
Improving System Usability of Climbing
Mont Blanc - An Online Judge for Energy
Efficient Programming

Sindre Magnussen

Master of Science in Computer Science

Supervisor: Lasse Natvig, IDI
Co-supervisor: Magnus Själander, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology



 



i

Climbing Mont Blanc - Improving System Usability

Climbing Mont Blanc (CMB) is a system for evaluation of programs executed on
modern heterogeneous multicores such as the Exynos Octa chips used in eg. Sam-
sung Galaxy S5 and S6 mobile phones, see https://www.ntnu.edu/idi/card/cmb.
CMB evaluates both performance and energy efficiency, and provides the possi-
bility of performance ranking lists and online competitions. A first version of the
system is available and under trial use. This master thesis project builds on the
project work by Sindre Magnussen finished in December 2015, and is focusing at
continuing the improvement of various aspects of the system and its use.

The project involves the following subtasks:

1. Fix the main bugs and known issues found during user testing of CMB in
November 2015.

2. Change and/or optimize the existing database management system if neces-
sary to handle more frequent users submission.

3. Improve and extend the CMB system’s usability features in accordance with
the CMB team’s priorities.

4. Conduct a user-experiment to evaluate usability.
If time permits:

5. Propose improvements to the existing stability test with a practical solution
for simulating users and their submissions, i.e. a synthetic workload.

6. Propose how to improve the how-to information and the existing database of
problems by cleaning up, improving, using experience from TDT-4200 and
adding new problems.

7. Propose how to implement a discussion forum which allows discussion of each
problem and the use of CMB in general.

8. Implement some of the proposed solutions after approval by, and in collabo-
ration with the CMB team.

The master thesis project is part of the EECS Strategic Research project at IME
(www.ntnu.edu/ime/eecs). Many of the tasks assume a good collaboration with
master student Christian Chavez.

This master thesis project is reserved for master student Sindre Magnussen.

Main supervisor: Prof. Lasse Natvig
Co-supervisor: Assoc. prof Magnus Själander



ii



iii

Abstract

For each release of a new smartphone model, the limits of their CPUs, so called
heterogeneous multicore processors, are pushed. As a result, the usage of such
processors has gained an increased interest outside the mobile market and they
are now candidates for building energy efficient supercomputer architectures. The
European Mont-Blanc project has for its objective to develop a high-performance
supercomputer architecture, using smartphone processors, to lower energy con-
sumption by 15 to 30 times compared to other high-performance supercomputers.
The project has resulted in multiple prototypes using heterogeneous processors,
and has shown promising results for future development of energy efficient super-
computer architectures.

Regarding energy efficiency, there are enormous challenges ahead for both hard-
ware and software developers. To aid developers to create energy efficient software,
Lasse Natvig started the Climbing Mont Blanc project. Inspired by other online
programming competition systems, or Online Judge systems, the idea is to let
programmers compete to develop energy efficient code to various programming
problems. Climbing Mont Blanc is, to our knowledge, the first Online Judge focus-
ing on energy efficiency of submitted code. However, previous user feedback has
identified some components which need improved usability.

This thesis looks into improving certain usability aspects of components in the
Climbing Mont Blanc system. Real-time notifications, updated feedback messages,
a bulletin board, an updated user interface, and fixes of known issues have been
integrated into version two of the Climbing Mont Blanc judge. A user experiment
has shown that users are more satisfied with the feedback given in system version
two, by a confidence value of 97.2%. There is also a noticeable trend that the users
are more satisfied with the design and the provided how-to information of the new
system version. Furthermore, system usability has been continuously validated by
conducting small informal user tests throughout the work on the project.



iv



v

Sammendrag

Grensene til prosessorer brukt i smarttelefoner, s̊akalte heterogene multikjerne
prosessorer, flyttes hver gang en ny smartelefonmodell lanseres. Dette har ført
til økt interesse utenfor mobilmarkedet for denne typen prossesorer, og de har vist
seg å være gode kandidater for å bygge energieffektive superdatamaskinarkitek-
turer. Det Europeiske prosjektet Mont Blanc har som m̊al å bruke de nevnte mo-
bilprosessorene til å utvikle en superdatamaskin, som konsumerer 15 til 30 ganger
mindre energi sammenlignet med tilsvarende arkitekturer. Prosjektet har under-
veis resultert i flere prototyper som bruker heterogene multikjerne prosessorer, og
prototypene har vist lovende resultater for videre utvikling av energieffektive su-
perdatamaskiner.

Det er flere utfordringer knyttet til energieffektivitet i disse systemene som utfor-
drer b̊ade maskinvare- og systemutviklere. For å hjelpe utviklere å lage energieffek-
tive løsninger, startet Lasse Natvig Climbing Mont Blanc-prosjektet. Systemet er
inspirert av andre nettbaserte systemer som tilbyr programmeringskonkurranser,
s̊akalte nettbaserte dommere (“Online Judges”). Tanken bak systemet er å la pro-
grammerere konkurrere i å utvikle energieffektive løsninger til et bredt spekter av
programmeringsoppgaver. Climbing Mont Blanc-systemet er s̊avidt vi vet det en-
este systemet som fokuserer p̊a energieffektiv koding. Tilbakemeldinger fra brukere
viser derimot at noen deler av systemet trenger å forbedre brukbarheten.

Denne avhandlingen ser p̊a hvordan brukbarheten til visse deler av systemet kan
forbedres. Sanntidsnotifikasjoner, oppdateringer av feedback meldinger, en elek-
tronisk oppslagstavle, oppdateringer av brukergrensesnittet og fjerning av kjente
feil har blitt integrert inn i versjon to av Climbing Mont Blanc-systemet. Et bruk-
ereksperiment p̊aviste at brukere er mer fornøyd med feedback gitt av system ver-
sjon to, med en konfidensverdi p̊a 97.2%. Resultatet av eksperimentet viste ogs̊a
en tendens til at brukere var mer fornøyd med designet og tilgjengelig bruksin-
formasjon i system versjon to. Kontinuerlige lavterskel brukertester har ogs̊a blitt
gjennomført for a validere brukbarheten til systemet underveis i utviklingen.



vi



vii

Preface

This thesis is submitted to fulfill the remaining requirements for an MSc degree
in computer science at Norwegian University of Science and Technlogy (NTNU),
Trondheim. This work has been conducted at the Department of Computer and In-
formation Science NTNU throughout the spring of 2016, alongside being employed
as part of the course staff as a teaching assistant in TDT4102 [TDTa].

Acknowledgements
I would like to thank my supervisors Lasse Natvig and Magnus Själander for ac-
curate and valuable feedback on this work. I would also like to especially thank
Lasse Natvig for letting me contribute to the Climbing Mont Blanc project.

Thank you, Guttorm Sindre for all your help when planning the user experiment
and your help with analyzing the experiment results.

Thank you, Thea Mathisen and Johannes Lier for all your help and feedback, which
has been really valuable to me.

Thank you, Arne-Dag Fidjestøl for helping resolve maintenance problems at the
CMB servers.

Thank you, Jørn Eriksen for providing feedback on clarity of the produced text for
an external professional.

Finally, I would like to thank Øystein Kvamme Repp, H̊akon Åmdal, and others
at the study hall Sule for providing feedback on drafts of this thesis.



viii



Contents

List of Figures xiii

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Statement Interpretation . . . . . . . . . . . . . . . . . . . 2
1.3 Project Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background 7
2.1 The Mont Blanc Project . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Project Goals and Status . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Prototypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 The Climbing Mont Blanc Prototype . . . . . . . . . . . . . . . . . . 9
2.2.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4 Energy Measurements . . . . . . . . . . . . . . . . . . . . . . 16
2.2.5 Code Correctness and Code Deployment . . . . . . . . . . . . 18
2.2.6 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.7 Related CMB Project - System Scalability . . . . . . . . . . . 21

2.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.1 Online Judge Systems . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Crowdsourcing Sites . . . . . . . . . . . . . . . . . . . . . . . 25

3 Climbing Mont Blanc Usability Goals 27
3.1 Usability in Online Judge Systems . . . . . . . . . . . . . . . . . . . 27
3.2 Climbing Mont Blanc Usability Goals . . . . . . . . . . . . . . . . . 30

ix



x CONTENTS

4 Climbing Mont Blanc Improvements 33
4.1 Real Time Updates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Frontend Technology . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 Server Technology . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.2.1 Bug Fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Views and Feedback . . . . . . . . . . . . . . . . . . . . . . . 42
4.2.3 Group Functionality Improvements . . . . . . . . . . . . . . . 45

4.3 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.3.1 Database Management System Updates . . . . . . . . . . . . 47
4.3.2 Database Schema Updates . . . . . . . . . . . . . . . . . . . . 47
4.3.3 Endpoint Updates . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.4 Admin Interface . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Improvement Proposals . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5.1 Stability Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5.2 How-To Page and About Page . . . . . . . . . . . . . . . . . 54
4.5.3 Adding Problems . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.5.4 Discussion Forum . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 User and System Testing 57
5.1 Continuous User Testing . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 User Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.4 Results and Evaluation . . . . . . . . . . . . . . . . . . . . . 63
5.2.5 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 System Unit Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.3.2 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 Discussion and Evaluation 73
6.1 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Real Time Updates . . . . . . . . . . . . . . . . . . . . . . . . 73
6.1.2 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.3 Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.1.4 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 User Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3 System Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.4 Project Objective Achievements . . . . . . . . . . . . . . . . . . . . . 78

7 Conclusion and Future Work 81
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



CONTENTS xi

Bibliography 85

Appendix A User Test Material 93
A.1 Digital Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
A.2 User Study Questionnaire . . . . . . . . . . . . . . . . . . . . . . . . 93
A.3 User Experiment Tasks . . . . . . . . . . . . . . . . . . . . . . . . . 96
A.4 User Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
A.5 TDT4200 User Study Results . . . . . . . . . . . . . . . . . . . . . . 105

Appendix B System Frontend Screenshots 109

Appendix C Backlog 119

Appendix D Administration 123
D.1 Bitbucket, Jenkins and Google Analytics . . . . . . . . . . . . . . . . 123
D.2 Problem Descriptions Best Practices . . . . . . . . . . . . . . . . . . 123
D.3 Adding and Hiding Problems . . . . . . . . . . . . . . . . . . . . . . 124
D.4 Checker Example, Simple Diff . . . . . . . . . . . . . . . . . . . . . . 125
D.5 Checker Example with Goodness . . . . . . . . . . . . . . . . . . . . 126

Appendix E System Setup 129
E.1 Folder Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
E.2 Frontend Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
E.3 Server Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
E.4 Backend Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
E.5 Local Server Configuration File . . . . . . . . . . . . . . . . . . . . . 141



xii CONTENTS



List of Figures

2.1 The Climbing Mont Blanc system architecture. . . . . . . . . . . . . 10
2.2 Climbing Mont Blanc Home Page. . . . . . . . . . . . . . . . . . . . 11
2.3 Climbing Mont Blanc Problem View States. . . . . . . . . . . . . . . 12
2.4 Database schema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Odroid XU3 Block Diagram. . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Backend execution pipeline. . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Build pipeline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.8 Scalable Climbing Mont Blanc architecture. . . . . . . . . . . . . . . 21

3.1 HackerEarth Code Upload. . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Example of updating models without model change notifications. . . 35
4.2 Climbing Mont Blanc Socket.io communication protocols. . . . . . . 36
4.3 Socket.io namespaces and rooms in the Climbing Mont Blanc system 37
4.4 The updated problem-view . . . . . . . . . . . . . . . . . . . . . . . 38
4.5 The updated problem view . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 The updated home page view . . . . . . . . . . . . . . . . . . . . . . 42
4.7 Example of an old popup feedback message . . . . . . . . . . . . . . 43
4.8 Climbing Mont Blanc feedback messages. . . . . . . . . . . . . . . . 43
4.9 Error modal example . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.10 Bulletin board frontend examples . . . . . . . . . . . . . . . . . . . . 45
4.11 The updated group leader view . . . . . . . . . . . . . . . . . . . . . 46
4.12 The updated profile view . . . . . . . . . . . . . . . . . . . . . . . . 46
4.13 Database schema updates . . . . . . . . . . . . . . . . . . . . . . . . 48
4.14 Example request against local API . . . . . . . . . . . . . . . . . . . 49
4.15 Bulletin creation and overview in the admin interface. . . . . . . . . 52

5.1 User-centered design process . . . . . . . . . . . . . . . . . . . . . . . 58

xiii



xiv LIST OF FIGURES



List of Tables

1.1 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Climbing Mont Blanc code correctness tools. . . . . . . . . . . . . . 18
2.2 Defining Online Judges and Crowdsourcing . . . . . . . . . . . . . . 23

4.1 Climbing Mont Blanc Socket.io events and corresponding actions . . 39
4.2 Climbing Mont Blanc error types. . . . . . . . . . . . . . . . . . . . . 45
4.3 Climbing Mont Blanc API route updates with responses . . . . . . . 50

5.1 Available solvable problems during user test. . . . . . . . . . . . . . . 60
5.2 Likert scale alternatives on question type. . . . . . . . . . . . . . . . 61
5.3 Effect sizes and corresponding metric values. . . . . . . . . . . . . . 63
5.4 Label to question title mapping . . . . . . . . . . . . . . . . . . . . . 64
5.5 Mean, variance, F-test, and T-test results. . . . . . . . . . . . . . . . 65
5.6 Wilcoxon-Mann-Whitney P-values, effect-sizes, and power results. . . 66
5.7 Frontend total test coverage. . . . . . . . . . . . . . . . . . . . . . . 69
5.8 Frontend controller test coverage. . . . . . . . . . . . . . . . . . . . . 69
5.9 Server modules test coverage. . . . . . . . . . . . . . . . . . . . . . . 71

xv



xvi LIST OF TABLES



List of Acronyms

API Application Programming Interface.

CA Certificate Authority.
CI Continuous Integration.
CLI Command Line Interface.
CMB Climbing Mont Blanc.

DBMS Database Management System.

EDP Energy-Delay Product.

FIFO First-In-First-Out.
FLOPS Floating Point Operations per Second.

HPC High-Performance Computing.
HTTP Hyper Text Transfer Protocol.
HTTPS Hyper Text Transfer Protocol Secure.

ICPC International Collegiate Programming Contest.
IE Internet Explorer.
ISA Instruction Set Architecture.

JSON JavaScript Object Notation.

MB Mont Blanc.
MVC Model-View-Controller.

OJ Online Judge.
ORM Object Relational Mapper.
OS Operating System.

REST Representional State Transfer.

SSE Server-Sent Events.

xvii



xviii List of Acronyms

SSH Secure Shell.
SSL Secure Socket Layer.

UFW Uncomplicated FireWall.

WMW Wilcoxon-Mann-Whitney.



Chapter 1

Introduction

1.1 Motivation
For each new smartphone model, the limits of smartphone processors regarding
computational power and energy efficiency are pushed. As a result, processors
for mobile devices, or so-called heterogeneous multicores, have gained interest as
components in systems outside the mobile market. The Mont Blanc (MB) Project
[MB] has shown that heterogeneous multicores are potential candidates for build-
ing High-Performance Computing (HPC) systems, as the performance gap between
heterogeneous multicores and microprocessors is closing quickly [RCG+13]. In-
creasing performance has always been a priority in HPC, and HPC system per-
formance is expected to hit Exascale performance (1018 Floating Point Operations
per Second (FLOPS) (exaFLOPS)) within few years [TOPa]. The main goal of the
MB project is to build a new type of supercomputer architecture, reaching Exascale
performance using 15 to 30 times less energy compared to other HPC systems. The
project has already constructed multiple prototypes by using heterogeneous pro-
cessors like the Samsung Exynos [EXY] processor among others. The Barcelona
Supercomputing Center coordinates the project, and the project is funded until
September 2016.

Making energy efficient systems poses enormous challenges for both hardware and
software developers. However, ARM among others have made progress in produc-
ing energy efficient hardware. ARM has developed the energy aware big.LITTLE
technology for their heterogeneous cores, which consists of both high performance
and energy efficient processors. The technology uses Global Task Scheduling to as-
sign threads to the most appropriate CPU based on dynamic runtime information
[Jef13]. Other well-known hardware techniques are also massively used, such as
Dynamic Voltage and Frequency Scaling. Among development of energy efficient
software, Task-Based Programming models like OmpSs [PBAL13] have gained in-
creasing interest in recent time, and have been used to develop task based programs
for heterogeneous architectures [LNAM12]. Both research areas are expected to be-

1



2 Chapter 1. Introduction

come even more important in the future.

There will be an increased need for programmers skilled in developing energy effi-
cient code for heterogeneous multicores. Many Online Judges (OJs) such as PKU
Online Judge [PKU] and Kattis [KAT] has existed for years, making it possible
for programmers to compete, and self-educate in creating efficient code. However,
none of the OJs we are aware of are known to evaluate and focus on energy ef-
ficiency of submitted programs. Noticing the need for such an OJ, Lasse Natvig
started the Climbing Mont Blanc (CMB) project to train programmers in devel-
oping energy efficient code for heterogeneous multicores by providing a new OJ.
Torbjørn Follan and Simen Støa developed the first prototype version during the
Spring of 2015 [FS15]. Previous user testing conducted during the specialization
project1 has, however, shown that usability improvements are needed in some of
the system components.

The CMB project wants to stimulate students and programmers to develop energy
efficient high-performance code for heterogeneous multicores. The PKU Online
Judge [PKU] had almost a total of 1.3 million submissions last year, and we be-
lieve that increasing the number of submissions on the CMB system might help
to solve some of the challenges related to programming heterogeneous multicores.
An important factor in motivating use of the system, is believed to be achieved by
improving system usability. This thesis aims to further improve the system and
extend with more functionality with a focus on usability.

1.2 Problem Statement Interpretation
Three different types of objectives are identified in the problem statement. Us-
ability improvements are the main focus of this thesis and there are several tasks
listed in the problem statement that can be interpreted as usability tasks. Fur-
ther, there are tasks not strictly related to usability that can instead be viewed as
general improvements to the system. Finally, the thesis aims to propose a series
of improvements and implement them if time permits. The subtasks listed below
will, as of the above discussion, either be labeled as U for usability, I for improve-
ments, or P for improvement proposals. As the tasks were already prioritized by
the supervisor in the problem statement, the tasks listed in secondary objectives
are assumed to be less important compared to the main objectives. However, they
are of importance to the CMB project in general.

Main objectives

U1 Fix the main bugs and known issues found during user testing of CMB in
November 2015:

1The earlier project work mentioned in the problemstatement.



1.2 Problem Statement Interpretation 3

• U1.1 Uploads on Mac OS X: Do not work and give an uninformative
error message.

• U1.2 Submissions locked in a running state: There should be a time-
out on submissions containing infinite loops or code which may leave the
submission in a inconsistent state.

• U1.3 Highscore list bug: When switching the sort metric, private submis-
sions should still be hidden.

I1 Change and/or optimize the existing Database Management System (DBMS)
if necessary to handle more frequent user submissions. Early in this thesis we
discovered that optimizing the database was not as important at this point as
first predicted, as the system is still a prototype and we have few active users
on the system. As a result, we did not think that optimizing the database was
of importance at this point. However, switching to a more sophisticated DBMS
should still be done.

U2 Improve and extend the CMB system’s usability features in accordance with
the CMB team’s priorities. The features prioritized by the CMB team is a combi-
nation of features found during the specialization project, previous user feedback,
and necessary usability features discovered throughout the semester:

• U2.1 Improved feedback during errors: Error messages should be struc-
tured, clear, and visible.

• U2.2 Add support for real-time updates during submission execu-
tion: State of submissions should update in real-time without the need of
manually refreshing web-content to check for state changes.

• U2.3 Newly added problems should be more stable: Problem files
added through the admin interface sometimes behaved strange during the
semester, such that the success of submissions on the problem seemed random
even with a correct implementation.

• U2.4 Bulletin board extension: A bulletin board is needed to display
administrator messages to the CMB users.

• U2.5 Views upgrade: Views should only display necessary information
to users. It is also important that users are satisfied with the judge’s user
interface.

U3 Conduct a user-experiment to evaluate system usability. Since a user test
were conducted in the specialization project, the results of the previous test is used
for comparison to evaluate the work done in this thesis.



4 Chapter 1. Introduction

Secondary objectives

P1 Propose improvements to the existing stability test with a practical solution
for simulating users and their submissions, i.e., a synthetic workload.

P2 Propose changes to the HowTo information, and how to improve the existing
database of problems by cleaning up and improving problem descriptions using
experience gained during the system’s use in TDT4200 [TDTb]. Add new problems
if time permits.

P3 Propose how to implement a discussion forum which allows discussion of each
problem and the use of CMB in general.

I2 Implement some of the proposed solutions after approval by, and in collabo-
ration with the CMB team.

1.3 Project Contributions
This project contributes towards improving the usability of the Climbing Mont
Blanc system. We define usability as the ease of use, ease of learning, satisfaction
of a software system, as well as user error rates. Chapter 3 presents the formal
definition of usability used in this thesis. This thesis also assumes that the usability
of a software system is extended if more features are added to the system frontend,
since the range of possible actions for users is extended. Usability is a broad term
and there is always room for usability improvements in a software system. This
thesis is restricted to improve a subset of prioritized usability aspects prior to its
the start, as well as urgent usability aspects discovered throughout the work on
this thesis.

Users of the system is defined as both administrators using the admin inter-
face, and regular users using the frontend browser interface (the website https:
//climb.idi.ntnu.no). Furthermore, this thesis also aims to further extend the
functionality of the system with focus on contributing towards usability. All con-
tributions and their corresponding sections are summarized in Table 1.1.

It is also worth mentioning that contributions have been made to the CMB project,
which are not related to the objectives set in Section 1.2. A rough estimate of said
contributions is calculated to be around 15%; about 5% of the time was spent on
helping other Master students with development or usage of the system, and 10%
was spent on maintaining the system, upgrading code libraries and packages, as well
as attending meetings to plan the future of the CMB project. These contributions
are not discussed in this work.

https://climb.idi.ntnu.no
https://climb.idi.ntnu.no


1.4 Outline 5

Objective Description Summary Section(s)

U1 Fix the main bugs and known issues found
during previous user testing of CMB.

Section 4.2.1
and 4.4

I1 Switch the DBMS system used by the CMB
system.

Section 4.3.1

U2 Improve or extend the CMB system’s usability
features.

Section 4.1,
4.2.2, and
4.3.2

U3 Conduct a user-experiment to evaluate system
usability.

Section 5.1
and 5.2

P1 Propose improvements to the existing stability
test.

Section 4.5.1

P2 Propose improvements to the HowTo-page
and existing problem descriptions, and add
new problems.

Section 4.5.2
and 4.5.3

P3 Propose how to implement a discussion forum. Section 4.5.4

Table 1.1: Thesis contributions

1.4 Outline
This report is structured as follows:

Chapter 2: The chapter presents the Mont Blanc project, which motivated the
Climbing Mont Blanc project. The chapter will also present the Climbing Mont
Blanc project, that is, the system architecture, energy measurement method, the
system environment, and system security. The chapter will also present the theme
of another Master Thesis working to improve system scalability. Finally, related
OJs and other related work concludes the chapter.

Chapter 3: The chapter presents the definition of usability in software systems.
Based on theory, aspects which makes an OJ usable are briefly discussed. The
chapter ends with a discussion of the objectives set by this thesis and their rele-
vance to the usability definition.



6 Chapter 1. Introduction

Chapter 4: The chapter presents implementation done to the system in this work.
The chapter will present the technical solutions for the usability goals set in Sec-
tion 1.2, as well as present implementation proposals for a improved stability test,
improved HowTo-information and base of provided problems, and a discussion fo-
rum.

Chapter 5: The chapter starts with a presentation of continuous user testing con-
ducted during development. The chapter will also present a user experiment and
analyze wether the usability has improved after implementing the usability features
mentioned in Section 1.2. The chapter ends with a presentation of system unit test
coverage, to justify the correctness of implemented features.

Chapter 6: An evaluation and discussion of the technologies used and user test
pros and cons will be discussed in this chapter. The chapter also presents alter-
natives to technologies and the user test methodology. The chapter ends with a
discussion on wether the objectives presented in Section 1.2 have been reached.

Chapter 7: The chapter concludes the thesis, and presents future work sugges-
tions based on results of the user experiment and suggested improvements listed in
Appendix C.



Chapter 2

Background

This chapter explains the background for this thesis. Section 2.1 introduces the
Mont Blanc Project, the project goals, and its current status, as well as the largest
and most significant prototypes. Section 2.2 presents the CMB project, the CMB
system architecture, energy measurement procedures, code correctness and devel-
opment tools, and other related CMB projects conducted during the Spring of 2016.
The chapter finishes with a presentation of related work, presenting other OJs as
well as relevant crowdsourcing web sites.

2.1 The Mont Blanc Project
The MB project [MB] started in October 2011. The project received 14 million
Euros as initial funding, and the European Commission granted eight of those
millions. The project received an additional funding of eight million Euros from
the European Commission after two years. With a total funding of 22 million Euros,
it was estimated that the project would last until September 2016. The project has
also been extended as of October 2015, with an extended budget of 7.9 million Euros
funded by the European Commission. As mentioned in Section 1.1, the long-term
goal is to develop an HPC architecture with Exascale performance that uses 15
to 30 times less energy than other HPC systems. The energy performance metric
used is FLOPS/W, motivated by the Green500 list [GRE]. The project is split
into three phases; the first two are coordinated by the Barcelona Supercomputing
Center [BSC], while Bull [BUL] coordinates the third phase.

2.1.1 Project Goals and Status
Both Ramirez [Ale14a] and Mantovani [Fil15] summarized the goals of the first
two project phases. Mont-Blanc phase 1, valid from 2011 to 2015, had three main
objectives. The first was to deploy a prototype scalable to 50 PFLOPS with a
total power consumption of 7MW using the available energy efficient embedded
technology, which should be competitive with the Green500 leaders of 2014. The

7



8 Chapter 2. Background

second objective was to overcome some limitations found during development and
use the gained knowledge in the design of the next generation HPC system. They
aimed for an HPC architecture that should be scalable to 200 PFLOPS on 10 MW,
which should be competitive with the Top500 leaders of 2017. The third and last
objective was to port and optimize Exascale scientific applications capable of ex-
ploiting the new generation HPC systems described in objective 2.

The MB project phase 2 valid from 2013 to September 2016 has four objectives.
The first objective is to supplement the Mont-Blanc prototype, presented below,
software stack with software development tools and support ARMv8 Instruction
Set Architecture (ISA). The second goal is to construct the initial definition of
the Exascale architecture, which involves deployment of small ARM-based mini-
clusters and evaluation of their suitability in HPC. Objective number three is being
up-to-date with newly released ARM products and evaluate if they are suitable for
HPC architectures. The last and fourth objective is continued support for the Mont
Blanc project. These objectives are also summarized by Follan and Støa [FS15] and
on the MB project website [MB].

Mantovani reported the project status in July 2015 [Fil15]. Among the tasks fin-
ished so far are the deployment of a software stack to support the Mont-Blanc
system (see prototype specifications in Section 2.1.2), porting of new HPC ker-
nels and applications, and design, development, deployment and monitoring of
the Mont-Blanc prototype. Amidst the ongoing work is ARM 64 bit exploration,
porting new applications for the HPC architecture developed, enhance the pro-
gramming model (OmpSs [OMP]) used and monitor the Mont-Blanc prototype for
fault tolerant techniques.

The third phase of the project started in October 2015. The goal is to design a
new HPC platform that can improve the performance-energy ratio when executing
actual applications. The new design will be developed using a hardware-software
co-design [MG97] approach, and will ensure that hardware and system innovations
are transformed into HPC application benefits.

2.1.2 Prototypes
Multiple prototypes have been announced, and the specifications of the most sig-
nificant prototypes are listed below:

1. Tibidabo [RRP+13]: Tibidabo is the first prototype of the MB project. The
prototype is an experimental system and a proof-of-concept HPC system, to
show that it is possible to deploy a large scale HPC cluster using ARM
processors. The prototype contains compute-boards with NVIDIA Tegra 2
SoCs, with dual core ARM Cortex A9 @ 1GHz inside. The GPUs on the chip
did not support the standard programming models OpenCL and CUDA and
were therefore not used in the cluster. However, the compute cards can be
replaced with up-to-date chips as they become available with updated GPUs



2.2 The Climbing Mont Blanc Prototype 9

that support the two programming models. The prototype consists of 128
nodes each containing a Q71 module; each module holds a Tegra 2 chip. The
prototype achieves 120 MFLOPS/W on High-Performance Linpack (HPL)
benchmarks.

2. Pedraforca [Fil14]: Pedraforca consists of a combination of ARM processors
and NVIDIA GPUs. One compute node includes a NVIDIA K20 GPU and
a Tegra 3 Q7 Module containing 4 ARM Cortex A9 @ 1.3 GHz. The system
includes 78 such compute nodes. It is the first large scale HPC system that
makes use of ARM-based processors. Even though some factors of the initial
technology stack limits the system, the prototype contributes towards the use
of ARM-based embedded processors in HPC systems.

3. Mont Blanc [Ale14b, Fil15]: The latest prototype from the MB project.
The system contains a rack with a total of 1080 Exynos 5 compute cards,
or 2160 ARM Cortex-A15@1.7 GHz CPUs, 1080 ARM Mali T604 GPUs, 4.3
TB of RAM and 17.2 TB of Flash memory. The performance is about 35
TFLOPS and the power consumption is about 24 kW. In November 2014, the
Mont Blanc Prototype had an energy efficiency of 1.5 GFLOPS/W. The best
Green500 ranking during that time was approximately 5.2 GFLOPS/W.

2.2 The Climbing Mont Blanc Prototype
CMB is an OJ focusing on energy efficient programming on ARM based platforms,
greatly inspired by the Mont Blanc project. An OJ is a web application or web
based software system which allows its users to upload programming solutions to
defined set of programming problems. A more formal definition of OJ systems can
be found in Section 2.3. Most OJs serve problems with varying degrees of difficulty,
and can compile and run multiple programming languages (see more in Section 2.3).
The paper ”Climbing Mont Blanc - A Training Site for Energy Efficient Program-
ming on Heterogeneous Multicore Processors” [NFS+15] and the master thesis of
Torbjørn Follan and Simen Støa [FS15] describes the system in great detail. The
system version developed by Follan and Støa will hereby be referred to as system
version one, while the updated system developed in this thesis will be refered to
as system version two.

CMB is to the best of our knowledge the first OJ system that focuses on hetero-
geneous programming and measures energy consumption of submitted programs.
The source code is held in a private repository on Bitbucket [BIT], that uses git
[GIT] as version control. The architecture of CMB is shown in Figure 2.1. As seen
in the figure, the system consists of three main parts; the frontend, the server and
the backend. The three parts of the system are explained in detail below. Keep

1The specific module is taken out of production, but more information can be found in
[RRP+13].



10 Chapter 2. Background

Figure 2.1: The Climbing Mont Blanc system architecture.

in mind that the below sub-sections present the prototype before any improve-
ments were made to the system, i.e., system version one. Chapter 4 presents the
implementations made in this thesis, i.e., the development of system version two.

2.2.1 Frontend
The frontend handles all user-based interaction. It is developed in AngularJS
[ANG], which is a framework developed by Google and is maintained by Google
and individual developers. Version one of the frontend uses Angular version 1.3
and Javascript ECMAScript 5th edition. Angular is based upon the Model-View-
Controller (MVC) pattern [GHJV95] and extends HTML with dynamic views with
two-way data binding for building single page applications. The result is a more
pleasant user experience, as views are updated dynamically with model changes
without the need of manually refreshing the web page. The framework also lets the
developer define their own reusable components, which in most situations make the
code base more structured. The view structure and styling are defined in HTML5
and CSS3 respectively. Google Analytics, an advanced monitoring service provided
by Google, monitors user interaction at the frontend. Among the things monitored
is the number of active users, number of new users, and user behavior.

The front page view of system version one is shown in Figure 2.2. Appendix B
shows screenshots of version one and two of the system frontend. Many actions
against the frontend, such as routing to a different view, launches Hyper Text



2.2 The Climbing Mont Blanc Prototype 11

Figure 2.2: Climbing Mont Blanc Home Page.

Transfer Protocol (HTTP) requests to the server that changes models and updates
the views dynamically. Angular controllers make these requests to fetch up-to-date
data to the frontend models or to update the database with changes made to the
models by the user. Routing to a particular problem is an example of dynamic up-
dates of the view, and also displays different views depending on the user’s state.
If the user is not logged in, as shown in Figure 2.3a, the view only shows the sub-
mitted programs that are visible2. If the user then logs into the system, as shown
in 2.3b, the problem view changes to make it possible to upload files and view
previous submissions. Besides, many actions can be performed in the frontend,
such as routing to a specific problem view, login, sign up, create and join groups,
manage groups, view the HowTo-page, and see public problems. The most common
action is to upload possible solutions to a problem, which requires a zipped folder
containing all source files.

2.2.2 Server
The server is implemented as an Representional State Transfer (REST) Application
Programming Interface (API), as defined in by Roy T. Fielding et.al [FT00]. The
server is stateless, that is, the user state is stored at the frontend. It is also uni-
form, meaning that requests sent to and from the server use the same data format
independent of the technologies used at the server and frontend. The RESTful API
is implemented using Python Flask [FLAh] and the data format used is JavaScript
Object Notation (JSON) [JSO]. Our development and production servers also make
use of Gunicorn [GUN] to handle simultaneous requests from multiple users. Guni-

2A user may change the visibility of their submissions and results through the user interface.



12 Chapter 2. Background

(a) Problem View, logged out of CMB.

(b) Problem View, logged into CMB.

Figure 2.3: Climbing Mont Blanc Problem View States.



2.2 The Climbing Mont Blanc Prototype 13

Figure 2.4: Database schema (taken from Master Thesis of Follan and Støa [FS15]).

corn forks off multiple workers upon server startup, each having a private instance
of the Flask webserver, and routes incoming requests to the current available work-
ers. If no workers are available, the requests are stalled until a worker becomes idle.

Nginx [NGI] is used as a reverse proxy on our development and production server.
A reverse proxy serves static files on the fly while requests for dynamic content3

are forwarded to Gunicorn. SQLite [SQLb] is used as database with SQLAlchemy
[SQLa] on top. SQLAlchemy functions as an Object Relational Mapper (ORM),
that is, it associates Python classes with database tables and objects of those classes
with rows in the tables. SQLAlchemy makes it easy for the programmer to interact
with the database, since SQL-statements are abstracted into Python objects and
procedures. The underlying database schema is shown in Figure 2.4.

The server runs within a Python Virtual Environment [VIR] that have all required
Python package dependencies4 installed. The virtual environment contains only
the packages needed by the server, which removes potential dependency errors if

3Dynamic content is data that changes during runtime, such as database content.
4The use of dependencies here refers to the dependencies between packages (e.g., code libraries

or code APIs). As an example, SQLAlchemy might require a specific version of Python-Flask
installed in order to work correctly.



14 Chapter 2. Background

the server is to host other Python-based systems in the future. The server is re-
sponsible for handling requests from the client, storing useful information in the
database and filesystem, and compiling submitted programs.

A Python program called push.py runs in the background, regularly checking a
First-In-First-Out (FIFO) queue for runnable programs. If a program is ready
to run, the script will push the program from the server queue to the backend,
and then compile and run it using Secure Shell (SSH). The result is returned to
the server when execution terminates, and the server checks the correctness of the
program before reporting the result back to the frontend. Furthermore, the server
is responsible for monitoring the state of the system with a background cron job.
The cron job runs every 15 minutes, checking if the three system parts Gunicorn,
push.py and backend is up and running. The system sends out an automatic e-
mail to the system administrators in case of system failure.

The server also provides an administrator interface. Admin users have special priv-
ileges which grant them access to the admin interface found at http://climb.idi.
ntnu.no/admin. Procedures that modify the database or the server file system are
all done through the admin interface. The admins control a lot of the content vis-
ible on the frontend, such as programming problems visibility. The most common
administrator operation is to add new problems, which requires the admin to add
a new problem to the database, and upload a set of files to the server used validate
submitted code.

The files needed to make a problem solvable are an input file to be piped into the
submitted programs, a file that holds the expected result of an execution, and a
special file called checker.cpp that checks the correctness of submitted programs.
When a program is executed, the input files are given as arguments to the submitted
program. When the program is done executing, the checker compares the output of
the submitted program against the expected answer files. The program is accepted
if the checker program approves the program output. Since the checker is a regular
C++-program, it is up to the admin to define what sort of output that should be
accepted by the checker. Most of the problems available simply check the difference
between output and expected output using the Unix diff program [DIF]. A special
database field called goodness can also be added to the problem. The database
field is meant for approximation problems to check how “good” a solution is. As
an example, a solution to the Vertex Cover problem might yield a different cover
on each run. The admin who created the problem can then define in the checker
how good a given cover size is. More information on how to add problems through
the admin interface can be found in Appendix D.

2.2.3 Backend
The backend is the executing unit of the CMB system. It is an Odroid XU3 board
[XU3a], which consists of an Exynos 5 Octa heterogeneous multicore. A block
diagram of the board is shown in Figure 2.5. The Odroid board uses a minimum

http://climb.idi.ntnu.no/admin
http://climb.idi.ntnu.no/admin


2.2 The Climbing Mont Blanc Prototype 15

Fi
gu

re
2.

5:
O

dr
oi

d
X

U
3

B
lo

ck
D

ia
gr

am
(s

ou
rc

e:
H

ar
dk

er
ne

lW
eb

sit
e

[X
U

3b
]).



16 Chapter 2. Background

of the external interfaces and components available to get more consistent energy
readings; the Ethernet port for internet access, eMMC module or MicroSD card
for the Operating System (OS) image5 and file system, and the board energy mon-
itors. The Exynos 5 Octa consists of four big ARM Cortex A-15 and four small
ARM Cortex A-7 cores, which share the same ISA but have different character-
istics when it comes to performance and power consumption. The Exynos chip
also has an ARM Mali-T628 GPU with six cores and combined with the two ARM
processor types, which makes the Exynos chip a three-way heterogenous multicore
with 14 cores.

The Exynos chip makes use of ARM big.LITTLE technology. The technology en-
ables the OS to perform Global-Task-Scheduling; to dynamically assign threads to
the most appropriate CPU based on the run-time information [ABL]. The board
will compile and run the programs pushed to it by the server script push.py, mea-
suring time and energy as the program executes. Upon program termination, the
board will calculate the program energy consumption and report results back to
the server for further processing. The observant reader might view a compilation
both at the server and at the board as redundant. Server compilation is done as
the server has the capacity to handle multiple users simultaneously, and provides
quicker feedback to the user in case of compilation errors. Also, the system lacks
a good cross-compiler, and we have not found an appropriate cross-compiler for
the server. The backend therefore needs to compile the submitted program, as the
server and backend have different ISAs. The current CMB backend supports the
programming languages C and C++, compiled with gcc-4.9 and g++-4.9 respec-
tively. The compilers have support for both OpenCL v1.1, OpenMP 4.0, NEON
and PThreads NTPL 2.19.

2.2.4 Energy Measurements
The Hardkernel EnergyMonitor program is used to monitor power consumption
and is compatible with Odroid XU3 [OEM]. The pipeline in Figure 2.6 shows the
execution pipeline when a program is pushed to the backend. The program is first
compiled, and further executed on a small input set to detect potential runtime
errors. If there are no runtime errors, the EnergyMonitor program is started and
the cache is cleared. Due to energy consumption irregularities found by Follan and
Støa [FS15], clearing the cache is necessary to obtain stable energy readings. After
the cache is cleared, the CPU is heated using the UNIX stress [STR] command.
The CPU runs stress to obtain a fixed start temperature (currently 60 degrees
Celsius) before running the program. Starting benchmarks at the same tempera-
ture before each run of a benchmark is important to obtain stable energy readings,
as pointed out by Cebrian and Natvig [CN13]. The current backend uses the sen-
sors monitoring the temperature of the four big ARM Cortex A-15 cores to arrive
at the given target temperature of 60 degrees. The program is then executed and,

5The eMMC module loads the OS image faster than a MicroSD card, and is preferred over a
MicroSD card if the module is functional.



2.2 The Climbing Mont Blanc Prototype 17

Figure 2.6: Backend execution pipeline (adapted from [FS15]).

upon program termination, the EnergyMonitor program is ended. Finally, after
post-processing the program power consumption, the result is reported back to the
server.

Timestamps are captured right before and right after a program executes to mea-
sure execution time. The same timestamps are also used to fetch the power con-
sumption during program execution, by parsing the output of the EnergyMonitor
program and select the measurements captured for the big correctness test in the
Figure. Upon receiving the results from the backend, the server then calculates
the Energy-Delay Product (EDP) [HIG94]. This metric is chosen as it emphasizes
both energy and performance. Energy is in itself a poor energy efficiency metric
since we could simply run a program on a slow and under-clocked CPU to obtain
low energy consumption. EDP is defined in Equation 2.1, where E is the energy
used, D is the delay or execution time.

EDP = E ∗D (2.1)

As noted, the Mont Blanc project uses the metric FLOPS/W. This metric may be
a useful metric when running the same benchmark or implementation over and over
again to test the energy efficiency of HPC and processor architectures. However,
CMB compares different implementations on the same problems repeatedly, i.e the
number of operations may differ from one implementation to the next. Another
problem is to determine the number of useful instructions, or in other words, in-
structions that contribute towards solving the problem. For these reasons, EDP
is preferred over FLOPS/W in the CMB system and is also the primary energy
efficiency metric used in the system.



18 Chapter 2. Background

2.2.5 Code Correctness and Code Deployment
Unit test frameworks and other tools are used to ensure code correctness in both
the frontend and server code. The tools used by the CMB system is summarized
in Table 2.1, and are split into four categories. Package Managers are used to
install and upgrade dependent code packages and libraries used by the system.
The required code packages needed are all listed in special files, one unique file per
package manager. Both the frontend and server code makes use of test frameworks
to develop and run unit- and integration tests and there exists multiple unit tests
on both system components. Linters are special tools that ensure that language
standards are followed, such as semicolons at the end of each line in Javascript or
correct indentation in Python files. Other tools include gulp [GUL], which is a
small build system used at the frontend that can execute small user defined tasks,
such as running the frontend linter and unit tests or compressing the HTML, CSS,
and Javascript files. At the server, virtualenv [VIR] is used as a virtual environ-
ment as described in Section 2.2.2.

To quickly deploy new features, the system makes use of Jenkins [JEN] as Con-
tinuous Integration (CI) server or build server. CI is a software engineering prac-
tice that automates the testing and deployment of systems. Fowler reports some
benefits of CI in his article from 2006; a clone of the production environment (so-
called development server) runs tests on the code changes before deployment to
production, bugs are discovered and removed easily, and as a whole it makes it
possible with rapid integration of new features [Fow06]. As briefly mentioned in
Section 2.2.2, the CMB system has a development and production server, and these
are used to implement CI as a practice in the project. The development server is
used for manually testing new features in a production-like environment as features
are developed. Features that passes the manual testing stage are then deployed to
the CMB production server. Jenkins can be configured to fit into various system
environments, and Figure 2.7 summarizes its use-case in the CMB system.

The Jenkins build pipeline in Figure 2.7 is defined for both the frontend and server
code. Each step in the pipeline is called a task, and may have various configurations
and use-cases depending on the system environment. The tasks shown in the figure
demonstrates the task configurations used in the CMB system. The first task in
the pipeline is launched upon code changes on the master-branch in the respective
git-repository. The task pulls all the new code changes from git and ensures that

Package
Manager

Test
Framework

Linter Other

Frontend npm [NPM] Jasmine [JAS] jshint [JSH] gulp [GUL]
bower [BOW] Karma [KAR]

Server pip [PIP] nose [NOS] flake8 [FLAa] virtualenv [VIR]

Table 2.1: CMB code correctness tools.



2.2 The Climbing Mont Blanc Prototype 19

Figure 2.7: Build pipeline.

installation of package dependencies does not crash the system. If the first task
completes without errors, it will automatically trigger the next task, which will run
all defined unit tests and the linter. As before, if there are no errors, task three
is launched, which deploys the recent changes to the development server over SSH
with debugging enabled. If the third task is successful, the code changes should be
visible on the development server of CMB.

Manual acceptance testing and integration tests can be carried out. If the devel-
oper(s) are satisfied with the new features, the final and fourth task can be trig-
gered manually. The task deploys the changes to the production server of CMB,
which also takes care of disabling debugging and compressing the frontend code.
Disabling debugging and doing frontend code compression reduces the number of
requests made by the browser and makes the server code execute faster, and it is
important to note that this does not affect the functionality of the system. The de-
velopment server does, as mentioned, have debugging enabled, and uncompressed
code to easier find bugs during acceptance testing. Since the difference between
the two servers does not sacrifice the functionality of the system, it does not violate
the rules set by CI.

The CMB development server has a Jenkins server installed and provides a user
interface available at http://climb-dev.idi.ntnu.no:9000. All development
should be done locally and then merged with the code on Bitbucket to follow
the practice of CI correctly. It is considered bad practice to develop code on the
development or production server, and the reader should refer to Appendix E to
learn about system setup and local development.

http://climb-dev.idi.ntnu.no:9000


20 Chapter 2. Background

2.2.6 Security
User Information Security A number of security measures are taken to make
sure that user data are stored and accessed safely. The password is processed by the
Python Werkzeug security package [WER] upon user creation, to ensure that the
password is salted and hashed before being stored in the database. This procedure
executes upon both regular and admin user creation, and it is therefore very hard
for adversaries to reconstruct a given password hash. The user sends the password
in the login request made to the server API, and becomes authenticated if the
password hash matches the hash stored in the database. The server then returns a
token6 that contains enough information to describe uniquely a user-session, and
it is sent back in a HTTP response header named Authorization. The token is
required in some of the requests made to the server API, such as uploading and
running submissions, and the frontend code takes care of including the header be-
fore such requests are made. The token is valid for one hour, which requires a new
login after an hour of inactivity.

Since the token is stored at the frontend, the server is stateless and thereby RESTful
as mentioned in Section 2.2.2. To make the transfer of information even more
secure, Hyper Text Transfer Protocol Secure (HTTPS) is used to encrypt all the
information sent in requests between the server and frontend. HTTPS uses Secure
Socket Layer (SSL) to encrypt messages sent to and from the server and is almost
impossible to decrypt, which enables safe transfer of passwords and other sensitive
data between the server and frontend.

Uploaded Programs Security An uploaded program can potentially contain
malicious code either in the source files or file names. To restrict the number of
possible actions that can be made through the uploaded code, the backend executes
the code using a Unix user named worker that has minimal OS permissions on the
backend. Also, to remove possible malicious scripts residing in file names, the server
again makes use of the Python Werkzeug security package [WER] before storing
the files in the server file system. It might be worth mentioning that it could be an
idea to further extend the system with designated compile servers or threads since
unknown errors during compilation might crash the server. Since no such error has
occurred in the past or present, it is listed in Appendix C as a possible feature to
be added to the system at a later point.

System Security The reverse proxy server used at the server is configured to
handle HTTPS requests. As mentioned, the server uses SSL when sending and
receiving HTTPS requests. SSL requires an SSL Certificate to work, which is a
guarantee that the holder of the certificate provides trustworthy and safe web-
content. The most common browsers have a list of trusted third parties issuing
certificates, called Certificate Authorities (CAs), and every certificate issued by one
of the CAs on the list are trusted as safe. Uninett [UNI] is one example of a CA

6A token is some unique string valid for a specific period of time.



2.2 The Climbing Mont Blanc Prototype 21

Figure 2.8: Scalable CMB architecture.

and has created the SSL certificate that is used by the CMB system. Since Uninett
is a well known CA, the HTTPS requests sent by the system is trusted by most
browsers.

The CMB backend also has Uncomplicated FireWall (UFW) [UFW] installed.
UFW restricts access to the board by requiring every SSH request to originate
from within the NTNU network. The backend also has Fail2ban [FAI] installed,
which restricts the number of authentication attempts made within a certain time-
frame. If there are more than three attempts from the same IP-address within
the configured timeframe, the IP-address is banned from sending requests for 10
minutes. The server also has UFW and Fail2ban installed, but the setup of UFW
is slightly different. The server UFW setup allows all requests made to port 80 and
443 to enable the requests made to HTTP and HTTPS respectively. The setup
makes the CMB frontend accessible from outside the NTNU network. To keep
up to date with security updates unattended-updates [UNA] is enabled on the
production server, which installs security updates if needed. The check for security
updates are made every night at 02:00, and an automatic restart of the system is
done if the update requires it.

2.2.7 Related CMB Project - System Scalability
Previous user testing has shown that the system is bottlenecked by the number of
executing units. The bottleneck was noticed during the Autumn of 2015 when stu-
dents had to use the system as part of mandatory exercises in the course TDT4200
Parallel Computing [TDTb]. The specialization project report delivered in Decem-
ber 2015 presented feedback given by the TDT4200 students, and some students
pointed out that submissions often stalled for several minutes in the run queue with



22 Chapter 2. Background

little feedback on progress. Even though students were advised to start exercises
early and submit to the system long before exercises were due, the system should
still handle a higher load of users during the last few hours before the exercises’
deadline. Further, if the system is to be used in programming competitions like
International Collegiate Programming Contest (ICPC) [ICP] or IDIOpen [IDIb],
it needs to handle multiple concurrent submissions without stalling them in the
queue for too long.

The observations motivated the extension with several execution backends like
depicted in Figure 2.8. Christian Chavez has been assigned the thesis on CMB
scalability, which should extend the system with more Odroid XU3 boards. The
idea is to have multiple backends at the CMB production server to handle multiple
submissions at the same time, as described in the CMB paper by Natvig et al.
[NFS+15]. A control mechanism needs to be implemented, to administer the in-
coming requests and possible run queue race conditions. This mechanism is called
a broker in Figure 2.8. Keep in mind that the figure describes the concept of scaling
the system with multiple boards, and there are several possible ways to implement
the suggested broker.

Follan and Støa suggested that one could simply add more push scripts, one script
for each connected backend [FS15]. While this solves the problem of extending the
system with more boards, the push script has proven to fail and terminate due to
some erroneous output from the backend. Finding errors and bugs in bash scripts
executed over SSH in Python has proven to be difficult to debug, which has driven
the project team to look for other solutions than simply extending with more push
scripts. The Specialization project report proposed the use of task queues, which
are mechanisms to distribute work among threads or machines. However, it might
impose unnecessary complexity to the system.

The thesis will also describe how the broker can be used to allow different backends
other than the currently used Odroid XU3 board. Figure 2.8 also shows an illus-
tration of the architecture if extended with different backends. Allowing various
types of boards on the system enables further compelling research on energy effi-
cient programming, and may provide CMB users with the possibility of comparing
the energy efficiency of benchmarks on multiple architectures in a quick manner.

2.3 Related Work
This section will present related OJs which might inspire the future development
of the CMB system. The presented work is inspired by the OJs presented in the
master thesis of Follan and Støa and further extended with interesting OJs as well
as the OJs mentioned in the specialization project. There exists many OJs that
have a vast amount of users and submissions, but as mentioned, we are not aware of
any other OJ focusing on energy efficient programming. Instead, we present pop-
ular OJs and their features, which might have an effect on the future development



2.3 Related Work 23

Definitions
Online Judge “An online based computer system, providing

programming problem descriptions and data
sets to automatically judge wether a particular
solution solves a given problem.” Inspired by
definition found in [KLC01]

Crowdsourcing “The act of taking a job traditionally per-
formed by a designated agent and outsourc-
ing it to an undefined, generally large group
of people in the form of an open call.” [CRO].

Table 2.2: Defining OJs and Crowdsourcing.

of CMB. Further, we also present the most popular crowdsourcing sites as these
have some relevance to the project. Table 2.2 lists the definitions of an OJ (briefly
mentioned in Section 2.2) and crowdsourcing. Since crowdsourcing is a broad term
we will further restrict the definition: Crowdsourcing is the action of outsourcing
programming tasks and problems to a large group of programmers in the form of
an open call. The definitions are valid throughout the thesis.

2.3.1 Online Judge Systems
Kattis
The first version of Kattis was developed in 2005 at KTH in Stockholm [EKN+11].
The judge was first used for assessing programming exercises in various courses at
the university. Since the first version, the Judge has developed into a sophisticated
and well known OJ and is widely used in the Nordic countries, perhaps because
of its usage in the programming contests ICPC [ICP] and IDIOpen [IDIb]. The
judge supports 13 programming languages and offers a broad range of program-
ming problems to solve with varying difficulty. The judge is offered to the public
through a website, but it is also offered as a simple Command Line Interface (CLI).7

Kattis also offers services for firms and universities alongside hosting a public OJ.
Professors can register courses and automatically grade programming exercises,
such that students easily can get feedback and track their exercise scores. The
service also offers plagiarism checks of submitted code and analytics of the regis-
tered courses. Companies can register to challenge potential job candidates with
a set of programming problems before interviewing them, and offer crosschecking
of submitted code to filter out cheaters. The universities can choose either a free
subscription with a limited number of registered courses and teachers, or a pre-
mium subscription with an unlimited number of teachers and courses with a cost
of 15$ per student, per course. Companies have three different paid subscriptions

7The Kattis CLI can be found at github: https://github.com/Kattis/kattis-cli.

https://github.com/Kattis/kattis-cli


24 Chapter 2. Background

to choose from, which offer either a few, medium or large number of interviewers
and problems depending on the chosen subscription.

UVa Online Judge
The first version of UVa Online Judge [UVA] was developed by former student
Ciriaco Garćıa de Celis in 1995 [RML08]. The judge was first built as a series of
bash scripts, but the scripts were later replaced by a team of students to make
the judge able to handle the increasing amount of submissions and to ready the
system to be used in programming competitions. Today the UVa Online Judge is
very popular, with over 1,8 million submissions registered in 2015 and over 100,000
users. The judge also offers over 4,300 programming problems solvable in 6 different
programming languages.

PKU JudgeOnline
PKU JudgeOnline [PKU] was released in 2003 and is one of the OJs with the
highest number of submissions. At its peak in 2010, the judge had over 1.768
million submissions, but the number of submissions has decreased in recent years
measuring almost 1.3 million submissions in 2015. The OJ provides mostly the
same features as other OJs, like viewing statistics, submitting code to problems,
and hosting online contests.

URI Online Judge
The URI Online Judge is served through a website which was first presented in July
2012 [BFT13]. The OJ aims to support both teaching student about programming
and professors aiding them to manage courses and exercises. A total of eight
problem categories are offered, training students in various topics in programming.
Bez et al. mentions a couple of features implemented. One feature lets the user
send in the input test cases to a problem, in which the online judge responds
with the correct expected output. Another lets the user view the code directly in
the browser during compilation errors, with highlighted code lines on those lines
containing errors [BFT13].

HackerRank
HackerRank [HACb] has over 800,000 developers registered and over 800 public
problems and challenges. The project was started in 2008 by Vivek Ravisankar
and Hari Karunanidhi. The founders felt like they spent too much time on engi-
neering interviews and less time creating great solutions, and they also had a hard
time finding good programmers through the traditional interview process. The OJ
supports over 35 programming languages and offers a clean design in their interface,
with features such as online code editing. HackerRank does also have an extensive
work section with more than 1,000 companies registered. The companies interested
in filling a particular position can create a basic free profile to interview candidates,
create or add problems, and watch the candidate code in real-time. One can also
request a premium subscription, which has even more advanced features like de-



2.3 Related Work 25

tecting code plagiarism. It also has a section for schools that want to create online
programming assignments similar other judges providing the same feature.

HackerEarth
HackerEarth [HACa] has over 14.4 million submissions, 3,146 practice problems,
and 232 in-depth tutorials. The HackerEarth team has one goal: make technical re-
cruitment straightforward and efficient. The judge offers much of the same features
as HackerRank and the other OJs mentioned above but has some unique features as
well. They provide a RESTful API documentation, which can be used to integrate
the OJ with other software systems. The HackerEarth team has also developed
a Google Chrome extension to notify their users about upcoming programming
competitions and events. The judge also hosts programming competitions, pro-
vides practice problems, provides a similar extensive work section as HackerRank,
and provide multiple technical and non-technical blogs. HackerEarth can also be
seen as a partial crowdsourcing site, with its numerous challenges and hackathons
provided by firms on the HackerEarth website.

LeetCode
LeetCode [LEE] has about 52,000 users registered. Their goal is to prepare coders
for technical IT interviews, and offers much the same features as the other OJs
presented in this section. However, they have a unique feature which is in-depth
articles per problem. Each article goes into depth about the theory required to
solve the given problem, and the OJ also enable its users to discuss the articles
with other users through their online forum.

Other popular OJs
There are four more Online Judges that is worth mentioning briefly. These are
Timus Online Judge [TIMb], A2 Online Judge [A2O], CodeChef [COD], and Sphere
online judge [SPH]. These OJs offer features similar to those already presented, so
they are not explained in great detail. More information about them can be found
on their websites.

2.3.2 Crowdsourcing Sites
TopCoder
The crowdsourcing site that seems to be the most popular is TopCoder [TOPb].
The site has more than 895,000 members and is used by companies like Amazon,
Facebook, IBM, and Microsoft for crowdsourcing real world problems to solve. The
best solutions to a problem are often awarded with a money prize.

RecSys Challenge
The RecSys Challenge [REC] is a crowdsourcing competition that has been hosted
every year since 2010. The competition aims to solve different challenges within
recommender systems, where the top three winners receive a money prize and an



26 Chapter 2. Background

opportunity to present their solution at the RecSys Conference. Many students at
NTNU compete in this competition as a part of their master thesis.



Chapter 3

Climbing Mont Blanc
Usability Goals

This chapter starts with a definition of usable software systems in Section 3.1. The
section will define usability, and show a few aspects and characteristics in other
OJs, which makes them usable with respect to the definition presented. Section 3.2
concludes the chapter with a discussion of the importance of the usability goals set
by this thesis.

3.1 Usability in Online Judge Systems
Usability is defined in the ISO 9241 standard Part 11 [ISO98] as “the extent to
which a product can be used by specified users to achieve specified goals with ef-
fectiveness, efficiency, and satisfaction in a specified context of use.” The definition
is broad and covers many aspects of a product, or in our case a software system.
Usability is a broad term and can be hard to define precisely, however, literature
seems to agree that the following five characteristics describe a usable software sys-
tem [Hol05, FJWC01]; learnability, efficiency, user retention over time, error rate,
and satisfaction. A quick summary of each characteristic is summarized below.

Learnability: The user’s ability to learn to use the system. Learnability also
involves the user’s ability to gain efficiency in using the system and reach their
objectives in a quick manner.

Efficiency: Users should obtain a high level of productivity when using the sys-
tem. The usability is improved if the users are able to quickly reach their goals
when using the system.

User Retention Over Time: The user should be able to return to the system
after a break from using it, and remember the core functionality of the system. A

27



28 Chapter 3. Climbing Mont Blanc Usability Goals

usable software system makes it easy to get back into an efficient state without the
need to learn the core functionality of the system anew. The characteristic is also
referred to as memorability.

Error Rate: The number of errors a user makes along the path of actions before
reaching his or her goal. A low error rate among users improves the usability of
the system.

Satisfaction: The user’s subjective thoughts about the system as well as making
the system pleasant to use. Satisfaction may involve functionality that is both
visible and invisible through the system frontend.

Another related term to system usability is the notion of affordance of things, which
is described by Donald Norman [Nor88]:

“...the perceived and actual properties of the thing, primarily those
fundamental properties that determine just how the thing could be
used [..] Affordances provide strong clues to the operations of things.
Plates are for pushing. Knobs are for turning. [..] Complex things may
require explanation, but simple things should not. When simple things
need pictures, labels, or instructions, the design has failed.”

Good affordances of entities and components in software systems will improve learn-
ability, efficiency, memorability, and user satisfaction while lowering error rates, and
thereby improve the usability of the system.

The definition of OJs as presented in Section 2.3 is quite straightforward. However,
because of its simplicity, it is fairly important that the OJ is highly usable when
users are actively using the system to solve programming problems. The most
time-consuming tasks done by most users in an OJ, at least in the CMB system,
is to read problem descriptions as well as submit code for automatic judgement.
The time spent on reading and submitting is minimal compared to the time spent
on developing code, and code development often happens off site in an offline en-
vironment if not explicitly offered by the OJ1.

The action of uploading code is one of the main actions done by users. Making the
action of uploading code simple is important for both efficiency and learnability.
OJs like HackerEarth makes it easy to upload code, providing an online code edi-
tor, which can compile and test the code or directly submit a solution like shown
in Figure 3.1. The user also has the option of uploading source files directly, which
makes it easier for the users wanting to submit source files instead of coding di-
rectly in the browser. Presenting multiple alternatives in a structured way to users
makes it simpler to use the system, as a given user may choose the method he or
she is most comfortable with. The upload feature also shows good affordance, and

1Some of the mentioned OJs have web based code editors, such as Kattis [KAT] or HackerEarth
[HACa].



3.1 Usability in Online Judge Systems 29

Figure 3.1: HackerEarth Code Upload (source: HackerEarth Website [HACa]).

the user instinctively knows how to submit code.

It is also important that the user receives feedback on the state of submitted pro-
gram. Tracking the state and repeatedly reporting to the user whenever the state
of the submission changes is critical. It does not have to be very detailed, as long
as the user gets some notion of the state of the program. For example, Kattis does
not automatically report the state of a submitted program, but they display a type
of progress bar that is updated whenever test cases pass, and the user manually
refreshes the current view. However, the more information displayed about critical
data such as the state of the submission, the better.

The different components in the user interface should also respond as expected and
give logical feedback. Failing to do so might distract the user, and thereby blocks
the user from reaching his or her goal. Norman mentions in his book that it is
important that all actions made against the system should “give an immediate and
obvious effect” in the form of feedback to the users [Nor88]. For OJs, this means
clearly stating feedback and making the feedback visible for the users, as well as
presenting useful and descriptive feedback messages.



30 Chapter 3. Climbing Mont Blanc Usability Goals

Administrators are also a part of the user group. Usability in OJs also involves
making the system usable for system administrators and problem makers, and it
is important that admin interface usage is simple and understandable. Usage of a
given admin interface likely requires some training and knowledge about the sys-
tem, but the interface should be simple, so users do not have to relearn how to
use the system and quickly achieve high efficiency, i.e., high user retention over time.

Other features implemented by the judge should also behave as expected and the
interface should be logically built. The OJs presented in Section 2.3 offer various
features, and going into depth about the usability of these features is outside the
scope of this thesis. However, it is worth mentioning that the OJs system com-
ponents should built with good affordances as described above. The professional
OJs mentioned in Section 2.3 all have teams of developers and designers and offer
simple and usable interfaces for their judges.

3.2 Climbing Mont Blanc Usability Goals
Section 1.2 presented the usability goals for this thesis. The listed usability ob-
jectives were chosen as the objectives are important for system usability, as well
as some features’ potential for further development of the CMB prototype. This
section further elaborates on the objectives’ importance, anchored in the theory
presented in Section 3.1 and to some extent the features’ potential for future de-
velopment of the system.

The objective U1 concerns the bugs and known issues when starting this thesis in
January of 2016, and is divided into three sub-objectives. Fixing bugs and known
issues is important and, in some cases, crucial to offer a system with good usability.
Making it possible for Mac OS X users to upload code to the system, i.e., solving
objective U1.1, is crucial for usability in the CMB system. If users are denied
uploading to the system even with a seemingly correct zip-file, it is likely that their
satisfaction of the system will be low. As the CMB team aims to offer the OJ
to as many people as possible, with support for the major operating systems and
browsers, it is therefore unacceptable to deny users using Mac OS X access to the
system.

Submissions should not be able to block execution on the board and be locked in
a running state (U1.2). The bug does not only give poor feedback to the user who
submitted the problem, but it also blocks other users from using the system. The
efficiency and satisfaction of other users trying to use the system would likely be
low, as they are not given any feedback on the situation. The last issue concerns
showing hidden submissions upon sorting on different highscore list metrics (U1.3),
and is considered a nice-to-have fix and is less crucial compared to the other issues
presented here. However, it does affect the general satisfaction with the system
and it may increase the error rate and confusion for some users.



3.2 Climbing Mont Blanc Usability Goals 31

The objective U2 is concerned with further extending the system with usability
features. The five usability sub-objectives aim to further improve or extend the
usability of the system, either by adding new features or enhance existing system
components. The objective U2.1 aims to improve the feedback presented to users
by making feedback more structured, clear, and visible, especially during error
messages. Immediate and obvious feedback of actions is, as mentioned before, im-
portant and it may help users gain efficiency and better the users’ learnability of
the system. Actions that require time to finish executing, such as running sub-
missions, should give some feedback on the state of the action. Preferably, some
feedback should also be given to indicate when the action is done executing.

Implementing real-time updates of data is related to giving good feedback and is
the goal of objective U2.2. The feature makes it possible to automatically up-
date the data displayed in the view, which for most users makes the system more
satisfiable to use as they no longer need to manually update the web page to re-
ceive up-to-date data. It also displays good affordance, as users may expect the
frontend views to change as data changes. The feature also has huge potential
and can be used when further extending the system with more features. Some
examples include detailed statistics of expected queue time and notifications when
a submission’s queue position changes. Section 7.2 mentions some possible future
extensions, which may use the real-time update technology in their implementation.

Newly added input and output files to problems should behave as expected and sub-
missions to the problem should have a predictable outcome (U2.3). The objective is
important to both administrators and regular users. Administrators might become
unsure of the functionality of the admin interface, and it also lowers satisfaction and
increases the error rate on adding problems among system administrators. Users
might begin to doubt their own, possibly correct, code depending on system out-
put on the problem, which lowers efficiency and learnability while the error rates
increase.

The last two objectives are mainly focused on user satisfaction. Objective U2.4
aims to develop a bulletin board to display administrator messages. The feature
makes it possible for administrators to notify users about important events such as
system maintenance etc. or less important events such as newly added problems.
Objective U2.5 focuses on displaying only necessary information to users, which
also helps users focus on the information that is important. Furthermore, the
objective also aims to improve the overall satisfaction with the user interface.



32 Chapter 3. Climbing Mont Blanc Usability Goals



Chapter 4

Climbing Mont Blanc
Improvements

This chapter describes the implementation of the usability and improvement goals
presented in Section 1.2, as well as a short discussion of the proposal objectives
presented in the same section:

• Fix bugs and known issues in the system, i.e, objective U1.

• Change the existing DBMS into a more sophisticated one, i.e, objective I1.

• Implement and extend the CMB system’s usability features in accordance
with the CMB team, i.e, objective U2.

• Propose improvements to an existing stability test, improvements to the
HowTo-page and existing provided problems, and implementation of a dis-
cussion forum, i.e, objectives P1, P2, and P3 respectively.

A frontend data model is in the following sections defined as an entity that stores
data. A data model also contains control logic to modify or update stored data,
and ,therefore, also acts as a controller. For example, fetching data from RESTful
APIs is common in the CMB prototype frontend data models. Each model is also
coupled with a frontend view, which uses the internal logic of the data model to
present the model data to users.

33



34 Chapter 4. Climbing Mont Blanc Improvements

4.1 Real Time Updates
The frontend view changes when a user performs actions against the frontend mod-
els as mentioned in Section 2.2.1. However, the frontend view presented to a given
user does not update automatically as other users interact and change their data
models, as models are stored locally in each of the user’s browsers. If the updated
model contains data that should be known1 to all users, the users do not get noti-
fied about the model changes dynamically and views may, therefore, display out of
date information. Figure 4.1 shows an example of the problem, as Alice updates
some of her browser’s model data when she interacts with the system. If Alice
changes some data present in Bob’s models, Bob will not be notified of the changes
as all data transfers are done with HTTP requests between Alice and the server.
However, Bob can fetch up-to-date data by manually refreshing his web page.

Many websites require shared data between multiple clients and dynamically noti-
fying clients if there are changes to the data. As an example in the CMB system, it
would be nice if the frontend interface dynamically updated as a user’s submission
finished running at the backend. In system version one the user had to update the
data manually by clicking a refresh button provided by the user interface or man-
ually refresh the web page, to fetch up-to-date model data. However, this section
presents a technology which has been introduced in version two of the system to
dynamically update data relevant for multiple clients.

Socket.io [SOC] is an API for enabling real-time communication between the server
and connected clients. The API was first made as Javascript library, but many open
source projects have developed modules for other programming languages integrat-
ing the API. One benefit of the API is that it works as a wrapper around a set of
real-time communication protocols to enable support for different browsers, which
means that the framework can automatically detect the protocol supported by a
client and use that information to select the best-suited communication protocol.

Rohit Rai states the communication protocols supported by the Socket.io API
[Rai13]. As many protocols are available, Figure 4.2 only shows the communica-
tion protocols enabled in version two of CMB. The WebSocket protocol [FM11],
shown in Figure 4.2c, has become more popular since its introduction in 2011 and
is now supported by the most popular browsers. The protocol is a bit different
from the well known HTTP protocol, as there is a persistent connection, or socket,
between the client and the server as long as both entities are connected to the
socket. The socket connection is closed if the client closes the browser window or
the server goes down, or if the code explicitly indicates to close the socket. Web-
Sockets enables easy two-way communication by letting two entities emit messages
back and forth on the socket connection and respond differently depending on the
type of message emitted on the socket.

1Hereby known as shared data.



4.1 Real Time Updates 35

Figure 4.1: Example of updating models without model change notifications.

Polling and long-polling both use the HTTP protocol and may seem similar at first
glance. However, in long-polling, the server keeps the connection between the two
entities open until there is an update to the requested data as shown in Figure
4.2b. In polling, as shown in Figure 4.2a, the client continuously requests data
with some constant delay between each request, while the server responds on each
request with the data currently stored at the server. The three presented proto-
cols all solve the problem of real-time notifications. However, to make the below
discussions more explainable, we can think of the connection between the server
and the client as a “socket”, which is a persistent communication channel with the
equal functionality regardless of the underlying protocol.

Each socket can be ”namespaced” into separate communication channels within an
application. A namespace can be viewed as an endpoint or network path, for ex-
ample in version two of the CMB prototype the namespace /cmb is used as default
namespace to emit messages between the client and the server. Every client initi-
ating a socket on the namespace receives all messages emitted to the namespace,
which makes it easy to share information between the server and clients connected
to the namespace.

Each namespace can also define a set of rooms, which can be viewed as sub-channels
of a given namespace. A client needs to join a room explicitly to receive the mes-
sages emitted within a sub-channel. Figure 4.3 illustrates the concept. Each mes-
sage emitted to the namespace /cmb is received by both client one and two. Client
three will only receive those messages emitted to the namespace /test. If a message
is emitted to room one within the /cmb namespace, only client one will receive the
message.



36 Chapter 4. Climbing Mont Blanc Improvements

(a) Polling: The client sends a series of HTTP requests and the server responds on each
request.

(b) Long-polling: The client sends an HTTP request to fetch new data, the server holds
the connection open until the requested data is updated.

(c) WebSocket protocol: a two-way connection tunnel open throughout the whole client
session. TCP is used as a transport protocol.

Figure 4.2: CMB Socket.io communication protocols.



4.1 Real Time Updates 37

Figure 4.3: Socket.io namespaces and rooms in the CMB system.

Socket.io also lets the programmer define events, which can be emitted between
the server and connected clients. Table 4.1 shows the events currently defined
for the CMB, and the actions taken either by the server or client depending on
which entity that emitted the event. The actions are only taken if the code defines
event listeners for each event, and for the frontend, it depends on the view that
is displayed in each user’s browser. As an example, the submission events shown
in Table 4.1 are only valid if a given user is viewing the problem-screen shown in
Figure 4.4. This makes sense because we are trying to do real-time updates to
the highscore-list and the user’s submissions while he or she stays in the problem
screen. Events will, therefore, not be received if the user navigate to another view,
as Socket.io event listeners in the frontend code are bound to views or rather the
views’ controllers.

The two following sub-sections describe the technologies used by the server and
frontend to support real-time communication with Socket.io.



38 Chapter 4. Climbing Mont Blanc Improvements

Figure 4.4: The updated problem-view.



4.1 Real Time Updates 39

Event Name Emitted by Received by Action
join-problem Client(s) Server Server adds the client

to the problem room
specified in the emitted
message.

leave-problem Client(s) Server Server removes the
client from the prob-
lem room specified in
the emitted message.

submission-deleted Server Client(s) Client fetches updated
submission data from
the server.

submission-enqueued Server Client(s) Client displays a mes-
sage in the browser
window, notifying
about queue size and
information present in
the emitted message.

submission-dequeued Server Client(s) Client displays a mes-
sage in the browser
window, notifying
about queue size and
information present in
the emitted message.

submission-finished Server Client(s) Client loads own sub-
missions as well as pos-
sible updates to the
highscore list.

Table 4.1: CMB Socket.io events and corresponding actions. Each submission
event is sent to a room, which simply is the database id of a given problem. Since
we have one room per problem, we know that all submission events within a room
have information about submissions made to a given problem. Remember that
client views need to define event listeners to take action upon events, and in our
case, the submission events above are only defined in the problem view.



40 Chapter 4. Climbing Mont Blanc Improvements

4.1.1 Frontend Technology
The frontend uses the client Socket.io library [SOC] through an existing Angular
component called angular-socket-io provided by Brian Ford [For13]. The com-
ponent is used to define an Angular factory, which is simply a component that
gathers and structures the setup of Socket.io in the client into a single service.
The defined factory can then be used by other components in the Angular app, by
marking components as dependencies of the Socket.io factory.

4.1.2 Server Technology
The Python module Flask-SocketIO [FLAf] enables Flask applications to use the
Socket.io API. Also, the modules gevent [GEVa] and gevent-websocket [GEVb]
is installed in combination with the Socket.io module to enable the use of the
WebSocket protocol. Gevent is a coroutine-based networking library providing a
high-level synchronous API on top of an asynchronous webserver. Asynchronous
coroutines are used to handle multiple concurrent requests from multiple clients
and are required by the Flask-SocketIO module to support the WebSocket trans-
port.

As mentioned in Section 2.2.2, Gunicorn uses a number of workers to handle mul-
tiple concurrent users. To fully support the WebSocket protocol, Gunicorn needs
to make use of a custom gevent worker instead, which supports the WebSocket
protocol. As stated by Miguel Grinberg on the Flask-Socketio documentation web-
site, Gunicorn can only enable one worker due to limitations in the load balancing
algorithm implemented by Gunicorn. The Gunicorn load balancing algorithm can-
not simply handle multiple gevent workers and persistent WebSockets connections,
which limits us to one worker per server. However, the worker uses coroutines to
handle multiple concurrent requests as stated above. The gevent worker is enabled
on the development server of CMB, which also required some changes to the Nginx
setup to entirely support the WebSocket protocol. Appendix E describes setup
information necessary to setup servers with Gunicorn and Nginx, while Section 6.1
discusses pros and cons with selected technologies as well as presenting alternatives
to the selected technology stack.

4.2 Frontend
This section presents figures of the views in the frontend that have changed in
version two of the system. Appendix B shows screenshots of versions one and two
of the system frontend for comparison. The following sub-sections will explain
the improvements and updates done to some of the views. Other views in the
system not mentioned in the following sections are not discussed in detail as their
functionality nor appearance has changed drastically but have rather been changed
to keep the views’ styling consistent throughout the system.



4.2 Frontend 41

4.2.1 Bug Fixes
Feedback from previous user testing showed that Mac OS X users were unable
to upload files to the system. The system requires the user to compress a folder
containing all the source files, which has confused some users. However on OS X,
users who seemingly constructed a correct zip still were unable to submit files to
the system. It turned out that the most regular way of creating zip files on OS X
also sometimes generated a hidden directory called MACOSX and a hidden file
called .DS Store within the zip-file. This made the upload fail, as the server as-
sumes it receives a single compressed folder, and not multiple directories within the
uploaded zip. Users were also presented with an error message which contained
little information about what went wrong.

The upload bug is removed in system version two. Before the zip file is sent to the
server, the frontend ensures that the zip file has the required format as described
above. The scan also removes all files that are not source or header files and en-
sures that the zip only contains a single directory containing the source files. The
directory MACOSX is also automatically removed if present in the zip. If a user
tries to upload zip files with a different format than the format described above,
they are presented with an error message telling them to learn more about how to
upload their code on the HowTo-page.

The problem-view shown in Figure 4.5 also contained a bug in the highscore list. As
can be seen in the figure, users have the option of making their submissions visible in
highscore list by ticking the radiobutton in the “Accepted Programs”-table. When
sorting on different metrics in system version one, however, submissions marked

Figure 4.5: The updated problem view.



42 Chapter 4. Climbing Mont Blanc Improvements

as hidden in the fetched submissions would suddenly appear in the highscore list.
The bug is fixed in the system version two and ensures that hidden submissions
are filtered out when the highscorelist is sorted on the different metrics used by the
system.

4.2.2 Views and Feedback
The views in system version two have an updated styling. The home-page view
shown in Figure 4.6 has a simpler table design and has removed unnecessary infor-
mation, such as database ids, present in system version one. All screens containing
tables have been updated according to the new table design. The problem-view
shown in Figure 4.5 has changed drastically compared to version one. In the
problem-view of system version one, users had to scroll to the bottom of the view
to check out the highscore list. In the updated view, the problem description and
file upload functionality are vertically aligned with the highscore list, which makes
it easy for users to locate the highscore list when entering the view. Version one of
the view also had a single table containing all uploads made by a user, while the up-
dated view splits the old upload table into a “Uploaded Solutions” and “Accepted
Submissions” table. The table “Accepted Submissions” contains all submissions
marked as finished and successful, while the rest of the submissions are shown in
the “Uploaded Solutions” table. Having two tables makes the upload information
more structured, and the user can quickly find information about submissions.

System version one displayed information and error messages in the lower right
corner of the screen. The messages were very small, and can sometimes be hard to

Figure 4.6: The updated home page view.



4.2 Frontend 43

spot as they were only visible for short period of time. Since all messages also have
the same styling, it was hard to differentiate between message types. An example of
the message component used in system version one is shown in Figure 4.7. System
version two displays messages right below the navigation bar as shown in Figure
4.8a, which makes feedback messages easy to spot. The messages are also split
into the four message types info, success, danger, error, and each message type has
their own color as shown by Figure 4.8b. Error messages have also been updated
with more descriptive messages if needed.

Most buttons in the frontend of system version two also have symbols inside the
buttons. Symbols were added to more clearly state the purpose of the button and
thereby improve usability. As an example, the problem-view includes a “play”-
symbol inside the “Run Program”-button upon successfully uploading a zip-file.
The same “play”-symbol is included in the “Accepted Submission” table to rerun
submissions, which improves learnability and memorability.

System version one required users to go through a two-stage sequence to compile
and run a program. The procedure has been further simplified into a single action

Figure 4.7: Example of an old popup feedback message.

(a) Example of view displaying updated feedback
message.

(b) The color of each of the de-
fined message types.

Figure 4.8: CMB feedback messages.



44 Chapter 4. Climbing Mont Blanc Improvements

in frontend version two, which makes the action of running a program simpler and
more logical. Other buttons in the new version of the interface have symbols as
well, for example, a navigation button from the homepage to a problem view in-
cludes a right arrow to indicate movement to a certain view. Users can thereby
infer that a backward arrow means navigating back to the previous view if such a
button is displayed in the system.

The updated problem view also displays spinners on submissions currently running
or in queue. An example of an active spinner on a submission in the “Uploaded
Solutions”-table is shown in Figure 4.5. The table also includes the state of the
submissions, which is updated in real-time as the program executes. The real-time
updates of a submission’s state is possible due to the improvement explained in
Section 4.1. If an error occurs during program execution, it is possible to view the
error in a popup window, or more technically a modal, as shown in Figure 4.9. The
content of the modal depends on the type of error and Table 4.2 shows the differ-
ent error types that can occur during a program’s execution. The content of the
modal are decided by the “detailed state” database field in the Submissions table,
which is explained in Section 4.3. System version one had an own view displaying
error messages, which navigated the user away from the problem view. However,
in version two of the frontend, users stay within the problem view removing an
unnecessary navigation stage.

A bulletin board displaying administrator generated messages has also been added
to the frontend. Figure 4.10 shows an example of how active bulletins looks like in
the system frontend, with both removable and non-removable bulletins. Section 4.3
explains the server extensions made to the server code to support the bulletin board
feature.

Figure 4.9: Error modal example.



4.2 Frontend 45

ERROR TYPES
CORRECTNESS TIMEOUT A timeout occurred during small

correctness test.
CORRECTNESS RUNTIME ERROR A runtime error occurred during the

small correctness test.
CORRECTNESS BAD OUTPUT Output from the small correctness

test was not accepted by checker.
PROGRAM TIMEOUT A timeout occurred during big cor-

rectness test.
PROGRAM RUNTIME ERROR A runtime error occurred during the

big correctness test.
PROGRAM BAD OUTPUT Output from the big correctness test

was not accepted by checker.

Table 4.2: CMB error types.

Figure 4.10: Bulletin board frontend examples.

4.2.3 Group Functionality Improvements
Figure 4.11 shows the updated group leader view. The view is displayed if a user
navigates to a given group from the homepage and is marked as the leader of the
group in the database, as in system version one. Among the visual improvements
mentioned in Section 4.2.2, the view has an extra button. The button lets the
leader of a group download a JSON file, which contains information about group
members as well as submissions made to problems registered on the group. The
file can be used to generate group statistics and the functionality was added due
to a master thesis of two students, assessing the CMB system’s suitability for
conducting digital exams in the course TDT4102 Procedural and Object-Oriented
Programming [TDTa]. The feature was needed by the students to be used as part
of their digital exam experiment with the CMB system.

The updated homepage-view has been extended with a “Create New Group”-
button. The button has been moved from the profile view present in system version
one into the updated homepage view in system version two, as users may not as-
sociate adding groups with profile information. The update also gathers group



46 Chapter 4. Climbing Mont Blanc Improvements

Figure 4.11: The updated group leader view.

Figure 4.12: The updated profile view.

information and functionality, which makes it easier to locate components related
to groups. The updated profile view is shown in Figure 4.12.



4.3 Server 47

4.3 Server
4.3.1 Database Management System Updates
Version one of CMB used SQLite [SQLb] as DBMS at both the development and
production server. SQLite is a lightweight DBMS, which requires minimal config-
uration before use and is popular to use during automatic unit testing, which also
is done in the CMB system. The initial goal was to improve, and thereby possibly
change, the DBMS into a more sophisticated system. However, during the Spring
the CMB team found it unnecessary to change the DBMS for performance reasons
and we found it more important to extend the system with new features.

However, unrelated to the performance reasons, a new DBMS was wanted by the
CMB team and the IDI Department2 [IDIa]. Therefore, we changed the DBMS to
MySQL due to its usage in other applications developed at the IDI Department.
IDI provided the databases used by the system, and we also gained access to a
database administrator interface available at https://phpmyadmin.idi.ntnu.no/.
SQLAlchemy made the switch onto the new DBMS easy as it has a predefined
MySQL adapter and had no problems in setting up the new databases for our devel-
opment and production servers. Further, Flask-Migrate [FLAe], used for database
migrations3, also worked without any changes in configuration.

A complete database dump was made from the SQLite databases. All SQL INSERT
statements in the database dump were extracted and executed against the new
development and production databases, to move all previously stored data in the
SQLite databases over to the MySQL databases. The actions were performed
with a combination of terminal commands and the database admin interface pro-
vided by the IDI department. As the IDI department have not experienced any
performance issues with MySQL and SQLAlchemy, the system uses the stan-
dard MySQL adapter provided by SQLAlchemy. Implementing and enabling non-
blocking database access has been added back to the backlog4 found in Appendix
C as a performance improvement.

4.3.2 Database Schema Updates
The updates to the previous database schema are shown in Figure 4.13. The
Submissions-table has been updated with two new fields. The “detailed state”
field was added to provide more information about a run to the user. In the cur-
rent improved system, it contains a detailed string about a submission’s state as it
returns from the backend as explained in Section 4.4. The field can be modified in

2The IDI Department cooperates with the CMB team, as they are maintaining the code of the
system.

3Database migration is the task of managing versions of a database schema without altering
previously stored database content.

4A system backlog is here meant by a list of features, which should be implemented in the
future.

https://phpmyadmin.idi.ntnu.no/


48 Chapter 4. Climbing Mont Blanc Improvements

Figure 4.13: Database schema updates. The figure does only include the tables
that are updated. Added table columns are highlighted.

the future to store JSON instead of simple text if more information about a sub-
mission becomes available when executing code on the backend. Future developers
should strive against always keeping users up-to-date with the state of their submis-
sions, and the new field aims to enable such feedback as explained in Section 4.2
above.

A Bulletin-table was added to enable administrators to notify users about news
and system messages. Bulletins have a field called “valid until”, which indicates
until which date a given bulletin is valid, and the field is used to select the valid
bulletins as explained in the following section and is also displayed in the frontend
as explained in Section 4.2 above. Another field called “removable” indicates if a
bulletin should be removable or not, and if the bulletin is marked as removable the
user is allowed to remove the bulletin from the frontend view.

Cascading delete has also been added between the Submission- and Run-tables.
Cascading delete ensures that all rows in the Run table associated with a Sub-
mission row gets deleted upon deletion of a submission, which ensures that there
are no dangling rows in the Run table, and the database is left in a consistent
state after deleting submissions. Database consistency is of importance for both
administrators and users, as both user groups can delete submissions.



4.3 Server 49

4.3.3 Endpoint Updates
The API endpoints that have been updated or added are listed in Table 4.3. Figure
4.14 shows an example request against one of the routes defined in the table, which
fetches data from a local server. The table does not include changes made to API
routes due to the implementation of the real-time update improvement explained
in Section 4.1, as the improvements do not change the internal logic of the original
routes and has only added code to emit events.

Figure 4.14: Example request against local API using Postman [POS].
The request executes the GET-request http://localhost:5000/api/group/
1?with-submissions=1 presented in Table 4.3 with the query parameter
with-submissions equal to 1 to also include the submissions made by the members
of the group.

http://localhost:5000/api/group/1?with-submissions=1
http://localhost:5000/api/group/1?with-submissions=1


50 Chapter 4. Climbing Mont Blanc Improvements

API Route Method Description
/api/submission/<int:sub id> DELETE If the submission with the

given id exists and has
been created by the cur-
rently logged-in user, the
submission is deleted from
the database as well as the
file system. Requires lo-
gin.

/api/group/<int:group id> GET Fetches submission infor-
mation about a group by
id depending on login
status. If the user is
not logged in, only public
group information can be
fetched. However, if the
user is logged in, the user
can also request informa-
tion about private groups.
If the query parameter
with-submissions is set
equal to 1, submissions
made from group mem-
bers are included in the re-
sponse if the user is either
a group member or leader.
The response for leaders
also include those submis-
sions set to be unvisible.

/api/bulletins GET Returns all created bul-
letins.

/api/bulletins/active GET Returns all bulletins cur-
rently active.

Table 4.3: CMB API route updates with responses. The routes listed show the
substring necessary to query the API, and need to be combined with the path of
the server providing the API. For example to delete a submission with id equal
to 1 from the development server API, a delete request needs to be made against
http://climb-dev.idi.ntnu.no/api/submission/1.

http://climb-dev.idi.ntnu.no/api/submission/1


4.3 Server 51

4.3.4 Admin Interface
Several new problems have been added to the system during the Spring semester
by various administrators. Most problems were added by the two master students
assessing the CMB system’s suitability for conducting digital exams. However,
during the Spring, we had a lot of trouble making the newly added problems solv-
able, as some submissions locked the backend infinitely. It turned out that some
of the administrators had uploaded input and answer files with CR/LF (DOS) line
endings, which locked the checker program during parsing of the input and answer
files. As the server and backend is Unix based and uses Unix line endings (LF), the
compiled checker program did not handle DOS file types and such files sometimes
caused the checker to pause execution during correctness checking.

The bug is removed in the updated admin interface. When uploading files to the
server, the files are automatically converted into Unix files with LF line endings.
This is done by running all input and answer files through the vim [VIM] command
vim + "argdo set ff=unix | update" +wqa ./*.txt in the directory contain-
ing the problem files. The checker source file is not run through the command as
the g++ compiler handles both Unix and DOS filetypes.

Also, some errors occurred when administrators tried to remove locked submis-
sions in the database through the admin interface. Due to lack of training, it often
left the database and the server file system in an inconsistent state. As explained
above, cascading delete was added between the Run and Submission tables to par-
tially solve the problem, but the files associated with a submission would remain
in the server file system and had to be removed manually. However, deletion of
submission files was often forgotten, and it caused filename conflicts if the user
re-submitted zip files with equal folder and file names as a previous submission.5

The Flask-Admin [FLAc] procedure on model delete solves the above inconsis-
tency problem. It has been added to handle when submissions are deleted from
the database and takes care of removing all files in the server file system associated
with a deleted submission. However, it is still possible to leave the database in
an inconsistent state if one does not use the admin interface to delete database
content. If other tools than the Flask-Admin module are to be used in the future
to handle the database, SQLALchemy provides event listeners that can be used
instead of the above-mentioned procedure. As the CMB team currently uses the
admin interface to handle database content, the on model delete procedure in the
Flask-Admin interface is used.

Administration of the Bulletin table presented in Section 4.3.2 has also been added
using the Flask-Admin module. Administration of bulletins is shown in Figure 4.15,
which shows how to create bulletins and how to view stored database bulletins.

5A suggested future improvement is presented in Section 7.2, which is based upon storing
submission files by the uniquely generated database id instead of using user defined folder and
file names.



52 Chapter 4. Climbing Mont Blanc Improvements

Figure 4.15: Bulletin creation and overview in the admin interface.

4.4 Backend
Some small changes have been made in the backend code. The CMB team dis-
covered that there was no timeout when running the small correctness test, which
could potentially lock the backend if the submitted code contained infinite loops.
Locking the backend is not acceptable under any condition, and the Unix program
timeout [TIMa] is therefore used during the small correctness test to kill the sub-
mitted program after some time if it halts for too long. The big correctness test
already uses timeout to kill programs that stall or are too slow, and the timeout is
set to 90 seconds. Since the small input set is much smaller than the big correctness
test, it is currently set to a third of the timeout of the big correctness.

The JSON returned by the backend is also slightly changed. A “state” field was
added to track the condition of the program better as it executes on the backend,
especially if there is an error during execution. The field is currently used as input
to the “detailed state” database field as described in Section 4.3, which is further
used in the frontend to specialize the feedback given to the user if there is an error
during execution of the program. Currently, the field is a simple string describing
the state of the submitted program when the backend is done executing, but can be
extended with for example JSON structures as more information about program
state becomes available.

4.5 Improvement Proposals
4.5.1 Stability Test
An integration test6 was developed during the specialization project in the Autumn
of 2015. The project report further described the usage of the integration test in a
stability test that determined the accuracy of execution time and energy measure-
ments over multiple submissions. A single run of the integration test sets up a test
server and submits a correct solution to a problem specified by the test, by using
the nose test framework which is, as mentioned in Section 2.2.5, used to develop
and run unit tests. The backend and server code was also temporarily modified to
output temperature readings before and after the run. A simple Bash-script was

6Tests multiple units or components of a system in the same test.



4.5 Improvement Proposals 53

created in order to run the test multiple times with varying delay between each
run of the integration test.

Further extending the system with an improved stability test is wanted by the CMB
team. This thesis proposes how to further extend the stability test, as stated in ob-
jective P1 presented in Section 1.2. The objective aims to extend the stability test
by simulating synthetic workload from users. Many test frameworks make it possi-
ble to simulate real users, but to restrict the discussion of frameworks we will only
consider those that fit into the existing server code base, i.e., the test framework
should be based on Python. Introducing frameworks dependent of other languages
is not beneficial, as the CMB system is already fairly complex and it would require
a lot from future developers. It is also a great advantage if the stability test could
execute automatically, for example as part of a stage in a Jenkins pipeline or in a
daily executed cron job.

The Python based framework Funcload [FUN] is a good alternative and is used by
Mozilla Services among others.7 The advantage of this framework is that tests are
launched through a terminal, which makes it simple to automatically launch tests
and benchmarks. The frameworks offer setup of benchmarks that can simulate
multiple users or clients making requests against the server, and the requests made
can also transport any kind of content such as zip files. This makes it possible
for the simulated users to upload and execute submissions to a problem, as in the
integration test described above. The framework can also generate HTML or PDF
reports after a benchmark execution, containing detailed information about the
test setup, request charts and network statistics, server CPU load and memory
usage, as well as possible failed requests.

Another benefit in using the Funcload framework is that it requires small changes
to the existing integration test. The functionality of the Bash-script, i.e., gather-
ing data over multiple submissions, can be covered in tests written in the Funcload
framework as it enables simulation of multiple clients. The server and backend code
requires some changes in order to make the test gather data from multiple runs, and
the development of the improved test should be done in correspondence with the
implementation of gathering low-level statistics listed in Appendix C. Results and
measurement statistics such as temperature during execution should be associated
with submissions made by users, and should be stored in the server file system.
Under the assumption that results and statistics from runs are stored in the file
system, the improved stability test should also automatically report the stability
of execution time, energy, and temperature readings to cover the functionality of
the previous stability test.

Another framework alternative is Locust [LOC], which was also mentioned in the
specialization project report. The downside of the framework is that it sets up
a web server with a web based user interface, which requires us to start the test

7See blog post: http://blog.ziade.org/2013/04/25/thoughts-on-load-testing/.

http://blog.ziade.org/2013/04/25/thoughts-on-load-testing/


54 Chapter 4. Climbing Mont Blanc Improvements

manually through a browser. It is worth mentioning that it is possible to make
the test execute through a terminal by requesting information from the Locust
web-server using HTTP requests, but the framework will still set up a web-server,
which seems to be a little drastic compared to our simple requirements. However,
the web interface is simple to use and is also very popular on GitHub.

Both frameworks mentioned above require a running CMB server and backend to
work. The previous integration test only required a running backend as the test
automatically started a test server, and it should be explored wether it is possible
to do the same with the introduction of one of the above frameworks to follow the
testing standard in the project. Another alternative is to run the stability test on
a designated server, which is a true copy of the production server, that is used by
few real users. The introduction of a new designated production like test server is
discussed further in Section 7.2 as possible future development.

4.5.2 How-To Page and About Page
The user feedback from TDT4200 [TDTb] pointed out that the HowTo page was
unclear on how to structure the content of zip files to be uploaded. Some users
also reported that it would be nice with an explanation of Unix error codes, which
is presented to users if their submission terminates with an runtime error. In addi-
tion, a solution to the OS X upload bug was discovered during the Spring and has
been implemented as explained in Section 4.2. However, if OS X users still expe-
rience problems, an explanation of how to correctly create a zip on OS X systems
should be added to the HowTo page. As the system was to be used in experiments
in the course TDT4102 [TDTa] and in the user test presented in Section 5.2, the
HowTo page was updated with the above information.

The page should also be further expanded as the system is extended with more
features. There are also some small possible extensions, which can be made to im-
prove the content on the HowTo-page. Among the things missing are IO handling
examples in the C programming language, as the current page only has an example
of C++ code IO handling. The text explaining the uploads can also be further
extended with a descriptive illustration to make it even more clear how to upload
code to the current system. The HowTo could also contain an FAQ, which can be
updated as questions are reported by users.

Another idea apart from the HowTo page is to add an About page. The About
page should describe the project and system in an easy way, as well as describe the
motivation and purpose. The page should also explain technical aspects, such as
an explanation of EDP, which may be an unknown metric for programmers new
to energy efficiency metrics. A list of publications related to the system would also
be beneficial on this page. The About page was not added to the system in the
project scope of this thesis.



4.5 Improvement Proposals 55

4.5.3 Adding Problems
This thesis has not contributed towards adding new problems. However, all prob-
lems used in the CMB system are advised to follow the standard of problems
present in other OJs. Some of the OJs mentioned in Section 2.3 are used in ICPC
programming competitions, and seem to follow the same format in their provided
problem descriptions. The CMB system should aim to offer problems following a
similar format, as the system may be used in similar competitions in the future.
Follan and Støa also described this in their Master Thesis [FS15]. The CMB team
should also strive to add more problems, hopefully with as much diversity as offered
by other OJs.

4.5.4 Discussion Forum
A discussion forum is wanted by the CMB team. There exists multiple third party
solutions offering online forums that offer varying degrees of modifiability, and we
here restrict the discussion of third party solutions by requiring that the software
is related to technologies used in the system or is known by the CMB team. The
framework FlaskBB [FLAg] is a Python Flask based lightweight forum module,
and seems to offer some degree of modifiability. The framework offers simple fo-
rum functionality such as posting questions, issue tracking, private messages, and
forum administration. It is also possible to create custom themes to better match
the frontend view. There is also a popular Javascript based open-source forum
software called Flarum [FLAb], which offers much the same features as FlaskBB.
It is also worth mentioning that third party software like Piazza is an option, but
future developers should keep in mind that the software offers only small modifi-
cations of its appearance.

A deeper study should be conducted before choosing how to implement a discussion
forum. To make the system look more professional, a third party module with a
highly modifiable appearance should be chosen. Another possibility is to build the
forum software from scratch. A disadvantage is that it takes a lot of time to develop
forum software, but a benefit is that no new software needs to be introduced in
order to develop the forum and it makes the system look more professional to the
outside world.



56 Chapter 4. Climbing Mont Blanc Improvements



Chapter 5

User and System Testing

This chapter will explain the testing of usability of the developed system. Sec-
tion 5.1 starts off with a brief presentation of the small continuous user testing,
which was concucted during development of new features. Further, Section 5.2
presents the motivation, methodology, and results from a large scale user test con-
ducted April 18th, and the results are compared to results gathered and presented
in the specialization report. The chapter ends with a presentation of system unit
test coverage in Section 5.3. This chapter covers the following objectives presented
in Section 1.2:

• Conduct a user-experiment to evaluate system usability, i.e., objective U3.

5.1 Continuous User Testing
ISO 13407 part 210 [ISO99] describes the practice of user-centered design. To
achieve high usability in a system, it is important to involve end-users early in the
design process, as they might have other requirements to the system compared to
system designers and developers. Figure 5.1 summarizes the iterative steps of the
process. First we have an idea and specify the usage of the idea in the system, be-
fore specifying requirements set by users. Then we develop a design prototype, and
evaluate whether the design meets user requirements. If the new design meets user
requirements it is integrated into the system, but if it is not accepted, we go back to
the stage in the user-centered design process, which needs revision or modifications.

System development during the Spring has followed a similar process as the user-
centered design approach described above. Requirements were specified by the
CMB team, and a design prototype was developed and tested on possible end-
users. Users were asked if they liked the new feature and they were also presented
with the old user interface for comparison. If the test users liked the new feature
it was accepted, otherwise it was further developed or revised until accepted.

57



58 Chapter 5. User and System Testing

Figure 5.1: User-centered design process (adapted from: [ISO99]).

Test users included supervisors, project team members, and student acquaintances.
Both the admin interface and user interface features were tested according to the
above process. Future developers are advised to follow a user-centered design ap-
proach such as the Lean Startup methodology [Rie11], which has become fairly
popular during the last few years.

5.2 User Experiment
5.2.1 Motivation
A user test was performed in the specialization project and the project report was
delivered in December 2015 as mentioned in Section 2.2.7. The CMB system was
one of three tools used by the students in mandatory assignments, where the CMB
system mainly was used for testing the system on more users then previously at-
tempted by Follan and Støa [FS15]. The course assignments cover various topics
and methods of producing parallel code in C++, like OpenMP, NEON, MPI and
CUDA, and is about 25% of the workload during the semester for the average
student. The TDT4200 course staff added in total five programming problems to
CMB, which were solved by most students, and the system received a lot of sub-
missions during the semester.

During November of 2015 a total of 37 students delivered an optional question-
naire, which included some questions about the CMB system. In addition to the
questionnaire, some feedback on the system was gathered during the last lecture of



5.2 User Experiment 59

the course late in November. The feedback was mainly focused on usability aspects
of the system, which helped the CMB project team to discover bugs, and to setup
and prioritize features to implement next. The prioritized list generated a back-
log, which was used as a motivation when constructing the objectives presented in
Section 1.2.

As this thesis potentially has improved system usability, it is interesting to conduct
a user study to compare the usability of the two system versions. As mentioned in
Section 2.2, the system developed by Follan and Støa will be referred to as system
version one, while the updated system presented in Chapter 4 will be referred to as
system version two in the below discussion. As mentioned in Section 3.1, usability
is a broad term and this thesis has contributed mainly against improving efficiency,
learnability, and satisfaction of users as discussed in Chapter 3 and implemented
in Chapter 4. The above observation makes it interesting to test the following
hypothesis:

Hypothesis 1: The usability, in terms of either efficiency, learnability, or user
satisfaction, is higher in system version two compared to system version one.

5.2.2 Methodology
The user test was conducted April 18th this Spring and assesses the system im-
provements presented in Chapter 4 with focus on usability. The goal of this second
test is to further improve the results received from the specialization project user
test also called user test one. The second test required an interest in programming
and programming experience from the participants, but no prior knowledge of C or
C++ or any parallel programming libraries were set as a requirement to participate
in the test.

The weak requirements were set since there was generally low interest from stu-
dents in participating in the test. The low interest in the test is most likely due to
bad timing, as many students have several assignment deliverables before their last
lectures in mid April. Furthermore, attracting students or others to participate in
a user test for a master thesis is generally hard if the test takes several hours. As
the focus of this test was to test the usability of the system, it should be sufficient
for participants to have general knowledge and interest in programming to assess
system usability.

The user test described a set of tasks to be completed by each participant. Since
we are comparing the two system versions, the test does not assess the new fea-
tures implemented and is assumed covered by Section 5.1. Appendix A presents
the tasks executed by every participant during the test, along with a questionnaire
each participant was to complete before finishing the user test.



60 Chapter 5. User and System Testing

Problem Name Problem Description Summary
Hello World Print out ”Hello World!””.
Digits T test cases are given as input, each

test case describing the range between
two numbers N and M. For each test
case, output the number of zeroes
present in all the numbers in the range
[N, M ].

Prime Number For every number in the input, output
if the number is a prime.

WERTYU For every encrypted input string, de-
crypt it and output the decrypted
string. Hint: The input strings are
encrypted with a QWERTY keyboard
shifted one character to the right.

Reverse String For every input string output the re-
versed string.

Table 5.1: Available solvable problems during user test.

Nearly all participants conducted the test simultaneously in a lecture hall to sim-
ulate the heavy submission traffic we experienced before assignment deadlines in
TDT4200. A couple of participants started the user test late or participated a
couple of days after the official user test, to simulate the students in TDT4200 that
experienced little or no traffic. Participants were informed that questions related
to how to complete a task would not be answered during the test and that tasks
should be completed individually. They were also informed that they could abort
the test at any time.

The most time-consuming task the participants had to complete was to submit
code to one of the problems presented in Table 5.1. Submitting code to problems
is the core of the OJ and the process of uploading and running submissions was the
most common procedure done by TDT4200 students. The procedure and aspects
related to submissions was also mentioned the most times in feedback given by the
TDT4200 students, and was therefore chosen as one of the main tasks to perform
in this user test. Before starting the user test, the participants were also notified
to comment extensively on the procedure when filling out the survey.

The participants who were unfamiliar with C and C++ were given five different
source files to the “Prime Number”-problem, which they were to submit to the
system. The thought behind handing out source files, was to simulate that the
participants made a number of tries before arriving at the correct solution. The
“Prime Number”-problem was chosen as it is of medium to easy difficulty. Partic-
ipants who knew either C or C++ were also motivated to try to solve more than
one problem if they arrived at a solution quickly, in order to extensively test the



5.2 User Experiment 61

Question Type Likert Score Range
1 2 3 4 5

A Very poor Poor Neutral Good Very
good

B Strongly
disagree

Disagree Neither
agree or
disagree

Agree Strongly
agree

C Very hard Hard Neutral Easy Very easy
D Not satis-

fied at all
A little
bit satis-
fied

Neutral Satisfied Very sat-
isfied

Table 5.2: Likert scale alternatives on question type.

procedure of uploading and running submissions. Other tasks executed by par-
ticipants included sign-up, login, viewing submissions and highscore lists, joining
groups, creating and administering groups, and changing user e-mail and password.

The questionnaire found in Appendix A contains the same questions about the
CMB system presented in the questionnaire given to the students in TDT4200.
The questionnaire is, as mentioned in the Specialization project report, inspired by
a typical Likert scale form developed by IBM1 and complemented with textually
based questions. To compare the results of the two questionnaires, it is important
that they cover the same aspects, and all questions developed in the specialization
project are therefore reused in the questionnaire handed out in this user study. In
addition, a couple of extra multiple choice questions were added to the question-
naire of this test for the sake of clarity.

Likert scale questions are often used in usability assessment of software systems.
In this test, the number of Likert scale alternatives is set to five per question. Each
row in Table 5.2 shows the possible alternatives for a given question type, as well
as each alternative’s corresponding score ranged from one to five. The answers to
Likert scale values of the two user tests are then compared using statistical analysis
as explained in Section 5.2.3. To make it easier for participants to describe their
thoughts about system features, the textually based questions are provided in the
questionnaire and are further used as qualitative support when discussing the user
study results.

5.2.3 Statistical Analysis
The tool Gnumeric [GNU] is used for statistical data analysis comparison of the
multiple choice results of the two user tests. The results are reproducible using
the pie charts and number of participants of each user test found in Appendix A.
Each multiple choice answer from both tests is translated into the corresponding

1See: http://garyperlman.com/quest/quest.cgi.

http://garyperlman.com/quest/quest.cgi


62 Chapter 5. User and System Testing

Likert scale value, and values of matching questions between the two user tests
are then compared. To simplify the discussion of results and validity, the user test
conducted as part of the Specialization project will be referred to as user test one
or T1 and the user test conducted in this thesis will be referred to as user test two
or T2.

An F-test [Moo07] is conducted to determine whether the compared data set vari-
ances can be considered equal. The F-test calculates a P-value, which is a mea-
surement of how extreme the results of a given test are relative to the underlying
statistical model. The P-value is compared to a defined significance level, and
variances are considered equal if the P-value is less than the decided significance
level or unequal if the P-value is bigger than significance level. The result can also
be formulated as keeping the null hypothesis (H0), while the opposite situation is
referred to as rejecting the null hypothesis and accepting the alternative hypothesis
(H1).

A T-test [WMMY93] is performed on each question to determine whether two user
tests have significantly different means. The T-test can be executed either assuming
equal or unequal variances, and the result of the F-test determines which version
of the T-test to execute. The T-test also outputs a P-value, which is used in the
same way as explained in the above paragraph.

The statistical analysis in this thesis assumes a significance level (α) of 5%. Fur-
thermore, the null hypothesis (H0) for the T-test assumes equal means of the two
datasets, while the alternative hypothesis (H1) is set depending on if we are con-
ducting either a one-tailed or two-tailed T-test. Equation 5.1 shows the possible
alternative hypothesis for the T-test, where µ1 and µ2 are the means for user test
one and two respectively. In this thesis we use the one-tailed alternative hypothesis,
as we want to obtain stronger results for system version two.

H1 =
{
µ2 > µ1 if one-tailed test
µ1 6= µ2 if two-tailed test

(5.1)

If the T-test indicates a significant difference between the two user groups further
analysis is needed. If so, an Anderson-Darling test [RW11] is performed to check
the normality of the data sets, as normality is often a requirement for a valid T-test.
However, if the normality check fails, the non-parametric Wilcoxon-Mann-Whitney
(WMW) test [HL05] is performed on each of the question groups accepted by the
T-test. The test is used to support the conclusion of the T-test, as non-parametric
tests are often used when the compared data sets are non-normally distributed.

The statistical effect-size is also reported and used when discussing the results. The
effect-size is meant by the statistical strength of a result, and will be important in
our discussion of the multiple choice results. The reported effect-size metrics used
is Cohen’s d, Hedge’s g, and Pearson’s r [Cum13].2 Cohen’s d is often used as

2Calculated with this tool: http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/

http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html


5.2 User Experiment 63

Effect size Pearson’s r Cohen’s d Hedge’s g
Small 0.1 0.2 0.2

Medium 0.3 0.5 0.5
Large 0.5 0.8 0.8

Table 5.3: Effect sizes and corresponding metric values.

effect size to measure the strength of a T-test, as well as Pearson’s r which is a well
known effect-size metric. Hedge’s g is also included in the results, as it is more ac-
curate than Cohen’s d with small sample sizes. Table 5.3 reports the strength scale
for each of the used effect-size metrics, and a conclusion from a test is considered
stronger the higher effect-size reported.

Cohen’s d and Hedge’s g are also used to calculate the statistical power of a con-
clusion. Statistical power is the probability of correctly rejecting H0 when H1 is
true, and is important when discussing threats against validity to be sure that we
have enough respondents to draw valid conclusions. Statistical power of the T-test
is calculated using the Real Statistics Resource Pack in Microsoft Excel [RSR].

5.2.4 Results and Evaluation
There were in total 21 participants in the second user test. Table 5.4 shows a
mapping between question titles and labels, which makes it easier to refer to the
questions in the below discussion. As mentioned, there were a total of 37 TDT4200
students providing feedback in the optional questionnaire given during the Autumn
semester. The pie-charts and a summary of textually based feedback for both the
user test one and two can be found in Appendix A. All statistical test results re-
ported in tables are rounded to three decimal places if applicable, that is, results
are not rounded if it changes the outcome of the below discussions.

Table 5.5 shows the means and variances of the user test one and two responses for
each Likert scale question in common for the two user tests. The table also include
F-test P-values and the conclusion of the F-test compared to the significance level,
which determines to either assume equal or unequal variances when performing the
T-test. The T-test P-value is also reported, and is used to determine if a rejection
of null hypothesis is needed.

The three questions A3, D1, and A4 should reject H0 as indicated by the T-test
results in Table 5.5. However, none of the data sets are normally distributed ac-
cording to the Anderson-Darling test. Subsequently, a WMW-test is conducted to
support the conclusion of the T-test. Table 5.6 reports the resulting P-value of the
WMW-test, as well as effect-sizes and power calculations.

calculator.html.

http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html
http://www.polyu.edu.hk/mm/effectsizefaqs/calculator/calculator.html


64 Chapter 5. User and System Testing

Label Question Title
O1 “What year of study are you in?”
O2 “Which of the following best describes your study pro-

gramme?”
A1 “How would you rate the Climbing Mont Blanc system in

general?”
B1 “It was easy to use the system?”
A2 “How would you rate the usability of the Climbing Mont

Blanc system?”
C1 “Was it difficult to learn how to use the Climbing Mont

Blanc system?”
A3 “How would you rate the design of the Climbing Mont Blanc

user interface?”
C2 “How would you rate the process uploading and running a

program?”
D1 “How satisfied are you with the feedback given by the

Climbing Mont Blanc system?”
B2 “The feedback given by the system is clear and helpful?”
A4 “How would you rate the information on the HowTo-page?”

Table 5.4: Label to question title mapping: Labels are created according to Table
5.2. Questions marked O are meant as other questions not within the five point
Likert scale range.

The WMW-test also indicates significant results as its P-values are lower than α.
Question D1 has the most significant results, as the effect-size is large and the power
is high using both Cohen’s d and Hedge’s g. Using Hedge’s g to compute power,
we can by a 97.2% confidence value be certain that we have correctly rejected H0
when H1 is true. We can therefore conclude that users, most probably, are more
satisfied with the feedback of system version two. The results reported for question
B2 in Appendix A also indicates that feedback is good, as over 80% of participants
either agree or strongly agree that the feedback given by the system is clear and
helpful.

The questions A3 and A4 are also accepted by both the T-test and WMW-test. How-
ever, their strength in terms of all effect-size metrics indicates medium strength for
A3 and low to medium strength for A4. The statistical power of question A3 and
question A4 should have been higher for us to draw any valid conclusions. We can
only conclude that system version two might have a better user interface design
and an improved HowTo-page.

The overall usability is good in both system versions. This also corresponds to the
conclusion of tests ran against question C1, and answers to textually based feed-
back received from both user test one and user test two. There is also generally



5.2 User Experiment 65

Question A1 A2 C1 A3
T1 T2 T1 T2 T1 T2 T1 T2

Mean 3.676 3.857 3.730 3.809 3.919 3.905 3.730 4.143
Variance 0.392 0.429 0.592 0.162 0.521 0.590 0.369 0.329
F P-value 0.396 0.002 0.362 0.400
Variance Equal Unequal Equal Equal
T P-value 0.151 0.303 0.472 0.002
Reject H0? No No No Yes

Question C2 D1 A4
T1 T2 T1 T2 T1 T2

Mean 3.595 3.524 2.568 3.619 3.324 3.842
Variance 0.970 0.762 0.919 0.947 0.892 0.474
F P-value 0.287 0.454 0.060
Variance Equal Equal Equal

T P-Value 0.393 9.6x10−5 0.022
Reject H0? No Yes Yes

Table 5.5: Mean, variance, F-test, and T-test results.

little overlap in textually based feedback, which indicates that there have been
some improvements to usability. Some of the textually based feedback, such as
adding language versions and project information to the HowTo-page as proposed
in Section 4.5, has already been noted by the CMB team and is already listed in
the backlog found in Appendix C.

The textually based questions are as mentioned meant as support for the multiple
choice questions. The questions are also important for the future development of
the CMB prototype. Proposals of new features, such as reporting low-level statis-
tics, allowing uploading multiple files, and updated feedback on placement in the
run-queue have been noted by the CMB team. Section 7.2 presents these features
and they have also been added to the backlog in Appendix C.

Some of the feedback noticed by participants, such as real-time updates of sub-
mission placement in the run-queue, was actually in the making shortly before the
conduction of the user experiment. As the improvements showed to be more ex-
tensive to implement than first thought, they were not implemented. The choice
was made as it was little time to develop unit tests and test the implementation
before the conduction of the user test, and the features also required changes to
backend code which was the domain of another master student. Chapter 6 further
discusses the matter.

The experiment results indicate that users are more satisfied with version two of
the system. Users are from the above study more satisfied with the feedback given
by system version two, and there is also a trend towards users being more satisfied



66 Chapter 5. User and System Testing

Question A3 D1 A4
WMW P-value 4.231% 0.081% 4.400%

r 0.330 0.478 0.283
d 0.699 1.088 0.590
g 0.684 1.076 0.557

Power (using d) 0.711 0.975 0.564
Power (using g) 0.692 0.972 0.518

Table 5.6: Wilcoxon-Mann-Whitney P-values, effect-sizes, and power results.

with the user interface design and the information displayed on the HowTo-page.
We can therefore conclude that it is likely that usability in terms of either effi-
ciency, learnability, or user satisfaction is better in version two of the system, i.e
Hypothesis 1 seems to be true.

Likert scale questions covering overall usability (A2) do not indicate a significant
improvement in this experiment. Both test one and test two indicated good overall
usability. However, users were only testing actions in common of the two system
versions. New features implemented during the Spring were not included in this
experiment, but are considered covered by the continuous user testing described in
Section 5.1. Since the range of possible actions against the system has increased in
version two and users has approved the new features, we can to some extent also
argue that the overall usability has improved.

5.2.5 Threats to Validity
Conclusion validity concerns to what extent conclusions from statistical analysis
are correct. It is closely related to statistical power, and is important when consid-
ering to reject H0. In statistical analysis we typically have false negatives or false
positives. False positives (called Type I errors) means that significant results are
found even though data indicates otherwise, for example due to too few partici-
pants. Further, false negatives (called Type II error) can be present, which means
that H0 is not rejected even though there could have been an effect with a larger
number of participants. In the below discussion we will assume we at least want a
power of 80%, to be sure that a conclusion is correct.

Question D1 seems to be a valid conclusion. We could actually have a power of
80% with only 20 participants in user test one and 12 participants in user test
two to draw a valid conclusion from the results.3 Question A3 has too few par-
ticipants to draw a valid conclusion, however there is a trend indicating a better
scored satisfaction over the new user interface. We would have reached our target
statistical power with 47 participants in user test one and 27 participants in user
test two. However, satisfiability in system design is only one aspect of usability

3Calculated using this tool: http://www.biomath.info/power/ttest.htm.

http://www.biomath.info/power/ttest.htm


5.2 User Experiment 67

and we also need to keep in mind that participants were only testing a subset of
the new features in the system.

Question A4 had statistically lowest power of the three questions having statisti-
cally significant results. The power at 51.7% using Hedge’s g is not strong enough
to draw a valid conclusion. We would have needed 70 participants in test one and
40 participants in test two to correctly accept H0 with a power of 80%. However,
improvements to the HowTo-page are listed as secondary improvements in the ob-
jectives listed in Section 1.2, and the small changes made presented in Section 4.5
were due to the usage of the system in a learning experiment.

Construct validity concerns to which degree an experiment actually measure what
it declares to be measuring [CM55]. The user experiment tried to measure if there
were any improvements to usability in system version two. As mentioned, some
questions were added to the questionnaire this Spring, which could potentially
damage the validity of results. However, these were only added for clarity and
should not damage the conclusions made above. Also, participants might have had
trouble assessing usability as they might have used a long time developing code
instead. However, participants were given the option of receiving a set of programs
simulating multiple tries against the system before arriving at the correct solution.

Internal validity concerns if there is a causal correspondence between the method-
ology used and the results of the experiment [Oat06]. If there are other factors, or
confounding variables, in the experiment which lead us to the same conclusions,
the measurements have poor internal validity. There are some factors in the above
experimental setup that may threaten the internal validity of the results.

Participants in the second user test do not necessarily have the same background
and interests as the participants of the first user test. This may have an effect on
how the participants perceive the system, and it may be different from the percep-
tion made by students students in TDT4200. Also, some participants of the second
user test were not familiar with C or C++, and received a set of executables for a
programming problem to simulate normal system users. The goal of this user test
was to test system usability and not programming skills or personal interests, and
both groups of participants also had the same foundation when starting to use the
system.

Participants in user test two also used the system for a short period of time com-
pared to participants in user test one. The participants in user test two may not
have been able to test the system thoroughly like the students in TDT4200 had
a chance to do, as they used the system in a total of five exercises throughout
the Autumn semester. Participants in user test one might, therefore, have more
experience in using the system. However, participants in the second user test were
adviced to test the system thoroughly if they finished early.



68 Chapter 5. User and System Testing

Many of the participants are friends of or familiar to the CMB team. They were
invited due to low interest in the user experiment. Participants familiar to the
system or CMB team might affect the above results further in either a positive
or negative way. The participants were therefore kindly asked to give as objective
feedback as possible. In order to strengthen the above statistical analysis more
research can be conducted.

External validity concerns the generalizability of measurements and results [Oat06].
The participants who conducted the second user test were familiar to the CMB
team, and some also had little interest in parallel programming or C/C++ pro-
gramming. More research needs to be conducted in order to determine whether the
improvements are generalizable to cover programmers interested in low-level paral-
lel programming. It is also worth mentioning the difference in distribution of year
of study, where most participants in user test two are 5th year students as apposed
to 4th year students in user test one. A further discussion of possible test setups is
presented in Section 6.2. Regardless of participants’ background, the results of the
experiment is interesting and we have hopefully made more programmers aware of
heterogeneous programming and OJ systems.

5.3 System Unit Tests
This section will present the statement coverage of system unit tests. A high test
coverage is important to ensure correct functionality, and allows quick detection
of features that break system functionality during development. Unit tests were
developed during implementation of the system improvements described in Chap-
ter 4, and are reported to demonstrate the correctness of developed code and the
resulting system. This thesis has a goal of 90% test coverage for the system as
introduced to the project by Follan and Støa [FS15].

The reader should be aware that the unit tests developed by Follan and Støa are
also included in the below presentation of coverage. This thesis has only developed
or extended unit tests for the system improvements presented in Chapter 4. This
section concerns the correctness of improved functionality in a working system,
and reader should refer to the Master Thesis of Follan and Støa for an overview of
previously developed functionality and in detail test coverage of that functionality.

Information about how to run system unit tests and generate coverage reports can
be found in Appendix E.

5.3.1 Frontend
The frontend unit tests are developed in Jasmine [JAS] as mentioned in Sec-
tion 2.2.5. Also, Karma [KAR] is used as test runner to develop the coverage



5.3 System Unit Tests 69

Directory Statements Statements covered Coverage
config/ 1 1 100%

controllers/ 759 676 89%
directives/ 78 9 12%
services/ 33 19 58%

Total 871 705 81%

Table 5.7: Frontend total test coverage.

reports, and Gulp [GUL] is used to launch the Karma test runner.

Table 5.7 shows the coverage of all files for the frontend code. The overall test
coverage is under 90% as set above. However, as mentioned by Follan and Støa,
the low coverage is due to missing tests to third-party code in the directives/ di-
rectory, and is only used to give colored feedback of password strength during sign
up which is not vital for the overall functionality of the system.

The services/ directory also has low code coverage and is below the 90% require-
ment. The low coverage is mainly due to the implemented bulletin functionality
presented in Section 4.2. The unit test covering the bulletin functionality is not
complete, as it would require us to expose private functions within the bulletin
component in order to write a unit test with good coverage. Instead of exposing
private functions just for the sake of the unit tests, the component was tested man-
ually. It is also worth mentioning that the component is not crucial for overall
system functionality.

Controller Statements Statements covered Coverage
error msg.js 21 21 100%

forgot password.js 9 9 100%
group.js 63 58 92%
home.js 32 28 88%
leader.js 81 72 89%

leader problem stats.js 70 67 96%
leader user stats.js 45 42 93%

login.js 12 12 100%
logout 11 11 100%

navbar.js 3 3 100%
newgroup.js 17 17 100%
problem.js 323 265 82%
profile.js 54 53 98%
signup.js 18 18 100%
Total 759 676 89%

Table 5.8: Frontend controller test coverage.



70 Chapter 5. User and System Testing

The components containing most of the frontend functionality can be found in the
controllers/ directory. The coverage of 89% overall is a result of the 82% coverage
of the problem.js controller. The missing statements to be covered by test is mainly
event based code, such as file upload and Socket.io events, and require unit tests
to trigger fake events. While triggering fake events can be done in unit tests, the
callback function4 of the event runs code covered by other unit tests and developing
unit tests to cover event based code were therefore considered less important. By
disregarding the coverage of event based code, the coverage of the frontend should
be above the 90% requirement.

5.3.2 Server
Table 5.9 shows the unit test coverage for the server code. The coverage of the
server code is at 90%, which is therefore an accepted level of coverage. However,
the coverage can be further improved by extending by improving the coverage of
modules cmb utils.helpers and cmb utils.wrappers.

The unit tests do not cover some of the methods performing OS calls in module
cmb utils.helpers. OS calls are often simulated (mocked) in unit tests, as OS calls
often take some time to execute and we want unit tests to execute as fast as pos-
sible. As the unit tests mock away most functionality of OS calls, these unit tests
had a low priority and were instead tested manually.

The module cmb utils.wrappers contains checks to validate session tokens and has
the lowest unit test coverage. The missing unit test needs to test exception states
which can occur, and has not been implemented. These unit tests have not been
a prioritized, as the functionality has been extensively tested by Follan and Støa,
and is also tested automatically during normal use of the system.

It is also worth mentioning that the Flask-SocketIO event module is not covered
by the unit tests. As testing of the module involves multiple components of the
system, that is, both the server, frontend, and their interaction, the tests can
instead be considered as integration tests. Integration testing has been performed
manually both locally and on the CMB development server, and the module is
thus not included in Table 5.9. However, future developers should consider adding
automatic integration tests at some later point, to lower the amount of manual
testing needed before deploying to production.

4A function passed as an argument to second function, which is called during execution of the
second function.



5.3 System Unit Tests 71

Module Statements Statements missing Coverage
admin.admin 150 28 81%

cmb utils.helpers 86 17 80%
cmb utils.mail 5 0 100%

cmb utils.wrappers 50 15 70%
database.models 168 10 94%
routes.bulletin 21 0 100%
routes.groups 208 3 99%

routes.problems 21 12 95%
routes.submissions 150 14 91%

routes.users 93 3 97%
server 72 7 90%
Total 1024 98 90%

Table 5.9: Server modules test coverage.



72 Chapter 5. User and System Testing



Chapter 6

Discussion and Evaluation

This chapter will discuss several aspects of this thesis. Section 6.1 will discuss pros
and cons of the real-time updates described in Section 4.1. The Section will also
discuss planned immediate next steps which were not integrated into the system
before the user test, due to limited time to verify correctness of the code. Fur-
thermore, Section 6.2 presents alternative ways of conducting the user experiment
presented in Chapter 5, and Section 6.3 will discuss aspects of the system testing
executed as part of this thesis. Finally, we will evaluate in Section 6.4 if the goals
set in Section 1.2 have been reached.

6.1 Improvements
6.1.1 Real Time Updates
Section 4.1 describes the implementation of real time updates of data models us-
ing Socket.io and WebSockets. However, the current use case of WebSockets in
the CMB only sends events from the server to the frontend to notify users about
submission state updates. Another technology called Server-Sent Events (SSE)
[Hic09] also enables the server to send updates to clients automatically without the
need for polling. SSE uses the HTTP protocol to push updates from the server to
connected clients, i.e., it is not full-duplex as the WebSocket protocol.

The great benefit of SSE is that it does not introduce a new protocol to achieve
real time updates. SSE is thereby considered more fit to applications which only
need to push updates from the server to the connected clients. The downside of
SSE is that it does not support the browser Internet Explorer (IE), which in our
case is unacceptable. The user interface of CMB is web-based, and we do not want
to restrict users to certain browsers or OSs. Since IE is one of the main browsers
used world-wide, WebSockets with Socket.io is used instead of SSE.

A benefit of using Socket.io is that the framework automatically detects which

73



74 Chapter 6. Discussion and Evaluation

protocol that is supported by a given client, as mentioned in Section 4.1. As the
framework automatically selects the protocol suited for a client, users are not re-
stricted to a specific browser or operating system in order to use the system. As
the socket is a full-duplex communication channel, it also makes it possible to im-
plement features which are not possible using SSE. For the CMB system, a online
code editor with automatic syntax error highlighting or a messaging service is pos-
sible using the Socket.io framework. Appendix C and Section 7.2 mention possible
future extensions using the Socket.io framework.

The server uses the modules gevent [GEVa] and gevent-websocket [GEVb] as men-
tioned in Section 4.1.2. However, as mentioned on the documentation website of
Flask-SocketIO creator Miguel Grinberg, it is also possible to use networking library
eventlet [EVE] instead of gevent when using the Flask-SocketIO module [FLAf],
and is reported to be the best performing option in combination with the module.
There are however some benefits of using gevent, as it is tested in real-world high-
scale environments and the module interface also follows Python standard library
conventions.1 The gevent module is therefore used in the CMB system.

6.1.2 Frontend
During development, we also planned to enable upload of single and multiple source
files. The feature did not have a high priority for the CMB team at the start of
the thesis, as feedback given by students in TDT4200 indicated that they quickly
learned how to submit files to the system using zip-files. However, as indicated by
the textual feedback from the user experiment conducted as part of this thesis, the
feature is wanted by users, and as a result it has been added to the backlog found
in Appendix C.

If submission timeouts also were added at the server (explained in Section 6.1.3),
the problem-view also had a planned extension of dislaying a progress bar during
execution. The progress bar would display the approximate time of execution, but
the feature was not implemented as the extension was more complex than what it
seemed on first glance. The feature has been added to the backlog in Appendix C
as a usability improvement.

6.1.3 Server
A couple of server improvements were also considered during development but
ended up with lower priority compared to the tasks listed in Section 1.2. First, the
server should perform a simple check to verify the format of the uploaded zip-file.
The frontend currently checks and does simple corrections to the zip file before
sending it of to the server, as described in Section 4.2.1. Since the frontend is the
main user interface of the system, zip-files submitted by normal users are therefore
checked before sent to the server. However, if the system is to be extended with

1For a further discussion on the matter, see: https://blog.gevent.org/2010/02/27/
why-gevent/, https://groups.google.com/forum/#!topic/gevent/TelwPl3KgnE.

https://blog.gevent.org/2010/02/27/why-gevent/
https://blog.gevent.org/2010/02/27/why-gevent/
https://groups.google.com/forum/#!topic/gevent/TelwPl3KgnE


6.1 Improvements 75

other user interfaces, for instance a CLI, it would be beneficial to add server side
zip-file checks.

During development and maintenance of the system there occurred file-name con-
flicts when storing submissions in the file system, as submissions are stored by
submission name. The situation occured frequently during development of the
submission delete endpoint described in Section 4.3.3. However, to avoid such file-
name conflicts in the future, it could be an idea to instead save submission files
by the automatically generated database id instead since it’s unique. The fix was
not implemented due to time limitations before the user test, but is added to the
backlog in Appendix C.

Reporting the submission run-queue position to users was also planned before the
user test. However, the extension turned out to be more complicated than at first
glance. The current run-queue2 is thread-safe and this is also required, as multiple
users might access the queue simultaneously. However, there is no way of looking at
elements and their position in the currently used queue module without removing
them.

A simple solution is to copy the queue and emit its data over Socket.io to each of
the connected clients every time a submission is pulled from the queue. If a client
has a submission in the queue, the client could then simply loop through the queue
and notify users of the new submission position. The solution is probably the sim-
plest to implement, but would possibly impose transportation of unnecessary data
to inactive clients. The solution would also increase the amount of network traffic
during heavy system load, especially if the system is to be scaled with multiple
boards and submissions are rapidly pulled out of the run-queue. As this solution
was not discussed with the CMB team and there was little time to test the solution
before the user experiment, it has not been implemented. The feature can be found
in the backlog in Appendix C.

Timeouts were added to the backend to abort submissions which locked the back-
end for further use as described in Section 4.4. However, submissions could in
theory crash from errors currently not handled by the system backend, or might be
delayed due to high network traffic. The server should in such cases keep track of
timers for each submission, and abort execution of a submission on the backend if
a timeout occurs. The server could for instance fork off a gevent coroutine for each
submission, and have each coroutine keep track of a timer for a given submission.
Upon timeout, the coroutine could then kill the executing program on the backend
and update the database with timeout information.

This feature was planned prior to the user test but not implemented. First, there
was limited time before the user test to implement and test the feature. Second,
developing low-level server and backend code was the focus of the Master Thesis

2Uses the Python Queue module: https://docs.python.org/2/library/queue.html.

https://docs.python.org/2/library/queue.html


76 Chapter 6. Discussion and Evaluation

written by Christian Chavez. To not interfere with the work done on scalability,
the feature was given lower priority in this thesis and has been added to the backlog
in Appendix C.

6.1.4 Backend
Debugging of submissions running over SSH has in some situations been trouble-
some as mentioned in Section 2.2.7. The CMB team therefore wanted to rewrite the
scripts present at the backend into Python scripts instead which makes the scripts
easy to unit test. As scalability and code development related to backend function-
ality were the focus of Master student Christian Chavez, the porting of bash scripts
into Python scripts is not considered in this thesis. Only small changes were made
to the backend as described in Section 4.4, to improve feedback to users in case of
submission failures.

6.2 User Testing
The user experiment methodology presented in Section 5.2.2 corresponds closely to
a static group comparison described by Oates [Oat06]. The static group compari-
son divides the participants into two groups, where one of the groups receives some
form of treatment (version two of the system) and the other receives no treatment
(version one). The effect of the treatment can therefore be assessed by evaluating
test scores. There are some downsides with the method, such as in our case, we
know that the group testing system version one had used the system longer and
also had in interest in parallel C/C++ programming compared to the other group.
As noted in Section 5.2.5, the difference between the two groups might have an
affect on the results of the user experiment.

Oates also describes other common user experiment setups which could have been
used in this thesis. Instead of regarding previous user test results, we could have
tested system version one and two on the participants on the user test conducted
this Spring only. Participants would then test system version one first and then
system version two afterwards, which is known as a one group pre-test and post-
test. The usability could then be assessed by comparing pre- and post-test scores.
The downside with the method, is that participants might have learned from using
system version one and it might affect the results when they are testing system
version two.

Pre- and post-tests could also have been conducted if we had more participants to
the user test conducted in this thesis. Participants would then be split into two
random groups, each assessing the usability of system version one. If the random-
ization has been performed correctly, each group should have as equal assessment
of usability of system version one as possible. The test is then run one more time,
having one of the groups assessing the usability of system version two instead. The
results are then compared, and differences in results of the two assessments are



6.3 System Testing 77

assumed to be caused by the different treatment of the groups. This method also
has the same downside as described above: participants might learn from the first
round of the user test and use their knowledge when assessing the system a second
time.

There exists more experiment designs if a lot of participants are registered, such as
the Solomon four-group design [Oat06]. However, as mentioned in Section 5.2.2,
there were too few participants to consider using more complex methodologies. The
static group comparison was chosen as there were few participants to the second
user test, and because the Specialization project already had conducted a usabil-
ity study. The benefit with the chosen methodology is that a limited number of
resources is required. The methodology used only required one server hosting the
new system, while the other user testing approaches described in this section re-
quires two; one hosting system version one and another hosting system version two.

Most of the questions in the usability questionnaire used were made to a user study
conducted during the specialization project. However, a common usability ques-
tionnaire like a SUS [B+96] could also have been used and may have been easier
to analyze and validate. As there were few participants to the user experiment
conducted in this thesis, we were forced to use the questionnaire constructed as
part of the specialization project to correctly compare the results of the two user
tests. But, the questionnaire is as mentioned based on a usability questionnaire
developed by IBM and is also inspired by the questionnaire guidelines defined by
Oates [Oat06].

litative analysis should also be put under consideration in the future. Quantitative
usability studies mostly measure satisfiability of users, and we cannot verify that
users have executed the tasks of the usability test correctly [Hol05]. A structured
qualitative analysis should be conducted to validate other aspects of usability. How-
ever, the continuous user testing conducted, as described in Section 5.1, partially
covers qualitative measures of usability.

6.3 System Testing
During this thesis several unit tests have been developed and their coverage were
presented in Section 5.3. Also, manual testing has been conducted locally and on
the development server of CMB. To speed up local manual testing, future developers
should consider adding database fixtures3 to the server code repositories. This
would make it easy to load wanted data into the database before manually testing
the system. Future developers should also continue to create unit tests and consider
adding automatic integration tests to lower the amount of manual testing needed
to accept a feature.

3Database fixtures are defined sets of test data which can be loaded into the database.



78 Chapter 6. Discussion and Evaluation

6.4 Project Objective Achievements
This section will evaluate whether we have reached the objectives defined in Sec-
tion 1.2.

Main Objectives:

U1 - Fix the main bugs and known issues found during user testing of
CMB in November 2015: Considered covered by Section 4.2.1. The section
described how fixes of Mac OS X uploads (U1.1), locked submissions on backend
(U1.2), and the highscore list sorting bug (U1.2) were implemented.

I1 - Change the existing database management system if necessary:
Considered covered by Section 4.3.1.The SQLite DBMS were replaced by the
MySQL DBMS, and all data present in the SQLite databases were transferred
to the new MySQL databases for both the development and production server.

U2 - Improve and extend the CMB system’s usability features in accor-
dance with the CMB team’s priorities: Considered covered by this thesis.
Section 4.2.2 described the improvements done to feedback messages reported in
the system, as well as upgrades done to the frontend views i.e U2.1 and U2.5 re-
spectively. The improvement of adding and removing problems through the admin
interface is covered by Section 4.3.4. The bulletin board extension to cover goal
U2.4 was described in Section 4.2.2. Section 4.1 described the implementation of
real-time model updates with Socket.io (U2.2), which also has a lot of potential
for the further development of the system. Some possible extensions are presented
in Section 7.2 and is also listed in Appendix C.

U3 - Conduct a user-experiment to evaluate system usability: Consid-
ered covered by Section 5.2. A user test was conducted to evaluate system usability
with focus on efficiency, learnability and satisfiability. As the user experiment used
much the same questionnaire used in the user study conducted during the spe-
cialization project, a statistical analysis was conducted to compare the possibly
improved system to the system developed by Follan and Støa.

Secondary Objectives:

P1 - Propose improvements to the existing stability test to simulating
users and their submissions: Considered covered by Section 4.5.1. The Section
described two possible Python modules which could be used to extend the stability
test developed during the Specialization project. The proposed improvement have
been added to the backlog found in Appendix C.



6.4 Project Objective Achievements 79

P2 - Propose how to improve the how-to information, the problems of-
fered by CMB, and add new problems: Considered partially covered by this
thesis. The improvements to the how-to information were discussed in Section 4.5.2,
and the proposed improvements have been added to the backlog in Appendix C.
This thesis has not contributed towards adding new problems, but Section 4.5.3
proposed that newly added problems use the same format as other OJs.

P3 - Propose how to implement a discussion forum: Considered covered
by Section 4.5.4. The section proposed various third-party forum software packages
which can be used by the system. Also, the section proposed that future developers
should consider developing a discussion forum from scratch, to make the system
look more professional.

I2 Implement some of the proposed solutions after approval by, and in
collaboration with the CMB team: Not considered covered by this thesis.
All proposals are currently listed in the backlog found in Appendix C.



80 Chapter 6. Discussion and Evaluation



Chapter 7

Conclusion and Future Work

7.1 Conclusion
This thesis has improved and added more features to the CMB system. The fea-
tures are mainly usability features with a focus on efficiency, learnability, and
satisfiability. As usability is a broad term and as there is always room for usability
improvements in a software system, only a sub-set of the usability improvements
prioritized prior to the start of the thesis and urgent usability aspects discovered
throughout this Spring have been implemented. Features implemented in the fron-
tend, server, and backend source code have been described in detail.

The frontend views have also had some renovation, such as the removal of unnec-
essary information, structuring of reported information, and updating components
with symbols. The improvements aim to make it easier for users to find important
information, to navigate easier, and to more clearly state the outcome of interacting
with system components. Feedback messages presented to users have also changed
in system version two. Users are now presented with colored feedback messages
when interacting with the system to make it easier to differentiate between various
feedback. Submission errors are also displayed in a pop-up message instead of in
a designated view, which removes unnecessary navigation stages. A spinner and
real-time update of a running submission’s state are also implemented in the sys-
tem.

Real-time notifications with Socket.io was integrated into the system to enable
automatic state updates of submissions. Further use cases of Socket.io and imple-
mentation suggestions of these features have briefly been presented. The potential
of Socket.io in the system is huge and enables future developers to implement in-
teresting features.

Furthermore, solutions to fixes such as enabling uploads for Mac OS X users,
automatic Unix file format conversion, cascading-delete of submissions, and cance-

81



82 Chapter 7. Conclusion and Future Work

lation of submissions locking the backend have been described. The DBMS used
has been changed from SQLite to MySQL, and all previous data present at the
development and production server of CMB have successfully been moved into the
new databases.

A user experiment has been conducted to evaluate system usability. The user ex-
periment compared version one developed by Follan and Støa, with system version
two developed in this thesis. The results shows that users are, by a 97.2% con-
fidence value, more satisfied with feedback given in system version two. There is
also a noticeable trend that users are more satisfied with the design and HowTo-
page of system version two. However, we can not conclude with a confidence value
of 80% or above that users are more satisfied with the design and HowTo-page
in system version two. Improvements not tested as part of the user experiment,
has been covered using continuous user testing conducted throughout the semester.

In conclusion, this project has contributed towards improving system usability and
features of the CMB system. It has also contributed with proposals on features and
implementation details for the future development of the system. The contributions
are valuable for the future of the CMB system.

7.2 Future Work
This section describes possible future extensions which can be made to the sys-
tem and the project in general. Each extension has a suggested ordering based
on priority, and are marked either as A(high), B(medium), or C(low) priority im-
provements.

Project Administration
A. Problem descriptions should follow ACM ICPC standards: As men-
tioned in Section 4.5.3, problem descriptions should be in the same format as
problem descriptions presented by other OJs. Follan and Støa also mentioned
best practices when adding new problems to the system, and future administrators
should follow them. Best practices and a manual for adding problems can be found
in Appendix D.

A. Thorough testing of added problems: Problems descriptions should be
thoroughly tested on the development server of CMB before adding the problem to
the production server. This means that the input and output files of a problem to
be added should be heavily tested to make sure it covers all edge cases present in
the problem description. It is also important that substantial testing is performed
either locally or at the development server, as we do not want users to be denied
use of the system because of testing.



7.2 Future Work 83

Development and Testing
B. Extra production server for acceptance testing: As described in Sec-
tion 4.5.1, a production-like server should be added to more quickly run exten-
sive testing and generate statistics in a production-like environment. The Jenkins
pipeline stage should also be added to launch stability and integration tests au-
tomatically. The server should be added as it is considered a bad CI practice to
run tests on the production server, as it may prohibit regular users from using the
system.

C. Add Database Fixtures: Database fixtures should be added to the system.
A fixture is a defined set of data which can be loaded into the database with
ease, which enables quick setup before testing the system. Fixtures might make
it easier for future developers to start developing, and run tests quickly during
local development. A possible Python module which can be used is Flask-Fixtures
[FLAd], which enables fixture definitions in the JSON format among others.

Features and Improvements
A. Server Side Timeout and Backend Monitoring: The server should keep
track of timers for each submission running in the system as described in Sec-
tion 6.1.3. The server can keep track of timers for each submission by for example
using gevent coroutines [GEVa] as discussed in the section. The server could then
kill submissions running on a backend if a timeout occurs and notify users by emit-
ting events to the respective client who submitted the code. This can be achieved
by exploiting Socket.io namespaces and rooms as presented in Section 4.1. Timeout
and run-time information can also be sent in real-time to clients to enable users to
have up-to-date information about a running submission.

A. Port Bash Scripts Into Python Scripts: Bash scripts defined at the server
and backend should be ported to Python scripts instead. Debugging Bash scripts
executed over SSH has proven to be troublesome, and have also proven to be error
prone upon code changes. By rewriting all Bash scripts to Python scripts, it should
be easier to debug, and it is also simpler to add unit tests for these parts of the
system. The porting of Bash scripts into Python scripts should also make the
system more stable, as the scripts has proven to be one of the bottlenecks in the
system.

A. Server Side Zip File Check: The frontend parses the submitted zip and
checks for the correct format as described in Section 4.2.1. A similar check should
be added to the server code to ensure proper storage of files in the file-system, and
is especially important if API documentation is released or a CLI is implemented.

B. Real-Time Queue Position: The server should give real-time information
about submission position to clients who has submissions in the run queue. As



84 Chapter 7. Conclusion and Future Work

described in Section 6.1.3, a complete copy of the queue can be made on every
dequeue and the placement of every submission can be emitted using Socket.io. As
discussed in the section, this solution might yield high network traffic during heavy
system load, and it might be too simple. Another solution is to make a complete
copy still, but only send submission positions to those clients with submissions in
the queue. Socket.io rooms give a solution to the latter approach.

B. Multi File Upload: It should be possible to upload source files directly and
preferably multiple files. More advanced upload feature such as an online code
editor, which is offered by OJs like [KAT] and HackerEarth [HACa], should also
be considered by future developers.

C. Low-level Statistics: The server should keep track of low-level submission
information, such as memory usage, chip temperature, and cache usage. Further,
the accuracy of running time and energy consumption measurements should by
reported as well if applicable. This feature requires changes to all parts of the
system.

C. Login via Feide: It should be possible for NTNU students to login via Feide.
1 Enabling login through Feide would make it simple for students and professors
to start using the system in course-related activities.

1Feide is a student’s digital identity on the Uninett network: https://www.feide.no/.

https://www.feide.no/


Bibliography

[A2O] A2 Online Judge Website. https://a2oj.com/. Last accessed 2nd of
May 2016.

[ABL] ARM big.LITTLE Technology. http://www.arm.com/products/
processors/technologies/biglittleprocessing.php. Last ac-
cessed 21st of April 2016.

[Ale14a] Alex Ramirez. Building supercomputers from embedded technolo-
gies. https://www.montblanc-project.eu/sites/default/files/
publications/20140521mont-blanc-pracedays14.pdf, 2014.

[Ale14b] Alex Ramirez. The Mont-Blanc prototype. https://www.
montblanc-project.eu/sites/default/files/publications/
20140522montblanc-prototypes-workshop.pdf, 2014.

[ANG] AngularJS. https://angularjs.org/. Last accessed 14th of April
2016.

[B+96] John Brooke et al. Sus-a quick and dirty usability scale. Usability
evaluation in industry, 189(194):4–7, 1996.

[BFT13] Jean Luca Bez, Carlos E Ferreira, and Neilor A Tonin. URI On-
line Judge Academic: A Tool for Professors. In PROCEEDINGS
OF THE 2013 INTERNATIONAL CONFERENCE ON ADVANCED
ICT AND EDUCATION, volume 33, pages 763–766, 2013.

[BIT] Bitbucket Website. https://bitbucket.org/. Last accessed 14th of
April 2016.

[BOW] Bower Package Manager. http://bower.io/. Last accessed 21st of
April 2016.

[BSC] Barcelona Supercomputer Center. https://www.bsc.es/. Last ac-
cessed 12th of April 2016.

[BUL] Bull Atos Technologies. http://www.bull.com/. Last accessed 12th
of April 2016.

85

https://a2oj.com/
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
http://www.arm.com/products/processors/technologies/biglittleprocessing.php
https://www.montblanc-project.eu/sites/default/files/publications/20140521mont-blanc-pracedays14.pdf
https://www.montblanc-project.eu/sites/default/files/publications/20140521mont-blanc-pracedays14.pdf
https://www.montblanc-project.eu/sites/default/files/publications/20140522montblanc-prototypes-workshop.pdf
https://www.montblanc-project.eu/sites/default/files/publications/20140522montblanc-prototypes-workshop.pdf
https://www.montblanc-project.eu/sites/default/files/publications/20140522montblanc-prototypes-workshop.pdf
https://angularjs.org/
https://bitbucket.org/
http://bower.io/
https://www.bsc.es/
http://www.bull.com/


86 BIBLIOGRAPHY

[CM55] Lee J. Cronbach and Paul E. Meehl. Construct validity in psycholog-
ical tests. Psychological Bulletin, 52(4):281–302, 1955.

[CN13] J. M. Cebrián and L. Natvig. Temperature effects on on-chip en-
ergy measurements. In Green Computing Conference (IGCC), 2013
International, pages 1–6, June 2013.

[COD] CodeChef Website. https://www.codechef.com/. Last accessed 2nd
of May 2016.

[CRO] Crowsourcing definition. http://www.crowdsourcing.com/. Last ac-
cessed 2nd of May 2016.

[Cum13] Geoff Cumming. Understanding the new statistics: Effect sizes, con-
fidence intervals, and meta-analysis. Routledge, 2013.

[DIF] Diff program. http://man7.org/linux/man-pages/man1/diff.1.
html. Last accessed 20th of April 2016.

[EKN+11] Emma Enstrom, Gunnar Kreitz, Fredrik Niemela, Pehr Soderman,
and Viggo Kann. Five years with kattis — Using an automated as-
sessment system in teaching. In Proceedings of the 41st Frontiers in
Education Conference - FIE’11, pages T3J–1–T3J–6, 2011.

[EVE] Eventlet website. http://eventlet.net/. Last accessed 30th of May
2016.

[EXY] Samsung Exynos Processors. http://www.samsung.com/
semiconductor/minisite/Exynos/w/. Last accessed 8th of
February 2016.

[FAI] Fail2Ban Website. http://www.fail2ban.org/wiki/index.php/
Main_Page. Last accessed 26th of April 2016.

[Fil14] Filippo Mantovani. Pedraforca: ARM + GPU prototype.
https://www.montblanc-project.eu/sites/default/files/
publications/workshopProto-Pedraforca.pdf, 2014.

[Fil15] Filippo Mantovani. High Performance Computing
Based on Mobile Embedded Technology. https://www.
montblanc-project.eu/sites/default/files/publications/
Mont-Blanc-EMiT15-lq-public.pdf, 2015.

[FJWC01] Xavier Ferré, Natalia Juristo, Helmut Windl, and Larry Constantine.
Usability basics for software developers. IEEE software, 18(1):22,
2001.

[FLAa] Flake8 Documentation. https://flake8.readthedocs.org/en/
latest/. Last accessed 21st of April 2016.

https://www.codechef.com/
http://www.crowdsourcing.com/
http://man7.org/linux/man-pages/man1/diff.1.html
http://man7.org/linux/man-pages/man1/diff.1.html
http://eventlet.net/
http://www.samsung.com/semiconductor/minisite/Exynos/w/
http://www.samsung.com/semiconductor/minisite/Exynos/w/
http://www.fail2ban.org/wiki/index.php/Main_Page
http://www.fail2ban.org/wiki/index.php/Main_Page
https://www.montblanc-project.eu/sites/default/files/publications/workshopProto-Pedraforca.pdf
https://www.montblanc-project.eu/sites/default/files/publications/workshopProto-Pedraforca.pdf
https://www.montblanc-project.eu/sites/default/files/publications/Mont-Blanc-EMiT15-lq-public.pdf
https://www.montblanc-project.eu/sites/default/files/publications/Mont-Blanc-EMiT15-lq-public.pdf
https://www.montblanc-project.eu/sites/default/files/publications/Mont-Blanc-EMiT15-lq-public.pdf
https://flake8.readthedocs.org/en/latest/
https://flake8.readthedocs.org/en/latest/


BIBLIOGRAPHY 87

[FLAb] Flarum website. http://flarum.org/. Last accessed 20th of May
2016.

[FLAc] Flask-admin documentation. http://flask-admin.readthedocs.
io/en/latest/. Last accessed 9th of May 2016.

[FLAd] Flask-fixtures website. https://pypi.python.org/pypi/
Flask-Fixtures/0.3.7. Last accessed 8th of June 2016.

[FLAe] Flask-Migrate Documentation. http://flask-migrate.
readthedocs.io/en/latest/. Last accessed 10th of May 2016.

[FLAf] Flask-SocketIO Documentation. http://flask-socketio.
readthedocs.io/en/latest/. Last accessed 7th of May 2016.

[FLAg] Flaskbb website. https://forums.flaskbb.org/. Last accessed 20th
of May 2016.

[FLAh] Python Flask. http://flask.pocoo.org/. Last accessed 20th of
April 2016.

[FM11] Ian Fette and Alexey Melnikov. The websocket protocol. 2011.

[For13] Brian T. Ford. Angular socket.io component repository. https:
//github.com/btford/angular-socket-io, 2013. Last updated De-
cember 2014. Last accessed 8th of May 2016.

[Fow06] Martin Fowler. Continuous Integration. Integration The Vlsi Journal,
26(1):1–6, 2006.

[FS15] Torbjørn Follan and Simen Støa. Climbing Mont Blanc: A Prototype
System for Online Energy Efficiency Based Programming Competi-
tions on ARM Platforms. Master’s thesis, Norwegian University of
Science and Technology, Norway, 2015.

[FT00] R.T. Fielding and R.N. Taylor. Principled design of the modern Web
architecture. Proceedings of the 2000 International Conference on
Software Engineering. ICSE 2000 the New Millennium, 2(2):115–150,
2000.

[FUN] Funcload documentation. http://funkload.nuxeo.org/. Last ac-
cessed 18th of May 2016.

[GEVa] Gevent website. http://www.gevent.org/. Last accessed 8th of May
2016.

[GEVb] Gevent websocket repository. https://bitbucket.org/noppo/
gevent-websocket. Last accessed 8th of May 2016.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. In Elements, volume 47, pages 1–429, 1995.

http://flarum.org/
http://flask-admin.readthedocs.io/en/latest/
http://flask-admin.readthedocs.io/en/latest/
https://pypi.python.org/pypi/Flask-Fixtures/0.3.7
https://pypi.python.org/pypi/Flask-Fixtures/0.3.7
http://flask-migrate.readthedocs.io/en/latest/
http://flask-migrate.readthedocs.io/en/latest/
http://flask-socketio.readthedocs.io/en/latest/
http://flask-socketio.readthedocs.io/en/latest/
https://forums.flaskbb.org/
http://flask.pocoo.org/
https://github.com/btford/angular-socket-io
https://github.com/btford/angular-socket-io
http://funkload.nuxeo.org/
http://www.gevent.org/
https://bitbucket.org/noppo/gevent-websocket
https://bitbucket.org/noppo/gevent-websocket


88 BIBLIOGRAPHY

[GIT] Git Version Control. https://git-scm.com/. Last accessed 14th of
April 2016.

[GNU] Gnumeric website. http://www.gnumeric.org/. Last accessed 24th
of May 2016.

[GRE] Green 500. http://www.green500.org/. Last accessed 12th of April
2016.

[GUL] Gulp Build System. http://gulpjs.com/. Last accessed 21st of April
2016.

[GUN] Gunicorn. http://gunicorn.org/. Last accessed 20th of April 2016.

[HACa] HackerEarth Website. https://www.hackerearth.com. Last ac-
cessed 2nd of May 2016.

[HACb] HackerRank Website. https://www.hackerrank.com/. Last accessed
2nd of May 2016.

[Hic09] Ian Hickson. Server-sent events. W3C Working Draft WD-
eventsource-20091222, latest version available at¡ http://www. w3.
org/TR/eventsource, 2009.

[HIG94] Mark Horowitz, Thomas Indermaur, and Ricardo Gonzalez. Low-
Power Digital Design. Lpe, pages 8–11, 1994.

[HL05] J Hodges and E Lehmann. Basic Concepts of Probability and Statis-
tics. Society for Industrial and Applied Mathematics, second edition,
2005.

[Hol05] Andreas Holzinger. Usability engineering methods for software devel-
opers. Communications of the ACM, 48(1):71–74, 2005.

[ICP] ICPC Website. https://icpc.baylor.edu/. Last accessed 27th of
April 2016.

[IDIa] Idi department website. http://www.ntnu.edu/idi. Last accessed
13th of June 2016.

[IDIb] IDIOpen Website. https://idiopen.idi.ntnu.no. Last accessed
27th of April 2016.

[ISO98] W ISO. 9241-11. ergonomic requirements for office work with visual
display terminals (vdts). The international organization for standard-
ization, 45, 1998.

[ISO99] ISO13407 ISO. 13407: Human-centred design processes for interactive
systems. Geneva: ISO, 1999.

[JAS] Jasmine Website. http://jasmine.github.io/. Last accessed 21st
of April 2016.

https://git-scm.com/
http://www.gnumeric.org/
http://www.green500.org/
http://gulpjs.com/
http://gunicorn.org/
https://www.hackerearth.com
https://www.hackerrank.com/
https://icpc.baylor.edu/
http://www.ntnu.edu/idi
https://idiopen.idi.ntnu.no
http://jasmine.github.io/


BIBLIOGRAPHY 89

[Jef13] Brian Jeff. big.LITTLE Technology: Moves Towards Fully Heteroge-
neous Global Task Scheduling. pages 1–13, 2013.

[JEN] Jenkins Website. https://jenkins.io/. Last accessed 21st of April
2016.

[JSH] JSHint Website. http://jshint.com/. Last accessed 21st of April
2016.

[JSO] JSON Data Format. http://www.json.org/. Last accessed 20th of
April 2016.

[KAR] Karma Website. http://karma-runner.github.io/0.13/index.
html. Last accessed 21st of April 2016.

[KAT] Kattis. http://www.kattis.com/. Last accessed 2nd of May 2016.

[KLC01] Andy Kurnia, Andrew Lim, and Brenda Cheang. Online Judge. Com-
puters & Education, 36:299–315, 2001.

[LEE] LeetCode Website. https://leetcode.com/. Last accessed 7th of
May 2016.

[LIG] Lightdm website. https://wiki.ubuntu.com/LightDM. Last ac-
cessed 14th of June 2016.

[LNAM12] Hallgeir Lien, Lasse Natvig, Abdullah Al Hasib, and Jan Christian
Meyer. ICT as Key Technology against Global Warming: Second In-
ternational Conference, ICT-GLOW 2012, Vienna, Austria, Septem-
ber 6, 2012. Proceedings, chapter Case Studies of Multi-core Energy
Efficiency in Task Based Programs, pages 44–54. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2012.

[LOC] Locust repository. https://github.com/locustio/locust. Last ac-
cessed 18th of May 2016.

[MAL] Mali OpenCL SDK download webpage. http://malideveloper.arm.
com/resources/sdks/mali-opencl-sdk/. Last accessed 13th of Juni
2016.

[MB] The Mont Blanc Project. https://www.montblanc-project.eu/.
Last accessed 3rd of April 2016.

[MG97] G. De Michell and R. K. Gupta. Hardware/software co-design. Pro-
ceedings of the IEEE, 85(3):349–365, Mar 1997.

[Moo07] David S Moore. The basic practice of statistics, volume 2. WH Free-
man New York, 2007.

https://jenkins.io/
http://jshint.com/
http://www.json.org/
http://karma-runner.github.io/0.13/index.html
http://karma-runner.github.io/0.13/index.html
http://www.kattis.com/
https://leetcode.com/
https://wiki.ubuntu.com/LightDM
https://github.com/locustio/locust
http://malideveloper.arm.com/resources/sdks/mali-opencl-sdk/
http://malideveloper.arm.com/resources/sdks/mali-opencl-sdk/
https://www.montblanc-project.eu/


90 BIBLIOGRAPHY

[NFS+15] Lasse Natvig, Torbjørn Follan, Simen Støa, Sindre Magnussen, and
Antonio Garćıa-Guirado. Climbing Mont Blanc - A Training Site for
Energy Efficient Programming on Heterogeneous Multicore Proces-
sors. CoRR, abs/1511.02240, September 2015.

[NGI] Nginx. http://nginx.org/en/. Last accessed 20th of April 2016.

[Nor88] Donald A Norman. The design of everyday things. Basic books, 1988.

[NOS] Nose Documentation. http://nose.readthedocs.org/en/latest/.
Last accessed 21st of April 2016.

[NPM] npm Package Manager. https://www.npmjs.com/. Last accessed
21st of April 2016.

[Oat06] Briony J Oates. Researching Information Systems and Computing,
volume 37. 2006.

[ODR] Odroid xu3 website. https://forums.flaskbb.org/. Last accessed
14th of June 2016.

[OEM] Odroid EnergyMonitor git repository. https://github.com/
hardkernel/EnergyMonitor. Last accessed 21st of April 2016.

[OMP] The OmpSs Programming Model. https://pm.bsc.es/ompss. Last
accessed 12th of April 2016.

[PBAL13] J. Planas, R. M. Badia, E. Ayguadé, and J. Labarta. Self-adaptive
ompss tasks in heterogeneous environments. In Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on,
pages 138–149, May 2013.

[PIP] Pip Documentation. http://pip.readthedocs.org/en/stable/
installing/. Last accessed 26th of Oktober 2016.

[PKU] PKU JudgeOnline. http://poj.org/. Last accessed 2nd of May 2016.

[POS] Postman website. https://www.getpostman.com/. Last accessed
12th of May 2016.

[Rai13] Rohit Rai. Socket.io Real-time Web Application Development. Packt
Publishing Ltd, 2013.

[RCG+13] Nikola Rajovic, Paul M. Carpenter, Isaac Gelado, Nikola Puzovic,
Alex Ramirez, and Mateo Valero. Supercomputing with commodity
CPUs: Are Mobile SoCs Ready for HPC? In Proceedings of the Inter-
national Conference for High Performance Computing, Networking,
Storage and Analysis on - SC ’13, pages 1–12, 2013.

[REC] RecSys Website. https://recsys.acm.org/. Last accessed 3rd of
May 2016.

http://nginx.org/en/
http://nose.readthedocs.org/en/latest/
https://www.npmjs.com/
https://forums.flaskbb.org/
https://github.com/hardkernel/EnergyMonitor
https://github.com/hardkernel/EnergyMonitor
https://pm.bsc.es/ompss
http://pip.readthedocs.org/en/stable/installing/
http://pip.readthedocs.org/en/stable/installing/
http://poj.org/
https://www.getpostman.com/
https://recsys.acm.org/


BIBLIOGRAPHY 91

[Rie11] Eric Ries. The lean startup: How today’s entrepreneurs use continuous
innovation to create radically successful businesses. Crown Books,
2011.

[RML08] Miguel A Revilla, Shahriar Manzoor, and Rujia Liu. Competitive
learning in informatics: The uva online judge experience. Olympiads
in Informatics, 2:131–148, 2008.

[RRP+13] Nikola Rajovic, Alejandro Rico, Nikola Puzovic, Chris Adeniyi-Jones,
and Alex Ramirez. Tibidabo : Making the case for an ARM-based
HPC system, 2013.

[RSR] Real statistic resource pack: Power of the t-test. http:
//www.real-statistics.com/students-t-distribution/
statistical-power-of-the-t-tests/. Last accessed 25th of
May 2016.

[RW11] Nornadiah Mohd Razali and Yap Bee Wah. Power comparisons
of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling
tests. Journal of Statistical Modeling and Analytics, 2(1):21–33, 2011.

[SOC] Socket.io website. http://socket.io/. Last accessed 6th of May
2016.

[SPH] Sphere Website. http://www.spoj.com/. Last accessed 26th of Ok-
tober 2016.

[SQLa] SQLAlchemy. http://www.sqlalchemy.org/. Last accessed 20th of
April 2016.

[SQLb] Sqlite. https://www.sqlite.org/. Last accessed 20th of April 2016.

[STR] Stress command. http://linux.die.net/man/1/stress. Last ac-
cessed 21st of April 2016.

[TDTa] TDT4102 Procedural and Object-Oriented Programming Website.
http://www.ntnu.edu/studies/courses/TDT4102#tab=omEmnet.
Last accessed 8th of May 2016.

[TDTb] TDT4200 Parallel Computing Website. http://www.ntnu.edu/
studies/courses/TDT4200#tab=omEmnet. Last accessed 27th of
April 2016.

[TIMa] Timeout manual. http://man7.org/linux/man-pages/man1/
timeout.1.html. Last accessed 8th of May 2016.

[TIMb] Timus Online Judge Website. http://acm.timus.ru/. Last accessed
2nd of May 2016.

[TOPa] Top 500. http://www.top500.org/. Last accessed 3rd of April 2016.

http://www.real-statistics.com/students-t-distribution/statistical-power-of-the-t-tests/
http://www.real-statistics.com/students-t-distribution/statistical-power-of-the-t-tests/
http://www.real-statistics.com/students-t-distribution/statistical-power-of-the-t-tests/
http://socket.io/
http://www.spoj.com/
http://www.sqlalchemy.org/
https://www.sqlite.org/
http://linux.die.net/man/1/stress
http://www.ntnu.edu/studies/courses/TDT4102#tab=omEmnet
http://www.ntnu.edu/studies/courses/TDT4200#tab=omEmnet
http://www.ntnu.edu/studies/courses/TDT4200#tab=omEmnet
http://man7.org/linux/man-pages/man1/timeout.1.html
http://man7.org/linux/man-pages/man1/timeout.1.html
http://acm.timus.ru/
http://www.top500.org/


92 BIBLIOGRAPHY

[TOPb] TopCoder Website. https://www.topcoder.com/. Last accessed 3rd
of May 2016.

[UFW] Uncomplicated FireWall Ubuntu Documentation. https://help.
ubuntu.com/community/UFW. Last accessed 26th of April 2016.

[UNA] Unattended Updates Ubuntu Documentation. https://help.
ubuntu.com/12.04/serverguide/automatic-updates.html. Last
accessed 26th of April 2016.

[UNI] Uninett website. https://www.uninett.no/. Last accessed 8th of
June 2016.

[UVA] UVa Online Judge. https://uva.onlinejudge.org/. Last accessed
2nd of May 2016.

[VIM] Vim website. http://www.vim.org/. Last accessed 9th of May 2016.

[VIR] Python Virtual Environment - virtualenv. https://virtualenv.
pypa.io/en/latest/. Last accessed 20th of April 2016.

[WER] Werkzeug Utility Library. http://werkzeug.pocoo.org/. Last ac-
cessed 25th of April 2016.

[WMMY93] Ronald E Walpole, Raymond H Myers, Sharon L Myers, and Keying
Ye. Probability and statistics for engineers and scientists, volume 5.
Macmillan New York, 1993.

[XU3a] Odroid XU3. http://www.hardkernel.com/main/products/prdt_
info.php?g_code=G140448267127. Last accessed 4th of April 2016.

[XU3b] Odroid XU3 Board Block Diagram. http://dn.odroid.com/
homebackup/201407071202252748.jpg. Last accessed 14th of April
2016.

https://www.topcoder.com/
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/community/UFW
https://help.ubuntu.com/12.04/serverguide/automatic-updates.html
https://help.ubuntu.com/12.04/serverguide/automatic-updates.html
https://www.uninett.no/
https://uva.onlinejudge.org/
http://www.vim.org/
https://virtualenv.pypa.io/en/latest/
https://virtualenv.pypa.io/en/latest/
http://werkzeug.pocoo.org/
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G140448267127
http://dn.odroid.com/homebackup/201407071202252748.jpg
http://dn.odroid.com/homebackup/201407071202252748.jpg


Appendix A

User Test Material

A.1 Digital Appendix
The raw data used for statistical analysis in Gnumeric [GNU] is included in the digi-
tal appendix. The files Climbing Mont Blanc.xlsx and TDT4200 Parallel Computing.xlsx
contains the survey responses of the user test conducted in this thesis and the user
test conducted during the specialization project repsectively. The file TDT4900MasterResults.xlsx
contains the results of the F-tests, T-tests, and Wilcoxon-Mann-Whitney tests.

A.2 User Study Questionnaire
What year of study are you in?

• 1st year

• 2nd year

• 3rd year

• 4th year

• 5th year

• Other: specify

Which of the following best describes your study programme?

• Computer Science at IDI

• Computer Science but not at IDI

• Electronics at NTNU

• Cybernetics at NTNU

93



94 Chapter A. User Test Material

• Mathematics or Physics at NTNU

• PhD student

• Other: specify

How would you rate the Climbing Mont Blanc system in general?

• Very poor

• Poor

• Neutral

• Good

• Very good

It was easy to use the system.

• Strongly disagree

• Disagree

• Neither agree or disagree

• Agree

• Strongly agree

How would you rate the usability of the Climbing Mont Blanc system?

• Very poor

• Poor

• Neutral

• Good

• Very good

Was it difficult to learn how to use the Climbing Mont Blanc system?

• Very hard

• Hard

• Neutral

• Easy

• Very easy



A.2 User Study Questionnaire 95

Are there any tasks or actions that you feel cumbersome or hard to
perform? Please specify if any.
Textual based

How would you rate the design of the Climbing Mont Blanc user inter-
face?

• Very poor

• Poor

• Neutral

• Good

• Very good

Are there any parts of the design that feel redundant, unlogical or con-
fusing in any way? Please specify
Textual based

How would you rate the process of uploading and running a program?

• Very hard

• Hard

• Neutral

• Easy

• Very easy

How satisfied are you with the feedback given by the Climbing Mont
Blanc system?

• Not satisfied at all

• A little bit satisfied

• Neutral

• Satisfied

• Very satisfied



96 Chapter A. User Test Material

How would you rate the information on the HowTo-page?

• Strongly disagree

• Disagree

• Neither agree or disagree

• Agree

• Strongly agree

Any information that is missing on the HowTo-page? Please specify.
Textual based

Have you discovered any bugs? If you have, please try to describe
these.
Textual based

Any other comments on the Climbing Mont Blanc system usability or
the system in general? Are there any missing features?
Textual based

A.3 User Experiment Tasks



Climbing Mont Blanc Tasks 
 
All tasks are to be done on the Climbing Mont Blanc system, reached at 
http://climbdev.idi.ntnu.no. The tasks should be done in order. If you have questions 
about the system, they will be answered if they are not related to the tasks. You can 
abort the test at any time.  
 
Task 1: 
Create a user and log into the system. 
 
Task 2: 
Join the group “Usability Test”. 
 
Task 3: 
Solve one of the problems: 

1. Hello World 
2. Reverse String 
3. Prime Numbers 
4. WERTYU 

Submit and run when you think you got a valid solution. Do not route away from the 
problemview while the program executes. 
 
When you get an accepted run, resubmit the same files two more times and run the 
submissions. 
 
Task 4: 
Find the submissions with the fastest execution time, lowest energy usage, and lowest 
Energy Delay Product (EDP) in the Public Highscore list. 
 
Task 5: 
Find which of your own submissions that have the fastest execution time, lowest energy 
usage, and lowest Energy Delay Product (EDP) in the Public Highscore list.  
 
Task 6: 
Rerun one of your past submissions on the problem you chose in Task 3.  
 
Task 7: 
Repeat Task 4 for the “Usability Test”group highscore list. 
 



Task 8: 
Repeat Task 5  for the “Usability Test”group highscore list. 
 
Task 9: 
Create your own group. Name it <Your username>’s Group. 
 
Task 10: 
Add the “Hello World”problem to your group. Also, add the user sindrma to your group. 
 
Task 11: 
Check out your groups state on the “Hello World”problem. 
Check out sindrma’s group state on all the problems in your group.  
 
Task 12 (if time permits): 
Change your users password and/or email. 
 
Task 13: 
Fill out this survey: 
https://docs.google.com/forms/d/1rmrWo41UCArbhN_GpTPpKqT9OQAr5LKn3uGvvZZ
edz8/viewform 
 
Thank you for your participation! 



A.4 User Test Results 99

A.4 User Test Results
Are there any tasks or actions that you feel cumbersome or hard to
perform? Please specify if any.

• Unclear whether to zip folders, files etc. Should instead be a small label next
to the upload button, instead of link to the HowTo page. Upload should
accept single or multi source file upload. Might be easier to upload from
Unix systems (Count: 9 ).

• Rerunning code is implicitly discouraged compared, and users should be no-
tified about the behaviour (Count: 1 ).

• Waiting a long time in the run-queue (Count: 2 ).

Are there any parts of the design that feel redundant, unlogical or con-
fusing in any way? Please specify.

• Went into group usability test and could not find the public high-score list,
needed to go to start page to find it (Count: 1, the user were probably not
logged into the system).

• The x on the “Show error”- button is making the users think that it removes
the error message (Count: 1 ).

• Flickering in Highscore-list (Count: 1 ).

• The role of groups in the system is unclear (Count: 1 ).

• No need for both email address and user name in the system, as it is hard to
remember both (Count: 1 ).

• Weird to add people to a group without their consent (Count: 1 ).

• Double arrow on on table headers feels confusing, as it can be interpreted as
the list can be sorted in both ascending and descending order. However, the
list can only be sorted in ascending order (Count: 1 ).

• The whole UI feels a little disorganized and tables are not aligned. Buttons
appear without a button row. The dropdown menu + button above the high
score table is not intuitive. It changes title, and its hard to understand how
“Public” is different from the group score (Count: 1 ).

Do you feel any feedback is missing in the Climbing Mont Blanc system?
Please specify.

• Feedback is good and the system clarifies the problem if there is errors (Count:
1 ).

• Up-to-date run queue status, such as position in queue and expected queue
time. Updated run time information (Count: 11 ).



100 Chapter A. User Test Material

• Little feedback during heavy system load, and show estimated progress bar
instead of spinner (Count: 2 ).

• When adding problems to your group, the “add problem”-button should be
“grayed-out” until a valid problem name is specified. Currently, no error
message is shown when giving a invalid problem name and trying to add the
problem. The same applies to the “add member”-button on the same page
(Count: 1 ).

• “Runtime error in small input!”-message does not give sense to untrained
users (Count: 1 ).

Any information that is missing on the HowTo-page? Please specify.

• Contains to much text (Count: 1 ).

• More information about run procedure, queuing multiple submissions, and
possible output (Count: 1 ).

• Exact information about format and file name conventions in uploads, as well
as what files to include (Count: 2 ).

• Broken links (Count: 2, should be ignored as it had to do with Nginx problems
during user test).

• Should specify C++ version and C io examples (Count: 1 ).

Have you discovered any bugs? If you have, please try to describe these.

• Password and email update fields indicating forgotten input even after up-
dating correctly. The message should be removed in this situation (Count:
).

• Broken links (Count: 3, should be ignored as it had to do with Nginx problems
during user test).

• Flickering in Highscore-list (Count: 2 ).

• Highscore list, seemed to refresh some values too slow, new results took a
little time to view (Count: 1 ).

• Safari seemed to just show upload toast/annotation and not actually upload
the file: seemed as the upload process did not start when button was pressed
(Count: 3 ).

• Constraints should be specified in problem descriptions (Count: 2 ).



A.4 User Test Results 101

Any other comments on the Climbing Mont Blanc system usability or
the system in general? Are there any missing features?

• Great system and fine usability. Cool that the system measures energy effi-
ciency. Clear and well represented results. (Count: 1 ).

• The user interface is stellar. It could be useful to include information on
the expected precision and noise levels of time and energy measurements - or
ideally, if the system submission speed is improved then reporting averages
and variance from multiple runs of your program (Count: 1 ).

• Browser IDE? would be A LOT of work, but nice - another prerequisite would
also be that the server would let the user return to the IDE while waiting for
the error message, including a quicker response time (Count: 1 ).

• Not possible to upload files using Safari (Count: 1 ).

• Information about placement in queue and other run queue information when
the queue contains a lot of submissions. The time it takes to get result after
hitting run is to long (Count: 5 ).

• The possibility to zip and upload several files in one go (Count: 1 ).



102 Chapter A. User Test Material

(a) * (b) *

(c) A1 (d) B1

Figure A.1: Multiple Choice Results



A.4 User Test Results 103

(a) A2 (b) C1

(c) A3 (d) C2

Figure A.2: Multiple Choice Results (continuation of Figure A.1)



104 Chapter A. User Test Material

(a) D1 (b) B2

(c) A4

Figure A.3: Multiple Choice Results (continuation of Figure A.2)



A.5 TDT4200 User Study Results 105

A.5 TDT4200 User Study Results
There were in total 37 students completing the survey. Figures A.4 and A.5 shows
the results of the multiple choice questions related to CMB. Some background
information about the participants is also presented in Figure A.6. The Figure
describes the distribution amongst the year of study and area of study. A summary
of the feedback given in the textual based questions and feedback received in class
is found below:

• Feedback given from the CMB system should be improved. Both regarding
compilation errors and runtime errors.

• The format and how to structure the zip to be uploaded was unclear. Would
be nice to be able to upload single source files.

• Submission of zip files from OSX did not work.

• The delivery zip format through ItsLearning and CMB varied, which further
lead to some confusion.

• CMB had days with long run queue time.

• Compilation and running of code should be done in one action.

• One should be able to delete failed submissions as a user.

• Running the same submission one more time should result in a new submis-
sion to the high score list, not an updated entry.

• Sometimes, submissions that were chosen to be private were shown. The bug
becomes present when sorting the highscore list on one of the other metrics.

• The login procedure requires too many clicks.

• CMB should support command line interface instead of the User Interface to
compile and run programs.

• Submissions is not visible accessing the problem page from a group view, only
when accessing the problem from the public list of problems.

• Expected compilation time and running time should be added, and also dy-
namic update the highscore list when runs have completed.

• The submissions should display the lines of code and more information about
the uploaded files.

• The sorting of the highscore list should consider energy as a secondary priority
next to running time when sorting the highscore list.

• More languages should be supported.

• Users should be able to specify compiler flags.



106 Chapter A. User Test Material

• Detect content within the uploaded zip file.

• CMB is a really good idea; you should try to improve it.

• It needs some improvement, but, all in all, it is a good system.

• Overall usability is good. But the system might need some overhaul of its
components.



A.5 TDT4200 User Study Results 107

(a) (b)

(c) (d)

(e) (f)

Figure A.4: CMB Related Multiple Choice Results



108 Chapter A. User Test Material

(a) (b)

Figure A.5: CMB Related Multiple Choice Results (continuation of A.4)

(a) (b)

Figure A.6: Participant Distribution



Appendix B

System Frontend Screenshots

In this chapter, some screenshots from system frontend views of CMB version one
and two are presented for easy comparison of a subset of the views present in the
two versions.

Figure B.1: The old home-view.

109



110 Chapter B. System Frontend Screenshots

Figure B.2: The new home-view.

Figure B.3: The old login-view.



111

Figure B.4: The new login-view.

Figure B.5: The old signup-view.



112 Chapter B. System Frontend Screenshots

Figure B.6: The new signup-view.



113

Figure B.7: The old problem-view.

Figure B.8: The new problem-view.



114 Chapter B. System Frontend Screenshots

Figure B.9: The old profile-view.

Figure B.10: The new profile-view.



115

Figure B.11: The old error-message-view.

Figure B.12: The new error modal.



116 Chapter B. System Frontend Screenshots

Figure B.13: The old group leader-view (taken from Follan and Støa [FS15]).

Figure B.14: The new group leader-view.



117

Figure B.15: The old group-view while member.

Figure B.16: The new group-view while member.



118 Chapter B. System Frontend Screenshots

Figure B.17: The old HowTo-view.

Figure B.18: The new HowTo-view.



Appendix C

Backlog

• Bugs and known issues:

– Remove flickering in the highscore list during Socket.IO updates: The
frontend fetches to much information when receiving events from the
server.

– Should add cascading deletes on Problem-table: To remove dangling
submissions if problems are to be deleted in the future.

• Stability:

– Improve stability of measurements: Extend the backend with the pos-
sibility to assign programs to cores at the backend. Better control over
processor and board temperature is also wanted.

– Improved stability test: The stability test should automatically calculate
mean, standard deviation and relative standard deviation of runs.

– Automatic system monitoring and recovery: The system should be able
to detect irregularities such as long submission queues, and take action
automatically if things should fail.

– Automatic file checks on server: Should check the format and content
of submitted files.

– Port bash scripts to Python code: Will make it easier to write unit tests,
and hopefully make the system more robust and stable.

– Compile threads and cross-compiler: Should be introduced if applicable
to restrict inline assembly code and make the compile process more
stable on both the server and backend.

• Scalability

– Broker: Extend with multiple Odroid XU3 boards. If there is a submis-
sion in the queue, the broker should assign a board to the submission
for execution.

119



120 Chapter C. Backlog

– Multiple architectures: Extend with different architectures, like Odroid
XU4 and others.

• Usability:

– Improved feedback: Should report placement of submissions in the run
queue dynamically. Should also report expected running time with
progress bars, and the server should kill submissions which timeouts.

– Upload improvement: Should be possible to upload single source and
header files. Also checking of the zip file content, and automatic removal
of unnecessary files is wanted.

– Highscore list improvement: Should sort on EDP or energy next if the
running time between two submission matches. It should also be possible
to run the same submission again, and chose which run that should be
visible in the highscore list.

– Multiple test cases during checking: The checking of submissions should
be split into stages, to more easily report.

– Multi file upload: Should be possible to upload multiple source files to
the system. Could also extend with an online code editor.

– Compilation improvement: Users or admins should be able to specify
compiler flags. The makefile should also be made on a per problem basis
or on a per programming language basis, instead of having a huge static
makefile. The system also lacks a good cross-compilers.

– Discussion forum.
– Login via Feide: It should be possible to login using your NTNU user.
– Group extensions: Add deadline and ”Late” mark. Leaders should have

the possibility to promote users to leaders.
– Time limit per problem per language: If new languages are to be sup-

ported, there should be a designated limit on timeout for the new lan-
guages on each problem. Timeouts should be defined by administrators
making problems.

– Add supported languages: Java, Python and more languages.
– More advanced low level statistics: Cache misses, cache hits, memory

usage etc. on submissions.
– Improve information on HowTo-page: Should display language version.

Should also consider splitting it into an About- and HowTo-page.
– News Bulletin and Newsletter.
– Searching for problems, users, and groups.
– Seasons: Highscores by seasons/timespan.
– Command line interface for submitting, compiling and running pro-

grams. Release API documentation.



121

– Secrecy in groups: Group results and user names should have the pos-
sibility to be secret.

– Frontend statistics: Submission statistics such as mean and standard
deviation for a problem per user, per group etc. Also, low-level statistics
such as memory usage, cache information, noise in measurements etc. is
wanted.

– Placeholders should be present for empty tables.

• Performance:

– Non-blocking database: The database access is as of now synchronous.
For a performance gain if the system load is high, a non-blocking (asyn-
chronous) MySQL adapter could be used in combination with the default
MySQL SQLAlchemy adapter.

• Admin Interface

– Boilerplate checkers in the admin interface: The admin interface should
add boilerplate checkers to allow easy setup of new problems.



122 Chapter C. Backlog



Appendix D

Administration

It should be noted that the information stated in this chapter was created by Follan
and Støa [FS15]. The information is repeated in this chapter in a slightly rewritten
and compressed form as it was requested by the main supervisor.

D.1 Bitbucket, Jenkins and Google Analytics
The Jenkins server is installed at the development server of CMB and can be
reached at http://climb-dev.idi.ntnu.no:9000. The defined pipeline stages
and setup information can be found there. The Google Analytics account can be
reached at https://www.google.com/analytics. The git repositories are acces-
sible via Bitbucket at https://bitbucket.org. Access to the services are granted
by the CMB team.

D.2 Problem Descriptions Best Practices
It is important that problem descriptions are clear and unambiguous, and that all
necessary information is stated in the description so that users clearly understand
the problem. It is recommended to follow the following format when creating
problem descriptions:

1. Description: An overall description of the problem.

2. Input: Should present the format of the input. It is also common practice
to state the number of inputs as the first line in the input.

3. Output: Should present the format of the output.

4. Example: Provide an example of inputs and expected outputs. This is valu-
able, as users can test the example locally before submitting to the system.

Remember that good problem descriptions attracts more users and submissions.

123

http://climb-dev.idi.ntnu.no:9000
https://www.google.com/analytics
https://bitbucket.org


124 Chapter D. Administration

D.3 Adding and Hiding Problems
Login as an admin user either at http://climb-dev.idi.ntnu.no eller http:
//climb.idi.ntnu.no depending on where the problem are to be added. Access
to the admin interface can be requested by contacting the CMB team. When logged
in, follow the steps below to add the problem:

1. Select “Problem” in the the topmost main menu.

2. Click “Create” in the sub menu and execute the following steps:

• Insert problem name in the “Name” field. Do not use ‘/’ in the problem
name!

• Add an explanation in the “Description” field. This is an HTML field.
• Insert a date in the “Created”-field.
• Write the name of the quantity to be optimized in the “Goodness Name”

field, or leave it empty if not appropriate. Only added if needed by the
checker-program (see Section D.5).

• Note! Do not tick off the “Visible” check-box yet, wait until all problem
data is uploaded (see below).

3. Insert the new problem by clicking the “Submit” button.

4. Select “Uploads” in the top level horizontal menu bar. Notice that a folder
with the newly added problem name has been created, where the name is
lower case and spaces are replaced with underscores.

5. Select the newly created folder and then select the “problemIO”-subfolder.

6. When in the “problemIO” subfolder, upload the following files using the “Up-
load File”-button. Notice there is no multi-file upload. The file names must
be the following, and all files must be present.

• input.txt: Input for the measured test.
• answer.txt: Correct answer for the measured test.
• small input.txt: Input for the small correctness test.
• small answer.txt: Correct answer for the small correctness test.
• checker.cpp: A problem checker written in C++. It will automatically

be compiled to a checker executable. The checker should return 0 on
success, any other number on failure.

7. This step can be skipped if the checker is correct. The checker is executed in
the following way:

./checker input.txt output.txt answer.txt

http://climb-dev.idi.ntnu.no
http://climb.idi.ntnu.no
http://climb.idi.ntnu.no


D.4 Checker Example, Simple Diff 125

where output.txt is the submitted program’s output. This means the third
command line argument is the file name of the output of a submitted program
(argv[2]), and can be created by running the program with the arguments
present in the input.txt file.

8. Return to the “Problem”-tab, then modify the problem by clicking the pen-
cil symbol, and check the “Visible” check-box. Click “Submit” to save the
change. The “Visible” check-box makes the added problem visible at the
frontend.

To hide a problem from the system frontend, the following steps needs to be exe-
cuted:

1. Choose “Problem” in the topmost main menu.

2. Select the problem that is to be hidden.

3. Tick on the “Visible” check-box.

4. Click “Submit” to save changes.

Note! Deleting problems should not be done, as it may leave dangling
submissions in the database.

D.4 Checker Example, Simple Diff
The checker below is used if a simple diff between expected and actual output is
needed.

#include <stdlib.h>
#include <iostream>
#include <sstream>
using namespace std;

int main(int argc, char* argv[]) {
if (argc != 4) {

cerr << "wrong number of arguments!" << endl;
return -1;

}
stringstream ss;
ss << "wdiff -3 " << argv[2] << " " << argv[3] << " > /dev/null";
int retval = system(ss.str().c_str());
if (retval != 0)

return 1;
return 0;

}



126 Chapter D. Administration

D.5 Checker Example with Goodness
The checker below is used for the “Vertex Cover”-problem and shows how to output
the goodness value “Cover size”, which is defined when adding the problem to the
database.

// C++ Vertex cover checker for exercise-3
#include <iostream>
#include <fstream>
#include <limits>
#include <assert.h>
#include <algorithm>
#include <set>
#include <vector>

using namespace std;

// Rudimentary edge structure
struct Edge {

int u, v;
};

// Graph structure
struct Graph {

// Number of vertices (v) and edges (e)
int v, e;
// A vector of edges
std::vector<Edge> edges;
// A vector of vertex ids
std::vector<int> vertices;

};

// Struct for keeping track of a vertex cover and its quality
struct Solution {

// A vertex cover and associated fitness value
std::vector<int> cover;
double fitness;

};

// Checks to see if the argument solution is a valid vertex cover
bool validVertexCover(Graph graph, Solution current) { ... }

// Driver program
int main(int argc, char* argv[]) {

// Check argc
if (argc < 3) {

cout << "Give input filename and solution filename!" << endl;
return -1;

}



D.5 Checker Example with Goodness 127

// Open input file
ifstream inputFile(argv[1]);
if (!inputFile) {

cout << "No input file found" << endl;
return -1;

}
// Open solution file
ifstream solutionFile(argv[2]);
if (!solutionFile) {

cout << "No solution file found" << endl;
return -1;

}
string code;
int c, u, v, N, M;
Graph graph;

while (inputFile >> code) {
if (!code.compare("c")) { // Skip comments

inputFile.ignore(numeric_limits<streamsize>::max(), ’\n’);
continue;

} else if (!code.compare("p")) {
// Read number of vertices into N and number of edges into M
inputFile >> N >> M;

graph.v = N;
graph.e = M;

continue;
} else if (!code.compare("v")) {

inputFile >> c;

graph.vertices.push_back(c);

continue;
} else if (!code.compare("a")) {

inputFile >> u >> v;

Edge edge = {u, v};
graph.edges.push_back(edge);

continue;
} else {

// Should never get here with the correct input
assert(false);

}
}
// Check student solution //
// Validate header
string header;
solutionFile >> header;



128 Chapter D. Administration

assert(!header.compare("s"));
// Read in list of vertices and validate that it is a vertex cover
std::vector<int> vertices;
int vertexId;
while (solutionFile >> vertexId) {

vertices.push_back(vertexId);
}
Solution candidate = {vertices, 0.0};
assert(validVertexCover(graph, candidate));

// Output for CMB
cout << "OK" << endl;
// Goodness value ("Cover") is second output from the checker
cout << candidate.cover.size() << endl;
return 0;

}



Appendix E

System Setup

This chapter will go into depth of the Climbing Mont Blanc system and setup
information. The goal of this chapter is to complement the setup and handover
instructions given by Follan and Støa [FS15]. Section E.1 proposes a uniform code
folder structure in the CMB system, introduced by Follan and Støa on the devel-
opment and production servers of CMB. The purpose is to allow for quicker setup
of the system for local development, but also to quickly setup a new development
or production server. Sections E.2, E.3, and E.4 explain the setup of the frontend,
server, and backend respectively for both a new CMB instance and local develop-
ment. The sections focus is on summarizing, complementing and gathering some
of the setup and handover information written by Follan and Støa [FS15]. This
will hopefully provide a complete and quick reference documentation of the CMB
setup for new developers.

E.1 Folder Structure
The folder structure for the frontend- and server-code should be equal to the folder
structure at development and production servers of CMB. It is recommended to
keep the folder structure when developing locally. Having identical folder struc-
tures might reduce confusion and bugs that comes up when developing code, as
some environment variables in the system depends upon the folder structure. It
is much easier to set up the system as well, as little modification is needed to the
configuration files to make the system work locally. The setup information is also
much easier explained with a uniform folder structure. The proposed folder struc-
ture is shown in Figure E.1. When explaining the setup information, it is assumed
that the folder containing the directories in Figure E.1 is called cmb.

The folder structure equals the folder structure at the CMB development and
production server. On a CMB development or production server the folder cmb
board would not be present, as this folder contains the code for the CMB backend
and would instead be present on the backend board. The folder structure for the

129



130 Chapter E. System Setup

Figure E.1: Workspace folder structure

(a) Frontend (b) Server (c) Backend

Figure E.2: Folder structure

frontend, server and backend code are all shown in Figure E.2. As mentioned,
the code is available at Bitbucket via git, and the folder structure should be easy
to setup after repository access is granted. The reader is hereby warned that a
different folder structure changes the setup information. An overview of the result
of the set up of local, development and production CMB system is shown in Figure
E.3. Note that the backend setup is equal in each environment, and is therefore
not included in the figure.



E.2 Frontend Setup 131

Figure E.3: General Overview of the Different Setup Options

E.2 Frontend Setup
Figure E.2a shows the structure of the frontend code, and will be relevant in this
section. Acquire the frontend code and create the folder structure shown in figure
E.2a before starting setup. This section gathers the setup and handover information
from the master thesis of Follan and Støa [FS15], and is rewritten according to the
proposed folder structure to make the setup easier.

CMB Frontend Setup
To build the frontend run the following command in the frontend/ directory:

npm install

The command will install all the required packages with npm [NPM]. The required
packages is listed in a file called package.json. After running the command, the
required packages will be saved in a folder called node modules. To build the system
as it is used on the production server, the build tool gulp [GUL] is used with the
following command in the frontend/ directory:

gulp prod

The command will concatenate the HTML, CSS and JavaScript files which makes
the code more efficient, and lowers the number of requests made when fetching data
to the browser. However, since this concatenation reduces the number of source
files, the code will be harder to debug. After running the commands, the frontend
should be available at the URL https://climb.idi.ntnu.no, but keep in mind
that it will not function properly before the server has been set up. The frontend
will assume that a server API is available at https://climb.idi.ntnu.no/api to

https://climb.idi.ntnu.no
https://climb.idi.ntnu.no/api


132 Chapter E. System Setup

fetch data, which requires a running server as explained in section E.3. To build
the development version instead, stay in the frontend/ directory and run:

gulp dev

The command will not concatenate the HTML, CSS and JavaScript files, which will
make it easier to debug using developer tools in the browser. The frontend should
now be available at https://climb-dev.idi.ntnu.no. The development frontend
also requires a running server with an API available at https://climb-dev.idi.
ntnu.no/api, as explained in section E.3. The URLs can be changed by modifying
the files prod-config.json or dev-config.json for the production and development
server respectively.

Local Setup
First, as above, run the following command in the frontend/ directory:

npm install

The command will install all dependencies from listed in package.json. To build
the frontend for local development, run the following command in the frontend/
directory:

gulp

The command will build the project as it is done on the development server, but the
website is instead available at http://localhost:5000. This means that a local
version of the server should also be run (described in Section E.3). The command
will also watch for changes in the code, and for every change it will run the unit
tests and rebuild the code. All gulp tasks are defined in the gulpfile.js, and new
tasks can be added there. New code or modifications to existing code should be
done in the public/ folder.

Unit Tests and Linter
To make the unit tests run correctly, all bower [BOW] dependencies must be in-
stalled. This is done by running the following command in the frontend/ directory:

bower install

This will install all dependencies from the bower.json file in the bower components
folder. To run the tests, enter the frontend/ directory and run the tests through
the gulp task:

gulp test

When the tests are run, a directory called coverage/ is automatically created within
the frontend/ directory. This directory contains an HTML report of the test run.

https://climb-dev.idi.ntnu.no
https://climb-dev.idi.ntnu.no/api
https://climb-dev.idi.ntnu.no/api
http://localhost:5000


E.3 Server Setup 133

To run the jshint [JSH] linter manually, run the following gulp task in the fron-
tend/ directory:

gulp jshint

The command will report linter errors if any.

E.3 Server Setup
The directory structure for the server can be seen in Figure E.2b. Acquire the
server code and create the folder structure in Figure E.2b before starting setup.
The paragraphs ”Installation and Configuration”, ”Database Setup and Migration”
and ”Unit Tests and Linter” are setup information created by Follan and Støa. The
paragraphs are rewritten and complemented using the proposed folder structure to
make the setup process easier.

Virtual Environment and Dependencies
A Python Virtual Environment (VE) [VIR] should be installed and used when
developing and running the server code. When installed, create a new VE by
running the following command in the server/ directory:

virtualenv venv

The command will create the folder structure venv/ within the server/ directory.
One need to activate the VE to install packages and use the packages installed
within it. The Unix command source is used to activate the VE. An example from
the server/ directory is:

source ./venv/bin/activate

To install all required packages needed on the server, activate the VE and use pip
[PIP] to install the required packages within the VE. All required packages is listed
in the requirements.txt file, and is installed by running the following command from
the server/cmb-server/ directory:

pip install -r requirements.txt

The above command will install all required Python dependencies needed for cor-
rect execution of the server. Installation of requirements needs to be done both
when developing locally and when setting up a new CMB server.

To deactivate the VE, execute the following command anywhere:

deactivate



134 Chapter E. System Setup

Installation and Configuration
To correctly compile the uploaded solutions on the server, a Mali OpenCL SDK
[MAL] library is needed. It is recommended to install it as shown in Figure E.1. It
is also a requirement to create a directory called workspace/ within the extracted
folder of the Mali OpenCL SDK. The CMB server also needs OpenMP 4.0, gcc-
4.9 and g++-4.9 to compile the uploaded programs correctly. The following steps
installs the required compilers and libraries:

sudo apt-get-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-4.9 g++-4.9
sudo apt-get install build-essential
sudo apt-get install libmysqlclient-dev

Uncomplicated Firewall (UFW) [UFW] and Fail2Ban [?] are installed and config-
ured by running the commands below:

sudo apt-get install fail2ban
sudo ufw allow 80
sudo ufw allow 443
sudo ufw enable

UFW should already be present, and does not need installation. The second and
third command above allows requests to port 80 and 443. That is, all HTTP and
HTTPS request should be allowed to pass to the server. Fail2Ban should work out
of the box.

Nginx [NGI] can be installed on development and production servers in the follow-
ing manner:

sudo apt-get update
sudo apt-get install nginx
sudo service nginx stop

Make sure to remove the default Nginx configuration if present in the directory
/etc/nginx/sites enabled. The server code repository contains the Nginx configura-
tion files prod nginx.conf and dev nginx.conf for the production and development
server setup respectively. Copy the Nginx configuration file into the directory
/etc/nginx/sites available. Also, create a symbolic link to the file in the directory
/etc/nginx/sites enabled and restart Nginx:

sudo ln -s /etc/nginx/sites_available /etc/nginx/sites_enabled
sudo service nginx stop

Make sure to also acquire a valid Uninett certificate if setting up a production
server.



E.3 Server Setup 135

Some environment variables need to be set up to configure a CMB server correctly.
Firstly, the Unix environment variable APPLICATIONS SETTINGS need to be
set. This environment variable points to a file that contains application specific
variables, depending on if the server is either a production, development or a lo-
cal server. The files server.cfg, server dev.cfg and local server.cfg present in the
directory server/cmb-flask/ represents the application settings for a production,
development or a local server respectively. For example, the IP address of a back-
end board, the path for the Mali OpenCL SDK, the database URI and the server
port is all present in the configuration files among other variables. Section E.5 gives
an example of how the file local server.cfg might look like. It is very important to
enter these values correctly.

The next environment variables that need to be set are CMB MAIL USERNAME,
CMB MAIL PASSWORD, CMB SECRET KEY and CMB TOKEN SECRET. The
variables CMB MAIL USERNAME and CMB MAIL PASSWORD are used to
send an email to the CMB administrators when an error occurs, which is cru-
cial if setting up a production environment. The variables CMB SECRET KEY
and CMB TOKEN SECRET are used for session token generation, authenticat-
ing messages and more. When developing locally, these variables can stay un-
changed and can be copied from the file local server.sh present in the directory
cmb-flask/scripts/. If setting up a development or production server, contact the
CMB team, and they will provide the information to set these variables correctly.
It is recommended to enter the variables into $HOME/.bash profile or some similar
file that loads the environment variables when starting up a new shell.

The environment variable SLQALCHEMY DATABASE URI 1 and
SERVER TIMEOUT also needs to be set in the $HOME/.bash profile or some
similar file which loads the environment variables. The server timeout describes
the timeout of SSH commands and is currently defined to be 95 seconds.

Run the following command from the directory server/cmb-flask/scripts/ to start
either a development or production server:

./init_cmb start

The command will start the whole CMB system, including the frontend and push.py.
Keep in mind that the system will not function correctly before a backend has been
set up, as described in section E.4. The above command also allows the arguments
stop and restart as well, to stop or restart the CMB system respectively. The above
command is the recommended way of starting either a production or development
server. To start a local server, run the following command in the server/cmb-
flask/source/ directory:

python server.py start

1The database URI describes which database to connect to. Example with MySQL:
mysql://<username>:<password>@<host>/<db name>.



136 Chapter E. System Setup

This will start the server without Gunicorn [GUN]. Running the server without
Gunicorn makes it easier to debug, as only a single instance of the server is running.
However, it is possible to launch the CMB locally with the init cmb script locally
as well if wanted. No matter the method of running the server, it will create a
callable API at endpoint https://localhost:5000. It is important to initialize
the database (see below) before running the server the first time.

The following lines can also be added in the file /etc/rc.local to automatically start
the system when booting the server:

su climber -s /bin/bash -l -c
"/srv/climber/cmb/server/cmb-flask/scripts/init\_cmb.sh start" >
/dev/null

Database Setup and Migration
To clear and initialize a database for a new server, run the following command in
the directory server/cmb-flask/ :

python init_db.py

If there is a modification to the database models (read table schema), one needs
to migrate 2 the database. Migration happens by creating a migration script,
generated by running the following command in from the server/cmb-flask/source/
directory:

python server.py db migrate -m "some message."

This will create a new directory within server/cmb-flask/source/ called migra-
tions if not present, with the auto generated migrations script within. To launch
the migration script and alter the database table schema, stay in the directory
server/cmb-flask/source/ and run:

python server.py db upgrade

On the production and development servers, this is done automatically through
Jenkins when there is a change to the database tables. The migration script is also
added to the git repository so that the above step can be executed manually.

The production and development databases are provided by the IDI department
[IDIa]. If developing locally, remember that MySQL needs to be installed and a
local database needs to be set up. Remember to set the correct database URI in
the $HOME/.bash profile or similar file as described above.

2Migration is the task of updating or reverting a database schema while trying to preserve the
data that might be present in the database.

https://localhost:5000


E.4 Backend Setup 137

Unit Tests and Linter
After installing and activating the virtual environment above, make sure all re-
quired packages from requirements.txt are installed. From the directory server/cmb-
flask/source/, run the following command:

nosetests --with-coverage
--cover-package=admin,routes,cmb_utils,server,database tests/*.py

This will run automatic unit tests with nose [NOS] for all tests present in the
directory server/cmb-flask/source. It will also generate a cover report, with an
extensive overview of the code covered by the tests. If developing a new test, it
might be useful running just a single test. To run a single test, execute the following
command the server/cmb-flask/source/ folder:

nosetest tests/problems_test.py

This will run the tests present in the problems test.py file. One can simply run
another test set by changing the file name to another file present in the server/cmb-
flask/source/tests/ directory.
To run the flake8 linter, stay in the server/cmb-flask/source/ directory and run:

flake8 .

The terminal window will report potential errors.

E.4 Backend Setup
This section explains the setup of a new Odroid-XU3 board with the folder struc-
ture equal to the one in Figure E.2c. The folder structure is relevant when setting
up the CMB board code as explained below. The paragraph “CMB Setup” contains
instructions and information made by Follan and Støa, which is further comple-
mented (uninstalling lightdm [LIG]) and rewritten to make setup easier.

Odroid-XU3 Setup
A new Odroid-XU3 board should have a fresh installation of Xubuntu installed
available at the Odroid website [ODR]. The Xubuntu installation information
given here is inspired by the information stated at the Odroid website [ODR]. The
Odroid-XU3 can either boot from a MicroSD card or a special module called eMMC
module. The eMMC module needs to be connected to a eMMC module reader as
seen in the Figure E.4 to be able to flash. A Unix operating system is assumed used
when flashing the OS image onto an eMMC module or a MicroSD. For flashing of
OS images onto MicroSD like media using Windows, refer to the Odroid website
[ODR]. After downloading a new Operating System image, flash the connected
MicroSD card or eMMC module with the following commands within the folder
where the image is downloaded:



138 Chapter E. System Setup

Figure E.4: eMMC Module and Reader

unxz some-xubuntu-image-file.img.xz
sudo dd if=/dev/zero of=</dev/path/of/card> bs=4M conv=fsync
sudo dd if=<some-xubuntu-image-file.img> of=</dev/path/of/card> bs=4M

conv=fsync
sync

The path of the MicroSD card or eMMC module can be found by monitoring the
directory /dev/ before and after connecting the device. The connected device will
appear as sdX, where X is some alphabetical character. As mentioned, CMB uses
the EnergyMonitor program to measure energy consumption, and it is important
to check that the downloaded OS image supports the EnergyMonitor program.

After installing the OS, connect either the MicroSD or eMMC module to the
board3. Then boot and connect the Odroid-XU3 to a monitor either through
mini-HDMI or a DisplayPort. An automatic login will happen to a user called
odroid. Open a terminal window and create two more users by running the follow-
ing commands:

useradd climber
passwd climber
useradd worker

This creates two users, climber and worker. When prompted for a password for the
climber user, enter the password given to you by the CMB team. These two users
are needed to execute commands and run programs through the server. Addition-
ally, enter the following line to the end of the file sudoers located in the directory
/etc/ :

3Check out http://odroid.com/dokuwiki/doku.php?id=en:xu3_bootmode_configuration on
how to toggle between booting from eMMC module and MicroSD.

http://odroid.com/dokuwiki/doku.php?id=en:xu3_bootmode_configuration


E.4 Backend Setup 139

...
climber ALL=(worker) NOPASSWD: ALL
...

The line will make sure that the worker user have the privileges to execute the
uploaded programs. The command visodu should be used to add the line to the
sudoers file.

The backend should install OpenSSH and OpenSSH Server if not already installed.
The two services can be installed and configured to CMB by executing the following
commands:

sudo apt-get install ssh-client
sudo apt-get install ssh-server
ssh-keygen -t rsa
ssh-copy-id username@ip-to-server

When prompted for something, just hit enter. After executing the commands
above, login to the board can happen without entering a password. This will make
sure that the server does not get prompted for a password when it needs to execute
scripts at the backend. You should not be prompted for a password when logging
into the board from the server after executing these commands.

Uncomplicated Firewall (UFW) and Fail2Ban are installed much the same way
as on the server. Execute the following commands to install and configure both
services:

sudo apt-get install fail2ban
sudo ufw allow from 127.241.0.0/16
sudo ufw enable

The board should not be accessible from outside the NTNU network, which this
UFW configuration ensures.



140 Chapter E. System Setup

CMB Setup
Follan and Støa reported the CMB backend setup in their Master thesis [FS15].
The commands to setup the CMB backend code are repeated here, and extended
with the removal of lightdm [LIG]. Log in as climber at the board through SSH
and fetch the backend code from Bitbucket (clone the repository with git), and run
the following commands to correctly setup the CMB backend:

# Link binary
sudo ln -sf /lib/ld-linux-armhf.so.3 /lib/ld-linux.so.3
# programs and packages used by runscript_v2.sh, EnergyMonitor and
calculateEnergy.py.
sudo apt-get install python-scipy time qt4-default libqwt-dev
# install g++ and gcc 4.9 to support OpenMP 4.0
sudo add-apt-repository ppa:ubuntu-toolchain-r/test
sudo apt-get update
sudo apt-get install gcc-4.9 g++-4.9
sudo apt-get install build-essential
# add following line to /etc/rc.local. This script is run automatically on

boot,
# and is needed for tempAdjustment to read current temperature.
# Permissions are reset when rebooting.
chmod +r /sys/devices/10060000.tmu/temp
# These are needed by the EnergyMonitor_v3.
# Make sure executable name is "EnergyMonitor"
cd cmb-board/EnergyMonitor_v3
qmake
make
# Remove lightdm for accurate energy readings
sudo apt-get purge lightdm
# compile dropCache.cpp to dropCache and make it an auxiliary executable.
# dropCache is responsible for clearing the cache before running a program.
cd ˜/cmb-board/mountBlanc
g++ -O2 dropCache.cpp -o dropCache
chmod 4710 dropCache

Download the Mali OpenCL SDK v1.1 and copy the folders common, lib and include
into the directory cmb-board. The folders can also be transferred from the server.



E.5 Local Server Configuration File 141

E.5 Local Server Configuration File
The configuration file presented here assumes that the project have been structured
as proposed in section E.1. An example configuration file is listed below, which
only requires one to find the path to the cmb/ directory and the executing backend
IP address.

SERVER_PORT=5000
BOARD_IP="THE_BOARD_IP_ADDRESS"
MALI_DIR="<path-to-cmb>/cmb/Mali_OpenCL_SDK_v1.1.0"
FLASK_DIR="<path-to-cmb>/cmb/server/cmb-flask/"
FRONTEND_DIR="<path-to-cmb>/cmb/frontend/"
UPLOAD_FOLDER="<path-to-cmb>/cmb/server/cmb-flask/problems"
MAIL_SERVER=’smtp.gmail.com’
MAIL_PORT=465
MAIL_USE_TLS=False
MAIL_USE_SSL=True
GUNICORN_LOG_LEVEL="debug"
VERSION="dev"


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Problem Statement Interpretation
	Project Contributions
	Outline

	Background
	The Mont Blanc Project
	Project Goals and Status
	Prototypes

	The Climbing Mont Blanc Prototype
	Frontend
	Server
	Backend
	Energy Measurements
	Code Correctness and Code Deployment
	Security
	Related CMB Project - System Scalability

	Related Work
	Online Judge Systems
	Crowdsourcing Sites


	Climbing Mont Blanc Usability Goals
	Usability in Online Judge Systems
	Climbing Mont Blanc Usability Goals

	Climbing Mont Blanc Improvements
	Real Time Updates
	Frontend Technology
	Server Technology

	Frontend
	Bug Fixes
	Views and Feedback
	Group Functionality Improvements

	Server
	Database Management System Updates
	Database Schema Updates
	Endpoint Updates
	Admin Interface

	Backend
	Improvement Proposals
	Stability Test
	How-To Page and About Page
	Adding Problems
	Discussion Forum


	User and System Testing
	Continuous User Testing
	User Experiment
	Motivation
	Methodology
	Statistical Analysis
	Results and Evaluation
	Threats to Validity

	System Unit Tests
	Frontend
	Server


	Discussion and Evaluation
	Improvements
	Real Time Updates
	Frontend
	Server
	Backend

	User Testing
	System Testing
	Project Objective Achievements

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix User Test Material
	Digital Appendix
	User Study Questionnaire
	User Experiment Tasks
	User Test Results
	TDT4200 User Study Results

	Appendix System Frontend Screenshots
	Appendix Backlog
	Appendix Administration
	Bitbucket, Jenkins and Google Analytics
	Problem Descriptions Best Practices
	Adding and Hiding Problems
	Checker Example, Simple Diff
	Checker Example with Goodness

	Appendix System Setup
	Folder Structure
	Frontend Setup
	Server Setup
	Backend Setup
	Local Server Configuration File


