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Abstract

In this Master’s thesis we study the equity market and the two multi-factor interest
rate models Heath-Jarrow-Morton model (HJM) and the LIBOR market model
(LMM) on the Norwegian, European and US interest rate market. These models
are used to analyze a floor and to investigate the management of paid-up policy
portfolios kept by life insurance companies. The main concerns are the current low-
rate environment experienced in the financial markets today, and their exposure
to negative interest rates. The two interest rate models are calibrated to the
market using volatility factors. The HJM uses principal component analysis to
find the volatility factors, while the LMM uses Exponentially Weighted Moving
Average. The paid-up policy portfolios are then analyzed using Value at Risk
and Expected Shortfall. We find that the probability of negative rates is clearly
present in the HJM-framework, while it is zero in LMM because of the log-normal
assumption. Further, we also see that the probability of negative rates are larger
in the European market, compared to the Norwegian and US market. This in
turn leads to significantly higher floor prices in the European market. The prices
calculated with HJM and LMM deviates the most near the current spot rate,
with HJM always giving higher floor prices than LMM. In the end we see that
the European paid-up policy portfolios give less gain to the insurance companies
compared to the Norwegian and US portfolios. The simulation also shows that a
higher gain demand requires a larger share in the equity markets. This result is in
line with the general yield hunting strategies observed in the market today.
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Sammendrag

I denne masteroppgaven studerer vi aksjemarkedet og de to flerfaktor-rentemodellene
Heath-Jarrow-Morton modellen (HJM) og LIBOR markedsmodellen (LMM) p̊a
det norske, europeiske og amerikanske rentemarkedet. Disse modellene blir brukt
til å analysere en nedre avkastningsgaranti (floor), og til å undersøke forvalt-
ningen av fripoliseporteføljer tilbudt av livsforsikringsselskaper. Hovedfokuset til
denne oppgaven er det lave rentemiljøet som oppleves i finansmarkedene idag,
samt deres eksponering for negative renter. De to rentemodellene blir kalibrert til
markedet ved hjelp av volatilitetsfaktorer. HJM bruker prinsipal komponent anal-
yse til finne disse volatilitetsfaktorene, mens LMM bruker eksponentielt vektet
gjennomsnitt (EWMA). Fripoliseporteføljene blir deretter analysert ved å bruke
Value at Risk og Expected Shortfall. Sannsynligheten for negative renter er ty-
delig til stede i HJM, mens det er null sannsynlighet for negative renter i LMM p̊a
grunn av den lognormale antagelsen. Videre viser vi at sannsynligheten for nega-
tive renter er større i det europeiske markedet, sammenlignet med det norske og
det amerikanske markedet. Dette i sin tur fører til betydelig høyere floorpriser i det
europeiske markedet. Vi ser ogs̊a at prisene beregnet med HJM og LMM avviker
mest nær dagens spotkurs, med HJM som alltid gir høyere floorpriser enn LMM.
Til slutt finner man ut at de europeiske fripoliseporteføljene gir mindre avkastning
til forsikringsselskapene sammenlignet med de norske og amerikanske porteføljene.
Simuleringene viser ogs̊a at et større avkastningkrav fører til en høyere nødvendig
andel i aksjemarkedet. Dette resultatet er i tr̊ad med de generelle gevinst-jaktende
strategiene observert i markedet i dag.
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Chapter 1

Introduction

As of April 2003, 80% of the top 500 companies in the world used interest rate
derivatives to control their cash flows, while only 10% used stock options according
to the International Swaps and Derivatives Association. In other words, under-
standing the future evolution of especially interest rates, but also stock prices,
are crucial to maintain a good financial policy within a firm. However, modeling
interest rates are much more complicated than modeling stock prices. Therefore,
the mathematical models used to model rates are often more difficult to interpret,
and we usually need higher order simulations to get feasible results.

Stock market indexes are highly diversified combinations of stocks. These indexes
are mainly used to model stock markets as a whole. In other words, if an investor
wants a portfolio of stocks that follows the market, he should buy a share of such
an index. One of the most famous stock indexes are the S&P 500 (Standard &
Poor 500 Index), which includes the 500 most traded publicly stocks in the US.
This index may be a good indicator of how the economy in the US is performing
all together. The behavior of these stock indexes and stock prices them self are
far from predictable. Thus we need to model them in a stochastic way.

As stated earlier, the interest rate derivative market is the largest of the derivative
markets in the world. The reason for this is that essentially all of the companies
in the world have debt, hence they are also exposed to an interest rate. Therefore,
interest rate derivatives are used to reduce risk and control cash flows. As with
the stocks, we also need a fair pricing technique for the interest rate case. Thus
we also model interest rates in stochastic way, but usually in a more complicated
way.

Furthermore, from the dot-com bubble in 2001 until 2007 the financial market
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2 CHAPTER 1. INTRODUCTION

seemed stable with increasing rates. However, when the American housing bubble
busted, the collapse of the Lehman Brothers in September 2008 almost took down
the entire worlds financial system. After almost a decade, it is clear the crisis
had several reasons. One of the biggest were maybe the financiers themselves.
They thought they had eliminated risk by applying complicated and less intuitive
models, when they actually just had lost track of it. The mortgage lending in
America to subprime borrowers, i.e. borrowers with poor credit which struggled
to repay their loans, was an example of this. Big banks thought they made these
mortgages less risky by putting enough of them together in a pool, but this only
works if they are not too correlated. The problem was that the financial institu-
tions assumed that the economy in the different regions in the US would fall or
rise independently [1]. This did obviously not hold and starting in 2006 America
experienced a downturn in the house prices throughout the whole country.

The financial crisis made a big impact on the rate level in the economies, and
in 2011 the rates in Europe had decreased drastically. This significant reduction
in rate level forced the life insurance companies into new territories, which gives
the motivation of this thesis. Namely to analyze the prices of rate instruments
and the risk attached to the portfolios kept by the life insurance companies. This
is particularly of interest during the low-rate environment we now see.

Life insurance companies are companies which offer both life and pension products.
They usually have a long term commitment which says that the pension is to be
paid out far out in the future, but also they have to pay out a yearly guaranteed
return, which means they have a short term commitment as well. At 2010, this
guaranteed return was maximum 2.75% in Norway, while older contracts used a
return in between 3 and 4% [2]. This rate guarantee is a rate derivative which
means it secures the downside without fixing any restrictions on an upper bound.
This rate option has a premium which the customer has to pay, and the premium
is usually calculated as the value of the option itself. However, it may be priced
differently due to competition in the market or the credit rating of the customer.
In this thesis we do not include these price modifications due to competition or
credit rating.

In addition to the rate instruments, the life insurance companies also have several
well-diversified portfolios of stocks. An example of such portfolios would be a share
in the S&P 500 index, which is well diversified. However, in distressed times all
uncorrelated stocks tends to fall in value, which means the correlation coefficient
approaches 1. This means it would be dangerous to assume that these diversified
portfolios always are low-risk. Therefore it has been issued new regulations regard-
ing the amount of risk-less capital each insurance company needs, which has made
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it harder for some of the insurance companies to survive, for instance Silver [3].

Furthermore, a paid-up policy is an accumulated pension one has achieved from a
previous employer. These paid-up policies can be placed in hands of a specific life
insurance company, which is then obligated to manage these policies and pay out
yearly returns to the customer. This accumulated pension may be placed in both
risky and risk-less assets. The management of these paid-up policies are investi-
gated in the end of this thesis for the Norwegian, European and US market. The
gain from these paid-up policies are in general shared between the life insurance
company and the customer. However, in this thesis we assume the life insurance
company receives all of the profit above the yearly floor guarantee.

This thesis starts with an explanation of financial concepts and the fundamen-
tal theory behind. Especially we give a fair justification of the stock price model
used in the thesis, as well as giving a short introduction to the different interest
rates. Then we move on to derivatives and how to determine their values. In the
end of Chapter 2 we argue why there can not exist any arbitrage opportunities in
a financial market, and why it is important to price derivatives in a risk-neutral
world. In Chapter 3 we move on to one of the most important partial differential
equation used in the financial world, namely the Black Scholes equation. The key
feature is that it can price any given option when the underlying asset follows a
lognormal walk, assuming sufficient boundary and initial/final conditions. Further
we list the assumptions used to derive the equation, as well as showing the solution
of the Black Scholes equation for European options, also called the Black Scholes
formula. Another perk with this formula is that it can be inverted to yield the
implied volatility observed in a given market.

In Chapter 4 we dive into the interest rate modeling world. First we list the
general one-factor model before we deduce the bond pricing equation assuming a
single-factor model for the stochastic interest rate. The biggest difference between
this deduction and the deduction of the Black Scholes equation is that the bond
pricing equation requires a hedge of one bond with another, opposite of the Black
Scholes deduction which uses a hedge of the option itself combined with a frac-
tion of the underlying asset. Further we list some common single factor models
which gives a nice solution of the bond pricing equation. These models are either
equilibrium models or no-arbitrage models, in other words if the parameters does
not depend on time the model is an equilibrium model, while it is a no-arbitrage
model if the parameters are time dependent. Chapter 4 also gives an introduction
to the most interesting rate derivative for this thesis, namely the floor. It also gives
several ways to price these options. One of these ways is the Blacks model, which
is to interest rate derivatives like the Black Scholes formula is to stock derivatives.
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In the next chapter we explain the two multi-factor interest rate models, namely
HJM and LMM. The reason we use multi-factor instead of single-factor interest
rate models is because the multi-factor models capture more of the dynamics in the
yield curve. After deducing the HJM-model we give a description of the volatility
factors used in the simulation. These factors are determined using PCA on histor-
ical data. The LIBOR market model also uses volatility factors to calibrate itself
to the market, and in this thesis we use the covariance to calibrate the volatility
factors estimated with exponentially weighted moving average. Both frameworks
also give a nice way to price the floor.

Further, in Chapter 6 we give an introduction to risk measures and analysis. The
two methods used in this thesis are the value at risk and expected shortfall. They
are both easy to interpret and are consistent across different portfolio positions
and risk factors. This means it is easy to compare the risk associated with dif-
ferent projects. The reason for performing risk management is to have an idea of
the probability distribution the portfolio follows. This is the reason we explain
the theory behind Monte Carlo simulation in Chapter 7. In the same chapter, we
also go through how the gain of the paid-up policies are simulated. It is impor-
tant to remember that calculation of a derivative’s value is usually simulated in a
risk-neutral world, namely under the probability measure Q. The life insurance’s
floor prices are thus calculated in a risk-neutral world. However, when simulating
the gain of the portfolios held by the life insurance companies, namely the returns
above the yearly paid out floor guarantee, this requires simulation in real world.
In other words, we simulate under the real probability measure S.

The rest of the thesis is devoted to analysis of historical stock price and inter-
est rate data from 2002-2015, the resulting simulation of future rates and the
risk associated with the portfolios kept by the life insurance companies. First
we look into the historical prices of several stocks and examines if their returns
can be matched to a given probability distribution, namely the normal and the
t-distribution. This gives an indication of whether the life insurance companies
actually can assume that their stock shares are well diversified. Further we fit
multi-factor interest rate models to the markets. The interest rate models are
fitted in order to analyze the floor prices given by the insurance companies. We
further simulate the LIBOR forward rates together with the stock indexes to in-
vestigate the positions needed for keeping the simulated mean gain of the paid-up
policies held by the life insurance, positive. We also explore the risk attached to
these positions.



Chapter 2

Financial Definitions

2.1 Financial Market

A financial market is a collection of particular markets that trade assets like stocks,
bonds and derivative products. The prices of these traded assets are assumed to
move randomly because of the efficient market hypothesis [4]. The hypothesis
says that all previous information is already absorbed in the present price of the
financial assets. In other words this means that markets with a legitimate price
discovery mechanism collects all the information that the traders have. This results
in that prices will only shift if new information comes to the table. However,
new information tends to be random by nature, so prices will also have to change
randomly. Moreover, it says it is impossible for investors to buy undervalued stocks
or sell stocks for artificially high prices. This means that we cannot outperform
the market and that buying into a market portfolio would be the optimal strategy.
Note however, this does not mean we cannot earn more than the market, but it
requires us to take on more risk. There has been several case studies to reject or
accept this hypothesis. We can for instance look at the auto correlation in returns
for a time period, study trading rules like momentum strategies(e.g. always buy if
the price increases and always sell if the price is decreasing) and a vast majority of
other tests. However, most of these tests conclude that the market is efficient.

2.2 Assets

A financial asset is a commitment that the holder of the asset will own future cash
flows. The value of the asset are then determined by the expected present value

5



6 CHAPTER 2. FINANCIAL DEFINITIONS

of the cash flows. There exist several types of assets, but the most common are
stocks, bonds, currencies and futures. We also have derivative assets like stock
options or interest rate derivatives. In this thesis we will use the following model
to analyze the underlying asset values and rates

dS(t) = u(t, S)dt+ w(t, S)dX(t), t > 0 (2.2.1)

with S(0) = S0. Here S(t) is the value of the asset at time t and u(t, S) and w(t, S)
are functions of time and asset value. dX(t) is a random sample drawn from a
probability distribution, also called a Wiener process. It contains the randomness
of the asset prices and has the following properties

E[dX(t)] = 0 (2.2.2)

V ar[dX(t)] = dt. (2.2.3)

Further, dt is called the drift term while dX(t) is called the diffusion term.

2.3 Stocks

When companies need capital for a new project or a new product, they can sell
partly ownership of themselves to investors to raise money, in other words they
sell shares of the company. This means that the company is owned by it’s stock
holders, and the investors might earn money if the company increases its revenue.
The money the investors receives from the stock is paid out as dividend per share.
However, if the company collapse, the investors loose the money their shares are
worth. Thus the values of these stocks reflects the future revenue and capital
growth of the company.

The most basic way to model the stock prices is to use the equation (2.2.1), with
u(t, S) = µS(t) and w(t, S) = σS(t) with a geometric Brownian motion of the
form

dS(t) = µS(t)dt+ σS(t)dX(t), t > 0. (2.3.1)
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This results in a lognormal walk with µ as the mean, which measures the average
rate of growth of the stocks prices, also known as the mean of the returns, where
returns are defined as

ri =
Si − Si−1

Si−1

. (2.3.2)

Here i can be an arbitrary index, but the most common is to use either daily,
weekly or monthly increments. Further, σ is the volatility which gives the stan-
dard deviation of the returns. µ and σ are in this case constant, while in more
complicated models they can also be a function of time and stock price. Equation
(2.3.1) is a good model for the stock price because it gives an exponential fall or
rise in prices which is consistent with the observed prices in the market. The prices
can obviously not go below zero which makes the lognormal a good fit. Also it
contains the random part which incorporates new information in the model. As
stated above, the easiest way to model the stock is to use equation (2.3.1), however
there also exist other types of models like the stochastic volatility model. In this
model the volatility itself varies stochastically and is dependent on the current
level of price of the stock, namely

dS(t) = µS(t)dt+
√
ν(t)S(t)dX(t), t > 0 (2.3.3)

dν(t) = α(ν, t)dt+ β(ν, t)dY (t), t > 0. (2.3.4)

In this case µ is still constant, while the volatility function ν varies stochastically
with a given drift α(ν, t) and volatility β(ν, t), which again might depend on the
current level of ν. Here dY (t) is another Wiener process.

2.4 Bonds

A bond is a fixed-income security where one part lends a load of money to the
other part, in return the lender gets his money back as fixed cash flows in the
future. These cash flows might be spread equally out, may be paid back all in one
at maturity or might be involved in other payback plans. Bonds are operated by
banks, financial institutions and big companies to raise money.

The easiest bond to handle is a zero-coupon bond. This is a bond that pays
no coupon but instead pays the whole returning sum at maturity. Some of these
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type of bonds are issued as zero-coupon bonds, while other are issued as regular
bonds but then later have been stripped of their coupons by a financial institution.
In this thesis we use the notation Z(t, T ) for the value of a zero-coupon bond at
time t, that pays 1 (unit currency) at time T.

2.5 Interest Rates

The interest rate are divided into either a discretely compounded rate or a contin-
uously compunded rate. If we invest 1 at time t and has a discretely compounded
rate, then the money is worth

1 ·
(

1 +
r

m

)m(T−t)

at T − t years later. Here m says how many interest payments there are per year.
However, if r is continuously compounded, that is m→∞, we get((

1 +
r

m

)m)(T−t)
=
(
emlog(1+ r

m)
)(T−t)

∼ er(T−t)

for the value of the money at T − t years. At least this is the result if we assume a
fixed and constant rate. If the interest rate is not constant but a known function
of time r(t), then M , the value of the money, after T − t years becomes

M = e−
∫ T
t r(s) ds.

2.6 Yield Curve

The problem with having portfolios of derivative assets like stock options or interest
rate derivatives is that normally we assume a deterministic or constant interest
rate in the pricing models. However, for products with longer life span the problem
with randomly fluctuating interest rates must be addressed. This is where the yield
curve comes into the picture. It is a measure of future values of interest rates. The
yield Y(t,T) is given by

Y (t, T ) = − log(Z(t, T ))

(T − t)
, (2.6.1)

and is derived from the following equation
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Z(t, T ) = e−Y (t,T )(T−t).

Here Z(t, T ) is the value of the zero-coupon bond, Y (t, T ) is the yield, t(≤ T ) is the
time and T is the maturity time. The yield is simply the continuous compounded
constant rate that your money is growing with if you pay Z(t, T ) at time t and
receives 1 at maturity t = T .

2.7 The Continuous Forward Rate

The continuous forward rate is a rate we apply to a financial transaction in the
future. It is the instantaneous continuously compounded rate, f(t, T ), we use when
lending an amount at time t in the future with maturity at T . The relationship
with a zero coupon bond is given by

Z(t, T ) = e−
∫ T
t f(t,s) ds. (2.7.1)

Further, the spot rate r(t) is related to the the continuous forward rate by

r(t) = f(t, t). (2.7.2)

The forward rate f(t, T ) is a deterministic function for each t, which means the
curve is known for all t < T .

2.8 The Simple Rate

A simple rate, L(t, T ), is the rate for an accrual time period of length δ = T − t,
with time measured in years. This means the interest earned in one time period
is

δL(t, T ).

We will see the importance of this simple rate in the LIBOR market model.
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2.9 Derivatives

A derivative is a contract between two parties which has a price that is dependent
upon one or several underlying assets. The price is determined by variations in
the underlying asset and this asset might not be possible to trade with. These
underlying assets might be stocks or simple spot rates, which is not possible to
buy/sell. One of the simplest and most common option would be the European
call option. This is a contract which says that the holder of the option at a
determined time in the future may buy the prescribed underlying stock, for a
previously determined price called the strike price. The word may means it is a
right, not a necessity. This option gives the holder a payoff

max(S(T )− E, 0)

at a time T , where S(T ) is the price of the underlying stock and E is the fixed,
constant strike price. We may also have an option with the right to sell the asset,
this is called a put and its value is

max(E − S(T ), 0).

Further, we also have the interest rate swap, which is a contract between two
parties to give each other interest rate payments on a certain amount of money for
a prescribed period of time. One example of this can be that party 1 pays a fixed
interest rate r on an amount Z to party 2, while party 2 pays interest rate back
to party 1 on a floating interest rate r∗, on the same amount. This can be seen as
a bond with (r∗ − r)Z coupon payments. In addition there exist floors and caps
which are features that bound the size of the interest rate. For instance, a floor
is a bond with a fluctuating interest rate, but the interest rate cannot go under a
fixed prescribed level. The same goes for a cap, however in this case the interest
rate cannot exceed a specific value. We can have several options on these bond
characteristics, like swaptions, captions and floortions. For example, we may have
the option to buy a swap for an amount E at time T < TS. This option will have
the value

V (r, T ) = max(VS(r, T )− E, 0).

Her VS(r, T ) is the value of the swap, TS is the expiring time of the swap and E
is the strike price. This is equivalent for captions and floortions, aswell as there
exists other types of options.
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2.10 Hedging

Hedging is an investment strategy where the risk of the portfolio is reduced by
taking advantage of correlations between assets and the movement of option prices.
This can be done by creating a portfolio with both assets and options, such that
when small unpredictable changes in the assets does not cause an unpredictable
move in the value of the portfolio. The most common hedging is delta hedging,
but there also exists other type of hedging.

2.11 Diversification

The diversification effect is one of the few ”free lunches” in the financial world.
It is based upon the fact that combining several assets into one portfolio, the
respective covariances between the assets will decrease the total variance of the
whole portfolio. In other words, the risk can be reduced by combining several
assets into one portfolio, as long as the correlations between the assets are not
close to one.

2.12 Arbitrage

Given a financial market, an arbitrage opportunity is a way to possibly earn money
without any risk. This means we make an investment and it is guaranteed that we
receive back the initial paid amount, in addition there exist a probability that we
receive even more. Arbitrage opportunities are not common and if they do occur,
they will vanish very quickly because the market will adjust. Therefore models in
financial markets do not include arbitrage opportunities.

2.13 Risk-Neutral Valuation

The risk-neutral valuation comes from the fact that the expected payoff of any
given risky asset can be discounted with the risk-free rate to find the fair value of
the asset. This discounting need to be used with risk-neutral probabilities, or in
other words the prices need to be modeled in a risk-neutral world. In the stock
option world this emerges when µ does not occur in the Black Scholes equation,
which is derived in Chapter 3.1. Even though the variance of the derivative’s
price affects the value of an option, the option’s value does not depend on the
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underlying’s rate of growth. This means that the risk preferences of investors does
not matter because all the risk built in to the option can be hedged away. In other
words if a portfolio can be created with a derivative product and the underlying
asset such that the the random part can be removed, then the derivative product
can be evaluated as if all the random walks used are risk-neutral. This is done by
replacing the drift term in the stochastic differential equation with the risk-free rate
r wherever it appears. However, it is important to remember that the probability
density using r as drift is valid under risk-neutral valuation, and can not be used
to show the distribution of prices in the real world. Further, it is also important
to valuate interest rate options in the risk-neutral world. This risk-neutral feature
occurs when the bond pricing equation is deduced, namely that we end up with a
risk-neutral drift of u− λw, showed later in the thesis.



Chapter 3

Black-Scholes

3.1 Derivation of Black-Scholes

In order to derive the simplest form of the Black-Scholes formula we need to make
the following assumptions

• The asset price follows the lognormal random walk given in equation (2.2.1)
with u(t, S) = µS and w(t, S) = σS explained in Chapter 2.3.

• µ and σ are given functions of time over the whole life time of the option.

• There are no transaction costs.

• The underlying assets pay no dividents during the lifetime of the option

• There are no opportunities for arbitrage.

• We assume that trading can be done continuously and that the assets can
be divided into any given fraction.

• Short selling is possible.

Given that there exists an option (we could also have a portfolio of options) with
value V (t, S) and that the underlying assets follow the model stated in the as-
sumptions, then using Ito’s lemma in the appendix we write

dV = σS
∂V

∂S
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt. (3.1.1)

Here we require that V has atleast one t derivative aswell as two S derivatives.
Further we construct a portfolio of one option and a -δ of the underlying asset.

13
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Here δ can be any real number. The value of this portfolio is

Π = V − δS, (3.1.2)

while the change in the portfolio is equal to

dΠ = dV − δdS. (3.1.3)

Here δ is held fixed during the time step.

Combining the model that the asset is following, with equation (3.1.1) and (3.1.3)
we obtain the random walk

dΠ = σS

(
∂V

∂S
− δ
)
dX +

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t
− µS

)
dt.

In order to remove the random component from this equation we choose δ =
∂V
∂S

.

This results in a deterministic increment for the portfolio

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt.

Relying on the arbitrage free assumption we have that the return on an amount
Π invested in assets without any risks would give a growth of rΠdt during a time
dt. This means we have

rΠdt =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt. (3.1.4)

Again, if we combine equation (3.1.2) and (3.1.4) with δ, and divide by dt we
get

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (3.1.5)

Thus we have derived the Black-Scholes partial differential equation. There exist
exact, explicit solutions for both the European call and put option [5]. However,
for more complicated derivatives we need to solve it with numerical methods. Note
that V (S, t) can be any function of S and t, which means equation (3.1.5) holds for
every derivative which value depends only on S and t. One interesting observation
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is that equation (3.1.5) does not include the growth parameter µ, which means
the value of an option is priced independently of the growth rate of the underlying
asset. This means that two parties that are disagreeing on the correct value of µ
yet still agree on the correct value of the option.

3.2 Solution of Black-Scholes for European op-

tions

When r and σ are constant, there exist analytical solutions for both European call
and put option as stated earlier. The solution for a European call is

C(S, t) = SN(d1)− Ee−r(T−t)N(d2). (3.2.1)

Here N(x) is the standard normal cumulative distribution function

N(x) =
1√
2π

∫ x

−∞
e−

1
2
y2 dy.

Further

d1 =
log( S

E
) +

(
r + 1

2
σ2
)

(T − t)
σ
√
T − t

,

d2 =
log( S

E
) +

(
r − 1

2
σ2
)

(T − t)
σ
√
T − t

.

To find the value of European put we may use the put-call parity. The parity says
that if we have a portfolio Π which consist of longing one asset, longing one put
and shorting one call

Π = S + P − C, (3.2.2)

then the payoff for (3.2.2) at expiry is

S +max(E − S, 0)−max(S − E, 0).

This can also be written as
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S + (E − S) = E S ≤ E,

S − (S − E) = E E ≤ S.

This means that the payoff at expiry is always E. Again using the no arbitrage
assumption we understand that the price of the portfolio in (3.2.2) at time t should
equal the discounted final value of the portfolio, namely

S + P − C = Ee−r(T−t). (3.2.3)

This is the put-call parity. Further, using equation (3.2.1) with (3.2.3) we arrive
at

P (S, t) = Ee−r(T−t)N(−d2)− SN(−d1) (3.2.4)

for the value of a European put.



Chapter 4

Interest Rate Models and the
Bond Price Equation

So far, the interest rate r has been assumed constant in the Black-Scholes analysis.
This might be a good approximation for options over a shorter time period. How-
ever, for a longer period of time rates have a significant random fluctuation. This
means that for options and other derivatives it would be more useful to include a
stochastic interest rate model. Further, the interest rate for the shortest possible
time to make a deposit is usually called the spot rate. This spot rate is common
to be modeled as in equation (2.2.1), with r = S, namely

dr(t) = u(r, t)dt+ w(r, t)dX(t), t > 0. (4.0.1)

When interest rates are stochastic as in equation (4.0.1), a bond has the price of
the form V (r, t;T ). Pricing these bonds are harder than pricing options because
there are no underlying assets we can hedge with. Rates are the obvious underlying
asset, but it is not possible to buy nor sell a rate. However, to hedge a portfolio
constructed of only bonds we need to hedge one bond with another bond of a
different maturity. This means bond 1 have maturity T1 and price V (r, t;T1) and
equivalent for bond 2. Further, we construct the portfolio

Π = V1 − δV2.

Again using Ito’s lemma we obtain

17
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dΠ =
∂V1

∂t
dt+

∂V1

∂r
dr +

1

2
w2∂

2V1

∂r2
dt− δ

(
∂V2

∂t
dt+

∂V2

∂r
dr +

1

2
w2∂

2V2

∂r2
dt

)
Further, to remove the randomness terms we choose

δ =
∂V1

∂r

∂r

∂V2

.

With this choice of δ we get

dΠ =

(
∂V1

∂t
+

1

2
w2∂

2V1

∂r2
− ∂V1

∂r

∂r

∂V2

(
∂V2

∂t
+

1

2
w2∂

2V2

∂r2

))
dt.

Again, using the no arbitrage assumption in the Black-Scholes analysis we have
that

Π = rΠdt = r

(
V1 −

(
∂V1

∂r

∂r

∂V2

)
V2

)
dt. (4.0.2)

Here the risk free rate r is the spot rate. Further, collecting all terms of V1 on the
left side and all terms of V2 on the right side we obtain

∂V1
∂t

+ 1
2
w2 ∂2V1

∂r2
− rV1

∂V1
∂r

=
∂V2
∂t

+ 1
2
w2 ∂2V2

∂r2
− rV2

∂V2
∂r

. (4.0.3)

The left side of equation (4.0.3) only contains T1 parts but no T2 parts, while
this is equivalent for T2 on the right side. This can only happen if both sides are
independent of the maturity date. This means we may drop the subscript of V
and we get

∂V
∂t

+ 1
2
w2 ∂2V

∂r2
− rV

∂V
∂r

= a(r, t) (4.0.4)

The most convenient way to write the right hand side of equation (4.0.4) is

a(r, t) = w(r, t)λ(r, t)− u(r, t).

This results in the following bond price equation
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∂V

∂t
+

1

2
w2∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV = 0 (4.0.5)

For equation (4.0.5) to have a unique solution we need one final condition as well
as two boundary conditions. The final condition would in this case be the payoff
at maturity, so for a zero-coupon bond we have

V (r, T ;T ) = 1.

If we have a coupon paying bond and assumes that an amount of K(r, t)dt is
received during a time dt then the new bond pricing equation will be

∂V

∂t
+

1

2
w2∂

2V

∂r2
+ (u− λw)

∂V

∂r
− rV +K(r, T ) = 0.

However, when the coupons are paid discretely we obtain the jump condition

V (r, t−c ;T ) = V (r, t+c ;T ) +K(r, tc).

Here the coupon K(r, tc) is paid at time tc.

4.1 Market Price of Risk and Risk Neutrality

When we model something stochastic which can not be traded, we get too few
equations compared to the number of unknowns. We solve this by defining the
market price of risk. This can be seen if we hold one bond with maturity T , then
the change in the value of the bond in time dt is

dV = w
∂V

∂r
dX +

(
∂V

∂t
+

1

2
w2∂

2V

∂r2
+ (u− λw)

∂V

∂r

)
dt. (4.1.1)

Combining equation (4.0.5) with (4.1.1) we obtain

dV − rV dt = w
∂V

∂r
(dX + λdt) .

Here it can be seen that the term on the right contains both a random and a
deterministic part. We understand the deterministic part as the excess return
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over the risk free rate for accepting a specific level of risk. Since the portfolio have
accepted an extra amount of risk then we earn an extra λ dt per unit of extra
risk, dX. This is the reason why the function λ is called the market price of risk.
Further, in the bond pricing equation (4.0.5) we have time decay, diffusion, drift
and discounting parts respectively. We interpret a solution of this equation as the
expected value of all future cash flows. So, consider a payoff at time T , then the
present value of this agreement would be

E
[
e
∫ T
−tr(τ) dτPayoff

]
This expectation is with respect to the risk neutral variable and not with respect
to the real random variable. The difference occurs because the drift term in the
bond pricing equation (4.0.5) is not the drift of the real spot rate u, but the drift
of the so-called risk neutral spot rate. The risk neutral spot rate has a drift of
u − λw. This means that when pricing derivatives it is important to use the risk
neutral spot rate which satisfies

dr = (u− λw)dt+ wdX. (4.1.2)

4.2 Tractable Interest Rate Models

History shows that the coefficients in equation (4.1.2) need to be more complicated
than the coefficients in the equity random walk, in order to grasp the dynamics
of the real spot rate. However, making the coefficients too advanced will in turn
make it hard to find solutions of the bond pricing equation. Therefore, in this
chapter we look at coefficients of the form

u(r, t)− λ(r, t)w(r, t) = η(t)− γ(t)r (4.2.1)

and

w(r, t) =
√
α(t)r + β(t). (4.2.2)

Fixing the coefficients in this way, with a few restrictions, we make sure that r in
the random walk (4.0.1) has the following properties

• The interest rates can be held positive. The spot rate can be bounded below
by −β

α
if α(t) > 0 and β(t) ≤ 0. If α(t) = 0 then β(t) ≥ 0. Here r still can

go to ∞ but with probability equal to zero.
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• The interest rates have mean reversion. For large r the risk neutral interest
rate will start decreasing to its mean, while when the rate is very small it
will increase. This can be seen from the drift term.

We also want the model to never reach its lower bound, this is satisfied if

η(t) ≥ −β(t)γ(t)

α(t)
+
α(t)

2
. (4.2.3)

See [6] for proof. In addition, we need to impose two boundary conditions for a
zero coupon bond, namely

V (r, t;T )→ 0 as r →∞,

and that V remains finite on r = −β
α

. This last condition is only achieved if
equation (4.2.3) is valid. See [6] again for proof.

Further, looking at a zero coupon bond Z(r, t;T ) with the coefficients given in
equation (4.2.1) and (4.2.2), the solution of the bond pricing equation (4.0.5)
takes the simple form

Z(r, t;T ) = eA(t;T )−rB(t;T ) (4.2.4)

To find the form of A and B we insert (4.2.4) into (4.0.5). This leads to

∂A

∂t
− r B

∂t
+

1

2
w2B2 − (u− λw)B − r = 0. (4.2.5)

Taking the double derivative of this with respect to r and divide by B gives

1

2
B
∂2

∂r2
(w2)− ∂2

∂r2
(u− λw) = 0.

Since only B is a function of T this means

∂2

∂r2
(w2) = 0

and
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∂2

∂r2
(u− λw) = 0.

From this equations (4.2.1) and (4.2.2) are derived. Further, substitution of (4.2.1)
and (4.2.2) into equation (4.2.5) leads to

∂A

∂t
= η(t)B − 1

2
β(t)B2 (4.2.6)

∂B

∂t
=

1

2
α(t)B2 + γ(t)B − 1. (4.2.7)

We also need A(T ;T ) = B(T ;T ) = 0 to satisfy the final condition Z(r, t;T ) = 1.
Usually when α, β, γ and η are time dependent we can not integrate explicitly
the two equations (4.2.6) and (4.2.7). However, assuming constant parameters we
obtain a nice solution of the form

B(t;T ) =
2
(
eΦ1(T−t) − 1

)
(γ + Φ1) (eΦ1(T−t) − 1) + 2Φ1

,

and

A(t;T ) =
2

α

(
aΦ2log(a−B) + b(Φ2 +

1

2
β)log(

B + b

b
)− 1

2
Bβ − aφ2loga

)

where

φ1 =
√
γ2 + 2α,

φ2 =
η − aβ

2

a+ b

and

b, a =
±γ +

√
γ2 + 2α

α
.
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Further, it is obvious in the constant parameter case that A and B only depends
on a single variable τ = T − t. This means the yield curve can easily be estimated
from equation (2.6.1). In this case

Y → 2

(γ + Φ1)2 (η(γ + Φ1)− β) (4.2.8)

as τ → ∞. So the model leads to a fixed long term interest rate when using
constant parameters.

The Vasicek model is one of the most common risk neutral interest rate models.
It uses equations (4.2.1) and (4.2.2) with α = 0, β > 0 and the other parameters
with no time dependence

dr = (η − γr)dt+ β
1
2dX. (4.2.9)

Some of the flaws with the model is that it is hard to get humped yield curves and
also that interest rates can go negative. However, one of the perks is the mean
reverting to a constant level feature.

In the Cox, Ingersoll and Ross model β is zero and there is still no time dependence
in the rest of the parameters

dr = (η − γr)dt+
√
αrdX. (4.2.10)

This model is also mean reverting and it also includes an additional feature, namely
that the spot rate stays positive for η > α

2
. Also, the value of Z(r, t;T ) is again

given by equation (4.2.4) with A and B given in equations (4.2.1) and (4.2.2) with
β = 0.

4.3 Bond Option and Interest Rate Derivatives

Much of the theory analyzing equity options can be used to evaluate bond options
and interst rate derivatives. The bond option is much like an equity option except
that the underlying asset is a bond. Also in this case there exist both European and
American versions. Consider a zero coupon bond Z(r, t;TB) satisfying equation
(4.0.5) and a call option on this bond with exercise price E and expiry date T ≤ TB.
The value V (r, T ) of the call option also depends on r, so it also satisfies equation
(4.0.5), however the final value of the option is now
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V (r, T ) = max (Z(r, t;TB)− E, 0) .

Further, a cap contract typically has payments at times ti, each period, of a floating
interest on a principal. Hence the cash flow is of the form

Principal ·m ·max(rL − rc, 0),

while for a floor the cash flow is

Principal ·m ·max(rf − rL, 0).

Here m is the tenor of interest payments, for instance 0.5 if payments are semi-
annual, rc, rf are the fixed cap and floor rates and rL is the floating rate. rL might
be three-month LIBOR if payments are made quarterly and this rate that is to be
paid at ti is set at ti−1. Each of the cash flows V (r, T ) is called a caplet/floorlet,
which means if we assume that rL ≈ r(spot rate), these ”lets” can be priced with
equation (4.0.5) with

V (r, T ) = Principal ·m ·max(r − rc, 0)

for a caplet and

V (r, T ) = Principal ·m ·max(rf − r)

for a floorlet. Further, we see that this is equivalent to a call option on the floating
rate r for the caplet, and a put for the floorlet.

4.4 Black’s Model

Another way to price the ”lets” is to use the Black Scholes formula since it simple
to use. This is done by modeling a caplet/floorlet as a call/put on a lognormally
distributed interest rate. This means the model takes in the strike price rc/rf ,
annualized volatility σ of the interest rate, the time to the cash flow ti− t and two
interest rates. One of them is used as a ”stock price” and is the current forward
rate between ti−1 and ti, while the other is the yield on a bond having maturity
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T = ti. The latter one is used for discounting to present. From the lecture notes
in [7] we have that the value V of a floorlet is

V = Principal ·m · e−r∗(ti−t)
(
−F (t, ti−1, ti)N(−d′1) + rfN(−d′2)

)
, (4.4.1)

with

d
′

1 =
log( F

rf
) + 1

2
σ2ti−1

σ
√
ti−1

and d
′

2 = d
′

1 − σ
√
ti−1.

Here F (t, ti−1, ti) is the forward rate and r∗ is the yield to maturity for a maturity
of ti − t. Note that this model is not limited to one-factor models. Further, there
exist an one-to-one link between the floorlet price and the volatility. Therefore,
option prices are sometimes listed by giving the implied volatility. Namely the
unique volatility which gives the observed market price. An important problem
with the Black’s model however, is that the implied volatility does not exist for
negative rates. This is the reason why LMM-rates are used in the Black’s pricing
model, and not HJM-rates because they may very vell become negative.

4.5 Floating Rate Approximation

For short maturities we may solve the zero coupon bond pricing equation in (4.0.5)
with a taylor series expansion. This is done by substituting

Z(r, t;T ) = 1 + a(t)(T − t) +
1

2
b(r)(T − t)2 + ...

into equation (4.0.5). Doing this we find

a(r) = −r and b(r) = r2 − (u− λw).

From these results we then find the yield curve for small maturities

− logZ

T − t
∼ r +

1

2
(u− λw)(T − t) + ... as t→ T (4.5.1)

This means that we have another approximation than rl ≈ r(spotrate), namely
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rl ≈ r +
m

2
(u− λw).

Here m is the maturity measured in years, for instance m = 1
4

for a three-month
rate.



Chapter 5

Multi-Factor Interest Rate
Models

5.1 The Heath, Jarrow and Morton Framework

In stead of modeling the spot rate with the previous models stated, the HJM
models the forward rate curve. It is based on an implicit yield curve fitting, which
means it builds a model for the whole forward rate curve from the forward rates
currently available today. From equation (2.7.1) we have

f(t, T ) = − ∂

∂T
logZ(t;T ). (5.1.1)

Further, the forward rate curve is modeled by

df(t, T ) = µ(t, T )dt+ σ(t, T )TdW (t). (5.1.2)

The process dW (t) is a d-dimensional standard Brownian motion. To make the
discounted zero coupon bond prices positive martingales as in the book [8] we need
it on the form

dZ(t, T )

Z(t, T )
= r(t, T )dt+ ν(t, T )TdW (t).

Using Ito’s formula on equations (5.1.1) and (5.1.2) and interchanging the order
of differentiation we obtain

27



28 CHAPTER 5. MULTI-FACTOR INTEREST RATE MODELS

df(t, T ) =
∂

∂T

(
1

2
νT (t, T )ν(t, T )− r(t, T )

)
dt− ∂

∂T
ν(t, T )TdW (t).

This means

σ(t, T ) = − ∂

∂T
ν(t, T ),

while the drift term is seen to be

µ(t, T ) = σ(t, T )T
∫ T

t

σ(t, u) du. (5.1.3)

Equation (5.1.3) is known as the no-arbitrage condition in the HJM framework.
Further, equation (5.1.2) can now be written

df(t, T ) =

(
σ(t, T )T

∫ T

t

σ(t, u) du

)
dt+ σ(t, T )TdW (t) (5.1.4)

with f(0, T ) = f ∗(0, T ) where f ∗(0, T ) is the observed forward rates at today’s
time.

5.1.1 Discretization of HJM model

It is in general hard to represent the full continuously forward rate curve in (5.1.4),
except for a few special choices of σ. This means we rather fix the same time grid
0 = t0 < t1 < t2 < ... < tM−1 < tM both for t and T . In other words, we are
modeling the forward rate curved for the same set of times. Using the same set of
time grid for both variables simplifies the notation significantly with little loss of
generality. Further, letting f̂(ti, tj) be the discretized forward rate at time ti with
maturity tj, the discretized version of the zero coupon bond price is

Ẑ(ti, tj) = e
∑j−1
l=i f̂(ti,tj)[tl+1−tl]

Creating the time grid obviously introduces a discretization error. To minimize
it, we choose the initial values of the discretized zero coupon bonds to match the
true values of the bond prizes for all maturities on the time grid, i.e.
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Ẑ(0, tj) = Z(0, tj) j = 0, 1, ...,M.

Further, from equation (5.1.1) we have the following condition for the initial for-
ward rates

f̂(0, tj) =
1

tj+1 − tj
log

(
Z(0, tj)

Z(0, tj+1)

)
. (5.1.5)

After the initialization the simulated forward rate curve is computed for i =
1, ...,M ,

f̂(ti, tj) = f̂(ti−1, tj)+µ̂(ti−1, tj) [ti − ti−1]+
√
ti − ti−1σ(ti−1, tj)

TZi, j = i, ...,M.
(5.1.6)

Here Zi’s are d-dimensional independent N(0, I) random vectors, the drift term
is

µ̂(ti−1, tj) =
d∑

k=1

µ̂k(ti−1, tj),

where

µ̂k(ti−1, tj) [tj+1 − tj] =
1

2

(
j∑
l=i

σ̂k(ti−1, tl) [tl+1 − tl]

)2

−1

2

(
j−1∑
l=i

σ̂k(ti−1, tl) [tl+1 − tl]

)2

.

(5.1.7)

Equation (5.1.7) is the discrete analogue to the no-arbitrage condition for a multi-
factor HJM model. Having obtained an expression for the simulated forward rate
curve the only things remaining are finding the initial forward rates and determin-
ing the volatility structure. However, fixing a daily grid means we do not have
bonds maturing at each grid point. The solution is to interpolate between the
known maturity points which gives you the initial forward rates for all the grid
points. In this thesis we use linear interpolation. Further, in this chapter we also
use the Musiela parametrization [9]

σ(t, T ) = σ(T − t) = σ(τ).
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Namely that the volatility in the forward rate curve is only dependent on the
time to maturity T . This means we use the change in historical forward rates
for several maturities, to estimate the volatility in the forward rate curve. This
is done by first finding the daily changes in each time series and then applying
principal component analysis.

5.1.2 Principal Component Analysis in the HJM Frame-
work

In this chapter we give a brief explanation of the PCA, see [13] for a more detailed
explanation. We start with the daily historical changes in the forward rate, for
d different maturities. The PCA will then convert a set of possibly correlated
variables into linearly uncorrelated variables by using an orthogonal transformation
on the historical changes in the forward rate. The first principal component will
explain the largest variance in the data by the definition of the transformation, and
then the second principal component will include the second largest variance under
the constraint that it must be orthogonal to the previous component. In other
words it is uncorrelated with the previous principal component. First we find the
covariance matrix Σ, which has dimension d × d, where Σij gives the covariance
between movement of the i’th and j’th forward rate. Then Σ is decomposed
into

Σ = V ΛV −1,

where V is a matrix whose columns gives the eigenvectors of Σ, while Λ is a
diagonal matrix containing the eigenvalues of Σ. Further, the first eigenvector will
give the most important move in the forward rate curve, while the i’th entry gives
the movement of the i’th maturity. Also the j’th column of V will give the j’th
principal component. Using k of these principal components will give a

∑k
j=1 λj∑d
j=1 λj

· 100%

explanation of the variability in the data. All together this gives the volatility
factors in equation (5.1.6)

σj(τi) =
√
λjV ij (5.1.8)



CHAPTER 5. MULTI-FACTOR INTEREST RATE MODELS 31

Again, we need to interpolate (5.1.8) to get a an expression for the volatility factors
over the whole time grid. In this case we also uses linear interpolation. Further,
we usually assume that three factors can explain the most of the variability of
the American yield curve. For instance, in Chapman and Pearson [14] it is shown
that the three first principal components explains 99% of the variability in the
American yield curve, namely the first component gives a parallel shift, the second
a twisting and the third gives a bending of the yield curve. However, it is not so
clear for forward rates and the intuitive economical meaning behind each of the
components.

5.1.3 Pricing Derivatives Under the HJM Framework

From the relationship in equation (2.7.2) we obtain a HJM-model for the spot rate
by evaluating the forward rate at t = T

r(t) = f(t, t).

This means we simulate the spot rate using equation (5.1.6) on our time grid.
Furthermore, given a derivative we set the payment dates of this derivative to
be annually. This makes it trivial to apply Monte Carlo simulation to price the
derivative. For a life insurance company the floorlet would be the relevant deriva-
tive, and in a floorlet the floating rate is generally based on discrete compounding.
Assuming the floorlets considered in this thesis coincides with each simulation
interval, the discretely compounded forward rate, F̂ for the interval t ∈ [ti, ti+1]
satisfies

1

1 + F̂ (ti)[ti+1 − ti]
= e−f̂(ti,ti)[ti+1−ti],

i.e.

F̂ (ti) =
1

ti+1 − ti

(
ef̂(ti,ti)[ti+1−ti] − 1

)
.

Fixing hi+1 = ti+1 − ti and the floor rate to E, the discounted price, P , of each
simulated floorlet at time ti+1 is

P = e−
∑i
l=1 f̂(tl−1,tl−1)[hl]

(
E − F̂ (ti)

)+

.



32 CHAPTER 5. MULTI-FACTOR INTEREST RATE MODELS

The total price of the floor is then the sum of the discounted price for each of
the floorlets. This means we simulate many trajectories of the forward rate, then
calculate the discounted cash flows of each floorlet and then calculate the average
price of the derivative.

5.2 LIBOR Market Model

The model which is now presented is closely related to the HJM-framework in
the sense that they both explain the arbitrage-free dynamics of the interest rate
through the development of forward rates. However, the HJM-model were based
on continuously compounded forward rates, which is unobservable abstract rates
invented by mathematicians to ease the calculations. On the contrary, the LMM-
models are based on simple rates explained in Chapter 2.8. LIBOR stands for
London Inter-Bank Offered Rate and is updated daily as the average of several
rates offered by different banks in London. Further, define

δi = Ti+1 − Ti, i = 0, ...,M

with a finite set of maturity dates

0 = T0 < T1 < ... < TM < TM+1.

Then, for each maturity date Tn, Zn(t) gives the zero-coupon bond price of a
bond maturing at Tn at a time t ∈ [0, Tn]. Similarly, Ln(t) denotes the LIBOR
forward rate at time t ∈ [0, Tn] for the period [Tn, Tn+1]. Given these definitions it
is trivially to find the definition of the forward LIBOR rate

Ln(t) =
Zn(t)− Zn+1(t)

δZn+1(t)
, 0 ≤ t ≤ Tn, n = 0, 1, ...,M. (5.2.1)

We solve equation (5.2.1) to find the bond price

Zn(Ti) =
n−1∏
j=i

1

1 + δjLj(Ti)
, n = i+ 1, ...,M + 1.

However, obviously this has a fault in the sense that it fails to give the properl
dicount factor for intervals shorter than the maturity periods. This means if we try
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to find the discount factor of a bond Zn(t) for some n > i+ 1, when Ti < t < Ti+1,
the factor

Zn(Ti) =
n−1∏
j=i+1

1

1 + δjLj(t)

discounts the bond’s payment at Tn back to Ti+1, but it does not include the
discount factor from Ti+1 to t. We solve this by defining a function η : [0, Tm+1)→
1, ...,M + 1 by defining η(t) to be the unique integer which does not violate

Tη(t)−1 ≤ t ≤ Tη(t).

This means η(t) gives the index of the next tenor date at time t. Further, this
gives the correct bond price

Zn(t) = Zη(t)(t)
n−1∏
j=η(t)

1

1 + δjLj(t)
, 0 ≤ t < Tn.

Further, under the spot measure [8] the evolution of the LIBOR forward rates
follows a system of SDEs of the form

dLn(t)

Ln(t)
= µn(t)dt+ σn(t)TdW(t), 0 ≤ t ≤ Tn, n = 1, ...,M. (5.2.2)

Here dW is a d-dimensional standard Brownian motion, while µn and σn may
depend on both the current LIBOR rates aswell as the time t. Just like in the HJM-
framework, the LIBOR market model also has a no-arbitrage drift condition

µn(t) =
n∑

j=η(t)

δjLj(t)σn(t)Tσj(t)

1 + δjLj(t)
. (5.2.3)

Combining this with equation (5.2.2) we obtain

dLn(t)

Ln(t)
=

n∑
j=η(t)

δjLj(t)σn(t)Tσj(t)

1 + δjLj(t)
dt+σn(t)TdW(t), 0 ≤ t ≤ Tn, n = 1, ...,M.

(5.2.4)
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Here we observe that Ln(t) is lognormal distributed and it’s drift is again deter-
mined by the volatility factors just like in the HJM framework.

5.2.1 Simulation of LMM

Just as in the HJM case we fix a time grid 0 = t0 ≤ t1 ≤ t2 ≤, ...,≤ tM to simulate
the LIBOR market model at, while choosing the tenor dates T1, T2,..., TM to fully
coincide with the time grid. Further, we apply Euler scheme logLn(t) in equation
(5.2.4) under the spot measure again given in [16], which gives

L̂n(ti+1) = L̂n(ti)exp

((
µn

(
L̂n, ti

)
ti −

1

2
‖σn(ti)‖2

)
(ti+1 − ti) +

√
ti+1 − tiσn(ti)

TZi+1

)
.

(5.2.5)

Here µn is given in equation (5.2.3) and Zi+1 is an independent N(0, 1) random
variable. We further assume we have today’s yield curve which enables us to
initialize the forward LIBOR rates with

L̂n(0) =
Zn(0)− Zn+1(0)

δnZn+1(0)
, n = 1, ...,M. (5.2.6)

5.2.2 Pricing Derivatives under LMM

Again, the pricing of derivatives looks a lot like the pricing in the HJM-framework.
We simulate L̂1, L̂2,...,L̂M and assuming we have caplets/floorlets at each tenor
the properly discounted price of each payment would be

P =
(
E − L̂n−1(tn−1)

)+
n−1∏
j=0

1

1 + δjL̂j(Tj)
.

This means the simulated price of the derivative is the sum of the discounted cash
flows from all the lets combined. Further, we simulate the price for many paths
and taking the average to obtain an estimate for the price at time 0.
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5.3 Volatility Structure in LMM

5.3.1 Implied Volatility

The most common way to define the volatility structure in LMM is to find the
implied volatility from Black’s formula. This automatically calibrates the LIBOR
market model to the observed prices of the rate options in the market. Further, if
we take the forward rate in equation (4.4.1) as a LIBOR forward rate, Ln(t), then
we find the unique implied volatility from inverting equation (4.4.1), assuming we
have the price for the interval [Tn, Tn+1]. Further imposing the constraint

1

Tn

∫ Tn

0

‖σn(t)‖2dt = v2
n

on the deterministic Rd-valued functions σj’s calibrates this model properly. An-
other way to fix the volatility structure is to apply the same trick as in the HJM-
setting, which is to use the Musiela parametrization and set the volatility depen-
dent only on the time to maturity. This volatility could simply be defined in the
following linear model

σn(ti) = 0.15 + 0.0025(n− i), i = 0, ..., n− 1, n = 1, ...,M, (5.3.1)

which is defined in the paper [15]. This model turned out to be consistent with
the implied volatilities observed in the U.S. dollar term structure at 1997.

5.3.2 Volatility Structure with Diagonalization

We may also create a volatility structure based on the historical LIBOR forward
rates. It is obvious that the LIBOR rate Ln(t) does not vary after maturity Ti,
which means it’s volatility has expired. This means we need a volatility structure
of the form
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Table 5.1: Volatility Structure

Maturity t0 t1 t2 . . . tm−1

T1 σ1,0 expired expired . . . expired

T2 σ2,0 σ2,1 expired . . .
...

T3 σ3,0 σ3,1 σ3,2 . . .
...

...
...

...
... . . .

...

Ti σi,0 σi,1 σi,2 . . .
...

...
...

...
...

. . . expired
TM σM,0 σM,1 σM,2 . . . σM,M−1

Here σn,i denotes the volatility for the LIBOR rate Ln(t) where t ∈ (ti, ti+1]. In
order to find such a matrix from the historical data we first find the covariance
matrix C for the daily changes in the forward LIBOR rates for n maturities.
However, we need to turn C into a lower tridiagonal matrix Ĉ, which is done by
fixing the elements above the diagonal to zero. However, the matrix is of order
percent squared, which means we diagonalize Ĉ

Ĉ = VΛV−1,

and define

σn(ti) = Yn,i

where Y is defined as

Y = VΛ0.5V−1.

Further, note that Y is square root of Ĉ because

YY = VΛ0.5V−1VΛ0.5V−1 = VΛV−1 = Ĉ.

5.3.3 Rolling Volatility

The rolling volatility are based on moving averages of an observed time series with
either equally weighted or different weighted moving averages. These are useful
for detecting periods of instability or unnatural behavior, but may also produce
misleading results if they are used for short-term forecasting. This is especially
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valid for equally weighted averages because they are sensitive to extreme values.
In this thesis rolling volatility will be used in the LMM-simulation.

The most easily computed rolling volatility is the simple moving average (SMA),
which means the moving average is equally weighted. Since we apply an Euler
scheme to logLn, we assume we have N daily log returns of the n′th forward rate
ln,i = logLn(ti+1)

Ln(ti)
for the last K trading days. Depending on the rolling window,

N , the annualized covariance matrix valid for today is found by the unbiased
estimator

Σ̂i,j = 252
1

N − 1

N−1∑
k=0

(
li,K−k − l̄i

) (
lj,K−k − l̄j

)
.

Here l̄i is the average log return of the i′th forward rate over the last K days

l̄i =
1

N

N−1∑
k=0

li,K−k.

Hence the volatility σi(tj) for the LIBOR rate Ln(t) is given by

σi(tj) = Σi,j i, j = 1, ...,M,

where M is the total number of LIBOR forward rates simulated. This method in-
deed finds the historic volatility, but since the real market volatility is not constant
over time we do not know whether it is a good estimator for today’s volatility. In
this case we have a conflict between making K as large as possible to decrease the
estimator’s variance, and minimizing K in order to capture the latest volatility.
This means there are better methods than SMA, one of them are exponentially
weighted moving average (EMWA). EMWA weights the moving average by giving
more importance to the data points in the near past compared to the older data
points. This method also has a nice recursive updating formula, namely that to-
day’s EMWA is a function of yesterdays EWMA. Assuming we are at the N ′th
trading day, EMWA uses all of the N log returns but with decaying weights. This
gives the annualized covariance matrix valid for today

Σ̂N
i,j = 252

1− λ
1− λN

N−1∑
k=0

λk
(
li,N−k − l̄i,N

) (
lj,N−k − l̄j,N

)
,
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where 0 < λ < 1 is the rate of decay and l̄i,N = 1
N

∑N
k=1 li,k. We also see that the

weighting is adequate in the sense that it sums to one,

1− λ
1− λN

N−1∑
k=0

λk =
1− λ

1− λN
1− λN

1− λ
= 1.

Also we have,

EMWA(N) =
1− λ

1− λN
N−1∑
k=0

λkYN−k,

=
1− λ

1− λN
Yn + λ

1− λ
1− λN

N−1∑
k=1

λk−1YN−k,

=
1− λ

1− λN
Yn + λ

1− λn−1

1− λN
1− λ

1− λN−1

N−2∑
k=0

λkYN−k−1,

=
1− λ

1− λN
Yn + λ

1− λN−1

1− λN
EMWA(n− 1).

This means we update the covariance matrix recursively

Σ̂i,j = 252
1− λ

1− λN
(
li,N − l̄i,N

) (
lj,N − l̄j,N

)
+ λ

1− λN−1

1− λN
Σ̂N−1
i,j .

With these results we have the volatility σi(tj) for the LIBOR rate Ln(t) is given
by

σi(tj) = Σi,j i, j = 1, ...,M.

In this thesis we use λ = 0.94 as proposed in [10].



Chapter 6

Risk Measure

The financial market contains several degrees of risk and with new financial in-
novations coming up every day, it makes risk management more important than
ever. There are four main types of risk, namely

• Market Risk - Market risk is due to possibly changes in price of an asset.

• Credit Risk - Credit risk is the possibility that the counterpart does not meet
contractual commitments, for example that the interest of a bond is not paid
in time.

• Liquidity Risk - Liquidity risk comes from the fact that there may incur
extra cost of liquidation a position because buyers are hard to find.

• Operational Risk - Operational risk is due to problems like flaws in manage-
ment, frauds and human errors.

In this thesis we focus only on market risk analysis.

6.1 Coherent Measures

Market risk are one of the most important risks financial institutions need to
consider. This risk might come from complicated portfolios and therefore they are
in need of intuitive and effective ways of measuring risk. Earlier it was normal
to measure risk with for instance duration analysis, but it turned out primitive
and of only limited applicability. Therefore we need risk measures with certain
well-behaved properties. In [11] they present a class of coherent measures, which
all have these well-behaved properties.

39
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If we let X, Y ∈ S with S being a set of stochastic processes, for instance a set
of returns from a portfolio, then a coherent risk measure ρ : S → IR satisfies the
following

• Translation Invariant - ∀X ∈ S, ∀γ ∈ IR, ρ(X + γ) = ρ(X) − γ. This
means adding a or subtracting a risk-free quantity to a portfolio changes the
risk measure by that exact amount.

• Subadditive - ∀X, Y ∈ S, ρ(X+y) ≤ ρ(X)+ρ(Y ). The risk of combining
portfolios can never exceed the sum of the respective portfolios risks.

• Positive Homogenous - ∀X ∈ S, ∀ν ≥ 0, ρ(νX) = νρ(X). Scaling the
portfolio changes the risk by the same amount.

• Monotonicity - ∀X, Y ∈ S such that X ≥ Y , ρ(X) ≤ ρ(Y ). This means
if returns from one portfolio always are greater than for another portfolio,
then the risk associated with the first portfolio are always less than for the
other one.

6.2 Value at Risk

Value at risk (VaR) is one of the most common risk estimation of portfolios. The
reason for this is that it can be used on all kind of risks and assets, also on
complex portfolios. VaR takes in two parameters, namely the time horizon T and
the confidence level 1−α. By applying these parameters VaR gives us a bound such
that the loss over the time period T is less than the VaR bound with probability
1− α.

Letting Γ(t) be the portfolio value at time t, L = Γ(t)− Γ(t+ T ) be the loss over
the time period T > t and α ∈ (0, 1), then the definition of VaR(α,T ) is given
by

VaR(α, T ) = inf{` ∈ R|P (L > `) ≤ 1− α}.

The confidence levels are typically given as 95%, 97.5% or 99%. There are several
reasons why VaR is so popular. Firstly, VaR is an easily understandable concept.
Also, it is consistent across different positions and risk factors. Therefore it is easy
to compare several projects/portfolios in terms of VaR. In addition, it also takes
correlations between risky assets into account when calculating the loss bound.
This is helpful when two or more assets/portfolios are varying together.
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However, there also exist disadvantages with VaR. One of them is that it gives
no information of the rest of the tail-losses. It gives what loss is expected with
95% confidence, but not how large the expected loss above VaR can be. Another
disadvantage is the general violation of the subadditive property of a coherent risk
measure. This means it discourages diversification. However, the risk measure
introduced in the next chapter is in fact coherent, namely expected shortfall.

6.3 Expected Shortfall

The expected shortfall (ES) is the expected loss given a tail event. Again letting
L be the loss over the time period T > t with α ∈ (0, 1), then ES is given by

ES = E{L|L > VaR(α)} =

∫ α
0

VaR(u)du

α
.

From the definition we see that ES will always be greater than or equal to VaR.
It also gives more information about the potential loss compared to the VaR.
ES is also a consistent measure of risk across positions/portfolios and takes into
account the correlations between them. Lastly, expected shortfall is a coherent
risk measure and therefore satisfies all the properties in Chapter 6.1.

6.4 Calculation of VaR and ES

The value at risk and expected shortfall can be estimated both parametric and non-
parametric. The parametric estimates rely on the fact that the loss distribution is
assumed to be in a parametric family such as the normal distribution or the student
t-distribution. For instance, assuming the losses follows a normal distribution, we
obtain an easy formula for estimating both the VaR and ES

ˆVaR(α) = −S
(
µ̂+ Φ−1(α)σ̂

)
and

ÊS(α) = S

(
−µ̂+ σ̂

(
φ{Φ−1(α)}

α

))
.

However, when they are estimated non-parametrically we need to either look at
historical data or simulated data. The simplest way is to look at what losses
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the portfolio has suffered over the time-horizon T in the historical data. Another
way is to use Monte Carlo simulation, which is introduced in the next chapter,
to acquire the distribution of the losses in the future. In this thesis we use MC-
simulation to find the non-parametric estimates of VaR and ES. This is done by
simulating the progression of the portfolio value and then storing each endpoint of
the realizations. Furthermore, we pick the α% quantile directly from the simulated
loss distribution. This is the VaR(α) value. Lastly, we calculate the arithmetic
mean of the α% worst losses, which gives the ES.



Chapter 7

Simulation

7.1 Monte Carlo Simulation

Consider evaluating the integral of a function f(x) on the unit interval, this is
given by

Γ =

∫ 1

0

f(x)dx.

However, it can also be represented as the expectation of f , E [f(U)], where U
is uniformly distributed between 0 and 1. This means we simulate the points
U1, U2, ..., Un independently and uniform on [0, 1] and then evaluate f at these
points. By averaging the evaluated f ′s we obtain the Monte Carlo estimate

Γ̂n =
1

n

n∑
i=1

f(Ui).

Further, assuming f is integrable on [0, 1]

P
(

Γ− Γ̂ > ε
)
→ 0 as n→∞,

by the strong law of large numbers [17]. Also if f is square integrable we have
the Monte Carlo error εn = Γ̂n − Γ is normally distributed with mean zero and
standard deviation

σf√
n
, where σ2

f is given by

43
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σ2
f =

∫ 1

0

(f(x)− Γ)2 dx.

The σ2
f is usually unknown, but can be estimated with

s2
f =

1

n− 1

n∑
i=1

(
f(Ui)− Γ̂n

)2

.

This means we have an error of the estimate, as well as the possibility to create a
confidence interval for the estimate. Further, the convergence rate isO(n−

1
2 ).

7.2 Interpolation

Usually we have yields for a set of maturities T1, T2, ..., Tn, but sometimes we need
to find the yield in between one of these nodes. This is solved by interpolating
between the two closest points. In this thesis we use linear interpolation which
creates a straight line between the two closest points

r = r0 + (r1 − r0)
T − T0

T1 − T0

.

Here r is only valid in between it’s neighborhood points T ∈ [T0, T1], and (T0, r0)
and (T1, r1) are always known.

7.3 Log-Normal Maximum Likelihood Estimation

To check the log-normal assumption used in simulation of LMM-rates regarding
the relative change in LIBOR forward rates, we compare the historical relative
change in forward rates with the log-normal distribution. This can be done by
maximum likelihood estimation. First, the log-normal distribution has the follow-
ing probability density

f(x, µ, σ2) =
1

x
√

2πσ2
exp

(
log(x)− µ

2σ2

)
.

The likelihood function L then takes the form
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L =
n∏
i=1

1

xi
√

2πσ2
exp

(
log(xi)− µ

2σ2

)
,

which means the log-likelihood function l = logL is given by

l = −
n∑
i=1

(
log(xi) +

log(xi)− µ
2σ2

)
− nlog(σ)− n

2
log(2π).

Taking partial derivatives with respect to µ and σ2 gives the following maximum
likelihood estimators

µ̂ =
1

n

n∑
i=1

log(xi), σ̂2 =
1

n

n∑
i=1

(log(xi)− µ̂)2 .

7.4 Portfolio Simulation

In order to find the mean gain, VaR and ES of the portfolios including the paid-up
policies managed by the life insurance companies, we need to simulate the LIBOR
rates together with the stock indexes. This is done by using a correlation matrix
between the LIBOR rates and the stock index. However, the simulation forward
in time needs to be done in the real statistical probability measure, i.e. we apply
the real drift of the stock indexes and forward LIBOR rates. Compared to the
risk-neutral world where we only use the risk-free rate as the drift of the equity,
we now need to estimate the drift observed in the market. Obviously it is not
possible to estimate the drift only by using a short historical time period. This
would contradict the weak form of the efficient market hypothesis, and also it gives
the possibility of negative drift. This is the reason why we look at a large time
horizon to find the general trend of the stock index.

We also need to estimate the real drift of the forward LIBOR rates. However,
interest rates have significantly different characteristics than a stock index. For
instance, the stock index modeling includes an expected exponential growth. This
does not fit very well with the mean-reverting features of an interest rate. The
potential real drift of the interest rates will only be ”short”-term events, which
means they are hard to model. This is the reason why this thesis assumes zero
real drift of the forward LIBOR rates.
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Further, to model the portfolio we first apply an Euler discretization on log S,
from Equation (2.2.1) we obtain the modelling scheme

S(ti+1) = S(ti)exp

((
µ− 1

2
σ2

)
(ti+1 − ti) +

√
ti+1 − tiσ2Z6

i+1

)
. (7.4.1)

Here µ is the historic mean of the stock index while σ is the volatility of the stock
index. Further, Z6

i+1 is the sixth element of the random vector

Zi+1 =
(
Z1
i+1, ..., Z

6
i+1

)
∼ N(0, ρ).

Here ρ is the correlation matrix of L1, L2, L3, L4, L5, S, namely the correlation
between the LIBOR rates and the respective stock index. Further, using the
modeling scheme for the LIBOR rates defined in [12], we obtain

L̂n(ti+1) = L̂n(ti)exp

((
µn

(
L̂n, ti

)
ti −

1

2
‖σn(ti)‖2

)
(ti+1 − ti) +

√
ti+1 − tiσn(ti)Zni+1

)
.

(7.4.2)

Here µn is given in Equation (5.2.3) and σn(ti) is defined in Chapter 5.3.3. Further,
Zni+1 is the n’th element in the random vector

Zi+1 =
(
Z1
i+1, ..., Z

6
i+1

)
∼ N(0, ρ),

where n = 1, 2, ..., 5.

Moreover, the paid-up policies the insurance companies gets from a customer can
either be placed in equity or in fixed-income securities. In this thesis we assume
the life insurance company receives 100 in the respective currency today and then
places x of the 100 in the equity market, and 1−x of the 100 in zero-coupon bonds.
This means in six years, the value of the portfolio then will be the money received
from the zero-coupon bond, plus the money received/lost from the position in
the equity market, minus the floor paid out by the life insurance company each
year. In other words, the gain the life insurance company receives in six year is
calculated by the following formula,

Pf = 100xEr + 100(1− x)ZCP− Floor. (7.4.3)

Here Pf is the portfolio value, Er is the return of the equity in 6 years, ZCP is
the money received from the zero-coupon bond in six years, while the Floor is the
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sum of the forward value of the money paid out to the customer annually through
six years. It is evident that the value received from the ZCP is known today, since
we use the six year forward LIBOR rate as the yield. This means we look at each
stock and interest rate trajectory and calculates the gain for each realization. This
is done by varying the floor guarantee from 0 to 0.1 and for each floor guarantee
we vary x, the position in the equity market, from 0 to 1. The VaR and ES are
then found by the technique discussed in Chapter 6.4.
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Chapter 8

Data

8.1 Stock Index

In this thesis we have considered OSEBX (Oslo Børs Hovedindeks), SX5P (STOXX
Europe 50 Index) and S&P 500 (Standard & Poor 500 Index) as a proxy for the
markets in Norway, Europe and US respectively. The reason for the use of these
indexes is that they include stocks of a variety of business sectors, which means
they are a good indicator of how these sectors perform together in the financial
market. Also they are well diversified, which is a requirement for being a proxy to
the stock market.

Figure 8.1: Stock Indexes in Norway, Europe and US respectively.

It is interesting to see that all of the indexes in Figure (8.1) are influenced by the
dot-com bubble [19] which appeared around 2002. Further, we also see that the
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financial crisis of 2007-08 had a large negative impact on the indexes.

Figure 8.2: Index returns in Norway, Europe and US respectively.

The returns of the stock indexes in Figure (8.2) gives the same information as
in the previous Figure. Namely that the stock indexes are unstable in distressed
times. we also see that the variance is not constant, but increases significantly
during the dot-com bubble and during the financial crisis. Another observation is
that the stock markets in Norway, Europe and USA reacts very similarly, which
means they are highly correlated.

Table 8.1: Descriptive Statistics of the Returns

OSEBX SX5P S&P 500
Mean 0.00043 0.00003 0.00022
Var 0.00023 0.00016 0.00015

Skew -0.582 0.0806 -0.2809
Kurt 6.9747 7.6803 10.1954

Further, it is also interesting to look at the distribution of the returns. In Table
8.1 we see that all three indexes have skewness close to zero, while the kurtosis
values are significantly non-zero. Normal distributed returns should have skewness
and kurtosis equal to zero, which means the indexes are not quite following a
normal distribution. The skewness coefficients for student-t distributed returns
should also be equal to zero, however the kurtosis values are allowed to be slightly
positive. From the skewness coefficients we see that all three indexes could be
approximated both by a normal and a student-t distribution, but the kurtosis
values strongly indicates that the returns follow a more peaked distribution than
the normal one.
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Figure 8.3: Normal density fit to index returns.

From Figure 8.3 we see that a normal fit to the index returns is performing bad.
The plots also coincide with the high kurtosis coefficients listed earlier, namely
that the observed densities have much higher peaks compared to the fitted nor-
mal densities. We also see that the observed density sometimes goes above the
normal tails, but this is expected since the normal distribution assign very small
probabilities to extreme events. Furthermore, in Figure 8.4 we see the student-t
fit of the index returns. In this case the fitted densities are much closer to the ob-
served densities, compared to the normal fits. This is expected since the student-t
distribution has one extra parameter to fit compared to the normal distribution.
However, we still see the observed densities have fatter tails than the student-t
fit.

Figure 8.4: Student t density fit to index returns. The scale and degrees of freedom
is listed above each plot.
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Further, in Table 8.2 we see the covariance matrix of the index returns. It looks
like the Norwegian and European market have about the same covariance as the
European and American market, while they have both larger covariance than the
covariance between the Norwegian and American market.

Table 8.2: Covariance Matrix of Returns

OSEBX SX5P S&P 500
OSEBX 0.00023 0.000016 0.000006
SX5P 0.000016 0.00016 0.000012

S&P 500 0.000006 0.000012 0.00015

In Figure refstockprice2 we see the rolling volatility defined in Chapter 5, namely
by using exponentially weighted moving average and simple moving average. We
notice that EMWA adjusts faster than the SMA and that EMWA has more extreme
peaks. SMA depends highly on the length of the period it uses to calculate the
volatility and this in turn makes it react slower than the EMWA.

Figure 8.5: Rolling volatility of index returns.

8.2 Historical Yields Used for the Forward Rate

Curve

The data is provided by DNB and it includes daily quoted yields for the Norwegian,
European and American market. The data used for HJM and LMM starts at
08.01.2006 and ends at 10.14.2015 for both the European market and American
market, while the Norwegian data starts at 08.15.2002 and ends at 10.14.2015.
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The maturities analyzed are 1 day, 1, 2, 3, 4, 5, 7, 10, 15 and 20 years. However,
we only simulate up until 6 years for the floor prices and portfolio values, which
means we only apply the 1 day, 1, 2, 3, 4 and 5 years maturities in the simulation.
Furthermore, if we use volatility factors in the HJM-framework and LMM based on
historical data, we need to first convert historical yields to historical instantaneous
forward rates and historical LIBOR forward rates, and then find the volatility of
these.

8.3 Inversion from Yield Curve to Forward Rate

Curve

Even though we do not have quoted yields for all of the maturities wanted, for
instance year two, we obtain an estimate for the instantaneous forward rate curve
by doing the following. First set the instantaneous forward rate today equal to
the 1 day rate. Then interpolate the yield curve to get the yield for the following
maturities 1, 2, 3, ..., 20 years. When this is done we use equation (5.1.5) to
find the instantaneous forward rate for the following maturities 1, 2, 3, ..., 20
years.

Figure 8.6: Historical instantaneous forward rates in the Norwegian, European
and American market respectively. The Norwegian rates start in 2002 and last till
2015, while the European and American rates start in 2006 and last to 2015.

In Figure 8.6 we see the instantaneous forward rates for the following maturities,
1 day, 1, 3, 5, 10 and 15 years. We clearly see that a constant rate assumption in
the Black-Scholes framework does not hold very well for longer periods. Also we
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see that in normal times the rate is increasing with increasing maturity, while in
distressed times it tends to be the inverse relation. Further, we see that the time
series are not stationary, i.e. the variance tends to vary across time periods. This
is why the PCA is done on daily changes in rates rather on the rates themselves.
Lastly, it looks like the rates vary less with increasing maturity and that the
American and Norwegian markets are slightly more volatile than the European
one. We also notice that the European rates go to a lower level in the end,
compared to the Norwegian and American rates.

Table 8.3: Descriptive statistics of the forward rates in Norway

Maturity Mean Std Mean daily change Std daily change
1 day 0.03164 0.01517 -1.888627e-05 0.00045

1Y 0.03583 0.01397 -1.747201e-05 0.00063
3Y 0.04131 0.01159 -1.465822e-05 0.00067
5Y 0.04449 0.00992 -1.240424e-05 0.00052
10Y 0.04858 0.00847 -1.007661e-05 0.00063
15Y 0.04877 0.00841 -1.029817e-05 0.00085

In Tables 8.3, 8.4 and 8.5 we see that the mean of the rates in general increases with
increasing maturity. We also see that the standard deviation is decreasing with
increasing maturity. The mean and the standard deviation of the daily changes
in rates also look more similar across maturities, than the mean and standard
deviation of the rates themselves.

Table 8.4: Descriptive statistics of the forward rates in Europe

Maturity Mean Std Mean daily change Std daily change
1 day 0.01765 0.01701 -1.403119e-05 0.00012

1Y 0.01836 0.01666 -1.609415e-05 0.00047
3Y 0.02416 0.01464 -1.582485e-05 0.00084
5Y 0.02605 0.01342 -1.470279e-05 0.00045
10Y 0.04563 0.00990 -9.077714e-06 0.00076
15Y 0.04019 0.00988 -1.027208e-05 0.00054

Table 8.5: Descriptive statistics of the forward rates in America

Maturity Mean Std Mean daily change Std daily change
1 day 0.01698 0.01701 -2.160551e-05 0.00032

1Y 0.01666 0.016124 -2.030988e-05 0.00051
3Y 0.02786 0.01398 -1.553168e-05 0.00105
5Y 0.03688 0.01056 -1.410588e-05 0.00080
10Y 0.0440 0.00914 -1.236303e-05 0.0010
15Y 0.04553 0.00884 -1.192208e-05 0.00085
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To confirm the non-stationary assumption, Table 8.6 contains the p-values for the
Phillops-Perron unit root test [20]. All of the p-values are big which means it can
not reject the null hypothesis, which is that the data are non-stationary. We also
see that the p-values are less for bigger maturity. This makes sense since larger
maturity means less variance in the data.

Table 8.6: P -values for the stationary test

Maturity P -value (NOR) P -value (EUR) P -value (US)
1 day 0.8323 0.9395 0.9311
10Y 0.223 0.3289 0.1263

8.4 Inversion From Yield Curve to Forward LI-

BOR Rate Curve

Figure 8.7: Historical LIBOR forward rates in the Norwegian, European and Amer-
ican market respectively. The Norwegian rates start in 2002 and last till 2015, while
the European and American rates start in 2006 and last to 2015.

The rates that are modeled in the LMM-framework are directly observable in
the market and it’s volatility factors have a one-to-one relation with it’s traded
contracts. On the contrary, the instantaneous forward rates modeled in the HJM-
framework are completely abstract. For the LIBOR forward rate we use the ma-
turities {T0, T1, T2, ..., T20} = {1 day, 1, 2, ..., 20 years}, and to find the his-
torical Ln(0) we use equation (5.2.6) with the listed set of maturities. In Fig-
ure 8.7 we see the historical LIBOR forward rates with the following maturities
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{T0, T1, T3, T5, T10, T15}. Here we also notice the same characteristics as with the
instantaneous forward rates. Namely that the mean of the rates tend to increase
with increasing maturities, while the standard deviation has the opposite relation
to increasing maturities. Also, we see that the LIBOR forward rates are not sta-
tionary, which means we need to find the daily changes in order to use PCA for
the volatility factors. Lastly, we notice that also the European LIBOR forward
rates goes below both the Norwegian and American rates in the end.

Table 8.7: Descriptive statistics of the forward rates in Norway

Maturity Mean Std Mean daily change Std daily change
1 day 0.03227 0.01579 -1.970665e-05 0.00047

1Y 0.03658 0.01451 -1.8165e-05 0.00066
3Y 0.04225 0.01205 -1.526984e-05 0.00070
5Y 0.04555 0.01034 -1.295993e-05 0.00054
10Y 0.04981 0.00890 -1.056203e-05 0.00067
15Y 0.04939 0.00890 -1.078462e-05 0.00089

In Tables 8.7, 8.8 and 8.9 we see the same tendency as with the instantaneous
forward rates, namely that the mean of the rates increases with increasing maturity,
while the same inverse relation between standard deviation and maturity. Also we
see that PCA should be done on daily changes if the volatility factors are found
by diagonalizing.

Table 8.8: Descriptive statistics of the forward rates in Europe

Maturity Mean Std Mean daily change Std daily change
1 day 0.017953 0.01708 -1.426883e-05 0.00013

1Y 0.018679 0.01704 -1.640589e-05 0.00048
3Y 0.02457 0.01501 -1.617403e-05 0.00087
5Y 0.02649 0.01377 -1.504542e-05 0.00046
10Y 0.04674 0.01032 -9.43205e-06 0.00079
15Y 0.04106 0.01026 -1.064587e-05 0.00056

Table 8.9: Descriptive statistics of the forward rates in America

Maturity Mean Std Mean daily change Std daily change
1 day 0.01727 0.01750 -2.227215e-05 0.00033

1Y 0.01694 0.01657 -2.094337e-05 0.00052
3Y 0.02835 0.01441 -1.608244e-05 0.00109
5Y 0.03763 0.01097 -1.467383e-05 0.00084
10Y 0.04502 0.00954 -1.291269e-05 0.00104
15Y 0.04662 0.00925 -1.246485e-05 0.00089
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Further, to also confirm the non-stationary assumption in the LIBOR forward
rate case, Table 8.10 contains the p-values for the non-stationary test. All of the
p-values are also big in the LIBOR case, which means it can not reject the null
hypothesis, which is that the data are non-stationary.

Table 8.10: P -values for the stationary test

Maturity P -value (NOR) P -value (EUR) P -value (US)
1 day 0.8968 0.9793 0.9593
10Y 0.2092 0.4252 0.12751

8.5 Distribution of Historical LIBOR Forward

Rates

From Chapter 5.2.1 we have that the LIBOR Market Model is modeling the relative
change in the forward rate as log-normal. This assumption can be investigated
by plotting the density of the historical relative change in the forward rate Ln+δ

Ln
,

with the fitted log-normal distribution using the maximum likelihood parameters
given in Chapter 7.5. Here δ is the the period of business days between each rate
observation. For the following plots δ is fixed to 1 day.

Figure 8.8: Log-normal fit to historical relative changes in the 1 day forward
rate in Norway, Europe and America respectively. The fitted mean and standard
deviation are listed above each plot.

From Figure 8.8 we see that modeling the relative change in the 1 day forward
rate as log-normal, is not a very good idea. This seems to be the general idea in
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all of the markets. However, the log-normal fit for the relative change in the 1
day forward rate is slightly better in the Norwegian market compared to the other
markets. Further, in Figure 8.9 we see the log-normal fit of the relative change in
the 5 year forward rate. In this case a log-normal fit seems more reasonable for
all of the markets, but the observed density still has higher peaks than the fitted
density, aswell as fatter tails. However, the log-normal assumption of the relative
change in the forward rate seems to improve with longer maturities.

Figure 8.9: Log-normal fit to historical relative changes in the 5 years forward
rate in Norway, Europe and America respectively. The fitted mean and standard
deviation are listed above each plot.
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8.6 PCA on Instantaneous Forward Rate Curve

Figure 8.10: The three first principal components for Norway, Europe and the US.

As mentioned earlier, the volatility factors in the HJM-framework is based on prin-
cipal component analysis on historical instantaneous forward rates. We simulate
six years into the future, which means we have six different maturities. This in
turn makes the covariance matrix a 6 x 6 matrix. After the PCA is done, we
have six different principal components where the first component explains most
of the variance. In Figure 8.10 we see the three first principal components plotted
for Norway, Europe and US. We see that the first PC for all of the markets is
flat compared to the other components, and it’s elements are all of the same sign.
This tells us that a parallel shift in the forward rate curve is the dominant move-
ment. Further, the second PC changes sign only once for both the Norwegian and
American market, which means it describes a twisting of the forward rate curve.
However, the second PC for the European market changes sign twice, which means
in this case the second most dominant move is caused by a bending. Lastly, the
third PC is different in all of the three markets. The third PC in Norway changes
sign twice, which tells us that presumably the third largest movement in the for-
ward rate curve is caused by a bending. However, for the European market the
third PC changes sign only once, which means the movement in the forward rate
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curve is caused by a twisting. Furthermore, the third PC in US changes sign three
times, which means it’s economical meaning is not straight forward. These prin-
cipal component results from the forward rate curve give less intuitive economical
meanings than the results obtained by applying the same procedure on the yield
curve.

Table 8.11: PCA for the Norwegian market

Eigenvalues Value Cum variation explained
λ1 2.715829e-04 0.4956323
λ2 1.034839e-04 0.6844879
λ3 5.656838e-05 0.7877238
λ4 4.972145e-05 0.8784643
λ5 3.862965e-05 0.9489625
λ6 2.796612e-05 1

In Tables 8.11, 8.12 and 8.13 we see the respective eigenvalues for the PCA of the
Norwegian, European and American market. We clearly see that decay of eigenval-
ues are slower in the Norwegian market, compared to the European and American
market. We also see that the US market has the fastest decay in eigenvalues. This
suggests that the Norwegian interest market is more illiquid. Also, we see that
λ6 in the US market gives approximately no contribution to the analysis, which
means it can be secluded.

Table 8.12: PCA for the European market

Eigenvalues Value Cum variation explained
λ1 2.972935e-04 0.5063628
λ2 1.899770e-04 0.8299396
λ3 7.133703e-05 0.9514438
λ4 2.010044e-05 0.9856797
λ5 4.515412e-06 0.9933706
λ6 3.892250e-06 1

Table 8.13: PCA for the US market

Eigenvalues Value Cum variation explained
λ1 8.394414e-04 0.6407358
λ2 2.942566e-04 0.8653384
λ3 9.893878e-05 0.9408572
λ4 4.709726e-05 0.9768060
λ5 3.038694e-05 1
λ6 2.077477e-11 1
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Further, to find the volatility factors used in HJM we use equation (5.1.8). The
factors are illustrated in Figure 8.11. We clearly see that the first factors are
contributing the most. Furthermore, we see that the US has the biggest volatility
factors.

Figure 8.11: The absolute value of the volatility structure for the HJM-framework.

8.7 Volatility of Forward LIBOR Rate Curve

In Figure 8.12 we see the rolling volatility of the L5 returns in the Norwegian,
European and US market. It gives the same results as seen in Chapter 8.1, namely
that the simple moving average reacts slower and less aggressive to the market
volatility compared to the exponentially weighted moving average. It also shows
that the financial crisis creates large peaks in the volatility. However, from the
rolling volatility we see that the European and American L5 reacts more to the
financial crisis, compared to the Norwegian L5.
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Figure 8.12: Rolling volatility of the log returns of the L5-rate.

8.8 Correlation in Portfolio Simulation

In order to simulate the life insurance portfolios, we need to know whether the
respective stock indexes and the Libor rates are independent or not. This is the
reason why the Kendall’s tau test is used to check for statistical dependence [18].
In Table 8.14 we see the P -values of Kendall’s tau coefficient test, tested on the
respective stock indexes versus the LIBOR rates. The null hypothesis is that
the data are independent, which means we reject the null hypothesis for all of
the LIBOR rates in Norway with regards to a 10% significance level. However,
in Europe we fail to reject the independence between the stock index and the 1
day, 1 year and 2 years LIBOR rates. In US, we fail to reject the independence
between the stock index and the 1 day, 4 years and 5 years LIBOR rates with a
10% significance level.
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Table 8.14: P -values of Kendall’s tau coefficient test.

1d Libor 1y Libor 2y Libor 3y Libor 4y Libor 5y Libor
Norway < 2.22e-16 < 2.22e-16 < 2.22e-16 < 2.22e-16 < 2.22e-16 < 2.22e-16
Europe 0.2744 0.2265 0.9570 0.0581 0.03943 0.0434

US 0.2973 0.0006 0.0003 0.0041 0.1663 0.1597

Since the Kendall’s tau coefficient test failed to reject independence between several
of the stock indexes and the LIBOR rates, we simulate the stock index and the rates
through a correlation matrix. This is estimated by using the EMWA technique
explained in Chapter 5.3.3. In Table 8.15 we see the estimated correlation matrix
of the Norwegian market. We observe that the correlations between OSEBX and
the LIBOR rates are significant, and the correlation coefficients are all positive.
This also coincide with the results from the Kendall’s tau test, namely that the
dependency is significant.

Table 8.15: Correlation matrix of the Norwegian market

1d Libor 1y Libor 2y Libor 3y Libor 4y Libor 5y Libor OSEBX
1d Libor 1 0.2066 0.4594 0.2973 0.2455 0.2562 0.1174
1y Libor 0.2066 1 0.5860 0.4842 0.4070 0.4910 0.1737
2y Libor 0.4594 0.5860 1 0.4772 0.5069 0.5721 0.2258
3y Libor 0.2973 0.4842 0.4772 1 0.3059 0.5310 0.1641
4y Libor 0.2455 0.4070 0.5069 0.3059 1 0.4898 0.1671
5y Libor 0.2562 0.4910 0.5721 0.5310 0.4898 1 0.1867
OSEBX 0.1174 0.1737 0.2258 0.1641 0.1671 0.1867 1

In Table 8.16 we see the estimated correlation matrix of the European market.
Again we observe the correlation matrix coincides with the Kendall’s tau test re-
sults, namely that 3y, 4y and 5 years LIBOR rate have a significantly correlation
with the stock index. However, the Kendall’s tau test fails to reject the indepen-
dence between the 1 year LIBOR rate and the stock index on a 10% significance
level, even though the absolute value of its correlation coefficient is of equal size
as the coefficient between the 3 years LIBOR rate and the stock index. We also
notice that the 1d, 1y and 2 years LIBOR rate have positive correlation with the
stock index, while the 3y, 4y and 5 years LIBOR rates have negative correlation
with the stock index.
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Table 8.16: Correlation matrix of the European market

1d Libor 1y Libor 2y Libor 3y Libor 4y Libor 5y Libor SXP5
1d Libor 1 0.2145 0.1004 0.1062 0.0836 0.1154 0.0054
1y Libor 0.2145 1 0.7305 0.4589 0.3115 0.4464 0.0361
2y Libor 0.1004 0.7305 1 0.7288 0.5068 0.7319 0.0061
3y Libor 0.1062 0.4589 0.7288 1 0.4336 0.8051 -0.0354
4y Libor 0.0836 0.3115 0.5068 0.4336 1 0.7849 -0.0299
5y Libor 0.1154 0.4464 0.7319 0.8051 0.7849 1 -0.0365

SXP5 0.0054 0.0361 0.0061 -0.0354 -0.0299 -0.0365 1

In Table 8.17 we see the estimated correlation matrix of the US market. Here we
notice that all of the correlations coefficients between the LIBOR rates and the
stock index are negative, opposite of what is the case in the Norwegian and the
US market. We also see that the 1y, 2y and 3 years LIBOR rates have the largest
correlation with the stock index, and this also coincides with the Kendall’s tau
test results. Further, we notice that in all of the markets the correlation between
the LIBOR rates are in general larger than the correlation between them and the
respective stock index. If we ignore the diagonal elements, the largest correlation
coefficient in the Norwegian market is between the 1y and 2 years LIBOR rates.
The largest correlation in the European market is between the 4y and 5 years
LIBOR rates. This is also the case in the US market.

Table 8.17: Correlation matrix of the US market

1d Libor 1y Libor 2y Libor 3y Libor 4y Libor 5y Libor S&P 500
1d Libor 1 0.1573 -0.0237 0.0645 0.0275 0.0793 -0.0026
1y Libor 0.1573 1 0.6656 0.6593 0.4717 0.5520 -0.0637
2y Libor -0.0237 0.6656 1 0.5601 0.3270 0.3568 -0.0417
3y Libor 0.0645 0.6593 0.5601 1 0.5081 0.6189 -0.0391
4y Libor 0.02759 0.4717 0.3270 0.5081 1 0.7806 -0.0293
5y Libor 0.0793 0.5520 0.3568 0.6189 0.7806 1 -0.0318
S&P 500 -0.0026 -0.0637 -0.0417 -0.0391 -0.0293 -0.0318 1



Chapter 9

Results

9.1 HJM-Framework

Figure 9.1: Spot rate simulated in 1 year from 10.14.2015 in Norway, Europe and
US.

From equation (5.1.6) we have simulated the forward rates in Norway, Europe and
US up until six years into the future, with 30000 Monte Carlo simulations. In
Figure 9.1 we see the result of the spot rate simulated in 1 year. We clearly see
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that the simulated rate is dependent upon its initial value. Also we notice that
the European market has more exposure to negative rates, while the Norwegian
market predicts the largest rates. We further see that all of the distributions look
normal, as they should be.

Further, in Figure 9.2 we see the result of the spot rate simulated in five years. We
still see that the European spot rate is symmetric about its initial value, but with
larger tails. However, both the Norwegian and American rate has more exposure
to positive rates than negative rates. Further, we notice the spot rate in 5 years
covers a wider rate interval compared to the 1 year case. This is logical because
further into the future means more uncertainty.

Figure 9.2: Spot rate simulated in 5 year from 10.14.2015 in Norway, Europe and
US.

The means and standard deviations of the simulated spot rate for Norway, Europe
and US is given in Table 9.1. From the table we see that Europe has a much
lower spot rate simulated both in 1 year and 5 years copmared to Norway and US.
This makes sense since Europe at today’s date has a significantly lower rate level
than in the Norwegian and American market. We further see that the simulated
spot rate in the US market includes more variance compared to the rate in the
Norwegian market, which means the US spot rate has fatter tails as can be seen
in Figures 9.1 and 9.2.



CHAPTER 9. RESULTS 67

Table 9.1: Means and standard deviation of the simulated spot rate in Norway,
Europe and US

1 year mean 5 years mean 1 year std 5 years std
Norway 0.00921 0.02307 0.01013 0.02242
Europe 0.00021 0.00646 0.00752 0.02402

US 0.00732 0.02517 0.02402 0.03591

The HJM-framework uses Gaussian variables which means it is a significant prob-
ability that the rates can turn negative. From Figures 9.1 and 9.2 we notice that
there is a chance the rates go negative both in 1 year and 5 years forward in time.
This probability is significantly bigger in the European market because of a lower
rate level compared to the Norwegian and American market. The Norwegian mar-
ket is further less likely to develop negative rates compared to the European and
American one. This is confirmed in Figure 9.3 where the rates in Europe after the
financial crisis can very well turn negative. We also notice that the probability of
negative rates in all of the markets is in general decreasing with longer maturities,
which means the model predicts larger rates in the future.

Figure 9.3: Probability of negative spot rate simulated from 10.14.2015 in Norway,
Europe and US.
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9.2 LIBOR Rate

For the LIBOR market model we have simulated LIBOR forward rates in Nor-
way, Europe and US using equation (5.2.5) up until six years into the future with
30000 Monte Carlo simulations. As in the HJM case, we clearly see in 9.4 that
L1(1), namely the LIBOR forward rate in one year between year 1 and 2 is con-
centrated around its initial values, but with much less variance compared to the
HJM case. Also we notice that the densities look lognormal with small variance.
The lognormal distribution implies that the rates cannot go negative, which again
means that the probability of LIBOR forward rates below zero is zero. We also
see that the LIBOR rate in Europe is significantly smaller than in the Norwegian
and American market.

Figure 9.4: L1(1) simulated in Norway, Europe and US from 10.14.2015.

Further, in Figure 9.5 we see the result of the LIBOR forward rates simulated in 5
years, namely L5(5). We still observe that the European L5(5) is lower than in the
Norwegian and US market. Also we notice that the simulated European and US
L5(5) are very similar, with the US predicting a LIBOR forward rate a little larger
than the Norwegian one. Further, we see the L5(5) covers a wider rate interval
compared to the 1 year case. This is also logical because further into the future
means more uncertainty.
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Figure 9.5: L5(5) simulated in Norway, Europe and US from 10.14.2015.

The means and standard deviations of the simulated L1(1) and L5(5) in Norway,
Europe and US are given in Table 9.2. Again, we see the same pattern as in the
HJM case, namely that the European rates have much lower values compared to
the Norwegian and American ones. The table values also confirm what we can
see from Figure 9.5, namely that the simulated L5(5) is very similar in both the
Norwegian and American market.

Table 9.2: Means and standard deviation of the simulated L1(1) and L5(5) in
Norway, Europe and US.

L1(1) mean L5(5) mean L1(1) std L5(5) std
Norway 0.00916 0.02405 0.00153 0.01804
Europe 0.00015 0.00590 2.4642e-05 0.00775

US 0.00725 0.02574 3.6827e-05 0.02338
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9.3 Valuation of Floors

For the Heat-Jarrow-Morton model we simulate the short rate forward in the
future annually up to six years. Further, as explained in Chapter 5.1.3 we assume
a floorlet on every grid point, namely each year. We saw earlier that there is
significant probability for a negative spot rate on these simulation points, and this
will again strongly affect the price of the floor. The question whether to allow
negative interest rates or not creates a big dilemma here. In other words, the
HJM-framework allows negative rates, but if this is applicable to the real world
it would change most of the financial models used today. Further, the LMM does
not allow negative rates, which means it would dramatically under-price the floor
values if negative rates are possible. Aswell as with the HJM-framework, the
LMM-framework also assumes floorlets annually up till six years. These floorlets
are priced accordingly to Chapter 5.2.2.

Figure 9.6: Floor prices for six annually floorlets in Norway, Europe and US cal-
culated from 10.14.2015.

In Figure 9.6 we see the floor prices in the Norwegian, European and US market
priced in the HJM-setting, LMM-setting and by Black’s model. In the Black’s
model the price is calculated by using the same time grid as in the LMM, with
the following LIBOR forward rate between the periods. Firstly, we see the price of
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the floor increases with increasing strike price for all the models, which it should.
Further, it is evident that the greatest difference between the pricing models is that
the HJM-model gives non-zero prices for floors having a strike price below zero,
while this is not the case for the LMM and the Black’s model. We also see that
the floor prices in Europe are significantly higher than in the Norwegian and US
market. This makes sense since lower rates should imply higher floor prices. We
also observe that in Figure 9.6 the price calculated from the HJM-model deviates
a lot from the LMM price in the interval [−0.02, 0.02], especially reaching its
maximum around the current spot rate, and then starts to get closer to the others
again with increasing strike price. This is due to HJM having more of the rates
in this interval, while modeling the rate with LMM increases the probability that
the floor would end up in the money with increasing strike price, compared to
HJM.

9.3.1 Floor Price Dependency on Number of Lets

Figure 9.7: Floor prices calculated in the HJM-framework with varying number of
floor lets in Norway, Europe and US simulated from 10.14.2015.

In Figures 9.7 and 9.8 we can see the floor price dependency on number of floor
lets in Norway, Europe and US, both by using the HJM-framework and the LMM-
framework respectively. We see that the floor prices increase in general with in-
creasing number of lets, both in the HJM and the LMM-setting. This makes sense



72 CHAPTER 9. RESULTS

since the floor price formula depends on the maximum function. Further, we ob-
serve that the largest price jump in the high strike region is caused by going from
one floor let to two floor lets. However in the HJM-setting, for low strikes the
largest price jump is caused by going from two lets to three lets. In the HJM-
setting for high strike prices we see that in Norway and US each floor let after the
second one contributes to approximately the same jump in the floor price, while
in the European market the second and third floor let creates greater jumps in
the floor price compared to the fourth, fifth and sixth. However, in the LMM-
setting we see the same trend for all of the markets in the high strike price region,
namely that the jumps in floor price decreases with increasing number of floor
lets. Again, we observe that the HJM-framework gives higher floor prices than the
LMM-framework, which is due to HJM’s exposure to negative interest rates.

Figure 9.8: Floor prices calculated in the LMM-framework with varying number
of floor lets in Norway, Europe and US simulated from 10.14.2015.

9.4 Paid-Up Policy Portfolios

In Figure 9.9 we can see the result of the paid-up policy portfolios held by the
life insurance companies six years in the future. We have simulated the LIBOR
forward rates together with the stock index 30000 times. In this chapter we also
have multiplied the VaR and ES estimates explained in Chapter 6, with minus 1
because of easier interpretation. This means that a lower VaR estimate implies
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more money at risk. We see that for all of the markets, the mean gain increases
with increasing share in the stock index, but it decreases with an increasing floor
guarantee. This makes sense since the life insurance companies need to pay out
more with higher floors, and also the positive drift of the equity increases the
mean of the portfolio. Further, we see that the Norwegian market has the highest
mean gain, while the European market has a much higher probability of achieving
negative mean gain. This is evident because of the low-rate environment in the
European market. An interesting observation is that the Norwegian market gives
a significantly higher mean gain than the US market, even though the rate level in
the two economies are about the same. The reason for this is because the observed
drift of the Norwegian stock index is twice the size of the US stock index, as we
can see in Table 8.1.

Figure 9.9: Mean gain of the paid-up policy portfolios held by the life insur-
ance companies in Norway, Europe and US simulated 6 years in the future from
10.14.2015.

Further, in Figure 9.10 we can see the 95% VaR of paid-up policy portfolios held
by the life insurance companies 6 years in the future. Again, we notice that the
European market offers a much lower VaR estimate compared to the Norwegian
and US market. We also see that in the Norwegian and US market we obtain a
positive VaR if the life insurance offer a low enough floor with a low enough share
in the stock index. This is not the case for the European market. This situation
is not very applicable in the Norwegian and US market however, since customers



74 CHAPTER 9. RESULTS

would rather put the money in the bank than buy such a low floor.

Figure 9.10: 95% VaR of the paid-up policy portfolios held by insurance companies
in Norway, Europe and US simulated 6 years in the future from 10.14.2015.

Furthermore, it is also interesting to look at the difference in gain densities between
offering a high floor guarantee versus a low floor guarantee, while keeping the stock
share constant. In Figure 9.11 we can see the simulated density of keeping a 30%
stock share with a 3% floor. We notice that the gain density in the Norwegian
market has a little bit more variance compared to the European and US market,
but also that the gain in the Norwegian and US market are much higher than in
the European market. We also see the 95% VaR and 95% ES estimates in each
of the markets. We see that it is much more likely for the insurance companies in
Europe to loose money compared to the Norwegian and US market, assuming the
same floor guarantee and stock share. We also notice that the ES estimates are
less than the VaR estimates, which coincides with theory.
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Figure 9.11: Gain density of the paid-up policy portfolios held by the life insurance
companies simulated 6 years in the future from 10.14.2015. Based on 30% stock
share and a 3% floor.

Evidently, when the life insurance companies offers a lower floor guarantee, the
mean gain will increase. This is confirmed in Figure 9.12. Here we can see the gain
densities with still a 30% stock share, but now with a 1% floor. We notice that the
densities has shifted to the right compared to the 3% floor densities. Now the 95%
VaR and 95% ES estimates in both the Norwegian and US markets are positive,
while the European estimates are still significantly negative. Again we observe
more variability in the Norwegian density compared to the other markets.
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Figure 9.12: Gain density of the paid-up policy portfolios held by the life insurance
companies simulated 6 years in the future from 10.14.2015. Based on 30% stock
share and a 1% floor.

In the end we want to look into how big of a share we need to put into the equity
market, in order to have a positive mean gain. In Table 9.3 we can see the the
necessary share in all of the markets, given a floor guarantee. We see that the
Norwegian market requires less equity share in order to have positive mean gain,
compared to the US and European market. Also we observe that with a 2% or
higher floor we need more than 100% of the money in the equity market to achieve
a positive mean gain in Europe. The reason why we need a less equity share in the
Norwegian market compared to in the US market, is again because of the higher
observed drift in the Norwegian equity market.

Table 9.3: Stock share needed for positive mean gains

Floor Stock Share (NOR) Stock Share (EUR) Stock Share (US)
1% 0 % 76 % 0 %
2% 0 % > 100 % 0 %
3% 7 % > 100 % 13 %
4% 19 % > 100 % 28 %
5% 31 % > 100 % 44 %

Further, in Table 9.4 we can see the VaR estimates given a % share in the equity
market and a floor guarantee in the Norwegian market. The numbers marked
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in red corresponds to the respective stock shares listed in Table 9.3. Since the
European market only had one equity share in Table 9.4 less than 100%, we only
list the VaR estimate of this position, which is -48.0119. This is still a very low
VaR estimate, which stems from the fact that the rates are much lower in the
European market compared to the Norwegian and US markets.

Table 9.4: 95% VaR estimates for Norwegian life insurance companies

Floor 0 % Stock 7 % Stock 19 % Stock 31 % Stock
1% 3.6852 3.3012 -0.8216 % -5.2836
2% -0.4196 -1.3073 -5.6622 % -10.2160
3% -5.9074 -7.5581 -12.0682 -16.6047
4% -11.8665 -14.5223 -19.0710 -23.6392
5% -19.2398 -21.9409 -26.5158 -31.0444

In Table 9.5 we see the VaR estimates given a % share in the equity market and
a floor guarantee in the European market. The numbers marked in red again
corresponds to the respective US stock shares listed in Table 9.3. We see that the
VaR estimates in the US table is slightly less than in the Norwegian table. This
is partly due to higher stock share, and also because of less observed drift in the
US equity market compared to the Norwegian one. Again, we also notice that
the VaR estimates in all of the markets decreases with increasing stock share, and
increasing floor guarantee.

Table 9.5: 95% VaR estimates for US life insurance companies

Floor 0 % Stock 13 % Stock 28 % Stock 44 % Stock
1% -1.8346 -0.6708 -4.0164 % -8.7400
2% -6.3721 -5.23995 -8.9848 % -13.6955
3% -11.4840 -10.76521 -14.8840 -19.6773
4% -17.3030 17.0515 -21.3892 -26.2438
5% -23.4894 -23.9849 -28.5019 -33.3635
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Chapter 10

Discussion and Conclusion

From the stock index analysis chapter it is evident that all of the equity markets
fell drastically in value during the dot-com bubble and the financial crisis. This
shows some of the disadvantages related to creating a portfolio with stocks. In
other words, the uncertainty in the stock price development can cause critical ad-
justments into the financial policy within a firm. We could also see from the fitted
normal and student-t densities that they were not perfect, but with the student-t
fit performing better than the normal fit. This makes sense since the student-t
distribution has one more parameter to be fitted compared to the normal distri-
bution, as well as the student-t distribution assigns higher probability to extreme
events compared to the normal one. However, the observed density had fatter
tails than both of the fitted densities. Another interesting observation is that the
observed drift of the Norwegian equity market is twice the size of the US equity
market, as well as the European market had a significantly lower observed drift
than both of the other markets.

In most of the introductory financial courses we learn that receiving money now
is preferred over receiving money in the future, i.e. there exists a risk free in-
terest rate larger than zero. However, the low-rate environment particularly in
Europe today is challenging the classical concept of interest rates. The densities
of the simulated spot rate in Figures 9.1 and 9.2 confirms this. These interest
rates are modeled through the HJM-framework, while we can see the simulated
LMM rates in Figures 9.4 and in 9.5. From these figures we also notice the biggest
difference between the two frameworks, namely that HJM produces both positive
and negative rates, while LMM only allows positive rates. This is because LMM
simulates interest rates under a lognormal assumption. Further, through the HJM-
framework we see that the probability of negative rates are significant. However,
the probability of negative rates are greater in the European market than in the
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Norwegian or US market. It is evident that the closer the today’s rate is to zero,
the higher the probability is of a negative rate in the future.

The HJM and LMM frameworks have several differences, but they also share one
important detail. Namely they both have to be calibrated to the market in order to
give correct interest rate option prices. It is evident that the volatility factors de-
termines the models in both cases, and this means that market calibration should
be done on the volatility factors. In this thesis the HJM-model has been calibrated
by using historical data with PCA, while the LMM-model has been calibrated by
historical data using EMWA. The reason for using historical volatility is that it
gives a good insight into the risks we face when trading in the market, based on
previous events.

From the Monte Carlo simulation we notice a large price gap around the cur-
rent spot rate for the HJM, LMM and Black’s pricing model. Because of negative
rates in the HJM-framework, it prices floors larger for negative and zero rates
compared to the LMM-framework. However, the LMM-framework produces more
in-the-money floors for higher strike prices, which is the reason the LMM floor
price gets closer to the HJM floor prices for increasing strike prices. Furthermore,
it would be a poor decision to price low-strike floors with the lognormal framework
LMM. This is because zero-strike floors indeed has a value in some markets. In
other words, if an investor only expects positive rates, he potentially can loose a
lot of money. On the other side, for an old-style market with large positive rates
we ought to be careful with pricing the floors through the HJM-framework. This
is because zero-strike floors might very well be worthless in this case. Further,
from the floor price dependency chapter we see that the floor price increases in all
of the markets with increasing number of lets, as well as the largest price jump is
caused by going from one floorlet to two floorlets.

The European market has significantly lower rates compared to the other mar-
kets, and combined with a lower observed drift of the equity market, this in turn
makes it much harder to offer the same floor as in the Norwegian or US market.
For instance, in order to keep the mean gain of the paid-up policy portfolios pos-
itive when offering a floor guarantee of 1%, the European life insurance need to
place 76% of their money in equity, while the Norwegian and US life insurance
do not need any shares in the equity market. Another interesting result is that
even though the Norwegian and US market have about the same rate level, the
Norwegian life insurance needs to place less of their money in equity compared to
the US life insurance, in order to achieve the same mean gain.
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To sum up, it is evident that the low-rate environment we now experience are
pushing the life insurance companies into new territories. The floors offered by
the life insurance companies are now priced higher than before, and because of
the low rate-level the life insurance companies receives less money from their bank
deposits than earlier. This means the life insurance companies need to increase
their stock share, in order to prevent a negative mean gain from their portfolios.
However, the problem with this form of yield hunting is that the risk of loosing
money greatly increases with increasing share in the equity market. This in turn
increases the importance of having well-diversified stock portfolios. We also no-
tice that the portfolio’s VaR increases with increasing floor guarantee, as expected.

For further work it would be interesting to perform a sensitivity analysis of the
value of λ, used in the EWMA framework. Another possibility would be to cap-
ture the historic volatility using a GARCH model. However, since these models
are based on historic data, it will always react to the market with a delay as we
could see in Chapter 8.1. This could be improved by estimating the real implied
volatility observed in the markets, calculated from observed floor prices today.
Furthermore, there are several regulations regarding how much of the money the
life insurance companies may place in risky assets. This means it would also be
interesting to optimize the portfolio gain/VaR with regards to restrictions of the
VaR or the equity share of the company. Lastly, we could also simulate the port-
folios through another framework than the LMM-framework. The reason for this
is that we saw the lognormal assumption of the historical relative changes in the
forward rate did not hold very well with short maturities in Chapter 8.5.
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Appendix A

Probability Theory

A.1 Probability Space

Definition 1: Measure

A measure µ assigns positive numbers to sets A : µ(A) ∈ <

Definition 2: Algebra

A collection A of subsets of the space X is an algebra if

X ∈ A,

A ∈ A⇒ Ac ∈ A,

A,B ∈ A⇒ A ∪B ∈ A.

Further, A is closed under finitely many set operations.

Definition 3: σ -algebra

A is a σ-algebra if it is an algebra and for An ∈ A, n ∈ N, we have ∪An ∈ A
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Further, A is closed under countably many set operations.

Definition 4: Probability Space

The triple (Ω,A, P ) is a probability space, where Ω is a set, A is a σ-algebra of
subsets of Ω, and P is a probability measure, P (Ω) = 1, on A. See [21] for a more
thorough introduction.

A.2 Ito’s Lemma

If we have a stochastic differential equation of the form

dS = u(t, S)dt+ w(t, S)dX(t), (A.2.1)

then given f(S), with dX2 → dt as dt → 0 with probability 1, then Ito’s lemma
says that

df = w
df

dS
dX + (u

df

dS
+

1

2
w2 d

2f

dS2
)dt. (A.2.2)

See [5] for proof.

A.3 Brownian Motion

A stochastic process Xt is Brownian motion if the following conditions hold

• X0 = 0.

• Xt has independent increments, which means if d < t′ ≤ t < u, then Xu−Xt

and Xt′ −Xd are independent stochastic variables.

• For d < t, Xt − Xd is normally distributed with E[Xt −Xd] = 0 and
VAR[Xt −Xd] = t− d.

• Xt is almost surely continuous.
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A.4 Lognormal Walk

Assuming the geometric Brownian motion

dS(t) = µS(t)dt+ σS(t)dX(t),

by investigating the process Zt = f(t, St) = ln St with Ito’s lemma we obtain

dZ(t) =
1

S(t)
dS(t)− 1

2

1

S(t)2
(dS(t))2,

dZ(t) = (µ− 1

2
σ2)dt+ σdX(t),

∫ T

0

dZ(t) =

∫ T

0

(µ− 1

2
σ2)dt+

∫ T

0

σdX(t),

Z(T )− Z(0) =

(
µ− 1

2
σ2

)
T + σ (X(T )−X(0)) ,

lnS(t) = lnS(0) +

(
µ− 1

2
σ2

)
T + σX(t),

which leads to the lognormal walk

S(t) = S(0)exp

((
µ− 1

2
σ2

)
T + σX(t)

)
.

That is

ln
S(T )

S(0)
v N

((
µ− 1

2
σ2

)
T,
√
T

)
.
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A.5 Central Limit Theorem

Let (X1, ..., Xn) be a random, independent and identically distributed sample from
a specific distribution with mean µ and finite, nonzero variance σ2. Then the
limit

lim
n→∞

X1 + ...+Xn

n
(A.5.1)

approaches the normal distribution with mean µ and variance σ2

n
.

See [17] for proof.


