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Abstract		
	

In	this	thesis	first	order	univariate	GARCH	models	are	applied	to	three	European	equity	

indices,	DAX30,	FTSE100	and	OMXS30.	The	objective	 is	 to	determine	which	one	of	 the	

included	 models	 is	 best	 suited	 for	 out-of-sample	 variance	 forecasting	 while	 also	

investigating	whether	 in-sample	model	 fit	measures	provide	a	good	indication.	Models	

will	 also	be	 fitted	 to	 symmetric	 and	 skewed	Student	 t	 distributions,	 in	addition	 to	 the	

normal	distribution,	to	see	if	forecasting	accuracy	benefits	noticeably.		

The	 included	 forecasting	models	 are:	 the	 standard	GARCH	model,	 the	EGARCH	model,	

the	 GJR-GARCH	 model,	 the	 equally	 weighted	 moving	 average	 and	 the	 exponentially	

weighted	moving	average.	

Empirical	 results	 show	 that	 the	 normal	 GJR-GARCH	 model	 should	 be	 preferred	 for	

forecasting.	 It	 does	not	 outperform	 in	 every	 case	 it	 but	 it	 is	 very	 reliable.	Assuming	 a	

non-normal	 conditional	 distribution	 generally	 does	 not	 help	 on	 forecasting	

performance.	Information	criteria,	which	are	used	to	measure	in-sample	fit,	 favor	non-

normal	asymmetric	GARCH	models.	

	

	

Keywords:	 GARCH,	 EGARCH,	 GJR-GARCH,	 Volatility	 Forecasting,	 DAX	 30,	 FTSE	 100,	

OMXS	30,	Conditional	Variance,	EWMA	
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1	Introduction	

Financial	data	is	often	found	to	exhibit	features	that	cannot	be	modeled	using	traditional	

econometric	 tools.	 	 As	markets	 have	 become	more	 electronic,	 information	 access	 has	

improved,	which	has	made	it	easier	to	observe	these	features.	It	is	now	well	known	that	

the	 conditional	 variance	 of	 most	 financial	 assets	 follows	 a	 non-linear	 process	 that	 to	

some	extent	may	be	predicted	by	deterministic	or	stochastic	models.	Finance	academics	

and	practitioners	alike	assumed	for	a	long	time	that	it	was	random	which	left	the	main	

focus	on	returns.		

	

Time-varying	variance	 is	especially	 relevant	 for	option	valuation.	Realized	volatility	of	

the	underlying	instrument	before	maturity	is	the	only	unknown	variable	and	one	of	the	

most	influential	ones	in	the	widely	used	Black	and	Scholes	(1973)	model.	With	the	use	of	

options	 it	 is	 possible	 to	 engage	 in	 isolated	 bets	 on	 future	 volatility,	 but	 being	 able	 to	

forecast	 it,	with	 some	accuracy,	 also	have	other	uses.	 Since	 the	 first	Basel	 accord	was	

enacted	in	1988	banks	have	had	to	adapt	to	increasingly	strict	regulatory	requirements.	

For	 the	 purpose	 of	market	 risk	management	 it	 is	 necessary	 to	 continuously	measure	

potential	future	losses	of	assets	or	portfolios.	Volatility	does	not	equal	risk	directly	but	it	

is	a	key	input	in	many	value-at-risk	models.	Rational	investors	will	also	benefit	as	they	

seek	to	maximize	expected	returns	relative	to	forecasted	variance	in	investments.	In	this	

study	the	focus	will	be	on	variance	forecasting	for	single	assets,	rather	than	portfolios,	

with	the	use	of	univariate	GARCH	models.		

	

Robert	Engle	(1982)	is	acknowledged	to	be	the	one	who	started	the	econometric	subject	

on	 autoregressive	 conditional	 heteroscedasticity	 (ARCH)	 models.	 It	 was	 the	 first	

parametric	model	created	 for	 the	purpose	of	modeling	conditional	variance	processes.	

The	ARCH	model	has	the	potential	to	incorporate	two	key	features,	clustering	and	mean	

reversion	 in	volatility.	The	generalized	ARCH	model,	 introduced	by	Taylor	 (1986)	and	

Bollerslev	 (1986),	 has	 become	 the	 preferred	 model	 of	 these	 two	 because	 it	 is	 more	

parsimonious	 and	 avoids	 overfitting.	 Its	 biggest	 shortcoming	 is	 that	 it	 treats	 shocks	

symmetrically.	Various	asymmetric	extensions	have	been	proposed	that	remedies	 this.	

One	of	these	that	has	become	well	known	is	the	exponential	GARCH	model,	proposed	by	
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Nelson	 (1991).	 Another	 one	 is	 the	 GJR	 extension,	 named	 after	 its	 authors	 Glosten,	

Jagannathan	and	Runkle	(1993).	

	

In	 this	 study	 five	models	will	 be	 included	 for	 out-of-sample	 forecasting:	 the	 standard	

GARCH	model,	the	EGARCH	model,	and	the	GJR-GARCH	model,	in	addition	to	equally	and	

exponentially	 weighted	 moving	 averages.	 The	 unconditional	 (and	 conditional)	 return	

distribution	for	high	frequency	financial	data	is	often	found	to	have	non-zero	skewness	

and	 high	 kurtosis,	 which	 is	 why	 GARCH	 models	 will	 also	 be	 fitted	 to	 non-normal	

conditional	 distributions.	 The	 data	 that	 is	 analyzed	 is	 comprised	 of	 daily	 observed	

indices	 for	 the	 equity	 markets	 in	 UK	 (FTSE100),	 Germany	 (DAX30)	 and	 Sweden	

(OMXS30).	The	sample	span	20	years.		

	

The	models	 used	 to	 create	 out-of-sample	 forecasts	 are	 estimated	 from	 a	 rolling	 data	

window	with	constant	length.	After	the	whole	sample	has	been	used,	variance	forecasts	

are	 compared	 with	 realized	 variance	 estimates	 using	 loss	 functions.	 With	 today’s	

regression	software	in-sample	model	fit	measures	are	easily	available	after	estimation.	

Evaluating	 and	 comparing	 out-of-sample	 forecasting	 performance	 is	 a	 stepwise	

procedure	that	is	considerably	more	time	consuming.	Therefore,	it	is	also	worth	taking	a	

look	at	which	models	do	well	in-sample.	

	

The	rest	of	this	thesis	is	structured	as	follows.	The	next	section	will	cover	prior	research	

that	 is	 relevant	 for	 this	 thesis.	 Data	 sets	 will	 be	 presented	 in	 the	 third	 section,	 with	

descriptive	statistics	and	preliminary	specification	tests.	In	the	fourth	section	the	model	

estimation	procedure	and	forecast	evaluation	method	will	be	explained.	In	section	five	

included	models	and	distributions	will	be	presented.	In	section	six	results	are	reviewed	

for	which	models	and	distributions	should	be	preferred	based	on	information	criteria.	In	

the	 seventh	 section	 out-of-sample	 forecasting	 results	 are	 presented.	 Section	 eight	

concludes.		
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2	Literature	review	

	GARCH	models	are	often	preferred	over	naïve	models	because	of	their	ability	to	account	

for	 what	 is	 called	 stylized	 facts.	 In	 the	 early	 years	 they	 were	 not	 credited	 for	 being	

especially	 useful.	 In	 hindsight,	 this	was	 because	 the	 forecast	 evaluation	 part	was	 less	

well	understood.	Andersen	and	Bollerslev	 (1998)	were	among	 the	 first	 to	address	 the	

significance	of	 the	variance	estimator.	 Since	 then	 the	 importance	of	using	appropriate	

evaluation	measures	has	also	received	increased	attention.	This	section	will	start	with	a	

description	 of	 relevant	 stylized	 facts.	 This	 is	 followed	 by	 a	 summary	 on	 forecast	

evaluation	best	practices.	Lastly,	results	from	some	earlier	studies	are	reviewed.	

2.1	Stylized	facts	

Mandelbrot	(1963)	and	Fama	(1965)	appear	to	have	been	the	first	to	observe	that	some	

financial	 assets	 have	 clustered	 volatility	 and	 leptokurtic	 return	 distributions.	 These	

features	 are	 to	 some	 extent	 related.	 This	 could	 be	 explained	 by	 news	 often	 being	

released	 unevenly.	 Another	 plausible	 cause,	 suggested	 by	 Cont	 (2005),	 is	 investor	

inertia.	 Investors	 have	 thresholds	 to	 act	 and	 therefore	 need	 sufficient	 stimulus	 from	

news	 or	 past	 price	 action.	 Black	 (1976)	 identified	 another	 stylized	 fact,	 called	 the	

leverage	 effect.	 In	 equities	 it	 can	 be	 empirically	 observed	 that	 variance	 rises	 more	

following	 a	 large	 price	 fall	 than	 following	 a	 price	 rise	 of	 the	 same	magnitude.	 It	 was	

initially	believed	that	changes	in	the	firm’s	riskiness	caused	this.	As	the	price	falls	(rises)	

the	debt-equity	ratio	increases	(declines).	But	nowadays	we	know	that	the	channel	is	far	

too	small	 to	 fully	explain	 the	effect.	Nevertheless,	 it	will	be	referred	to	as	 the	 leverage	

effect	in	this	study.	

	

2.2	Forecast	evaluation	

The	 study	 of	 variance	 forecasting	 performance	 is	made	more	difficult	 by	 the	 fact	 that	

conditional	variance	is	not	directly	observable.	Thus,	a	proxy	for	realized	variance	has	to	

be	 used.	 The	most	 commonly	 used	 proxy	 is	 daily	 squared	 returns.	 It	 is	 conditionally	

unbiased	 on	 the	 assumption	 that	 the	 expected	 return	 is	 zero,	 which	 is	 fair	 at	 a	 daily	

frequency.	 	 It	 has	 however	 been	 criticized	 for	 being	 a	 noisy	 estimator	 of	 day-by-day	

movements.	An	alternative	is	the	high-low	range	proxy,	initially	suggested	by	Parkinson	

(1980).	Relative	to	the	daily	squared	return	proxy	it	is	more	efficient,	but	the	required	
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data	 is	not	 always	as	 easy	 to	obtain.	 It	 is	not	 a	 conditionally	unbiased	estimator,	 so	 it	

needs	to	be	scaled.		The	squared	return	proxy	can	be	made	more	efficient	by	increasing	

the	 frequency.	 In	 the	 previously	mentioned	 study	 by	 Andersen	 and	 Bollerslev	 (1998)	

standard	 GARCH	 is	 applied	 to	 spot	 exchange	 rates.	 They	 find	 that	 1-day	 variance	

forecasts	 explain	 almost	 half	 the	 variation	 when	measured	 by	 5-minute	 returns.	 The	

drawback	 with	 using	 intraday	 data,	 if	 it	 can	 be	 obtained,	 is	 that	 the	 estimation	

procedure	is	more	demanding.	

Variance	 prediction	 errors	 can	 be	 evaluated	 in	 many	 ways.	 Especially	 loss	 functions	

have	been	used	often	in	prior	research.	Model	rankings	can	vary	significantly	between	

loss	functions	and	there	is	a	wide	selection	available.	The	suitability	of	several	common	

loss	functions	is	considered	in	Patton	(2011).	Another	common	method	is	to	apply	the	

Minzer-Zarnowitz	regression,	which	involves	regressing	realized	variance,	measured	by	

a	proxy,	on	its	forecast.		

	

2.3	Prior	forecasting	studies	

In	addition	to	the	forecast	evaluation	factors	mentioned	above,	model	rankings	are	also	

sensitive	to	forecast	horizon	lengths,	the	sample	period	and	data	frequency.	Of	the	three	

indices	that	will	be	covered	here	FTSE100	has	been	researched	the	most	on.	OMXS30,	on	

the	other	hand,	has	been	given	very	little	attention.	To	consider	non-normal	conditional	

distributions	has	become	more	common,	 judging	 from	recent	research,	but	overall	 the	

normal	distribution	is	still	overrepresented.		

In	the	study	by	Peters	(2001)	various	first	order	GARCH	models	are	applied	to	FTSE100	

and	 DAX30	 daily	 sample	 data.	 Models	 are	 also	 fitted	 to	 non-normal	 conditional	

distributions,	 namely	 symmetric	 and	 skewed	 Student	 t.	 In	 addition	 to	 the	 models	

considered	here,	 asymmetric	 power	ARCH,	 by	Ding	 et	 al.	 (1994),	 is	 also	 included.	 For	

FTSE100	 the	Akaike	 information	 criterion	 suggests	 that	GJR-GARCH	gives	 the	best	 in-

sample	model	fit.	For	DAX30	the	APARCH	model	is	favored,	with	the	GJR-GARCH	model	

in	 2nd	 place.	When	 it	 comes	 forecasting,	 results	 favor	 asymmetric	models,	 but	 exactly	

which	one	should	be	preferred	depends	on	the	index.	Assuming	symmetric	or	skewed	t-

distributed	errors	result	in	more	accurate	forecasts	overall.		

Results	 from	 in-sample	 testing	 on	 FTSE100	 by	 Alexander	 (2008)	 favor	 asymmetric	

models.	 The	 sample	 that	 is	 used	 overlaps	 with	 the	 one	 used	 here.	 Upgrading	 from	
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standard	 GARCH	 to	 GJR-	 or	 exponential	 GARCH	 results	 in	 considerably	 higher	 log-

likelihood	 values.	 Of	 these,	 the	 EGARCH	model	 has	 the	 highest	 value.	Models	 are	 also	

estimated	 with	 non-normal	 conditional	 distributions	 but	 the	 effect	 from	 this	 on	 log-

likelihood	values	is	much	smaller.			

In	the	study	by	Franses	and	Dijk	(1996)	first	order	GARCH	models	and	a	moving	average	

are	 applied	 to	 weekly	 sample	 data	 for	 various	 European	 equity	 indices.	 The	 DAX30	

index	is	one	of	them.	An	all-share	index	for	the	Swedish	market	is	also	included.	For	both	

indices	the	highest	log-likelihood	value	is	obtained	with	standard	GARCH	instead	of	an	

asymmetric	 specification.	 When	 it	 comes	 to	 forecasting,	 the	 moving	 average	

outperforms	all	GARCH	models.	 	Stylized	facts	fade	on	lower	frequencies,	so	this	is	not	

surprising.	
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3	Statistical	tests	

The	 data	 that	 is	 analyzed	 in	 this	 study	 is	 comprised	 of	 daily	 observed	 indices	 for	 the	

equity	markets	in	UK	(FTSE100),	Germany	(DAX30)	and	Sweden	(OMXS30).	All	sample	

data	 have	 been	 obtained	 through	 the	 Macrobond	 information	 service.	 The	 sample	 is	

exactly	20	years	long,	from	January	1996	to	December	2015.	All	calculations	are	based	

on	natural	logarithmic	returns,	rt,	defined	by	𝑟! = 𝑙𝑛 𝑝! − 𝑙𝑛 𝑝!!!,	where	pt	denotes	daily	

price	points.	These	are	large	market	capitalization	indices.	That	is,	their	constituents	are	

the	 largest	 and	 most	 liquid	 companies	 in	 their	 respective	 markets,	 which	 make	 the	

indices	 investable	 and	 tradable.	A	 liquid	options	market	 is	 available	 for	 each	of	 them.	

Both	DAX30	and	OMXS30	are	heavily	weighted	toward	industrial	companies.		FTSE100	

is	much	more	diversified.		
	

Table	3.1:	Descriptive	statistics	for	daily	log	returns		

	 DAX30	 FTSE100	 OMXS30	

Observations	
	

5069	 5052	 5018	

Distribution	1 
Mean	

Minimum	

Maximum	

Variance	

Standard	deviation	

Standard	deviation	(ann.)	2	

Skewness	

Excess	kurtosis	3	

Jarque-Bera	

	

0.030538	

-8.8747	

10.797	

2.3351	

1.5281	

24.3275	

-0.12436	

4.0366	

<0.01	

	

0.010418	

-9.2656	

9.3843	

1.4254	

1.1939	

18.9751	

-0.15734	

5.6669	

<0.01	

	

0.02728	

-8.5269	

11.023	

2.3495	

1.5328	

24.2793	

0.073324	

3.5411	

<0.01	
1	All	numbers,	except	skewness	and	excess	kurtosis,	are	percentages.	Distribution	moment	statistics		

are	unconditional.	2	Annualized	with	the	square	root	of	time	rule	under	the	assumption	that	returns		

are	independently	and	identically	distributed	(i.i.d.).		3	Standard	measure	by	Pearson.	Does	not		

account	for	‘peakedness’.	Also	used	in	calculation	of	Jarque-Bera	test	statistic.	

	

As	 each	 country	 has	 a	 different	 number	 of	 bank	 holidays	 throughout	 the	 year	

observation	 counts	 vary	 slightly.	 Formulae	 for	 statistics	 and	 tests	 with	 null	 and	

alternative	hypotheses	can	be	found	in	Appendix	A.	

	



	

	7	

It	 is	 not	 uncommon	 for	 financial	 asset	 return	 series	 to	 exhibit	 some	 lower	 order	

autocorrelation.	The	Ljung-Box	Q-test	will	be	applied	to	check	for	this	in	a	quantitative	

way.	 The	 autocorrelation	 function	 will	 also	 be	 plotted	 to	 assess	 the	 presence	 of	

autocorrelation	at	individual	lags.	Obviously,	conditional	heteroscedasticity	needs	to	be	

visible	in	the	sample	data	for	GARCH	models	to	have	any	relevance.	The	ARCH	LM	test	

introduced	 by	 Engle	 (1982)	 will	 be	 used	 to	 test	 for	 this.	 Lastly,	 the	 sign	 bias	 test	 as	

proposed	 by	 Engle	 and	 Ng	 (1993)	 will	 be	 included	 to	 get	 an	 indication	 of	 whether	

positive	and	negative	shocks	of	equal	size	have	a	different	effect	on	future	conditional	

variance.		

	

Table	3.2:	Preliminary	tests	on	daily	log	returns	

	 DAX30	 FTSE100	 OMXS30	

Ljung-Box	

			Q5	

			Q10	

			Q20	

ARCH	LM	

			Q5	

			Q10	

	

22.02	

50.38	

46.18	

	

<0.01	

<0.01	

	

0.50	

1.84	

17.13	

	

<0.01	

<0.01	

	

20.25	

28.36	

5.76	

	

<0.01	

<0.01	

Engle-Ng		 	 	 	

			Sign	test	 5.97	 87.93	 14.66	

All	numbers	are	probability	values	in	percentages.		

3.1	DAX30	

The	DAX30	 sample	 consists	 of	 5069	daily	 data	 points.	 This	 equals	 approximately	 253	

trading	days	per	year,	on	average.	The	annualized	volatility	is	very	high	at	24.33%.	The	

sample	is	not	normally	distributed,	as	can	be	seen	in	figure	3.1.1.	The	density	plot	shows	

how	a	relatively	large	share	of	observations	centers	on	the	mean.	It	is	also	heavy-tailed.	

The	 sample	 has	more	 outliers	 than	what	 can	be	 expected	 from	a	 normal	 distribution.	

This	is	illustrated	in	the	QQ	plot	to	the	right,	in	which	the	sample	distribution	is	fitted	to	

a	normal	distribution.	Many	of	these	outliers,	including	the	sample	maximum	and		
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Fig.	3.1.1:	Sample	log	returns:	Distribution	density	(left)	and	normal	QQ	plot	(right)	

minimum,	 are	 from	 late	 2008.	 Negative	 skewness	 can	 also	 be	 seen	 in	 the	 sample	

distribution.	Ljung-Box	test	results	are	in	this	case	very	clear.	The	null	hypothesis	of	no	

autocorrelation	 can	 be	 kept	 for	 all	 tested	 lags.	 The	 joint	 test	 dilutes	 the	 significant	

autocorrelation	 coefficients	 that	 can	be	observed	 in	 the	ACF	plot	 at	 lag	5	 and	11.	 In	 a	

general	 sense,	 it	 can	be	 said	 that	 the	presence	of	 autocorrelation	 in	DAX30	 returns	 is	

insignificant.	 	From	ARCH	LM	 test	 results	 it	 is	 evident	 that	 returns	exhibit	 conditional	

heteroscedasticity.	 Volatility	 is	 time-varying	 and	 clustered,	 as	 can	 be	 seen	 in	 the	 time	

plot	of	squared	returns	to	the	left.	The	sign	bias	test	indicates	that	positive	and	negative	

shocks	have	a	different	effect,	but	the	significance	is	not	especially	high.	
	
Fig.	3.1.2:	Sample	log	returns:	Squared	series	over	time	(left)	and	autocorrelation	function	(right)		
	

	

3.2	FTSE100	

For	FTSE100	there	are	5052	daily	data	points	during	the	sample	period.	This	equals	253	

trading	days	per	year	on	average	after	rounding.	The	annualized	volatility	for	this	index	

is	relatively	low	at	18.98%.	Figure	3.2.1	shows	that	the	sample	is	unlikely	to	have	been	
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drawn	 from	a	normal	distribution.	 In	 the	density	plot	 to	 the	 left	 it	 can	be	 seen	 that	 a	

large	 share	 of	 observations	 are	 of	 very	moderate	 size	 resulting	 in	more	 ‘peakedness’.	

Tails	are	also	heavier	than	in	a	normal	distribution.	This	is	illustrated	most	effectively	in	

the	QQ	plot	 to	 the	 right.	With	 regards	 to	 outliers,	 the	 nine	most	 extreme	 ones	 are	 all	

from	 late	2008.	 	The	sample	distribution	also	exhibits	negative	skewness,	but	not	 to	a	

great	enough	extent	for	it	to	be	noticeable	in	a	graphical	inspection.		
	

Fig.	3.2.1:	Sample	log	returns:	Distribution	density	(left)	and	normal	QQ	plot	(right)	
	

Autocorrelation	 is	 present	 in	 FTSE100	 returns	 according	 to	 the	 Ljung-Box	Q-test.	 The	

null	hypothesis	can	clearly	be	rejected	for	lag	5	and	10.	The	sample	ACF	also	points	to	

this.	 The	 ACF	 plot	 shows	 that	 autocorrelation	 coefficients	 for	 6	 of	 the	 first	 8	 lags	 are	

significantly	 different	 from	 zero.	 Results	 of	 the	 ARCH	 LM	 test	 conducted	 on	 residuals	

controlled	 for	 autocorrelation	 show	 that	 the	 series	 exhibit	 conditional	

heteroscedasticity.	 This	 is	 easily	 confirmed	when	 inspecting	 the	 time	 plot	 of	 squared	

returns	to	the	left.	Volatility	is	time-varying	and	typically	occurs	in	bursts.		No	leverage	

effect	 appears	 to	 be	 present.	 The	 sign	 bias	 test	 results	 indicate	 that	 the	 effect	 from	

positive	and	negative	shocks	is	similar.	
	

Fig.	3.2.2:	Sample	log	returns:	Squared	series	over	time	(left)	and	autocorrelation	function	(right)		
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3.3	OMXS30	

The	OMXS30	sample	is	comprised	of	5018	daily	data	points,	which	equals	approximately	

251	 trading	 days	 per	 year.	 It	 has	 had	 an	 annualized	 volatility	 of	 24.28%	 during	 the	

sample	 period.	 From	 figure	 3.3.1	 it	 can	 be	 seen	 that	 the	 sample	 is	 not	 normally	

distributed.	A	relatively	large	share	of	sample	returns	are	modestly	sized	and	therefore	

clustered	 around	 the	 mean,	 as	 illustrated	 in	 the	 density	 plot	 to	 the	 left.	 The	 sample	

distribution	also	exhibits	significantly	heavier	tails	than	the	normal	distribution.	This	is	

illustrated	most	effectively	by	comparing	the	two	with	a	QQ	plot,	which	is	shown	to	the	

right.	 	 In	 this	 case	 distribution	 skewness	 is	 positive,	 but	 too	 low	 to	 be	 deemed	

significant.	Most	of	the	extreme	outliers	are	from	late	2008.	
	

Fig.	3.3.1:	Sample	log	returns:	Distribution	density	(left)	and	normal	QQ	plot	(right)	

	

For	 OMXS30	 it	 is	 less	 obvious	 whether	 sample	 returns	 should	 be	 regarded	 as	

autocorrelated.	As	can	be	seen	in	the	ACF	plot	to	the	right,	several	both	lower	and	higher	

order	autocorrelation	coefficients	are	significantly	different	from	zero.		
	

Fig.	3.3.2:	Sample	log	returns:	Squared	series	over	time	(left)	and	autocorrelation	function	(right)		
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But	 this	 is	 not	 enough	 for	 the	 Ljung-Box	 Q-test	 to	 concur.	 The	 null	 hypothesis	 of	 no	

autocorrelation	 can	 be	 kept	 for	 all	 lags	 at	 a	 5%	 significance	 level.	 The	 ARCH	 LM	 test	

confirms	 that	 returns	 exhibit	 conditional	 heteroscedasticity.	 That	 is,	 volatility	 is	 time	

varying	and	unevenly	distributed.	Judging	from	the	sign	bias	test	statistic,	positive	and	

negative	shocks	have	a	similar	effect.		

3.4	Summary	

In	this	section	the	goal	has	been	to	become	familiar	with	the	data	samples	of	the	three	

indices	 that	 all	 further	 analysis	will	 be	 based	 on.	 They	 have	 several	 characteristics	 in	

common.	 The	 return	 distribution	 of	 all	 three	 indices	 has	 high	 enough	 kurtosis	 for	

normality	 to	 be	 rejected	when	 using	 the	 Jarque-Bera	 test.	 But	 this	 only	 tells	 half	 the	

story.	 They	 also	 have	 sharper	 peaks,	 so	 to	 speak,	 than	 a	 normal	 distribution	 has.	

FTSE100	has	the	most	pronounced	skewness,	but	it	is	not	extreme	in	an	absolute	sense.	

It	 stands	 to	 reason	 that	 applying	 a	 distribution	 that	 can	 accommodate	 high	 excess	

kurtosis	 should	 result	 in	 a	 far	 better	 model	 fit	 for	 all	 three	 series,	 and	 perhaps	 also	

improved	forecasting	performance.		

	

Autocorrelation	 statistics	 for	 the	 three	 indices	 vary.	 FTSE100	 is	 the	 only	 index	 with	

returns	 that	exhibit	 strong	autocorrelation.	For	DAX30	and	OMXS30	 the	ACF	 indicates	

that	autocorrelation	is	present	at	some	lags,	but	not	many	enough	for	the	Ljung-Box	Q-

test	 to	confirm.	Specifying	 the	conditional	mean	as	autoregressive	 is	 likely	 to	 improve	

model	 goodness	 of	 fit,	 particularly	 for	 FTSE100.	 Forecasting	 performance	 might	 also	

benefit.	There	is	evidence	of	conditional	heteroscedasticity	in	all	three	indices.	ARCH	LM	

tests	 indicate	 this	 and	 it	 is	 strong	 enough	 to	be	 clearly	 visible	 in	 squared	 return	 time	

plots.	Sign	bias	 test	 results	are	mixed.	DAX30	 is	 the	only	 index	 for	which	positive	and	

negative	shocks	of	equal	size	appear	to	have	a	different	effect	on	conditional	variance.	A	

leverage	effect	could	be	the	cause	of	this.	
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4	Methodology	

4.1	Estimation	procedure	

When	 it	 comes	 to	 variance	 forecasting	 the	 usefulness	 of	 a	 model	 is	 arguably	 best	

measured	by	how	well	it	performs	with	new	data.	For	performance	rankings	of	different	

models	to	be	meaningful	forecast	errors	must	also	be	measured	over	a	long	time	period	

to	obtain	a	large	sample.	To	achieve	this	a	rolling	data	window	will	be	used,	which	can	

be	seen	as	two	subsamples.		The	first	estimation	window	and	subsample	will	consist	of	

𝑟!, 𝑟!,… ,  𝑟! ,	 where	 rt	 denotes	 daily	 log	 return	 observations.	 The	 estimated	model	 is	

used	 to	 create	 a	 conditional	 variance	 out-of-sample	 forecast	 for	 the	 period	

𝑟!!!,𝑟!!!,… , 𝑟!!! ,	 the	 second	 subsample,	 which	 is	 then	 stored.	 The	 window	 then	

moves	forward	by	k	data	points	and	the	process	is	repeated	until	the	whole	sample	has	

been	used.		Forecast	errors	are	then	computed	and	measured	with	loss	functions.		If	N	is	

the	 total	number	of	data	points	 there	will	be	!!!
!
	forecast	errors	 (rounded	down).	The	

subsample	time	structure	is	identical	for	all	models	within	each	series.		

	

Distribution	attributes	have	a	tendency	to	change	over	time	so	the	question	arises	as	to	

what	is	the	appropriate	estimation	window	length.	It	has	no	definite	answer.	There’s	no	

reason	 for	 it	 to	 be	 any	 longer	 than	 necessary.	 As	 time	 passes	 older	 data	 gradually	

becomes	less	relevant	for	forecasting.	Moreover,	withholding	data	increases	the	number	

of	observations	that	can	be	used	for	out-of-sample	forecasting.		

	

In	 this	 study	 the	 estimation	 window	 length	 will	 be	 10	 years.	 Recursive	 estimations	

reveal	 that	 GARCH	 parameter	 estimates	 typically	 stabilize	 when	 the	 window	 is	

increased	past	8	years.	The	equity	market,	and	especially	blue-chip	companies,	will	be	

sensitive	to	the	overall	economic	business	cycle.	A	 length	of	10	years	 is	 likely	to	cover	

both	economic	expansions	and	contractions.	The	 length	of	 the	 forecast	periods	will	be	

10	and	20	trading	days,	which	equals	2	and	4	weeks,	respectively,	if	not	accounting	for	

bank	holidays.		The	variance	estimator	will	be	based	on	squared	daily	returns		

σ!! = m!! r!!
!

!!!
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where	𝜎!!	is	 the	 realized	 variance	 estimate	 at	 time	 k,	m	 is	 the	 length	 of	 the	 forecast	

period	and	𝑟!!	represents	individual	log	return	observations.	Extending	the	forecast	past	

just	 a	 few	 days	will	 even	 out	 idiosyncratic	movements	 in	 the	 proxy,	 resulting	 in	 less	

ambiguous	loss	function	results.		

4.2	Forecast	evaluation	

Estimated	and	forecasted	variance	will	be	compared	with	the	use	of	loss	functions.	The	

choice	of	 loss	functions	can	have	a	significant	 impact	on	model	rankings.	Even	with	all	

the	previous	research	no	consensus	has	formed	yet	on	this	subject.	 It	should	be	partly	

determined	 based	 on	 which	 variance	 proxy	 is	 used.	 In	 this	 study	 the	 chosen	

methodology	for	forecast	evaluation	has	been	influenced	by	Patton	(2011),	and	Patton	

and	 Sheppard	 (2009).	 They	 point	 out	 that	 the	 chosen	 evaluation	 methods	 should	 be	

robust	to	the	presence	of	noise	in	the	variance	proxy,	meaning	that	it	should	not	affect	

how	 the	models	 are	 ranked	 as	 the	 forecast	 error	 sample	 increases	 in	 size.	 	 Secondly,	

evaluation	 techniques	 should	 not	 rely	 on	 assumptions	 about	 the	 third	 and	 fourth	

moment	of	the	conditional	return	distribution.		

Mean	squared	error	(MSE)	and	Quasi-likelihood	(QLIKE)	are	loss	functions	that	fit	these	

criteria.	The	latter	one	is	the	preferred	choice	in	the	studies	mentioned	above.	A	lower	

loss	 function	value	 indicates	higher	 forecasting	accuracy.	They	are	given	equal	weight	

when	 models	 are	 ranked	 in	 section	 7	 but	 this	 might	 not	 always	 be	 appropriate.	 If	

forecasting	 accuracy	 during	 periods	 of	 high	 volatility	 is	 more	 important	 to	 the	

practitioner	the	MSE	function	should	be	given	more	weight.		

4.2.1	Mean	Squared	Error	

The	optimal	MSE	 forecast	 is	 the	conditional	variance	so	 the	 function	 is	appropriate.	 It	

has	however	been	disregarded	 in	many	previous	studies	because	extreme	outliers	can	

drive	the	results.	But	trying	to	counteract	this	by	opting	for	functions	that	uses	absolute	

or	median	values	will	instead	lead	to	biased	results.	MSE	is	defined	by	

MSE = n!! (σ!
! − h!)!

!

!!!

	

Where	𝜎!!	and	hi	is	the	conditional	variance	estimator	and	forecast,	respectively,	and	n	is	

the	size	of	the	forecast	error	sample.		
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4.2.2	Quasi-Likelihood	

This	 is	 a	 standardized	 measure,	 which	 makes	 the	 outliers	 much	 less	 prominent.	 In	

similar	 fashion,	 the	optimal	QLIKE	 forecast	 is	 the	conditional	variance.	The	 function	 is	

given	by	

QLIKE = n!! log h! +
σ!
!

h!

!

!!!

	

It	is	the	loss	function	implied	in	the	Gaussian	likelihood	function.	Bollerslev	et	al.	(1994)	

appears	to	have	been	one	of	the	first	to	consider	it.	Since	then	it	has	been	infrequently	

used.		
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5	Forecasting	models	

Many	 new	 univariate	 GARCH	models	 have	 been	 suggested	 since	 the	 standard	 one	 by	

Bollerslev	 (1986).	 Most	 of	 these	 are	 only	 slightly	 different	 from	 each	 other	 and	 will	

therefore	produce	similar	results.	In	this	case	the	data	exhibits	volatility	clustering	and	

leptokurtosis.	 The	 data	 can	 also	 be	 expected	 to	 show	 leverage	 effects,	 which	 will	 be	

explored	further	in	Section	6.	Some	asymmetric	models	will	therefore	also	be	included.	

Compared	with	naïve	alternatives	GARCH	models	are	more	cumbersome	to	estimate,	as	

they	 require	 regression	 software.	 The	 relative	 usefulness	 of	 naïve	 models	 is	 for	 this	

reason	also	of	interest.			

5.1	The	Maximum	Likelihood	Method	

Once	the	GARCH	models	have	been	specified	the	parameters	will	be	estimated	using	the	

Quasi-Maximum	Likelihood	Estimator	(QMLE)	 in	G@RCH	7,	an	OxMetrics	module.	The	

method	works	by	finding	the	most	likely	function	that	explains	the	observed	data	based	

on	 a	 given	 error	 distribution.	 It’s	 easier	 to	 use	 the	 natural	 logarithm	 of	 the	 function,	

called	the	log-likelihood	function	(LLF).	The	specification	depends	on	which	distribution	

is	used	and	its	density	function.	The	default	algorithm	in	G@RCH	7	is	the	quasi-Newton	

method	of	Broyden,	Fletcher,	Goldfarb	and	Shanno	(BFGS).	Formulas	for	the	respective	

log-likelihood	functions	can	be	found	in	Appendix	B.	

5.2	Conditional	mean	

The	conditional	mean	is	of	secondary	interest	but	taking	it	into	account	is	nevertheless	

needed	 for	correct	specification.	The	standard	model	will	have	a	constant	mean	μ	 and	

can	be	written	as	

r! = µ+ ε!	

rt	represents	the	daily	log	return	and	εt	denotes	the	market	shock,	error	or	innovation.	

In	cases	where	returns	are	autocorrelated	making	the	conditional	mean	autoregressive	

should	improve	the	model	fit.	An	AR(1)	mean	equation	can	be	defined	by	

r! = µ+  ϕr!!! + ε!	

An	AR(1)	specification	is	likely	to	be	sufficient	to	model	the	dynamic	structure	where	it	

exists.	Higher	orders	will	therefore	not	be	considered	in	this	study.	
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5.3	Densities	

How	 the	 GARCH	 error	 process,	 represented	 by	 εt,	 is	 defined	 has	 ramifications	 for	 the	

estimation	procedure.		It	has	zero	expected	value	and	time	varying	conditional	variance.		

To	 assume	 that	 if	 follows	 a	 conditionally	 normal	 distribution	 is	 the	 most	 practical.	

Though,	for	high	frequency	financial	data	this	assumption	is	often	less	realistic.	This	also	

seems	 to	 be	 the	 case	 here.	 To	 accommodate	 non-zero	 skewness	 and	 high	 kurtosis	

different	conditional	distributions	will	be	considered,	including	the	Gaussian	or	normal	

distribution	and	the	symmetric	and	skewed	Student	t	distributions.	

5.3.1	The	normal	distribution	

By	 assuming	 that	 errors	 are	 normally	 distributed,	𝜀!~𝑁(0,𝜎!!),	 skewness	 and	 excess	

kurtosis	remain	fixed	at	zero.	The	normal	distribution	is	used	extensively	because	it	has	

nice	properties	and	is	easy	to	apply.	Its	standardized	density	function	is	defined	as	

φ ε =
1

σ 2π
e
(!!!)!
!!! ,   −∞ < 𝜀 <  ∞	

5.3.2	The	symmetric	Student	t	distribution	

When	 errors	 are	 assumed	 to	 follow	 a	 symmetric	 Student	 t	 distribution,	𝜀!~𝑡(0,𝜎!!, 𝑣),	

the	degree	of	 freedom,	represented	by	v,	 is	 treated	as	a	parameter	and	optimized	 to	a	

constant	 level	 along	with	other	parameter	 values.	 	 If	v	=	∞,	 it	 collapses	 to	 the	normal	

distribution.	As	the	degree	of	freedom	is	reduced	tails	become	heavier	while	the	rest	of	

the	density	is	lowered.	The	standardized	Student	t	density	function	is	defined	as	

φ ε v =
Γ 𝑣 + 1

2
Γ 𝑣
2

1
π(𝑣 − 2)

1+
ε!

𝑣 − 2

!(!!!)!
,    −∞ < ε <  ∞,   𝑣 < 2 ≤  ∞  	

where	𝛤 ∙ 	is	the	gamma	function.	

5.3.3	The	skewed	Student	t	distribution	

By	 assuming	 that	 errors	 follow	 a	 skewed	 Student	 t	 distribution,	𝜀!~𝑡!"(0,𝜎!!, 𝜉, 𝑣),	 the	

asymmetry	 parameter	 is	 also	 optimized.	 This	 distribution	 nests	 the	 two	 above.	 It	

becomes	symmetric	if	the	asymmetry,	represented	by	ξ,	is	set	to	zero.	If,	in	addition,		
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v	=	∞,	 it	becomes	normal.	The	standardized	skewed	Student	t	density	function	is	given	

by	

φ ε 𝑣, ξ = b
Γ 𝑣 + 1

2
π 𝑣 − 2  Γ 𝑣

2  
1+

ζ!

𝑣 − 2

! !!!
!

,
−∞ < ε <  ∞

        𝑣 < 2 ≤  ∞  
−1 < ξ < 1

   	

where	

ζ =  (bz+ a)/(1− ξ) if z <  −a/b,
(bz+ a)/(1− ξ) if z ≥  −a/b.	

The	constant	terms	a	and	b	are	defined	as	

a = 4ξc
𝑣 − 2
𝑣 − 1 , b! = 1+ 3ξ! − a!	

and	are	introduced	to	obtain	a	variable	ε	with	zero	mean	and	unit	variance,	while	c	given	

by	

c =
Γ 𝑣 + 1

2
π 𝑣 − 2  Γ 𝑣

2
	

5.4	Conditional	variance	

The	conditional	variance	is	the	variable	that	will	be	focused	on	in	this	study.	Based	on	

statistical	 test	 results	 in	 section	 3	 the	 GARCH	 framework	 should	 provide	 superior	

predictive	capability	compared	to	naïve	models.	The	various	models	that	are	included	in	

this	 study	 will	 be	 presented	 in	 the	 following	 subsections	 with	 conditional	 variance	

specifications.	Model	definitions	and	forecasting	formulas	are	similar	to	those	given	by	

Alexander	(2008).	The	number	of	parameter	lags	used	will	be	limited	to	one,	ie.	p,q	=	1.	

In	most	cases	that	is	sufficient	to	capture	the	conditional	dependencies.	GJR-GARCH	and	

EGARCH	will	be	 included	 to	 investigate	 the	possibility	of	 asymmetric	news	 responses.	

Obviously,	there	are	more	complex	specifications	available	that	might	be	better	able	to	

capture	 the	 various	 asymmetric	 effects.	 The	 problem	 is	 that	 chances	 of	 convergence	

problems	increase	as	more	parameters	are	introduced.	Since	hundreds	of	models	will	be	

estimated	for	variance	forecasting,	this	is	an	important	issue.			

5.4.1	Equally	weighted	moving	average	

The	specification	is	identical	to	that	of	the	conditional	variance	proxy	that	uses	squared	

returns	on	a	daily	timeframe.	Even	though	this	is	a	relatively	simple	forecast	model	it	is	
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still	widely	used	today.	The	procedure	works	by	using	the	current	reading	as	a	constant	

forecast	for	the	whole	forecast	period.	In	this	case,	when	applied	to	forecasting,	it	will	be	

called	 the	 simple	moving	average	 (SMA)	 to	make	 it	more	distinctive.	The	average	will	

have	twice	the	length	to	that	of	the	forecast	period.	That	is,	the	10-day	forecast	will	be	

based	on	 the	previous	20	observations	while	 the	20-day	 forecast	will	 be	based	on	40	

observations.	 The	 SMA’s	 greatest	weakness	 is	 perhaps	 its	 inability	 to	 adjust	 for	mean	

reverting	variance.	Unless	the	forecast	period	is	very	short,	it	will	cause	forecast	errors	

to	 often	 be	 large	 when	 the	 conditional	 variance	 is	 deviating	 far	 from	 its	 long-run	

average.	 Equal	 weighting	 also	 slows	 down	 the	 model’s	 response	 time.	 Furthermore,	

when	previous	outliers	drop	out	abrupt	 fluctuations	will	occur,	 irrespective	of	current	

developments.	

5.4.2	Exponentially	weighted	moving	average	

When	trying	to	predict	future	volatility	fresh	data	is	the	most	useful.	In	the	EWMA	model	

older	 observations	 gradually	 lose	 importance.	 This	 study	 will	 follow	 the	 weighting	

scheme	outlined	in	Alexander	(2008)	

h! = 1− λ ε!!!! + λh!!!	

where	ℎ!	denotes	 the	 conditional	 variance.	The	value	of	λ,	 called	 lambda,	decides	how	

quickly	the	forecast	adjusts	to	new	innovations.	The	optimal	value	will	vary	depending	

on	the	data	set	and	the	length	of	the	forecast	period.	The	1-step	ahead	forecast	based	on	

all	information	available	up	to	and	including	observation	T	is		

h!!! = 1− λ ε!! + λh!  	

The	EWMA	model	is	effectively	a	restricted	version	of	the	symmetric	GARCH	model,	but	

it	has	the	same	problem	as	the	SMA	model.	The	constant	ω	is	set	to	zero	and	the	other	

parameter	values	sum	to	1,	so	the	forecast	will	be	the	same	for	all	time	horizons.		

5.4.3	The	GARCH	model	

The	 symmetric	 GARCH	model	 as	 proposed	 by	 Bollerslev	 (1986)	 is	 considerably	more	

powerful	 than	 the	 naïve	 models	 introduced	 earlier	 because	 of	 its	 ability	 to	 capture	

conditional	 heteroscedasticity	 and	 mean	 reversion.	 With	 one	 lag	 the	 conditional	

variance	equation	can	be	written	as	

h! = ω+ α ε!!!! + β h!!!	
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Parameter	constraints	might	be	needed	to	ensure	that	the	conditional	and	unconditional	

variance	is	positive	and	finite.	They	can	be	written	together	as	

ω > 0, α, β ≥ 0, α+ β < 0	

The	 GARCH	 model	 has	 created	 much	 more	 practical	 interest	 than	 the	 ARCH	 model	

proposed	 by	 Engle	 (1982)	 because	 it	 is	more	 parsimonious	 and	 easier	 to	 estimate.	 It	

does	 not	 treat	 positive	 and	 negative	 shocks	 differently,	 which	 should	 put	 it	 at	 a	

disadvantage	when	applied	to	equities.		

	

The	 sum	 of	 α	 and	 β	 tells	 how	 quickly	 the	 conditional	 and	 unconditional	 variances	

converge.	Together	with	the	constant	ω	the	unconditional	variance,	or	long-run	average,	

can	be	obtained	

h =
ω

1− (α+ β)	

Since	 shocks	 have	 a	 symmetric	 effect	 the	 conditional	 variance	 given	 by	 this	 model	

features	a	‘floor’.	This	also	leads	to	a	higher	unconditional	variance	than	in	asymmetric	

models.	

	

Conditional	 variance	 forecasts	 are	 derived	 recursively.	 Together	 they	 form	 a	 variance	

term	 structure	 that	 slopes	 upward	 (downward)	 if	 the	 current	 conditional	 variance	 is	

below	(above)	the	long-run	average.	The	1-step	ahead	forecast	based	on	all	information	

available	up	to	and	including	observation	T	is		

h!!! =  ω+ α ε!! +  β h!	

All	 the	 RHS	 values	 are	 in	 this	 case	 known.	 Taking	 the	 expectation	 of	 the	 unknown	

squared	error	𝜀!!!! 	the	forecast	for	step	2	at	time	T	can	now	be	obtained	

h!!! = ω+ α E! ε!!!! + β h!!! = ω+ α+ β h!!!	

This	procedure	is	repeated	for	the	rest	of	the	term	structure.	In	general,	for	S>1,	the	1-

step	ahead	forecast	at	T+S	is		

h!!!!! = ω+ α+ β h!!!	

When	the	forecast	period	to	be	evaluated	consists	of	more	than	one	day	the	average	of	

the	term	structure	during	that	period	is	used.	
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5.4.4	The	GJR-GARCH	model	

The	 impact	 from	 shocks	 on	 conditional	 variance	 in	 the	 standard	 GARCH	 model	 is	

symmetric.	 For	 some	 financial	 assets	 this	 specification	 is	 inadequate.	 Glosten	 et	 al.	

(1993)	proposed	a	modification	to	capture	a	potential	asymmetric	effect.	With	one	 lag	

this	model	takes	the	form	

h! = ω+ α ε!!!! + β h!!! + δ I !!!!!! 𝜀!!!
! 	

where	 the	 indicator	 function	𝐼 !!!!!! 	=	 1	 if	 εt	 <	 0	 and	0	otherwise.	 To	 ensure	 that	 the	

conditional	variance	is	positive	the	following	parameter	constraints	are	imposed		

ω > 0,   α, β, δ ≥ 0	

The	 coefficient  𝛿 	will	 be	 positive	 if	 negative	 innovations	 have	 a	 greater	 effect	 on	

conditional	variance.	Assuming	that	the	distribution	of	εt	is	symmetric	around	zero,	the	

expectation	of	the	asymmetry	parameter	is	

E I !!!!!! ε!!!
! =

1
2 δh!	

The	long-run	average	is	then	given	by	

h =
ω

1− (α+ β+ 12 δ)
	

The	forecasting	procedure	is	similar	to	that	of	the	standard	GARCH	model.	The	starting	

forecast	based	on	all	information	available	up	to	and	including	observation	T	is	

h!!! =  ω+ α ε!! +  β h! + δ I !!!! ε!
! 	

This	can	then	be	used	at	time	T	to	compute	a	forecast	for	step	2	

h!!! =  ω+ α E! ε!!!! + β h!!! +  δ E! I !!!!!! ε!!!
! =  ω+ α+ β+

1
2 δ h!!!	

The	rest	of	 the	term	structure	can	be	derived	in	a	similar	way.	At	observation	T+S,	for	

S>1,	the	1-step	ahead	forecast	is	

h!!!!! =  ω+ (α + β+
1
2 δ) h!!!	

5.4.5	The	EGARCH	model	

The	exponential	GARCH	model	will	be	 the	most	 complex	one	of	 those	 included	 in	 this	

study.	 In	 addition	 to	 the	 standard	 features	 it	 allows	 for	 asymmetric	 effects	 between	

positive	and	negative	errors.	With	one	parameter	lag	the	model	can	be	written	as	

ln h! = ω+ β ln h!!! +  g z!!!  	
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where	g(zt-1)	is	the	asymmetric	response	function		

g z! =  αz! + γ z! − E z! 	

Negative	shocks	have	an	impact	α	–	γ	on	the	log	of	the	unconditional	variance	while	for	

positive	shocks	the	impact	is	α	+	γ.	zt	represents	the	normalized	random	variable	

z! =  
ε!
h!
	

The	value	of	𝐸 𝑧! 	depends	on	the	assumption	made	on	the	unconditional	density	of	zt.	If	

assuming	that	it	belongs	to	a	normal	distribution,	the	value	is	simply	 2/𝜋.	If	it	follows	a	

skewed	Student	t	distribution	the	value	is	given	by	

E z! =
4ξ!

ξ+ 1/ξ
Γ 1+ 𝑣

2 𝑣 − 2

πΓ 𝑣/2
	

where	𝜉 	is	 the	 asymmetry	 parameter	 and	 v	 denotes	 the	 degree	 of	 freedom	 of	 the	

distribution.	 If	 zt	 instead	 follows	 a	 symmetric	 Student	 t	 distribution,	 then	𝜉 = 1.	By	

instead	 taking	 the	 logarithm	 of	 the	 unconditional	 variance	 parameter	 constraints	

become	unnecessary.	ht	will	stay	positive	even	with	negative	parameter	values.		

		

The	unconditional	variance	for	exponential	GARCH	is	defined	by	

h = exp
ω

1− β 	

The	 1-step	 ahead	 forecast	 at	 time	T	 is	 relatively	 straightforward,	 as	 all	 the	 right-side	

quantities	are	known	

h!!! = exp ω exp (g z! )h!
!	

Further	out	the	forecast	will	rely	on	the	conditional	expectation	at	origin	T.	The	forecast	

for	step	2	is	given	by	

h!!! = exp ω E! exp (g z!!! ) h!!!
! 	

The	prior	expectation	of	the	response	function	is	obtained	by	

E exp (g(z) = exp αz+ γ z − E z
!

!!
φ z dz	

= exp (−γE 𝑧 ) exp α+ γ z! φ z dz+ exp ( α− γ z)φ z dz
!

!!

!

!
	

= exp(−γE 𝑧  ) exp
1
2 γ+ α ! ϕ γ+ α + exp

1
2 γ− α ! ϕ(γ− α) 	
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	φ	and	ϕ	denote	the	PDF	and	CDF	of	the	assumed	error	distribution.	Consequently,	the	

full	formula	for	the	2-step	ahead	forecast	is	

h!!! = exp
1
2 γ+ α ! ϕ γ+ α + exp

1
2 γ− α ! ϕ(γ− α)  exp(ω− γ E z )h!!!

! 	
The	rest	of	the	term	structure	can	be	derived	in	a	similar	way.	The	1-step	ahead	forecast	

at	observation	T+S	is	given	by	

h!!!!! = exp ω− γ E z h!!!
! exp

1
2 γ+ α ! ϕ γ+ α + exp

1
2 γ− α ! ϕ γ− α 	
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6	In-sample	analysis	

Before	moving	on	the	empirical	results	of	variance	forecasting	the	sample	data	will	be	

examined	by	 taking	a	 look	at	which	 types	of	models	perform	well	 in-sample.	Previous	

studies	on	 in-sample	modeling	have	been	reviewed	earlier.	Results	 in	 this	case	can	be	

expected	 to	 be	 similar.	 Three	 models	 will	 be	 presented	 for	 each	 index,	 one	 for	 each	

GARCH	 type.	 These	 are	 chosen	 based	 on	 Schwarz	 and	 Hannan-Quinn	 information	

criteria.	A	lower	criterion	indicates	a	better	goodness	of	fit.	

SIC =  −2
Log L
n + 2

log k
n ,   HQIC =  −2

Log L
n + 2

k log log(n)
n  	

Log	L	 denotes	 the	maximized	 LLF	 value,	 k	 is	 the	 number	 of	 parameters	 and	 n	 is	 the	

number	of	observations	used	in	the	estimation.		

	

The	 adequacy	 of	 the	 fit	 will	 be	 evaluated	 with	 statistical	 diagnostics	 on	 the	 model’s	

standardized	 residuals,	𝜀!/ ℎ! .	A	 correctly	 specified	 model	 will	 produce	 standardized	

residuals	that	fit	the	specified	error	distribution.	In	addition,	they	should	not	display	any	

autocorrelation	or	conditional	heteroscedasticity.	The	procedure	will	be	similar	to	that	

in	Section	3.	The	Ljung-Box	portmanteau	test	will	be	used	to	check	for	autocorrelation	

while	 the	 ARCH	 LM	 test	 will	 show	 if	 conditional	 heteroscedasticity	 is	 still	 present.	

Details	 on	 how	 these	 tests	 are	 conducted	 can	 be	 found	 in	 Appendix	 A.	Determining	

whether	the	distribution	is	appropriate	is	more	complicated.	The	main	objective	in	this	

paper	 is	 not	 to	 ascertain	 which	models	 perform	 best	 based	 on	 in-sample	 evaluation.		

Some	 of	 the	 estimated	 models	 will	 have	 error	 distributions	 that	 are	 optimized	 with	

regards	 to	both	 the	 third	and	 fourth	moment.	The	complexity	 could	be	 increased	past	

this	to	obtain	an	even	better	fit,	for	example	with	time	varying	distribution	parameters,	

but	this	will	be	left	to	other	researchers.		

	

Models	were	estimated	using	10	years	of	data.	Specifically,	from	1st	January	2001	to	31st	

December	 2010.	 Using	 the	 full	 sample	 would	 result	 in	 very	 rigid	 models	 with	 flat	

variance	term	structures.	The	estimation	period	is	the	center	of	the	sample,	which	for	all	

three	 indices	 include	 two	 bear	 markets.	 Between	 these	 two	 periods	 markets	 were	

unusually	calm.	The	numbers	in	parentheses	are	t-statistics.	Coefficients	are	rounded	to	

four	decimals.	Extreme	outliers	will	not	be	managed	in	any	way	to	improve	model	fit.	 	
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6.1	DAX30	

The	 models	 with	 the	 lowest	 information	 criteria	 have	 an	 asymmetric	 specification.	

Switching	 from	 standard	 GARCH	 to	 either	 GJR	 or	 EGARCH	 results	 in	 a	 noteworthy	

improvement	in	model	fit.	The	exponential	GARCH	model	has	here	a	slightly	higher	log-

likelihood	 value	 than	 the	 GJR-GARCH	 model	 but	 when	 the	 number	 of	 parameters	 is	

taken	into	account	they	score	about	equally	well.	None	of	the	presented	models	has	an	

autoregressive	 conditional	mean.	 Including	 a	 first	 order	AR	 parameter	 results	 in	 only	

marginal	 increases	 in	 log-likelihood	 values	 while	 absolute	 t-ratios	 indicate	 low	

significance.		

	

The	highest	ranking	models	have	conditional	error	distributions	with	high	kurtosis	and	

negative	skewness,	but	 the	 fitted	values	are	not	unusual.	Unconditional	volatilities	are	

for	the	most	part	realistic.	As	is	often	the	case,	standard	GARCH	has	the	highest	long-run	

volatility.	For	the	exponential	GARCH	model	it	is	too	low.		

	

Tests	conducted	on	standardized	residuals	reveal	that	not	all	of	the	models	are	correctly	

specified.	 Specifically,	 ARCH	 effects	 are	 still	 visible	 in	 the	 standardized	 residuals	

belonging	 to	 the	 GJR-GARCH	model.	 This	 could	 be	 remedied	 by	 increasing	 the	model	

order.	This	would	also	reduce	information	criteria	values	further.	In	the	same	model	the	

symmetric	 shock	 parameter	 value	 is	 constrained	 to	 zero,	 which	 makes	 the	 leverage	

parameter	 the	 only	 transmitter	 of	 past	 shocks.	 The	 sample	 period	 used	 in	 these	

estimations	 extends	 across	 several	 different	 market	 environments.	 Therefore	 it	 is	

inevitable	that	the	standardized	residuals	for	these	models	contain	some	outliers,	even	if	

they	are	relatively	complex.	
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Table	6.1.1:	DAX30	models,	January	2001	to	December	2010	

	 GARCH(1,1)	

Skewed	Student	t	

GJR-GARCH(1,1)	

Skewed	Student	t	

EGARCH(1,1)	

Skewed	Student	t	

Log-likelihood	 -4308.16	 -4261.33	 -4258.99	

Uncond.	volatility	1	 1.7025	 1.3820	 0.8196	
	 	 	 	

Coefficients	(t-stat)	 	 	 	

μ	 0.0671	(3.01)	 0.0224	(1.01)	 0.0223	(1.04)	

ω	 0.0161	(2.80)	 0.0238	(4.12)	 -0.7457	(-2.08)	

α	 0.0895	(7.04)	 0.0000	(0.00)	 0.0745	(0.29)	

β	 0.9050	(76.46)	 0.9088	(74.87)	 0.9813	(253.60)	

δ	 	 0.1574	(6.93)	 	

γ1	 	 	 	 -0.1221	(-3.60)	

γ2	 	 	 0.1166	(5.06)	

ε	distr.	2	 v		12.2895	

ξ	-0.1014	

v	20.4835	

ξ		-0.1316	

v	18.8111	

ξ	-0.1284	
	 	 	 	

Misspecification	tests	3	 	 	 	

Ljung-Box	

			Q5	

			Q10	

			Q20	

	

23.22	

30.06	

40.91	

	

20.34	

23.74	

28.02	

	

12.95	

16.23	

19.41	

ARCH	LM		

			Q5	

			Q10	

	

3.75	

27.04	

	

0.28	

3.75	

	

7.79	

18.04	
	 	 	 	

Information	criteria	 	 	 	

SIC	 3.4054	 3.3717	 3.3729	

HQIC	 3.3966	 3.3614	 3.3612	
1	Square	 root	 of	 variance.	 2	v	 and	 ξ	 represent	 degrees	 of	 freedom	 and	 asymmetry,	 respectively.	 	 3	 All	

numbers	are	p-values,	Qm	denotes	the	number	of	lags	
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6.2	FTSE100	

The	two	asymmetric	models	can	be	seen	to	provide	markedly	lower	information	criteria	

than	the	standard	GARCH	model.	Skewed	t	EGARCH	is	the	highest	ranking	model.	It	has	

the	 highest	 log-likelihood	 value	 and	 both	 information	 criteria	 are	 lower	 than	 for	 the	

other	 two	models.	 In	 this	 case,	 it	 appears	 that	modeling	with	 an	 autoregressive	mean	

process	 is	appropriate.	Log-likelihood	values	and	t-ratios	 indicate	that	a	 first	order	AR	

parameter	has	significant	explanatory	power.	This	 is	 in	 line	with	what	autocorrelation	

statistics	for	the	full	sample	indicated	in	section	3.		

	

For	all	 three	specifications	 the	 lowest	 information	criteria	are	obtained	by	assuming	a	

conditional	 error	 distribution	 with	 high	 kurtosis	 and	 negative	 skewness.	 The	

unconditional	volatility	levels	of	the	presented	models	are	realistic	with	one	exception.	

For	the	exponential	GARCH	model	it	is	much	too	low.		

	

Misspecification	 test	 results	 generally	 support	 the	 case	 that	 these	 models	 have	 an	

adequate	fit.	Judging	from	Ljung-Box	test	results,	one	autoregressive	lag	is	sufficient	to	

model	 the	 autocorrelation	 that	 is	 present	 in	 returns.	 However,	 some	 residual	 ARCH	

effects	 are	 present	 in	 the	 standardized	 residuals	 belonging	 to	 the	 GJR	 and	 standard	

GARCH	model.	Though	the	extent	of	this	is	not	severe.	Increasing	the	model	order	would	

take	 care	of	 this	 and	 cause	a	 further	 reduction	 in	 information	 criteria	values.	But	 it	 is	

also	likely	that	the	model	would	become	overfitted.		

	
	
	
	 	



	

	27	

Table	6.2.1:	FTSE100	models,	January	2001	to	December	2010	

	 AR(1)-GARCH(1,1)	

	

Skewed	Student	t	

AR(1)-GJR-

GARCH(1,1)	

Skewed	Student	t	

AR(1)-

EGARCH(1,1)	

Skewed	Student	t	

Log-likelihood	 -3667.28	 -3619.45	 -3611.64	

Uncond.	volatility	1	 1.3623	 1.0741	 0.5662	
	 	 	 	

Coefficients	(t-stat)	 	 	 	

μ	 0.0399	(2.61)	 0.0085	(0.55)	 0.0049	(0.32)	

Φ	 -0.0822	(-4.05)	 -0.0738	(-3.79)	 -0.0622	(-3.19)	

ω	 0.0120	(3.16)	 0.0157	(4.04)	 -1.7207	(-3.50)	

α	 0.1057	(7.68)	 0.0000	(0.00)	 0.0292	(0.13)	

β	 0.8878	(64.84)	 0.9052	(67.96)	 0.9849	(298.10)	

δ	 	 -0.1611	(-5.48)	 	

γ1	 	 	 	 -0.1270	(-4.61)	

γ2	 	 	 0.1590	(5.39)	

ε	distr.	2	 v		15.7323	

ξ	-0.1391	

v	21.2052	

ξ		-0.1611	

v	23.0931	

ξ	-0.1590	
	 	 	 	

Misspecification	tests	3	 	 	 	

Ljung-Box	

			Q5	

			Q10	

			Q20	

	

31.51	

75.60	

72.02	

	

45.21	

83.96	

82.48	

	

45.52	

79.23	

77.22	

ARCH	LM		

			Q5	

			Q10	

	

12.48	

6.78	

	

10.73	

5.45	

	

32.40	

11.13	

			Q20	 1.69	 5.10	 9.21	
	 	 	 	

Information	criteria	 	 	 	

SIC	 2.9196	 2.8849	 2.8818	

HQIC	 2.9093	 2.8731	 2.8686	
1	Square	 root	 of	 variance.	 2	v	 and	 ξ	 represent	 degrees	 of	 freedom	 and	 asymmetry,	 respectively.	 	 3	 All	

numbers	are	p-values,	Qm	denotes	the	number	of	lags	
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6.3	OMXS30	

The	two	asymmetric	models	have	the	lowest	information	criteria.	But	if	comparing	with	

the	other	two	indices,	the	difference	is	smaller.	Between	these	two	asymmetric	models	

the	 ranking	 is	mixed.	The	exponential	GARCH	model	has	 a	higher	 log-likelihood	value	

but	 also	 a	 greater	 number	 of	 parameters	 which	 it	 is	 penalized	 for	 by	 information	

criteria.	In	this	case	goodness	of	fit	 is	not	improved	noticeably	when	modeling	with	an	

autoregressive	mean	process.	With	regards	to	standard	GARCH	models,	absolute	t-ratios	

are	almost	high	enough	to	indicate	relevance	at	a	5%	significance	level.		

	

Assuming	 a	 non-normal	 conditional	 error	 distribution	 results	 in	 lower	 information	

criteria	for	all	three	model	types.	The	optimal	t	distributions	that	are	assumed	here	have	

very	high	kurtosis.	When	it	comes	to	skewness	the	increases	in	log-likelihood	values	are	

so	marginal	that	it	mostly	results	in	higher	information	criteria.	Specifically,	for	the	two	

asymmetric	models	 the	SIC	and	HQIC	disagrees	on	whether	 the	distribution	should	be	

symmetric	or	not.	In	such	cases	the	simpler	model	should	be	the	preferred	one.		

Exponential	 and	 standard	 GARCH	 models	 typically	 have	 the	 lowest	 and	 highest	

conditional	 volatilities,	 respectively.	 This	 is	 also	 the	 case	 here,	 which	 is	 reflected	 by	

unconditional	volatility	levels.	All	three	levels	appear	reasonable.			

	

Misspecification	 test	 results	 suggest	 that	 these	models	 have	 an	 adequate	 fit.	 There	 is	

little	 sign	 of	 residual	 autocorrelation	 or	 conditional	 heteroscedasticity	 in	 the	

standardized	 residuals	 of	 any	 of	 the	models.	 The	 asymmetric	models	 appear	 to	 have	

some	redundant	parameters.	Most	noteworthy	is	the	symmetric	shock	parameter	in	the	

GJR-GARCH	model.	With	 alpha	 constrained	 to	 zero	 the	 leverage	parameter	 is	 the	only	

channel	for	past	shocks.		
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Table	6.3.1:	OMXS30	models,	January	2001	to	December	2010	

	 GARCH(1,1)	

Symmetric	Student	t	

GJR-GARCH(1,1)	

Symmetric	Student	t	

EGARCH(1,1)	

Skewed	Student	t	

Log-likelihood	 -4368.51	 -4334.01	 -4332.82	

Uncond.	volatility	1	 1.8882	 1.4373	 1.1494	
	 	 	 	

Coefficients	(t-stat)	 	 	 	

μ	 0.0792	(3.53)	 0.0390	(1.71)	 0.0334	(1.46)	

ω	 0.0130	(2.10)	 0.0183	(2.36)	 0.4110	(1.82)	

α	 0.0747	(4.97)	 0.0000	(0.00)	 -0.1579	(-0.83)	

β	 0.9217	(60.45)	 0.9277	(44.70)	 0.9852	(238.40)	

δ	 	 0.1268	(4.73)	 	

γ1	 	 	 	 -0.1423	(-4.47)	

γ2	 	 	 0.1297	(4.94)	

ε	distr.	2	 v	9.7985		 v	12.6951	 v	12.4722	
	 	 	 	

Misspecification	tests	3	 	 	 	

Ljung-Box	

			Q5	

			Q10	

			Q20	

	

50.49	

52.61	

88.84	

	

28.77	

35.86	

77.46	

	

18.83	

22.82	

62.67	

ARCH	LM		

			Q5	

			Q10	

	

10.39	

34.95	

	

69.19	

33.46	

	

43.34	

37.63	

			Q20	 16.72	 44.70	 30.89	
	 	 	 	

Information	criteria	 	 	 	

SIC	 3.4971	 3.4707	 3.4741	

HQIC	 3.4882	 3.4618	 3.4622	
1	Square	 root	 of	 variance.	 2	v	 and	 ξ	 represent	 degrees	 of	 freedom	 and	 asymmetry,	 respectively.	 	 3	 All	

numbers	are	p-values,	Qm	denotes	the	number	of	lags	
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6.4	Summary	

In	 this	section	nine	different	GARCH	variations	have	been	estimated	using	10	years	of	

sample	 data.	 The	models	 were	 ranked	 based	 on	 information	 criteria	 and	 the	 highest	

ranking	 one	 for	 each	 specification	 was	 chosen	 for	 further	 analysis.	 This	 step	 is	 not	

essential	but	it	does	allow	one	to	learn	more	about	the	data	before	moving	on	to	forecast	

estimation	and	evaluation.		

The	results	were	generally	 in	 line	with	previous	studies.	 Information	criteria	measure	

goodness	 of	 fit.	 In	 this	 regard,	 asymmetric	 response	 functions	made	 a	 big	 difference.	

Asymmetric	 models	 delivered	 lower	 information	 criteria	 for	 all	 three	 indices.	 When	

distribution	kurtosis	and	skewness	become	additional	parameters	that	can	be	optimized	

the	model	fit	is	improved	further.	In	other	words,	the	preferred	models	are	asymmetric	

and	 fitted	 to	 a	 Student	 t	 distribution,	 symmetrical	 or	 skewed.	 This	 is	 in	 line	 with	

observations	given	in	section	3	about	the	unconditional	distribution	for	the	full	sample	

period.		

It	 appears	 that	 with	 the	 given	 estimation	 period	 first	 order	 models	 are	 sufficiently	

complex	to	capture	the	conditional	heteroscedasticity.		In	some	cases	lower	information	

criteria	could	be	obtained	by	applying	second	order	models.	However,	increasing	model	

complexity	 does	 not	 typically	 benefit	 its	 robustness.	 Given	 a	 relatively	 volatile	

estimation	period	the	result	quickly	becomes	an	overfitted	model	if	the	focus	is	solely	on	

obtaining	standardized	residuals	that	are	well	behaved.			

	

The	 unconditional,	 or	 steady	 state,	 variance	 level	 differs	 depending	 on	 the	 GARCH	

model.	 It	 is	 determined	 indirectly	 from	 optimized	 parameters.	 Using	 the	 previously	

listed	 definitions,	 the	 variation	 between	 models	 in	 unconditional	 volatility	 for	 some	

indices	 is	 noteworthy.	 The	 unconditional	 volatility	 levels	 for	 these	 models	 are	 also	

rather	high,	in	an	absolute	sense.	This	has	to	do	with	a	volatile	estimation	period.		

	

These	 models	 and	 observations	 might	 seem	 to	 have	 limited	 usefulness	 outside	 this	

section	since	they	are	not	based	on	the	full	sample.	But	the	general	observations	are	still	

highly	 relevant.	 Irrespective	 of	 which	 estimation	 period	 is	 used,	 asymmetric	 models	

with	 a	 symmetric	 or	 skewed	 t	 distribution	 have	 the	 lowest	 information	 criteria.	 Log-

likelihood	values,	coefficients	and	standard	errors	are	the	only	details	that	change.	
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7	Forecasting	results	

In	this	section	forecasting	results	of	all	the	considered	models	will	be	presented.	Some	

complications	 were	 encountered,	 which	 will	 be	 discussed	 first.	 It	 would	 seem	

appropriate	 to	 accommodate	 potential	 time	 varying	 autocorrelation.	 The	 preliminary	

Ljung-Box	 Q-tests	 conducted	 on	 returns	 were	 inadequate	 for	 discovering	 this.	 All	

GARCH	 models	 have	 therefore	 been	 estimated	 both	 with	 and	 without	 an	 AR(1)	

conditional	 mean	 for	 all	 three	 indices.	 The	 two	 categories	 should	 not	 be	 seen	 as	

competitors.	With	regards	to	conditional	variance	specifications,	all	models	will	be	of	

first	order.	That	is,	they	will	have	one	ARCH	and	GARCH	parameter.		

	

When	 estimating	 GJR-GARCH	 models	 it	 became	 necessary	 to	 impose	 a	 positivity	

constraint	on	the	symmetric	ARCH	parameter	to	ensure	a	positive	conditional	variance.	

No	constraints	were	necessary	for	standard	GARCH	models.	Lack	of	convergence	was	a	

frequent	problem	when	estimating	exponential	GARCH	models.	This	 is	 rarely	an	 issue	

under	normal	circumstances.	Switching	to	the	Sequential	Quadratic	Programming	(SQP)	

algorithm	helped	 in	 some	 cases.	Working	 around	 it	 by	 excluding	 the	 occurrence	 from	

the	estimation	procedure	is	tedious	and	time	consuming.	GARCH	models	for	which	the	

estimation	 procedure	 had	 several	 no	 convergence	 occurrences	 are	 listed	 with	 N/A	

values.	

	

Daily	 variances	 are	 converted	 to	 standard	 deviations,	 which	 are	 referred	 to	 as	

volatilities.	Taking	the	square	root	will	increase	the	usefulness	of	charts	by	shrinking	the	

scales.	The	focus	will	mostly	be	on	the	best	performing	models.	These	will	also	be	used	

to	gain	more	insight	about	the	population	by	examining	changes	in	parameter	values.		

The	 assumed	 conditional	 kurtosis	 in	 Student	 t	 models,	 represented	 by	 the	 degree	 of	

freedom	 v,	 is	 also	 liable	 to	 change	 during	 the	 estimation	 procedure.	 As	mentioned	 in	

section	5.3,	 the	value	of	v	 is	 optimized	along	with	other	parameters	 values.	Degree	of	

freedom	 parameter	 values	 will	 be	 charted	 to	 see	 how	 pronounced	 the	 conditional	

kurtosis	is	and	to	make	model	rankings	more	insightful.		

	

The	 lowest	value	 in	each	column	 is	marked	with	a	 solid	underline.	The	second	 lowest	

value,	belonging	to	a	model	with	a	different	variance	equation	than	the	first,	is	marked	

with	a	dotted	underline.	 	



	

	32	

7.1	DAX30	

Table	7.1.1:	DAX30	out-of-sample	forecasting	results		

	

	 10	days	 	 20	days	

	 MSE	 QLIKE	 	 MSE	 QLIKE	

SMA	 4.9182	 1.5674	 	 6.0898	 1.6084	

EWMA	0.92	 4,0576	 1,5324	 	 3,7778	 1,5738	

EWMA	0.95	
	

Const.	in	cond.	mean	

4,6379	 1,5262	 	 4,3867	 1,5594	

GARCH	normal	 3.7699	 1.4831	 	 3.3938	 1.5019	

GARCH	symmetric	t	 3.8987	 1.4860	 	 3.5792	 1.5074	

GARCH	skewed	t	 3.8807	 1.4876	 	 3.5459	 1.5081	

GJR-GARCH	normal	 3.2858	 1.4681	 	 2.7626	 1.5008	

GJR-GARCH	symmetric	t	 3.3209	 1.4704	 	 2.7721	 1.5091	

GJR-GARCH	skewed	t	 3.4017	 1.4690	 	 2.9249	 1.5027	

EGARCH	normal	 3.7366	 1.4790	 	 3.5446	 1.5276	

EGARCH	symmetric	t	 3.6733	 1.4793	 	 3.4372	 1.5287	

EGARCH	skewed	t	
	

Const.	+	lag	in	cond.	mean	

GARCH	normal	

GARCH	symmetric	t	

GARCH	skewed	t	

GJR-GARCH	normal	

GJR-GARCH	symmetric	t	

GJR-GARCH	skewed	t	

EGARCH	normal	

EGARCH	symmetric	t	

EGARCH	skewed	t	

3.9084	
	

	

3.7461	

3.8836	

3.8542	

3.2973	

3.3347	

3.4344	

3.8084	

3.6575	

		N/A	

1.4966	
	

	

1.4827	

1.4856	

1.4870	

1.4682	

1.4705	

1.4691	

1.4749	

1.4807	

N/A	

	 4.0915	
	

	

3.3648	

3.5604	

3.5132	

2.7738	

2.7885	

2.9674	

3.5955	

3.4299	

N/A	

1.5885	

	

	

1.5015	

1.5073	

1.5080	

1.5010	

1.5059	

1.5032	

1.5171	

1.5293	

N/A	
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Models	 with	 a	 symmetrical	 or	 skewed	 Student	 t	 error	 distribution	 have	 similar	

performance	 overall.	 Staying	 with	 the	 normal	 distribution	 results	 in	 the	 lowest	 loss	

function	 values	 for	 both	 GJR	 and	 standard	 GARCH	 models.	 This	 contradicts	 the	

observations	 in	 section	 3	 about	 the	 unconditional	 return	 distribution.	 Student	 t	

conditional	distributions	are	also	heavy-tailed,	as	can	be	seen	in	figure	7.1.1.	The	degree	

of	 freedom	varies	 considerably	during	 the	 first	 years.	 In	 the	 second	half	 it	 starts	on	a	

gradual	decline	as	the	volatility	settles	down.	The	trend	eventually	carries	it	below	8	for	

all	three	models,	resulting	in	very	heavy-tailed	conditional	distributions.	
	
Fig.	7.1.1:	Symmetric	t	GARCH(1,1)	models,	degree	of	freedom	parameter	value	over	time	
	 			The	horizontal	axis	shows	the	estimation	window	starting	point	

Asymmetric	models	 stand	 far	apart	when	comparing	 loss	 function	values.	Exponential	

GARCH	 models	 have	 some	 of	 the	 highest	 values,	 in	 contrast	 to	 GJR-GARCH	 models,	

which	 have	 some	 of	 the	 lowest	 ones.	 In	 fact,	 skewed	 t	 EGARCH	 has	 the	 worst	

performance,	second	only	to	naïve	models.	Standard	GARCH	models	perform	better	with	

an	 autoregressive	 conditional	 mean.	 GJR-GARCH	 models	 do	 not.	 With	 exponential	

GARCH	 models	 the	 results	 are	 mixed	 in	 this	 regard.	 Overall,	 the	 normal	 GJR-GARCH	

model	 is	 the	 best	 performing	 model.	 It	 has	 the	 lowest	 loss	 function	 values	 with	 a	

significant	margin,	for	both	MSE	and	QLIKE,	regardless	of	forecast	length.	 	Figure	7.1.2	

shows	how	forecasted	volatility	from	this	model	compares	with	estimated	volatility	on	a	

10-day	horizon.		

The	conditional	variance	equation	 in	 the	GJR-GARCH	model	has	only	 four	parameters.	

Figure	7.1.3	illustrates	the	evolution	in	parameter	values	during	the	sample	period.	The	

variance	constant	and	beta	is	relatively	stable	throughout	the	whole	sample.	For	alpha	

and	delta	the	variation	is	higher.	Something	interesting	occurs	when	the	rolling	window		
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Fig.	7.1.2:	Normal	GJR-GARCH(1,1),	10-day	horizon	realized	(proxy)	and	forecasted	volatility		

Fig.	7.1.3:	Normal	GJR-GARCH(1,1),	model	coefficients	over	time		
			The	horizontal	axis	shows	the	estimation	window	starting	date	

starting	 point	 approaches	 year	 2000.	 Delta	 jumps	 while	 alpha	 reaches	 zero	 after	 a	

steady	downtrend.	The	leverage	parameter	essentially	takes	over	and	becomes	the	only	

parameter	that	responds	to	market	shocks.	If	excluding	models	with	a	GJR	specification,	

normal	or	symmetric	t	GARCH	is	the	second	best	model	for	a	10-day	forecast	horizon.	If	

extending	it	to	20	days,	a	standard	normal	GARCH	model	has	it	beat.		

	

Moving	on	to	naïve	models.	These	have	the	lowest	accuracy	of	all	estimated	models.	The	

SMA	 has	 provides	 the	 worst	 forecasts.	 The	 difference	 relative	 to	 EWMA	 models	 is	

noteworthy.		
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7.2	FTSE100	

Table	7.2.1:	FTSE100	out-of-sample	forecasting	results		

	

	 10	days	 	 20	days	

	 MSE	 QLIKE	 	 MSE	 QLIKE	

SMA	 6.5897	 1.2246	 	 6.4794	 1.2140	

EWMA	0.92	 6,2577	 1,1574	 	 4,7105	 1,2000	

EWMA	0.95	 6.1960	 1.1520	 	 5.0350	 1.1809	
	 	 	 	 	 	

Const.	in	cond.	mean	 	 	 	 	 	

GARCH	normal	 6.5135	 1.1204	 	 4.4747	 1.1363	

GARCH	symmetric	t	 6.4453	 1.1194	 	 4.4878	 1.1361	

GARCH	skewed	t	 6.3869	 1.1219	 	 4.4456	 1.1377	

GJR-GARCH	normal	 6.0306	 1.0881	 	 4.0732	 1.1316	

GJR-GARCH	symmetric	t	 6.0636	 1.0884	 	 4.0883	 1.1349	

GJR-GARCH	skewed	t	 6.2298	 1.0863	 	 4.1750	 1.1318	

EGARCH	normal	 5.5145	 1.0959	 	 4.3877	 1.1490	

EGARCH	symmetric	t	 5.5191	 1.0991	 	 4.4118	 1.1579	

EGARCH	skewed	t	 5.6411	 1.1177	 	 4.8718	 1.2158	
	 	 	 	 	 	

Const.	+	lag	in	cond.	mean	 	 	 	 	 	

GARCH	normal	 6.3517	 1.1169	 	 4.4176	 1.1332	

GARCH	symmetric	t	 6.4149	 1.1177	 	 4.5109	 1.1346	

GARCH	skewed	t	 6.3320	 1.1202	 	 4.4672	 1.1362	

GJR-GARCH	normal	 5.9778	 1.0882	 	 4.0270	 1.1318	

GJR-GARCH	symmetric	t	 6.0015	 1.0886	 	 4.0325	 1.1351	

GJR-GARCH	skewed	t	 6.1516	 1.0867	 	 4.1544	 1.1318	

EGARCH	normal	 5.5355	 1.0969	 	 4.3970	 1.1503	

EGARCH	symmetric	t	 		N/A	 N/A	 	 N/A	 N/A	

EGARCH	skewed	t	 		N/A	 N/A	 	 N/A	 N/A	
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The	 FTSE100	 unconditional	 return	 distribution	 exhibits	 very	 high	 kurtosis.	 This	 was	

observed	in	section	3.	Student	t	conditional	distributions	share	this	feature,	reflected	by	

low	degree	of	 freedom	parameter	values,	which	 is	 illustrated	 in	 fig.	7.2.1.	Nonetheless,	

choosing	 a	 normal	 distribution	 results	 in	 lower	 loss	 function	 values	 for	 GJR	 and	

exponential	 GARCH	models.	 Results	 for	 standard	 GARCH	 are	more	 ambiguous	 in	 this	

regard.		Symmetric	and	skewed	t	models	perform	about	equally	well	overall.	
	

Fig.	7.2.1:	Symmetric	t	GARCH	models,	degree	of	freedom	parameter	value	over	time	
	 			The	horizontal	axis	shows	the	estimation	window	starting	point	

	
	

Standard	GARCH	is	 in	most	cases	beat	by	asymmetric	models.	Although	with	a	20-day	

horizon	 the	 difference	 is	 less	 pronounced.	 GJR-GARCH	 models	 have	 fairly	 low	 loss	

function	 values	 overall.	 Larger	 variations	 can	 be	 seen	 with	 respect	 to	 exponential	

GARCH	models.	They	have	some	of	the	highest	and	lowest	loss	function	values.	Skewed	t	

GARCH	have	high	enough	values	to	be	in	the	same	league	as	EWMA	models.		

With	 a	10-day	 forecast	 horizon	 the	 results	 are	mixed.	The	QLIKE	 function	prefers	 the	

skewed	 t	 GJR-GARCH,	while	 the	MSE	 function	 favors	 the	 normal	 EGARCH	model.	 The	

latter	one	manages	to	predict	some	of	the	outliers	well,	which	puts	it	far	ahead	of	other	

models	 when	 squared	 errors	 are	 used	 for	 evaluation.	 Figure	 7.2.2	 shows	 10-day	

volatility	forecasts	generated	by	this	model	compared	with	estimated	volatility.	

If	extending	 the	 forecast	period	to	20	days	 the	normal	GJR-GARCH	model	has	 the	best	

performance	according	to	both	loss	functions,	although	with	different	conditional	mean	

specifications.	Volatility	 forecasts	 generated	by	 this	model	 can	be	 seen	 in	 figure	7.2.3.	

Thus,	with	the	 lowest	values	 in	 three	of	 four	columns	GJR	models	should	be	preferred	

for	forecasting	FTSE100	variance,	chiefly	with	a	normal	error	distribution.		
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Fig.	7.2.2:	Normal	EGARCH(1,1),	10-day	horizon	realized	(proxy)	and	forecasted	volatility	

	
	
	
	
	
	

Fig.	7.2.3:	Normal	AR(1)	GJR-GARCH(1,1),	20-day	horizon	realized	(proxy)	and	forecasted	volatility	

Fig.	7.2.4	illustrates	how	conditional	variance	parameter	values	changes	over	time	for	a	

normal	GJR-GARCH	model	with	a	first	order	autoregressive	mean.		The	opposite	trends	

in	beta	and	delta	are	evidence	of	declining	volatility	persistence.	The	symmetric	shock	

parameter	 has	 little	 significance	 from	 the	 start.	 In	 late	 1998	 alpha	 jumps	 and	 then	

collapses	 to	 zero.	 This	 is	 when	 the	 rolling	 window	 begins	 to	 include	 data	 from	 the	

market	crash	of	2008.		

	

Returns	 appear	 to	 be	 autocorrelated,	 although	 not	 through	 the	whole	 sample	 period.	

Standard	GARCH	models	perform	better	with	an	autoregressive	conditional	mean.	For	

GJR-GARCH	models	this	depends	on	which	loss	function	is	looked	at.	The	significance	of	

the	 first	 order	 lag	 in	 the	 above-mentioned	 model	 changes	 considerably	 during	 the	

estimation	procedure.	This	is	illustrated	in	figure	7.2.5.	
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Fig.	7.2.4:	Normal	AR(1)	GJR-GARCH(1,1),	model	coefficients	over	time	
	 			The	horizontal	axis	shows	the	estimation	window	starting	date	

	

Fig.	7.2.5:	Normal	AR(1)	GJR-GARCH(1,1),		𝜙	absolute	t-ratio	
	 				The	horizontal	axis	shows	the	estimation	window	starting	date	

	

	

The	SMA	has	the	lowest	historical	accuracy.	Switching	to	exponential	weighting	gives	a	

notable	reduction	in	loss	function	values.	Of	the	two	presented,	the	one	with	a	 lambda	

value	of	0.95	is	the	most	precise.		
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7.3	OMXS30	

Table	7.3.1:	OMXS30	out-of-sample	forecasting	results		

	
	 10	days	 	 20	days	

	 MSE	 QLIKE	 	 MSE	 QLIKE	

SMA	 3.7891	 1.5720	 	 3.9426	 1.6205	

EWMA	0.92	 3.1233	 1.5250	 	 2.9578	 1.6018	

EWMA	0.95	 3.4810	 1.5233	 	 3.2553	 1.5938	
	 	 	 	 	 	

Const.	in	cond.	mean	 	 	 	 	 	

GARCH	normal	 2.9787	 1.4852	 	 2.7697	 1.5330	

GARCH	symmetric	t	 3.1762	 1.4902	 	 2.9902	 1.5401	

GARCH	skewed	t	 3.1610	 1.4905	 	 2.9591	 1.5403	

GJR-GARCH	normal	 2.6233		 1.4745	 	 2.6353	 1.5333	

GJR-GARCH	symmetric	t	 2.7022	 1.4775	 	 2.7177	 1.5386	

GJR-GARCH	skewed	t	 2.7334	 1.4784	 	 2.8065	 1.5413	

EGARCH	normal	 3.1536	 1.4905	 	 3.2670	 1.5528	

EGARCH	symmetric	t	 3.0621	 1.4937	 	 3.1469	 1.5575	

EGARCH	skewed	t	 3.2300	 1.4990	 	 3.5284	 1.5815	
	 	 	 	 	 	

Const.	+	lag	in	cond.	mean	 	 	 	 	 	

GARCH	normal	 3.0157	 1.4847	 	 2.7473	 1.5322	

GARCH	symmetric	t	 3.1768	 1.4897	 	 2.9859	 1.5395	

GARCH	skewed	t	 3.1610	 1.4905	 	 2.9799	 1.5391	

GJR-GARCH	normal	 2.6501	 1.4745	 	 2.6409	 1.5333	

GJR-GARCH	symmetric	t	 2.7018	 1.4777	 	 2.7269	 1.5388	

GJR-GARCH	skewed	t	 2.7256	 1.4784	 	 2.8118	 1.5408	

EGARCH	normal	 3.1373	 1.4897	 	 3.2566	 1.5515	

EGARCH	symmetric	t	 2.5983	 1.4816	 	 3.1483	 1.5569	

EGARCH	skewed	t	 3.2322	 1.4988	 	 3.5258	 1.5820	
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The	OMXS30	unconditional	return	distribution	is	heavy-tailed.	This	 is	also	the	case	for	

fitted	 Student	 t	 conditional	 distributions,	 as	 can	 be	 seen	 in	 figure	 7.3.1.	 Degree	 of	

freedom	parameter	values	are	low	and	stable	throughout	the	whole	estimation	period.	

Even	 so,	 the	 lowest	 loss	 function	 values	 for	 GJR	 and	 standard	 GARCH	 models	 are	

obtained	with	a	normal	error	distribution.	Choosing	the	skewed	t	distribution	typically	

results	in	the	highest	values	for	all	three	model	types.	
	

Fig.	7.3.1:	Symmetric	t	GARCH	models,	degree	of	freedom	parameter	value	over	time	
	 			The	horizontal	axis	shows	the	estimation	window	starting	point	
	

	

Asymmetric	 models	 easily	 outperform	 standard	 GARCH	 models	 when	 the	 forecast	

horizon	 is	 10	 days.	When	 extending	 it	 to	 20	 days	 the	 difference	 shrinks	 significantly.	

GJR-GARCH	 models	 have	 consistently	 low	 values.	 On	 the	 other	 hand,	 for	 some	

exponential	 GARCH	 models,	 values	 are	 very	 high,	 especially	 with	 a	 20-day	 forecast	

period.	The	normal	GJR-GARCH	model	has	the	lowest	loss	function	values	in	two	of	four	

columns.	 Taking	 everything	 into	 account,	 it	 should	 be	 the	 preferred	 model.	 In	 figure	

7.3.2	volatility	forecasts	generated	by	this	model	 is	compared	with	estimated	volatility	

on	a	10-day	horizon.	In	the	two	remaining	columns	other	model	types	have	it	beat	by	a	

small	margin.	 One	 of	 these	 is	 the	 symmetric	 t	 EGARCH	model.	 Its	 accuracy	 increases	

dramatically	on	a	10-day	forecast	horizon	with	a	first	order	autoregressive	conditional	

mean.	This	puts	it	slightly	ahead	of	the	normal	GJR-GARCH	model	when	using	the	MSE	

loss	function	for	evaluation.	It	falls	out	of	favor	when	increasing	the	forecast	length.		

Specifying	the	conditional	mean	as	autoregressive	does	not	generally	result	in	markedly	

lower	 loss	 function	 values.	 The	 fact	 that	 they	 are	 not	 consistently	 different	 would	

suggest	that	autocorrelation	is	not	completely	absent	from	sample	returns.	
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Fig.	7.3.2:	Normal	GJR-GARCH(1,1),	10-day	horizon	realized	(proxy)	and	forecasted	volatility	

	
Fig.	7.3.3:	Normal	GJR-GARCH(1,1),	model	coefficients	over	time	

	 			Horizontal	axis	shows	the	estimation	window	starting	date	

Figure	 7.3.3	 illustrates	 how	 conditional	 variance	 parameter	 values	 in	 the	 preferred	

model	changes	over	time.	The	level	of	persistence	in	conditional	variance,	represented	

by	 beta,	 fluctuates	 quite	 a	 bit	 during	 the	 sample	 period	 with	 no	 visible	 trend.	 Alpha	

reaches	 zero	when	 the	 rolling	window	 starts	 to	 include	 data	 for	 late	 2009.	 From	 this	

point	the	leverage	parameter	is	the	only	shock	parameter.	
	

Naïve	models	have	the	highest	loss	function	values,	with	a	few	exceptions.	If	limited	to	

these,	the	SMA	should	be	avoided	in	favor	of	EWMA	alternatives.	MSE	values	belonging	

to	the	latter	are	similar	to	those	of	some	exponential	GARCH	models.		
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7.4	Summary	

There	 are	 many	 similarities	 between	 the	 European	 equity	 indices	 that	 this	 study	 is	

based	 on,	which	 inevitably	 extend	 to	 forecasting	 results.	 Samples	 for	 all	 three	 indices	

have	 unconditional	 return	 distributions	 that	 exhibit	 high	 excess	 kurtosis.	 Assumed	

conditional	 error	 distributions	 for	 Student	 t	models	 also	 have	 this	 characteristic.	 The	

highest	log-likelihood	values	are	obtained	with	low	degree	of	freedom	parameter	values.	

Out-of-sample	forecasting	results	contradict	these	observations.	Staying	with	the	normal	

distribution	 generally	 leads	 to	 more	 accurate	 forecasts.	 For	 GJR-GARCH	 models	 loss	

function	 values	 are	 consistently	 low	 in	 a	

relative	 sense.	 Especially	 normal	 GJR-

GARCH	 does	 well.	 It	 is	 robust	 and	 it	

accommodates	 the	 leverage	 effect.	 For	

exponential	GARCH	models,	 on	 the	 other	

hand,	 results	 have	 a	 much	 higher	

dispersion.	 The	 relative	 performance	 of	

EGARCH	 models	 seems	 to	 deteriorate	

rapidly	as	the	forecast	horizon	is	increased.	

Specifying	 the	 mean	 equation	 as	 autoregressive	 results	 in	 consistently	 lower	 loss	

function	 values	 for	 standard	 GARCH	 models	 across	 all	 three	 indices.	 For	 GJR	 and	

exponential	GARCH	models	it’s	harder	to	discern	a	pattern.		

	

Naïve	models	are	easier	to	apply	since	they	do	not	require	regression	software	and	no	

formulas	are	needed	to	generate	forecasts.	To	at	least	have	a	forecast	is	preferable	to	not	

having	any.	They	are	however	easily	outperformed	by	most	of	the	GARCH	models.		

	

The	 evolution	 in	 GJR-GARCH	model	 coefficients	 shows	 that	 the	 three	 indices	 have	 an	

important	feature	in	common.	The	leverage	parameter	gradually	gains	influence	relative	

to	 other	 parameters,	 as	 more	 and	 more	 post-crisis	 data	 is	 included	 in	 the	 rolling	

estimation	window.	 In	 other	words,	market	 nervousness	 increases	 during	 the	 sample	

period.	It	would	be	interesting	to	see	how	this	development	relates	to	history	in	a	much	

larger	sample.		

Enlarged	charts	of	estimated	volatility	and	forecasted	volatility	by	the	best	performing	

models	can	be	found	in	Appendix	C.	

Fig.	7.4.1:	Student’s	t	PDF	examples		
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8	Conclusions	

The	 main	 objective	 in	 this	 study	 has	 been	 to	 determine	 which	 univariate	 GARCH	

specification	and	conditional	distribution	is	best	suited	for	variance	forecasting,	judging	

from	historical	performance.	The	analysis	is	based	on	data	samples	for	DAX30,	FTSE100	

and	OMXS30,	but	 the	main	 conclusions	are	also	 relevant	 for	 equity	 indices	 in	general.	

Results	 are	 for	 the	 most	 part	 in	 line	 with	 earlier	 comparable	 research.	 Information	

criteria	 provide	 an	 inaccurate	 indication	 of	 which	 model	 should	 be	 preferred	 for	

forecasting.	When	 the	 focus	 is	 on	 ensuring	 an	 adequate	 fit	 the	model	 often	 becomes	

overfitted.		

	

MSE	 and	QLIKE	 treat	 outliers	 very	 differently.	 This	 result	 in	 some	 dissimilarities,	 but	

generally	 they	 agree	 on	 which	 models	 should	 be	 preferred.	 Because	 of	 the	 leverage	

effect,	GJR-	and	exponential	models	can	be	expected	to	outperform.	Results	confirm	this,	

with	 some	 exceptions.	 The	 GJR	 specification	 is	 a	 safe	 choice	 for	 all	 three	 indices,	

especially	 if	 combined	 with	 a	 normal	 error	 distribution.	 However,	 even	 though	 GJR-

GARCH	 should	 be	 preferred,	 the	 fact	 that	 parameter	 constraints	 are	 necessary	would	

suggest	 that	 this	 specification	 is	 not	 optimal	 for	 the	 sample	 data.	 EGARCH	 results	 are	

more	ambiguous.	With	a	10-day	forecast	horizon	normal	or	symmetric	t	EGARCH	should	

be	the	second	choice.	If	the	horizon	is	extended	to	20	days	even	standard	GARCH	models	

do	better.	Skewed	t	EGARCH	should	be	avoided	altogether.	The	fact	that	this	model	often	

has	the	best	goodness	of	fit	confirms	that	it	is	overfitted.			

	

The	 relative	 performance	 of	 non-normal	 models	 is	 surprising.	 All	 three	 indices	 have	

non-zero	 skewness	and	excess	kurtosis.	 It	 is	understandable	 that	 skewed	 t	models	do	

not	 outperform.	 The	 skewness	 is	 simply	 not	 pronounced	 enough	 to	 warrant	

optimization	 of	 it.	 On	 the	 other	 hand,	 levels	 of	 kurtosis	 are	 very	 high.	 This	 is	 also	

reflected	 by	 fitted	 Student	 t	 conditional	 distributions.	 The	 reason	 behind	 the	

disappointing	results	of	symmetric	t	models	may	be	that	the	rest	of	the	density	is	given	

less	attention.	A	distribution	 that	could	also	accommodate	greater	 ‘peakedness’	would	

probably	do	more	for	forecasting	accuracy.	
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If	limited	to	naïve	models	the	EWMA	should	always	be	preferred,	at	least	for	the	forecast	

horizons	considered	here.	Though,	results	provide	no	solid	indication	of	which	lambda	

coefficient	 is	 optimal.	 Just	by	upgrading	 to	 the	most	basic	GARCH	model	 loss	 function	

values	drop	meaningfully.		

	

A	 number	 of	 extensions	 of	 this	 research	 are	 attractive.	 By	 using	 intra-day	 data	 to	

estimate	 variance	 results	 would	 become	 clearer.	 	 Measuring	 forecasting	 performance	

over	a	longer	sample	period	could	also	help	in	this	regard.		

Other	loss	functions	could	also	be	considered.	For	example,	for	a	market	trading	strategy	

the	relevance	of	the	study	would	increase	by	including	financial	loss	functions.		

The	extension	that	should	be	given	the	most	attention	relates	 to	non-normality.	There	

are	 few	prior	GARCH	studies	 in	which	skewed	t	distributions	have	been	considered.	 It	

would	 therefore	 be	 of	 interest	 how	 skewed	 t	 models	 perform	with	 sample	 data	 that	

exhibits	more	pronounced	asymmetry	than	the	samples	included	here.	
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Appendix	A:	Formulae	for	statistics	and	tests	

Jarque-Bera	normality	test	

The	distribution	of	a	normally	distributed	random	variable	is	characterized	by	the	first	

two	 moments,	 that	 is,	 the	 mean	 and	 the	 variance.	 The	 third	 and	 fourth	 moment	 are	

known	 as	 its	 skewness	 and	 kurtosis,	 respectively.	 In	 a	 normal	 distribution	 the	

coefficients	of	skewness	and	kurtosis	are	jointly	zero,	which	is	what	the	test	checks	for	

JB = T
b!!

6 +
(b! − 3)!

24 	

where	 b1	 and	 b2	 denote	 the	 coefficients	 of	 sample	 skewness	 and	 sample	 kurtosis,	

respectively.	T	is	the	sample	size.	The	test	statistic	asymptotically	follows	a	𝜒! 2 	under	

the	null	hypothesis	that	the	distribution	of	the	series	is	symmetric	and	mesokurtic.	

Ljung-Box	Q-test	

Autocorrelation	coefficients	can	vary	significantly	between	lags.	The	Ljung-Box	Q-test	is	

a	quantitative	alternative	that	checks	for	autocorrelation	at	multiple	lags	jointly	

Q(m) = T(T+ 2)
τ!!

T− k

!

!!!
	

where	𝜏!denotes	 the	 estimated	autocorrelation	 coefficient	 at	 lag	k,	m	 is	 the	maximum	

lag	 length	 and	T	 is	 the	 sample	 size.	 The	 Q-statistic	 is	 asymptotically	 distributed	 as	 a	

𝜒! 𝑚 	under	the	null	hypothesis	that	all	m	autocorrelation	coefficients	are	zero.	

	

Engle’s	ARCH	LM	test	

The	 ARCH	 test,	 proposed	 by	 Engle	 (1982),	 checks	 for	 the	 presence	 of	 autoregressive	

conditional	heteroscedastic	effects	by	measuring	autocorrelation	in	the	squared	series.	

When	 used	 to	 assess	whether	 the	 conditional	 variance	 of	 a	 time	 series	 is	 suitable	 for	

ARCH	 modeling	 the	 test	 is	 normally	 conducted	 on	 the	 mean	 equation	 innovation	𝜀! ,	

which	is	given	by	

ε! = r! − µ!	

where	𝜇! 	is	 the	 conditional	 mean	 and	𝑟! 	is	 the	 observed	 return.	 Autoregressive	 lags	

should	be	included	if	returns	are	autocorrelated.	The	test	regression	can	be	written	as	

ε!! = γ! + γ!ε!!!! + γ!ε!!!! +⋯+ γ!ε!!!! + u!	
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where	ut	is	an	error	term	and	m	is	the	number	of	lags.	The	test	statistic	is	defined	as	TR2,	

where	 T	 is	 the	 sample	 size	 and	 R2	 represents	 the	 coefficient	 of	 determination.	 It	 is	

distributed	as	a	𝜒! 𝑚 	under	the	null	hypothesis	that	all	m	coefficients	are	zero.	

Engle	and	Ng’s	sign	bias	test	

The	sign	bias	test,	as	defined	by	Engle	and	Ng	(1993),	indicates	whether	positive	and	

negative	shocks	of	equal	size	have	a	different	effect	on	future	conditional	variance.	The	

test	is	conducted	on	the	standardized	residuals	of	a	standard	GARCH	model,	defined	as	

𝑧! = 𝜀!/ ℎ! .	The	regression	for	the	sign	bias	test	is	then	given	by	

z!! = θ! + θ!S!!!! +  u!	

where	ut	is	the	error	term	and	𝑆!!!! 	is	an	indicator	dummy	that	takes	the	value	1	if	εt-1	<	0	

and	 zero	 otherwise.	 If	 positive	 and	 negative	 shocks	 to	 εt-1	impact	 differently	 upon	 the	

conditional	variance,	then	𝜃!	will	have	a	statistically	significant	t-statistic.	 	
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Appendix	B:	Log-likelihood	functions	

If	 innovations	 are	 drawn	 from	 a	 normal	 distribution	 the	 log-likelihood	 function	 is	

defined	by	

ln L(θ) =  −
T
2 log 2π −

1
2 log h! −

1
2

ε!!

h!

!

!!!

!

!!!

	

where	εt	 represents	 innovations	and	ht	the	conditional	variance.	 If	 innovations	 instead	

are	 drawn	 from	 a	 symmetric	 Student	 t	 distribution1	 the	 log-likelihood	 function	 is	

defined	by		

ln L θ = T ln Γ
𝑣 + 1
2 − ln Γ

𝑣
2 −

1
2 ln π 𝑣 − 2

−
1
2 ln h! + 1+ 𝑣 ln 1+

z!!

𝑣 − 2

!

!!!

	

	

where	zt	is	given	by	𝜀!/ ℎ! ,		v	is	the	degree	of	freedom	of	the	distribution,	and	Γ(∙)	is	the	

gamma	 function.	 Lastly,	 the	 log-likelihood	 function	when	 innovations	 are	 assumed	 to	

follow	a	skewed	Student	t	distribution2		

ln L(θ) = T ln Γ
𝑣 + 1
2 − ln

𝑣
2 −

1
2 ln π 𝑣 − 2 + ln

2
ξ+ 1/ξ + ln (s) 	

−
1
2 (ln h! + 1+ 𝑣 ln 1+

(sz! +m)!

𝑣 − 2 ξ!!!!
!

!!!

	

where	ξ	is	the	asymmetry	parameter,	and	

I! =
    1 if z! ≥ −!

!

−1 if z! <  −!
!

 ,m =
! ! ! !! !!!

!! !
!

ξ− !
!
and  s =  ξ! + !

!!
− 1 −m!							

	

	

	

	
1	

	

	 	
																																																								
1,2		 extended	to	the	GARCH	framework	by	Bollerslev	(1987),	and	Lambert	and	Laurent	(2001),		
	 respectively.		
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Appendix	C:	Volatility	charts	
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