is need for systems that sensibly use user data, while ensuring that
malicious users cannot get their hands on private data.

2.7 Evaluation
How to evaluate an RS is extensively studied in the literature (Herlocker, Konstan, Ter-
veen, & Riedl, 2004). It is essential to know the performance of the system after it is
implemented in order to find out if the work has been successful or not. There are many
properties that can be considered when evaluating an RS, and in this section we introduce
the most common evaluation methods. We list and explain the principal properties of an
RS.

2.7.1 Offline evaluation
This type of evaluation is done by using pre-collected data of user behavior, for example
user ratings. It is assumed that the user behavior after the system is deployed is the same
as in the pre-collected dataset. Experiments with this dataset are easy to carry out because
it does not require any interaction with any user and we can then evaluate an RS with very
low cost.

The negative factor of this is that the dataset can be too narrow and not see all the
aspects of the system as a whole. This type of evaluation will in most cases just calculate
the prediction score of the system. With that in mind, one can see that this method is fit to
quickly determine if a system performs good or not with a low cost. In order to do these
evaluations it is necessary to simulate the behavior a user has online where the user gives
feedback on recommendations.

2.7.2 Online evaluation
Online evaluation, also known as A/B testing, tries to measure the change in user behavior
when the user interacts with different RSs using different settings. It is then easier to
evaluate the system against the others since they are tested in the same conditions. In
online evaluation the system is used by real users performing real tasks. This method can
be used to see how the user behavior is affected by the different property changes done in
the evaluating process.

Many real world systems employ an online testing system where multiple algorithms
can be compared. Typically, such systems redirect a small percentage of the traffic to
different alternative recommendation engines, and record the users interactions with the
different systems.
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2.7.3 User studies
A user study is conducted by making test subjects perform various tasks requiring an in-
teraction with the RS. The subjects will be asked questions about their experiences during
the tasks, and quantitative measurements will be collected. With the questions asked the
system can be evaluated on properties that are difficult to measure, such as user experience.

Unlike offline evaluation methods, user studies give the opportunity to observe the
user in action. In that way, this method does not need to do any assumptions about user
behavior. It will also be collected qualitative information about the behavior of the user,
in difference to the two other methods. The drawback of this method is that it is very
expensive to conduct. To get a reliable evaluation many subjects need to do several tasks
repeatedly, resulting in a costly affair.

2.7.4 The principal properties of Recommender Systems
There are a range of properties to consider when evaluating an RS. As different RSs try
to meet different needs, they have to be built with focus on different properties, some of
which are trade-offs for one another. For example accuracy is at trade-off when the system
wants to focus on diversity.

User preference This property is the most basic one. If a user prefer one system over
another, it can be said that the preferred system is better. This property does not need any
measurements and it is easy for a test subject to have an opinion.

Prediction accuracy There are different types of prediction accuracy. In ratings predic-
tion accuracy, each item in the catalog is given a predicted rating. After the user has given
these items their ”true” scores, the accuracy can be measured based on how similar the
predicted rating was to the true rating. The most common metric used for this is the Root
Mean Squared Error (RMSE).

Usage prediction measures how many of the recommendations that are successful.
This can be done by computing the precision and recall of the recommendations. In order
to elaborate on precision and recall, some terms need to be explained:

• True Positives (TP). The items recommended to a user that the user classifies as
interesting.

• True Negatives (TN). The items not recommended to a user that the user classifies
as not interesting.

• False Positives (FP). The items recommended to a user that the user classifies as not
interesting.

• False Negatives (FN). The items not recommended to a user that the user classifies
as interesting.

The simplest measure of accuracy is the ratio between the correctly predicted instances
and the total number of instances as defined by Equation 2.12.
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accuracy =
TP + TN

TP + TN + FP + FN

(2.12)

To get a more informative measure of accuracy, precision and recall is used. Precision
is defined in Equation 2.13 and is the measure of how many of the predicted items that
were successful.

P =
TP

TP + FP

(2.13)

Recall is a measure of how good the system is to recommend the items that the user is
interested in. It is defined in Equation 2.14.

R =
TP

TP + FN

(2.14)

Coverage This term can have several meanings, but the most common is the Item Space
Coverage. The simplest measure of this is the percentage of all items that may be predicted
by the system. Another one is the User Space Coverage. This is the percentage of the users
that the system can recommend items to.

Serendipity This is a measure of how surprising the successful recommendations are.
It is important for the user to have good prediction accuracy, but it must not come at the
cost of novelty. Serendipity is a property that favor the predictions that can seem a bit
surprising. This property needs to be be balanced with the accuracy of the system. If a
system has good serendipity, it is more likely to successfully recommend more diverse
items to the user.

Diversity This is the opposite of similarity. It is not very useful for a user to only get rec-
ommended similar items all the time. The property is often measured by using item-item
similarity, and diversity comes at expense of for example accuracy. When the diversity
goes up, the system is less likely to recommend items the user is fond of, thus decreasing
accuracy. The cold start problem is highly correlated to the diversity property of an RS.

Robustness Robustness can be seen as the ability of the system to handle fake informa-
tion. Considering how many people rely on RSs, it can be tempting to influence the system
to predict items that comes one to favor. For example a rating of an item can be increased
by making several fake users rate the item favorably. It is, however, unrealistic to create a
system that is immune to these type of attacks. Robustness can also be seen as the stability
of the system under extreme conditions, such as many requests to the system at the same
time.
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Adaptivity This property describes how well the system adapts to quick changes in the
item set and on trends in the interest of these items. Another type of adaptivity is how
fast the user preferences adapt to new user ratings. If a user history only contains comedy
movies and the user suddenly rate an action movie high, the user preferences is expected
to change.

Scalability It is essential for an RS to work well with large datasets. Ideally, the al-
gorithms would perform well on both small and large sets of items, but even though the
algorithms work well on a small dataset it does not necessarily mean they are free of flaws
on a big one. Often the RSs trade properties such as accuracy or coverage, to get rapid
results on large datasets. Dimensionality reduction will lead to faster computation of rec-
ommendations on very large datasets while not sacrificing too much accuracy.

The scalability of an RS can be measured by observing the speed and resource con-
sumption when testing the system on different sized datasets.
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Chapter 3
Related work

In this chapter, previous work and research into the area of RSs will be presented in more
detail in order to place the work of this thesis in relation to existing solutions and to find
comparable results. We start by introducing a set of existing solutions in Section 3.1,
before we in Section 3.2 present research on the cold start problem, and how external
effects can impact recommendations. Section 3.3 is a conclusion where we compare the
introduced systems to each other and state their differences.

3.1 Related systems
There exist many systems that seek to provide a user with recommendations about restau-
rants or tourism in general. As we cannot hope to cover them all, we have chosen a set
of five systems that we will explain in more detail. The systems are called R-Cube, I’m
feeling LoCo, REJA, OpenTable, and TripBuilder. We chose these systems to show some
of the various approaches that are possible and to give a broad idea of existing solutions in
both academia and industry.

3.1.1 R-cube
R-cube is a hybrid dialogue system for restaurant recommendation and reservation (Kim &
Banchs, 2014). The authors opted for a dialogue system, as this kind of systems are gaining
popularity nowadays through applications like SIRI1, Google Now2, and Watson3. The
three main factors contributing to this trend are the increased quality of speech recognition
systems, the increasing availability of data for supporting data-driven applications and
technologies, and the ubiquitous accessibility to information and services from mobile
platforms.

1Apple Siri: http://www.apple.com/ios/siri/
2Google Now: https://www.google.com/landing/now/
3IBM Watson: http://www.ibm.com/smarterplanet/us/en/ibmwatson/
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The proposed system, R-cube, is composed by a combination of three subsystems: a
restaurant recommendation sub-system, in which the system collects information about
the user’s preferences in order to shortlist restaurant options; a restaurant selection sub-
system, in which the user can ask questions about the shortlisted venues with the objective
of making a final selection; and a booking sub-system, in which the system collects the
required additional information to complete the restaurant booking process.

The restaurant recommendation sub-system considers the user’s explicit preferences
through five variables: type of food, price range, area of city, and restaurant-name. The
system will keep asking the user questions about these variables until it is able to reduce
the list of restaurant candidates to four or less. At this point the system moves on to the
next phase: the restaurant selection sub-system. The user now has the possibility to learn
more about the recommended restaurants through variables such as address, phone num-
ber, general description, reviews, etc. When the user has selected the desired restaurant,
the booking system takes over. In a process equal to the one in the first phase, the user is
asked to provide information about number of guests, booking date, and sitting time. Once
this is done, the reservation is completed and the user receives a booking confirmation.

Each of the sub-systems consists of a sequence of four process levels (see Figure 3.1):
preprocessing, natural language understanding (NLU), dialogue management (DM), and
natural language generation (NLG). To increase robustness of the system, each level has
multiple components based on different approaches. Even though results obtained from
different components at the same level might differ, they are all provided as input for the
next level. In this way, the damages caused by erroneous output from one component can
be diminished.

Figure 3.1: The system architecture for each sub-system in R-cube. Illustration by Kim and Banchs
(2014).

To show that the system does indeed work as intended, a transcription of a real inter-
action between the system and a given user is included towards the end of the paper. For
future work, the authors wish to integrate additional components into the DM and NLG
levels.
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3.1.2 I’m feeling LoCo
I’m feeling LoCo is a location based context-aware RS described by Saiph Savage, Baran-
ski, Elva Chavez, and Höllerer (2012). Research on RSs has paid little attention to the
integration of contextual information, and the systems that do, often require the user to
complete extensive surveys. The motivation for creating this system springs from earlier
research suggesting that when responding to long questionnaires, individuals are more
likely to give identical answers to most or all of the questions. It is clear that a system
which could automatically and accurately infer an individual’s preferences would dramat-
ically boost the user experience.

I’m feeling LoCo is implemented as a mobile application, and aims at presenting more
complete recommendations by considering temporal and spatial information. Instead of
including a survey phase, the system mines a person’s Foursquare4 profile and maps this
data into user preferences. Furthermore, the application automatically infers a user’s cur-
rent mode of transportation and utilizes this information to determine an upper bound for
how far a person would be willing to travel to visit a location. The only explicit input the
user has to provide is what type of venue they are searching for.

To detect the form of transportation (stationary, walking, biking, or driving), the system
employs a decision tree followed by a first-order Hidden Markov Model (HMM). The
HMM helps reducing noise by utilizing temporal knowledge of the previous transportation
mode that was detected. The system will for example not misclassify situations where the
user is driving and slowed down due to traffic or red lights.

User preferences are acquired through Foursquare. The Foursquare application makes
use of the user’s GPS coordinates and returns a list of possible places the user could be
in. Each item on the list has an associated name, category, and relevant tags that describe
the place. The user simply selects the place they are currently in, and the application
will upload this to the user’s profile along with the associated tags. The Foursquare API
then permits the retrieval of all these user check-ins with associated data. This retrieved
information is what constitutes the user model in I’m feeling LoCo. Every time a user
visits a place, its name, category, and tags are added to the user model, which in essence
is a document holding a series of words.

Due to the sparse nature of the data and the wish to be able to recommend places
that have not been visited by other users, a CBF recommendation algorithm is used. The
recommendation process can be explained as follows:

1. The user selects a category for the recommendations. Example categories are ”artsy”,
”nerdy”, and ”hungry”.

2. Given the current location, all places within a certain radius of the user is retrieved.
The radius depends on the user’s mode of transport.

3. The list of places is filtered to only keep those of the selected category, and associ-
ated tags for each of the remaining places are obtained.

4. For each place, a set of words containing the intersection between the tags of the
user and the tags of the particular place is created.

4Foursquare: https://foursquare.com/
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5. The log frequency weight is calculated for each term in a set of words. This is a
measure of how many times a certain term is mentioned in the user’s profile and is
calculated for every set of words.

6. A summation over all the weights for every place is done. This summation repre-
sents the score of a particular place.

7. The K places with highest scores are recommended to the user.

In cases where the user has not provided enough check-ins through Foursquare (cold
start), the authors have included a metric that searches the current city’s wikitravel page for
iconic places or landmarks. These places are then searched for on Foursquare to retrieve
category and address. If the landmark is close to the user and the requested category, it is
suggested to the user.

The system is tested with user studies (see Section 2.7.3) in different US cities (Port-
land, Beaverton, Santa Barbara, and Goleta). All users made positive comments about the
system’s ability to flawlessly detect their current transportation mode. Furthermore, the
authors noted that the Foursquare usage of all participants increased through the testing
period. They believe the users felt motivated to check-in to more places they visited in
order to obtain more precise recommendations.

3.1.3 REJA
REJA (REstaurants of JAén, Spain) is a restaurant RS that hybridize a CF and a knowledge-
based system (Martinez, Rodriguez, & Espinilla, 2009). The main advantage of REJA
is the use of incomplete preference relations in the knowledge-based system in order to
overcome the cold-start problem of the collaborative component.

The collaborative system used by REJA is implemented by using the CF engine CoFE
in combination with a database of restaurants and users. It seems the CoFE project is no
longer maintained as we were not able to find any information about it, thus we cannot say
anything certain about the inner workings of the CF algorithm.

When it comes to dealing with cold start, the authors reach the same conclusion as
Saiph Savage et al. (2012), that requiring the user to explicitly provide information about
their preferences is unlikely to be popular. But unlike Saiph Savage et al. (2012), how-
ever, Martinez et al. (2009) decide to use a knowledge-based approach that require just a
minimal amount of information in order to provide suitable recommendations. It works by
means of a case-based reasoning method as follows:

1. The user selects a restaurant similar to their needs.

2. The system provides three well known restaurants and requires the user to rate them
such that the system can compare them to the selected restaurant.

3. With these three pieces of data the system can create a simple user profile that will
be used to create recommendations.

REJA also provides the user with geographical information via Google Maps as it helps
avoiding textual data overloading. With this, the user can find the restaurant location on
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a map, search for the shortest path, and find popular tourist places (museums, parking
spaces, etc).

3.1.4 OpenTable
OpenTable5 is the world’s leading provider of online restaurant reservations (Das, 2015).
With the capability to recommend over 32 000 restaurants worldwide, they seat more than
17 million diners each month. In addition to the diner-restaurant interaction history they
use click and search data, the metadata of restaurants, as well as insights gleaned from
reviews, together with any contextual information to make meaningful recommendations.

Many of the restaurants have thousands of reviews. By making use of Word2vec6,
these reviews are used to create a vector space with each unique word in the corpus being
assigned a corresponding vector in the space. Word vectors are positioned in the vector
space such that words sharing common contexts in the corpus are located in close proxim-
ity to one another in the space. This enables OpenTable to learn for example what kind of
wine goes with what food, and find synonyms for various words.

Expecting diner reviews to be broadly composed of a handful of themes (such as food,
drinks, ambiance, service, etc.), they also use the reviews for topic modeling (see Fig-
ure 3.2). This helps reveal the unique aspects of each restaurant without having to read the
reviews. In other words, it is possible to identify the top topics for any restaurant.

Figure 3.2: Topic modeling at OpenTable.

3.1.5 TripBuilder
TripBuilder takes as input the target travel destination, the time available for the visit, the
user’s profile, and builds a personalized tour of various Points of Interest (PoIs) (Brilhante,
Macedo, Nardini, Perego, & Renso, 2013). It takes into account both the time needed to
enjoy an attraction, and the time needed to get to the next when calculating the route.

5OpenTable: www.opentable.com
6Word2vec: http://deeplearning4j.org/word2vec
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The knowledge is mined entirely in an unsupervised way from two publicly available
collaborative services: Wikipedia7 and Flickr8. Flickr is used to gather photos and meta-
data from users all over the world, and Wikipedia is used to gather information on PoIs in
a specific city.

More specifically, given the geographic location of a city, all Wikipedia pages related
to an entity within the area is downloaded and considered a PoI. Description, geographic
coordinates, and the set of categories relevant to the PoI is retrieved and stored in a touristic
database. Flickr is used to collect a set of users and metadata of pictures taken within the
city for the given time period. The assumption is that photo albums made by Flickr users
implicitly represent touristic itineraries within the city. A photo is associated with a PoI if
it was taken within a distance of 100 meters of the PoI, and the time needed for visiting
a PoI is assumed to be the time between the first and last picture a user took of the PoI.
Finally, the popularity of each PoI is calculated as the number of distinct users that take at
least one picture of the PoI.

Given the preference vectors for user and PoI, the user-PoI interest is defined as a
combination of user-PoI similarity, and the popularity of the PoI. Similarity is calculated
with the cosine formula.

With the collected data, it is possible to calculate a set of trajectories for the users. A
trajectory is defined as the sequence of PoIs visited consecutively. They now formulate
the TripCover problem: the problem of generating an optimal personalized itinerary given
the tourist’s preferences and time budget. Given a tourist u, PoIs P, trajectories S, and the
user-PoI interest function �, find a subset of S that maximizes total user-PoI interest while
still upholding the user’s time budget (Equation 3.1).

maximize

|S|X

i=1

|P |X

j=1

�(p
j

, u) (3.1)

This is an instance of the Generalized Maximum Coverage problem which is proved to be
NP-hard, so a greedy approximation algorithm is used. The results are promising, showing
that TripBuilder outperforms two strong baselines for all considered metrics.

3.2 Related research
RSs are becoming more and more common in e-commerce and there are much research
dedicated to improve the technology. Every year ACM holds a RSs conference (Rec-
Sys9) with the purpose of bringing together the main international research groups and
companies working on RSs. It has become the most important annual conference for the
presentation and discussion of RSs research, and RecSys2016 even has a workshop on RSs
in tourism10.

In this section we present some research pertaining to the cold start problem, how
external factors can have an influence on reviews, and we do a small case study of one of

7Wikipedia: www.wikipedia.org
8Flickr: www.flickr.com
9RecSys: https://recsys.acm.org/

10Tourism in RecSys2016: http://www.ec.tuwien.ac.at/rectour2016/
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the more sophisticated RSs in existence today, namely the Netflix11 RS.

3.2.1 Cold start
A paper from Princeton University in the U.S. propose a method that combines CF and
CBF to overcome the cold start problem (Wang & Blei, 2011). They wanted to develop
a machine learning algorithm for recommending scientific articles to users in an online
community. Their algorithm uses two types of data: the libraries of articles of the users
of the community, and the content of each article. The goal of the system is to both
recommend older papers that are important to others in the community with similar article
taste, and at the same time recommend new papers that would be relevant to the user.

When recommending articles from other users with similar taste, they use CF based
on latent factor models. This method works well for recommending popular articles, but
cannot be used to recommend papers that has not been read yet. To deal with this they use
content-analysis based on probabilistic topic modelling, and can consequently recommend
articles with similar content as the articles enjoyed by the user in the past. The topic
modelling of the articles provide a topic representation of the items to discover the main
themes in each article, and in turn helps the system make intelligent recommendations for
articles before anyone has rated them.

These two methods are subsequently combined in a probabilistic model where the
decision of which item to recommend is based on the conditional expectation of hidden
variables. The expectation is equally influenced by the content from the articles and the
libraries of all the users, but in cases where the item is new, the recommendations are based
on the content.

This method deals with new items and the problems associated. However, it does not
address the problems of new users. Stern, Herbrich, and Graepel (2009) propose to solve
the challenge by using meta-data about each user to recommend items popular in a user’s
demographic group such as age, gender, and occupation.

3.2.2 Demographics, weather and online reviews
Research shows that pleasant weather improves mood and memory, and demography has
been associated with people’s spending time online. In the paper Demographics, Weather
and Online Reviews: A Study of Restaurant Recommendations, Bakhshi, Kanuparthy, and
Gilbert (2014) ask the question of whether these phenomena documented in psychology
also affect large-scale online behavior. Could weather and local demographics of restau-
rants drive how we rate them online? This study is the first to look at external factors and
how they affect online ratings.

By studying a large amount of restaurants, reviews, demographic data, and weather
data spanning from the period of 2002-2011 they find the following:

• Restaurants that are marked online as ”low-price” tend to get fewer reviews and
lower ratings.

11Netflix: http://www.netflix.com
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• Service related factors such as ”take-away” are strongly tied with the population
density of the neighborhood.

• Restaurants located in areas with higher education levels are more likely to be re-
viewed, but it does not seem to affect ratings.

• There is a seasonal pattern among rating and reviews, and weather conditions are
significantly associated with ratings.

These findings have implications for the design of recommendation systems by accounting
for, and correcting bias, that is systematically related to demographics and weather.

3.2.3 Netflix case study
When writing about the state of the art in RSs, there is no way to bypass Netflix. Netflix is
the world’s leading Internet television network with over 69 million members in over 60
countries (Netflix, 2015) and is presently in possession of the most well-known RS. Their
users watch more than 100 million hours of TV series and movies every day. They can
watch as much as they want, when they want, for a fixed amount monthly, uninterrupted
by advertisements.

The key to Netflix’s success lies in their ability to predict what the user likes, as ev-
ery two out of three hour of playtime in Netflix are from recommendations. In Netflix’s
early days, they used information about gender and age to determine what movies to rec-
ommend. Now, they use for example what the user has watched before, searched for, how
much time the user spends watching, and which type of device being used. The predictions
from the Netflix recommender engine is not only based on user behavior, but also context
(such as time of the day), title popularity, novelty, diversity, and how recent the item was
released are important factors. With all these features, Netflix gets enormous amounts of
data. Their goal is to use it to discover patterns they can use to recommend items to users.
In recent time they have used these patterns to find out what users want that does not exist
already. For example in 2012, Netflix bought a script for a series called House of Cards
(Barnes, 2013). They had figured since there was a demand for political dramas, the actor
Kevin Spacey, and the successful director David Fincher, they needed to create a series
with all of those factors. Fortunately, the series have been a success.

There are many important elements to Netflix’s personalization. One of them is the
awareness the user has about the system adapting to their tastes. This builds up trust to the
system and the system gets more ratings, which again leads to better recommendations.
The same is encouraged when the user receive explanations of why the user is predicted a
given item. An example of this is shown in Figure 3.3

In 2006, Netflix announced the Netflix prize, a machine learning and data mining com-
petition for movie rating prediction. In that context, they released a dataset of 100,000,000
movie ratings. The task was to improve the accuracy of their existing system called Cin-
ematch by 10 %. The accuracy at that time had a Root Mean Squared Error (RMSE) of
0.9525. The winner would be rewarded with one million dollar. This led to an increase of
research on rating prediction by minimizing the Mean-Squared Error. After a time, it also
led to a lawsuit against Netflix, once somebody managed to de-anonymize their data.
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Figure 3.3: An example of the recommendations from Netflix.

A year into the competition a group won the Progress Prize with a score of 8.43 %
improvement. The group reported that they had used over 2000 hours and the solution
consisted of a combination of 107 algorithms. The two main algorithms of these was
Matrix Factorization (which the community generally call SVD, Singular Value Decom-
position) and Restricted Boltzmann Machines (RBM) which is a neural network.

The form of Matrix Factorization used is basically an asymmetric form of SVD, called
SVD++, that can make use of implicit information (just as RBMs also do). With only
the SVD version, the system performed with a RMSE of 0.8914 and with only RBM,
the system performed with a 0.8990 RMSE. Combined in a linear blend, the algorithms
had reduced the error down to 0.88. To implement these two algorithms Netflix had to
make them deal with a higher amount of data and the ability to adapt to new ratings in
the system everyday. Today, these two algorithms are an essential part of the Netflix
recommendation engine. The algorithms developed by the winning team of the Netflix
Prize 2009, three years after they started, were too computationally intensive to scale and
the expected improvement after the upscaling was not worth the engineering effort.

3.3 Conclusion
In this chapter we have presented five different recommendation systems from the touristic
domain, and we have showed that there are many different ways of creating recommenda-
tions (see Table 3.1). Even though they differ in approaches, they have many similarities
when it comes to dealing with cold start and data.

R-Cube is in fact a very simple system considering the recommendations mechanism.
Instead of calculating recommendations based on a user-profile, it asks the user to provide
rules until it can filter out all but a small number of restaurants. However, this method
pose challenges with scalability. As the underlying restaurant database grows, it will be
increasingly difficult to filter out restaurants based on rules provided by the user. R-Cube
does not consider any contextual information to address the scalability problem.

Both I’m feeling LoCo and TripBuilder make use of social media to overcome cold start
and to build the user-profiles. This proves a very effective and user friendly approach due
to the user’s only task being to connect the system to their social media profiles. Depending
on the chosen social media site and the items to recommend, it can be either hard or easy
to extract information about the user’s preferences. However, social media almost always
provide some sort of demographic information about the user, and research has shown that
this can improve the quality of recommendations. Out of the five systems, these two are the
only ones using contextual information in their recommendations. An interesting aspect
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of TripBuilder is how it aims to provide recommendations consisting of several items. In
Section 1.1 we mention exactly this as a challenge in touristic recommendations.

REJA takes a different approach in dealing with cold start users. Instead of connecting
to social media or asking explicit questions to get personal preferences, it asks the user to
select an item which is similar to their needs. This serves as a starting point for the system
to circle in on the true user preferences.

Lastly, we have OpenTable which is a successful commercial system. As a conse-
quence it is, naturally, hard to find details on their recommendations system. It is, how-
ever, interesting to see that it is in fact possible to make successful recommendations in the
restaurant domain. As far as we know, OpenTable relies heavily on their user-generated
data such as reviews. It does not look like they make use of any other contextual informa-
tion, but based on the research presented by Bakhshi et al. (2014), they should look into
incorporating weather-data in their RS.

Table 3.1: A comparison of the systems presented in this chapter.

System Recommendation method Domain
R-Cube Dialogue Restaurants
I’m feeling LoCo Content-based Locations

REJA CF and
knowledge-based Restaurants

OpenTable Unknown Restaurants
TripBuilder Collaborative-/content-based Tours of locations
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Approach

In Chapter 1 we defined the main research question for this thesis as ”how can we build an
intelligent, personalized recommender system that works in the touristic domain by making
use of established recommendation techniques?”. Chapters 2 and 3 provided theory and
related work, as well as motivation, towards building a solid foundation on which we can
base our answer.

In this chapter we present RestRec, a context-aware, personalized, hybrid RS for restau-
rants. We start by defining a set of requirements in Section 4.1. Then, in Section 4.2, we
show an abstract overview of our proposed design, along with an introduction to the data
domain we will be working with and some challenges this domain poses to RSs. Sec-
tions 4.3 and 4.4 are dedicated to the implementation of the recommender engine and how
feedback from the users is used to change their future recommendations. In Section 4.5
we explain the hybrid aspect of RestRec and how we use this to tackle the cold start prob-
lems. Section 4.6 describes how we use contextual information in RestRec to make better
recommendations. Finally, in Section 4.7, we analyze the system with respect to the re-
quirements laid out in Section 4.1.

4.1 Requirement Analysis
In any software engineering process, it is of utmost importance to create a Software Re-
quirements Specification (SRS) before starting the development. A good SRS helps to lay
the foundation and guidelines of the work to be done. An SRS following the standards
as defined in IEEE specification 29148:2011 (IEEE Standards Association, 2011) lays out
both functional and non-functional requirements, such as response time, availability, main-
tainability, etc. However, for the purpose of RestRec and this thesis, we limit ourselves to
functional requirements only.

We present the system requirements for RestRec as two separate lists. The first contains
all requirements that must be implemented in order to get a system that can help us answer
the research questions listed in Section 1.2. The second contains requirements that should
be implemented, but are not crucial to the outcome of this thesis and can be implemented
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at a later time. They are on a relatively high level and they do not specify any methods or
techniques that can be used to achieve them.

1. Requirements that are crucial and must be implemented:

(a) The system must allow new users to sign up and log in so that their personal
information may be used to create more accurate recommendations in the fu-
ture.

(b) The system must allow authenticated users to log out of the system.

(c) The system must allow authenticated users to set, and update, their personal
information such as age, nationality and gender.

(d) The system must provide a search mechanism to enable authenticated users to
retrieve any specific restaurant.

(e) The system must allow authenticated users to rate restaurants to indicate whether
they would enjoy the restaurant or not.

(f) The system must allow authenticated users to rate restaurants in relation to a
given situation (context).

(g) The system must allow authenticated users to improve their recommendations
at any time by presenting a set of restaurants that the user can rate.

(h) The system must provide authenticated users with a personalized list of top
recommendations for a given context.

2. Requirements that are of lesser importance and can be implemented at a later time:

(a) The system should allow unauthenticated users to search for restaurants.

(b) The system should allow unauthenticated users to see a list of the best rated
restaurants.

(c) The system should be able to show authenticated users an overview of their
rating history.

(d) The system should provide an administrative interface where users with ele-
vated privileges can see more detailed information about users in the system.

(e) The system should be able to run on a mobile device.

Furthermore, as we are building a system that is going to handle personal data for a
potentially large set of users, we have to focus on security. It is important that we can
assure users that there are no risks of their information being stolen and used by malicious
users.

4.2 System overview
In Figure 4.1 we show an abstract overview of how we intend the system to work. Simply
put, it can bee seen as a combination of three components:
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• Restaurant data extractor. This is where the system connects to an Internet endpoint
in order to extract restaurant data that can be useful in the recommendation process.
This component does not have a direct impact on recommendations, but we choose
to include it in the figure as it may be desirable to update the local database at a fixed
interval, as data can be both outdated and updated.

• Recommendation engine. The heart of the system. Given enough information on
both users and data, it produces a list of recommendations to the active user. Sec-
tion 4.3 will go into more detail about the inner workings of this module, so for now
we consider this a black box.

• Profile learner. The entire goal of this system is to make personalized recommenda-
tions, which makes this a key component. Its function is to keep track of all the user
profiles and update them whenever feedback is provided. We hope that, in time and
given enough feedback, the user’s digital profile will match the user’s ”true” profile
as closely as possible. We will elaborate on this in Section 4.4.

Figure 4.1: The architecture of the system, divided into three components.

From the perspective of a user, we envision a complete user session could for example
unfold in the following way: A user will either have to register as a new user or provide
authentication, depending on whether or not they are new in the system. The user will
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then get some recommendations based on his user profile. Finally, the user can provide
feedback for the recommended restaurants.

4.2.1 Data domain
RestRec will be a restaurant RS. Ergo, we need to find suitable restaurant data. We aim
for RestRec to be able to overcome the cold-start problems, and to be as self-sufficient
as possible when it comes to user-generated content. Simply put, we aim to provide rec-
ommendations where no user-generated data exist. However, this will pose challenges.
Many potential restaurant visitors will to some degree base their choices on information
like quality of food, quality of service and cleanliness, which presupposes an existing user
community.

One also has to consider the dynamic nature of restaurants, and how this sets the prob-
lem apart from for example movie-recommendation. It is not uncommon for restaurants
to change their menus, renovate their locales, or get a new manager. These are changes
that could possibly have a huge impact on the public opinion towards a restaurant. Even
small changes, like getting a new chef, could affect online ratings. For a restaurant RS to
be successful in the long run, it will have to be able to detect and adapt quickly to such
changes.

In general, it is harder for restaurants to get consumer feedback compared to movies,
and is a consequence of restaurants being more complex and the fact that more effort is
required from the user to eat at a restaurant than watching a movie. Therefore, it is harder
for restaurants to know whether they should be doing something different. When new
movies get released to the public, the producers can easily compare how their movies are
doing by looking at box office numbers. Restaurants do not have an equivalent ”portal”
where they can compare themselves to others.

4.2.2 Technology
RestRec is a complete, web-based, personalized restaurant recommendation system that
can be reached at http://www.restrec.no. The rest of this section is dedicated to clarifying
the technical aspects of the system.

The website and its content are self-hosted on a laptop running Ubuntu Server 14.04
LTS1 making use of the following stack: Django, MySQL/MongoDB, uWSGI, nginx.

Framework

Django2 is a high-level Python3 web framework that encourages rapid development of
complex database-driven websites. It has good support for communicating with relational
databases and takes care of many common security pitfalls behind the curtains, such as
Cross Site Request Forgery and SQL injection.

1Ubuntu Server: http://www.ubuntu.com/download/server
2Django: https://www.djangoproject.com/
3Python: https://www.python.org/
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Data storage

We are using MongoDB4 for storage of restaurant data. MongoDB is a so called NoSQL/no-
relational database, meaning that it avoids the traditional table-based relational database
structure in favor of JSON-like documents. This kind of database is increasingly used in
big data applications as they are easier to scale than classic relational databases.

For storage of user data, however, we are using MySQL5 as it integrates nicely with
Django.

Web server

Nginx6 is a free, open-source, high performance HTTP/HTTPS webserver and reverse
proxy. It can serve static files directly from the file system, and we use it as a port of entry
to the RestRec application. However, Nginx cannot talk directly to Django applications. It
needs something that will run the application, feed it requests from web clients and return
responses. A Web Server Gateway Interface (WSGI) does this job, and we use a specific
implementation called uWSGI7.

Due to RestRec handling data such as usernames and passwords we decided to force
all traffic through HTTPS, ensuring that all communication between client and server is
encrypted.

4.3 Making recommendations
We have finally reached the point where it is natural to move more into the inner workings
of the recommendation engine from Figure 4.1. Based on the theory provided in Chapter 2
and the related work in Chapter 3, we opted for a hybrid approach. A hybrid system
is best equipped to tackle the challenges pertaining to a cold system, and it allows for
more diversity in the recommendations. More specifically, we are building RestRec as a
hybridization of CF and CBF.

The idea is simple: each component works independently from the other and produces
a list of recommendations. These two lists are then merged by a mixed method as explained
in Section 2.1.3. Figure 4.2 illustrates the concept.

However, before we can dive into the implementation of the recommendation engine,
we need to explain how we represent users and restaurants in the system.

4.3.1 Representation
Both users and restaurants are represented by N-dimensional vectors where each element
corresponds to one attribute. Boolean attributes are fairly uncomplicated, and each of
them is represented by one element in the feature vector. Multivalued attributes on the
other hand, have one element for each value in their domains.

4MongoDB: https://www.mongodb.com
5MySQL: https://www.mysql.com/
6Nginx: https://www.nginx.com/
7uWSGI: https://uwsgi-docs.readthedocs.io/en/latest/
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Figure 4.2: The recommender module consisting of both CF and CBF.

A user’s vector consists of demographic information and a set of values in the range
[0,1] describing the affinity for the given attributes. A value of 0 symbolizes a negative
attitude towards the attribute, while a value of 1 symbolizes a positive attitude. If the user
is indifferent to a certain aspect of the restaurant, this will be represented by a value of 0.5.

A restaurant is similarly represented by a vector. The only difference is that each of
the boolean attributes are fixed as either a 1 or a 0, depending on the restaurant.

4.3.2 Content-based filtering
The content-based recommendation approach we use is called user-item recommendation.
Conceptually, it works by calculating the set of restaurants that are most similar to a given
user’s profile. For example, a user that has rated many Asian restaurants favorably in the
past will have a profile that more closely resembles an Asian restaurant, and the recom-
mendations will reflect this.

To decide which restaurant the user most likely will enjoy, we need a way of calculating
the similarity between user and restaurant. In the end, it is the restaurant with the highest
similarity value that will be recommended to the user. In Section 2.2 we presented several
similarity models that can be used to calculate this similarity, and for the purposes of this
system we have decided to use a weighted euclidean distance measure. The reason for this
is that we want to be able to assign a level of importance varying with each attribute, and
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we would not be able to do this with, for example, a cosine-based measure.
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Equation 4.1 describes the process, given a restaurant r and user u as input. We use the
degree of preference the user has for attribute r

i

as a weight for the ith component of the
distance. The difference between each user-restaurant attribute pair is multiplied by the
weight and summarized. Hence, if there is a perfect match between u and r the similarity
value will be 0.

However, if the user has a low value (close to 0) for an attribute it means the user has
a negative preference towards that specific attribute, and in its current form Equation 4.1
does not account for this. A negative preference should have the same impact on the final
similarity score as a positive preference. Therefore, we modify Equation 4.1 to have the
weight as a function of the user’s preference instead of the preference itself.
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Equation 4.2 considers a low preference value equally important as a high preference
value. Without this small addition to Equation 4.1 RestRec would care very little if a user
for example has a strong dislike for restaurants of a certain type. Listing 4.1 describes how
we implement the CBF algorithm with Equation 4.2 as similarity measure.

1 d e f g e t c b r e c s ( u s e r v e c t o r , r e s t a u r a n t s ) :
2 r e s u l t s = {}
3

4 # f o r each r e s t a u r a n t , c a l c u l a t e t h e s i m i l a r i t y be tween t h e u s e r and
t h e r e s t a u r a n t

5 f o r r e s t a u r a n t i n r e s t a u r a n t s :
6 r e s u l t s [ r e s t a u r a n t ] = s i m i l a r i t y ( u s e r v e c t o r , r e s t a u r a n t )
7

8 r e s u l t s . s o r t ( )
9 r e t u r n r e s u l t s

Listing 4.1: Pseudocode for providing recommendations by means of CBF.

4.3.3 Collaborative filtering
The CF algorithm is conceptually quite simple: given a user u, find a set of other users,
U, that have rated some of the same restaurants as u and recommend restaurants that are
popular in U. In light of this, we decide to implement the algorithm ourselves. It is a
user-based recommendation approach, meaning that the algorithm does not need to know
anything about the restaurants themselves, except their identifying id’s. The idea is to
recommend restaurants that are popular among users that like the same restaurants as a
specific user.
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In practice, this is done by first building a user-restaurant rating matrix like the one
shown in Table 4.1. The matrix is an overview of all the ratings in the system, making
it easy to find the set of users that share ratings with any given user. In Listing 4.2 we
show the algorithm for calculating similarity between two users, given the user-restaurant
matrix.

For example if two users do not share any ratings, like U1 and U8, their similarity score
will be 0. Users having the exact opposite opinions about restaurants, like U3 and U6,
will have a similarity score approaching 0. However, users that rate the same restaurants
equally, like U2 and U4, will get a score of 1. The similarity value can thus range from 0
to 1, where 1 represents perfect agreement.

Table 4.1: An example user-restaurant rating matrix.

Users
U1 U2 U3 U4 U5 U6 U7 U8 U9 ... UN

R1 1 1 1 1 1
R2 1 1 1 -1 1 1

Restaurants R3 1 1 1 1
R4 -1 -1 -1 -1 1
R5 1 1 1 -1 1 -1
...

RN

1 d e f s i m s c o r e ( ma t r ix , pe r son , o t h e r ) :
2 # assume t h e u s e r s have no r a t i n g s i n common
3 s i = F a l s e
4 f o r r e s t a u r a n t i n m a t r i x [ p e r s o n ] :
5 i f r e s t a u r a n t i n m a t r i x [ o t h e r ] :
6 s i = True
7 b r e a k
8

9 # i f t h e y have no r a t i n g i n common , r e t u r n 0
10 i f n o t s i :
11 r e t u r n 0
12

13 # add up t h e s q u a r e s o f a l l d i f f e r e n c e s
14 s u m o f s q u a r e s =
15 sum ( [ pow ( m a t r i x [ p e r s o n ] [ r e s t a u r a n t ]�m a t r i x [ o t h e r ] [ r e s t a u r a n t ] , 2 )
16 f o r r e s t a u r a n t i n m a t r i x [ p e r s o n ]
17 i f r e s t a u r a n t i n m a t r i x [ o t h e r ] ] )
18 # r e t u r n t h e s i m i l a r i t y a s a v a l u e between 0 and 1
19 r e t u r n 1 / (1 + s u m o f s q u a r e s )

Listing 4.2: Pseudocode for calculating the similarity-score between two users.

The complete CF algorithm is presented in Listing 4.3. For a given user, we compute
the similarities to all other users, and if a similarity is greater than 0, we iterate through
all restaurants rated by the other user. A total score describing the restaurant’s popularity
is calculated for every restaurant, and the more positive ratings a restaurant has received,
the better it will score in relation to other restaurants. The restaurant-scores are calculated
by multiplying the rating with the similarity-score between the two users. This approach

40



4.4 Feedback

allows more similar users to have a greater influence on the final recommendations com-
pared to less similar users. In the end, it is the restaurant with the highest total score that
is recommended to the user.

For example if we were to recommend a restaurant to U2, we would first calculate
similarity-scores for the set of users that has rated some of the same restaurants as U2. In
this case, users U1, U3, U4, and U5 would all get similarity-scores of 1 and thus matter the
most when calculating the top restaurant. However, as U3 has not rated any other restau-
rants than the one shared with U2, we need only consider U1, U4, and U5. Restaurant R2
is popular with these users, whilst U2 has not rated it yet. Therefore, restaurant R2 is the
restaurant that will ultimately be recommended.

1 d e f g e t c f r e c s ( ma t r i x , p e r s o n ) :
2 r e s u l t s = {}
3

4 f o r o t h e r i n m a t r i x :
5 #don ’ t compare me t o mys e l f
6 i f o t h e r == p e r s o n :
7 c o n t i n u e
8 sim = s i m s c o r e ( ma t r ix , pe r son , o t h e r )
9

10 # i g n o r e s c o r e s o f z e r o o r lower
11 i f sim <= 0 :
12 c o n t i n u e
13 f o r r e s t a u r a n t i n m a t r i x [ o t h e r ] :
14 # on ly s c o r e r e s t a u r a n t s t h e p e r s o n haven ’ t r a t e d y e t
15 i f r e s t a u r a n t n o t i n m a t r i x [ p e r s o n ] :
16 # S i m i l a r i t y ⇤ s c o r e
17 r e s u l t s . s e t d e f a u l t ( r e s t a u r a n t , 0 )
18 r e s u l t s [ r e s t a u r a n t ] += m a t r i x [ o t h e r ] [ r e s t a u r a n t ] ⇤ sim
19

20 # r e t u r n t h e s o r t e d l i s t
21 r e s u l t s . s o r t ( )
22 r e t u r n r e s u l t s

Listing 4.3: Pseudocode for the CF algorithm.

4.4 Feedback
Feedback is necessary to understand the user’s preferences. As explained in Section 2.4,
there are two kinds of feedback: explicit and implicit. Optimally, one would want to
take advantage of both techniques, but we have only implemented explicit feedback in
RestRec. There are two reasons to this: first, implicit feedback such as dwell time is very
noisy. Second, the benefit of implicit feedback is low compared to explicit feedback.

We use ratings as a means of explicit feedback in this system, predominantly because
reviews call for sentiment analysis which is not a part of our scope. RestRec gives users the
possibility to rate restaurants on a binary scale, either up or down, and we use this rating
to update the user’s profile. In what way we update the profile based on the user’s rating
as well as the restaurant’s profile. Table 4.2 shows how we increase/decrease the degree of
preference for the attributes that are relevant for the evaluated restaurant.
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Table 4.2: The amount of change to the preferences depending on feedback.

Rating Change in preference
Up +v/-v
Down -v/+v

This is better explained by example. Consider a restaurant R and a user U that are
represented by the following vectors:

R =
⇥
0 1 0

⇤
U =

⇥
0.6 0.4 0.5

⇤

The user gives the restaurant a negative rating in this case and therefore dislikes the restau-
rant. Based on this, we can infer that the user prefers restaurants where the 1st and 3rd
attributes are 1, and the 2nd attribute is 0. Thus, we can update the user’s profile as follows:

Û =
⇥
0.6 + v 0.4� v 0.5 + v

⇤

In RestRec, the user-profiles have values ranging from 0 to 1, so we will have to choose
the value of v accordingly. If the value is too high, the user-profile will ”jump” too much
and never settle around a value, but if it is too low, the system will be slow to learn user-
preferences. We cannot expect our users to rate enough restaurants that a change of 1-2
% per attribute is sufficient. Therefore, we set the value of v to be 0.03. If a user rates
20 restaurants with this value, there should be enough span in the user-profile to make
recommendations.

4.5 Hybridization and cold start
Figure 4.2 shows that both filtering components output separate sets of possibly different
recommendations. We need some way to combine those two sets into one set which can
be presented to the user. In Section 2.1.3 we introduced a few possible solutions for how
this can be done, and we choose to use the mixed scheme for our purposes. Based on the
state of the system and the profile of a given user, we may wish to compose the list of
recommendations in different ways. In general, we let CBF and CF have an equal impact
of 40 % each on the final list. The last 20 % of the recommendations will be random
restaurants to give the list some novelty. The recommendations are presented to the user in
three groups: CBF, CF, and random restaurants, with headlines ”Based on your ratings”,
”Based on similar users”, and ”Random picks”, respectively.

One of the biggest motivations for a hybrid system is the level of robustness it provides
with regards to cold-start problems. Cold start comes in two forms: cold user, and cold
item.

4.5.1 Cold user
There are two problems to consider when a new user is introduced in an already established
RS with a high amount of both users and ratings. First, a new user does not necessarily
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have a fine-tuned preference-vector, thus calculating similar restaurants to the user vector
is unlikely to give good results. Second, the CF approach needs ratings in order to make
recommendations. In an attempt to rectify these shortcomings, we introduce what we call
cold rules in the recommender engine. One of these rules states that if a user has made
less than ten ratings, we consider it a cold start. The reason behind this specific amount
is based on the value of v explained in the previous section. As each rating can change
the value of a field by 3 % the effect of ten ratings can potentially be 30 %, making the
user’s preference-vector in the range of 0.2 to 0.8. We consider this a large enough span
for making recommendations based on CBF.

CBF When making cold start content-based recommendations, the engine will compute
the average of the few restaurants the user has liked thus far and recommend the restaurants
that are closest to this average. This variation of CBF is called item-item CBF and is dif-
ferent from the user-item approach that is normally used when recommendations are based
on the user’s preference vector. The algorithm for doing this is presented in Listing 4.4

1 d e f g e t c o l d c b r e c s ( r a t e d r e s t a u r a n t s , a l l r e s t a u r a n t s ) :
2 r e s u l t s = {}
3 # t a k e an a v e r a g e o f t h e few r e s t a u r a n t s t h e u s e r has r a t e d
4 a v e r a g e r e s t a u r a n t = a v e r a g e ( r a t e d r e s t a u r a n t s )
5 f o r r e s t a u r a n t i n r e s t a u r a n t s :
6 r e s u l t s [ r e s t a u r a n t ] = s i m i l a r i t y ( a v e r a g e r e s t a u r a n t , r e s t a u r a n t )
7 # r e t u r n t h e most s i m i l a r r e s t a u r a n t s t o t h e a v e r a g e r e s t a u r a n t
8 r e s u l t s . s o r t ( )
9 r e t u r n r e s u l t s

Listing 4.4: Pseudocode for content-based recommendation when cold start.

CF To overcome the cold user problem in the CF approach, we use demographic data.
Instead of using the user-restaurant rating matrix defined in Section 4.3.3 to find similar
users, we use personal information such as nationality, age, and gender. The idea is that
users in the same demographic group have the same taste in restaurants, and we use these
stereotypes to generate recommendations.

After finding the set of most similar demographic users, we compute the most popular
restaurants in the set and recommend the restaurants the user has not rated yet. For ex-
ample, if cheap restaurants are popular among young Norwegians it is likely that newly
registered young Norwegians will enjoy these restaurants as well. When the new user af-
ter a while develops a more accurate profile by means of feedback, CF will be based on
ratings rather than demographic information. The steps for this approach are described in
Listing 4.5.

1 d e f g e t c o l d c f r e c s ( use r , o t h e r u s e r s , r a t i n g s ) :
2 s i m i l a r u s e r s = {}
3

4 # c a l c u l a t e t h e s i m i l a r i t y be tween t h e u s e r wi th t h e o t h e r s based on
demography

5 f o r o t h e r u s e r i n o t h e r u s e r s :
6 s i m i l a r u s e r s [ o t h e r u s e r ] = s i m i l a r i t y ( u s e r . demography ( ) ,

o t h e r u s e r . demography ( ) )
7
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8 # g e t t h e t e n most s i m i l a r u s e r s
9 m o s t s i m i l a r u s e r s = s i m i l a r u s e r s . s o r t ( ) [ : 1 0 ]

10

11 # r e t u r n t h e most p o p u l a r r e s t a u r a n t s f o r t h e most s i m i l a r u s e r s t o
t h i s u s e r

12 m o s t p o p u l a r r e s t a u r a n t s = g e t m o s t p o p u l a r r e s t a u r a n t s b y u s e r s (
m o s t s i m i l a r u s e r s )

13 r e t u r n m o s t p o p u l a r r e s t a u r a n t s

Listing 4.5: Pseudocode for cold start CF based on demographic information.

4.5.2 Cold item
The problem with cold items is that they have a lesser chance of being recommended.
With a classical user-based CF approach, they would never be recommended at all since
no one has rated them. CBF, however, is based only on item-content and would always
be able to recommend cold items. Furthermore, randomization among some of the recom-
mended items will help promote cold items. We mentioned earlier that 20 % of the final
recommendations in RestRec will be random restaurants.

In Section 2.7.4 we speak of the principal properties of RSs, and coverage is one of
these properties. It is important for actors employing RSs that they have good coverage,
meaning that they are able to recommend the whole set of items, and recommend to the
whole set of users.

4.6 Context in RestRec
Section 2.5 introduced the notion of context and context-aware RSs. Research shows
that incorporating contextual information in RSs can improve recommendations, and in
accordance with RQ4 (Section 1.2), we try to do this in RestRec. Some examples of
contextual data that RestRec would benefit from are:

• Timestamps - The time of day may say something about the user’s intentions.

• Weather - For example if it is a nice day, we may want to emphasize recommenda-
tions for restaurants with outdoor seating.

• Location - If the user is using the mobile interface, we can rule out restaurants that
are far away.

• The social setting of the restaurant visit - If a user is, for example, planning a ro-
mantic date, we may be able to filter out certain types of restaurants.

In RestRec we will only focus on the last one, the social setting of the restaurant visit.
The reason we omit the first one is because we will need to gather data from a set of
users that use the system regularly, and the time-frame of this project makes that unlikely.
We omit weather for the same reason, in addition to the need for connecting to some
weather-service to get forecasts. Location is omitted because RestRec is first and foremost
a web-based system and not a mobile application.
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In Section 2.5 we explained three different methods for obtaining contextual informa-
tion: explicitly, implicitly, and inferred. It would be possible to infer the social setting, but
this will require a large amount of user-data and advanced machine-learning algorithms,
thus we will not use this approach. And as we do not see a way to obtain this informa-
tion implicitly, we are left with explicit. This means the active user will explicitly have to
provide this information when rating restaurants and receiving recommendations.

To ease the implementation, we have chosen a set of 4 different ”situations” the user
can select from when rating and receiving recommendations. The situations are: business,
romantic, casual, and special. It is our opinion that users either go to a restaurant with
colleagues, in a romantic setting, casual setting with friends or family, or on a special
occasion. We do not impose on the users any definitions for the contexts as we feel it is up
to the individual user to decide on the meaning for each situation. We do, however, hope
that users rate consequently when rating in a given context as this will have a direct impact
on the subsequent recommendations.

Up until now we have described a user as a single vector where each value represents
the user’s preference for an aspect of a restaurant, but this is a somewhat simplified expla-
nation. In reality, we store a user as four different vectors — one complete user-preference
vector for each context. So when we speak of a user’s preferences in the algorithms listed
previously (and presently), this is actually the user’s preferences within a given context.

4.7 How it works
It is now finally time to go through the system in practice to see if we have met the require-
ments outlined in Section 4.1. We start by presenting the mechanisms under the surface in
the application and continue with a walk-through of the system from the user’s perspective.

4.7.1 Server-side
Considering that the goal of the work presented in this thesis is making recommendations,
we do not go into technical details on other aspects such as authentication, presentation,
and updating information. Instead, we describe the general flow of the system when a
user requests recommendations. Up until this point we have described each function of
the system separately, but in RestRec they are ultimately combined into a hybrid system.
Listing 4.6 shows how the the different parts of the recommendation process described in
earlier sections is interlaced to make one fully functioning recommender engine.

1 d e f recommender eng ine ( use r , o t h e r u s e r s , r a t i n g s , r e s t a u r a n t s ) :
2 c o l d s t a r t = F a l s e
3

4 # g e t t h e u s e r ’ s r a t e d r e s t a u r a n t s
5 r a t e d r e s t a u r a n t s = r a t i n g s [ u s e r ]
6

7 # i f t h e u s e r has l e s s t h a n t e n r a t i n g s we c o n s i d e r i t a c o l d s t a r t
8 i f l e n ( r a t e d r e s t a u r a n t s ) < 1 0 :
9 c o l d s t a r t = True

10

11

12 c b r e c s = {}
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13 c f r e c s = {}
14 r a n d o m r e c s = g e t r a n d o m r e c s ( r e s t a u r a n t s )
15

16 i f c o l d s t a r t :
17 # can on ly g e t c o n t e n t�based recommenda t ions i f t h e r e e x i s t any

r a t i n g s
18 i f l e n ( r a t e d r e s t a u r a n t s ) < 1 :
19 c b r e c s = g e t c o l d c b r e c s ( r a t e d r e s t a u r a n t s , r e s t a u r a n t s )
20

21 # g e t t h e recommenda t ions based on demography
22 c f r e c s = g e t c o l d c f r e c s ( use r , o t h e r u s e r s , r a t i n g s )
23 e l s e :
24 # g e t t h e recommenda t ions f o r a more d e v e l o p e d u s e r
25 c b r e c s = g e t c b r e c s ( use r , r e s t a u r a n t s )
26 c f r e c s = g e t c f r e c s ( r a t i n g s , u s e r )
27

28 r e t u r n c b r e c s , c f r e c s , r a n d o m r e c s

Listing 4.6: Pseudocode describing the flow of the RestRec recommender engine.

4.7.2 Client-side

The client-side of the system is best described by presenting a selected set of screenshots
from the perspective of a new user (Figures 4.3 to 4.6). RestRec has been implemented with
a responsive front-end (requirement 2e), thus the screenshots are taken from the mobile site
to save space.

When new users go to http://www.restrec.no in their browsers, they are met by the
landing-page with information about RestRec. From there, it is easy to navigate to the
login-page seen in Figure 4.3a. Users who do not have accounts have to register before
they can log in. When logging in for the first time, users are taken directly to their profile
pages as shown in Figure 4.3b where they can fill inn personal information that will be
used in the recommendation processes. At this point, we have met requirements 1a, 1c,
and 2e.

By tapping the top-right icon, the users get an overview of the system and what their
possible actions are (Figure 4.4a). The top three options are what constitutes the restaurant
part of the system and will be explained in more detail now. The last two options take the
users to their profile pages or logs them out of the system, respectively.

On the right, in Figure 4.4b, we see the interface for the ”Rate restaurants” page where
the users can both search for and rate restaurants. A list of 20 restaurants unrated by the
user is shown below the search-fields. Every time a user rates a restaurant, the user-profile
is updated to reflect the user’s preferences. We can therefore mark requirements 1b, 1d, 1e
and 1g to the list of fulfilled requirements.

Figure 4.5 shows two different views of a restaurant. The first one is an overview from
the ”Rate restaurants” page showing a small amount of information, while the other is a
more detailed view that the user can see by clicking the name of the restaurant. Here the
users can rate restaurants for the different situations we explained in Section 4.6. At the
bottom of the view in Figure 4.5b is a Google Map showing the location of the restaurant
(not shown in the figure). We can now mark requirement 1f as fulfilled.
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(a) The login page. (b) The profile page for an authenticated user.

Figure 4.3: RestRec.

Finally, there are the ”Get recommendations” (Figure 4.6a) and ”Toplist” pages (Fig-
ure 4.6b). To get recommendations, the users have to select the wanted context before
pressing the button. In this specific example the user has not rated any restaurants yet, so
there are no results in the section for CBF recommendations. The second section shows
results from the CF algorithm. Due to the fact that this specific user has not rated anything,
the recommendations are based on demographic information only.

The ”Toplist” page is exactly what it sounds like. RestRec shows a list of the most
popular restaurants for every context, with a number next to it describing how many users
have upvoted the restaurant. With this said, we can consider requirement 1h as fulfilled.

To conclude this chapter, in Tables 4.3 and 4.4 is an overview of the requirements
and whether we have met them or not. Requirement 2a, ”the system should allow unau-
thenticated users to search for restaurants”, has not been implemented by design. To test
the system and gather data, we wanted as many people as possible to register. A way of
achieving this was through restricting the access of unauthenticated users.
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(a) By tapping the menu-icon, a dropdown shows
a list of possible actions.

(b) RestRec’s ”rate restaurants”-page with search
functionality.

Figure 4.4: RestRec.

Requirement Fulfilled Not fulfilled
1a X
1b X
1c X
1d X
1e X
1f X
1g X
1h X

Table 4.3: Shown in this table is the list of
must implement requirements from Section 4.1
and whether we have been able to fulfill them.

Requirement Fulfilled Not fulfilled
2a X
2b X
2c X
2d X
2e X

Table 4.4: Shown in this table is the list of
should implement requirements from Section 4.1
and whether we have been able to fulfill them.
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(a) RestRec presents an overview of a set of
restaurants for the user to choose from.

(b) RestRec presents detailed information about
a selected restaurant.

Figure 4.5: RestRec.

49



Chapter 4. Approach

(a) RestRec presents personal recommendations
for a given situation.

(b) RestRec shows a global toplist for every situ-
ation.

Figure 4.6: RestRec.
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Chapter 5
Evaluation

In this chapter we evaluate RestRec and attempt to reach a conclusion regarding the re-
search questions defined in Chapter 1. We begin by presenting an experimental plan in
Section 5.1 where we state what type of experiments we will perform. However, to per-
form these experiments we need restaurant data, and this is the topic of Section 5.2. Fol-
lowing in Sections 5.3 and 5.4 are the experimental setup and results. These results are
what forms the basis of the discussion taking place in Section 5.5. Finally, we revisit the
original research questions in Section 5.6.

5.1 Experimental plan
In Section 2.7 we addressed the importance of evaluating an RS after it is implemented,
and some of the ways this can be done. In brief, the evaluation of an RS has to measure
whether real people are willing to act based on the recommendations. One of the simplest
ways of doing this is to compare the difference in ratings between restaurants picked by
a random generator and a recommender algorithm. With enough data this method will
quite easily give an indication of the overall performance of the system and, furthermore,
it is easy to compare the performance of the different recommendation approaches. It is
also in our interest to plot performance as a function of ratings, as logic dictates that the
prediction accuracy should increase with the number of ratings. As all recommendations in
RestRec contain the name of the algorithm promoting them, we will perform experiments
pertaining to this.

RestRec’s ability to tackle a cold user is an area we have mostly focused on, so naturally
we wish to ascertain whether or not we have been successful in this effort. There is only
one way to reach a conclusion — to test the quality of the recommendations for cold users.
In Chapter 4 we defined a cold user as a user with less than 10 ratings per context, so we
will have to isolate and analyze these users before we attempt to make a conclusion.

RQ4 relates to situational information and how we can make use of this to improve
recommendations. In RestRec we consider four different situations: business, casual,
romance, and special. To learn how this extra piece of information impacts recommenda-
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tions, we must analyze ratings with focus on the selected context. It would for example
be interesting to see whether or not we can establish a connection between social setting
and certain restaurant-attributes. But before we can do any of this, we need both user- and
restaurant-data gathered by using RestRec.

5.2 Data domain analysis and data collection
Before we can truly call RestRec a restaurant RS, we need to find data on restaurants that
can be recommended. This is also a crucial step if we are to perform any experiments and
be able to evaluate the system.

In Section 4.2.1 we introduced the restaurant data domain and some of the thoughts
we have regarding the data RestRec will be working with. However, we cannot base this
project solely on our thoughts. We need solid quantitative data to substantiate our choices.
Therefore, to learn more about the restaurant diners’ preferences, we perform a survey with
the intention of guiding us in the search for data to use in RestRec and our experiments.

5.2.1 Restaurant diners’ preferences
The primary motivation for performing this survey is twofold. First, we wish to learn
more about the users’ social setting when visiting restaurants. Second, in order to meet the
users’ needs, we must learn how the users make their choices and what information they
base them on. The last one is crucial for creating a system that has value and is capable of
providing successful recommendations.

The survey is composed of the questions listed in Table 5.1. Considering that we want
RestRec to be as self-contained as possible with regards to community preferences, we
mostly include objective questions (questions that can readily be answered by the restau-
rant). This could be whether or not the restaurant has free WiFi, or if they serve alcohol.
However, we do include questions related to community preferences as well as it is still
interesting to see how much weight they carry with restaurant goers.

We posted the survey on Reddit1 to attract attention from a broad set of people and to
get as many responses as possible. Reddit is an entertainment and news website where reg-
istered community members can submit content, such as text posts or direct links, making
it essentially an online bulletin board system. After 48 hours we had gotten 78 responses,
and the rate of which we received new responses had dwindled down to zero. We therefore
figured that this was the highest response rate we could expect. The results are mostly as
expected. Because Reddit has primarily American users, 50 % of the respondents reported
that they were from the U.S., while the remaining half is a mixture between Norwegian,
U.K., and Canadian users. Some results of the questions are shown graphically in Fig-
ure 5.1 while the answers to the ”how important are...” questions are grouped in categories
shown in Table 5.2.

We can see that, as one perhaps would expect, opinion-based attributes are important
to the average diner. However, factual information such as type of food and price is also
considered important, and this is the kind of data we can use in RestRec.

1Reddit: http://www.reddit.com
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Table 5.1: Questions for the restaurant preferences survey.

Restaurant survey questions
Questions Range
Gender [male, female]
Country [list of countries]
Age [20-29,...,60-70]
Work status [working, student, unemployed, retired]

Who do you go to restaurants with? [business associates, family, friends, partner]
How often do you go to restaurants? [>once a week,..., <every 6 months or rarer]

How important are the following:
Type of food [1-5] (not important - very important)
Food taste [1-5]
Price [1-5]
Location [1-5]
Rating/stars [1-5]
Smoking [1-5]
WiFi [1-5]
Parking [1-5]
Attire [1-5]
Alcohol [1-5]
Kids menu [1-5]
Customized meals [1-5]
Cleanliness [1-5]
Menu variety [1-5]
Availability of take-away [1-5]
Food safety [1-5]
Quality of staff [1-5]
Service speed [1-5]
Ambience [1-5]

5.2.2 Data collection

With basis in what we learned from the survey, we start to look for data that can help
us build RestRec. Many of the available restaurant datasets found on the Internet consist
mostly of reviews and little factual data of the restaurant itself. However, in section 1.3 we
mention that text analysis is not in the scope of this work. Thus, we focused our efforts on
finding data with information such as what kind of food they serve, what their price range
is, do they have WiFi, etc. In other words, information an establishment can easily provide
themselves as there are no personal opinions involved.

The data we eventually found, describing a restaurant very comprehensively, is from
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(a) Results from the survey showing age-, gender-, and work-distributions.

(b) Survey results.

Figure 5.1: Results from the restaurant diners’ preferences survey.

Factual2 data provider. By using their API we were able to quite easily retrieve information
about thousands of restaurants worldwide. An overview of geographic locations and a
description of the data are shown in Tables 5.3 and 5.4.

However, considering the scale of the work presented in this thesis, we decide it is
not necessary to use the complete set of 2.3 million restaurants. The U.S. restaurant-data
include extended information such as meal-type, alcohol, and ratings, which according to
our survey is important enough to play a part when making recommendations. In addi-

2Factual: http://www.factual.com
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Table 5.2: The distribution of responses from the survey regarding the importance of various at-
tributes.

Not important Somewhat important Important
Smoking Location Type of food
WiFi Rating/stars Taste of food
Attire Parking Price
Kids menu Alcohol Cleanliness
Customized meals Menu variety Safety of food

Take-away Quality of staff
Ambiance
Service speed

Table 5.3: Distribution of where the Factual restaurants are located.

Country Number of restaurants Info

United States >1.1 million Includes core place data
and extended restaurant attributes.

Great Britain >300.000
France >400.000
Germany >400.000
Australia >100.000

tion, as a large portion of the people who responded to the survey is American, it seems
appropriate to use U.S. restaurants for the rest of our work. Consequently, we exclude
restaurants that are not located in the U.S. due to not being as comprehensive, detailed and
not resonating as well with our users. In total, the U.S. restaurants are described by a set
of 64 different attributes which is listed in Appendix B.1.

For our CF method described in Section 4.3.3 to work, we are dependent on restaurants
being rated by as many people as possible. As CF works best when the ratio of ratings vs
items are reasonably high, a set of 1.1 million restaurants would consequently call for a
user-base of substantial size. Therefore, we limit ourselves to handling restaurants in New
York City only. Factual has data on over 20.000 restaurants in New York City, which is
more than enough for the purpose of this thesis. To automate the data collection process,
we wrote a python script which is listed in appendix A. This script retrieves restaurant data
in JSON-format and stores it locally in the MongoDB instance we set up.

Furthermore, a dataset consisting of 20.000 restaurants is still too large-scale for our
purposes. Thus, to increase our chances of obtaining good results, we must restrict the
restaurant-set further. On the other hand, we still wish to have enough restaurants to ensure
a representative selection of New York restaurants.

Due to the fact that the restaurant-data is incomplete (many fields do not have values),
we utilize the results from the survey to filter out those restaurants which do not meet our
requirements. We use the attributes Location, Type of food, Price, and Rating to remove
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Table 5.4: A subset of the information Factual provides for each restaurant. See appendix B.1 for a
complete list.

Attribute Type Description
Name String Entity name
Address String Address number and street name.
Locality String City, town or equivalent.
Neighborhood String The neighborhood(s) in which this entity is found
Region String State, province, territory, or equivalent.

Cuisine String The type of food served.
Price Integer A price metric between one and five.
Rating Decimal A rating between 1 and 5
Hours String JSON representation of hours of operation.
Attire String A single value from an enumerated list.
Attire required String Gotta have this on to get in.
Attire prohibited String Can’t get in if you are sporting this.

Reservations Boolean Accepts reservations.
Smoking Boolean This place allows smoking somewhere.
Breakfast Boolean Serves breakfast.
Lunch Boolean Serves lunch.
Dinner Boolean Serves dinner.
Takeout Boolean Provides takeout/takeaway.
Cater Boolean Provides catering.
Alcohol Boolean Serves alcohol
Kids goodfor Boolean Noted as being good for kids.
Kids menu Boolean Has a kids menu.
Groups goodfor Boolean Noted as being good for groups.
Seating outdoor Boolean Outdoor seating is available.
WiFi Boolean WiFi is provided by the establishment.
Vegetarian Boolean Vegetarian options noted.
Vegan Boolean Vegan options noted.
Glutenfree Boolean Gluten free items noted.
Lowfat Boolean Lowfat options noted.
Organic Boolean Organic options noted.
Healthy Boolean Healthy dishes are explicitly available.

those where the available information is inadequate, and get down to 1256 remaining
restaurants which now constitutes the final set of restaurants used in RestRec.

Due to having in total 63 different attributes per restaurant, we choose a subset of the
most important and differentiating ones to present to the users. If we were to present all 63
attributes the user would most likely feel overwhelmed, and not put in the required time
or effort, resulting in a bad user experience. The attributes that were deemed uninteresting
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by users are needless and therefore removed. Some of the attributes partly describe the
same aspects (such as kids goodfor and kids menu) and are also redundant. Furthermore,
we make the decision to focus only on dinner instead of including breakfast and lunch as
we think this will not change the users’ opinions of restaurants.

After processing the results from the survey we arrive at a final restaurant profile,
shown in Table 5.5. There are 16 attributes in total, where 10 are boolean and 4 are
multivalued. We expect this list of attributes will provide enough information for users to
make a decision whether they would dine at a restaurant or not.

Table 5.5: The attributes shown to a user looking up restaurants.

Restaurant attributes
Name Rating Smoking Kids menu
Locality Attire Takeout Seating outdoor
Cuisine Accessible wheelchair Parking WiFi
Price Reservations Alcohol Vegetarian

However, even though we discarded restaurants with many undefined values, there are
still some remaining and some of the restaurants have a bigger percentage of null-values
than others. Figure 5.2 shows the distribution of null values per restaurant, and we can see
that around 85 % of them has 3-5 undefined attributes.

Figure 5.2: The distribution of null values per restaurant.

Similarly, the coverage varies from attribute to attribute. For the boolean values this
is shown in Figure 5.3. We can see that several attributes are set for all restaurants, such
as WiFi, reservations, and smoking. On the other hand we have attributes like vegetarian
options and kids menu where there are a substantial amount of undefined values.

This is shown in Figure 5.3 for the boolean values. We can see that several attributes
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are set for all restaurants, such as WiFi, reservations and smoking. On the other hand we
have attributes like vegatarion options and kids menu where there is a substantial amount
of null values. In these cases we consider it likely the restaurant does not possess the
quality in question, and we treat it accordingly (undefined equals False in RestRec). Our
recommendations are based on this assumption, and as a consequence, restaurants with
many blank attributes for qualitites they might still have will not be recommended as much
as they could have been.

Figure 5.3: A distribution over the boolean values for the restaurants

The remaining attributes are defined for all restaurants, and in Figure 5.4 we see that
the most popular cuisines are American, European, Cafe, and Italian. All in all, there
are 121 different cuisines among the 1256 restaurants. Figure 5.5 shows that price and
rating among the restaurants are quite evenly distributed, which should make for a good
recommendation basis.

5.3 Experimental setup
RestRec was made public on http://www.restrec.no and spread to the users by use of social
media and word of mouth. Due to the large item-space and relatively poor hardware we
were not able to both update user-profiles and calculate recommendations in real time, and
as a result we were forced to gather our data in two steps. First, we had the profile-building
period where we asked users to rate as many restaurants as they wanted so that we could
use the data to build accurate user-profiles. Second, we had the recommendations period
were we tried to get the same set of people to rate the quality of their recommendations by
use of ”Yes”, ”No”, or ”Neutral” for each recommended restaurant.

The profile-building period lasted for 12 days, counting a total of 45 different users
providing 1691 ratings for 425 different restaurants. On average there are close to 423
ratings per context. In the gathering of this data, users were given a set of 20 restaurants
and the option of rating them in any context.

The recommendations period lasted 3 days and 26 users out of the 45 from the previ-
ous phase returned to provide their opinions on the recommendations. In total we received
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Figure 5.4: A word cloud representing the distribution of the different cuisines

(a) Price

(b) Rating

Figure 5.5: Distribution of the price and rating attribute on the restaurants

958 ratings, giving an average of 37 per user. When providing feedback on the recommen-
dations in this phase users were presented with 10 restaurants (4 from CBF, 4 from CF, 2
random) in randomized order.

Our user-base is exclusively Norwegian, 75 % is aged 20-30, and evenly divided be-
tween male and female. The data presented here will form the basis on which we will
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perform our experiments and analyze RestRec in the next sections.

5.4 Experimental results
In this section we present various results with the goal of ascertaining the quality of
RestRec and the recommendations made. We start by analyzing the users to determine
whether they have been consistent in their ratings. This is important to establish as the
subsequent results will be based on this data. After this has been done, we move on to the
overall performance of the system where we aim to quantify the prediction accuracy of Re-
stRec. The final two experiments are related to cold-start performance and how contextual
information affect recommendations.

5.4.1 User analysis
As with all user-generated data, we have to consider the possibility that part of our data
may be noisy, poor, or simply created with bad intentions. The ratings gathered in the
profile-building period is what will drive the recommendations later, so we use these rat-
ings to try to determine the users’ consistency when rating. If users are more interested
in rating for the purpose of providing data than actually making a conscious decision, the
subsequent recommendations would reflect this and consequently bring down the aver-
age performance of the system. Thus, it is in our interest to exclude users that have not
understood this when we perform our experiments.

The approach we took to determine this was to see if we could identify a difference
between upvoted and downvoted restaurants per user. More specifically, we calculated
the euclidean distance between the average upvoted restaurant and the average downvoted
restaurant for every user in each context, and aggregated this into a single value for each
user. Figure 5.6 shows the user-consistency graph. A low value is interpreted as a stronger
indication of inconsistent rating than that of a high value. The goal of this experiment is
to establish how users rated compared to a completely random ”dummy-user”, shown by a
gray line in the figure (baseline). We can see that all users perform better than the baseline,
but a large portion is very close to random.

To further establish the consistency of the ratings it is interesting to look at how much
time passes between rating two different restaurants. This time-interval can give an indica-
tion of whether the user has read about the restaurant or not before rating, and also allows
us to identify any trends. Hopefully, we will see that the time-interval is at a reasonable
level and rather constant with respect to the amount of restaurants rated. Due to RestRec
storing a timestamp for each rating, it is trivial to calculate a system-wide average for time
passed between the rating of different restaurants. After filtering out large values that oc-
curs between user-sessions, we get the results shown in Table 5.6. We can see that the
time-interval does indeed stay constant independent of how many restaurants users rate.

5.4.2 Overall performance
To evaluate the overall performance of the system we decide to use the precision metric
defined in Equation 2.13. Precision is an uncomplicated metric for calculating the success
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Figure 5.6: Distance between average upvoted and downvoted restaurant for each user, aggregated
across each context. The baseline is that of a random ”dummy-user”.

Table 5.6: Average time-interval between rating different restaurants.

Time-interval between rating restaurants
Restaurant-pair 1-2 2-3 3-4 4-5 5-6
Seconds 12.4 13.3 10.1 10.3 10.0

rate of our recommendations, and it can be used to quickly establish the quality of the
system.

In the experiment of calculating the overall performance of the system, a user request-
ing recommendations is presented with a list of 10 restaurants and the option to rate each
of them with respect to the quality of the recommendation. The rating can be either one of
”Yes”, ”No”, or ”Neutral”. The precision is calculated for every user, and then aggregated
with the precisions of other users having a similar amount of ratings. This way we can
establish how the number of ratings affect the precision. Average precision for both CF
and CBF is shown in Figure 5.7 with random recommendations serving as a baseline. We
see that both our algorithms perform better than random, but there is no indication of the
number of ratings having any effect on the precision.

In theory, the precision of CF should increase along with the number of users and
ratings, as restaurants are then more likely to be rated by several users. Thus, we decide
to examine the set of overlapping ratings in our data as this directly impacts the quality of
CF. Shown in Table 5.7 are statistics for how many different users a restaurant is rated by.
For example in business, only one restaurant is rated by 5 different users. We see that the
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Figure 5.7: The precision of CF and CBF recommendations with regards to ratings, compared with
a random baseline.

majority of restaurants are only rated by one user, but CF needs a restaurant to be rated by
at least two users (the user requesting recommendations, and one other user) to be able to
recommend it.

Table 5.7: This table shows how many unique users a restaurant is rated by, for each context. For
example, within the business context there is only one restaurant rated by 5 unique users. 289
restaurants are rated by one user only.

Business Romance Casual Special
- 6 - 6 1 6 - 6
1 5 1 5 - 5 1 5
1 4 1 4 2 4 - 4

10 3 8 3 10 3 12 3
49 2 48 2 69 2 49 2
289 1 292 1 302 1 301 1

System-wide average precisions per context are presented in Table 5.8, showing that
the system performs equally for all defined contexts.

5.4.3 Context
Our last experiment is related to context, and how the addition of this extra piece of infor-
mation affects the recommendation process. Because of how we allow the users to rate a
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Table 5.8: Average precision of RestRec for each context compared to a random generator.

Our system Random
Overall 71 % 53 %
Romance 70 % 54 %
Business 70 % 52 %
Special 72 % 53 %
Casual 73 % 53 %

restaurant for all contexts at the same time, most of the restaurants are rated for more than
one context. By observing how users rate in one context compared to another, we can infer
which attributes the users consider important to a context. To determine this, we calculate
the average upvoted restaurant in each context and present a selected subset of attributes.
The results are shown in Table 5.9.

Table 5.9: The average of the popular restaurants in the different contexts

Special Romantic Casual Business
Price $30-50 $30-50 $15-30 $30-50
Avg. rating 4.5 4.0 3.5 4.0

Cuisine
Seafood,
French,

European

Italian
European,
American

Pub food,
Cafe,

American

Seafood,
French,

European
Serves alcohol Yes Yes Yes Yes
Smoking No No No No
Reservations Yes Yes No Yes
Takeout No No Yes No

We can see that the average user prefers cheaper restaurants and a simpler cuisine when
in a casual setting. Romantic restaurants tend to be a little more expensive, and Italian food
is popular choice. When looking for restaurants in the special context, users opt for the
ones with high ratings. These are all reasonable results and a testament to the feasibility
of employing contextual information in RestRec.

5.5 Discussion

Having implemented and evaluated RestRec quantitatively, it is time to discuss our find-
ings. There are mainly three areas we wish to discuss in detail: RestRec and the techno-
logical restrictions imposed on our work, the collected data and the challenges related to
this, and finally, the quality of recommendations made by RestRec.

63



Chapter 5. Evaluation

5.5.1 RestRec
We mentioned in Section 5.3 that we gather data in two separate periods as a consequence
of poor hardware and not having the ability to run the complete system in real time. How-
ever, there are benefits by doing it this way. For example, we would most likely have
accumulated less data if we were to do it all at once. We could have spent much time to try
and optimize the system with regards to speed, but ultimately it is the recommendations
that are most important for our work. A complete RestRec-system would require users to
switch between building their profiles and rate recommendations several times, and this
would require much effort on the users’ parts.

We also state that our user-base is exclusively Norwegian, but the survey we perform
to learn more about restaurant diners’ preferences are answered mostly by Americans.
Logically, we should evaluate the system with an American user-base. However, such an
approach would pose two problems: first, there are the possible consequences of posting
RestRec on sites like Reddit (hacking, denial of service, etc), and second, it would be close
to impossible to get the same set of users to come back a second time.

5.5.2 Data restrictions
When evaluating RSs one should preferably have access to a baseline which can be used
for comparisons. In order to achieve this, work with the data must have been done at an
earlier time. However, this has not been the case with RestRec, so naturally it is difficult
for us to state whether we outperform other systems. To the best of our knowledge the
restaurant data from Factual has not previously been used in a system such as ours, and the
user-data is gathered specifically for our purposes. Ultimately, this leads us to evaluate the
system against a random baseline which can only testify to the general intelligence of the
recommendations. Given enough time and a large user-base it would be possible to per-
form online evaluation (Section 2.7.2) in order to find the optimal settings of the system,
such as weights or how much we alter a user’s profile based on feedback. Unfortunately,
such an evaluation will have to wait due to time constraints.

Furthermore, there are the dangers of using crowdsourced data. First of all, the col-
lected data can be discussed to be a bit narrow. Our users are exclusively Norwegian and
rate restaurants located in New York City, U.S. Rating a restaurant in RestRec does not
require the user to actually have eaten at the specific restaurant, or even been in the same
country. In other words, the user does not need to spend much time, money, or effort in the
rating of restaurants, which consequently can lead to more hasty and inaccurate ratings.
Our user analysis in the previous section show that there are significant span in the con-
sistency of ratings between users (Figure 5.6), but excluding too many users at this point
would reduce our opportunities for further experiments.

Second, the size of the obtained data is too small to determine anything with reason-
able certainty. Restaurant preferences collected from 45 users and the system evaluated by
26 users is not optimal, and can only serve as a starting point for further more conclusive
experiments. Our results show promise (Figure 5.7) and we can see a certain trend in pref-
erences, but we cannot claim to have established a ground truth for precision in restaurant
recommendation.

And third, we calculate that the average user has only rated 9.4 restaurants per context.
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This means that as per our definition of a cold user in Section 4.5.1, the average user of
RestRec qualifies as a cold user. This is not ideal for the CBF algorithm, as we want users
to have made at least 10 ratings to get a certain impression of the users’ preferences.

5.5.3 Making recommendations
RestRec makes use of a combination of CBF and CF, with special cold rules to make
recommendations. To what degree we are successful in overcoming the cold start problem
is, once again, difficult to say due to the limited amount of available data. However, we
know that the average user is a cold user and the results showed in Table 5.8 and Figure 5.7
clearly show that the system performs well above random. We should be able to obtain
better results if we were to reduce the size of our restaurant data-set, but then again this
would reduce the cold-start problem and that is not in our interest.

A total of 1256 restaurants leads to a very sparse user-restaurant rating matrix, making
it hard to do CF successfully. Adding the fact that we consider each context in isolation,
further increases the need for data. The restaurant domain is a domain where it takes a
considerable amount of effort to provide proper feedback, thus it is important to make the
most out of the feedback that is available. Having the users rate the same restaurant for
every context is not a feasible approach in the long run. There should come a point where
the system knows enough about a user to be able to infer the rating in a context given the
rating in another context. This would drastically reduce the amount of needed data and
pressure on the user to provide feedback.

Figure 5.7 shows how our CBF approach outperforms CF by nearly 10 % overall,
and given the troubles of employing CF on our data, this does not come as a surprice.
Considering the current state of our system, the relative gain in knowledge per rating is
much greater for CBF than CF. A rating incurs a change of 3 % in the user’s preference
vector, but only further testing would reveal if this is a good value. In a larger system, it
would perhaps be of interest to have a variable value instead of a constant. For example,
the importance of a rating could be a function of how long ago the rating was made. This
would allow for new ratings to have a larger impact than older ratings, and consequently
make it easier for users to change their opinions about specific attributes.

5.6 Research questions revisited
How can we build an intelligent, personalized recommender system that works
in the touristic domain by making use of established recommendation tech-
niques?

This has been the main research question and motivation for the work presented in this
thesis, and at this point we have gained sufficient understanding and insight of the problem
domain to attempt an answer. The question is threefold: first, there is the aspect of making
intelligent and personalized recommendations. Second, there is the problem of defining
the touristic domain. And finally, we wish to use established recommendation techniques.

By building RestRec we provide personal recommendations by making use of estab-
lished techniques. In the previous section we showed that the recommendation accuracy
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is well above random, clearly indicating intelligence to a certain extent. And lastly, in
Section 1.3 regarding the scope of our work, we substantiate our reasons for considering
restaurant recommendation as a part of the touristic domain. This gives us a solid foun-
dation to claim that we have indeed succeeded in our task, but there are always room for
improvements.

Our research questions are listed below along with short evaluations of how they have
been handled in this work.

5.6.1 RQ1
What challenges are there, and what methods have been developed to meet
them?

In Chapter 2 we gave an introduction to the theory needed to implement an RS, and the
challenges one is likely to encounter when doing so. We presented and discussed the prob-
lems of cold start and scalability, in addition to some emerging challenges like proactive
recommendations and privacy. However, through our work with RestRec we have mainly
been dealing with cold start and scalability, which are two of the most prominent problems
regarding RSs.

The cold start problem pertains to the sparsity of information, and can affect both users
and items. When a user is new to a system, the system does not know the user well enough
to make accurate recommendations. For an item, the challenge is how to recommend an
item that no one has rated yet. There are a variety of ways to handle a cold start, some of
which are explained in Chapter 3. The most popular approach for dealing with a cold user
is to have the user provide some information at the start, either through a questionnaire or
by rating a set of example items.

The problem of scalability is the huge amount of operations involved in computing
recommendations as the system grows larger. RSs very often handle data that is both high-
dimensional and sparse, making calculations complex and time-consuming. Most users
have very little patience when it comes to waiting for their recommendations, measures
have to be taken to reduce the complexity of the data. In Section 2.6.2 we mentioned PCA
and SVD as viable options for this task.

Nowadays, people are in a state of being recommended items at any time via their
smart phones or on the websites they are currently surfing. This leads to the challenges
of not only having to find out what to recommend, but also when to recommend it. The
foundation of an RS is knowing as much as possible about its users and, as a result of this,
privacy is becoming an increasingly important aspect to consider. It is very important that
personal information is handled correctly so that sensitive information is not lost or stolen.

5.6.2 RQ2
What kind of systems already exist, and what are their strengths and short-
comings?

In Chapter 3 we presented a selected set of RSs for restaurants and tourism in general.
The systems are called R-Cube, I’m feeling LoCo, REJA, OpenTable, and TripBuilder, and
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were selected to show some of the various approaches that are possible and to give a broad
idea of existing solutions in both academia and industry.

Some of the systems make use of the most common methods like CF, CBF, or a hy-
bridization of the two, whilst others make use of dialogue and knowledge-based methods.
All of the systems deal with cold-start in different ways and are able to make acceptable
recommendations in the tourism domain. However, only two of the systems incorporate
contextual information into their algorithms and none of them have restaurant recommen-
dation as their main focus.

Based on this analysis and the related research, there is much work to be done regard-
ing context-aware RSs. The possible gain of employing more contextual information in
RSs could be considerable.

5.6.3 RQ3
How can we find and use data to describe the items to be recommended?

Section 5.2 describes the process of finding data to use with RestRec. Before starting the
search for appropriate data, we conducted a survey to learn more about how the users make
their choices and what information they base them on. The results of the survey allowed
us to restrict our search with regards to the type of data we needed. Many of the restau-
rant datasets we found on the Internet consisted mostly of reviews and not of information
about the restaurants themselves. The data we eventually found, describing a restaurant
very comprehensively, is from Factual data provider. Factual provides information on 2.3
million restaurants, each described by 64 different attributes. After modifying the data
to fit our purposes we ended up with 1256 restaurants in New York which we utilized in
RestRec.

5.6.4 RQ4
How can we identify the user’s situation and use it to improve recommenda-
tions?

In Section 2.5 we introduced the concept of contextual recommendation. By incorporating
available contextual information into the recommendation process as explicit additional
categories of data, it is possible to make more accurate predictions. After researching the
possibilities from other systems, we discovered that this type of recommendation can have
a prominent impact in the restaurant domain. In Section 4.6 we presented how we wanted
to incorporate context into RestRec, and we established four social situations within which
the user could rate restaurants: business, casual, romance, and special. To learn more
about how this extra piece of information impacts recommendations, we analyzed ratings
with focus on the selected context. From the results described in Section 5.4.3, we estab-
lish that there is a connection between the social settings and certain restaurant-attributes.
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Chapter 6
Conclusion and Future Work

6.1 Conclusion
In this thesis we have designed, implemented and evaluated an intelligent, personalized
recommender system focusing on restaurant recommendation as a case. By conducting
a review of recommender system literature and related work, we identified hybrid ap-
proaches as a possible solution to the cold-start user problem, and learned that contextual
information has huge potential to improve this technology.

Our proposed system, RestRec, is implemented as a web-page where users can sign
up, provide their opinions on a set of restaurants, and receive recommendations on where
to eat. The recommendations are made by a hybridization of collaborative filtering and
content-based filtering, with the addition of what we refer to as cold rules for handling
cold starts. We performed a survey to learn more about users’ social setting when visiting
restaurants and what information they base their restaurant choices on. This knowledge
is subsequently used to guide our search for restaurant data to be used in the evaluation
phase. Users of RestRec can select a social setting when requesting recommendations.

Due to a lack of comparable systems, the prediction accuracy is calculated with a
random generator as baseline. The results show that our approach outperform the baseline
by almost 20 %, and we are able to ascertain the benefit of using contextual information
for making recommendations. After studying and analyzing existing work in the area, we
have concluded that our approach is feasible, but there are more challenges that still are
remaining to be solved.

6.2 Future work
We discovered many useful techniques and features when researching for and designing
RestRec, but we had to prioritize the methods that would help us reach our research goals.
In other words, there are many ways to expand on our system, and following are some
suggestions on what future work can be focused on.
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6.2.1 Using reviews for text analysis
Textual reviews are a rich source of information. Given enough reviews about a restaurant
it is possible to, by use of text analysis software, to extract information. It is for example
possible to learn what the strengths of a certain restaurant are, or what could be improved.
In the future, it would be interesting to look at the possibility of incorporating textual
reviews in RestRec and to complement the Factual1 data.

As explained in the survey of the various available data, we could not find any data
sets containing both user and restaurant information. We thought of the possibility to use
some of the large restaurant review datasets, but although they contain much information
about user preferences, they have very little information about the restaurants themselves.

We want restaurant data in order for CBF to be able to recommend cold items. How-
ever, if we get enough restaurant information from the reviews, we can use the user data
and hence recommend restaurants with CF right away. Additionally, with this user data
we could do a more quantitative evaluation by making test sets and trying to predict how
well users like certain restaurants before comparing the prediction against the ground truth.
The solution could be to employ text analysis techniques on reviews to extract information
about the restaurants.

6.2.2 Factual data
Factual is in possession of data about many different entities in the touristic domain. In
addition to the restaurant data we have made use of, Factual can give our system a whole
new dimension by recommending hotels as well. They also have several other Point of
Interests such as museums, cinemas, theatres, amusement parks and landmarks. An RS
which makes use of all these entities could very well be the ultimate tourism recommender.

6.2.3 Implicit feedback
In Section 2.4.2 we introduced the concept of implicit feedback which refers to getting
feedback without requiring any active involvement from the user. In our system we de-
cided to not make use of this at the moment. First, because implicit feedback such as dwell
time is very noisy. Second, the benefit of implicit feedback is low compared to explicit
feedback. However, this is something that can be incorporated into the system over time
as a part of future work. With help from the time the user has spent inspecting a restaurant
profile or the average time used to rate restaurants the system can get additional informa-
tion to base its recommendations on. For example, if a user never clicks on a certain type
of restaurant presented, the system can learn after a time that the user does not favor that
particular type of restaurant.

6.2.4 Additional contextual information
We have dedicated a significant amount of our work in this thesis to do context-aware
recommendation, but as described in Section 4.6 there are several other contexts to con-
sider. For example, when providing recommendations it can be important to recommend

1Factual: http://www.factual.com
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restaurants nearby, taking into account the location context. This can be incorporated in
our system if it was developed into a mobile application, or let the user specify their cur-
rent exact location explicitly. The weather may also have an impact on people’s choice
of restaurants. If it is hot outside, the user may prefer restaurants with air conditioning or
outdoor seating. What time of the day it is can be important if the user wants to find a
restaurant which is open at the moment. In other words, location, weather, and time, make
the restaurant domain very relevant for further context-aware recommendations.
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Appendix A
The script for scraping Factual

1 from f a c t u a l i m p o r t F a c t u a l
2 from pymongo i m p o r t MongoClient
3 i m p o r t t ime
4 i m p o r t random
5

6 # F a c t u a l
7 o a u t h k e y = ” lorem ”
8 o a u t h s e c r e t = ” ipsum ”
9 schema = ” r e s t a u r a n t s �us ”

10

11 f a c t u a l = F a c t u a l ( o a u t h k e y , o a u t h s e c r e t )
12 r e s t a u r a n t s = f a c t u a l . t a b l e ( ’ r e s t a u r a n t s �us ’ )
13 l i m i t = 50
14 # Mongo
15 c l i e n t = MongoClient ( )
16 c l i e n t . m a s t e r d b . a u t h e n t i c a t e ( ” lorem ” , ” ipsum ” )
17 db = c l i e n t . m a s t e r d b . r e s t a u r a n t s
18

19 r a t i n g s = [ 1 . 0 , 1 . 5 , 2 . 0 , 2 . 5 , 3 . 0 , 3 . 5 , 4 . 0 , 4 . 5 , 5 . 0 ]
20

21 # t h i s i s a l i s t w i th s t r i n g s t h a t d e s c r i b e s t h e n e i g h b o u r h o o d s i n new york
22 n e i g h b o r h o o d s = [ ]
23

24 d o n e w i t h = [ ]
25

26 t o o b i g = [ ]
27

28

29 d e f i n s e r t r e s t a u r a n t s ( d a t a ) :
30 c o u n t = 0
31 n o f r e s t a u r a n t s = l e n ( d a t a )
32

33 f o r r e s t a u r a n t i n d a t a :
34 r e s t a u r a n t [ ” i d ” ] = r e s t a u r a n t . pop ( ” f a c t u a l i d ” )
35 t r y :
36 db . i n s e r t ( r e s t a u r a n t )
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37 c o u n t += 1
38 e x c e p t E x c e p t i o n as e :
39 p a s s
40 p r i n t ( ” {} /{} r e s t a u r a n t s i n s e r t e d . ” . f o r m a t ( count , n o f r e s t a u r a n t s ) )
41

42

43 d e f g e t d a t a a n d i n s e r t ( da t a , que ry ) :
44 o f f s e t = 0
45 i n s e r t r e s t a u r a n t s ( d a t a )
46

47 w h i l e l e n ( d a t a ) == l i m i t :
48 o f f s e t += 50
49 t ime . s l e e p ( random . r a n d i n t ( 5 , 10) )
50 d a t a = r e s t a u r a n t s . f i l t e r s ( que ry ) . l i m i t ( l i m i t ) . o f f s e t ( o f f s e t ) . d a t a

( )
51 i n s e r t r e s t a u r a n t s ( d a t a )
52

53 f o r hood i n n e i g h b o r h o o d s :
54 i f hood i n d o n e w i t h o r hood i n [ x f o r x , i n t o o b i g ] :
55 c o n t i n u e
56

57 g e t b y r a t i n g = F a l s e
58 o f f s e t = 0
59 p r i n t ( ” C u r r e n t l y working wi th n e i g h b o r h o o d : {0} ” . f o r m a t ( hood ) )
60

61 que ry = { ’ $and ’ : [ { ’ r e g i o n ’ :{ ’ $eq ’ : ’NY’ }} ,{ ’ n e i g h b o r h o o d ’ :{ ’ $ b l an k ’ :
F a l s e }} ,

62 { ’ l o c a l i t y ’ :{ ’ $eq ’ : ’NEW YORK’ }} ,{ ’ n e i g h b o r h o o d ’ :{ ’ $ i n ’ : [ hood ]}} ]}
63 r e s u l t = r e s t a u r a n t s . f i l t e r s ( que ry ) . l i m i t ( l i m i t ) . i n c l u d e c o u n t ( True )
64 t o t c o u n t = r e s u l t . t o t a l r o w c o u n t ( )
65

66 d b c o u n t = db . f i n d ({ ” n e i g h b o r h o o d ” : hood } ) . c o u n t ( )
67 p r i n t ( ” There a r e {} r e s t a u r a n t s i n {} . We c u r r e n t l y have {} of them i n

our d a t a b a s e . ” . f o r m a t ( t o t c o u n t , hood , d b c o u n t ) )
68

69 i f d b c o u n t >= t o t c o u n t :
70 p r i n t ( ” S i n c e we have them a l l , we move on . ” )
71 p r i n t ( )
72 c o n t i n u e
73

74 i f t o t c o u n t > 500 :
75 p r i n t ( ” G e t t i n g r e s t a u r a n t s by r a t i n g . ” )
76 g e t b y r a t i n g = True
77

78 i f g e t b y r a t i n g :
79 f o r r a t i n g i n r a t i n g s :
80

81 que ry = { ’ $and ’ : [ { ’ r e g i o n ’ :{ ’ $eq ’ : ’NY’ }} ,{ ’ n e i g h b o r h o o d ’ :{ ’
$ b l a n k ’ : F a l s e }} ,

82 { ’ l o c a l i t y ’ :{ ’ $eq ’ : ’NEW YORK’ }} ,{ ’ r a t i n g ’ :{ ’ $eq ’ : r a t i n g }} ,{ ’
n e i g h b o r h o o d ’ :{ ’ $ i n ’ : [ hood ]}} ]}

83 r e s u l t = r e s t a u r a n t s . f i l t e r s ( que ry ) . l i m i t ( l i m i t ) . i n c l u d e c o u n t
( True )

84 c o u n t = r e s u l t . t o t a l r o w c o u n t ( )
85 d b c o u n t = db . f i n d ({ ” n e i g h b o r h o o d ” : hood , ” r a t i n g ” : r a t i n g } ) .

c o u n t ( )
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86 p r i n t ( ”We have {} /{} of t h e r e s t a u r a n t s w i th r a t i n g {} . ” .
f o r m a t ( db coun t , count , r a t i n g ) )

87

88 i f d b c o u n t >= c o u n t :
89 c o n t i n u e
90

91 i f c o u n t > 500 :
92 t o o b i g . append ( ( hood , r a t i n g ) )
93 p r i n t ( ”Too b i g : {}” . f o r m a t ( t o o b i g ) )
94 c o n t i n u e
95

96 g e t d a t a a n d i n s e r t ( r e s u l t . d a t a ( ) , que ry )
97

98 # Try t o g e t t h e l a s t ones w i t h o u t a r a t i n g
99 que ry = { ’ $and ’ : [ { ’ r e g i o n ’ :{ ’ $eq ’ : ’NY’ }} ,{ ’ n e i g h b o r h o o d ’ :{ ’ $ b l an k ’

: F a l s e }} ,
100 { ’ l o c a l i t y ’ :{ ’ $eq ’ : ’NEW YORK’ }} ,{ ’ r a t i n g ’ :{ ’ $ b l an k ’ : True }} ,{ ’

n e i g h b o r h o o d ’ :{ ’ $ i n ’ : [ hood ]}} ]}
101 r e s u l t = r e s t a u r a n t s . f i l t e r s ( que ry ) . l i m i t ( l i m i t ) . i n c l u d e c o u n t (

True )
102 c o u n t = r e s u l t . t o t a l r o w c o u n t ( )
103 d b c o u n t = db . f i n d ({ ” n e i g h b o r h o o d ” : hood , ” r a t i n g ” :{ ” $ e x i s t s ” : F a l s e

}} ) . c o u n t ( )
104 p r i n t ( ”We have {} /{} of t h e r e s t a u r a n t s w i th r a t i n g {} . ” . f o r m a t (

db coun t , count , ” b l a n k ” ) )
105 i f c o u n t > 500 :
106 t o o b i g . append ( ( hood , ” b l a n k ” ) )
107 p r i n t ( ”Too b i g : {}” . f o r m a t ( t o o b i g ) )
108 e l s e :
109 g e t d a t a a n d i n s e r t ( r e s u l t . d a t a ( ) , que ry )
110

111 e l s e :
112 g e t d a t a a n d i n s e r t ( r e s u l t . d a t a ( ) )
113

114 d b c o u n t = db . f i n d ({ ” n e i g h b o r h o o d ” : hood } ) . c o u n t ( )
115 p r i n t ( ”Done wi th {} . There a r e now {} /{} r e s t a u r a n t s l o c a t e d i n {} i n

t h e d a t a b a s e . Moving on t o t h e n e x t hood . ” . f o r m a t ( hood , db coun t ,
t o t c o u n t , hood ) )

116

117 t ime . s l e e p ( random . r a n d i n t ( 5 , 10) )
118 p r i n t ( )

Listing A.1: Code for scraping Factual.
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Appendix B
Factual

B.1 Factual data

Table B.1: A complete overview of the data provided by Factual.

Attribute Type Description
Name String Entity name.
Address String Address number and street name.
Address extended String Additional address, incl. suite numbers.
Po box String PO Box.
Locality String City, town or equivalent.
Neighborhood String The neighborhood(s) in which this entity is found.
Region String State, province, territory, or equivalent.
Postcode String Postcode or equivalent (zipcode in US).
Country String
Latitude Decimal Latitude in decimal degrees (WGS84 datum).
Longitude Decimal Longitude in decimal degrees (WGS84 datum).

Tel String Telephone number with local formatting.
Fax String Fax number in local formatting.
Website String Authority page (official website).
Email String Primary contact email address of organization.
Owner String Owner name(s).

Cuisine String The type of food served.
Price Integer A price metric between one and five.
Rating Decimal A rating between 1 and 5.

Chain id String Indicates which chain (brand or franchise) this entity
is a member of.
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Continuation of Table B.1
Attribute Type Description

Chain name String Label indicating which chain (brand or franchise)
this entity is a member of.

Category ids Integer Category IDs that classify this entity.

Category labels String Category labels that describe the category branch or
’breadcrumb’.

Hours String JSON representation of hours of operation.
Hours display String Structured JSON representation of opening hours.
Founded String Year founded.
Attire String A single value from an enumerated list.
Attire required String Gotta have this on to get in.
Attire prohibited String Can’t get in if you are sporting this.
Admin region String Additional sub-division.

Payment cashonly Boolean Only accepts cash
Reservations Boolean Accepts reservations.
Open 24hrs Boolean Open 24x7

Parking Boolean Some kind of parking is advertised; this will be true
when any other parking attributes are true

Parking valet Boolean Valet parking is available.
Parking garage Boolean Garage parking is available.
Parking street Boolean Parking on-street.

Parking lot Boolean Parking lot adjacent, not necessarily dedicated to
this place.

Parking validated Boolean Validated parking is available.

Parking free Boolean Free parking is available. This is common in most
civilized places, but unknown in LA.

Smoking Boolean This place allows smoking somewhere.
Breakfast Boolean Serves breakfast.
Lunch Boolean Serves lunch.
Dinner Boolean Serves dinner.
Deliver Boolean Delivers.
Takeout Boolean Provides takeout/takeaway.
Cater Boolean Provides catering.

Alcohol Boolean
Alcohol is served or can be consumed on the
premesis; this will be true when any other alcohol
attributes are true.

Alcohol bar Boolean Has a full bar.
Alcohol beer wine Boolean Serves beer and wine only.
Alcohol byob Boolean Bring Your Own Bottle.
Kids goodfor Boolean Noted as being good for kids.
Kids menu Boolean Has a kids menu.
Groups goodfor Boolean Noted as being good for groups.

Accessible wheelchair Boolean Premesis are noted explictly as being accessible
by wheelchair
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Continuation of Table B.1
Attribute Type Description
Seating outdoor Boolean Outdoor seating is available.
Wifi Boolean Wifi is provided by the establishment.
Room private Boolean Private dining room is available.
Vegetarian Boolean Vegetarian options noted.
Vegan Boolean Vegan options noted.
Glutenfree Boolean Gluten free items noted.
Lowfat Boolean Lowfat options noted.
Organic Boolean Organic options noted.
Healthy Boolean Healthy dishes are explicitly available.

B.2 Restaurant example
{

"_id" : "1d6ba261-6e02-4fbf-847a-64ed78aca896",

"wifi" : false,

"locality" : "New York",

"meal_deliver" : true,

"cuisine" : [

"Italian",

"Cafe",

"Pasta",

"Pizza",

"American"

],

"meal_lunch" : true,

"country" : "us",

"tel" : "(212) 317-2908",

"region" : "NY",

"neighborhood" : [

"Midtown South",

"Flatiron",

"Kips Bay"

],

"hours_display" : "Mon-Thu 7:00 AM-11:00 PM;

Fri-Sat 7:00 AM-11:30 PM;

Sun 7:00 AM-10:00 PM",

"meal_takeout" : true,

"latitude" : 40.743903,

"longitude" : -73.983961,

"parking_street" : true,

"parking_lot" : true,

"meal_dinner" : true,

"meal_breakfast" : true,
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"alcohol_beer_wine" : true,

"smoking" : false,

"alcohol" : true,

"address" : "420 Park Ave S",

"price" : 3,

"options_glutenfree" : true,

"parking" : true,

"accessible_wheelchair" : true,

"attire" : "smart casual",

"seating_outdoor" : true,

"hours" : {

"wednesday" : [

[

"7:00",

"23:00"

]

],

"sunday" : [

[

"7:00",

"22:00"

]

],

"monday" : [

[

"7:00",

"23:00"

]

],

"tuesday" : [

[

"7:00",

"23:00"

]

],

"thursday" : [

[

"7:00",

"23:00"

]

],

"saturday" : [

[

"7:00",

"23:30"
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]

],

"friday" : [

[

"7:00",

"23:30"

]

]

},

"category_labels" : [

[

"Social",

"Food and Dining",

"Restaurants",

"Italian"

],

[

"Social",

"Food and Dining",

"Restaurants",

"International"

]

],

"postcode" : "10016",

"category_ids" : [

358,

464

],

"room_private" : true,

"email" : "info@theonerestaurants.com",

"rating" : 4,

"name" : "Asellina",

"open_24hrs" : false,

"alcohol_bar" : true,

"groups_goodfor" : true,

"reservations" : true,

"payment_cashonly" : false,

"website" : "http://togrp.com/asellina/"

}
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