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Abstract

Data used in studies about physical activity is primarily collected from
questionnaires and other subjective methods, which may lead to biased
and inaccurate data. As subjective data collection methods have shown
to be unreliable, enhancing or even replacing these methods with ob-
jective methods like the use of wearable technology and human activity
recognition (HAR) systems, will lead to more accurate data. HAR sys-
tems are systems that can recognize what kind of activity a subject is
performing based on the monitoring of data streams from sensors on, or
close to, the subject. One way this can be achieved is by constructing a
classification system that can recognize human activities from body-worn
sensor readings.

HUNT4 is an upcoming health study with about 60000 participants that
will make use of objective measurements of their participants’ physical
activity to provide precise summaries about each participant’s activity
level. To be able to create these summaries, there is a need for a system
that can recognize physical activities based on sensor readings. The main
objective of our research is to design and construct such a HAR system.

In this thesis, we have reviewed related work performed in the field of
HAR, and identified potentials for further improvements of current HAR
systems. We experimented with deep learning, semi-supervised learning,
dynamic classification and dynamic windowing. Through an iterative
process of adding and removing components, we propose a system that is
able to distinguish between daily activities with a high level of precision.
The final HAR system consists of a Convolutional Neural Network followed
by a Hidden Markov model, reaching an accuracy for classifying activities
of 97.9% for adults and 96.6% for adolescents.





Sammendrag

Studier som omhandler fysisk aktivitet bruker data som i all hovedsak
er samlet inn ved hjelp av spørreskjemaer eller andre subjektive inn-
samlingsmetoder. Da subjektive innsamlingsmetoder har vist seg å være
upålitelige, er det viktig å erstatte disse metodene med mer objektive og
nøyaktige metoder. En måte å oppnå dette på er å konstruere et klassi-
fiseringssystem som er i stand til å gjenkjenne menneskelige aktiviteter
basert på sensordata.

HUNT4 er en stor kommende helseundersøkelse med omtrent 60000 del-
tagere som vil bruke objektive metoder til å måle deltakerenes fysiske
aktivitet for å tilby presise sammendrag om aktivitetsnivået til hver en-
kelt deltager. For å kunne lage disse sammendragene, er det behov for
et system som kan gjenkjenne fysiske aktiviteter basert på sensoravles-
ninger. Hovedmålet for vår forskning er å designe og konstruere dette
aktivitetsgjennkjenningssystemet.

Vi har satt oss inn i tidligere arbeid utført innen aktivitetsgjennkjenning,
og på denne måten identifisert muligheter for ytterligere forbedringer
av eksisterende aktivititetsgjennkjenningssystemer. Vi har eksperimen-
tert med dyp læring, halvovervåket læring, dynamisk klassifisering og
dynamiske datavindu. Gjennom en iterativ prosess av å fjerne og legge
til komponenter til systemet, har vi kommet fram til et endelig system
som er i stand til å skille mellom aktiviteter med høy presisjon. Dette
systemet består av et konvolverende nevralt nettverk etterfulgt av en
Hidden Markov modell, og har resultert i en nøyaktighet for klassifisering
av aktiviteter på 97,9% for voksne og 96,6% for ungdom.
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Chapter1Introduction

1.1 Background

Epidemiological studies indicate that there is a strong prospective association between
the level of physical inactivity and risk of several non-communicable diseases such as
cardiovascular disease, type 2 diabetes, obesity, cancer and musculoskeletal disorders
[Lee et al., 2012, US Department of Health, 1996]. Moreover, physical inactivity
has been identified as the 4th leading risk factor for global mortality, resulting
in approximately 3.2 million deaths per year1. More than 23% of the world’s
adult population do not meet the recommended amount of physical activity [Alwan,
2014]. The all-cause mortality is 20-30% higher among those who do not meet the
recommended amount of physical activity than for those who do [Alwan, 2014].

A limitation of the abovementioned studies is that physical activity data is primarily
collected by questionnaires and other subjective methods which may lead to biased
and inaccurate data [Kwak et al., 2011]. As subjective data collection methods have
shown to be unreliable, enhancing or even replacing these methods with objective
methods like Human Activity Recognition (HAR) systems, will lead to more valid data.
Further, this will enable development of more accurate models for the association
between physical activity and risk of disease. More precisely, HAR systems are
systems that can recognize what kind of activity a subject is performing based on
the monitoring of data streams from sensors on, or close to, the subject. One way
this can be achieved is to generate a classification system that can categorize human
activities from body-worn sensor readings.

When monitoring a subject’s overall health, it is important to get to know, not
only the overall amount of physical activity the subject is performing, but also what
kind of activities the subject is carrying out (e.g. how long is a subject sitting,
standing and walking on a daily basis) [Patel AV1, 2010]. Today’s commercial HAR
systems, aimed at supporting this monitoring, are limited to simple variables such as

1http://www.who.int/dietphysicalactivity/factsheet_inactivity/en/
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2 1. INTRODUCTION

counting steps, stairs and measuring distance. Current HAR systems are, therefore,
not an ideal tool when collecting activity variables relevant to an overall health
status. Moreover, sedentary time has been identified as an independent risk factor
also among persons performing recommended amount of physical activity [Gupta
et al., 2016]. This underline the importance of developing objective methods that
differentiate between sedentary activities (sitting, lying down) and moderate and
vigorous activities (walking, running, cycling).

The Nord-Trøndelag Health Study (HUNT study)2 is one of the largest health
studies ever performed. The study comprise a large range of health-related data
(e.g. questionaries data, blood samples, clinical test data) collected during three
intensive sub-studies since 1984. The HUNT4 study is the fourth sub-study in HUNT.
It will start in fall 2017 and offer objective measurements of physical activity to
their participants. A HAR system will be developed to classify sensor data from
the participants. Two wearable accelerometer sensors placed at each participant’s
thigh and back, will be used to obtain sensor data. The sensors will be worn for a
week before they get returned, and an analysis will be performed to measure the
participant’s activity level.

The main objective of this study is to design and construct a HAR system that can
be used in the HUNT4 study. It is important that this system fits with the sensors
that are going to be used in HUNT4, and that the system can classify daily activities
with a high level of precision. The data set used to construct this HAR system
was created during fall 2015 in collaboration with Hilde Bårdstu and Atle Melleby
Kongsvold [Tessem and Hessen, 2015].

1.2 Goals and Research Questions

As mentioned, the main objective of this research project is to design and construct
a HAR system of sufficient quality for the upcoming HUNT4 study. To reach this
objective, we need to accomplish the goals presented below.

To be able to construct a HAR system of sufficient quality, we need to obtain an
overview of previous work performed in the field of human activity recognition and
get an understanding of the techniques underlying such systems.

Goal 1: To get in-depth knowledge of the state-of-the-art in the field of human
activity recognition.

Research Question 1: What methods and which architecture does state-of-the-art
HAR systems use?

2http://www.ntnu.edu/hunt



1.3. RESEARCH METHOD 3

Based on the knowledge obtained from RQ1, we will identify potentials for improve-
ments and suggest and evaluate methods that can improve state-of-the-art HAR
systems.

Goal 2: To improve state-of-the-art HAR systems.

Research Question 2: How will different methods, or combinations of methods,
affect the overall performance of a HAR system?

To evaluate our second goal we will compare our proposed HAR system with a
state-of-the-art HAR system called Acti4 [Skotte et al., 2014]. Acti4 is used in several
Scandinavian human activity studies [Danquah et al., 2016, Hallman et al., 2015,
Munch Nielsen et al., 2016].

1.3 Research Method

March and Smith [1995] have stated that both design science [Simon, 1996] and
natural science are needed to ensure that IT research is both relevant and effective.
They propose a framework for IT research consisting of four steps which are Build,
Evaluate, Theorize and Justify. Building an artifact and evaluating this artifact are
often viewed as the two basic steps from design science, while generating a theory and
justifying this theory are often viewed as the two basic steps from natural science. In
this study, we aim at improving state-of-the-art HAR systems by using the framework
proposed by March and Smith. We will run the four steps in an iterative process,
where we in each iteration will in some manner modify a component in the HAR
system, perhaps adding or removing functionality. The modification will be based
on existing knowledge and experience gained from the previous iterations. The final
result of the iterative process will be a functional HAR system, as well as knowledge
about the tested approaches and solutions in such a system. Thus, the iterations in
our project can be seen as:

1. Building: Building a HAR system based on our existing theories and knowl-
edge.

2. Evaluating: Evaluating this HAR system. Does the system work, and if it
did, how well did it work? Did we make any progress?

3. Theorizing: Contributing with theoretical knowledge as to why the tried
solutions in new HAR system works or fails.

4. Justifying: Verifying to some extent the different explanations from the
theorizing step. This step contributes to a more certain scientific understanding
about why our HAR system performed as it did.
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1.4 Thesis Structure

The remainder of this thesis is structured as follows.

Chapter 2: Background Theory and Motivation provides our motivation for
this research as well as an overview of current research in the field of Human Activity
Recognition.
Chapter 3: Beyond State-of-the-art presents the methods we experiment with
to improve HAR systems.
Chapter 4: Collection of the Data Set presents how our data set was collected.
Chapter 5: System Design presents the architectural structure of our proposed
HAR system.
Chapter 6: Experiments presents the experiments performed and the final evalu-
ation of each part of the proposed system. It also presents a precise explanation of
the final system architecture.
Chapter 7: Results and Discussion presents and discusses the results provided
by our final HAR system.
Chapter 8: Conclusion and Future Work evaluates and concludes the presented
work, and presents a summary of further hypothetical research in human activity
recognition based on the work presented in previous chapters.



Chapter2Background Theory and
Motivation

This chapter presents previous research in the field of HAR. Section 2.1 presents
an overview of the common steps in HAR system development, where each step
is described in detail from Section 2.2 through 2.6. These sections are based on a
project we had during fall 2015 [Tessem and Hessen, 2015], and address the first goal
of our research by providing a deeper overview of state-of-the-art HAR systems. To
get a deeper understanding of how these steps work together, Section 2.7 presents
Acti4. Acti4 is a state-of-the-art HAR system that we compare against our proposed
HAR system in Chapter 7. The last section presents our motivation for the work
undertaken to achieve the remaining research goals.

2.1 Overview of Human Activity Recognition Systems

A typical process of creating a HAR system is divided into the following steps:

1. Data Collection: Activity data is obtained from sensors worn by subjects.

2. Data Pre-processing: If several sensors are used, the data from each sensor
need to be synchronized. The data is then labeled so that each data point has
a corresponding activity. This step can also include resampling, noise removal
and balancing of the data set.

3. Data Segmentation: Instead of evaluating individual data points, the data
stream is divided into smaller segments (windows), where each window has a
corresponding activity.

4. Feature Generation and Selection: Characteristics from the data, called
features, are extracted from each window.

5. Classification: Features are used to train a classification algorithm, enabling
it to distinguish between different activities.

5
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This process is what Bulling et al. [2014] referred to as the Activity Recognition Chain
and is presented in Figure 2.1. The following sections provide a deeper understanding
of each step in this pipeline.

Figure 2.1: The process of creating a HAR system. Called the Activity Recognition
Chain by Bulling et al. [2014]

2.2 Data Collection

This section presents the process of collecting human activity data using body-worn
sensors.

2.2.1 Sensors

A wide range of sensor types have been used in earlier HAR systems, including
accelerometers [Ravi et al., 2005], gyroscopes [Leutheuser et al., 2013] and elec-
trocardiograms [Li et al., 2010]. To improve performance, it is not uncommon to
combine multiple sensor types [Leutheuser et al., 2013]. Accelerometer sensors usually
lead to accurate classification results as well as being small, cheap, and require a
small amount of processing power. Accelerometers measure the acceleration of a
moving or vibrating body and are important components when analyzing human
movement. Gyroscopes measure the rate of rotation around a particular axis and are
therefore able to calculate orientation (from a reference orientation). By knowing
the orientation of a body, it is possible to distinguish between a number of activities,
especially when several gyroscopes are used together. Electrocardiograms, which
monitors the electrical activity of the heart, have been used in HAR systems to
identify movement intensity from heart rate measurements.



2.2. DATA COLLECTION 7

The number of sensors and their ideal placement are debated. Atallah et al. [2011]
states that classification results improve when more accelerometers are worn. On
the other hand Cleland et al. [2013] did not find any significant improvement when
combining more than two sensors. However, both studies agree that using many
sensors can feel intrusive and unnatural. Minimizing the number of sensors while
maintaining the classification rate is, therefore, important.

Karantonis et al. [2006] states that essentially all measured body movement are
contained within a frequency component below 20 Hz. To enable the sensors to
detect frequencies below 20 Hz, Nyquist–Shannon Sampling Theorem [Lüke, 1999]
states that it is necessary with a sampling rate of minimum 40 Hz (2 times 20 Hz).

In the data set used in this study, it was chosen to use two accelerometer sensors,
one at the back and one at the thigh. According to Cleland et al. [2013] two sensors
are enough to obtain satisfying classification results while minimizing the constraints
brought on the subject’s physical behavior. The sensor’s sampling rate was set to
100 Hz, which is more than enough to measure human activities.

2.2.2 Subjects

The number of subjects used when developing HAR systems differs between studies.
A higher number of subjects leads to a more realistic representation of movement
patterns in a population [Bartlett, 2007]. However, as the number of subjects increase,
the data collecting and labeling process gets more demanding. It is, therefore,
important to balance the trade-off between the number of subjects and the time
spent collecting and labeling. In earlier research the number of subjects typically lies
between 1 and 25.

Movement patterns differ between different age groups and genders [Bartlett, 2007].
To ensure representativity, it is important to choose subjects based on the application
area of the HAR system. HUNT4 is divided into two studies. The first study is
called the Adult HUNT4, and is focusing on participants older than 20 years. The
second study is called the Young HUNT4, and is focusing on participants between
13 and 19 years. Since our research is a preparation for HUNT4, we will concentrate
on the physical movement of adolescents and adults. The data set was therefore
collected data from one group of 12 healthy adolescents (age 13-16 years) and one
group of 23 healthy adults (age 28-52 years).

2.2.3 Methods to Collect Human Activity Data

In previous HAR studies, it has been common to collect sensor data by requesting the
subjects to do a standardized sequence of activities. However, the number and type
of activities vary between studies. The majority of data is collected in a recorded lab
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environment with supervision by a researcher. Activities performed in an unnatural
setting (e.g. a treadmill) can influence the subject’s activity pattern [Bartlett, 2007].
Therefore, several studies try to collect activity data from more natural settings. One
way this could be achieved is by conducting the experiments out of the lab, without
supervision. Bao and Intille [2004] tried to provoke more natural movement by giving
the subjects a goal, instead of requesting it to do an activity. For example, instead of
requesting the subject to work with a computer, the subject could be asked to find
the world’s largest city by using a computer. In the data set we used, one part of the
data was collected in a recorded lab environment, and the other part was collected
in a more natural setting without supervision.

2.3 Data Pre-processing

Before further analysis, the collected data need to go through a pre-processing stage.
This stage can include methods such as synchronization, resampling, noise removal
and labeling. In this section, we will describe the process of synchronization and
labeling, in addition to methods used to balance skewed data sets.

2.3.1 Synchronization

The use of multiple sensors during the data collection can lead to unsynchronized
sensor measurements. Even though a sensor has been set to a given sampling rate,
the actual sampling rate may deviate from this. Synchronization of the raw data is,
therefore, an important step of the HAR chain. A common way to get a coordinated
start and end point of the sensor signal is to shake them together in a fixed movement
pattern, and mark peaks in the corresponding data made by this shake movement as
start and end point [Leutheuser et al., 2013, Bao and Intille, 2004]. The start and
end points of the data used in this project are marked with heel-drops (lift heel and
then drop).

2.3.2 Labeling

After the data is collected and synchronized, the data needs to be annotated as
different activities. The annotation process tends to be both time-consuming and
demanding. To save time, the annotation could be performed during the acquisition
process [Ravi et al., 2005, Bao and Intille, 2004], however, this may lead to a higher
amount of mislabeling. Human activities are very complex, and the same activity
can be performed in different ways, depending on the context. Clear and detailed
activity definitions are therefore important to prevent subjective labeling. Low-level
agreement regarding the start and end time of activities can be avoided by removing
several seconds of the beginning and end of each activity [Ravi et al., 2005, Leutheuser
et al., 2013]. However, this may lead to a loss of valuable information. The data set
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used in this study was labeled by watching recorded videos from the data acquisition.
These recordings provided the opportunity to observe the movements multiple times
and resulted in a more precise labeling process.

2.3.3 Balancing Data Set

Imbalanced class distribution among the different classes can be a problem when
training a classification algorithm. When monitoring human activities, some activities
occur frequently, such as sitting, standing, walking and lying, while other activities
occur less frequently, such as running, going stairs, bending. A challenge dealing
with classes with few instances is that the classifier would not be able to learn this
class as well as the classes with more instances.

One way to resolve the challenge of having an imbalanced data set, is to resample
the data set so that every activity have the same amount of data instances. There
are two main resampling methods:

• Oversampling: Add copies of instances from the minority classes, so that each
class has the same amount of instances as the largest class (in our case sitting).

• Undersampling: Delete instances from the majority classes, so that each
class has the same amount of instances as the smallest class (in our case
cycling(stand)).

A weakness when balancing the data set is that the distribution of the classes would
no longer be representative of the population.

2.4 Data Segmentation

Signal segmentation is an important step in the activity recognition chain. Instead
of evaluating each data point, a common approach is to look at longer segments
of data, called windows. An optimal segmentation of human activity data would
be to generate a new segment for each consecutive activity performed. This would
result in segments, referred to as windows, with varying size dependent on the length
of the underlying activity. This segmenting approach is called dynamic windowing.
However, generating dynamic windows can be a difficult task as consecutive activities
often blur into each other rather than being clearly separated by pauses. In the
literature, it is more common to segment the data stream with fixed sized windows.
Both dynamic sized and fixed sized windowing will be described below.
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2.4.1 Dynamic Window Size

A dynamic windowing approach aims to segment the data signal in such a way that
a new window is generated whenever a new activity is performed. This is often
performed by locating changes in the data signal as changes in the signal often
indicates transitions between the underlying activities. There are several ways to
implement a dynamic window approach. Some of these approaches are described
below.

Event based signal segmentation has shown promising results in earlier research
[Krishnan and Cook, 2014], but is limited to data sets with binary-valued (on and
off) sensors (e.g. the door in the house is open vs. closed). A new window is created
whenever a new event occur, i.e. a sensor shifts from one state to another. The data
set we use consist of continuous data, not binary, which makes it more difficult to
detect new events. One way to solve this could be to introduce a new event whenever
some change in the signal exceeds a given threshold. This was performed by Kozina
et al. [2011] who generated a new window whenever they found a significant decreasing
change between consecutive data segments. This method showed promising results
and increased their classification accuracy by 2%. As different activities are often
performed with different intensities, Plötz et al. [2012] and Guenterberg et al. [2009]
segmented the data signal by looking for changes in the energy level instead of
changes in the data values (e.g. minimum values or maximum values).

2.4.2 Fixed Window Size

Fixed sized windowing has been the state-of-the-art segmenting approach for current
HAR systems as generating dynamically sized windows has shown to be problematic.
Using a fixed sized window approach, a window is moved along the signal which
divides it into windows of equal length (see Figure 2.2). The window size and overlap
between adjacent windows has to be decided. Windows used in previous HAR
systems vary in size from a split second [Huynh and Schiele, 2005] to several seconds
[Ravi et al., 2005, Bao and Intille, 2004, Kwapisz et al., 2011]. The most common
degree of overlap is 50% [Ravi et al., 2005, Bao and Intille, 2004]).
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Figure 2.2: Segmenting the data signal into fixed sized windows with 50% overlap
between adjacent windows

2.5 Feature Generation and Selection

Generating and selecting features is an important step in the activity recognition
chain (Figure 2.1). Features are expected to contain relevant information about the
raw data signal and are used as a reduced representation of the initial data. Feature
generation is performed by discovering each window’s characteristics and representing
these as a set of abstractions. Features are usually divided into time domain features
and frequency domain features.

2.5.1 Time Domain Features

Features from the time domain describes how the signal in the data segment changes
with time. Time domain features are inexpensive to calculate and are therefore often
used in HAR systems. Table 2.1 describes some common time domain features.

It is also possible to discriminate between body postures by calculating the direction
of acceleration provided through Earth’s gravitational pull. A posture can, for
example, be classified as sitting if the angle between the sensor’s z-axis and the
gravitational vector is 90 degrees for the thigh sensor and 0 degrees for the back
sensor (see Figure 2.3). The gravitational component of an accelerometer signal
is the part of the signal with frequencies lower than 0.2 Hz. We can extract this
component by filtering the raw signal (x, y, z) with a low-pass filter, and then use
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Figure 2.3: Orientation of thigh and back sensor compared to the gravitational force
when sitting

the three resulting signals (x’, y’, z’) to calculate the direction and the Euclidean
norm (

√
(x′)2 + (y′)2 + (z′)2) of the gravity force [Van Hees et al., 2013].

2.5.2 Frequency Domain Features

The theory of Fourier Series [Kreyszig, 2006] states that any signal in the time domain
can be represented as a sum of sinusoidal waves at different frequencies with different
amplitudes. Each sinusoidal waves can be represented in the frequency domain as
a spike (vertical line). The spike’s height is determined by the wave’s amplitude,
while the position of the spike is a result of the wave’s frequency. By analyzing the
frequency domain of the signal, it is possible to identify and analyze the different
frequencies that are present in the original signal. The relationship between time
domain and frequency domain is demonstrated in Figure 2.4. The signal in Figure
2.4a can be represented as the three different sinusoidal waves presented in Figure
2.4b (Fourier’s theorem), while Figure 2.4c represents these three waves as spikes in
the frequency domain.

To create frequency domain features, each data segments of the signal needs to
be transformed into frequency domain. This transformation makes frequency do-
main features more expensive to compute than time domain features [Dargie, 2009,
Muhammad et al., 2011]. Table 2.2 presents some common frequency domain features.
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Table 2.1: Common time domain features

Feature Description Formula Clarification

Mean
The average or
central value of the
signal sequence.

1
N

∑N

i=1
xi

N is the length of the
signal sequence and
xi is the value
at position i.

Standard
Deviation

Measure of the
the amount of
variance in a
sequence of
data values

√
1
N

∑N

i=1
(xi − µ)2

N is the lenght of
the signal sequence,
xi is the value at
position i, and µ is
the mean value
of the signal

Maximum and
Minimum

The highest and
lowest value of a
signal sequence.

max(xi)
min(xi)

xi is the value
at position i.

Zero-Crossing Rate

The zero-crossing
rate is the rate of
sign-changes
along the signal
sequence.

∑N

i=2
|sgn(xi)−sgn(xi−1)|

2(N−1)

N is the lenght of the
signal sequence, xi
is the value at
position i. sgn() returns
+1 for positive
inputs, and -1 for
negative inputs.

Mean-Crossing Rate

The mean-crossing
rate is the rate of
how often the
signal crosses the
mean value.

∑N

i=2
|sgn(xi−µ)−sgn(xi−1−µ)|

2(N−1)

N is the lenght of the
signal sequence, xi
is the value at
position i. sgn() returns
+1 for positive
inputs, and -1 for
negative inputs.
µ is the mean
value of the signal.

Root Square Mean

The square root
of the averaged
square values of
a signal sequence

√
1
N

∑N

i=1
x2
i

N is the lenght of the
signal sequence, xi
is the value at
position i

Energy

A signals energy
is a measure
of the signals
strength

Ex =

√∑N

i=1
(xi − µ)2

Energy = 1
3N (Ex + Ey + Ez)

N is the lenght of the
signal sequence, xi
is the value at
position i on the x-axis
signal. Ex, Ey and Ez
are the energy for the
different axises

Median

The number
seperating the
higher and lower
half of the signal
sequence

Medianodd = xn+1
2

Medianeven = 1
2 (xn

2
+ xn

2 +1)

xi is number i
in a sorted signal
sequence. n is
the length of
the sequence

Cross-Correlation
Measure of
similarity between
two signals.

d =

√∑N

i=1
(xi − µx)2

∑N

i=1
(yi − µy)2

rxy = 1
d

∑N

i=1
(xi − µx)(yi − µy)

xi and yi are the
values at position i at
the x and y
signal. µx and
µy are the
signals mean value.
rxy is the resulting
cross-correlation value.
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(a) (b) (c)

Figure 2.4: This figure demonstrates that any signal in the time domain can be
represented as a sum of sinusoidal waves, and how these waves can be represented in
the frequency domain. a) A signal represented in the time domain. b) The signal in a)
represented as three sinusoidal waves. c) Each sinusoidal wave consists of a frequency
and an amplitude, and can be presented as a spike in the frequency domain.

2.5.3 Feature Selection

Feature selection, also called dimensionality reduction, is the process of reducing
the number of features before feeding them into a classification algorithm. Feature
selection serves two main purposes. First, it makes training a classifier more efficient
by decreasing the size of the training set. This can be done by removing redundant or
irrelevant features. Strongly correlated features could be redundant in the presence
of each other. Second, feature selection can increase the classification accuracy
by identifying and removing noisy features. Noisy features are features that give
incorrect information. For example, if subjects in a data set are moving their legs
when sitting, the classifier could misclassify activities with moving legs to the activity
sitting. Such an incorrect generalization from an accidental property in the data
set is called overfitting. Feature selection methods can be divided into filtering and
wrapper methods.

Filtering methods apply statistical measures to assign a score for each feature. Based
on the feature’s score, the feature will either get selected or discarded from the data
set. Filtering methods are faster than the wrapper approach, but they tend to include
redundant features because they do not consider the relationships between features.

Wrapper methods select features based on a heuristic search. A common strategy is
a greedy search, where features are added as long as the accuracy of the classification
algorithm improves. This could also be done the other way around, where we start
off with the entire feature space and keep removing features. Wrapper methods may
obtain better performances than filtering methods but requires greater computational
resources.
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Table 2.2: Common frequency domain features

Feature Description Formula Clarification

Mean

The average or
central value of
the magnitudes
of all frequencies

1
N

∑N

i=1
xi

N is the different
frequencies, and
xi is the
magnitude of
frequency i.

Standard Deviation

Measure of the
the amount of
variance in
the frequency
spectrum

√
1
N

∑N

i=1
(xi − µ)2

N is the different
frequencies, and
xi is the
magnitude of
frequency i. µ
is the mean magnitude.

Maximum
The highest
magnitude value
in the spectrum.

max(x) x is the frequency
spectrum

Median

The number
separating the
higher and lower
half of the
spectrum

Medianodd = xn+1
2

Medianeven = 1
2 (xn

2
+ xn

2 +1)

xi is the magnitude
of frequency i in a
sorted spectrum

Spectral Centroid

Indicates where
the "center of mass"
of the spectrum is.
It is calculated as
the weighted mean
of the frequencies
present in the signal.

∑N−1
i=0

xi·i∑N−1
i=0

xi

xi represents
the magnitude
of frequency i.

Dominant Frequency

Extracts the frequency
that carries the
maximum energy
among all frequencies
found in the spectrum.

maximum = max(x)
frequency= find_index(maximum)

max(x) finds the
maximum magnitude
in the spectrum.
find_index(maximum)
finds the frequency
with maximum
magnitude.

Spectral Entropy

Measure of
randomness or
disorderness of
the spectrum.

pi =
1
N
x2
i∑N

i=1
1
N
xi2

H = −
∑N

i=1
piln(pi)

N is number of
frequencies. xiis
the magnitude of
frequency number i.
pi is the normalized
Power Spectral
Density. H is the
Entropy

2.6 Classification

Classification is the last step of the activity recognition chain, and is the problem
of categorizing new observations. Several classification algorithms have been used
in current HAR systems, where the majority of these algorithms are supervised
learning algorithms. Supervised learning algorithms use labeled training data to
produce a classification model that can be used to determine unseen data instances.
In the case of activity recognition, features generated from labeled sensor data will
be used to train a classification model. This model will then be able to classify
activities based on new sensor data. Decision Tree, Random Forest, Support Vector
Machine, K-Nearest Neighbour, Artificial Neural Networks and Naive Bayes classifier
are all examples of supervised learning algorithms that have demonstrated success
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in classifying human activities. During fall 2015 [Tessem and Hessen, 2015], we
experimented with these classification algorithms. Random Forest and Artificial
Neural Networks provided the best results and are classifiers we will proceed with in
this study. Random Forest and Neural Networks are described below.

2.6.1 Random Forest

The Random Forest algorithm [Pang-Ning Tan, 2006] works as a large collection of
decorrelated decision trees. We, therefore, start by describing how one individual
decision tree is created.

A decision tree [Pang-Ning Tan, 2006] is a predictive model that maps observation
of an item to conclusions about the item’s class. The decision tree, illustrated in
Figure 2.5, has three types of nodes: a root node at the top of the tree with no
incoming edges and two or more outgoing edges, internal nodes with one incoming
edge and two or more outgoing edges, and finally, leaf nodes with one incoming edge
and no outgoing edges. The root node and the internal nodes include an attribute
test conditions to separate instances depending on their values. The leaf nodes have
an assigned class label to it. Each recursive step of the tree-growing process must
split on an attribute. This attribute is selected using different methods, such as
Gini, Information Gain or Variance reduction. This procedure is continued until a
stopping criterion is met (see Algorithm 2.1). An advantage of using decision trees is
that it enables us to identify the most important attributes (features).

Algorithm 2.1 A skeleton decision tree algorithm
E-training set, F-attribute set
function Decision_Tree(E,F )

if stopping_confition(E,F) = true then
create leaf node
set leaf class as majority number of records in E
return leaf

else
create new node T(either root or internal)
find attribute A that splits the training records best
for each possible value a in A do

let Ea be the subset of training records in E that has value a for A
child = Decision_tree(Ea, A)
add child as descendent of T and label the edge (T → child) as a

end for
end if
return node
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Figure 2.5: Illustation of a decision tree that can classify between mammals and
non-mammals

As mentioned above, the Random Forest algorithm [Pang-Ning Tan, 2006] works
as a large collection of decorrelated decision trees. Random Forest starts off by
dividing the data set into N random subsets. For each subset, it creates a decision
tree. Instances are classified by each decision tree, and the final class prediction is
the majority prediction of the trees (see Algorithm 2.2). Supported by the law of
large numbers (the average of results from a large number of experiments is close to
the expected value), Random Forest produces accurate results and is to some extent
shielded against overfitting [Breiman, 2001].

Algorithm 2.2 Random forest - Tree bagging
for b = 1 to B do

Sample, with replacement, n training examples X,Y ; call these Xb,Yb

Train a decision tree fb on Xb,Yb

end for
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Figure 2.6: ANN Structure

2.6.2 Artifical Neural Network

An Artificial Neural Network (ANN) [Pang-Ning Tan, 2006] is inspired by the
biological neural system. The human brain consists of neurons linked together by
axons. In an ANN, these neurons are called nodes and axons are called weights, and
are arranged in a layered structure (see Figure 2.6).

The first layer is the input layer. The different input values are placed in the different
input nodes (e.g. if we are classifying a 4x4 picture, these values would be the 16
pixel values). The second layer is the hidden layer (there could be multiple hidden
layers). Nodes in one layer are fully connected to nodes in the subsequent layer.
These connections are weighted. The resulting value in a node is the sum of all node
values in the previous layer multiplied by the weight between them. The result is
then run through a function (typically the Sigmoid function), and the procedure is
continued until we reach the last layer, the output layer. An ANN learns by altering
the weight between the nodes after each training iteration. This learning process
could be done by using a backpropagation algorithm. ANNs have proven to be
effective in several domains, but they also have some drawbacks. One of the main
drawbacks is that the network can be viewed as a black box because it provides a
limited explanation of how the classification is performed. Another weakness is that
training deep neural networks take a large amount of time.
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2.7 Acti4

Acti4 [Skotte et al., 2014] is a state-of-the-art HAR system which follows the activity
recognition chain described in this chapter. Acti4 is used in several Scandinavian
human activity studies [Danquah et al., 2016, Hallman et al., 2015, Munch Nielsen
et al., 2016] and is trained to classify everyday physical activity. These activities are
walking, running, cycling, walking stairs, sitting, standing and moving (moving is a
standing posture mixted with small leg movements).

Figure 2.7: The decision aree used to classify instances in Acti4. SDx = standard
deviation of accelerometers x-axis. SDmax = is the maximum standard deviation of
the three axes. Inc = inclination of x-axis (only positive values, range: 0-180◦). θ =
backward/forward thigh angle (range: ±90◦) and θd = individual threshold angle for
each subject. G = 9.81m/s2

The data used when developing Acti4 was collected from 17 healthy adults (10 females
and 7 males). The collection process was divided into two protocols, one standardized
protocol, and one free-living protocol. In the standardized in-lab protocol the subjects
were asked to perform the activities walking, running, cycling, walking stairs, sitting
and standing. Each activity was performed for 5 minutes, resulting in 30 minutes of
data for each subject. The second protocol lasted for 9 hours and was performed to
validate the criteria for detecting seated postures during everyday life. During the



20 2. BACKGROUND THEORY AND MOTIVATION

free-living protocol the subjects had a pressure sensor placed in their back pocket,
enabling the detection of periods spent sitting.

During both protocols, a triaxial accelerometer (actiGraph GT3X+ 1) was located
on the subject’s thigh. An additional accelerometer was located on the subject’s hip
during the free-living protocol.

The data was divided into 2-second windows with 50% overlap. The standard
deviation and inclination of the sensor were calculated and used as features. The
final classification system works as a decision tree and is depicted in Figure 2.7.

2.8 Motivation

State-of-the-art HAR systems classify activities with reasonable successful rates.
However, in this study, we will try to find methods that can further improve these
systems. We will look into several machine learning approaches not commonly tried
before in this context. This includes deep learning, semi-supervised learning, and
dynamic classification. We will also look into different dynamic windowing approaches
to see if this can lead to more accurate HAR systems. We are interested in seeing how
different methods and combinations of methods will affect the overall performance
of a HAR system. Hopefully, these approaches will contribute to even better HAR
systems.

Most HAR systems are not released to the public, making it difficult for researchers
to work together towards the common goal of generating an optimal HAR system.
This motivates us to make our system open-source, so that other researchers can
both contribute to our system and apply components from our system into their
systems.

HUNT4 will offer objective measurements of both adults and adolescents. In this
study, we will generate a HAR system based on a data set from adults only. Therefore,
we are eager to see how well our HAR system will work on data from adolescents.
If we do not get satisfactory results it may be necessary to generate separate HAR
classifiers for these two groups.

1http://actigraphcorp.com/support/activity-monitors/gt3xplus/



Chapter3Beyond State-of-the-art

3.1 Introduction

In this chapter, we will describe deep learning, semi-supervised learning and dynamic
classification, and how these methods can improve state-of-the-art HAR systems.

3.2 Deep Learning

Most previous research into HAR has used well-established classification algorithms
that rely on hand-crafted feature generation. Hand-crafted feature generation is a
weak point in the HAR process, as the choice of features is driven by human intuition,
and using the right features is crucial for obtaining a high accuracy. Traditional
HAR systems generate hand-crafted features by using prior knowledge about the
data, whereas in deep learning features are generated by discovering patterns in the
data. Deep learning has been proven to outperform traditional machine learning
in domains such as speech recognition [Hinton et al., 2012] and image recognition
[Farabet et al., 2013]. Moreover, researchers believe deep learning will succeed in
several domains in the near future due to the absence of hand-crafted features and
the increasing amount of available data [LeCun et al., 2015].

3.2.1 Convolutional Neural Network

A Convolutional Neural Network (CNN) is an extended Artificial Neural Network
(see Section 2.6.2) inspired by the biology of the visual cortex in animals. In the
visual cortex, complex arrangements of cells cover the respective field (visual field).
These groups of cells act as filters over the visual field and are able to detect (filter
out) different types of features. The same concepts are transferred into the field of
artificial neural networks, and will be explained in the following sections.

21
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Figure 3.1: CNN Structure

Figure 3.2: Convolutional step in a CNN

A CNN is structured in layers, where the first N layers consist of a convolutional
layer followed by a pooling layer. The convolutional layer and the pooling layer will
be explained in the following sections. After N layers, we attach a fully connected
Neural Network. The depth and layer complexity of the CNN depends strongly on
the problem domain. A one layer CNN is depicted in Figure 3.1.

The objective of the convolutional layer is to extract features from the previous
layer (the input layer or a hidden layer). Features are extracted using filters, called
kernels (e.g. a 3x3 matrix), that are convolved over the previous layer, resulting in
a feature map. The kernel detects the feature, which results in a feature map that
represents the locations of each feature in the previous layer. Using multiple kernels,
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the convolutional step can detect multiple features, resulting in several feature maps.
Figure 3.2 shows this process using four kernels over the input data, outputting four
different feature maps.

The feature map is calculated using a non-linear function. An example of such a
function is presented below.

hf
ij = tanh((W f ∗ x)ij + bf )

Where hf is the f -th feature map at layer h, and x is the previous layer. The filters
are determined by the weights W f and bias bf , and ∗ is the mathematical symbol
for convolution.

After each convolution step there is a pooling layer, also called the subsampling step.
The objective of the pooling layer is to reduce the network complexity and control
overfitting. The output of a pooling layer is the maximum (other methods could also
be used, such as the mean value) value of each NxN region in the previous feature
map, see Figure 3.3.

The pooling matrix is the result of subsampling the feature maps.

pf = max(hf )

Where hf is the f -th feature map at layer h.

Figure 3.3: Pooling step in a CNN
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After L convolutional and pooling layers, we feed the output from the final pooling
layer into a fully connected neural network.

Every kernel in the convolutional layer and the weights in the fully connected layers
are initialized with random values. When training, data is fed through the network
and the network produces a vector of scores, representing the score for each class. An
error is calculated by comparing the score vector against the desired output vector
using an objective function. The weights throughout the network are then tuned to
reduce this error. The learning algorithm first calculates the gradient for each of
its weights, learning how much the error would decrease or increase by altering the
weights. It then adjusts the weights in the opposite direction of the gradient. Using
the backpropagation algorithm, it is possible to propagate the error from the output
layer backward, throughout the hidden layers [LeCun et al., 2015, Krizhevsky et al.,
2012].

The features in the lower layers in a CNN capture basic features from the signal
while the higher layers detect a combination of the features obtained from the lower
layers. Basically, the deeper the CNN is, the more fine-grained activities can be
classified [Yang et al., 2015]. In image recognition, the first layers typically detect the
presence or absence of edges, the second layers often detect arrangements of these
edges, while the third layers may represent patterns that resemble parts of objects
[LeCun et al., 2015]. These concepts are transferable to the problem of detecting
activities in a raw accelerometer signal.

Dropout is a technique that deals with overfitting in a neural network [Srivastava
et al., 2014]. During training, each hidden neuron is either dropped out of the
network with the probability 1− p, or kept with the probability p. If the neuron is
dropped, the weights connected in and out of it are canceled. The thinned network
is then trained, forcing the overall network to have multiple networks (i.e. multiple
paths) that are able to detect the same classes. Dropout improves the training
speed (i.e. fewer neurons to train) and creates more robust features (i.e. by having
multiple paths in the network). The alternative is to train several networks and have
a majority voting at the end, but this approach is very time-costly. Dropout can be
applied to one or several layers in the fully connected neural network.
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3.3 Dynamic Classifiers

Humans perform activities in a natural order. For example, it is very normal to
shift back and forth between walking and standing, but not between walking and
laying. In other words, the recent history of activities a person has performed can
help to predict the activities that will be performed in the near future. To ensure
temporal smoothness of activities, it is possible to combine results obtained by a
baseline classifier (e.g. CNN or Random Forest) with dynamic classification models,
like Hidden Markov model (HMM).

3.3.1 Hidden Markov Model

The HMM [Rabiner and Juang, 1986] is based on the theory of Markov chains.
A Markov chain is a stochastic process characterized by a sequence of states over
time. The Markov chain assumes the Markov property, which is that the future
states depend only upon the present state, not on the sequence of former states. For
example, if the current state is known, then future states are independent of the
previous states. A sequence of human activities can be modeled as a Markov model,
where a state is the activity performed at time t, and each single activity can be
assumed to be dependent on only the previous performed activity.

HMM is a Markov model with unobserved (hidden) states. Even though the states
are not directly visible, the output of each state (observation) is visible. Since these
observations are related to the states, a sequence of observations will give information
about the sequence of states. In the field of HAR, the underlying activity will be
the hidden state, and the observations will either be the sensor readings, or the
classification results based on the sensor readings.

For example, if you are in a house without windows, and you observe a person
entering the house with an umbrella, the probability for it raining outside increases.
In this case, the umbrella is the observation, and the rain is the underlying state.
If we assume that the weather on a given day is only dependent on the weather
on the previous day, then we can say that this weather model satisfies the Markov
property. Figure 3.4 is a representation of three timesteps of a HMM. The top nodes,
S, represent the hidden states, and the bottom nodes, O, represent the observations.
Even though the HMM assumes the Markov property, the underlying states in an
HMM are hidden (unknown) and we can therefore not expect any interdependencies
between nodes.

There are three types of probabilities in an HMM. Firstly, transition probabilities,
which are the probabilities of going from one state to another. Secondly, emission
probabilities, which are the probabilities of making an observation given a state.
Thirdly, an initial probability distribution for the first state. Figure 3.5 shows the
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Figure 3.4: Illustration of three steps in a HMM

transition and emission probabilities of an HMM with the hidden states rain and
sunny, and observable states umbrella and no umbrella. The arrows between the
hidden states show the probability of going from the first state to the next state
(transition probabilities), meaning that if it is raining there is a 30% probability of it
being sunny the following day, and 70% of it still raining. The arrows from the hidden
states to the observable states show the probability of making an observation given
the hidden state (emission probabilities), meaning that the likelihood of observing an
umbrella if it is raining is 90%, and not observing an umbrella if it is raining is 10%.

Figure 3.5: HMM - Transition and Emission Probabilities
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3.3.2 Estimate Transition Matrix by Counting Transitions

A common way to estimate a transition matrix from a data sequence is to count the
number of transitions between states. However, this method requires that the hidden
states are known, which is not always the case. For example, if you have a sequence
of states S = {s1, s2, ..., sT }, let kij be the number of transitions from state i to state
j. Compute ki,j for all the different states and estimate the transition matrix A
using the estimation aij = kij∑N

j=1
kij

, where N is the number of different states.

3.3.3 Estimate Transition Matrix Using Baum-Welch

Contrary to the previous method where the transition matrix is estimated by counting
transitions, the Baum-Welch algorithm is not dependent on known hidden states.
Given an HMM model with an unknown transition matrix A and an observation
history O = {o1, o2, . . . , oT }, this algorithm calculates the transition matrix A that
best explains the observation history. The initial transition matrix can be selected in
different ways (e.g. uniform distribution or random). Baum-Welch is based on an
iterative process where a new transition matrix A′ is generated at every iteration,
where A′ explains the observation history O better than the old transition matrix A.
The probability of observing O given A′ is greater than the probability of observing
O given A, P (O|A′) > P (O|A). We can say that Baum-Welch maximizes P (O|A).
The main steps of the Baum-Welch algorithm are:

1. Start with an initial transition matrix A

2. Iterate until convergence

• Compute the expected number of occurences of state i

• Compute the expected number of transitions from state i to state j

• Adjust transition matrix to maximize P (O|A′)

The expected number of occurences of state i in sequence O is calculated by summa-
rizing the probabilities of being in state i at time t, γt(i), over t = 1, 2, ..., T − 1.

T−1∑
t=1

γt(i)

The probability of being in state i at time t, γt(i), is calculated using the formula
below and is demonstated in Figure 3.6.
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γt(i) = αt(i) · βt(i)
P (O|λ)

Figure 3.6: Illustration of the probability of being in state i at time t. αt(i) is the
forward probability and βt(j) is the backward probability.

P (O|λ) is the overall probability to generate the observations O given HMM λ. αt(i)
is the forward probability. βt(i) is the backward probability.

The expected number of transitions from state i to state j is calculated by summarizing
the probabilities of going from state i to state j, ξt(i, j), over t = 1, 2, ..., T − 1.

T−1∑
t=1

ξt(i, j)

The probability of going from state i at time t to state j at time t + 1, ξt(i, j), is
calculated using the formula below and is demonstated in Figure 3.7:

ξt(i, j) = αt(i) · aij · p(ot+1|j) · βt+1(j)
P (O|λ)

P (O|λ) is the overall probability to generate the observations O given HMM λ. αt(i)
is the forward probability. βt+1(j) is the backward probability. p(ot+1|j) is the
probability of observing ot+1 given state j (emission probability), and aij is the
transition probability from state i to state j.

The new transition matrix A′ is calculated by dividing the expectation for the number
of transitions from state i to state j by the expectation of the number of occurrences
of state i. The formula is presented below.
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Figure 3.7: Illustration of the probability of being in state i and j at time t and t+ 1.
αt(i) is the forward probability, βt+1(j) is the backward probability, and the line
between t and t+ 1 illustrates the transition probability of going from St to St+1

a′ij =
∑T−1

t=1 ξt(i, j)∑T−1
t=1 γt(i)

These steps will be repeated until the transition matrix converges.

3.3.4 The Viterbi Algorithm

The Viterbi algorithm is an algorithm that uses the HMM to find the most likely
sequence of hidden states based on the observations made, the emission probabilities,
the transition probabilities, and the initial probabilities.

vi(1) = wi · P (ot|i) for 1 < i < N

where vi(1) is the probability for state i at time t = 1, N is the number of states,
wi is the start probability for state i, and P (ot|i) is the emission probability for
observing ot given state i.

Let vi(t) be the probability of the most likely path ending in state i at time t.

vi(t) = max
s1,s2,...st−1

P (s1, s2...st−1, st = i, o1, o2, ..., ot|λ)

where λ is the HMM with initial, emission and transition probabilities.

vj(t), the probability of the most likely path ending in state j, can then be calculated
by induction.
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vj(t) = max
1≤i≤N

[vi(t− 1)aij ]P (ot|j)

where N is the number of states, aij is the transition probability from state i to state
j, and P (ot|j) is the emission probability for observing ot given state j.

Finally, the endpoint with the highest probability is chosen, and backtracing from
this endpoint to the start is used to find the most likely path.

3.4 Semi-supervised Classifiers

In supervised learning, we have a training set that contains both input data
(x1, x2, ..., xn) and output data (y1, y2, .., yn). The main goal is to create a function
that approximates the output given the input. In unsupervised learning, the training
set only consists of the input data (x1, x2, .., xn), and the goal is to find meaningful
structures in the data.

Semi-supervised learning is a learning method that combines the properties of both
supervised and unsupervised learning, where we have both labeled and unlabeled
data. This method is motivated by the fact that labeled data is often costly and
time-consuming to obtain. In HAR systems, semi-supervised learning can potentially
reduce the amount of manual labeling of data and adapt a classifier to a specific
individual or demographic group.

Semi-supervised learning algorithms can be divided into two subgroups, single-view,
and multi-view. The number of views represents the different ways we can interpret
the data. Single-view is where the algorithm uses a single set of features, and multi-
view is where the algorithm uses multiple sets of features. A multi-view example is
the task of detecting junk email, where the one view is the features obtained from
the email body, while the second view is features obtained from the email header.

3.4.1 Self-training

Self-training is a single-view semi-supervised learning algorithm. Self-training starts
by creating a static classifier based on labeled data (supervised learning). The
classifier is then used to classify unlabeled data. Instances that the algorithm
classifies with a high enough confidence are added to the training set. The classifier
is then retrained (or further trained, depending on the type of classifier) on the
updated training set. These steps are repeated until the remaining unlabeled data is
labeled or a stopping criterion is met (see Algorithm 3.1 and Figure 3.8).
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Algorithm 3.1 Self-training

Classifier.build(trainingData)
while unlabelledData.size > 0 do

testData = unlabelledData.subset()
for sample in testData do

prediction = Classifier.predict(sample)
if prediction.confident > threshold then

trainingData.add(sample, prediction)
unlabelledData.remove(sample)

end if
end for
Classifier.rebuild(trainingData)

end while

Figure 3.8: The different steps in a semi-supervised learning process
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3.4.2 Active Learning

Active learning is a single-view learning algorithm, that, unlike self-training algo-
rithms, does not automatically label new data. It analyses how confident the classifier
is when classifying instances, and then requests that the user manually labels data
instances that will benefit the classifier. This will typically be data segments where
the classifier is unsure of the data segment’s class, i.e. the confidence is low. This
learning process is not necessarily suitable for human activity classification, as it
requires additional equipment (smart-phone or similar) for the HAR system, and the
user must actively respond to the system throughout the learning phase.

3.4.3 Co-training

Co-training is a multi-view semi-supervised learning algorithm [Blum and Mitchell,
1998]. Co-training is an extension of self-training, but instead of using one classifier,
Co-training uses multiple classifiers. These classifiers are trained on different feature
sets (views). Like in self-training, the newly labeled data is added to the training set
if the confidence is above a threshold.

Co-training is based on two assumptions; the first is that the two different views have
features that are conditionally independent given the class (e.g. each instance could
be described by two different feature sets), the second is that each view is sufficient
to classify an instance alone. Not all real-world classification problems have multiple
conditionally independent views, especially when analyzing human activities using
accelerometer sensors. However, this could be solved by adding more sensors to the
HAR system, such as a gyroscope or GPS, in which case, each sensor could be a
different view.

Since it is often problematic to obtain multiple views of the data, there have been
studies that focus on co-training with use of single-views. An example of this is
Nigam and Ghani [2000], who accomplish this by creating artificial views. They
introduced a feature splitting algorithm which creates two feature sets that are
maximally independent of each other. Another example is Zhou and Goldman [2004],
where they use different learning algorithms in the same view. Their methods build
on the assumption that different learning algorithms have different learning biases
(the set of assumptions the algorithm makes about the target function). The final
class prediction is then decided using majority voting among the different classifiers.
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3.4.4 Other Strategies

Both single view and multi-view semi-supervised learning approaches can be combined
with other machine learning techniques.

Bagging [Breiman, 1996] is a method used to improve stability and accuracy in
machine learning problems. This method creates N training sets with size S′, by
selecting random samples, with replacement, from the original training set S. It
then trains N classifiers on each of the N data sets and performs a majority voting
classification to predict the final class.

Boosting [Freund et al., 1999] is an iterative learning process where weak learners
(classifiers that are able to solve simple classification problems) are combined to
create a strong learner. For each iteration, the algorithm increases the importance of
the instances that are misclassified by the strong learner. In this way, a new weak
learner that focuses on instances misclassified by the strong learner is added to the
system.

Random Subspace Method [Ho, 1998] is a learning method where the feature space
is divided into different subspaces. Each classifier is then trained on the different
feature subspaces, and a majority voting is performed to obtain the overall prediction.

3.5 Summary

Deep learning, dynamic classification, and semi-supervised learning are machine
learning techniques that we believe have the potential to improve current HAR
systems. Chapter 5 outlines a proposed HAR system design where each of these
methods are included, while Chapter 6 will present an iterative process to see how
each of these methods, and the combination of methods, will affect the overall
performance of the HAR system.





Chapter4Collection of the Data Set

The data set used in this study was collected in collaboration with Hilde Bårdstu
and Atle Kongsvold as a part of a project which took place fall 2015 [Tessem and
Hessen, 2015]. The data set consists of daily activities and was collected from body-
worn accelerometer sensors. This chapter presents the different aspects of the data
collection process.

4.1 Sensors

The data was collected using two AX3 Axivity sensors1. These sensors feature
a state-of-the-art accelerometer that is used to detect movement, vibrations and
orientation changes in all three axes. The sensors sampling frequency was set to 100
Hz (100 measurements each second). The dimensions of the sensors are 23 mm x
32.5 mm x 7.6 mm and the weight is 11 g. The small size and light weight of the
sensor makes it suitable for being worn for a long period of time without discomfort.
The sensors were placed at the front thigh and the upper back. The sensor at the
upper back was placed 2 cm to the left of the spine for comforting reasons and to
avoid the sensor to loosen. Figure 4.1 shows the sensors placement and axes.

4.2 Subjects

The subjects consisted of one group of 12 healthy adolescents (age 13-16 years) and
one group of 23 healthy adults (age 28-52 years). The adolescents were recruited
from Charlottenlund secondary school, and adults were recruited from staff at NTNU.
All participants were informed about the purpose of the study and their legal rights
as participants. They were also informed that they could withdraw from the study
at any given time without further questions. The adolescents that were participating
needed parental approval. All participants were treated according to a legal and
ethical perspective. The data was anonymized by giving each participant a serial

1http://axivity.com/product/ax3
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(a) Back sensor (b) Thigh sensor

Figure 4.1: Sensor Placement

Table 4.1: Information about the subjects contained in the data collection process

Subjects Males Females Average Age Average Height Average Weight
Adults 23 9 14 40,17 172,58 cm 71,89 kg
Adolescents 12 6 6 14,67 167,35 cm 58,27 kg

number. The project obtained ethical clearance from NTNU’s REK (Regional
Committees for Medical and Health Research Ethics) and was carried out according
to the Declaration of Helsinki.

Table 4.1 presents information about the subjects contained in the data collection
process. More detailed information about each subject is presented in Section A.1 in
Appendix A.

4.3 Data Collection Process

The process of collecting the data differed between adults and adolescents.

The data collection process for the adults were divided into two protocols. The first
protocol was carried out at St. Olavs Hospital (Trondheim, Norway). The subjects
were first asked to perform a standardized sequence of typical everyday activities,
including lying down, sitting, standing and picking up objects. This sequence was
carried out in a lab. A GoPro camera2 was then attached to the subjects chests.
The camera was pointing down towards their legs, making it possible to identify
the activities the subjects were performing. The subjects were then asked to do a

2http://gopro.com
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sequence of activities including walking stairs, walking uphill, jogging/running, and
cycling. The uphill walking, jogging/running, and some of the regular walking was
performed on a treadmill. The cycling was carried out on an ergometer cycle. No
instructions regarding pace or movement style were given. The total duration of the
in-lab protocol was around 45 minutes. The second protocol was carried out in the
subject’s working environment. In this part, the subjects also had a GoPro camera
attached to their chest. The subjects got a list of activities they were asked to carry
out within the next couple of hours. These activities included sitting, standing still,
shuffling (standing with small leg movement), walking flat, walking stairs, laying
down and running.

Since adults were wearing a GoPro camera in their work environment, it was made
sure the camera did not interfere with the performance of their scheduled activities.

The data collection process for the adolescents were also divided into two protocols.
Both protocols were carried out at St. Olavs Hospital (Trondheim, Norway), and
were performed with the GoPro camera attached to the subject’s chest the same
manner as described above. During the first protocol, the subjects were asked to carry
out a sequence of rapid movement activities with a lot of changes in directions. These
activities included running with direction changes, running sideways, and running
zig-zag between cones. This protocol lasted for around 10 minutes. During the second
protocol, the adolescents were asked to perform different tasks. These tasks included
running one round on a running track, sitting in three different chairs, walking to
the store and buy lunch, and finding a bench to lie down on. No instructions were
provided regarding how to perform the different tasks.

To get a coordinated start and end point of the sensor signal, the subjects had to do
three repetitions of heel-drops at the beginning and end of each protocol in the data
collecting process. This heel-drop made a very distinct pattern in the sensor data
stream, and the peaks in this pattern were marked as start and end points.

The data stream was annotated using a video annotation tool called ANVIL 3. The
activities used in the annotation process were

1. Walking
2. Running
3. Shuffling
4. Stairs (ascending)
5. Stairs (descending)
6. Standing
7. Sitting

3http://anvil-software.org/
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8. Lying
9. Transition

10. Bending
11. Picking
12. Undefined
13. Cycling (sitting)
14. Cycling (standing)
15. Heel-Drop
16. Vigorous Activities
17. Non-Vigorous Activities

The activity definitions utilized in the annotation process can be found in Table A.4
and A.5 in Appendix A. The inter-rater reliability was 0.96 for the adult data set
and 0.91 for the adolescent data set, and was calculated using Fleiss’ Kappa [Fleiss,
1971].

4.4 Post-processing of Activities

Before generating the HAR system we decided to delete 3 activities activities from
the data set. These were undefined, heel-drop and non-vigorous activities.

Undefined are all activities that can not be defined during the labeling process. It is
impossible for a classifier to recognize this activity as it is a collection of all types of
bodily movements. Undefined was therefore excluded from the data set.

Each subject performed a heel-drop to mark the start and end point of the data
collection protocol, making it possible to synchronize the thigh and back sensor.
Heel-drop is not defined as an activity, and was, therefore, deleted from the data set.

Non-vigorous activities is a collective term and are defined as "All non-cyclic move-
ments that do not classify according to the definitions". However, the movement that
are labeled as non-vigorous activities in this data set are very similar to standing
and walking. It is also very few samples of non-vigorous activities in the data set,
and it was, therefore, deleted as an activity.

We also ended up relabel picking as bending. Picking is the point at the bottom of
the bending activity. There are very few data samples of this activity, and we had an
agreement with medical experts at ISM at NTNU that we could relabel this activity
as bending.



Chapter5System Design

5.1 Introduction

The main objective of this study is to create a precise and reliable HAR system for the
upcoming HUNT4 study. In Chapter 3 we presented deep learning, semi-supervised
learning, and dynamic classification, and will in this chapter introduce an HAR system
architecture that combines these machine learning methods. The system is divided
into two parts; a training phase, described in Section 5.2, and a classification and
validation phase, described in Section 5.3. The architecture presented in this chapter
demonstrates the different parts of the system, while Chapter 6 provides a deeper
description and evaluation of each part, before presenting the final instantiation of
the system.

5.2 Training Phase

The training phase involves training the classification system using labeled activity
data. The proposed training pipeline is illustrated in Figure 5.1 and the different
steps in the pipeline are described below.

1. Data Segmentation: Instead of classifying each data point, the raw training
data is segmented into data segments, called windows. Each data window will
correspond to a single activity.

2. Pre-processing: Data windows that reduce the classification system’s ability
to differentiate between activities will be removed or adjusted. This could be
activities that either overlap with other activities or activities with no specific
movement pattern, making it difficult for the classifier to recognize them.
This step also provides the opportunity to remove undesirable or unimportant
activities from the HAR system.
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Figure 5.1: Pipeline of the system’s training phase

3. Balancing Data Set: A skewed distribution of activities can influence the
classification algorithm’s ability to recognize minority activities. This prob-
lem could be addressed by balancing the data set, either by oversampling or
undersampling.

4. Train Classifier: A baseline classification algorithm is chosen. Data windows
are used to train this classifier, either as features or as raw data (depending on
the classification algorithm).

5. Adapt Classifier with Semi-Supervised Learning: The classifier trained
in step 4 is adapted to subjects, or groups of subjects, using semi-supervised



5.3. CLASSIFICATION AND VALIDATION PHASE 41

learning methods. This results in a new classification model that can capture
more fine-grained movement patterns for one specific subject or group of
subjects.

6. Generate Probabilities for HMM: To ensure temporal smoothness of ac-
tivities, it is possible to combine classification results with HMM. This can be
achieved by using the posterior probabilities, generated by the classifier from
step 5, as emission probabilities. The initial and transition probabilities for the
HMM is generated in this step.

5.3 Classification and Validation Phase

In the classification and validation phase of the system, new data instances are
classified using the classification system generated in the training phase. The
proposed classification and validation pipeline is illustrated in Figure 5.2. The
different steps in the pipeline are described below.

Figure 5.2: Pipeline of the system’s classification and validation phase
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1. Data Segmentation: Instead of classifying each data point, the data is
segmented into data segments, called windows. This data could either be
labeled test data or new unlabeled data.

2. Classification: Segmented windows are classified by the classifier from the
training phase. Depending on the type of classifier, these windows are either
represented as features or as raw data. The classifier will return a distribution
of posterior probabilities, i.e. a vector for each classified instance, where each
entry in the vector represents the probability for belonging to the corresponding
activity.

3. Reclassification using Viterbi: Reclassification of the predictions provided
by the classifier in step 2 by taking advantage of the temporal information.
The posterior probabilities generated by the classifier in step 2 are used as
emission probabilities, while transition probabilities and initial probabilities
were generated in step 6 in the training phase. The Viterbi algorithm uses this
HMM to calculate the most likely sequence of activities (hidden states).

4. Post-processing: Introduces activities that the system’s classification algo-
rithm is not trained to detect. This could either be new activities, or activities
that were removed in the pre-processing step in the training phase. This could
be obtained by relabeling activities in the activity sequence calculated in step
3 (e.g. walking less than three seconds can be relabeled as shuffling).

5. Validation: Validating and measuring the system’s performance. This step is
optional and requires that the labels of the classified data are known.



Chapter6Experiments

This chapter presents an iterative process of adding and removing components in
the proposed pipeline from Chapter 5. In Section 6.2 through 6.8 we will discuss
and evaluate the different steps of the pipeline. Section 6.9 presents the final HAR
system that is based on the experiences we gained throughout this iterative process.

6.1 Metrics

When evaluating our system, we use four different metrics: accuracy, sensitivity,
precision, and specificity. A detailed explanation of these metrics is presented below.
Figure 6.1 visualize the four different outcomes of a prediction, and is useful when
understanding the different metrics.

Figure 6.1: A matrix describing the four different outcomes of a prediction. True
Positive (TP) and True Negative (TN) are correctly classified instances, False Positive
(FP) is when an instance is classified as positive when it is actually negative, and
False Negative (FN) is when an instance is classified as negative when it is actually
positive.
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• Accuracy is the portion of correctly classified instances.

Number of correct predictions
Number of predictions

• Sensitivity measures the portion of positive instances that are correctly classi-
fied.

TP

TP ∩ FN

• Out of all instances that are classified as positives, precision is the portion of
instances that are correctly classified.

TP

FP ∩ TP

• Specificity measures the portion of negative instances that are correctly classi-
fied.

TN

FP ∩ TN

In addition to the metrics described above, we make use of confusion matrices when
evaluating our system. A confusion matrix visualizes the classification algorithms
performance. The matrix rows represents the true class, while the matrix columns
represents the predicted class. Figure 6.2 is an example of a confusion matrix for
sitting and standing. Sitting is classified as sitting 80% of the time, while misclassified
as standing 20% of the time. Standing is classified as standing 85% of the time, while
misclassified as sitting 15% of the time.

Figure 6.2: Simple confusion matrix
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6.2 Data Segmentation

Signal segmentation is a crucial step in the HAR pipeline. Instead of evaluating
individual data points, the data stream is divided into segments. As described
in Section 2.4, there are two main methods to segment a data stream. The most
frequently used method is fixed sized windows with an overlap between adjacent
windows. The second method is to use dynamic windows, where the goal is to create
a new window in the data stream whenever the underlying activity change. Dynamic
windowing can be performed in several ways. We experimented with two different
methods, first, by looking at energy changes in the signal, and second, by doing
parallel classification with decision fusion. The results obtained from these methods
are presented below.

6.2.1 Dynamic Windowing Based on Energy Changes

Energy changes in the signal often indicate changes in the underlying activity, and
could, therefore, be used to decide where to divide the signal into windows. We
calculated the energy of 3-second long data segments with 33.3% overlap. We
calculated the difference in energy between adjacent (non-overlapping) segments and
divided the data stream wherever the energy difference between two segments was
above 0.01 for both sensors. We used the formulas below when calculating the energy.

Ex =

√√√√ N∑
i=1

(xi − µ)2

Where Ex is the energy of the x-axis, N is the length of the data segment (300 in
this case), xi is the value at position i on the x-axis signal, and µ is the mean value
of the data segment. Ey and Ez are calculated likewise. The energy from each axis
was combined using the formula below.

E = 1
3N (Ex + Ey + Ez)

Where E is the energy for the data segment.

This method enabled us to detect the changes between static and dynamic activities
(Figure 6.3a), but could not detect changes between consecutive dynamic activities
(Figure 6.3b). Dynamic activities are activities that include movement (e.g. walking,
running, cycling), while static activities are activities with a fixed posture (e.g lying,
sitting, standing). We tried to lower the threshold, but even though more activity
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(a) Detects changes between static and dynamic
activities

(b) Do not detect changes between dynamic
activities

Figure 6.3: The vertical red lines are where energy changes are detected, and the
vertical blue lines are where there is a change in the activity. The datastreams on
the top are from the x ,y and z-axis on the thigh sensor, and the datastreams on the
bottom are from the x, y and z-axis from the back sensor.

changes were detected, the number of false positives also increased. In general, this
dynamic windowing approach did not work in our study.

6.2.2 Dynamic Windowing with Parallel Classification and
Decision Fusion

Another dynamic windowing approach is to use different classification models for
different window sizes [Banos et al., 2015]. Let each classification model classify the
data, and select the final prediction based on a majority voting or highest confidence
(see Figure 6.4). In majority voting, each classifier predicts a class, and the class
that is predicted by most classifiers is selected. In highest confidence, each classifier
predicts a class, and the prediction with the highest confidence (probability) is
selected. Highest confidence is only applicable for probabilistic classifiers, where the
classifier returns a vector of probabilities, and each entry in the vector represents the
probability for belonging to the respective class. Using several classification models
could be computationally expensive. However, in our study, we do not focus on
real-time systems, and a high computational expense would not be critical.
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Figure 6.4: Dynamic windowing using multiple classifiers and decision fusion

When experimenting with parallel classification, we selected CNN as our baseline
classifier. We created five classification models, each with different window size (0.5,
0.75, 1.0, 1.25 and 1.5 second). The data was classified by each classifier, resulting in
five predictions at each data point. The prediction with the highest confidence was
chosen as the final prediction for the corresponding data point.

We expected the accuracy to increase when combining the five classification models.
However, the accuracy obtained using the most confident classifier turned out to be
lower than the accuracy obtained using the best individual classifier. Majority voting
was also tried without success. If the results from the five classifiers were combined
in a different way, the accuracy could increase. However, such a combination was
not found in this study.

6.2.3 Fixed Sized Windowing

Since the dynamic windowing methods did not produce satisfying results, a fixed
sized windowing approach was chosen for our system. The main decisions when
using fixed windows are the size of the windows and the amount of overlap between
adjacent windows. We used 1-second windows as this showed promising results in
our previous HAR project [Tessem and Hessen, 2015]. We experimented with 0%,
50%, and 80% overlap when training the CNN. The results obtained using different
overlaps is presented in Table 6.1

80% overlap resulted in the highest accuracy and average sensitivity. A reason for
this could be that a large overlap between adjacent windows results in more data
instances for the classification algorithms to learn from. Another reason could be
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Table 6.1: Comparing the overlap between adjecent windows

Accuracy (%) Average
Sensitivity (%)

0% overlap 97.08 90.62
50% overlap 97.24 91.74
80% overlap 97.51 92.60

that large overlaps reduce information loss at the edges of the windows because all
part of the signal will be included.

For the final system, we chose to use 1-second windows. In the training phase, we
used 80% overlap between windows, as this resulted in the most accurate classifier.
In the testing and classification phase, we used no overlap between windows, because
no overlap results in only one prediction for each specific data point.

6.3 Pre-processing

The activities shuffling, vigorous and transition were removed from the data set
before training. These activities were removed because they partially or completely
overlapped other activities. Shuffling is defined as either short walking segments or
standing with some leg movements, and is therefore difficult to recognize. Vigorous
activities are defined as high-intensity activities but share characteristics that are
similar to walking or walking stairs. In addition to this, vigorous activities consist
of a limited amount of instances, making this activity difficult for the classifier to
learn. Transition is defined as the movement between activities. Instances of this
class have few similarities, and are therefore difficult to recognize. A large amount of
the transition instances occurred when subjects shifted lying positions during the
data collection process, and is therefore often recognized as lying. See confusion
matrix in Figure 6.5 for an overview over what shuffling, vigorous and transition
were classified as.

These overlapping activities can be reintroduced in the post-processing phase. This
can be achieved by defining rules, for example, reclassify walking-segments with a
duration below 3 seconds as shuffling.
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Figure 6.5: Overview of which activities shuffling, transition and vigorous activities
are classified as

Figure 6.6: Class distribution in the adult data set



50 6. EXPERIMENTS

6.4 Balancing Data Set

As mentioned in Section 2.3.3, unbalanced class distributions is a common problem
in machine learning. Figure 6.6 shows the distributions of the data set used in this
study. Sitting, which is the most represented activity, has as much as 40 times
more instances as cycling(stand). A challenge dealing with classes consisting of few
instances is that the classifier will not be able to learn this class as well as the classes
consisting of more instances.

In this study, we decided to balance the data set with oversampling for two reasons.
Firstly, because the smallest class only consists of 1415 instances, and undersampling
would, therefore, result in a very small data set. Secondly, because removing instances
in the larger classes could result in a loss of valuable information.

We trained two CNN models, one with the original data set and another with the
balanced data set. They were both tested on the original, unbalanced data set. The
results are listed in Table 6.2 and Table 6.3.

Table 6.2: Comparison of the sensitivity (%) for each activity for the original and
balanced data set

Original Data Set Balanced Data Set Difference
Walking 97.671 96.957 -0.714
Running 96.745 98.456 1.711
Stairs (up) 91.186 94.153 2.966
Stairs (down) 87.052 91.792 0.871
Standing 97.002 95.284 -1.718
Sitting 99.227 99.074 0.153
Lying 99.737 99.848 0.111
Bending 85.632 91.3 5.668
Cycling (sit) 78.554 86.205 7.651
Cycling (stand) 93.193 95.882 2.689
Average 92.6 94.895 2.295

Table 6.3: Comparison of the accuracy (%) for the original and balanced data set

Original Data Set Balanced Data Set Difference
Accuracy 97.506 97.330 -0.175

The accuracy decreased slightly when training the classifier on the balanced data
set, but the sensitivity of most of the activities increased by a good amount. Due to
these results, we ended up using the balanced data set when training the classifier in
our system.
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Table 6.4: Features used when training the classifiers. The domain column tells
whether the feature is generated for the time domain, frequency domain or both.
The axis column tells which axis, or the combination of axes, the feature is extracted
from.

Feature Domain Axis
Mean Time, Frequency x, y, z
Standard Deviation Time, Frequency x, y, z
Max Time, Frequency x, y, z
Min Time x, y, z
Mean-Crossing Rate Time x, y, z
Root Square Mean Time x, y, z
Median Time, Frequency x, y, z
Correlation Time xy, xz, yz
Energy Time xyz
Spectral Centroid Frequency x, y, z
Spectral Entropy Frequency x, y, z
Dominant Frequency Frequency x, y, z
DC-Angle Time xyz

6.5 Train Classifier

As mentioned in Chapter 2, several classification algorithms have been used in previous
HAR systems. The majority of these classification algorithms are supervised learning
algorithms, which are algorithms that use labeled data to create classification models
that can classify unlabeled data instances. In Section 6.5.1, our baseline classification
algorithm is selected by comparing traditional machine learning algorithms against a
deep learning algorithm. The architecture of the selected classifier is described in
Section 6.5.2.

6.5.1 Comparing Classifiers

In a previous HAR project [Tessem and Hessen, 2015] we compared different classifiers.
These classification algorithms were Decision Tree (J48), Random Forest, Support
Vector Machine, Artificial Neural Network and Naive Bayes classifier. All of them
were trained on the features listed in Table 6.4. The domain column tells whether
the feature is generated for the time domain, frequency domain or both. The axis
column tells which axis, or the combination of axes, the feature is extracted from.
Each feature was generated from both sensors. All features are described in Table
2.1 or Table 2.2. Since Random Forest performed best in our earlier HAR project,
we considered using a Random Forest classifier in this research project as well. We
were also interested in how CNN would work in HAR systems as this classifier is not
dependent on handcrafted features. We ended up comparing Random Forest with
CNN to decide on a final classifier for our system. Both classifiers were trained with
a balanced data set.
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Table 6.5: Comparison of the sensitivity (%) for each activity using a CNN and
Random Forest

CNN Random Forest Difference
Walking 96.957 97.003 -0.046
Running 98.456 93.791 4.664
Stairs (up) 94.152 78.494 15.657
Stairs (down) 91.791 57.934 33.857
Standing 95.283 96.529 -1.246
Sitting 99.074 99.821 -0.747
Lying 99.848 98.401 14.465
Bending 91.299 87.157 41.423
Cycling (sit) 86.204 68.411 17.793
Cycling (stand) 95.882 77.898 17.984
Average 94.895 85.544 9.350

A comparison between the two classifiers is presented in Table 6.5 and Table 6.6,
where Table 6.5 presents the sensitivity for each activity, while Table 6.6 presents
the accuracy. The CNN provided approximately 1% higher accuracy and 9% higher
average sensitivity than Random Forest. Additionally, it is not necessary to generate
handcrafted features when using CNN, which can be a drawback with Random Forest.
CNN was therefore chosen as our classifier.

Table 6.6: Comparison of the accuracy (%) using a CNN and Random Forest

CNN Random Forest Difference
Accuracy 97.330 96.462 0.867

6.5.2 Final Classifier - Convolutional Neural Network

When selecting the final structure of the CNN, we experimented with the size and
number of convolutional layers, and the size and number of neural network layers.
The results of these experiments are presented in Table B.2 and B.3 in Appendix B,
and the final network architecture was based on a combination of the accuracy and
average sensitivity from these experiments. The final network architecture will be
presented in detail below.

Representation of Input Data
In this research, we represent the acceleration signal in two dimensions. The first
dimension represents time and the second dimension represents the X, Y and Z axes
of the two sensors. The size of the first dimension was 100, as the data windows were
set to 1 second, and the data was collected with a sampling rate of 100 Hz. The
input is illustrated in Figure 6.7, and has the dimensions 6x100.
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Figure 6.7: CNN input with dimension 6x100. The first dimension represents 2
sensors with 3 axes each, and the second dimension represent a 1 second window
with sampling rate of 100 Hz

First Convolutional Layer
The first convolutional layer consists of 20 different kernels. These kernels are one-
dimensional filters with size 1x30 that are convolved over each axis in the time domain
(see Figure 6.8). The filters are convolved only within the valid input field (i.e. no
zero padding), resulting in output with dimension 6x71x20 (input has dimension
6x100).

Second Convolutional Layer
The second convolutional layer consists of 40 kernels. These kernels have the same
shape as in the previous layer and are convolved over the 20 feature maps produced
in the previous layer. This will then again produce 40 feature maps, each with
dimension 6x42.

Neural Network
The second convolutional layer is attached to a fully connected neural network with
1500 hidden nodes. The output from the second convolutional network is transformed
into a one-dimensional array and connected to each neuron in the neural network.
During training, we applied the dropout technique (described in Section 3.2.1) to
the 1500 hidden nodes with a keep probability of 50%. Finally, the fully connected
layer is connected to 10 output nodes, each representing one of the ten activities.

The CNN architecture is illustrated in Figure 6.9. Technical details can be found in
Table B.1 in Appendix B.
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Figure 6.8: Illustation of how the CNN input is convolved with a 1x6 filter

Figure 6.9: CNN architecture
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We have implemented all our networks using TensorFlow 1 (Version 0.6.0). TensorFlow
is an open source library for numerical computation using data flow graphs. Each node
in the graphs represents mathematical operations, while the graph edges represent
the multidimensional data arrays communicated between them. TensorFlow was
developed by the Google Brain Team and is designed to facilitate research in machine
learning. TensorFlow is used by Google in several products, such as speech recognition
and search in Google Photos2. We chose to use this library due to the optimistic
response from the machine learning community and its specialization in deep neural
networks.

6.6 Adapt Classifier with Semi-Supervised Learning

In this section, we experiment with semi-supervised learning methods by adapting
the classification model developed in the previous section to specific subjects. We
start by describing the methods and experimental setup in Section 6.6.1, followed by
Section 6.6.2, where we evaluate the results of these experiments.

6.6.1 Semi-supervised setup

A CNN was used as our baseline classification algorithm and is described in detail
in Section 6.5.2. The network was first trained on 14 adult subjects where the
class distribution was balanced by oversampling before training. The same baseline
classification model was used for all semi-supervised experiments. The classifier
returns a 10-element vector for each classified instance, where each entry in the vector
represents the confidence for belonging to that specific activity.

Each experiment was performed three times, each on different subjects from the
adult data set. The data for the subjects were individually divided into three equal
sized sets, one for training, one for validating and one for testing. The different
experiments are described below.

1. Experiment 1: The most confident instances (self-training): Classify 1000
randomly chosen instances from the test set. Select the 400 instances with the
highest confidence, independent on class. Label these instances as the class
with the highest confidence.

2. Experiment 2: The most confident instances for all activities, equally distributed:
Classify 1000 randomly chosen instances from the test set. For all 10 activities,
select the 40 most confident instances belonging to that specific class. Label
these instances as the class with the highest confidence.

1https://www.tensorflow.org/
2https://www.youtube.com/watch?v=oZikw5k2F M
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3. Experiment 3: The least confident instances (active learning): Classify 1000
randomly chosen instances from the test set. Select the 400 instances with the
lowest confidence, independent on class. Manually label these instances as the
actual (correct) class.

Foe each of the three experiments, the newly labeled instances were used to continue
training the baseline classifier (see Algorithm 6.1). This process was repeated in three
iterations, and the learning rate and the number of training iterations were altered
in each experiment. The result of each experiment is the average result obtained by
running it three times, each on different subjects.

Algorithm 6.1 Self-training
Classifier.build()
while testData.size > 0 do

testDataSubset = testData.subset(1000)
for sample in testDataSubset do

prediction = Classifier.predict(sample)
if prediction.satisfies(criteria) then

trainingData.add(sample, prediction)
testData.remove(sample)

end if
end for
Classifier.continueTrain(trainingData)

end while=0

6.6.2 Results and Discussion

When adding the most confident instances to the training set (experiment 1), the
algorithm tries to fine-tune the classification algorithm to recognize these instances
even better. Our baseline classifier already provides reasonable results, and for some
classes, the sensitivity is already over 95%. The most confident instances will often
belong to one of the classes with an already high sensitivity, resulting in only instances
from a subset of the classes are selected. By continuing training the algorithm on
this subset of classes, the sensitivity of the remaining classes decreased (i.e. the
algorithm forgets the remaining classes). In these experiments, we observe that the
accuracy has a small tendency to increase, but the average sensitivity decreases.

By selecting an equal number of instances from each class (experiment 2), the
algorithm will fine tune its weights with respect to all classes, not just the ones the
algorithm are already comfortable with. We observed that the average sensitivity had
a tendency to increase, but not significantly. Dominating classes, such as walking,
had a slightly decreasing sensitivity, resulting in a drop in the accuracy.
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With active-learning (experiment 3), data instances with low confidence were au-
tomatically labeled. We observed that both the accuracy and average sensitivity
increased.

Active learning resulted in the highest accuracy and average sensitivity gain in our
experiments. It is intuitive that Active learning will improve its performance when
fine-tuning the parts where the classifier struggles. The problem with active learning,
is of course, that the subject will have to manually annotate activities which the
system proposes. If implemented using a smartphone, this could be handled in
an acceptable manner. Both self-training (experiment 1) and equal distribution of
classes (experiment 2) did not result in a significant improvement of our system, and
we will therefore not use these methods in our pipeline. These findings are supported
by Guan et al. [2007], where the improvement of semi-supervised learning decreased
as the amount of labeled data increased. They showed that going from an average
improvement of 14.5% using 90% unlabeled data, to an average improvement of
4.82% using 50% unlabeled data. Since our system is trained on data collected from
14 subjects, the demand for labeled data is satisfied and the amount of unlabeled
data is significantly lower than the amount of labeled data. In the HUNT4 study,
the amount of unlabeled data will exceed the amount of labeled data, and these
adaptation methods may be beneficial to reintroduce when the data is collected. See
Figure B.1 through B.6 in Appendix B for more details about how these methods
affected the system’s accuracy and average sensitivity.

The same experiments provided approximately the same results for the adolescents
data set. The reason for this is that adolescents and adults have similar movement
patterns. We believed that semi-supervised learning methods would provide better
results when adapting the classifier to subjects with significantly different movement
patterns. We, therefore, performed the same experiments on a data set consisting
of children between 6-12 years (see more details in Table A.3 in Appendix A). The
classifier was first trained on labeled data from adults, and then continued trained
and tested on the children data. The result of each experiment is the average result
obtained by running it three times, each on different subjects.

The accuracy increased on average 3.15% when performing experiment 1. In the same
experiment, the average sensitivity decreases with 3.8%. We, therefore, performed
more experiments, altering the variables where these findings occurred. Instead of
selecting 1000 random instances for testing, we used all available test data from
each subject. After two iterations, we got an increase in accuracy of 4.59%, while
the average sensitivity increased by 0.91% (Figure 6.10). These findings indicate
that semi-supervised learning could be used in HAR system, and we will discuss this
further in Section 8.3.5.
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Figure 6.10: The effect of semi-supervised learning on children data

6.7 Experimenting with HMM and Viterbi

To exploit the temporal information of activities, it is possible to combine our baseline
classifier with dynamic classification models. In this system, we chose to use a HMM
and the Viterbi algorithm to ensure temporal smoothness of activities. When using
HMMs on human activities, the hidden states are the activities performed by the
subjects, while the observations and emission probabilities are calculated using the
posterior probabilities provided by the baseline classifier. The posterior probabilities
is a 10-element vector for each classified instance, where each entry in the vector
represents the probability of belonging to a specific activity. An uniform distribution
was used as our initial probabilities, while the calculation of transition probabilities
are described in the section below.

6.7.1 Generating Transition Probabilities

We experimented with three different methods when calculating the transition
probabilities. These are described below.

• Method 1: Calculated using the Baum-Welch algorithm (described in Section
3.3.3). We started with a uniform transition matrix and ran five iterations of
the Baum-Welch algorithm.

• Method 2: Calculated by counting the number of transitions from each activity
to the other activities (described in Section 3.3.2).
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Table 6.7: Transition Probabilities (%). Summarizes how likely it is to change
between the different activities. The rows show the activity a subject is changing
from, while the columns show the activity a subject is changing to.

Walking Running Stairs
(up)

Stairs
(down)

Standing Sitting Lying Bending Cycling
(sit)

Cycling
(stand)

Walking 98.679 0.079 0.337 0.233 0.589 ≈ 0 ≈ 0 0.084 ≈ 0 ≈ 0
Running 0.542 98.917 0.252 0.290 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Stairs (up) 1.592 0.081 97.779 0.379 0.168 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0
Stairs (down) 1.942 0.165 0.264 97.450 0.178 ≈ 0 ≈ 0 0.001 ≈ 0 ≈ 0
Standing 0.781 0.011 ≈ 0 0.010 98.850 0.008 ≈ 0 0.340 ≈ 0 ≈ 0
Sitting ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.007 99.755 0.050 0.127 0.0599 ≈ 0
Lying ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.044 0.122 99.832 0.002 ≈ 0 ≈ 0
Bending 0.655 ≈ 0 0.017 ≈ 0 3.167 1.107 0.180 94.806 0.069 ≈ 0
Cycling (sit) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 0.919 ≈ 0 ≈ 0 98.068 1.013
Cycling (stand) ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 1.609 98.391

• Method 3: Average between method 1 and method 2.

The final transition matrix was created using method 3. A version of this transition
matrix, with rounded values, is presented in Table 6.7, while the complete transition
matrix is presented in Table B.4 in Appendix B. The transition matrix summarizes
how likely it is to change between the different activities. The rows of the matrix
are the present activity, while the columns are the future activity. For example, the
probability that a subject that is walking at time t will be walking at time t+ 1 is
98.678% (first entry in Table 6.7).

When calculating the transition probabilities, we used all data instances, including
instances removed in the pre-processing step (shuffling, vigorous and transition).
The reason for this is that HMM uses temporal information, and it is, therefore,
important to include all parts of the data sequence.

Since the transition matrix is generated using the adult data set presented in Chapter
4, the matrix will not necessarily reflect the real word and how people normally shift
between activities. Suggestion on how to improve the transition matrix is discussed
in Section 8.3.2.
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6.7.2 Reclassification using Viterbi

Table 6.8 and Table 6.9 presents the results given by the CNN, the Viterbi algorithm,
and the difference between the two. The Viterbi algorithm increased the accuracy by
0.6%. The sensitivity increased for all activities except Cycling(sit) which decreased
by 0.12%.

Figure 6.11 presents a part of the data stream where CNN alternates between
classifying cycling(sit) as sitting and cycling(sit), and the Viterbi algorithm reclassified
the correctly classified Cycling(sit) as Sitting. We believe this is the reason for the
decreased sensitivity for Cycling(sit). However, in most cases the Viterbi algorithm
lead to increased results, and one of these cases are depicted in Figure 6.12.

Figure 6.11: Example where Viterbi decrease the result produced by the CNN. The
top graph presents the real activity, the middle graph presents the CNN result, and
the bottom graph presents the Viterbi results.

Table 6.8: Accuracy (%) after reclassification with Viterbi algorithm on the adult
data set

CNN Viterbi Difference
Accuracy 97.325 97.928 0.603



6.7. EXPERIMENTING WITH HMM AND VITERBI 61

Table 6.9: Sensitivity (%) for each activity after reclassification with the Viterbi
algorithm on the adult data set

CNN Viterbi Difference
Walking 96.958 98.260 1.302
Running 98.456 98.624 0.168
Stairs (up) 93.968 94.758 0.789
Stairs (down) 91.748 92.960 0.212
Standing 95.284 95.956 0.672
Sitting 99.074 99.238 0.163
Lying 99.848 99.980 0.132
Bending 91.306 94.625 3.319
Cycling (sit) 86.101 85.981 -0.120
Cycling (stand) 95.913 96.747 0.834

Figure 6.12: Example where Viterbi increase the result produced by the CNN. The
top graph presents the real activity, the middle graph presents the predictions made
by the CNN, and the bottom graph presents the Viterbi results.

We performed the same experiments with the adolescents data set. These results are
presented in Table 6.11. The sensitivity of all activities increased, and the accuracy
increased by 1.7%.

The Viterbi algorithm gave positive results for both data from adults and adolescent,
and was therefore chosen to be included in our final HAR system.
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Table 6.10: Accuracy (%) after reclassification with the Viterbi algorithm on the
adolescent data set

CNN Viterbi Difference
Accuracy 94.908 96.622 1.714

Table 6.11: Sensitivity (%) for each activity after reclassification with the Viterbi
algorithm on the adolescent data set

CNN Viterbi Difference
Walking 95.059 97.383 2.324
Running 94.507 95.836 1.329
Stairs (up) 91.559 94.651 3.092
Stairs (down) 76.637 82.280 5.643
Standing 94.397 95.091 0.694
Sitting 97.901 98.666 0.765
Lying 100.0 100.0 0.0
Bending 79.512 80.976 1.463

6.8 Post-processing

Since we removed several activities in the pipeline’s pre-processing step, we will
discuss how we can reintroduce them in this section. These activities were transition,
shuffling and vigorous.

Transition is defined as the movement between certain activities (e.g. movement
between standing and sitting). This activity is important to include in the labeling
process, as we do not want the other activities to include these movements. (e.g.
sitting and standing should only contain their respective activities, not the movement
between them). As mentioned earlier, transition was removed in the pre-processing
step since it does not contain any specific movement patterns, and would, therefore,
be difficult for a classifier to learn. We could use hand-crafted rules to reintroduce
transition, for example by relabel segments between sitting and standing as transition.
However, from a medical perspective, transitions are not an important aspect of a
subject’s health, and it was therefore excluded from all further analyses.

After talking with the medical staff at NTNU, we concluded that shuffling could be
redefined as walking segments with a duration below three seconds. However, this
definition did not fit our data set, as 50% of all activity labeled as walking had a
duration below three seconds.
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Vigorous activities is a composition of several short duration high-intensity activities.
An example of this could be playing soccer. Vigorous activities could be detected
in a post-processing step by detecting segments with a longer duration that consist
of a variation of several short duration high-intensity activities, and relabel this as
vigorous. However, the data labeled as vigorous activities in our data set were not
always high-intensity (see Figure 6.5).

Clear definitions are needed to enable rule-based reintroduction of activities. The
definitions for shuffling and vigorous are vague, making the labeling process of these
activities inconsistent. Therefore, we did not find any good way to reintroduce these
activities, and the post-processing step was not included in our system.

6.9 Final HAR system

This section summarizes the training phase and classification and validation phase of
our final HAR system. The decisions regarding the system design were made due to
the experiments described earlier in this chapter and the arguments put forth there.

The system’s classification part was learned using the adult data set. We divided the
data set into two parts, 2/3 for training, and 1/3 for testing.

6.9.1 Training Phase

The pipeline for the final training phase of the system is presented in Figure 6.13.
Each step of the pipeline is described below.

1. Data Segmentation: We chose 1 second windows with 80% overlap.

2. Pre-processing: We removed instances with Transition, Shuffling and Vigor-
ous activities.

3. Balancing Data Set: The training data were balanced using oversampling.

4. Train Classifier: We chose to use a CNN with an architecture as described
in Section 6.5.2.

5. Generate Probabilities for HMM: The initial probabilities are uniformly
distributed. The posterior probabilities returned by the CNN were used as
emission probabilities. The transition probabilities were generated using Baum-
Welch and are presented in Table 6.7
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Figure 6.13: Final training pipeline

6.9.2 Classification and Validation Phase

The pipeline for the final classification and validation phase of the system is presented
in Figure 6.14. Each step of the pipeline is described below.

1. Data Segmentation: We chose to use 1-second windows without overlap.

2. Classification: The system classifies data instances using the CNN trained in
the training phase.

3. Reclassification using Viterbi: The classification results from step 2 were
re-evaluated by the Viterbi algorithm, producing the final classification of the
activities. The posterior probabilities generated by the classifier are used as
emission probabilities, while transition probabilities and initial probabilities
were generated in step 6 in the training phase.

4. Validation: Validating and measuring the system’s performance using sensi-
tivity, precision, specificity, and accuracy. This step is optional and requires
that the labels of the classified data are known.
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Figure 6.14: Final classification and validation pipeline





Chapter7Results and Discussion

This chapter presents the final results of the proposed HAR system. As mentioned
in Chapter 6, the system was trained using the adult data set, however, we tested
the system using data from both adults and adolescents. The results using the adult
and adolescent data sets will be discussed in Section 7.1 and Section 7.2 respectively.
Section 7.3 presents a comparison between the state-of-the-art HAR system Acti4
(described in Section 2.7) and our proposed HAR system.

7.1 Adults

The accuracy for the adults data set is 97.9%. Table 7.1 presents recall, precision, and
specificity for the different activities. The confusion matrix for adults is presented in
Figure 7.1.

Overall, the HAR system produces satisfying results for the adult data set. Looking
at the results in Table 7.1, only two table values have a score lower than 90%. These
are the sensitivity of cycling(sit) (85.981%) and the precision of bending (86.682%).

The sensitivity of cycling(sit) measures the portion of cycling(sit) instances that are
correctly classified. The confusion matrix for adult data (Figure 7.1) shows that

Table 7.1: Measurements of the system’s performance on adult data set

Sensitivity(%) Precision(%) Specificity(%)
Lying 99.980 100.000 100.000
Sitting 99.238 99.161 99.417
Standing 95.956 97.768 99.423
Walking 98.260 96.830 99.124
Stairs (up) 94.758 95.566 99.887
Stairs (down) 92.960 96.990 99.964
Cycling (sit) 85.981 91.019 99.900
Cycling (stand) 96.747 98.976 99.991
Bending 94.625 86.682 99.711
Running 98.624 97.836 99.953
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Figure 7.1: Confusion matrix for the adult data set

13.5% of cycling(sit) instances are wrongly classified as sitting. A reason for this is
that cycling(sit) and sitting are very similar. This was especially the case for one of
the subjects (see Figure 6.11), where the CNN decreased the average sensitivity by
alternating between classifying cycling(sit) as sitting and cycling(sit). The Viterbi
algorithm decreased the results even more by reclassifying the correctly classified
cycling(sit) instances as sitting. Since there are few instances of cycling(sit) in the test
data (1.2% of the entire test data set), these wrongly classified instances influenced
the specificity of cycling(sit) a great deal.

Out of all instances that are classified as bending, the precision is the portion that
is correctly classified as bending. In the adult confusion matrix (Figure 7.1), we
see that 1% out of all standing instances are wrongly classified as bending. The
skewed distribution in the test data affects the results. Since standing represents
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Table 7.2: Measurements of the system’s performance on adolescents data set

Sensitivity(%) Precision(%) Specificity(%)
Lying 100.000 97.324 99.954
Sitting 98.666 98.320 99.877
Standing 95.091 95.983 98.410
Walking 97.383 97.334 96.426
Stairs (up) 94.651 92.790 99.874
Stairs (down) 82.280 76.576 99.842
Bending 80.976 76.498 99.928
Running 95.836 93.739 99.790

around 24.4% of all instances in the test data, the 1% misclassification of standing
equals 13.6% of the total amount of bending instances, and will therefore affect the
precision of bending. On the other hand, 3.68% of bending instances are misclassified
as standing, but will not affect the precision of standing to the same extent, due to
the skewed test set. Bending is typically surrounded by standing, and data windows
that are labeled as either of these activities have a chance of containing portions of
the other activity (i.e. the transition between these activities may be less than a
second long and thus containing portions of both activities), and are likely to be the
main reason for the misclassifications between them.

The confusion matrix shows that stairs(up) is misclassified as walking 4.99% of the
time, and stairs(down) is misclassified as walking 6.87% of the time. This is not
very surprising, since these activities share many of the same movements. However,
stairs(up) and stairs(down) have a low probability of being misclassified as each
other (0.3% at the highest). The reason behind this can be that both stairs(up) and
stairs(down) are more similar to walking than to each other.

7.2 Adolescents

The accuracy for adolescents data set is 96.6%, only 1.3% lower than the adult data
set. Table 7.2 presents recall, precision, and specificity for the different activities.
The confusion matrix for adolescents is presented in Figure 7.2.

Even though the HAR system is trained on the adult data set, the system provides
promising results on data from adolescents. Looking at the results in Table 7.2, only
two activities, stairs(down) and bending, have scores lower than 90%.

Bending is misclassified as sitting 13.17% of the time. This may be because adolescents
tend to bend their knees when bending more often than adults do, resulting in a
position that is very similar to sitting. Opposed to the adult data set, where bending
was mainly misclassified as standing, this part of the error seems to have shifted
over to walking. Bending is misclassified as walking 5.61% of the time. This is
probably because the adolescents data set contains more transition between bending
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Figure 7.2: Confusion matrix for adolescents data set

and walking than between bending and standing, and therefore windows that were
labeled as bending could include portions of walking.

Stairs(down) is misclassified as standing 8.92% of the time and walking 8.58% of the
time. Stairs(down) and walking are similar activities, and is a misclassification we also
see when classifying adult data. During the data collection process for adolescents,
there were many transitions between a standing position and stairs(down). This can
result in data windows containing both activities, which could be the reason for the
misclassification between Stairs(down) and standing.

The confusion matrix shows that running and stairs(up) are often misclassified as
walking, which is not surprising as these activities are similar. More surprising is it,
that standing is misclassified as walking 4.47% of the time. We believe the reason
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behind this is that standing and walking often occurs after each other, so that data
windows that are labeled either of these activities have a chance of containing portions
of the other activity, which could lead to misclassification.

7.3 Comparing with Acti4

As mentioned in Section 2.7, Acti4 is able to recognize walking, running, stairs,
standing, sitting, lying, cycling and moving. Moving is defined as periods that match
a standing posture that includes small movements without ordinary walking. Since
we do not have the activity moving in our HAR system, we will not evaluate it.
In addition to classifying the remaining Acti4 activities, our system can classify
bending, distinguish between walking up and down stairs (stair(up), stairs(down)),
and between cycling in a seated position versus standing position (cycling(sit),
cycling(stand)). Figure 7.3 presents the confusion matrix generated when classifying
the adult data set with Acti4, while Table 7.3 presents a comparison between the
our system and Acti4.

Table 7.3: Comparing sensitivity (%) between Acti4 and the proposed HAR system

Acti4 Proposed
HAR system

Difference

Walking 94.76 98.26 3.5
Running 94.11 98.62 4.51
Stairs 76.87 93.86 16.99
Standing 91.48 95.96 4.48
Sitting 98.13 99.24 1.11
Lying 99.00 99.98 0.98
Cycling 37.25 91.37 54.12

When classifying our data with Acti4, we obtain an of 88.85%. This is almost 10%
lower than the accuracy obtained when classifying with the system generated in this
research. One of the main reasons for this may be that Acti4 recognizes activities
using a fixed decision tree (see Figure 2.7), which could make it fragile when used
on a slightly different data set. Acti4 was generated based on data obtained from
sensors on the subject’s thigh and hip, while our data set is collected from sensors on
the subject’s thigh and back. This could be a reason for the low accuracy obtained
by Acti4. An advantage of our system is that it contains a training phase, making it
adaptable to new types of data (e.g. new sensor locations or subjects from other age
groups).
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Figure 7.3: Confusion matrix for adults using the Acti4 system



Chapter8Conclusion and Future Work

Section 8.1 presents the conclusions drawn from the results presented and discussed
in Chapter 6 and Chapter 7, while Section 8.2 presents our research’s contributions.
Throughout this research period, we have gathered ideas on possible improvements
that could lead to better results, these will be presented in Section 8.3.

8.1 Conclusion

As a result of our research, we have developed a Human Activity Recognition system
that can be used in the upcoming HUNT4 study. The system can distinguish
between 10 different daily activities based on raw acceleration data captured from
two accelerometer sensors located on a subject’s thigh and back. To improve state-of-
the-art HAR systems, we have used a both deep learning and dynamic classification,
reaching an accuracy of 97.9% for the adult data set and 96.6% for the adolescent
data set. These results are almost 10% higher than the accuracy obtained by the
state-of-the-art HAR system Acti4.

Segmenting data windows using a dynamic windowing approach did not improve
our system’s ability to distinguish between activities, and a fixed sizes windowing
approach was therefore used. However, fixed size windowing could affect the results
for activities with short duration (e.g. bending and stairs), since a significant portion
of their instances will contain data from more than one activity.

Deep learning algorithms have a potential in the field of HAR, with its automatic
feature generation and classification of raw data. Our Convolutional Neural Network
produced promising results, as it performed better than Random Forest in both
accuracy and average sensitivity (Section 6.5.1). The Convolutional Neural Network
architecture have still many properties and aspects that can be further explored.
These will be discussed in Section 8.3.2.
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Dynamic classification, using Hidden Markov model and the Viterbi algorithm,
worked to a certain extent. For some activity sequences, the algorithm improved the
predictions, while for others sequences, the algorithm failed. However, the Viterbi
algorithm improved the accuracy and is therefore included in the final HAR system.
The Viterbi algorithm transition matrix has potential for improvements, and will be
discussed in Section 8.3.2.

Adapting the classification model for individual adults and adolescents using semi-
supervised learning methods did not improve our HAR system’s performance. How-
ever, adapting the classification model to individual children showed promising results,
where the accuracy increased 4.59%, and average sensitivity increased 0.91%. These
findings suggest that subjects with activity patterns that differs from the majority
group may benefit from semi-supervised learning methods. Active learning did
improve the results for adults, adolescents, and children, but will not be applicable
in HUNT4, due to the continuous labeling process.

8.2 Contributions

Based on our research goals and questions presented in Chapter 1, we can summarize
our contributions in the following way:

Our first, and main contribution is a HAR system that can distinguish between 10
different activities with an accuracy of 97.9%. The system is open sourced1, both
to allow other researchers to get a deeper understanding of our work, and to enable
others to benefit from a HAR system of sufficient quality. To be able to develop
this system, we needed an overview of the typical components in state-of-the-art
HAR system. Our research’s second contribution has therefore been an architectural
overview of state-of-the-art HAR systems. This overview is presented in Chapter 2.
Based on our second research goal, our research provided insight into how different
methods, and a combination of methods, influence HAR systems performance. These
methods include dynamic windowing, deep learning, dynamic classification and
semi-supervised learning. By implementing the HAR system iteratively, we obtained
insight on how different methods interplay.

1https://github.com/hessenh/HAR-Pipeline



8.3. FUTURE WORK 75

8.3 Future Work

This section presents possible improvements of our proposed HAR system, followed
by some future research directions that could be the next steps along the path to
improved HAR systems.

8.3.1 Data set and protocol improvements

As discussed earlier, some of the activities in the data set have a very limited amount
of instances. In combination with this, these activities are often performed over a
short duration. As a result, a large portion of these data windows contains other
activities. It could, therefore, be beneficial to have longer segments of activities in
the data recording protocol. This would increase the amount of data for each activity,
and decrease the portion of data that include multiple activities. Having short
segments of activities may also affect the subject’s ability to perform the activity
naturally (e.g. walking for 3 seconds may not always be enough to reflect walking).

In this research, we are segmenting the raw data into windows in the same order as
the data was recorded, resulting in data windows that could contain more than one
activity (unclean windows). To remove unclean windows, the raw data could first be
separated into individual activity pools based on their label, and then divided into
data windows. A second approach could be to remove each window with a purity
lower than a given threshold (e.g. remove a window that contains 40% walking and
60% standing), but this would then again reduce the number of instances in the data
set.

The proposed HAR system were not able to classify shuffling and vigorous. The
definitions of these activities are presented below.

• Shuffling: Stepping in place by non-cyclical and non-directional movement
of the feet. Includes turning on the spot with feet movement not as part of
walking bout.

• Vigorous: All non-cyclic rapid leg movements that do not classify as running.
This includes sport like activities such as rapid change in direction and jumping.
Can occur in all directions

These definitions are vague, which could result in subjective labeling. The activities
are also similar to other activities in the data set (e.g. shuffling is very similar to both
standing and walking). If these definitions are clearer, it may be easier to recognize
these activities. An example of a clearer definition is "all walking with a duration
shorter than 2 seconds is defined as shuffling".
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8.3.2 System improvements

Our selected CNN architecture was chosen after experimenting with the number of
kernels in each convolutional layer, the number of convolutional layers, the number
of fully connected layers and the kernel size. Since training and testing a CNN
architecture is time-consuming, we did not have the time or the resources to test
every possible CNN configuration systematically. The following aspects of the CNN
architecture would, therefore, be interesting to explore further:

• Input representation

• Kernel dimensions

• Number of kernels in each convolutional layer

• Number of convolutional layers

• Number of nodes in each neural network layer

• Number of neural network layers

The transition matrix used in the Viterbi algorithm have potential for improvements.
As mentioned, this matrix consists of probabilities on of how often people shift
between the different activities. In this system, these probabilities were calculated
based on the sequence of activities in the data collection protocol, even though this
protocol does not reflect how people normally shift between activities. A better way
to calculate transition probabilities would be to either make use of expert knowledge
or by observing how people normally shift between activities.

8.3.3 Reccurent Neural Network

In this research, we use a CNN as our baseline classification algorithm. A shortcoming
with CNN is that they do not make use of the temporal information of the data
stream. Data windows are seen as independent events, even though this is not the
case with human activities (e.g. if a subject was running for the last 10 seconds, the
probability of it running the next second is increased). Recurrent Neural Network
(RNN) make use of this temporal information, and may, therefore, be more suitable
for HAR systems than a CNN.

Traditional RNN uses temporal information by mapping the input sequences to a
sequence of hidden states, and the sequence of hidden states to the output sequence.
The hidden layers are recurrently connected to itself [Mikolov et al., 2010]. Figure
8.1 demonstrates the structure of a traditional RNN.
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Figure 8.1: Reccurent Neural Network. Xt is the input unit at timestep t, Ht is the
hidden unit at timestep t, Yt is the final prediction at timestep t. W are the weights
between the different units.

RNN has already provided promising results for activity recognition in smart homes
[Fang et al., 2013], in video-based activity recognition [Baccouche et al., 2011, Donahue
et al., 2015], and very recently in wearable sensor-based activity recognition [Ordóñez
and Roggen, 2016].

8.3.4 Sleep Monitoring

According to Centers for Disease Control and Prevention (CDC), insufficient sleep
is a public health problem2. Risk of several chronic diseases, such as depression,
diabetes, stroke, and obesity, is associated with sleep problems [Altevogt et al., 2006].
According to Altevogt et al. [2006], 50-70 million of adults in the USA have some
type of sleeping disorders.

Sleep tracking can provide valuable information about people’s sleep, such as sleep
cycles. There exist several sleep tracking products, however, most of these systems
do not track activities during the day. The use of accelerometers alone may not
be sufficient to measure overall sleep quality, but can provide valuable information
about the subject’s sleep-wake cycle.

The use of several sensors could provide a more accurate characterization of a subject’s
sleep. However, sleeping with multiple sensors can interfere with the subject’s normal
sleep. It is, therefore, like in HAR, important to minimize the interference of sensors
while maximizing the amount of information provided by the sensors. Examples of
sensors that has been used to track sleep are listed below.

2http://www.cdc.gov/features/dssleep/
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• Accelerometer - Monitors body movement.

• Electroencephalogram (EEG) - Electrodes attached to the scalp (often a head-
band) to detect brain waves and activity. This sensor is the gold standard for
measuring sleep stages and sleep-wake cycle.

• Electrooculogram (EOG) - Electrodes attached above and below the eye to
detect eye movement. This sensor can give an indication of when a subject is
in REM (rapid eye movement) sleep.

• Electrocardiogram (ECG) - Electrodes attached to the chest to measure the
heart’s electrical activity.

• Heart Rate Monitor - Measure of subject’s pulse.

• Microphone – Record frequency and volume of snoring.

When constructing a system that combines sleep tracking and activity recognition, the
best would be to use sensors that are valuable in both processes. Accelerometers and
heart rate sensors have shown to be useful in both HAR systems and sleep tracking
system. Microphones are often used in sleep tracking systems to record frequency
and volume of snoring. A microphone would not be valuable in activity recognition.
However smartphones are often used as sensors in HAR systems, and since these
phones include microphones, microphones could be easily added as a sensor. Instead
of using the same sensors during sleep tracking and activity recognition, adding extra
sensors or removing unnecessary sensors before sleep could be a possibility. EEG are
very accurate when monitoring sleep stages and the sleep-wake phases. This sensor
would not make sense in regular HAR systems, but could be added before going to
sleep.

8.3.5 Adapting classification models to specific subjects using
Semi-Supervised learning

When experimenting with semi-supervised learning in this research, we tried to adapt
our classification model to work better for individual adults and adolescents. As
discussed in Section 6.6.2, we experienced limited improvement with this approach.
However, we obtained promising results when adapting the classification model
to children. This made us believe that semi-supervised learning methods can be
valuable whenever the subject’s movement pattern differs from the group of subjects
the classifier was trained on. An idea could, therefore, be to use these methods
for subjects with movement disorders (e.g. cerebral palsy which can result in poor
muscle tone, uncontrolled movements, and tremors). Since people with cerebral palsy
often have a varying degree of the disorder, collecting a data set that reflects every
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subject could be difficult. It can, therefore, be beneficial to develop a general HAR
system, and then adapt this system to each specific subject.





ChapterAAppendix

This appendix contain information about each subject in the data set and the
definition of the activities used in the system.

A.1 Subject Information

Table A.1: Adolescents data set statistics

Subject Gender Age Height Weight
1 M 15 179 62.9
2 M 15 168 52.2
3 M 15 167 71.2
4 F 16 172 56.5
5 F 15 169 60.2
6 F 16 171.2 67.8
7 M 13 173 68.5
8 M 13 161 44
9 M 13 160 44
10 F 15 159 56.4
11 F 15 169 65.3
12 F 15 160 50.2

81



82 A. APPENDIX

Table A.2: Adult data set statistics

Subject Gender Age Height Weight
1 F 40 176 68.5
2 F 38 171 64.5
3 M 30 191 84.5
4 F 38 169 59.1
5 M 42 182.5 84.3
6 M 46 190 82
7 F 35 172.5 64.9
8 M 36 166.7 74
9 F 47 173.5 74.8
10 M 34 193 99.9
11 M 44 198 98.6
12 F 36 161 62.2
13 F 36 173.7 57.9
14 F 48 178 78.9
15 F 46 155 49.5
16 F 49 171 63.8
17 F 39 164.5 76.9
18 M 28 185 84.5
19 F 52 163.3 79.4
20 F 37 162.5 61.1
21 F 45 172.7 68.5
22 M 34 186.2 78.2
23 M 32 198 101.8

Table A.3: Children data set statistics

Subjects Average Age Average Height Average Weight
Boys 7 9.7 years 139.8 cm 32.7 kg
Girls 8 9.3 years 136.6 cm 34.3 kg
Total 15 9.5 years 138.1 cm 33.5 kg
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A.2 Activity Definitions

Table A.4: Activity definitions

Activities Description

Sitting
When the person’s buttocks is on the seat of the chair, bed or floor. Sitting
can include some movement in the upper body and legs; this should not be
tagged as a separate transition. Adjustment of sitting position is allowed.

Standing

Upright, feet supporting the person’s body weight, with no feet movement,
otherwise this could be shuffling/walking. Movement of upper body and
arms is allowed until forward tilt and arm movement occurs below knee
height. Then this should be inferred as bending.For chest mounted
camera: If feet position is equal before and after upper body movement,
standing can be inferred. Without being able to see the feet, if upper body
and surroundings indicate no feet movement, standing can be inferred.

Walking
Locomotion towards a destination with one stride or more, (one step with
both feet, where one foot is placed at the other side of the other). Walking
could occur in all directions. Walking along a curved line is allowed.

Shuffling

Stepping in place by non-cyclical and non-directional movement of the
feet. Includes turning on the spot with feet movement not as part of
walking bout.For chest mounted camera: Without being able to see the
feet, if movement of the upper body and surroundings indicate
non-directional feet movement, shuffling can be inferred.

Stair ascending/descending

Start: Heel-off of the foot that will land on the first step of the stairs.
End: When the heel-strike of the last foot is placed on flat ground. If
both feet rests at the same step with no feet movement, standing should
be inferred.

Lying down

The person lies down. Adjustment after lying down is allowed if it does
not lead to a change between the prone, supine, right and left lying
positions. Movement of arms and head is allowed. Movement of the
feet is allowed as long as it does not lead to change in posture.
Prone: On the stomach.
Supine: On the back.
Right side: On right shoulder.
Left side: On left shoulder.

Sit cycling

Pedaling while the buttocks is placed at the seat. Cycling starts on
first pedaling and finishes when pedaling ends.
For outdoor bicycling: Cycling starts at first pedaling, or when both
feet have left the ground. Cycling ends when the first foot is in contact
with the ground.
Not pedaling: Sitting without pedaling should be tagged separate as sitting.

Stand cycling
Pedaling while standing. Cycling starts on first pedaling and finishes
when pedaling ends. Standing without pedaling should be tagged
separate as standing.

Running

Locomotion towards a destination, with at least two steps where both feet
leave the ground during each stride. For chest mounted camera: Running
can be inferred when trunk moves forward is in a constant
upward-downward motion with at least two steps. Running along a curved
line is allowed.

Bending While standing/sitting, bending towards an object placed below
knee-height is bending.

Picking

This refers to picking/placing/touching an object from below knee height.
Picking occurs when the trunk is at its lowest point and the person has
touched/placed/picked an object. When the person starts to rise it’s trunk,
picking finishes, and bending begins.

Other vigorous activities
All non-cyclic rapid leg movements that do not classify as running. This
includes sport like activities such as rapid change in direction and jumping.
Can occur in all directions.

Other non-vigorous
activities

All non-cyclic movements that do not classify according to the definitions.
Can occur in all directions.

Undefined

Until all the sensors are attached, or final adjustment made to position the
video can be tagged as undefined.
All postures/movements that can not be clearly identified should be tagged
as undefined.
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Table A.5: Transition definitions

Transition Description

Bending to picking from
standing/walking/sitting

As soon as forward/sideways trunk tilt occurs, bending has started. Bending
finishes when the person has reached the lowest point of the movement and
picking occurs. When the person starts to rise up, picking finishes and
bending begins. When the trunk is in an upright and stable position,
bending finishes. This should be tagged as “bending-picking-bending”.
Steps can occur during bending.

Walking to posture Walking ends when both feet are at rest, or at first evident forward tilt of
upper body. Steps can occur during the transition from walking to posture.

Upright to sitting

Can be from walking or standing, as soon as forward trunk tilt occurs, or a
lowering of the trunk, the transition has started. Steps can occur during the
transition for positioning. Transition ends when buttocks are in contact with
the seat of the chair, bed or floor.

Sitting to upright
Transition starts when the person’s buttocks leave the chair and ends when
the trunk has reached its upright position. Steps and turning can occur
during the transition from sitting to upright.

Standing/walking/sitting to
lying

When the trunk flexion begins, or a lowering of the center of mass, the
transition has started. Transition finishes when the person is lying flat
with the trunk in a stable position.

Lying to
standing/walking/sitting

While lying, the transition begins with an upward movement of the trunk or
leg movement that leads to a stable upright position or continuous walking.
The trunk angle should be in a steady posture for the transition to finish.
Steps can occur during the transition.

Standing to walking As soon as heel-off occurs, walking has started.
Standing to shuffling As soon as one foot moves, shuffling has started.
Shuffling/walking to
standing

As soon as the feet stop moving, walking/shuffling has finished and
standing has started.

Shuffling to walking As soon as walking direction is set and heel-off occurs, shuffling has ended
and walking starts.

Walking to shuffling
When walking is interrupted by stepping in place, non-cyclical, non-
directional movement of the feet or turning on the spot, this should be
tagged as shuffling.

Sit cycling to stand cycling /
stand cycling to sit cycling

When the buttocks leave the seat, stand cycling can be inferred. When the
buttocks is placed at the seat, sit cycling can be inferred.
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This appendix contain additional information about the different methods used in
the process of generating the proposed HAR system.

B.1 Convolutional Neural Network

Table B.1: Convolutional Neural network parameters

Data input size 6x100
Kernels in convolutional layer one 20
Kernels in convolutional layer two 40
Filter size width 30
Filter size height 1
Filter type Valid
Nodes in neural layer one 1500
Nodes in neural layer two 10
Dropout probability in neural layer one 50%
Optimizer Adam algorithm
Training iterations 20.000
Batch size 100

85



86 B. APPENDIX

Table B.2: Experiment with convolutional layers. Neural layers: 200-100. Training
iterations: 3000

Convolutional layers Accuracy (%) Average Sensitivity (%)
20-40 0.9551451802 0.9395618379
30-40 0.9554338165 0.9394215703
40-50 0.955821065 0.9376101077
15-30 0.951624926 0.9337377548
10-20-40 0.9545889789 0.9273004651
20-30 0.9576867898 0.9253455102
10-20 0.9462671373 0.9235385954
15-20 0.9383888529 0.9121215522
40-20-10 0.9487383485 0.8947891533
2-10-20 0.9248430131 0.8743480027

Table B.3: Experiment with neural layers. Convolutional layers: 20-40. Training
iterations: 3000

Neural layers Accuracy (%) Sensitivity (%)
1500 0.9741213316 0.9521336073
1000 0.9636148628 0.9442937613
1000 0.9695710762 0.943088311
1000-500 0.9596440395 0.9424107015
200 0.9594539579 0.9366894364
1500-1000 0.9727863408 0.9361109152
500 0.9559125899 0.9360525131
1000-100 0.9514630203 0.9359237254
400-200 0.9639387199 0.9352448106
400-300-200 0.9585386984 0.9332973599
50 0.9463586749 0.9092043042
100 0.8989833426 0.9019963443
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B.2 Semi-supervised Learning

Figure B.1: Active learning - Changing learning rate (Adult data set)

Figure B.2: Active learning - Changing training iterations (Adult data set)
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Figure B.3: Equal class distribution - Changing learning rate (Adult data set)

Figure B.4: Equal class distribution - Changing training iterations (Adult data set)
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Figure B.5: Highest confidence - Changing learning rate (Adult data set)

Figure B.6: Highest confidence - Changing training iterations (Adult data set)
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B.3 Hidden Markov Model
Table B.4: Transition Probabilities (%)
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