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Abstract

Ant colony optimization (ACO) is a constructivistic and population-based meta-
heuristic for solving combinatorial optimization problems inspired by how real ants
use pheromones to find shortest paths. Like other metaheuristics ACO is prone
to converge on local optima, also known as stagnation. Inspired by the collective
behavior of real ants, this thesis incorporated labor division into ACO in order
to avoid stagnation. Since there was little research that concern utilizing labor
division in ACO, two original attempts at merging labor division models from
biological science with ACO was performed. The two chosen labor division models
were the seemingly popular Fixed-Threshold model and the Self-Reinforcement
model.

The two resulting algorithms were applied to the minimum-cost flow problem
domain with concave costs functions, which is a NP-hard problem. Max-Min
Ant System, also an ACO algorithm, had previously been applied to concave
minimum-cost flow problems and achieved good results. The performance and
search behavior of the two proposed labor division algorithms were therefore
compared to Max-Min Ant System on a set of 300 flow networks. The results
indicated that both labor division algorithms performed comparable to Max-Min
Ant System and avoided stagnation very well.



Norsk Sammendrag

Denne avhandlingen tok for seg å kombinere ACO-søk med modeller for arbeids-
fordeling fra naturen. Et ACO-søk bruker en matematisk modell på hvordan
ekte maur samspiller i naturen, eksempelvis for å etablere maurstier. ACO er
en konstruktivistisk og populasjonsbasert metaheuristikk som brukes til å løse
kombinatoriske optimaliseringsproblem, og har tidligere blitt anvendt til å løse
kjente problem slik som Traveling Salesman Problem. I likhet med andre meta-
heuristikker er ACO utsatt for å konvergere til suboptimale løsninger, også kalt
stagnasjon. Etter inspirasjon av maur, kombinerte vi arbeidsfordelingsmønst-
re man kan observere i naturen med ACO-søk for å forbedre søkeevnen. Mer
spesifikt skulle arbeidsfordelingen håndtere balansegangen mellom utforsking av
søkelandskapet og å fokusere på å forbedre løsningene.

Siden det var svært lite dokumentert forskning på hvordan biologisk arbeids-
fordeling kan bli kombinert med ACO, har vi formulert to nye metoder ved å
bruke modeller fra biologiske, empiriske studier. Disse to modellene var Self-
Reinforcement og Fixed-Threshold.

De to algoritmene ble testet på et stort testsett av minimum-kost flytproblem
med konkave kostfunksjoner, som er en NP-hard problemklasse. De ble også
sammenlignet med et annet ACO-søk som tidligere har blitt anvendt til å løse
den samme typen problem og har prestert bra.

Eksperimentene utført i sammenheng med avhandlingen viste at arbeids-
fordeling fungerer svært bra til å balansere ACO-søk, og oppnår resultater på
høyde med den tilsynelatende mest populære strategien for å balansere ACO-søk:
Max-Min Ant System.
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Chapter 1

Introduction

1.1 Research Motivation

Insects have captivated humans for centuries. They are simple creatures on the
individual level. Despite that, eusocial insect colonies display complex collective
behaviors that far exceed the capabilities of a single individual. Ant colonies are
for instance capable of constructing complex mounds and establish the shortest
path between their mound and food resources.

Ants have proven to be one of the most successful species on the planet. The
first ant walked the earth roughly 100 million years ago. They outlived the
dinosaur extinction and witnessed the emergence of the human ancestors. Today,
the number of ants is estimated to be approximately 10

16 individuals [15]. Each
ant has the liberty to decide on its own activities. The interplay among a colony
of ants forms a self-organized system that is capable of overcoming challenges
such as defending their mound and providing food [23]. The self-organization in
ant societies is perhaps most evident in the division of labor observed in some
ant species [14, 49]. In these societies, the ants tend to specialize towards certain
activities within the colony. This can be observed in the genus Pheidole, where
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2 Chapter 1. Introduction Grimnes and Hovland

the larger ants tend to provide security for the mound while the smaller ants
forage for food [49].

By combining local decisions and self-organization, the ant colony emerges as
a resilient and dynamic system. As an example, when the ratio between larger
and smaller workers in Pheidole was artificially altered, the colony counteracted
the imbalance by workers changing roles [49]. Their resilience enables colonies
to endure both internal and external challenges, such as population increase or
destruction of their mounds [23]

Thus an ant colony is a collection of simple agents, which combined, is capable
of solving complex problems. The emergence of complex behavior from simple
agents have inspired the field of Swarm Intelligence to study how mathematical
models of ant colonies can be the foundation of algorithms. This has made ant
colonies interesting to the field of optimization theory.

Algorithms that solve problems using a model of ants are categorized as Ant
Colony Optimization (ACO) algorithms. The goal of ACO is to mimic and adapt
the behavior of real ants to solve combinatorial optimization problems. Analogous
to real ants, the artificial ants in ACO are only presented with local knowledge of
the properties they observe. Thus these algorithms form decentralized systems
without any global, controlling entity. ACO algorithms have been applied to a
variety of problems such as facility location problems [12], routing problems [39],
set cover problems [13], and traveling salesman problems [17, 21].

However, ACO algorithms are prone to converge to suboptimal solutions. In
ACO algorithms, converging to a suboptimal solution is also called stagnation.
The stagnation term was coined by Dorigo et al. [18] and describes a situation
where no further solutions would be discovered during a search. Many papers
have been published on how to prevent stagnation from occurring during ant
search [19, 29, 42, 50]. However, to our knowledge no research has been published
on how naturalistic division of labor could be used to avoid this problem.
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1.2 Research Topic and Questions

The problem investigated in this paper was the single-source uncapacitated,
minimum-cost flow problem (MCFP) with concave cost functions. This is a
NP-hard problem [24]. The research topic was:

Incorporating Labor Division into Ant Colony Optimization

The goal of this paper was to evaluate how the two labor division models
Fixed-Threshold and Self-Reinforcement model could be combined with the Ant
Colony Optimization metaheuristic. The performance of the labor division models
was compared to the Max-Min Ant System described by Stützle and Hoos [42],
which has previously been applied to the same problem domain by Monteiro et al.
[33].

This thesis focused on how labor division can be brought into play to avoid
stagnation and balance the search between exploration and exploitation. The
following research questions were defined with regard to MCFP problems with
concave cost functions:

1 How can labor division be incorporated into ACO to counter stagnation and
how does it affect the performance?

2 How are exploration and exploitation in ACO balanced by the Fixed-Threshold
and Self-Reinforcement labor division models?

Exploration and exploitation Balancing exploration and exploitation refer
to the decision of whether to invest computational resources in searching untested
areas of the search landscape or to search for solutions in proximity of the best
solution that has been discovered. In a maritime analogy, this is the dilemma of
whether to set all your fishing nets in the same location where you’ve caught fish
before, or try to discover even better spots to fish. While focusing the effort on
good regions may lead to small improvements, one are often required to explore
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the landscape before finding the optimal region. This is when the balance of
exploration and exploitation comes into play. While the exploration may lead you
toward the optimal region, you are often required to probe the most promising
areas before finding the optimal region.

Fixed-Threshold and Self-Reinforcement The Fixed-Threshold Model is
a labor division model from biological science capable of describing how a diverse
population of agents may specialize to perform different tasks. Its foundation
in nature has been advocated by multiple empirical studies, and this has made
it a popular model for division of labor. While the Fixed-Threshold Model has
a mathematical definition, the Self-Reinforcement model is a concept. The self-
reinforcement derives from the anticipated behavior of the individuals. The core
hypothesis in the Self-Reinforcement model is that the individuals who perceive
some reward after executing a given task will be more likely to execute the same
task again than someone who did not experience the same reward. The notion
of the Self-Reinforcement model is therefore that division of labor spring from
experience rather than genetics.

1.3 Research Method

The principal research method to answer the research questions was to conduct an
extensive literature review of modern labor division models. The literature study
was used as a basis to devise two labor division schemes for the ACO algorithm,
which were tested and compared to the popular Max-Min Ant System algorithm.
The result of the literature review is presented in chapter 3.

The computational experiments consisted of applying the three algorithms
on a large collection MFCPs, and compare their performance based on statistics.
The experiments were intended to identify if the incorporation of labor division
could improve the performance of ant-based algorithms in the MFCP domain
compared to the Max-Min Ant System algorithm.
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1.4 Report Outline

This report is structured accordingly:

Chapter 1 offers an introduction to the problem and presents the research
motivation and questions.

Chapter 2 formally defines the minimum cost flow problem with concave
cost functions and present background information on the Ant Colony
Optimization algorithm.

Chapter 3 presents a literature review. The literature review discusses four
themes important to this thesis. First, the chapter provides an introduction
to how the realistic test problems used in the comparative were constructed.
Second, a review of the research on minimum cost flow problems is introduced.
Third, the chapter presents a review of the current countermeasures to
stagnation and early convergence in ACO. Fourth, two labor division models
are discussed. Finally, the chapter is rounded off with an allusion of related
works and a structured literature review.

Chapter 4 details how a solution is constructed. In addition, the chapter
presents two combinations of ACO and division of labor models to solve
MCFP. The chapter concludes by describing the experimental plan.

Chapter 5 presents and discusses the results

Chapter 6 summarizes the findings and what has been achieved.
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Chapter 2

Background

2.1 Introduction

This chapter will briefly introduce the problem considered in this thesis, the
minimum-cost flow problem with concave cost functions. A mathematical model
of the problem based on graph theory is presented. In addition, we give a short
presentation of the ant colony optimization metaheuristic, which serves as a
framework for the ACO algorithms presented in this thesis.

2.2 The Minimum-Cost Flow Problem

The minimum-cost flow problem, also known as the transshipment problem, is to
find the cheapest way to transport a commodity through a network in order to
satisfy demands at some nodes from supplies at other nodes. It is regarded as
the most fundamental flow problem [1, p. 4] and arises in many scenarios such as
distributing goods from manufacturers to retailers, the flow of parts through a
production line, and routing traffic through a road network [1, p. 5].

Formally, the minimum-cost flow problem can be defined as follows. Let

7
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G = (N,E) be a directed graph where N is a set of nodes and E is a set of edges
represented as ordered pairs of nodes. Reciprocal edges from nodes to themselves
are prohibited. Every node i 2 N has an associated supply or demand d

i

. If
d

i

> 0 then node i is a supply node, if d
i

< 0 it follows that node i is a demand
node and if d

i

= 0 then node i is known as a transshipment node. It is required
that the supply and demand of all nodes sum to zero, that is

P
i2N

d

i

= 0. In
addition, every edge (i, j) 2 E has an associated lower capacity l

ij

, upper capacity
u

ij

and cost function c

ij

(x). The objective is to find a flow X : E ! Z of minimal
cost, where x

ij

denotes the flow through edge (i, j).

Minimize
X

(i,j)2E

c

ij

(x

ij

) (2.1)

subject to
X

j2N

+(i)

x

ij

�
X

j2N

�(i)

x

ji

= d

i

, 8i 2 N (2.2)

0  l

ij

 x

ij

 u

ij

, 8(i, j) 2 E (2.3)

Equation 2.2 is known as the flow conservation constraint. It states that the
difference in flow leaving and entering a node must be equal to the supply or
demand of the node. The first term in Equation 2.2 is the amount of flow leaving
node i and the second term is the amount of flow entering node i. Equation 2.3
is known as the capacity constraint and state that the flow through an edge is
bounded by the lower and upper capacities of the given edge.

2.2.1 Concave Cost Functions

The complexity of a minimum-cost flow problem is induced by the cost functions
used in the network. If the cost functions are linear or convex the problem
is solvable in polynomial time. However, if the cost functions are concave the
minimum cost flow problem is NP-hard [24], and thus no polynomial time algorithm
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exists unless P = NP. Concave cost functions are often more realistic than linear
cost functions and arise in many scenarios due to start-up costs, discounts and
economies of scale [24, p. 77]. Yet another reason to solve concave minimum-cost
flow problems is that networks with general nonlinear cost functions can be
converted into equivalent expanded networks with concave cost functions [28].

A function is said to be concave on an interval X, if it satisfies the following
inequality:

f(tx1 + (1� t)x2) � tf(x1) + (1� t)f(x2), 8x1, x2 2 X, 8t 2 [0, 1] (2.4)

Intuitively, this can be understood in the following way. tx1+(1�t)x2 is a number
between x1 and x2 and tf(x1) + (1� t)f(x2) is the parametric equation of the
straight line between the points (x1, f(x1)) and (x2, f(x2)). The definition can
thus intuitively be understood as that the point (tx1+(1� t)x2, f(tx1+(1� t)x2))

lies above the straight line between the points (x1, f(x1)) and (x2, f(x2)). This is
illustrated in figure 2.1.

x

y

x1 x2
tx1 + (1� t)x2

f(tx1 + (1� t)x2)

tf(x1) + (1� t)f(x2)

Figure 2.1: An example of a concave function. Notice how every point on the curve lies above
the straight line from (x1, f(x1)) to (x2, f(x2)).
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2.2.2 Single-Source Uncapacitated Flow Networks

When dealing with concave cost functions it is common to consider single-source
uncapacitated networks, because for such networks the optimal solution to the
minimum-cost flow problem is an arborescence rooted at the source node [55].
Knowing that the optimal solution is an arborescence adds additional constraints
to the search space and reduces the number of feasible solutions. Yet another
reason to consider single-source uncapacitated networks is that there is no loss of
generality since multi-source capacitated networks can be converted into equivalent
expanded single-source uncapacitated networks.

Arborescences are also known as directed rooted trees or branchings. An
illustration of an arborescence can be seen in fig. 2.2. In an arborescence there is
exactly one edge entering each node, except the root node which has no incoming
edges. Thus, there is exactly one path from the root to every other node.

S

1 2

3 4

(a) The blue edges form an arborescence.
Notice how every node except the source
has exactly one incoming edge.

S

1 2

3 4

(b) The red edges does not form an arbores-
cence because node 2 has two incoming
edges.

Figure 2.2: Illustration of arborescent flow paths
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2.3 Ant Colony Optimization

Ant colony optimization (ACO) is a constructivistic and population-based meta-
heuristic for solving combinatorial optimization problems inspired by how ants
use pheromones to find the shortest path between their nest and a food source. It
was first defined by Dorigo and Di Caro [16] and later elaborated by Dorigo and
Stützle [19, 20].

The ACO metaheuristic consists of three steps that are repeated until some
termination criterion is met. The three steps are: solution construction, daemon
actions, and pheromone updating. Typical daemon actions are post-optimization
routines such as improving a solution using a local search. While the solution
construction and pheromone updating mechanisms are essential in the ACO
metaheuristic, daemon actions are optional. Typical termination criteria are
either an iteration limit or a convergence measure.

Several special cases of ACO have been proposed in the literature, many
predating the ACO metaheuristic. Such special cases are often tailored to spe-
cific problems and have well-defined solution construction, daemon actions, and
pheromone updating. Some notable special cases are: Ant System [18], Ant
Colony System [17], Rank Based Ant System [11], and Max-Min Ant System [42,
43].

2.3.1 Solution Construction

During solution construction a set of M ants construct solutions. Solutions
are constructed by repeatedly choosing solution components until the solution
is complete. The solution components are chosen according to a probability
distribution based on the pheromones. Many different probability distributions
have been used by different variations of ACO. A common probability distribution
is:
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p(c
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j

(2.5)

where ⌧

i

is the pheromone associated with solution component c
i

, ⌘
i

is a heuristic
value for solution component c

i

, ↵ and � are the weights of the pheromone and
heuristic value respectively, sp is the current partial solution, and N(s

p

) denotes
the set of possible solution components for the given partial solution.

2.3.2 Pheromone Updating

The pheromones define a probability distribution over the solution space and
solution construction is the same as sampling from the probability distribution
defined by the pheromones. The purpose of updating the pheromones is to
increase the probability of generating good solutions. This is typically achieved
by evaporation and depositing pheromones on the solution components in a set of
good solutions. Evaporation is inspired by how real pheromone trails erode over
time in nature, and gradually diminishes the importance of previously reinforced
solutions. A common updating rule is:

⌧  ⇢⌧ +�⌧ (2.6)

where ⌧ is the pheromone, ⇢ is the evaporation rate and �⌧ is the reinforced
pheromone distribution. The choice for �⌧ varies between different ACO algo-
rithms. For minimization problems, two popular choices are:

�⌧ =

Q

Sbest
(2.7)

where Sbest is the best solution found at any iteration up until the moment of
pheromone updating, and:

�⌧ =

Q

S

k

(2.8)
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where S

k

the best solution found during the iteration k. The former being more
exploitative and the latter more exploratory. It is also possible to base �⌧ on
multiple solutions.

2.4 Summary

This chapter has presented the minimum-cost flow problem with concave cost
functions and the ACO metaheuristic. A mathematical model for the minimum-
cost flow problem was also presented. In addition, concave cost functions and their
implications was discussed briefly. Finally, the special properties of single-source
uncapacitated problems were specified. Regarding ACO, an overview of how
solutions are constructed based on pheromones and how pheromones are updated
was presented.

The next chapter presents a literature review that first examines how realistic
flow networks can be generated for use in testing. Second, it presents some of
the research into concave minimum-cost flow problems. Third, stagnation in
ACO is defined and some methods used to avoid stagnation is presented. Finally,
an introduction to division of labor and specifically the Fixed-Threshold and
Self-Reinforcement models is given.
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Chapter 3

Literature Review

3.1 Generating Realistic Test Graphs

The research that concern applying ant algorithms to MCFP appear to only have
been tested on graph sets consisting of random graphs. To our knowledge, only one
graph set with concave cost functions has been referenced in literature [4]. This set
consists of small graph instances with maximum 50 nodes. Unfortunately, random
graphs do not model real world transportation networks. Instead, transportation
networks pertain to the set of graphs called small-world networks [30, 41, 52]. In
a small-world network each node is connected to only a few other nodes, but there
should exist paths reaching all other nodes within few jumps.

In addition to having the small-world property, realistic networks tend to
be scale-free [30, 41]. A network is scale-free when the edge degree distribution
follows a power law. In other words, when there are a few nodes with very many
edge connections while the bulk of the nodes are only connected to a few other
nodes.

A comparison of a random, small-world and scale free networks is presented
in fig. 3.1. It is apparent from the figure that even though the graphs have

15
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Figure 3.1: A comparison of a random graph (leftmost) and two small-world graphs, where
one of them is scale-free (rightmost). The small-world graph in the center was created using
the Watts-Strogatz graph generating procedure. The scale-free network on the right, called
Powerlaw Cluster Graph, was generated using the procedure formulated by Holme and Kim
[25]. It is clear from the figure that the graphs are very different in structure even though the
have the same number of nodes and edges. The rightmost graph tend to have the most realistic
transportation network structure.
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the same number of nodes and edges, they are very different in structure. The
rightmost graph is both scale-free and has the small-world property. This graph
was generated using a graph growing procedure formulated by Holme and Kim
[25]. Similar to the Barabási-Albert model, this procedure generates graphs that
abide the power law distribution in addition to ensuring the small-world property
[25, 34]. Contrary to the Barabási-Albert model, the procedure by Holme and
Kim [25] also produce a high degree of clustering, which is often observed in
realistic graphs. Consequently, the small-world graphs in this paper were created
using the graph-growing model from Holme and Kim.

The experiment conducted in this thesis tested the algorithms on a graph set
composed by 62 small-world graphs in addition to the Beasley graphs [4]. The
small-world graphs were included to test the algorithms on more realistic problem
instances than the random graphs in the public test set. Furthermore, the test
problems were made more realistic by assigning concave cost functions to the flow
edges. The next section provides some appreciation for the application of concave
cost functions to flow problems and their usefulness.

3.2 The Concave Minimum-Cost Flow Problem

A single-source uncapacitated flow problem with concave cost functions has strong
representational power. Any flow problem with non-linear cost functions can
be redefined as a flow problem with concave functions in an expanded network
[28]. In addition, both capacitated and multi-source networks can be transformed
into a single-source uncapacitated problem [46, 55]. Consequently, the domain
of single-source uncapacitated minimum-cost flow problems with concave cost
functions is worthwhile studying.

When concave cost functions are introduced to the minimum-cost flow problem,
the problem become NP-hard [24]. The increase in complexity originates from
the curve of the concave functions. A local optimum in a single concave function
may not correspond to the global minimum of the system.
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A single-source uncapacitated flow problem with concave cost functions has a
solution if there are no negative cost cycles and if every demand node is reachable
from the source node. If the problem satisfies these two criteria, the solution will
be a spanning tree rooted at the source and reaching out to all demand nodes [33,
55]. This analytical property is an important clue when deciding how the ants
should construct their solutions in ACO.

Palekar et al. [37] developed a branch and bound algorithm for the fixed charge
transportation problem and looked into which properties make certain problems
more difficult than others. They observed that the ratio between the total unit
costs and fixed charge costs in the optimal solution give an indication to the
problems difficulty, with intermediate values being the most difficult. They argued
that this could be because if the unit costs are much larger than the fixed charge
costs the problem approaches a linear problem and if the fixed charge costs are
much larger than the unit costs the problem reduces to minimizing the fixed
charges. However, a drawback of this ratio is that it requires the optimal solution
and thus cannot be used to estimate the difficulty of the problem before trying to
solve it. As a solution, Palekar et al. [37] came up with another way to estimate
the difficulty of problems, dubbed Difficulty Ratio (DR), which they defined as:

DR =

f(m+ n� 1)

c

P
n

i=1 di
(3.1)

where f and c is the average fixed charge cost and average unit cost of all edges
respectively, m is the number of supply nodes, n is the number of demand nodes,
and d

i

is the demand of node i. This analysis could be used to dynamically tune
the parameter configurations of a search algorithm. If the DR indicates that the
graph might be difficult, an ACO algorithm could gear its parameters toward
exploration rather than exploitation in order to find the optimal solution. When
ant algorithms promote exploration, the search tends to postpone the onset of
stagnation. The next section explores various stagnation avoidance strategies
documented in research. These strategies attempt to provide a mechanism for
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balancing exploration and exploitation in ACO.

3.3 Stagnation in Ant Colony Optimization

Ant algorithms were first applied to combinatorial optimization problems in 1996
by Dorigo et al. [18]. Dorigo et al. applied their ant algorithm Ant System to the
traveling salesman problem (TSP), and achieved good results on small problem
instances. However, Ant System did not scale well and could not compete with
state-of-the-art optimization algorithms in benchmarking tests [42]. Stützle and
Hoos [42] argued that Ant System displayed poor performance because of an
excessive focus on exploration. Based on research on combinatorial optimization
search landscapes, Stützle and Hoos [42] reasoned that an ant-based algorithm
should exploit the search history to a greater extent.

In ant algorithms, early convergence is also known as stagnation. An ant
algorithm is said to enter stagnation behavior when all ants travel the same
suboptimal set of edges [15, 19]. In other words: an ant-based algorithm stagnates
when the ants stop exploring new solutions [18].

Pheromone Bounds

Due to pheromone evaporation, the pheromone level on seldom-travelled edges
in the graph may approach zero. The likelihood of this edge being travelled
is proportional to the pheromone level, and would thus decrease in tandem.
When the likelihood of choosing these edges become very low, all of the ants will
construct the same solution and thereby have stagnated the search. To guarantee
the possibility of traversing neglected edges, it is common to introduce bounds on
the edge pheromone level.

Stützle and Hoos [42] introduced both upper and lower bounds on the
pheromone strength in their Max-Min Ant System algorithm. The pheromone
restriction prevented poor regions of the search space from being completely
ignored and good regions from dominating the search, by limiting the pheromones
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to the range [⌧

min

, ⌧

max

]. Let Cbest denote the cost of the best solution discovered
and ⇢ be the pheromone evaporation factor. The upper bound was the analytical
limit:

⌧

max

=

1

⇢Cbest
(3.2)

The minimum bound was dynamically specified by a constant ratio from ⌧

max

.
Let p

best

be the probability of constructing the best solution and N be the number
nodes in the graph. ⌧

min

was defined as:

⌧

min

=

⌧

max

(1� p

best

)�
N

2 � 1

�
p

best

(3.3)

The notion of using pheromone bounds to prevent stagnation is appealing
both due to its simplicity and effectiveness. The Max-Min Ant System achieved
much better results than Ant System [42].

The mathematics behind the pheromone limitation in MMAS implies that the
lower bound on the pheromone strength ⌧

min

is directly proportional to the upper
bound ⌧

max

. The ratio between ⌧

min

and ⌧

max

control the degree of stagnation
avoidance. In order to prevent stagnation the ratio ⌧

min

⌧

max

must be closer to one,
else the edges with ⌧

min

pheromone would be impossible to coincidentally choose.
However, if the lower bound ratio is close to one the algorithm would yield a
very slow convergence rate since the ants will not be able to convey the same
amount of information via stigmergy. Contrarily, if the ratio is close to zero the
search would be likely to stagnate. Hence, the ratio has a direct impact on the
convergence rate of the search.

Altiparmak and Karaoglan [2] and Venables and Moscardini [45] also employed
pheromone limitation to counter stagnation and used the same ⌧

max

as the Max-
Min Ant System. However, they both specified a simpler lower bound ⌧

min

. Let
a be some problem dependent constant:
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⌧

min

=

⌧

max

a

(3.4)

The redefinition of ⌧
min

is just circumventing the problem of estimating p

best

required in Max-Min Ant System. Instead, the ratio between ⌧

max

and ⌧

min

is
directly specified.

Bui and Zrncic [10] specified their pheromone bounds to depend on the edge
costs in the best solution S

k

of iteration k when solving degree-constrained
spanning tree problems. In addition, they did not cut off the pheromone values
to the respective boundary, but instead either subtracted or added the initial
pheromone value ⌧0 to the edge in order to validate the pheromone level again.
Let C

⇤
k

be the set of costs for the edges in the solution S

k

. The maximum and
minimum bounds were defined as:
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However, even though limiting the pheromone levels is a popular approach to
prevent early convergence it does not cancel stagnation completely. Consequently,
many papers suggest to also include a stagnation criterion, that once reached,
trigger the pheromone levels to be reset to an arbitrary value ⌧0 [6, 19, 29].

Reset Pheromone Levels

Blum and Blesa [6] utilized two stagnation-avoiding strategies when solving the
k-cardinality problem. First, they used the pheromones bounds ⌧

max

= 0.999 and
⌧

min

= 0.001. Finally, they reset both the global solution and the pheromone
levels when the system had stagnated. The level of stagnation was described by a
convergence factor c

f

. Let S

k

be the set of edges in the best solution of iteration
k and t be the cardinality of the tree, then c

f

was defined as:
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c

f

=

P
(i,j)2S

k

⌧(i,j)

t · ⌧
max

(3.6)

Following the definition in eq. (3.6), the convergence factor c
f

is range bound to
[0, 1]. The more likely the colony is to construct solution S

k

again, the closer will
c

f

be to one. This is an intuitive measurement for stagnation, since stagnation is
defined as when the ants are guaranteed to construct the same solution persistently.
Blum and Blesa [6] reset the system when the c

f

factor was equal to one.

Venables and Moscardini [45] analyzed the rate of stagnation too, and provided
a measurement for the capacitated fixed charge location problem. Let Sbest be
the best solution and ⌧

i,j

be the pheromone of edge (i, j) in Sbest. Let b be the
number of facilities. The stagnation rate is then defined by eq. (3.7). As the
ant system converge, the stagnation measurement will approach zero. Once the
system stagnated, Venables and Moscardini reset all edge pheromones to ⌧

max

.

P
⌧

i,j

2S

best

min{⌧
max

� ⌧

i,j

, ⌧

i,j

� ⌧

min

}
b

! 0 (3.7)

Liao et al. [29] also reset the pheromone levels when the colony was close to
stagnation. To measure the level of stagnation, Liao et al. observed the number of
consecutive iterations with a relative solution improvement lower than a specific
threshold. When the threshold was reached, both the global solution and the
pheromone levels were reset.

It seems apparent that the strategy of resetting the pheromone levels are similar
to performing a random restart, and may be perceived not as much a stagnation
avoidance strategy as a way to ameliorate the issues with early convergence. It is
important to notice that when resetting the pheromone levels, all the knowledge
the colony had gained about their environment is expunged. Consequently, ant
algorithms that can avoid resetting the pheromone levels may be more efficient.
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Minimum Pheromone Threshold Strategy

The Minimum Pheromone Threshold Strategy (MPTS) was proposed by Wong and
See [50] in 2009 and produced good results on the quadratic assignment problem
[50]. This was an interesting, dynamical approach to pheromone limitation. The
lower bound on the pheromone range ⌧

min

was adjusted according to the observed
convergence rate. When the convergence rate drops, and the ants approach
stagnation, the pheromone range is reduced and the ants become more willing to
choose edges with low pheromone values.

This was realized with a threshold value ⌧

thresh

2 (⌧

min

, ⌧

max

). At the start
of the search, ⌧

thresh

is set to some arbitrary value, which is then updated
depending on the convergence as the search progress. The value was adjusted
by dividing ⌧

thresh

by some constant c at fixed intervals. If an ant traverse an
edge with pheromone ⌧

i,j

< ⌧

thresh

, the edge pheromone ⌧

i,j

would be reset to
⌧

max

. Consequently, this strategy effectively prevents the need for reinitializing
the pheromone levels. In turn, MPTS also avoid the information loss incurred
when resetting the pheromone levels. It appears that the MPTS could be used
with any of the aforementioned algorithms, since it does not interfere with the
dynamics of the pheromone bounds.

Stagnation in Nature

Ant colonies in nature must explore their environment to discover food in order to
avoid starvation. For an ant to be able to scout the surrounding area, the ant must
be able to journey outside the established ant trails. If all ants were constrained
to only move along the established ant trails, they would become oblivious to the
rest of their habitat. This form for stagnation can be observed in nature, and is
termed circular milling since these never-ending trails form a ring [40]. Arguably,
the stagnation in ACO algorithms can be compared to stagnation in colonies in
nature. Balancing exploration and exploitation is apparently important for both
realistic and artificial ant colonies.
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Ant colonies have been studied in biological research since the late 19th century
and empirical studies of insects have provided insight on how insect colonies are
capable of avoiding starvation and stagnation [23]. Their success as a complex
ecological system has risen from their capability of social organization and labor
division [38]. The members of an insect colony need to offer protection, gather
food, and attend to the brood. The flexible behavior of the workers is important to
maintain the existence of the colony under internal and external challenges [8, 9].
These challenges are overcome by the social organization of individuals. Following
the naturalistic solution to stagnation, it would be interesting to incorporate labor
division into ant algorithms as a stagnation countermeasure.

3.4 Labor Division

Division of labor can be achieved through worker polymorphism and appear in
many termite species and some ant breeds [14, 38, 48]. This section will discuss
two labor division models that are observed in nature. First, the Fixed-Threshold
model which appear to be a popular abstraction on how a diverse population
can exhibit division of labor. Finally, the conceptual Self-Reinforcement model is
explored.

Fixed Threshold Model

The fixed threshold model gained concession after Wilson [49] published a seminal
paper in 1984 on how one could manipulate different worker castes in the ant genus
Pheidole to change their behavioral pattern. Wilson artificially removed members
from certain castes of a colony and then observed the effect of influencing the ratio
between worker groups. The study indicated that members of different castes
would eventually carry out the other caste’s activities if they perceived that certain
tasks were neglected. The analytical success of the threshold model established it
as a seemingly popular labor division model in research. Experiments conducted
by Robinson [38] indicated that the behavior of the bee family Apis mellifera may
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also be governed by response thresholds using hormonal signals. Furhtermore,
Detrain and Pasteels [14] showed that response thresholds govern the actions of
the ant species Pheidole pallidula in at least two actions: defending their hive and
foraging for food. The Pheidole pallidula communicate through laying down trails
of behavior stimulating different worker classes to join in on specific activities.
The stimulus was regulated by the concentration of pheromone on the trail.

Bonabeau et al. [8] publicized a study on how the simple Fixed Threshold
Model (FTM) earlier proposed by Robinson [38] can provide the foundation for
division of labor in insect societies. The Fixed Threshold model assume the
workers in a colony are selectively acting out assignments based on stimuli, where
an action is performed if the corresponding stimulus is above its threshold. When
the stimulus increased above the threshold, the workers were enticed to carry out
the respective activity. Bonabeau et al. [8] focused on how a colony consisting of
multiple worker castes with different stimuli thresholds can produce division of
labor, and investigated this through quantitative simulations using FTM. They
concluded that FTM can account for some of the dynamics observed in nature,
such as the plasticity observed by Wilson [49] in the ant genus Pheidole. However,
FTM is a very simple model and can only account for observations on a small
timescale [8]. Nevertheless, FTM appear to be a popular labor division model in
literature [5, 8, 14, 22, 26, 35, 36, 44, 48, 49, 51].

The dynamics of the fixed threshold model is governed by two weighted
behavior transitions. The probability of starting to perform a certain activity a

i

and the probability of stop carrying out activity a

i

. The transition between these
two states is governed by a stimulus s. An activity is more likely to be carried out,
if the corresponding task stimulus is high. The transition probability is regulated
by a threshold value ✓. Let the probability of starting to perform task a

i

be:

P1(ai = 0! a

i

= 1) =

s

2

s

2
+ ✓

2
(3.8)

Equation (3.8) describes that an ant may start performing activity a

i

with
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probability P1 at each time step. After each time step in the model, the agent
may cease to perform task a

i

with a probability p

term

:

P0(ai = 1! a

i

= 0) = p

term

(3.9)

Equation (3.9) says that after each iteration, the agent may stop performing a

i

regardless of the stimulus level. When activity a

i

is executed, the corresponding
stimulus s tend to decline. However, the stimulus may still be strong enough
to transition the agent to perform the same activity in consecutive iterations,
following eq. (3.8).

Arguably, the Minimum Pheromone Threshold stagnation prevention strategy
described by Wong and See [50], to dynamically adjust the probability of exploring
edges with low pheromone strength based on the convergence rate, share some
resemblance with a threshold model. In their ACO algorithm, the threshold
is represented as the ⌧thresh criteria in Wong and See [50]. Once the threshold
is reached, the corresponding edge is delegated a quantity of pheromone. The
additional pheromone would then entice the workers to explore this path.

The only modifications to ACO required in order to incorporate the Fixed-
Threshold Model, is to model a stimulus signal. This stimulus could for instance
be a stagnation measurement. Thus, a threshold behavior could be executed when
the stimulus and stagnation level increase. A fitting behavior would then be to
force the ants to explore the landscape.

Self-Reinforcement Model

Another take on labor division is to encourage workers to perform an activity if
the work yields positive results. The Self-Reinforcement model strives to represent
division of labor as an emergent property from experience, in which the successful
execution of an activity should increase the likelihood that the agent will perform
the task again. Likewise, should failing the activity lead to a decrease in the
probability of performing the activity again. This reinforcement concept has been
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suggested as governing the control of nest climate in Bombus terrestris [47].
It has been shown that this model can promote specialists from a population of

initially similar individuals [5, 9]. Theraulaz et al. [44] derived the same conclusion
by adding learning to the Fixed Threshold model defined by [7, 8]. Theraulaz
et al. extended the FTM by giving each agent an individual threshold level. The
threshold would increase or decrease depending on how frequently the agent
performed the corresponding activity. From the initial state, where all agents
had the same threshold value, Theraulaz et al. achieved a diverse population
with workers specialized at different activities due to the variance in their activity
stimulus threshold.

3.5 Related Work

Yan et al. [53] were the first to apply ACO to the single-source uncapacitated
minimum cost flow problem with concave cost functions. The cost functions they
used were square root functions. They created a hybrid ACO algorithm based
on Ant Colony System [17], genetic algorithms and threshold accepting. Their
algorithm also incorporated a local search. In their tests, they compared the
hybrid ACO algorithm to a genetic algorithm and four different local search-based
algorithms. The hybrid ACO algorithm and genetic algorithm achieved much
better results than the local search algorithms, but on the other hand were much
slower. Compared to each other, the hybrid ACO algorithm performed slightly
better than the genetic algorithm, both in terms of results and speed.

Monteiro et al. [32, 33] also applied ACO to the single-source uncapacitated
minimum cost flow problem with concave cost functions. They looked into three
different concave cost functions, among them the fixed charge function. Their
ACO algorithm was based on Max-Min Ant System [42, 43], but was adapted
to the minimum cost flow problem. One of the alterations they performed was
to incorporate a local search, which improved the performance of the algorithm
in their tests. The ACO algorithm was compared to a hybrid genetic algorithm



28 Chapter 3. Literature Review Grimnes and Hovland

and yielded good results and proved to be considerably faster than the genetic
algorithm.

In addition to the concave minimum-cost flow problem, ACO has been applied
to some similar NP-hard flow and graph problems. Chen and Ting [12] developed
two ACO algorithms based on Ant Colony System [17], where one was combined
with a lagrangian heuristic, in order to solve the single source capacitated facility
location problem. The algorithm combining ACO and the lagrangian heuristic
clearly outperformed the other ACO algorithm. Santos et al. [39] developed
an ACO algorithm for the capacitated arc routing problem and compared their
algorithm to five other metaheuristics. Their algorithm performed well, finding
the best known solution to 95% of the test problems.

3.6 Structured Literature Review

The attention to how swarm intelligence and ants in nature could be used to solve
optimization problems was sparked by an article by Garnier et al. [23] published
in the journal Swarm Intelligence. This paper also the triggered the investigation
into whether labor division models could be applied to ant algorithms.

To get acquainted with the field of ACO, the seminal book Ant Colony
Optimization written by Dorigo and Stützle [19] was read. The exploration of
this field of study fanned out from this book. Ant Colony Optimization listed
numerous high quality references.

The second principal paper to this thesis was acquired by skimming through
the GECCO proceedings relating to ant algorithms from the previous five years.
The GECCO article written by Monteiro et al. [32] concerned how an ant algo-
rithm efficiently solved minimum cost flow problems with concave cost functions
(MCFP), which is a very applicable optimization problem. This paper also refer-
enced a public test set with concave cost graph problems created by Beasley [4].
Unfortunately, they did not publish the exact solution results they achieved.

Google Scholar search was used to investigate the MCFP domain and retrieve
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relevant papers. The search keyword sentences was concave cost graph problems
and transportation problems. The search retrieved an abundance of papers that
were filtered out based on their relevancy and citation count. The refined search
returned seven central papers [1, 24, 27, 37, 46, 54, 55].

Google Scholar’s related articles functionality was used to retrieve relevant
articles on popular labor division models in literature.

3.7 Summary

This chapter has discussed the four principal themes of this report. First, the
reasoning for why and additional test set of small-world graphs were generated and
why these graphs provide a more realistic benchmark test for the transshipment
problem. Second, the chapter reviewed important aspects of concave cost functions
in flow problems. The most essential characteristic was that the optimal solution
in an MCFP is always an arborescent route. Third, the chapter surveyed the
various stagnation avoidance strategies used in literature. However, no research
was discovered on how to apply biological labor division models to ACO. Finally,
the chapter reviewed the two labor division models: Fixed Threshold and Self-
Reinforcement model. The two models were defined at different levels of formality.
While the Self-Reinforcement model is a concept, the Fixed Threshold model is
defined by two equations.

The next chapter will first examine how an ant should construct a solution in
the MCFP domain, and then move on to specifying how the two nominated labor
division algorithms was incorporated into ACO.
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Chapter 4

Methodology

4.1 Solution Construction

4.1.1 Introduction

The minimum cost flow problem can intuitively be represented as a graph problem
where the goal is to find the cheapest way to flow some commodity through a
network. This section will discuss two solution construction methods proposed to
generate ant solutions in the MCFP domain. First, a naturalistic approach to
solving MCFP is formulated. The second strategy is an enhanced extension the
first approach, where the solution construction is oriented toward computational
efficiency.

4.1.2 Alternated Move and Push

This first approach is also the most naturalistic solution construction method that
was considered. The idea was to repeatedly let an ant walk along a path from the
source node to a sink node until the ant trails formed a network that connected
all demand nodes to the source node. Empirically, this approach was strongly

31
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rooted in nature, where ant colonies have to organize trail systems leading to food
sources in their environment.

This strategy entails an incremental solution construction, where a single
solution is constructed by letting the ant walk through the graph multiple times.
An illustration of the procedure is depicted in Figure 4.1. At each junction
faced by the ant, it chooses one of the radiating paths randomly. Expressed in a
different way, the solution is constructed by a series of local decisions and can be
characterized as a decentralized strategy.

The Alternated Move and Push strategy show how a system of simple agents
are able to cooperate through interactions with the environment to solve flow
path problems. This strategy is a general solver for capacitated edge problems.
Whether the problem is to find the minimum flow cost, or to find the shortest
TSP path; as long as the problem can be described as a graph, this procedure be
used as a meta-solver.

In order to use this approach to solve problems in the MCFP domain, we
have to transform the uncapacitated problem into a capacitated graph with a
single source. This is easily achieved through a three step process. First, convert
the graph to a directed graph and add a super-sink. The super-sink will be the
only demand node. Second, add edges leading for each of the previous demand
nodes into the super-sink. Finally, assign infinite capacity to the internal edges,
while the edges leading to the super-sink has capacity equal to the demand of
the originating node. The result of this process is depicted in Figure 4.2. The
demand from demand nodes D = {2, 3, 4, 5} has been replaced by capacitated
edges leading to the super-sink. The capacity of the corresponding edge mirrors
the demand of the emitting node.

Unfortunately, this solution construction procedure can also create solutions
that are guaranteed not to be optimal solutions in MCFP. This issue arises
since the edges are undirected in the MCFP domain, but need to be directed in
Alternated Move and Push strategy. The result is that ants may create naive paths,
such as the example illustrated in fig. 4.3. The figure shows how the Alternated
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(a) A capacitated graph with
one source S and one sink D

node.
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(b) The first trail created by
an ant. The path is randomly
created based on pheromone
levels. A single flow unit is
pushed along the the edges
included in the trail. The
trail is denoted by a green
line.
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(c) A second pass is con-
ducted by the same ant. This
resulted in a new random
path. A single flow unit is
pushed along the green trail.
The blue line denotes an edge
that has been previously tra-
versed by the ant.
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(d) A third pass is performed
by the same ant, and a
flow unit is pushed through
the graph along the green
path. The red line denotes
an edge that cannot be tra-
versed since the node it con-
nects to has not outgoing ca-
pacity. The red edges will be
removed from the solution.
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3/3

1/1

2/21/1

(e) The ant can no longer
reach the sink node due to
the edge capacities. The
ant therefore terminates its
search for paths through the
graph. The solution con-
struction has finished.

Figure 4.1: How a solution is constructed using the Alternated Move and Push strategy.
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Figure 4.2: This figure show how a undirected single source flow network with multiple demand
nodes and uncapacited edges must be converted to a directed graph with a single sink before
applying the Alternated Move and Push strategy.

Move and Push procedure could end up constructing circular flow routes. In
worst-case situations, the problem showcased in fig. 4.3 could prevent the search
from ever finding the optimal solution.
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(a) An undirected graph
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(b) The graph must be con-
verted to a directed graph be-
fore the Alternated Move and

Push strategy can be used to
construct a solution.
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(c) One ant has begun its
tour of the graph. The green
lines denote the edges that
have been traversed. The
randomly created path is
S, 1, 2. The ant is position in
node 2. From this state, the
rest of the path is randomly
chosen to be 3, 2, 4.
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(d) The ant has completed
its tour of the graph. The
green edges indicate the con-
structed route.
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(e) The solution constructed
by the ant has clearly in-
cluded an unnecessary edge.
Remember that the optimal
solution to a MCFP is an ar-
borescent path. Thus, the
optimal solution would not
include the yellow edge.
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4
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(f) This would have been the
ideal route to construct in an
uncapacitated minimum cost
flow problem.

Figure 4.3: This is an illustration of how the Alternated Move and Push strategy can construct
solutions that are guaranteed to be suboptimal in a MCFP with concave cost functions.
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4.1.3 Randomized Spanning Tree

When examining figs. 4.1 and 4.3, it is apparent that the constructed solutions
share similarities with a spanning tree generation. The ant is consecutively faced
with edge conjunctions in the graph until it reaches the super-sink. Upon reaching
the super-sink, the ant will have covered the demand of one demand node. Then
the ant is transported to the source node and will generate a path to another
demand node. This procedure can be efficiently implemented as a randomized
spanning tree (RST) construction.

The spanning tree is incrementally constructed by selecting edges based on the
standard pheromone selection scheme as described in section 2.3. Each spanning
tree start off with the source node as the only vertex in the tree. In the first
step of the tree construction, one of the edges emitting out of the source node is
randomly chosen. The nodes that are connected to the source nodes will then be
appended to a frontier set. During the subsequent construction steps, any edge
emitting out of the frontier set may be selected to extend the spanning tree. This
process is repeated until all demand nodes are reachable from the source node.
An illustration depicting this process is presented in fig. 4.4.

Arguably, the solution construction would still be a series of local decisions on
the solution constructing level and constitute a decentralized solution construction
mechanism.

Contrary to the Alternated Move and Push strategy, the RST solution construc-
tion is capable of working with both directed and undirected graphs. Therefore,
RST can be applied to MCFP without preprocessing the graph. The RST con-
struction procedure would only require the ant to "walk" through the graph once
rather than the repeated instigation required in Move and Push. The ant only
need to traverse the graph once, since the edge flow would be entailed by the set
of selected edges.

An important advantage of using the RST approach is that the ants will avoid
the problem discussed in the Move and Push strategy where the optimal flow
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Figure 4.4: Constructing a solution with the randomized spanning tree procedure. The solid
black arrow denote the resultant path of constructing the partial solutions. In the initial state
of the search, the ant can only select edges emitting from the source node. In all subsequent
states, the ant can traverse any node emanating from the frontier set of green nodes. The
selectable edges in each state are colored yellow. The procedure select one of the yellow edges
according to the calculated ACO edge transition probabilities as specified in eq. (2.5). Illegal
edges, pointing to nodes within the frontier set, are marked red and removed from the solution.
The construction terminates when there are no more valid edges to traverse.
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path might not be obtainable by the ants. In addition, the RST method will only
construct arborescent flow routes, which are known to be the optimal solution
candidates in MCFP.

It is worth noting that the RST construction is biased because edges that are
added to the frontier set early in the construction procedure are more likely to be
chosen than edges that are added to the frontier set later on. One of the effects
of this bias, is that a uniform pheromone distribution does not entail a uniform
probability distribution over the solutions space. This is illustrated in fig. 4.5.
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Figure 4.5: An example illustrating that a uniform pheromone distribution does not necessarily
define a uniform probability distribution over the solution space. Every edge has an equal amount
of pheromone ⌧ . Yellow edges indicate edges that may be chosen to expand the arborescence,
while green edges are included in the current tree. Red edges cannot be chosen because doing so
would break the arborescence.
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4.2 Self-Reinforcement ACO Algorithm

4.2.1 Introduction

Self-Reinforcement ACO (SR-ACO) is the first novel combination of an ant
algorithm and a labor division model proposed in this paper.

4.2.2 Implementation

The main idea behind Self-Reinforcement ACO is to only reinforce a solution once.
This ensure that the colony is focused toward exploration since each solution is
only reinforce once, while at the same time it ensures exploitation since it is only
reinforcing the best possible solution. This was achieved by both maintaining
a set of explored solutions and a priority queue of unexplored solutions. After
a solution has been constructed the algorithm checks whether the solution is in
the set of explored or unexplored solutions. If the newly constructed solution is
not in either of the sets it is added to the priority queue of unexplored solutions,
otherwise it is discarded.

During pheromone updating, the head of the priority queue of unexplored
solutions is retrieved, reinforced and finally added to the explored set. This way
of choosing which solution to reinforce makes SR-ACO a very exhaustive search.
Provided enough iterations, SR-ACO will reinforce all discovered solutions and
thus search a large portion of the search space. Due to its probabilistic nature it
is not guaranteed to discover all the solutions and thus find the optimal solution.

Because a solution will only be reinforced once during a search, SR-ACO
require a large number of ants and a high pheromone evaporation rate to ensure
that the solution is exploited to a large enough extent before the subsequent
solution is tried. A problem with high evaporation rate is that an edge may
quickly lose nearly all of its pheromone and become almost impossible to select
during solution construction. In order to avoid this problem, SR-ACO utilizes
pheromone bounds to ensure that no edge is impossible to choose during solution
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construction.
In Self-Reinforcement ACO the pheromone bounds are explicitly defined.

Given a solution S to reinforce, the pheromones are updated according to:

⌧

ij

 (1� ⇢) · ⌧
ij

+ ⇢ ·�⌧

ij

(s) 8(i, j) 2 E (4.1)

where

�⌧

ij

=

8
<

:
⌧min if edge (i, j) is not in the solution S

⌧max if edge (i, j) is in the solution S

(4.2)

As long as the initial pheromone level ⌧0 is not greater than ⌧

max

or less than
⌧

min

, this updating function ensure that the pheromones are always between ⌧

min

and ⌧

max

.
The pheromone bounds both regulate the degree of stigmergy and how similar

the generated solutions will be to the reinforced solution. In this context, similarity
is measured as the number of edges common to the two solutions. The closer
the ratio ⌧

min

⌧

max

is to one, the less stigmergy and similarity between the reinforced
solution and the generated solutions there will be. Likewise, the closer the ratio
is to zero the more stigmergy and similarity between the reinforced solution and
the generated solutions there will be.

Due to the high evaporation rate and that only the best solution in the priority
queue is reinforced, it is expected that SR-ACO will have a fast convergence in
the beginning of the search. Then, when SR-ACO reach a local optimum it will
successively try increasingly worse solutions in an effort to escape the local optima.
Consequently, the average cost of the generated solutions is expected to increase
until an improvement upon the best discovered solution is found.

SR-ACO is designed to be very resistant to stagnation as it always reinforces
new solutions and the pheromone bounds should ensure that the search always
explores new areas of the search space.

One drawback of maintaining the set of explored solutions and the priority
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queue of unexplored solutions is the increased memory usage. However, it is
possible to limit the memory usage by setting a fixed capacity for the priority
queue. In the experiments carried out in this study, the capacity for the priority
queue was set equal to the number of iterations. The set of explored solutions is
implicitly limited to the same number of elements, since exactly one solution is
added to it every iteration.

4.2.3 Search Dynamics

Figure 4.6 shows an illustration of how the priority queue of unexplored solutions
affects the search. The blue circle indicates the best solution at each iteration,
which is then removed from the queue and reinforced. New solutions inserted into
the queue in the subsequent iteration is pointed to by dashed arrows. Red circles
indicate solutions that are removed from the queue.

The figure depict how the priority queue enable SR-ACO to concurrently
optimize multiple facets of the best solutions, by selectively focusing on only the
currently best solution in the priority queue. In the initial phase, the search
focuses on finding the best solutions in the neighborhood of the reinforced solution.
This behavior continues until the search encounters a local minimum. If the search
has reinforced a locally optimal solution, it will defer optimizing this solution
sequence and rather reinforce the second best solution in the subsequent iteration.



42 Chapter 4. Methodology Grimnes and Hovland

Iterations

2 3 4 5 6

20

0

30

10

40

50

Co
st

1

Figure 4.6: Illustration of the search progression in SR-ACO. The circles represent solutions
maintained in the SR-ACO priority queue. The priority queue contains the three solutions with
the lowest cost. At each iteration, one solution is removed from the queue and two new solutions
are generated by the ants. The dashed lines indicate that the targeted circle was generated
from the previous solution. The solid lines indicate that the solution from the previous iteration
was retained in the priority queue. The red circles have been replaced in the priority queue by
better solutions. In iteration three, we observe that the search defers optimizing the previously
best solution and continue optimizing the second best solution. This behavior occurs when the
search enters a local optimum.
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4.3 Fixed-Threshold ACO Algorithm

4.3.1 Introduction

The Fixed-Threshold ACO (FT-ACO) algorithm is the second algorithm proposed
in this article. FT-ACO is a combination of the Fixed-Threshold labor division
model and an ant algorithm. The intention of incorporating the threshold labor
model was to trigger the ant colony toward exploring the search landscape whenever
the search approach stagnation behavior.

4.3.2 Implementation

FT-ACO is constituted by two components. First, the ACO algorithm responsible
for discovering the solution. Finally, the Fixed-Threshold system that trigger
scouting. In addition, the Fixed-Threshold model also requires an arbitrary
function that evaluate whether the system is closing in on stagnation.

The ant algorithm in FT-ACO is similar to Max-Min Ant System (MMAS),
except that the pheromone bounds have been redefined. The upper pheromone
boundary ⌧

max

is removed and the lower boundary ⌧

min

i

is defined per node i.
The lower boundary is defined as 0.05 multiplied by the highest pheromone level
among the incident edges. In other words, if there are only two edges out of
a node then the edge with the lowest pheromone level will have at least a five
percent probability of being selected. Let S be the set of edges connected to node
i.

⌧

max

=1

⌧

min

i

= 0.05max

ij2S

⌧

ij

FT-ACO only reinforces the edges present in best found solution. The same
strategy is also used in MMAS.

The rest of this section will explain the inner workings of how the Fixed-
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Threshold model has been incorporated and how stagnation is used as a stimulus.
An extensive analysis on the decision of the arbitrary evaluation function is
presented in section 5.3.5.

4.3.3 The Fixed-Threshold Model and Scouting

The Fixed-Threshold model was incorporated into ACO to provide a black box
mechanism for balancing the focus between exploration and exploitation. The
Fixed-Threshold ACO algorithm became a process that alternates between focus-
ing on exploration and exploitation.
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Figure 4.7: A range bound stimulus variable. When the stimulus signal has accumulated enough
strength, the fixed threshold is intersected and the associated behavior may be triggered. The
behavior counters the stimulation, and a sudden drop is observed in the stimulus. In FT-ACO,
the stimulus is produced by stagnation and the triggered behavior is the scout reaction.

Figure 4.7 illustrate how the threshold behavior will be triggered based on a
stimulus. When the stimulating signal accumulated to the fixed threshold level,
a specific behavior was triggered. In this case, the threshold dictates whether
the ant colony should focus on exploration or exploitation. The stimulus was
generated by an arbitrary stagnation evaluation function.

Let Distance() denote the arbitrary stagnation measuring function. This
function takes the best found solution Sbest and the best solution S

k

in iteration
k as parameters. The stimulus s

k

at iteration k was calculated as:
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k

) otherwise
(4.3)

When the stimulating signal is weak, the ants will focus on exploitation and
prioritize to traverse edges with higher pheromone levels. This phase corresponds
to the area below the red threshold line in fig. 4.7. As the stimulus cross the red
line in fig. 4.7, the colony will shift the focus to scouting the graph. The focus is
shifted by smoothing the edge transition probabilities in the ACO algorithm. Let
S be the set of edges currently visible to an ant, ⌧

ij

denote the pheromone level
and ⌘

ij

denote the visibility on the edge spanning nodes i and j. Furthermore,
let ↵ and � be parameters that govern the relative importance of ⌧ and ⌘. The
standard transition probability P

ij

of an edge is defined as:

P(i,j) =
(⌧(i,j))

↵

(⌘(i,j))
�
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(i,j)2S

(⌧(i,j))
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(⌘(i,j))
�

(4.4)

The transition probabilities were smoothed by adding a quantity of pheromone
inversely proportional to the difference between the strongest and weakest pheromone
signal an ant perceived. In other words, edges with lower pheromone level would
be compensated with more pheromone.

An exploration factor � was also introduced. The exploration factor specified
the extent of how even the probabilities should be turned. The parameter �

take on values in the range [0, 1], where zero imply no regularization and one
produce completely homogenized transition probabilities. Let S be the set of
edges currently visible to an ant. The smoothed probability P

⇤
ij

of edge ij is
defined as:

P

⇤
(i,j) =

X

(i,j)2S

P(i,j) + �

✓
max

(u,v)2S

P

u,v

� P(i,j)

◆
(4.5)

The effect of the smoothing function is illustrated in fig. 4.8. The figure clarifies
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Figure 4.8: Illustrating how the smoothing function defined in eq. (4.5) manipulate transition
probabilities. As the probability distribution become plane, the transition probabilities become
uniform. Consequently, the scouts will become indifferent to the differences in pheromone signal.
This is beneficial when exploring the search landscape, but may prevent scouts from discovering
low cost solutions.

how the exploration factor � can be used to adjust how exploratory the scouts
behave, through smoothing out the transition probabilities. A � value equal to
zero, will render the scouts oblivious to the actual differences in the transition
probabilities, while a � value equal to one will make the scouts very likely to
construct a path equal to the best know solution. The � value should therefore
be defined as some intermediate value, typically closer to one than zero in order
to encourage scouts to explore routes in the proximity of the best discovered
solution.

The relationship between � and expansion of the search area is tentatively
illustrated in fig. 4.9. The colored regions symbolize the probable nodes a scout
may reach. The set of reachable nodes expand increasingly fast by each node
the ant traverse. The search region expands because the scouts modify their its
transition probabilities such that edges with little pheromone are more likely to
be traversed. During the initial moves in the graph, the scout is still likely to
wander along a path with high pheromone levels, but the odds of deviating from
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Figure 4.9: Illustrating how � in eq. (4.5) can be adjusted to expand the regions of the search
space reachable for a scout. If the exploration factor � is close to zero, the scouts will be more
likely to explore regions of the graph closer to the best solution. Contrarily, an exploration
factor � equal to one would allow the scouts to explore the entire landscape.

that path increase by each junction.
It is clear that the smoothing performed by eq. (4.5) provide FT-ACO with the

means to manipulate the focus on exploration in the vicinity of the best solution
according to the parameter �.

The decision on when to shift the predominance of the focus from exploration
to exploration is governed by the Fixed Threshold Model. Let the stimulus s

denote the measured degree of stagnation and ✓ be the threshold limit. Then, let
Pexplore be the probability of scouting during the next iteration. Following the
work of Bonabeau et al. [7–9] and Theraulaz et al. [44], the threshold function
employed in FT-ACO was identical to these papers and defined as:

Pexplore =
s

2

s

2
+ ✓

2
(4.6)

Equation (4.6) specify the probability for the colony to start exploring based
on a stimulus s and a threshold ✓ in the subsequent iteration. In other words,
when the colony is triggered to explore, it will do so for one iteration. Following
an exploratory iteration, the colony will fall back to exploitation if the stimulus
has dropped sufficiently. If the stimulus did not drop enough, the colony will still
have a high probability of executing another exploratory step.

During the exploration phase, the colony is expected to discover poor solutions.
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The poor scout solutions will then be optimized during the succeeding exploitation
phase. This idea was realized through a three step process. First, designate the
best solution constructed by the scouts in the exploration phase as the reinforced
solution. Second, reset the pheromone on all edges to 0.05⌧0. Finally, deposit
some pheromone ⌧0 on the edges in the reinforced solution. This will effectively
make the scouted solution become a breadcrumb trail through the graph. The
trail will encourage the foragers to look for solutions in the neighborhood of the
newly explored trail.

4.3.4 Using Stagnation as Stimulus

The aim of incorporating labor division into ACO was to avoid stagnation. An
ACO system is said to enter stagnation when all the ants in the colony produce the
same solution. In other words, stagnation occur when the colony fail to discover
new solutions. It therefore seems fitting to use stagnation as the stimulating
signal.

In order to use stagnation as the stimulus we need to measure how close to
stagnation the colony is. A review on how the stagnation measurement function
was selection is presented in section 5.3.5. Through experimentation the stagnation
measurement was decided to be a comparison of the best found solution Sbest

and the iteration best solution S

k

. An efficient approach to compare solutions
the MCFP domain is to use the Euclidean norm.

The stimulus s should decrease proportionally to the difference between Sbest

and S

k

such that the threshold behavior can be postponed if the ant colony
manages to avoid stagnation without scouting. When the iteration solution is
similar to the global solution, the search tends to be closer to stagnation than if
the iteration solution is very different. This can be achieved by defining s as:
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k
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8
<

:
s

k�1 1
kS
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�S
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k if kSbest � S
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+ 1 otherwise

(4.7)
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where kSbest � S

k

k is the Euclidean norm between the two solutions.
Equation (4.7) dictate that the stimulus should increase whenever the global

and iteration solutions are equal. However, if the solutions are different the
stimulus s will decrease inversely proportional to the Euclidean distance between
S

k

and Sbest.

4.3.5 Dynamic Deposit Quantity

When the ants have constructed their solutions, a portion of pheromone is de-
posited on the edges in the best solution Sbest. In turn, this will make the edges
pertaining to the best solution to be more likely to traverse in the subsequent
iteration as well. The pheromone levels are not upper bounded in FT-ACO, like
it is in MMAS. By removing the upper bound ⌧

max

, the algorithm will converge
faster. A fast convergence is preferable in FT-ACO, since this will in turn increase
the stimulus for scouting the environment.

The quantity of pheromones deposited �⌧

ij

is in the range:

�⌧

ij

2 [0,!i (4.8)

Let C
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denote the cost of the best found solution Sbest until iteration k. Then
�⌧

ij

is defined as:

�⌧

ij

=

8
<

:

C

k�1

C

k

, if (i, j) 2 best tour.

0, otherwise.
(4.9)

The expression C

k�1

C

k

try to capture the relative improvement of newly dis-
covered solutions. The quantity of pheromones deposited is proportional to the
improvement of the solution cost. This will inherently make an effort to guide the
ACO search toward promising portions of the search landscape. In addition, this
pheromone strategy will influence the ant colony to explore the neighborhood of
the newly discovered solution rather than optimizing a previously best solution.
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The shift in focus is rooted in the potentially large quantities of pheromone that
can be deposited by this strategy.

An alternate approach to influence the colony to focus on new, improved
solutions may be to increase the evaporation rate after an iteration where an
improved solution is discovered. This is better illustrated by an example. Lets
say the graph has three edges with two pheromone units each, and that we have
discovered a relative solution improvement of 3.0. The Dynamic Deposit Quantity
strategy dictate that the edges present in the best solution should be reinforced
with three pheromone units. Arguably, the same shift in prioritization could be
achieved by evaporating 60% of the previous pheromones and only deposit one
pheromone unit.

The intuition of guiding the search toward regions of the search space, where
newly discovered solution improvements were found, seems reasonable. The result
of this modification is discussed in section 5.3.9.

4.4 Experimental Plan

4.4.1 Introduction

This section will go over how the experiments were conducted, and provide
reasoning for the algorithms we decided to include in the experiment. Finally, the
hand-tuned parameters used by the algorithms are presented.

4.4.2 Outline

The purpose of the experiments was to evaluate the performance and stagnation
avoidance ability of FT-ACO and SR-ACO. In order to achieve this, the two
algorithms were compared with two other ACO algorithms, Max-Min Ant System
and Rank Based Ant System, on two problem sets consisting of 300 flow networks
in total. Because ACO algorithms are probabilistic and can produce different
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results each time, the algorithms were run 100 times on every flow problem in
order to provide accurate statistical data.

Max-Min Ant System was chosen for comparison because it has previously
been applied to concave minimum-cost flow problems by Monteiro et al. [32, 33]
and includes a stagnation avoidance mechanism. It is also one of the most studied
ACO algorithms [19, p. 76]. On the other hand, Rank Based Ant System was
chosen because it is a simple ACO algorithm without any stagnation avoidance
mechanism [11]. Due to the lack of a stagnation avoidance mechanism, the results
of AS

rank

could be used as a point of reference on how important stagnation
avoidance is in a given flow network. The four algorithms used the same solution
construction method and thus only differed in how the pheromones were updated.

4.4.3 Experiment A: Convergence

The first experiment that was carried out, evaluated whether the proposed incor-
poration of labor division either positively or negatively affected the convergence
of ACO. The experiment focused on solving the problem instances of both the
random graph set from Beasley [4] and the small-world graph set. These runs
could then provide a statistical basis for analysis.

4.4.4 Experiment B: Stagnation Avoidance

The second experiment focused on the stagnation avoidance capability of MMAS,
AS

rank

, SR-ACO and FT-ACO. The result of AS
rank

would then be used as a
point of reference to how important stagnation avoidance is in a given problem
instance. Similar to experiment A, the experiment consisted of solving the problem
instances of both the random graph set from Beasley [4] and the small-world
graph set 100 times.
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4.4.5 Problem Sets

The four algorithms were run on two problem sets. The first problem set was
provided by Beasley [4] and was also used by Monteiro et al. [32, 33] to evaluate
their ACO algorithm. It contained 240 flow networks, ranging in size from 10 to
50 nodes. The flow networks were divided into groups of varying ratio between
unit costs and start-up costs with three networks in each group. An overview of
the groups and their respective ratios can be seen in table 4.1.

Table 4.1: An overview of the groups and the respective ratio of start-up costs to unit costs
in the graph set provided by Beasley [4]. For the largest networks with 40 and 50 nodes, only
the five first groups were present. A ratio of ten denote that the unit cost was one tenth of the
start-up cost on the edge.

Group Ratio

1 300
2 30
3 10
4 3
5 1.5
6 550
7 55
8 5.5
9 2.75
10 0.55

In addition, we generated a second set of 60 scale-free small-world networks
using the algorithm from Holme and Kim [25]. A scale-free network is a network
in which the degree distribution follows a power law, while a small-world network
is a network in which there on average is a short distance between all pairs of
nodes. These properties were chosen because they appear in many real networks,
including transportation networks. Since the scale-free and small-world properties
are more apparent in larger networks, the generated networks range in size from
40 to 100 nodes. Like the flow networks provided by Beasley [4], the scale-free
small-world networks were also divided into groups with varying ratio between
unit costs and start-up costs. An overview of the groups and their respective
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ratios can be seen in table 4.2.

Table 4.2: An overview of the groups and the respective ratio of start-up costs to unit costs in
the small-world graph set generated by us. A ratio of two denote that the unit cost was half of
the start-up cost on the edge.

Group Ratio

1 100
2 2
3 1
4 0.67
5 0.5

4.4.6 Measuring Stagnation

One of the central focuses of the experiments was to investigate the ability of FT-
ACO and SR-ACO to avoid stagnation. Therefore, after running the algorithms,
a separate routine was executed to detect whether the search had stagnated. The
stagnation detection routine is listed in algorithm 4.1. Let K be the number of
iterations and M be the number of ants. Furthermore, let C

m

k

be the cost of
the solution constructed by ant m in iteration k. The routine assigned the best
solution in each iteration C

k

. A successful convergence by an algorithm could then
be identified by observing the decrease in C

k

. If the decrease in C

k

halted before
reaching the global minimum COPT, and C

K

= C

K�1, the search had stagnated.

Algorithm 4.1: Stagnation detection
Result: true if avoided stagnation, otherwise false

for k  1 to K do

Ck  min
m2[1,M ]

C

m
k

return (CK = COPT) _ (CK > CK�1)
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4.4.7 Parameter Values

In order to ensure a fair comparison between the algorithms, the algorithms were
run with optimized parameter configuration. The optimized values were found by
testing multiple configurations of values on all flow networks from the problem
sets and selecting the best performing configuration for each algorithm. The only
requirement for the parameter values was that the number of generated solutions,
which is the product of the number of iterations and the number of ants, had to
be equal to 24000. As long as this requirement was met, the algorithms could
either favor using a lot of ants or running for many time steps. The parameter
values used by each algorithm during the final experiments are listed in table 4.3.
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Table 4.3: This table list the specific parameter configuration obtained after the extensive
parameter optimization runs.

Algorithm Parameter Value

AS
rank

I 600
M 40
⇢ 0.1
↵ 1.0
� 1.0

MMAS I 600
M 40
⇢ 0.01
↵ 1.0
� 1.0

SR-ACO I 100
M 240
⇢ 0.8
↵ 1.0
� 1.5
⌧0 1.0
⌧

min

0.011
⌧

max

1.0

FT-ACO I 600
M 40
⇢ 0.3
↵ 1.0
� 2.0
� 3.0
✓ 100
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4.5 Summary

In this chapter we first covered how an ant construct a solution. The construction
strategy was derived from how simple agents could produce valid solutions to a
MCFP. This refinement process resulted in the Randomized Spanning Tree (RST)
strategy where a solution is constructed as a spanning tree using the ACO edge
transition probability function. An important advantage with RST was that it
produced arborescent flow routes, which are known to be the optimal solutions to
MCFP.

The chapter has also described how SR-ACO employs the self-reinforcement
concept to balance exploration and exploitation, while FT-ACO utilized the
Fixed-Threshold Model as a black box mechanism to avoid stagnation. In the
next chapter, these techniques will be scrutinized by analyzing their performance
on two large problem sets. The examination will help provide answers to the
research question posed in chapter one.



Chapter 5

Results and Discussion

5.1 Introduction

This chapter presents and discusses the results from the experiments outlined in
section 4.4. The experiments were aimed at investigating how the three ACO
algorithms Max-Min Ant System (MMAS), Fixed-Threshold ACO (FT-ACO),
and Self-Reinforcement ACO (SR-ACO) perform on minimum cost flow problems
and if labor division is a better option for avoiding stagnation than the pheromone
limiting scheme used in MMAS. In order to determine the stagnation avoidance
performance of the three algorithms, they were compared to AS

rank

, an ant
algorithm without any stagnation avoidance mechanism.

The algorithms were run on two sets of flow networks; one set by Beasley [4]
consisting of 240 flow networks ranging from 10 to 50 nodes, and one set generated
by us of 60 small-world flow networks ranging from 40 to 100 nodes. The results
on all flow networks are presented in their entirety in appendices A and B and
provide statistical justification for the claims made in this chapter. A summary
of the results showing the percentage of flow networks on which the algorithms
stagnated, did not converge or found the optimal solution can be seen in table 5.1

57
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and fig. 5.1.

5.2 Results Overview

As can be seen in fig. 5.1, all of the stagnation avoiding algorithms performed better
than AS

rank

, especially on the small-world networks. On the flow networks by
Beasley [4] the three algorithms were able to find the optimal solution in almost
equally many problems, but the two labor division algorithms outperformed
MMAS on the small-world set.

Table 5.1: A table showing the stagnation occurrences calculated by algorithm 4.1. The row
Not yet converged indicate that the search had not yet entered stagnation, nor had it found the
optimal solution yet. The row Avg. Sol. required list the number of solutions that had to be
generated on average before the given algorithm found the global optimum. The row Avg. Sol.

required only consider the 149 problem instances where all of the algorithms found the global
optimum.

SR-ACO FT-ACO MMAS ASrank

Found Optima First 88.7% 10.7% 0.7% 0%

Found Optima 98% 93% 80% 49.7%

Stagnated 2% 7% 14% 50.3%

Avg. Sol. required 1045.64 1832.48 5259.33 3606.17

The stagnation measurements produced by algorithm 4.1 as defined in sec-
tion 4.4.6 clearly indicated a difference in the performance of the ant algorithms.
SR-ACO appeared to be the most efficient strategy, discovering the optimal
solution first in almost 89% of the test graphs. The two labor division based
algorithms, FT-ACO and SR-ACO, both performed very well, respectively solving
93% and 98% of the problem instances. The algorithm used as a stagnation
avoidance benchmark, MMAS, found the global optimal solution in 80% of the
test cases. This indicates that the labor division models can be efficiently ap-
plied to ACO to avoid stagnation, at least in the MCFP domain. The results of
algorithm 4.1 are listed in table 5.1 and illustrated in fig. 5.1.

In comparison to AS
rank

, MMAS and the proposed algorithms clearly achieved
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(a) A bar chart describing the performance of SR-ACO, FT-ACO, MMAS and ASrank on the
graph set created by Beasley [4].
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(b) A bar chart describing the performance of SR-ACO, FT-ACO, MMAS and ASrank on the
Small World graph set.

Figure 5.1: Two bar charts summarizing the result of the experiment and illustrating the
performance of MMAS, ASrank, SR-ACO and FT-ACO.
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much better results. As depicted in table 5.1, AS
rank

tend to suffer from early
convergence. AS

rank

performed especially poor on the large flow problems in
the small-world graph set. AS

rank

was only able to solve two percent of these
problems, and stagnated in the remaining 98% instances.

5.3 Results Analysis

5.3.1 Search Performance

MMAS has previously been applied to the single source uncapacitated minimum
cost flow problem by Monteiro et al. [32]. Their paper stated that MMAS was an
efficient solver in this problem domain. Consequently, MMAS was included in the
experiment as a benchmark for the proposed algorithms.

As expected, MMAS proved to be less prone to stagnation than AS
rank

, at
the cost of having a slower convergence. As a result of the stagnation avoiding
mechanism in MMAS, the algorithm discovered the optimal solution in 80% of the
flow problems. This is a clear improvement over AS

rank

, which only solved 49.7%
of the graphs. Following the bar chart in fig. 5.1a, MMAS achieved comparable
results to the proposed ant algorithms in terms of being able to solve the problem
instances. The overall performance of MMAS was however inferior in terms of
solutions that had to be generated before finding the global optimum. In other
words, MMAS required more time to solve the same flow problems. This is
apparent from table 5.1. Nevertheless, MMAS was the best performing algorithm
in one instance.

MMAS yielded slow convergence on the small-world graph set. Moreover, the
slow convergence prevented MMAS from discovering the global optima within the
iteration limit. The convergence of MMAS is rooted in the fine tuned balance
between exploration and exploitation. This balance in governed by the definition
of the ratio ⌧

min

⌧

max

between the maximum and minimum pheromone level boundary.
The decrease in performance as the graph size increased is striking when comparing
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the two bar charts in fig. 5.1. The small-world graph set contains larger graphs
than the graph set created by Beasley [4], and it is apparent from the results
listed in appendix A that MMAS struggle with the large graphs. The slow
convergence may also be caused by the low pheromone evaporation rate. However,
increasing the pheromone evaporation rate would in turn prevent the algorithm
from finding the optimal solution in other graphs due to shifting of focus toward
exploitation. Keep in mind that the result was generated by the best possible
parameter configuration discovered through extensive analysis.

FT-ACO achieved good results in terms of finding the global optima in both
graph sets. The combination of a fixed threshold labor division model and ant
algorithm was able to solve 93% of the problem instances. This is a 16% increase
over the benchmarking algorithm, MMAS. The results are even more interesting
when studying the two graph sets separately. The two algorithms perform almost
equally well on the graph set from Beasley [4], as can be deduced from the bar
chart in fig. 5.1a. Nevertheless, FT-ACO yielded much better result on the
small-world graph set than MMAS. The difference is obvious when comparing
the bar charts in fig. 5.1. This is encouraging results, considering that many real
world networks can be characterized as small-world [30, 41, 52].

Studying the table of results listed in appendix B, it is appreciable that in
problem instances where both MMAS and FT-ACO converged to a suboptimal
solution, FT-ACO had on average converged to a better solution than MMAS.
Even though neither algorithm succeeded in persistently discovering the global
optimum, MMAS appeared to be surpassed by FT-ACO.

FT-ACO is also converging faster than MMAS. The fast convergence in FT-
ACO is a positive outcome of the labor division scheme. As described in section 4.3,
FT-ACO will initially converge quickly and then initiate a exploration phase upon
recognizing that is nearing stagnation. The outcome of the scheme is a search
algorithm that quickly converges to a good solution, and in some instances, also
the optimal solution. The experiment showed that FT-ACO on average converges
faster than MMAS as exemplified by figs. 5.2 and 5.3. This is verifiable in the
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Figure 5.2: This graph exemplifies the situation where the search algorithms does not converge.
SR-ACO trends toward having found the best solution of the competitors, while MMAS is bent
towards producing the poorest solutions.

table of results listed in appendix A.

Nevertheless, FT-ACO was outperformed by Self-Reinforcement ACO. SR-
ACO solved 98% of the test graphs. Even though the two labor division ant
algorithms solved close to equally many instances, it is evident that SR-ACO
required less solutions to be generated before discovering the global optimum
when cross-referencing the results in appendix A. The superiority of SR-ACO is
striking in the bar chart summarizing the small-world results, in fig. 5.1b.

SR-ACO performed very well and consistently found the optimal solution of all
but 10 flow networks. It generally yielded fast convergence due to its exploitative
nature. In addition to the fast convergence, SR-ACO appears to avoid stagnation
very well. The search only entered stagnation in two percent of the test cases while
the second best algorithm, FT-ACO, stagnated in four times as many problem
instances.

SR-ACO appears to perform equally well on the graphs created by Beasley [4]
and the small world graphs, which is apparent by comparing the bar charts in
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Figure 5.3: This graph exemplify the convergence rate of the ant algorithms in an easy problem
instance. SR-ACO and FT-ACO quickly converge to the global optimum within a few iterations.
Next follows the ASrank algorithm, while the convergence rate of MMAS is slower due to the
pheromone limiting scheme.

fig. 5.1a and fig. 5.1b. Like the other algorithms, group one and six in the graph
set by Beasley [4] and group one in the small-world graph set appear to be the
hardest to solve. All of these groups have high start-up costs relative to the unit
costs in the flow network.

In general, it appears to be safe to say that SR-ACO outperforms both FT-
ACO and MMAS. It is able to find the optimal solution for more graphs than
MMAS and usually finds the optimum faster as well. SR-ACO appears to be able
to avoid stagnation, without paying the price of slower convergence.

5.3.2 Search Dynamics

Max-Min Ant System

Two phases can be distinguished in the search process of MMAS. During the
first phase MMAS generates solutions completely at random. During this phase,
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MMAS attempts to sample the entire solution space. Usually this phase is very
short, only lasting a few iterations and can barely be perceived in fig. 5.4. However,
the phase can be prolonged by adjusting the hand-tuned parameter Q, which
affects the quantity of deposited pheromone Q

C

best

in MMAS. Remember that
Cbest is the cost of the best solution discovered.
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Figure 5.4: A single run of MMAS on CCNFP10g4b, which is considered an easy graph. The
average value varies wildly as a result of the bounds on the pheromone levels. This jittering is
intended to avoid stagnation.

The second phase of MMAS is also the final discernible phase. During this
stage the algorithm continually optimize the global solution. The maximum and
minimum bounds on the pheromone levels are in place to enforce the possibility
to select an edge that hasn’t yet been traveled. This phase is better illustrated in
fig. 5.5.

As the cost of the best solution decreases, the minimum bound on the
pheromone level also decreases. The decrease in the minimum bound, causes the
average solution cost in the colony to increase after discovering new solutions
with lower costs. This is observable in fig. 5.5. The increase in average solution
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cost occurs since the ants have become more likely to choose edges with lower
pheromone strength. The average cost escalates until the system stabilizes with
the new, lowered minimum bound.
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Figure 5.5: Illustrating the progression of a single run with MMAS on a difficult graph instance.
The average value are varying wildly as a result of the bounds placed on the pheromone levels.
The jittering is intended to avoid stagnating the search. An interesting observation in this graph
is that the average solution quality of the population increase as the best solution Sbest decrease
in cost.

MMAS is metaphorically dependent on finding the correct hill to climb during
the initial phase, when it still has the ability to jump around randomly. After the
first phase has concluded, MMAS is increasingly more restricted to only look for
solutions similar to the best solution it has discovered hitherto. The importance
of finding the correct hill to climb is evident in fig. 5.6. The difference between
the best and the worst run on this graph instance is discouraging. The worst run
required over 14000 additional solutions to be generated before discovering the
global optimum. This imposes the notion that MMAS will not perform well on
graphs where the optimal solutions are situated in very peaky search landscapes.
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Figure 5.6: A graph showing the best and worst run of MMAS on CCNFP25g06c from Beasley
[4]. Notice the difference between the two runs. The worst run required over 14000 additional
solutions to be generated before discovering the global optimum.

In addition, this may also be part of the reason for why MMAS does not scale
well to the large graphs in the small-world test set.

Fixed-Threshold ACO

The search procedure in FT-ACO consists of four recognizable phases as depicted
in fig. 5.7. The first phase spans the initial iterations of the search procedure.
During this phase, the pheromone levels on the edges are almost equal due to
the initial pheromone quantity dispersed on the edges of the graph. Since the
pheromone levels are uniform, the random generation of solutions will construct
solutions from the entire search space. This phase is recognizable as a level
population average in the discovered solution costs and observable in fig. 5.8.

The first phase concludes when the ratio in the pheromone levels between
the edges that have received pheromones, and the ones that have not, reaches
some pivot point. This pivot point symbolizes a state where the probability of
constructing a solution with untraveled edges is very low. This second phase
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Figure 5.7: Illustrating the phases of FT-ACO. The final three phases recur until the search
completed the given number of iterations K.
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Figure 5.8: Illustrating the progression of a single run with FT-ACO on a difficult graph
instance. The sudden increase in the population average indicates that the scouting stimulus
reached its threshold and induced the ants to scout. The green curve indicate that the ants
discovered better solutions through scouting after about 8000 and 14000 generated solutions.



68 Chapter 5. Results and Discussion Grimnes and Hovland

is identifiable as a sudden drop in the average solution cost in the colony. The
outcome of the phase is generally a good solution. If the problem instance is easy
to solve, FT-ACO will often have produced the optimal solution upon terminating
the second phase. An example of a easy graph problem is exemplified in fig. 5.9.
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Figure 5.9: Illustrating the progression of a single run with FT-ACO on an easy graph instance.
The sudden increase in the population average indicates that the scouting stimulus reached its
threshold and in turn induced the ants to scout. In any case, FT-ACO discovered the global
optimum without using the scouts.

The third phase is the optimization phase. This phase is characterized as
when the colony no longer quickly finds better solutions. This phase has the same
objective as the second phase, to exploitatively look for better solutions. The
ant algorithm will approach stagnation during the third phase. To counteract
the stagnation, FT-ACO employs the Fixed Threshold labor division model. The
stimulus signal builds in strength when the ants no longer discover new solutions.
This can be identified as a level plot line in fig. 5.8. When the stimulus has
increased to a certain level the threshold function activates and FT-ACO enters
the fourth phase.
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The fourth phase is the scouting phase. This phase occur when the stagnation
stimulus have reached some threshold value ✓

thresh

. During the course of the
scouting period, the ants try to discover alternative solutions close to the best found
solution Sbest in the search landscape. This is achieved through a modulation
of the edge selection mechanism as described in section 4.3.3. Subsequent to
scouting in the fourth phase, the algorithm returns to the second phase.
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Figure 5.10: Illustrating the progression of a single run with FT-ACO on a difficult graph
instance where the scouts did not provide the necessary guidance to find the global optimum.
The sudden increase in the population average indicates that the scouting stimulus reached its
threshold and in turn induced the ants to scout. Even though the scouts were issued seven
times, the search did not find the optimum in this run.

FT-ACO relies upon the assumption that the scouts will eventually provide
the necessary guidance such that the recurring second phase will lead to the global
optimum. Unfortunately, FT-ACO did not always behave as intended. Intermit-
tently the scouts would not provide the necessary guidance to find the global
optimum despite trying multiple times as illustrated in fig. 5.10. Nevertheless,
the inclination to quickly converge the search in order to issue a new scout epoch,



70 Chapter 5. Results and Discussion Grimnes and Hovland

both benefit the algorithm with fast convergence and balanced the exploration
and exploitation.

Self-Reinforcement ACO

Two recurring phases can be identified during a search by SR-ACO: an exploitation
phase and an exploration phase. Depending on the complexity of the flow network
and length of the search, SR-ACO may switch between the two phases multiple
times during a search.

The first phase is the exploitation phase, in which SR-ACO is able to find
improved solutions repeatedly in subsequent iterations and several new solutions
are added to the priority queue of unexplored solutions. As better solutions
are found during the search, the length and frequency of the exploitation phase
decreases. Because of this the exploitation phase is most apparent in the beginning
of the search and can be observed in both figs. 5.12 and 5.13. An example of
the exploitation phase reoccurring later can be seen near the termination of the
search in fig. 5.13. The exploitation phase end and the exploration phase begin
whenever the search reaches a local optimum.

At the termination of the exploitation phase, SR-ACO will have reached a
local optimum. After this pivotal point, the search only discover a few solutions
of the same quality as the best solution discovered yet Sbest. The exploration
phase can be observed as a plateau in the minimum cost, while the population
average increase since the best solutions are being successively removed from the
priority queue. As long as the search does not discover new solutions of the same
quality as Sbest, the colony’s average cost will increase. This can clearly be seen
in figs. 5.11 and 5.12. During the exploration phase, the search diverges further
and further from the local optimum until hopefully a better solution is found.
When an improved solution is discovered the exploration phase end and SR-ACO
return to the exploitation phase. However, because some flow networks contain
many solutions with similar costs, an increase in the colony average is not always
as apparent. This is exemplified by fig. 5.13.
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Figure 5.11: A single run by SR-ACO on an easy problem instance. The optimal solution is
found almost instantly and one can observe how the population average increases as the search
diverges from the optimum.

Although, SR-ACO initially has a uniform pheromone distribution similar to
FT-ACO and MMAS, there is no discernible opening phase with an unchanging
population average due to the high evaporation rate used by SR-ACO. The high
evaporation rate immediately reduces the initial pheromone levels, so that the
first reinforced solution is highly exploited. The lack of this phase can clearly
be observed by comparing figs. 5.10 and 5.12, which respectively show a run by
SR-ACO and FT-ACO on CCNFP15g1a.

The convergence curves in the previously listed figures clearly indicate that
some of the flow problem instances were more difficult than others. Most of the
figures referenced the same two graph from the problem set: CCNFP10g6a and
CCNFP10g4a. A review of these two graphs, in addition to an overview of the
problem sets, is presented the following section.
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Figure 5.12: A single run by SR-ACO on a difficult problem instance. Notice that the
population average initially decrease as the search discover solution improvements during
the first few iterations. Following this period, the search is stuck for almost 5000 solution
generations. During this phase SR-ACO examine successively poorer solutions in order to
escape the local optimum. This is recognizable as an increase in the population average. Then,
after 5000 generated solutions, SR-ACO escape the local optimum and found further solutions
improvements. Once reaching the next optimum, after about 5500 generated solutions, the
population average once again increase in order to escape the optimum. However, this was the
global optimum and the population average can therefore be observed to trend upwards.
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Figure 5.13: The figure illustrates a single run where SR-ACO quickly converge toward the
best region of the search space. Nevertheless, the search spends a lot of time before discovering
the global optimum.

5.3.3 Comparison of Flow Networks

If one looks at the result tables in appendices A and B it is apparent that the
most difficult flow networks have high start-up costs compared to unit-costs. This
is consistent with the results of Monteiro et al. [33], who also found these groups
to be the most difficult. A possible reason why these flow networks are more
difficult, may be that the high start-up costs lead to similar solutions, in terms of
common edges, having less similar costs.

Figure 5.14 shows 3D visualizations of the search landscapes for two flow net-
works; CCNFP15g1a that has very high start-up costs compared to the unit costs
and CCNFP10g4 that has slightly higher start-up costs than unit costs. The search
landscapes were created with t-SNE, a visualization method for high-dimensional
data formulated by Maaten and Hinton [31]. From the figure it is apparent that
CCNFP15g1a has a more rugged landscape than CCNFP10g4b. This may be an
indication that similar solutions have less similar costs in CNNFP15g1a than in
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CCNFP10g4b.

(a) A 3D visualization of the search landscape of CCNFP10g4b, which is an easy problem with
slightly higher start-up costs than unit costs.

(b) A 3D visualization of the search landscape of CCNFP15g1a, which is a difficult problem
with much higher start-up costs than unit costs.

Figure 5.14: A comparison of the search landscapes of an easy and a difficult problem. Good
areas are colored yellow, while bad areas are colored dark blue.

Another interesting observation that can be made is that the size of the
solution space appears to have little effect on the difficulty of a flow problem. This
is among others, the case with CCNFP10g6a and CCNFP10g4a. They are both
tiny graphs with only ten nodes, but respectively have 592 and 124421 feasible
solutions. Although all the algorithms always found the optimal solution for
both problems, on average the algorithms required to generate more solutions
to solve the smaller CCNFP106a than CCNFP10g4a. Furthermore, all of the
algorithms required on average 2300 solutions or more to discover the optimum for
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CCNFP10g6a, meaning that all the feasible solutions could have been generated
almost four times if the algorithms instead enumerated all possible solutions. This
implies that the algorithms generate some solutions several times over during a
search.

(a) This is a 3D representation of the search landscape for the graph labeled CCNFP50g1a. In
this representation, the goal is to hill climb to the brightest hill top. The landscape appears to
be randomly scattered with local optima.

(b) This is a 3D representation of the search landscape for the graph labeled PowerCluster-
GraphN50g1c. In this representation, the goal is to hill climb to the brightest hill top. The
landscape consists of larger ridge components with local optima.

Figure 5.15: This figure showcase projections of the search landscapes of CCNFP50g1a and
PowerClusterGraphN50g1c. The two graphs are comparable in size, but are generated as a
random and Small World graph respectively. It is apparent that the landscape in the random
graph is more uniformly scattered with local optima.

In fig. 5.15 one can see 3D visualizations of the solution spaces for CCNFP50g1a



76 Chapter 5. Results and Discussion Grimnes and Hovland

and SmallWorldN50g1c, two graphs of equal size. The most apparent difference
between the search landscapes is that SmallWorldN50g1c is more yellow, while CC-
NFP50g1a is greener. This difference in color is an indication that CCNFP50g1a
consist of more low-cost solutions than SmallWorldN50g1c. Except that the
small-world network appear slightly smoother than the random network, the
solutions spaces appear to be very similar. The similarity may be an indicator
that it is the size differences and not the small-world property that primarily
makes the small-world networks more difficult to solve.

When comparing the random flow networks by Beasley [4] to the small-world
networks, one can see that MMAS and AS

rank

perform worse on the small-world
networks than on the random networks, while SR-ACO and FT-ACO perform
almost the same on the two graph sets. The difference in performance on the two
graph sets may not necessarily be because of the small-world property but rather
due to the size of the networks. The small-world set contains larger networks
than the set by Beasley [4] and looking at the results in appendix A one can
see that MMAS primarily struggles with the larger graphs. However, since the
small-world effect only emerge in sizable graphs it was impossible to test MMAS
on small-world networks of a size it handled well. The convergence of SR-ACO,
FT-ACO and MMAS will be briefly discussed in the following section.

5.3.4 Convergence Rates

This section will discuss why the ant algorithms exhibit pronounced differences in
their convergence rates. This is an interesting topic when establishing the best
performing algorithm. A fast convergence rate in this setting implies that the
algorithm requires few solutions to be generated before discovering the optimal
solution. First, the convergence of Self-Reinforcement ACO (SR-ACO) algorithm
will be discussed. Second, the focus is shifted to FT-ACO. Finally, the convergence
of MMAS will be discussed. The observed convergence rates are typified by the
graph in fig. 5.16.
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Figure 5.16: Illustrating the convergence of the algorithms on graph CCNFP30g3a. The curves
represent the average cost of solutions and are produced from 100 runs with optimal parameter
configuration.

SR-ACO was expected to exert a faster convergence than the competing
algorithms due to the highly exploitative nature of the search procedure. SR-ACO
is build upon the assumption that solutions of higher quality will be found in the
vicinity of the currently best found solution. This intuition was also a perfect fit
for the self-reinforcement model for labor division as described by Beshers and
Fewell [5]. The focus on looking for solution improvements close to the optimal
path is similar to how local search algorithms progress. Local search algorithms
have been applied to MCFP before [54], but they are inferior in the problem
domain. A local search algorithm constructs each solution in an isolated setting
unlike SR-ACO, which also takes the previous states of the search into account.
The success of SR-ACO, contrary to standard local search, may be related to the
stigmergic information conveyed by the ants across the iterations of the algorithm.
The importance of using the history of search states in ACO was pointed out by
Stützle and Hoos [42]. The history of states is represented by the pheromones
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dispersed on the graph. As illustrated in fig. 5.16, SR-ACO converges very quickly
toward the best regions of the solution space. However, the hunt for the exact
global optimum resulted intermittently a prolonged search. This prolongation
probably occurred if the search initially sloped down the wrong part of the search
landscape as seen in fig. 5.13.

Unlike SR-ACO, FT-ACO share more similarities with traditional ant colony
algorithms. FT-ACO relied on the stigmergic effect and that the pheromones
deposited at iteration k would aid the ants in discovering a better solution in
iteration k + 1. The fixed-threshold was only intended as a means to counter
stagnation, contrary to additionally speeding up the search. The combination of a
fixed threshold labor division model and ACO resulted in an algorithm that could
converge quickly toward good regions of the solution space, but not necessarily the
global optimum. The algorithm depended on the scouts to guide the search toward
a region of the search space where the foragers could converge on the optimum
solution. This seemed like an optimistic expectation. However, following the
results listed in appendix A the scouts regularly provided the necessary guidance
to promote the fast convergence. The expectation was facilitated by the dynamics
of the threshold triggered scout phase. Every time the search approached a
local optima, the colony would explore the landscape rather than getting stuck.
Nevertheless, FT-ACO remained an algorithm that was very dependent on a
successful scouting phase when solving hard problem.

Arguably, it is an advantage to have an algorithm that quickly converges toward
good solutions. Fast convergence is preferable if the search may be terminated
prematurely. Both FT-ACO and SR-ACO exhibited this dominance over MMAS.

MMAS clearly sported the slowest convergence rate, and consequently only
outperformed the other algorithms in a single flow problem. MMAS tend to
steadily discover solution improvements when searching, rather that having an
exponentially decaying convergence as both FT-ACO and SR-ACO. However,
following the definition of the pheromone limiting system, MMAS will only
converge to local optima if the ratio ⌧

min

⌧

max

was configured to a too small ratio.
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Otherwise, the algorithm will always be able to generate unseen solutions, however
seldom, since it is not improbable to choose an unseen edge. The result of this
guarantee is that MMAS is better suited to optimize the last few percentages of a
solution than FT-ACO, since FT-ACO would rather initiate a scout phase than
being stuck trying to continually optimize.

As a final remark, it is important to note that the algorithms were optimized
to find the best possible solutions by the means of generating 24000 solutions.
In other words, none of the algorithms was configured to produce a steep slope
in the convergence curve. Therefore, it is not correct to state that MMAS is
a less efficient algorithm than its competitors. Nevertheless, it is interesting to
observe that the proposed incorporation of labor division allow the ant algorithms
to exercise faster convergence. This is of course advantageous if the algorithms
were interrupted prematurely. Additionally, if they were applied in an industrial
setting the search could swiftly provide the user with a decent solution while still
searching for better candidates.

In order for FT-ACO to converge to a good solution in difficult search land-
scapes, it had to be able to spot the difference between only finding solutions of
the same quality as Sbest and stagnation. The following section presents a debate
on how this differentiation could be accomplished.

5.3.5 Detecting Stagnation

Recognizing stagnation correctly was essential for FT-ACO. If the colony decided it
was suffering from stagnation before it actually occurred, it would lack exploitation
and be prevented from finding the optimal solution. Contrarily, if the colony
spent time in a stagnated state this amounted to a waste of computational power.
The following discussion is typified by the illustration in fig. 5.17.

Stagnation was defined in section 3.3 as the situation where all ants travel
the same set of edges. Recognizing stagnation can therefore be achieved through
comparing all constructed flow routes. The definition suggest that stagnation
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should be detected by calculating the difference between the solutions generated at
iteration k and all previously discovered solutions S⇤

k

8k 2 [1,K]. Unfortunately,
this would be computationally costly to perform in large problem instances.

Let M be the number of ants, K be the number of iterations and Z

0 be 0.
The total number of comparisons Z calculated after K iterations is described by
eq. (5.1).

Z

K

=

KX

k=1

M(Z

k�1
+M � 1) (5.1)

Measuring stagnation by comparing the solutions would require an exponential
number of comparisons. Equation (5.1) tells us that after merely ten iterations
with five ants, the check would have required more than 60 million comparisons.
In addition, the complexity of calculating the comparison between two solutions
scale linearly to the problem size. The stagnation recognition therefore calls for a
heuristic approach. The rest of this section discusses three different approaches
to heuristically detect stagnation.

The first technique was to focus on the solution cost and observe the decrease
in the cost. This is a common approach in search, such as in genetic algorithms.
The idea is that the search has converged when it no longer produce solutions
with lower cost. This technique also appeared to be the most popular approach
in ant colony optimization research. However, this did not perform well in the
test since different flow paths in the graph could result in the same cost. These
intermediate flow routing states of equal cost appeared to be essential when the
colony required shifting their focus in the search landscape. As specified in the
definition of stagnation, stagnation relates to the exploration of new solutions
rather than the discovery of lower cost solutions. Arguably, the change in cost
value is therefore a poor heuristic for stagnation.

The second approach to stagnation detection resembled the procedure discussed
in the first paragraph. Rather than comparing the newly generated against all
previous solutions, only a subset of the previously best discovered solutions are
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Figure 5.17: The curves exemplify the performance of the stagnation detection strategies
discussed in section 5.3.5. The traditional solution cost heuristic (red) appear to be less suitable
than the stagnation evaluation approaches (yellow and blue). The yellow line represents a search
where the entire history of constructed solutions is retained. The blue line denotes a search
where the stagnation level is calculated only measuring the difference between the iteration
solutions and the best solution Sbest. This problem instance was one on the most difficult in
the two test sets.
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retained. The required set size depends on the problem difficulty. More challenging
graphs require additional solutions to be retained. Additionally, the larger the
set, the more accurate would the stagnation measurement become.

The third technique is an extension of the second approach where the set of
retained solutions has size one. In other words, only the best observed solution is
retained. The stagnation recognition procedure would thereby compare all newly
generated solutions to the best found solution. This appeared to yield a sufficient
between the computational requirement of calculating the comparison, and the
accuracy of the stagnation measure.

The essence of these observations was that only observing the fitness value
when determining stagnation, proved to be inadequate. The best results were, as
expected, obtained when using the comparison approach and retaining all of the
previous solutions. However, satisfactory results were achieved when using only
the globally best found solution as is typified in fig. 5.17.

The following section outlines the stagnation avoidance efficiency of MMAS,
SR-ACO and FT-ACO. The results it presents provide some interesting insights on
the difference between the seemingly most popular stagnation avoidance method
in literature, MMAS, and the proposed algorithms.

5.3.6 Stagnation Avoidance Capabilities

This section will discuss the stagnation avoiding capabilities of Max-Min Ant
System (MMAS), Fixed-Threshold ACO and Self-Reinforcement ACO, respectively.
The aim of this section is to shed light on which problem configurations the
algorithms was more or less likely to encounter stagnation. Finally, the two
proposed labor division approaches will be compared to MMAS.

All the stagnation-avoiding ant algorithms clearly outperformed AS
rank

on the
test sets. AS

rank

failed to solve 151 MCFPs, over half of the problem instances.
The algorithm was included to demonstrate whether early convergence was an
issue in this problem domain, and the experiment results of AS

rank

proved so.
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(a) Graph CCNFP12g6a: The curves show that FT-ACO and SR-ACO quickly converge to
the global optimum, while MMAS is starting to show indication of stagnation. However, all of
the stagnation avoiding algorithms perform considerably better than ASrank which does not
incorporate stagnation avoidance.
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(b) Graph CCNFP17g6c: The stagnation avoidance schemes enable the search to reach the
global optimum. Remember that ASrank does not incorporate stagnation avoidance.

Figure 5.18: Comparison of how the different stagnation avoidance schemes perform when
ASrank stagnate.



84 Chapter 5. Results and Discussion Grimnes and Hovland

Comparably, MMAS performed well and stagnated in only 42 cases. Moreover,
the stagnation tally of MMAS may be pessimistic since MMAS will always find
the optimal solution given infinite iterations. This guarantee originates from the
observation that no edges will ever be impossible to select in MMAS. However,
for the benefit of the experiment it was necessary to set a limit on the number of
iterations that could be carried out.

The progression of MMAS on problems where it either stagnated or did not
converge typically had the outline as in fig. 5.18a. The curve representing MMAS
show that the search leads of on a steady improvement for each iteration until
some point where it flattens out. At this stage, it has become unlikely for the
ants to traverse edges that do not belong the set of edges in the optimal solution
due to the differences in pheromone levels. From this point onward, the search
appears only to discover new solutions through strokes of luck.

The result from the stagnation experiment listed in appendix B also indicated
that MMAS performed progressively worse as the graphs grew in size. MMAS
appeared to be strained on the large small-world instances, solving less than 50%
of the MCFPs in this test set.

FT-ACO stagnated in 21 MCFP instances, halving the number of stagnated
flow problems compared to MMAS. However, the occurrences of stagnation in
FT-ACO and MMAS only overlapped in eleven instances. In the remaining ten
cases where only FT-ACO stagnated, MMAS had not yet converged to a solution.
This resulted in a situation where FT-ACO had stagnated on suboptimal solutions
that were in turn better than the unconverged result from MMAS.

In four cases where FT-ACO stagnated, both MMAS and SR-ACO was able
to solve the problem. This confirms that FT-ACO did not dominate the results
from MMAS. More precisely, FT-ACO rather proved to be a more efficient solver
in general than MMAS in the setting of this experiment.

SR-ACO stagnated on a suboptimal solution in six test cases, 85% less than
MMAS. This is a striking improvement in terms of ameliorating the stagnation
problem in ant algorithms.
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In the six the problem instances where SR-ACO failed to discover the optimal
solution, all of the other algorithms failed to converge on the global optima as well.
Thereby, making SR-ACO the experiment’s most reliable stagnation avoidance
scheme. In addition, SR-ACO proved to be a peerless algorithm in high start-up
cost problems, as interpretable from the results in appendix A.

Stagnation generally occurred in the flow problems where the start-up cost
was much larger than the unit cost. This may be crucial in industrial applications,
where the start-up cost tend to be considerably larger than the unit cost. Creating
a transportation office will always be costlier than sending a single letter.

The conditions of the experiment were set up to constitute a justifiable setting
through optimizing each of the algorithm’s parameters to the problem sets, as
outlined in section 4.4.7. Under these conditions, SR-ACO clearly outperformed
the rest and only stagnated on suboptimal solutions in ten of the test cases.

The subsequent sections analyze interesting aspects of applying Ant Colony
Optimization to the MCFP domain. These sections are not directly related
provide answers to the research questions, but constitute important intuitions for
solving MCFP with ACO.

5.3.7 Similarities Between Good Solutions

The search of an ACO algorithm is guided by pheromones. When the pheromones
evaporate and new ones are deposited on the edges in a solution, it makes the
reinforced edges more likely to be selected during solution construction in the
next iteration. The extent a solution is reinforced depends on the evaporation
rate, the quantity of pheromones deposited and potential pheromone bounds. In
order for an ACO algorithm to exploit the pheromones it is necessary for similar
solutions, measured by the number of common edges, to also have similar cost.
However, the search of an ACO algorithm is complex. The similarity between the
reinforced solution and the newly generated solutions can either be high or low
depending on the pheromones, and will vary throughout the search. This is a
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major difference between ACO and traditional local search, where the similarity
between the current solution and its generated neighbors is often constant and
high throughout the entire search.

If one looks at a set of the n best solutions for a graph, one can both see that
many edges are shared among the solutions and some edges are not used by any
of the best solutions. This is illustrated in fig. 5.19, where the frequency of edges
among the 100 best solutions for CCNFP10g01c is shown. These solutions were
obtained by enumerating the entire solutions space of this flow problem. From
fig. 5.19 it is discernible that some edges are present in most of the solutions.
These edges appear as dark lines in the figure. One of the edges even appears in
all but one of the 100 solutions. This is an indicator that solutions with similar
costs share edges, which is necessary for ACO to operate in the MCFP domain.
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Figure 5.19: This plot show the number of times an edge was included in the routes of the
100 best solutions for CCNFP10g01c. Frequent edges are thicker and darker while less frequent
edges are thinner and lighter. The observation that good solutions share edges is important in
order for an ACO algorithm to operate efficiently in the MCFP domain.

5.3.8 Balancing Ant Count and Iterations

Figure 5.20 show how different combinations of ants and iterations affected the
convergence of SR-ACO and FT-ACO. The number of solutions generated, that is
the product of ants and iterations, was kept constant for all of the combinations.
Thus, the amount of work performed and time spent by all the combinations were
the same. The effect of manipulating the number of ants is interesting to study,
since the user of the algorithm must configure this parameter.
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The degree of communication through stigmergy is however not equal among
the different runs. Runs with fewer ants, are inherently subjected to a stronger
stigmergy effect since they are allowed to carry out more iterations, depositing
more pheromone on the edges.

From fig. 5.20a it is apparent that SR-ACO is not sensitive to this balance.
The ant count in SR-ACO is directly related to the exploration focus. If the
number of ants is increased, SR-ACO will focus more on exploration since more
solutions will be generated in the neighborhood of the reinforced solution. From
fig. 5.20a it is perceptible that using around 100 ants was optimal for this graph.
While in general, SR-ACO performed best with 140 ants.

In contrast, FT-ACO was more sensitive to this parameter. The balance
between the number of ants and the number of iterations executed has a complex
effect on FT-ACO. Applying many ants to a problem entail more exploration, as
in SR-ACO. In addition, it also implies that the search will approach stagnation
faster since the same solutions will be generated more often when there are more
ants. However, when the search approach stagnation the threshold function would
trigger scouting and the colony perform better with more scouts. In general, the
most suitable configuration for FT-ACO was 40 ants and 600 iterations. Arguably,
it appears to be important to balance the number of ants and the number of
iterations in order to balance exploration and exploitation. Too few ants can lead
to excessive exploitation and convergence to local optima. On the other hand,
too many ants can lead to excessive exploration and too slow convergence.
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(a) The effect of different combinations of ants and iterations on the convergence of SR-ACO.
The number of ants applied to the search in SR-ACO directly affect the degree of exploration
performed in the proximity of each reinforced solution. As long as the ant count is "high enough",
the algorithm will succeed.
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(b) The effect of different combinations of ants and iterations on the convergence of FT-ACO.
The more ants applied to a problem, the more efficient will the exploration phase become, since
the colony would be able to generate a larger set of exploratory solutions.

Figure 5.20: The effect of different combinations of ants and iterations on the convergence of
SR-ACO and FT-ACO.
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5.3.9 Heuristic Value in the Deposited Pheromone Levels

As described in section 4.3.5, the quantity deposited in each iteration is equal
to the ratio of improvement in the solution cost. Thus if the best solution
Sbest remains identical between two iterations, only one pheromone unit will be
deposited. However, if the colony discovers a solution with half the cost in the next
iteration, the edges in the best solution will be reinforced with two pheromone
units. The quantity of pheromones deposited is therefore reflected in the relative
improvement of the solution cost. A reduction in solution cost indicates that the
ants are approaching an area of the search landscape where the optimal solution
may reside.

The idea of proportionally rewarding ants who discover better good solutions
follow the analogy in nature where some ant species, such as the Iridomyrmex
humilis, show food preference [3].
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Figure 5.21: A graph exemplifying that depositing pheromone relatively to the solution
improvement offer a slight improvement compared to the standard 1

C⇤ where C

⇤ is the best
found solution. The blue line depict how the dynamic evaporation scheme performed. Remember
the ⇢ is the evaporation factor, and that 1� ⇢ pheromones are conserved between iterations.
The curves represent the average cost of solutions and are produced from 100 runs with optimal
parameter configuration.

We also tested the hypothesis that dynamically adjusting the deposited
pheromone quantity might produce the same behavior as increasing the evapo-
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ration rate ⇢ for one iteration. This followed the intuition that evaporating the
pheromones from the previous iteration makes the colony more likely to follow
the route of the new solution. The experiment showed that evaporating the
pheromones more when discovering cheaper solutions produced a much worse
result than using the dynamical quantity strategy. This is illustrated in fig. 5.21.
The decline in performance may arise from the side effects of evaporating large
quantities of pheromones. By removing a lot of pheromones quickly, the edges
with scant pheromone would be nearly impossible to travel and thus only a portion
of the search landscape would be reachable.

Consequently, the idea to reward solution improvements can be considered
a suitable method to guide the colony towards newly discovered regions in the
search landscape.

5.4 Summary

In this chapter we have described the experiment results. First, a general overview
of the results was presented. We saw that the performance of the well-established
Max-Min Ant System dropped rapidly as the graph size increase. The result also
indicated that the SR-ACO was the fastest solver in terms of solutions that had
to be generated before the global optimum was discovered.

Finally, this chapter illustrated how the stagnation avoidance schemes in the
different algorithms safeguarded the search from early convergence. We saw how
the scouts in FT-ACO were issued by the Fixed-Threshold model, how MMAS
used pheromone boundaries and how the priority queue in SR-ACO enabled the
ant colony to explore different parts of the search land scape.

Additionally, the experiment showed that SR-ACO and FT-ACO clearly
outperformed MMAS in the large small-world graphs. This is an important
observation since most realistic network flow problems typically has the small-
world property.

The following chapter will provide an comprehensive interpretation of the
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achieved results. Finally, the report wraps up with a brief mention of extensions
that could build upon the foundations of this thesis.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The essential constituent of ant algorithms is pheromone. The pheromones
allow the ants to communicate through stigmergy. In analogy to ants in nature,
stigmergy is employed to establish ant trails. The upshot of this thesis is that
using stagnation avoidance inspired by naturalistic ants forms a feasible strategy
to avoid stagnation. The results from the experiments did however also indicate
that augmenting ant colony optimization with labor division did not produce a
flawless system.

Similar to the results of the Fixed-Threshold ACO algorithm, labor division
in nature does not provide complete protection from stagnation. Naturalistic
stigmergy is also fallible and trail following species are vulnerable to end up
following their own tracks. This path movement is known as circular milling, and
was first observed in 1896 by Jean-Henri Fabre in the caterpillar Cnethocampa
pityocampa [40]. Milling has also been observed in some ant species, such as Army
ants. These ants blindly follow the trail of pheromones laid out before them, and
circular milling is capable of bringing entire colonies to an end. The milling occurs
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when the pheromone trail is sufficiently reinforced, so that no colony member will
deviate from the circular movement. Consequently, the entire colony will continue
to walk until dying of exhaustion.

Despite the weaknesses in stigmergic communication, insects have thrived
on this planet for millions of years. Some of their success is attributable to
social organization. Similar to the success of organization in nature, introducing
a simplified labor division to artificial ant colony optimization improved the
evolution of solutions.

Division of Labor This thesis aimed to study the two questions posed in the
introductory chapter. First, we set out to examine how labor division could be
combined with ant algorithms and whether this affected the search. The first
question was:

1 How can labor division be incorporated into ACO to counter stagnation and
how does it affect the performance?

This topic lead us to evaluate two different labor division models from the
field of biological sciences. While the viability of using division of labor to avoid
stagnation could be deduced from the experiment results, the performance aspect
has to be juxtaposed to how it affected the balance between exploration and
exploitation.

The two variations on how to incorporate labor division into ant colony
optimization represent divergent ideas of modeling labor division. The first
approach was to model the artificial colony as a system consisting of two distinct
castes. This caste system was closely related to the division of labor observed
in naturalistic ants [14, 48, 49]. This was achieved by establishing behavioral
differences between foragers and scouts. These two castes were separated by
weighting their local transition probabilities differently during trail construction.
In terms of avoiding stagnation, this scheme resulted in a self-organized system
that was more resilient compared to the popular ant algorithm MMAS.
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The second approach to incorporate labor division took a more holistic ap-
proach. In this approach, the balancing of exploration and exploitation was not
considered on the individual level. Instead, the colony as a whole would achieve
this balance through selectively concentrating the search effort in regions of the
landscape where good solutions were discovered. The self-reinforcing behavior was
effectuated by only trying to generate low cost solutions. This behavior entailed
that the Self-Reinforcement ACO search was very exploitative, yet it resulted in
the most resilient ant algorithm in this study.

Balancing Exploration and Exploitation After we had established that
incorporating the labor division models was a feasible approach to avoid stagnation,
the focus shifted to analyze how they affect the search efficiency. The second
research question was:

2 How are exploration and exploitation in ACO balanced by the Fixed-Threshold
and Self-Reinforcement labor division models?

The stagnation problem in ant algorithms is another demonstration of the
importance of balancing exploration and exploitation in an informed search. If
the artificial ant colony stops exploring the environment before they have located
the optimal solution, the search can be described as too exploitative. This
situation arises when the pheromone levels on a set of suboptimal edges become so
strong that the entire colony always chooses to traverse these edges. Apparently,
the most popular technique to tackle this challenge is to limit the strength of
all pheromone signals by introducing upper and lower bounds. However, since
this tactic directly manipulates the pheromone trails, it also interferes with the
effectiveness of stigmergy. The predominant disadvantage of utilizing bounds is
the ensuing reduction in convergence rate. The slower the convergence rate, the
more iterations are consumed before converging on the global optimum. Following
this rationalization, it would be favorable to avoid interfering with the stigmergic
process.
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The Fixed-Threshold ACO algorithm did not impose the same strict boundaries
on the pheromone level as MMAS. This led to a much faster convergence than
what was observed in Max-Min Ant System. Rather than to guarantee exploration
through hampering strong stigmergic signals, the FT-ACO search would instead
issue explorers when the ants no longer discover new routes. The Fixed-Threshold
model governed the balance between exploration and exploitation by observing
the level of stagnation. When the need for exploration increased rapidly, the
colony may decide to initiate an exploration phase. This strategy also implies that
FT-ACO is very dependent on the scouts to guide the search toward regions of the
search space where the foragers may discover the optimal solution. Nevertheless,
the experiments indicated that the scouts succeeded in the majority of trials.

The labor division model utilized in Self-Reinforcement ACO was more inter-
twined. The Self-Reinforcement model itself is a conceptual hypothesis on how
division of labor may occur in real life. The notion that an agent would keep
performing a task if they perceived that the activity yielded a positive reward
seems intuitively appealing. The idea was realized in the ant algorithm by looking
at the colony as a whole. Rather than reinforcing an ant to move along the same
path as the previous iteration, the colony was reinforced to forage for solutions
that contained edges from the best discovered solutions. This behavior was im-
plemented using a priority queue of solutions to reinforce. SR-ACO balanced
exploration and exploitation through adjusting the size of the priority queue. The
queue would always be updated with the most recent, best solutions. The smaller
the queue, the more likely would it be to append recent solutions to the queue.
Thus, forcing the search to progress toward different regions of the search space.
Exploration was in other words a co-product of retaining a small priority queue.

The level of exploration in SR-ACO was also governed by the size of the colony.
The number of ants in a colony was directly proportional to the number of routes
generated before a solution was removed from the queue. In problem instances
where exploration was important, SR-ACO favored a large colony rather than
carrying out many iterations.
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Algorithmic Performance The final topic emphasized in thesis was search
performance. The goal was to identify if division of labor either augmented or
impeded the dynamics of an ACO search. This subject matter was covered in the
first research question, but could only be answered after having observed how the
proposed algorithms balanced exploration and exploitation.

1 How can labor division be incorporated into ACO to counter stagnation and
how does it affect the performance?

Incorporating division of labor yielded faster convergence than manipulating
pheromone signals in most of the test. MMAS required typically more than twice
the number of solutions to be generated before discovering the optimal solution.
This indicates that pheromone limitation may not be the most efficient approach
to prevent stagnation. Arguably, the results indicate that the performance of
FT-ACO and SR-ACO surpassed MMAS.

However, both of the proposed algorithms introduced computational overhead.
FT-ACO imposed the necessity to evaluate the level of stagnation during the
progression of the search in order to abide by the Fixed-Threshold Model. If
the complexity of measuring the stagnation level dominates the complexity of
calculating a solution, the benefit of FT-ACO might be defeated. In similar
fashion, the SR-ACO algorithm requires additional bookkeeping to maintain its
priority queue. Consequently, the proposed algorithms are ill suited to outperform
MMAS in problem domains where the complexity of constructing solutions are
low. However, many industrial applications tend to operate on very large problem
instances and this may favor SR-ACO and FT-ACO. The labor division augmented
algorithms also outperformed MMAS on the test set with small world graphs.
Arguably, this strengthens the impression that division of labor may be a more
useful stagnation avoidance scheme in realistic applications.

In addition to the increased computational overhead in FT-ACO, the algorithm
also required the user to hand-tune on more parameter than in MMAS. While
MMAS require the user to specify the estimated likelihood of constructing the
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optimal solution p

best

, FT-ACO required the user to specify both an exploration
factor �, that regulate how exploratory scouts will be, and the threshold value ✓

regulating when the stagnation stimulus should trigger exploration. The introduc-
tion of more parameters is unpopular among programmers. However, following
extensions to the Threshold-Model, the ✓ parameter may be possible to learn
through exposing the colony to problem instances over many iterations [9].

Synopsis The aim of this thesis was to investigate how division of labor could
be integrated in artificial ant colony optimization. The two techniques in this
thesis for incorporating social organization resulted in a different take on managing
stagnation than the conventional pheromone limitation. The two models appeared
to be more capable of solving large graphs than the benchmarking algorithm,
MMAS. Nevertheless, the results were obtained from only a single problem
domain. Therefore, it is not justifiable to conclude that MMAS was inferior. Most
importantly, we have shown that division of labor is a viable countermeasure to
stagnation in ant colony optimization.

6.2 Future Work

6.2.1 Problem Domain

While the FT-ACO and SR-ACO algorithms performed comparatively well in the
minimum cost flow problem domain with concave cost function, they must be
evaluated in further domains before we can justify that division of labor is more
efficient than MMAS. We prioritized to assess the algorithms extensively in a
single problem domain rather than superficially comparing them across a handful
of optimization problems. As a result, we are able to conclude that MMAS is
inferior in the MCFP domain. However, it still remains to investigate whether
this conclusion can be generalized to other problem domains.
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6.2.2 Combining SR-ACO and FT-ACO

The two labor division models studied in this thesis are not mutually exclusive.
Instead, they may be combined to form an even more resilient system. SR-ACO
featured the quickest convergence, but was also prone to plateauing in the most
difficult problem instances. A Fixed-Threshold Model similar to the stagnation
handling in FT-ACO could maybe detect these plateaus. Merging these two
techniques could therefore result in an even better solver. If the scouts issued from
FT-ACO could provide the foragers in SR-ACO with solution alternatives beside
those in the priority queue, this would supply SR-ACO with an additional tool to
avoid stagnation. However, a synthesis of these two algorithms would also incur
more computational overhead. Nevertheless, a combination of the two algorithms
may result in a strategy capable of harvesting the virtues of both algorithms.
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Appendix A

Convergence Experiment

Results

Table A.1: This table present the results of Experiment A: Convergence. The first column
Avg.Dev list the deviation between the average solution and the global minimum. A value of
0.5 imply that the average discovered solution cost was 1.5 times the minimum cost. In other
words, closer to 0 is better. The second column list the standard deviation in the cost obtained
by the given algorithm. The third column list the number of iterations that was required before
the algorithm discovered the global optimum. Every instance was solved 100 times with optimal
parameter configuration. The algorithms were allowed to generate at most 24000 solutions. A
‘�’ in the Avg.Dev column indicate that the algorithm always converged to the global optimum.

Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

CCNFP10g01a � 1080 � 900 � 3080

CCNFP10g01b � 1040 � 400 � 1960

CCNFP10g01c � 1320 � 1600 � 4320

CCNFP10g02a � 160 � 200 � 600

CCNFP10g02b � 360 � 300 � 920

CCNFP10g02c � 400 � 300 � 600

CCNFP10g03a � 3720 � 1700 � 3000

CCNFP10g03b � 880 � 300 � 1640

CCNFP10g03c � 600 � 300 � 1480

CCNFP10g04a � 960 � 500 � 2600

CCNFP10g04b � 240 � 200 � 280

CCNFP10g04c � 560 � 300 � 1880

Continued on next page
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Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

CCNFP10g05a � 21080 � 800 � 4040

CCNFP10g05b � 1040 � 700 � 3520

CCNFP10g05c � 840 � 300 � 1480

CCNFP10g06a � 12720 � 2300 � 3000

CCNFP10g06b � 840 � 800 � 2200

CCNFP10g06c � 1400 � 500 � 3920

CCNFP10g07a � 1160 � 400 � 1640

CCNFP10g07b � 200 � 300 � 760

CCNFP10g07c � 1040 � 1700 � 4120

CCNFP10g08a � 960 � 400 � 2720

CCNFP10g08b � 600 � 500 � 1880

CCNFP10g08c � 840 � 300 � 1960

CCNFP10g09a � 160 � 200 � 400

CCNFP10g09b � 1080 � 400 � 1440

CCNFP10g09c � 400 � 700 � 1840

CCNFP10g10a � 1120 � 500 � 1880

CCNFP10g10b � 1040 � 300 � 1800

CCNFP10g10c � 920 � 300 � 600

CCNFP12g01a � 680 � 1600 � 3120

CCNFP12g01b � 3200 � 2700 � 7240

CCNFP12g01c 1.49e�4 � � 18000 1.48e�5 �
CCNFP12g02a � 1160 � 300 � 2280

CCNFP12g02b � 1200 � 500 � 4840

CCNFP12g02c � 3880 � 700 � 5360

CCNFP12g03a � 1160 � 500 � 3360

CCNFP12g03b � 9640 � 3800 � 6960

CCNFP12g03c � 200 � 300 � 360

CCNFP12g04a � 800 � 500 � 1560

CCNFP12g04b � 280 � 200 � 720

CCNFP12g04c � 3520 � 800 � 4920

CCNFP12g05a � 1080 � 700 � 3640

CCNFP12g05b � 1000 � 300 � 1640

CCNFP12g05c � 1040 � 600 � 4400

CCNFP12g06a � 4680 � 7100 6.52e�3 �
CCNFP12g06b � 20600 � 8800 � 14760

CCNFP12g06c � 2120 � 2000 � 8000

CCNFP12g07a � 600 � 300 � 1400

CCNFP12g07b � 19240 � 2800 � 8360

CCNFP12g07c � 1280 � 800 � 4720

CCNFP12g08a � 7520 � 1600 � 5440

CCNFP12g08b � 1160 � 1100 � 3680

Continued on next page
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Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

CCNFP12g08c � 1080 � 400 � 1760

CCNFP12g09a � 1400 � 600 � 1400

CCNFP12g09b � 1320 � 700 � 4640

CCNFP12g09c � 1520 � 400 � 1720

CCNFP12g10a � 1680 � 900 � 2800

CCNFP12g10b � 1360 � 700 � 3800

CCNFP12g10c � 1080 � 300 � 1760

CCNFP15g01a 1.62e�3 � � 5500 8.06e�3 �
CCNFP15g01b � 1360 � 400 � 3240

CCNFP15g01c 1.24e�3 � � 6700 � 21480

CCNFP15g02a � 1480 � 7900 � 5000

CCNFP15g02b � 1440 � 700 � 5080

CCNFP15g02c � 1680 � 1000 � 7280

CCNFP15g03a � 1200 � 800 � 4040

CCNFP15g03b � 1360 � 1000 � 5560

CCNFP15g03c � 1040 � 300 � 2120

CCNFP15g04a � 1720 � 1200 � 5440

CCNFP15g04b � 1480 � 800 � 3840

CCNFP15g04c � 1080 � 500 � 2640

CCNFP15g05a � 1520 � 600 � 5800

CCNFP15g05b � 920 � 300 � 1960

CCNFP15g05c � 1280 � 900 � 4800

CCNFP15g06a � 1440 � 1900 � 5360

CCNFP15g06b � 5800 � 6500 � 20240

CCNFP15g06c � 10520 � 3500 � 13560

CCNFP15g07a � 9080 � 4300 1.37e�3 �
CCNFP15g07b � 1040 � 300 � 3320

CCNFP15g07c � 1760 � 700 � 4640

CCNFP15g08a � 1440 � 600 � 8680

CCNFP15g08b � 1240 � 600 � 3760

CCNFP15g08c � 1360 � 600 � 5160

CCNFP15g09a � 2280 � 1200 � 5720

CCNFP15g09b � 1560 � 700 � 4600

CCNFP15g09c � 1600 � 800 � 5280

CCNFP15g10a � 2040 � 1600 � 5000

CCNFP15g10b � 1640 � 700 � 3800

CCNFP15g10c � 1160 � 500 � 2200

CCNFP17g01a 1.05e�3 � 9.59e�5 � � 13920

CCNFP17g01b 1.57e�6 � � 11800 1.93e�4 �
CCNFP17g01c � 1440 � 1000 � 4880

CCNFP17g02a � 1240 � 500 � 2760

Continued on next page
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Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

CCNFP17g02b � 1320 � 700 � 4920

CCNFP17g02c � 1920 � 1200 � 9960

CCNFP17g03a � 960 � 400 � 3520

CCNFP17g03b � 1280 � 700 � 5200

CCNFP17g03c � 1560 � 1100 � 7120

CCNFP17g04a � 1840 � 900 � 8280

CCNFP17g04b � 1920 � 1100 � 4880

CCNFP17g04c � 2080 � 1900 � 8000

CCNFP17g05a � 2400 � 1400 � 9720

CCNFP17g05b � 1400 � 700 � 6360

CCNFP17g05c � 3400 � 1100 � 6720

CCNFP17g06a � 14760 � 8000 � 14320

CCNFP17g06b � 12120 � 11300 2.95e�6 �
CCNFP17g06c � 4040 � 16400 � 16400

CCNFP17g07a � 1440 � 600 � 5160

CCNFP17g07b � 16480 � 2400 2.47e�5 �
CCNFP17g07c � 1480 � 1100 � 5560

CCNFP17g08a � 1200 � 600 � 5040

CCNFP17g08b � 1120 � 300 � 1920

CCNFP17g08c � 1760 � 900 � 5800

CCNFP17g09a � 1280 � 600 � 4760

CCNFP17g09b � 1360 � 500 � 5240

CCNFP17g09c � 1160 � 500 � 3360

CCNFP17g10a � 1920 � 1700 � 6200

CCNFP17g10b � 2000 � 900 � 4720

CCNFP17g10c � 1400 � 800 � 5080

CCNFP19g01a � 4440 � 2800 � 6560

CCNFP19g01b � 1600 � 13900 � 6480

CCNFP19g01c � 20760 � 8000 2.38e�4 �
CCNFP19g02a � 2400 � 1400 � 10200

CCNFP19g02b � 1360 � 2000 � 5280

CCNFP19g02c � 1400 � 700 � 6560

CCNFP19g03a � 4520 � 1000 � 7720

CCNFP19g03b � 1320 � 600 � 5880

CCNFP19g03c � 13480 � 4600 � 9320

CCNFP19g04a � 4240 � 1800 � 10720

CCNFP19g04b � 1240 � 800 � 4440

CCNFP19g04c � 1680 � 1100 � 7560

CCNFP19g05a � 3960 � 1500 � 4520

CCNFP19g05b � 520 � 300 � 1360

CCNFP19g05c � 9240 � 1100 � 5440

Continued on next page
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Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

CCNFP19g06a � 2360 � 1700 � 11840

CCNFP19g06b � 6680 � 9600 � 14440

CCNFP19g06c 3.30e�5 � � 5000 � 9200

CCNFP19g07a � 1560 � 800 � 6960

CCNFP19g07b � 2080 � 3100 � 12320

CCNFP19g07c � 5840 � 1500 � 10960

CCNFP19g08a � 2240 � 1400 � 7560

CCNFP19g08b � 1400 � 900 � 5520

CCNFP19g08c � 1480 � 800 � 5600

CCNFP19g09a � 7040 � 1300 � 10760

CCNFP19g09b � 1760 � 1200 � 7000

CCNFP19g09c � 2520 � 1200 � 5000

CCNFP19g10a � 3080 � 1800 � 7360

CCNFP19g10b � 2720 � 1200 � 7440

CCNFP19g10c � 2640 � 1300 � 7120

CCNFP25g01a � 5280 � 3500 � 17280

CCNFP25g01b 7.19e�5 � 5.60e�4 � 5.03e�4 �
CCNFP25g01c 4.01e�5 � � 11600 1.85e�3 �
CCNFP25g02a � 3160 � 2800 � 17680

CCNFP25g02b � 2240 � 1800 � 11200

CCNFP25g02c � 1800 � 1100 � 9640

CCNFP25g03a � 15120 � 5400 3.07e�5 �
CCNFP25g03b � 1960 � 1400 � 10040

CCNFP25g03c � 1480 � 1200 � 7240

CCNFP25g04a � 11360 � 2300 � 10160

CCNFP25g04b � 2000 � 800 � 5720

CCNFP25g04c � 2560 � 3600 � 13440

CCNFP25g05a � 1840 � 900 � 6080

CCNFP25g05b � 1480 � 900 � 6240

CCNFP25g05c � 1480 � 700 � 7240

CCNFP25g06a � 21600 � 5800 � 9280

CCNFP25g06b 2.53e�5 � � 3900 2.53e�5 �
CCNFP25g06c 5.37e�5 � � 19800 � 16960

CCNFP25g07a � 3280 � 9400 � 12680

CCNFP25g07b � 3880 � 4200 � 9760

CCNFP25g07c � 10240 � 5600 � 8400

CCNFP25g08a � 1560 � 1300 � 9640

CCNFP25g08b � 1920 � 1100 � 7640

CCNFP25g08c � 4080 � 2600 � 16400

CCNFP25g09a � 12600 � 1700 � 9440

CCNFP25g09b � 2960 � 1200 � 6360

Continued on next page
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Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

CCNFP25g09c � 2120 � 1100 � 6760

CCNFP25g10a � 2920 � 1300 � 9480

CCNFP25g10b � 2680 � 1600 � 10800

CCNFP25g10c � 3440 � 1700 � 13240

CCNFP30g01a � 11560 � 5100 4.66e�4 �
CCNFP30g01b � 6040 � 11400 � 16520

CCNFP30g01c 4.20e�5 � � 17500 9.42e�5 �
CCNFP30g02a � 2200 � 1500 � 10320

CCNFP30g02b � 2080 � 1300 � 9400

CCNFP30g02c � 5600 � 4100 � 18280

CCNFP30g03a � 5440 � 17000 3.20e�4 �
CCNFP30g03b � 8520 � 4100 � 12320

CCNFP30g03c � 1840 � 1000 � 7880

CCNFP30g04a � 15680 � 2400 � 9760

CCNFP30g04b � 5160 � 2300 � 14640

CCNFP30g04c � 3160 � 2500 � 12760

CCNFP30g05a � 1920 � 1200 � 8160

CCNFP30g05b � 2600 � 1700 � 13520

CCNFP30g05c � 4040 � 2200 � 15000

CCNFP30g06a � 3040 � 1600 � 13440

CCNFP30g06b � 2880 � 2100 � 19080

CCNFP30g06c 1.95e�3 � 7.82e�4 � 2.17e�3 �
CCNFP30g07a � 4640 � 1200 � 9000

CCNFP30g07b 5.55e�6 � � 4000 2.12e�4 �
CCNFP30g07c � 8400 � 1400 � 10440

CCNFP30g08a � 2200 � 1700 � 9520

CCNFP30g08b � 1680 � 1000 � 7560

CCNFP30g08c � 1880 � 900 � 8280

CCNFP30g09a � 3520 � 1600 � 9080

CCNFP30g09b � 12640 � 3700 � 13560

CCNFP30g09c � 8600 � 3200 � 10680

CCNFP30g10a � 5040 � 2300 � 15280

CCNFP30g10b � 2480 � 1300 � 7920

CCNFP30g10c � 3000 � 1900 � 12400

CCNFP40g01a � 12400 � 6000 1.30e�4 �
CCNFP40g01b 3.77e�3 � 4.06e�3 � 1.32e�2 �
CCNFP40g01c � 10040 � 6400 1.20e�4 �
CCNFP40g02a 8.07e�5 � � 17200 1.52e�4 �
CCNFP40g02b � 8880 � 4400 � 21240

CCNFP40g02c 5.16e�5 � � 9800 2.15e�4 �
CCNFP40g03a � 2560 � 2000 � 14800

Continued on next page
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Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

CCNFP40g03b � 8560 � 3300 � 21000

CCNFP40g03c � 2640 � 5300 � 15000

CCNFP40g04a � 2400 � 2000 � 13440

CCNFP40g04b 4.08e�5 � � 6500 1.45e�4 �
CCNFP40g04c � 1960 � 1300 � 10840

CCNFP40g05a � 3960 � 3600 � 12600

CCNFP40g05b � 2400 � 1500 � 13600

CCNFP40g05c � 2440 � 1700 � 12160

CCNFP50g01a � 12600 � 5200 � 21520

CCNFP50g01b 1.02e�3 � 1.36e�4 � 3.13e�3 �
CCNFP50g01c 2.00e�4 � 2.25e�4 � 5.70e�3 �
CCNFP50g02a � 20240 � 11300 2.60e�5 �
CCNFP50g02b � 18360 � 6300 5.11e�4 �
CCNFP50g02c � 1880 � 2600 � 10640

CCNFP50g03a � 2920 � 1500 � 15120

CCNFP50g03b � 1400 � 700 � 8600

CCNFP50g03c � 2520 � 1800 � 14800

CCNFP50g04a � 1840 � 1600 � 12760

CCNFP50g04b 1.25e�5 � � 3000 3.45e�5 �
CCNFP50g04c � 4200 � 2400 � 16560

CCNFP50g05a � 22560 � 1700 � 13200

CCNFP50g05b � 3080 � 1400 � 10280

CCNFP50g05c � 8080 � 4100 � 17840

SmallWorldN40g01a � 22240 � 8800 2.45e�4 �
SmallWorldN40g01b � 2080 � 2100 � 15320

SmallWorldN40g01c � 18280 � 7000 � 14720

SmallWorldN40g02a � 2920 � 1500 � 14440

SmallWorldN40g02b � 2520 � 1800 � 16400

SmallWorldN40g02c � 3240 � 1800 � 13200

SmallWorldN40g03a � 3240 � 1700 � 14600

SmallWorldN40g03b � 3280 � 2200 � 17320

SmallWorldN40g03c � 3960 � 2200 � 13440

SmallWorldN40g04a � 3520 � 2200 � 16400

SmallWorldN40g04b � 4000 � 2000 � 15000

SmallWorldN40g04c � 2600 � 1400 � 10960

SmallWorldN40g05a � 4720 � 2100 � 16200

SmallWorldN40g05b � 2640 � 1700 � 12760

SmallWorldN40g05c � 2560 � 1500 � 13960

SmallWorldN50g01a � 13200 � 6400 1.54e�4 �
SmallWorldN50g01b 2.83e�5 � � 5300 8.89e�5 �
SmallWorldN50g01c � 5840 � 5300 6.85e�5 �

Continued on next page



108 Appendix A. Convergence Experiment Results Grimnes and Hovland

Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

SmallWorldN50g02a � 4040 � 2900 � 18640

SmallWorldN50g02b � 2840 � 1400 � 14720

SmallWorldN50g02c � 3360 � 2500 � 16720

SmallWorldN50g03a � 6720 � 3000 � 23000

SmallWorldN50g03b � 6800 � 2000 � 19760

SmallWorldN50g03c � 3240 � 1700 � 13800

SmallWorldN50g04a � 3600 � 2300 � 16520

SmallWorldN50g04b � 5560 � 2700 � 18160

SmallWorldN50g04c � 8440 � 4900 � 21880

SmallWorldN50g05a � 8400 � 4000 � 22720

SmallWorldN50g05b � 7920 � 5200 � 22600

SmallWorldN50g05c � 2960 � 1600 � 15400

SmallWorldN75g01a 5.16e�5 � 3.23e�5 � 1.64e�3 �
SmallWorldN75g01b � 9480 � 11700 3.35e�3 �
SmallWorldN75g01c � 2800 � 6400 1.13e�4 �
SmallWorldN75g02a � 5040 � 3900 1.71e�5 �
SmallWorldN75g02b � 20240 � 5400 1.53e�4 �
SmallWorldN75g02c � 8640 � 4900 5.04e�5 �
SmallWorldN75g03a � 17080 � 6700 2.64e�4 �
SmallWorldN75g03b � 5200 � 3700 2.07e�5 �
SmallWorldN75g03c � 4280 � 3500 � 21400

SmallWorldN75g04a � 7120 � 4000 1.07e�5 �
SmallWorldN75g04b � 5800 � 5300 6.24e�5 �
SmallWorldN75g04c � 8080 � 3900 1.19e�5 �
SmallWorldN75g05a � 6240 � 4200 2.45e�6 �
SmallWorldN75g05b � 5240 � 4800 � 22800

SmallWorldN75g05c � 5200 � 4100 1.49e�5 �
SmallWorldN100g1a 2.25e�5 � 5.28e�5 � 5.15e�3 �
SmallWorldN100g1b 7.79e�5 � � 14800 4.24e�3 �
SmallWorldN100g1c 3.19e�5 � 7.89e�5 � 7.99e�3 �
SmallWorldN100g2a � 6400 � 5300 4.71e�4 �
SmallWorldN100g2b � 4600 � 3200 9.89e�6 �
SmallWorldN100g2c 1.51e�4 � 1.11e�4 � 1.77e�3 �
SmallWorldN100g3a � 4600 � 3800 4.49e�5 �
SmallWorldN100g3b � 11800 � 9400 1.13e�3 �
SmallWorldN100g3c � 11440 � 8100 1.04e�3 �
SmallWorldN100g4a � 18640 � 6300 1.01e�3 �
SmallWorldN100g4b � 7480 � 4900 2.08e�4 �
SmallWorldN100g4c � 14680 � 10000 9.20e�4 �
SmallWorldN100g5a � 10840 � 6500 6.54e�5 �
SmallWorldN100g5b � 19840 � 11200 9.45e�4 �
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Graph Threshold-ACO Reinforcement-ACO Max-Min Ant System

Avg.Dev Sol Avg.Dev Sol Avg.Dev Sol

SmallWorldN100g5c � 11280 � 4800 3.87e�4 �
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Appendix B

Stagnation Experiment

Results

Table B.1: A comparison of how well the stagnation avoidance strategies coped with MCFP
instances where at least one stagnated. The table list only the graphs where at least one
algorithm stagnated. The first column Avg.Dev list the deviation between the average solution
and the global minimum. A value of 0.5 imply that the average discovered solution cost was
1.5 times the minimum cost. In other words, closer to 0 is better. The second column list the
number of runs that stagnated before discovering the global optimum out of 100. Every instance
was solved 100 times with optimal parameter configuration. The algorithms were allowed to
generate at most 24000 solutions. A ‘�’ in the Avg.Dev column indicate that the algorithm
always converged to the global optimum.

Graph FT-ACO SR-ACO MMAS ASrank

Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg

CCNFP10g05a � 0 � 0 � 0 3.43e�4 5

CCNFP10g07c � 0 � 0 � 0 4.72e�4 3

CCNFP12g01b � 0 � 0 � 0 3.74e�4 1

CCNFP12g01c 1.49e�4 19 � 0 1.48e�5 4 3.57e�4 54

CCNFP12g03b � 0 � 0 � 0 6.17e�5 3

CCNFP12g04c � 0 � 0 � 0 3.21e�5 1

CCNFP12g06a � 0 � 0 6.52e�3 16 2.06e�2 51

CCNFP12g06b � 0 � 0 � 0 2.80e�3 41

CCNFP12g07b � 0 � 0 � 0 1.08e�4 29

CCNFP12g08a � 0 � 0 � 0 1.19e�4 2

CCNFP15g01a 1.62e�3 10 � 0 8.06e�3 39 1.87e�2 85

Continued on next page
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Graph FT-ACO SR-ACO MMAS ASrank

Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg

CCNFP15g01c 1.24e�3 3 � 0 � 0 3.16e�2 75

CCNFP15g06a � 0 � 0 � 0 1.09e�4 1

CCNFP15g06b � 0 � 0 � 0 1.47e�3 34

CCNFP15g06c � 0 � 0 � 0 3.44e�3 34

CCNFP15g07a � 0 � 0 1.37e�3 5 5.34e�3 19

CCNFP15g08a � 0 � 0 � 0 1.68e�4 5

CCNFP17g01a 1.05e�3 22 9.59e�5 2 � 0 3.34e�3 46

CCNFP17g01b 1.57e�6 4 � 0 1.93e�4 9 5.47e�3 75

CCNFP17g06a � 0 � 0 � 0 3.57e�3 40

CCNFP17g06b � 0 � 0 2.95e�6 1 3.84e�5 13

CCNFP17g06c � 0 � 0 � 0 1.46e�2 62

CCNFP17g07b � 0 � 0 2.47e�5 7 1.27e�4 36

CCNFP19g01a � 0 � 0 � 0 5.72e�4 2

CCNFP19g01c � 0 � 0 2.38e�4 4 7.07e�3 65

CCNFP19g02a � 0 � 0 � 0 2.86e�4 3

CCNFP19g03c � 0 � 0 � 0 8.78e�5 4

CCNFP19g04a � 0 � 0 � 0 2.35e�4 4

CCNFP19g06b � 0 � 0 � 0 2.47e�3 33

CCNFP19g06c 3.30e�5 1 � 0 � 0 8.36e�4 12

CCNFP19g07b � 0 � 0 � 0 4.82e�4 4

CCNFP19g07c � 0 � 0 � 0 2.86e�4 3

CCNFP19g09a � 0 � 0 � 0 6.51e�5 9

CCNFP25g01a � 0 � 0 � 0 9.05e�4 41

CCNFP25g01b 7.19e�5 1 5.60e�4 9 5.03e�4 7 5.43e�3 67

CCNFP25g01c 4.01e�5 1 � 0 1.85e�3 46 4.00e�3 76

CCNFP25g02a � 0 � 0 � 0 2.07e�3 39

CCNFP25g02b � 0 � 0 � 0 5.18e�5 3

CCNFP25g03a � 0 � 0 3.07e�5 1 1.62e�3 37

CCNFP25g04a � 0 � 0 � 0 5.31e�5 1

CCNFP25g04c � 0 � 0 � 0 1.18e�4 3

CCNFP25g06a � 0 � 0 � 0 3.98e�5 4

CCNFP25g06b 2.53e�5 1 � 0 2.53e�5 1 1.69e�3 50

CCNFP25g06c 5.37e�5 2 � 0 � 0 1.89e�3 61

CCNFP25g07a � 0 � 0 � 0 2.17e�4 8

CCNFP25g07b � 0 � 0 � 0 1.45e�3 20

CCNFP25g07c � 0 � 0 � 0 3.30e�4 4

CCNFP25g08c � 0 � 0 � 0 6.75e�4 35

CCNFP25g10c � 0 � 0 � 0 2.36e�6 1

CCNFP30g01a � 0 � 0 4.66e�4 2 1.06e�2 42

CCNFP30g01b � 0 � 0 � 0 1.97e�3 42

CCNFP30g01c 4.20e�5 13 � 0 9.42e�5 21 1.48e�3 77

Continued on next page



Hovland and Grimnes Appendix B. Stagnation Experiment Results 113

Graph FT-ACO SR-ACO MMAS ASrank

Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg

CCNFP30g02a � 0 � 0 � 0 1.95e�4 2

CCNFP30g02c � 0 � 0 � 0 1.72e�3 30

CCNFP30g03a � 0 � 0 3.20e�4 5 1.36e�3 18

CCNFP30g04a � 0 � 0 � 0 9.90e�5 2

CCNFP30g04b � 0 � 0 � 0 1.38e�5 2

CCNFP30g04c � 0 � 0 � 0 9.74e�6 2

CCNFP30g05c � 0 � 0 � 0 8.15e�6 1

CCNFP30g06a � 0 � 0 � 0 2.14e�3 19

CCNFP30g06b � 0 � 0 � 0 2.56e�3 34

CCNFP30g06c 1.95e�3 10 7.82e�4 4 2.17e�3 20 1.45e�2 90

CCNFP30g07a � 0 � 0 � 0 3.43e�4 2

CCNFP30g07b 5.55e�6 3 � 0 2.12e�4 5 3.67e�3 68

CCNFP30g07c � 0 � 0 � 0 9.28e�5 6

CCNFP30g09b � 0 � 0 � 0 3.13e�4 20

CCNFP30g09c � 0 � 0 � 0 9.99e�5 2

CCNFP30g10a � 0 � 0 � 0 6.11e�5 4

CCNFP40g01a � 0 � 0 1.30e�4 7 6.76e�3 86

CCNFP40g01b 3.77e�3 89 4.06e�3 81 1.32e�2 100 2.27e�2 100

CCNFP40g01c � 0 � 0 1.20e�4 6 6.96e�3 87

CCNFP40g02a 8.07e�5 2 � 0 1.52e�4 2 4.81e�3 66

CCNFP40g02b � 0 � 0 � 0 1.46e�3 59

CCNFP40g02c 5.16e�5 13 � 0 2.15e�4 79 1.75e�3 94

CCNFP40g03a � 0 � 0 � 0 6.90e�5 11

CCNFP40g03b � 0 � 0 � 0 3.20e�4 42

CCNFP40g03c � 0 � 0 � 0 3.18e�4 9

CCNFP40g04b 4.08e�5 9 � 0 1.45e�4 32 5.84e�4 59

CCNFP40g05a � 0 � 0 � 0 6.70e�6 1

CCNFP40g05b � 0 � 0 � 0 1.83e�5 3

CCNFP50g01a � 0 � 0 � 0 7.51e�3 71

CCNFP50g01b 1.02e�3 30 1.36e�4 4 3.13e�3 88 1.02e�2 100

CCNFP50g01c 2.00e�4 8 2.25e�4 9 5.70e�3 98 2.44e�2 100

CCNFP50g02a � 0 � 0 2.60e�5 2 1.37e�3 85

CCNFP50g02b � 0 � 0 5.11e�4 47 4.97e�3 96

CCNFP50g02c � 0 � 0 � 0 5.92e�4 5

CCNFP50g03a � 0 � 0 � 0 8.44e�5 9

CCNFP50g03c � 0 � 0 � 0 2.34e�4 15

CCNFP50g04a � 0 � 0 � 0 1.09e�5 2

CCNFP50g04b 1.25e�5 4 � 0 3.45e�5 11 2.24e�4 48

CCNFP50g05a � 0 � 0 � 0 3.25e�4 8

CCNFP50g05c � 0 � 0 � 0 1.27e�4 13

SmallWorldN40g01a � 0 � 0 2.45e�4 0 7.97e�3 89
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Graph FT-ACO SR-ACO MMAS ASrank

Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg

SmallWorldN40g01b � 0 � 0 � 0 2.87e�4 11

SmallWorldN40g01c � 0 � 0 � 0 1.16e�3 32

SmallWorldN40g02a � 0 � 0 � 0 2.40e�5 4

SmallWorldN40g02b � 0 � 0 � 0 3.11e�5 4

SmallWorldN40g02c � 0 � 0 � 0 1.35e�5 2

SmallWorldN40g03a � 0 � 0 � 0 1.22e�4 4

SmallWorldN40g03b � 0 � 0 � 0 2.15e�4 9

SmallWorldN40g03c � 0 � 0 � 0 1.37e�5 4

SmallWorldN40g04a � 0 � 0 � 0 5.01e�5 7

SmallWorldN40g04b � 0 � 0 � 0 5.80e�5 5

SmallWorldN40g05a � 0 � 0 � 0 5.31e�5 6

SmallWorldN40g05b � 0 � 0 � 0 5.00e�6 1

SmallWorldN40g05c � 0 � 0 � 0 1.18e�5 1

SmallWorldN50g01a � 0 � 0 1.54e�4 0 5.68e�3 78

SmallWorldN50g01b 2.83e�5 1 � 0 8.89e�5 3 2.59e�3 60

SmallWorldN50g01c � 0 � 0 6.85e�5 1 1.11e�2 77

SmallWorldN50g02a � 0 � 0 � 0 3.90e�4 20

SmallWorldN50g02b � 0 � 0 � 0 1.19e�4 7

SmallWorldN50g02c � 0 � 0 � 0 6.45e�5 13

SmallWorldN50g03a � 0 � 0 � 0 6.09e�4 44

SmallWorldN50g03b � 0 � 0 � 0 1.22e�4 27

SmallWorldN50g03c � 0 � 0 � 0 7.73e�5 3

SmallWorldN50g04a � 0 � 0 � 0 1.26e�4 10

SmallWorldN50g04b � 0 � 0 � 0 1.81e�4 16

SmallWorldN50g04c � 0 � 0 � 0 4.48e�4 47

SmallWorldN50g05a � 0 � 0 � 0 5.68e�4 49

SmallWorldN50g05b � 0 � 0 � 0 5.96e�4 45

SmallWorldN50g05c � 0 � 0 � 0 8.17e�5 8

SmallWorldN75g01a 5.16e�5 2 3.23e�5 5 1.64e�3 0 8.31e�3 99

SmallWorldN75g01b � 0 � 0 3.35e�3 0 1.12e�2 100

SmallWorldN75g01c � 0 � 0 1.13e�4 9 7.43e�3 84

SmallWorldN75g02a � 0 � 0 1.71e�5 3 1.86e�3 73

SmallWorldN75g02b � 0 � 0 1.53e�4 0 3.17e�3 95

SmallWorldN75g02c � 0 � 0 5.04e�5 4 2.94e�3 78

SmallWorldN75g03a � 0 � 0 2.64e�4 0 3.36e�3 95

SmallWorldN75g03b � 0 � 0 2.07e�5 6 2.71e�3 78

SmallWorldN75g03c � 0 � 0 � 0 6.29e�4 50

SmallWorldN75g04a � 0 � 0 1.07e�5 0 1.40e�3 81

SmallWorldN75g04b � 0 � 0 6.24e�5 36 1.12e�3 90

SmallWorldN75g04c � 0 � 0 1.19e�5 5 1.29e�3 78

SmallWorldN75g05a � 0 � 0 2.45e�6 3 5.73e�4 67
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Graph FT-ACO SR-ACO MMAS ASrank

Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg Avg.Dev Stg

SmallWorldN75g05b � 0 � 0 � 0 1.02e�3 63

SmallWorldN75g05c � 0 � 0 1.49e�5 0 2.10e�3 84

SmallWorldN100g1a 2.25e�5 3 5.28e�5 2 5.15e�3 0 1.69e�2 100

SmallWorldN100g1b 7.79e�5 15 � 0 4.24e�3 0 1.38e�2 100

SmallWorldN100g1c 3.19e�5 31 7.89e�5 10 7.99e�3 0 1.95e�2 100

SmallWorldN100g2a � 0 � 0 4.71e�4 78 3.09e�3 95

SmallWorldN100g2b � 0 � 0 9.89e�6 9 1.96e�3 81

SmallWorldN100g2c 1.51e�4 17 1.11e�4 9 1.77e�3 0 6.62e�3 100

SmallWorldN100g3a � 0 � 0 4.49e�5 24 1.87e�3 86

SmallWorldN100g3b � 0 � 0 1.13e�3 0 7.19e�3 98

SmallWorldN100g3c � 0 � 0 1.04e�3 0 5.30e�3 98

SmallWorldN100g4a � 0 � 0 1.01e�3 0 5.24e�3 99

SmallWorldN100g4b � 0 � 0 2.08e�4 60 3.17e�3 97

SmallWorldN100g4c � 0 � 0 9.20e�4 0 4.24e�3 99

SmallWorldN100g5a � 0 � 0 6.54e�5 44 2.46e�3 83

SmallWorldN100g5b � 0 � 0 9.45e�4 0 4.47e�3 100

SmallWorldN100g5c � 0 � 0 3.87e�4 0 3.20e�3 96
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