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{Ty, T, Ts,T5,Th0, T15}. Here we also notice the same characteristics as with the
instantaneous forward rates. Namely that the mean of the rates tend to increase
with increasing maturities, while the standard deviation has the opposite relation
to increasing maturities. Also, we see that the LIBOR forward rates are not sta-
tionary, which means we need to find the daily changes in order to use PCA for
the volatility factors. Lastly, we notice that also the European LIBOR forward
rates goes below both the Norwegian and American rates in the end.

Table 8.7: Descriptive statistics of the forward rates in Norway

Maturity ~ Mean Std Mean daily change Std daily change

1day  0.03227 0.01579 -1.970665¢-05 0.00047
1Y 0.03658 0.01451 -1.8165e-05 0.00066
3Y 0.04225 0.01205 -1.526984e-05 0.00070
Y 0.04555 0.01034 -1.295993e-05 0.00054
10Y 0.04981 0.00890 -1.056203e-05 0.00067
15Y 0.04939 0.00890 -1.078462¢-05 0.00089

In Tables 8.7, 8.8 and 8.9 we see the same tendency as with the instantaneous
forward rates, namely that the mean of the rates increases with increasing maturity,
while the same inverse relation between standard deviation and maturity. Also we
see that PCA should be done on daily changes if the volatility factors are found
by diagonalizing.

Table 8.8: Descriptive statistics of the forward rates in Furope

Maturity =~ Mean Std Mean daily change Std daily change

1day  0.017953 0.01708 -1.426883e-05 0.00013
1Y 0.018679 0.01704 -1.640589¢-05 0.00048
3Y 0.02457  0.01501 -1.617403e-05 0.00087
oY 0.02649 0.01377 -1.504542e-05 0.00046
10Y 0.04674 0.01032 -9.43205e-06 0.00079
15Y 0.04106  0.01026 -1.064587e-05 0.00056

Table 8.9: Descriptive statistics of the forward rates in America

Maturity — Mean Std Mean daily change Std daily change

1day  0.01727 0.01750 -2.227215e-05 0.00033
1Y 0.01694 0.01657 -2.094337e-05 0.00052
3Y 0.02835 0.01441 -1.608244e-05 0.00109
oY 0.03763 0.01097 -1.467383e-05 0.00084
10Y 0.04502  0.00954 -1.291269e-05 0.00104

15Y 0.04662 0.00925 -1.246485¢-05 0.00089
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Further, to also confirm the non-stationary assumption in the LIBOR forward
rate case, Table 8.10 contains the p-values for the non-stationary test. All of the
p-values are also big in the LIBOR case, which means it can not reject the null
hypothesis, which is that the data are non-stationary.

Table 8.10: P-values for the stationary test

Maturity P-value (NOR) P-value (EUR) P-value (US)
1 day 0.8968 0.9793 0.9593
10Y 0.2092 0.4252 0.12751

8.5 Distribution of Historical LIBOR Forward
Rates

From Chapter 5.2.1 we have that the LIBOR Market Model is modeling the relative
change in the forward rate as log-normal. This assumption can be investigated
by plotting the density of the historical relative change in the forward rate %,
with the fitted log-normal distribution using the maximum likelihood parametgrs
given in Chapter 7.5. Here ¢ is the the period of business days between each rate

observation. For the following plots ¢ is fixed to 1 day.
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Figure 8.8: Log-normal fit to historical relative changes in the 1 day forward

rate in Norway, Europe and America respectively. The fitted mean and standard
deviation are listed above each plot.

From Figure 8.8 we see that modeling the relative change in the 1 day forward
rate as log-normal, is not a very good idea. This seems to be the general idea in
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all of the markets. However, the log-normal fit for the relative change in the 1
day forward rate is slightly better in the Norwegian market compared to the other
markets. Further, in Figure 8.9 we see the log-normal fit of the relative change in
the 5 year forward rate. In this case a log-normal fit seems more reasonable for
all of the markets, but the observed density still has higher peaks than the fitted
density, aswell as fatter tails. However, the log-normal assumption of the relative
change in the forward rate seems to improve with longer maturities.
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8.6 PCA on Instantaneous Forward Rate Curve
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Figure 8.10: The three first principal components for Norway, Europe and the US.

As mentioned earlier, the volatility factors in the HJM-framework is based on prin-
cipal component analysis on historical instantaneous forward rates. We simulate
six years into the future, which means we have six different maturities. This in
turn makes the covariance matrix a 6 x 6 matrix. After the PCA is done, we
have six different principal components where the first component explains most
of the variance. In Figure 8.10 we see the three first principal components plotted
for Norway, Europe and US. We see that the first PC for all of the markets is
flat compared to the other components, and it’s elements are all of the same sign.
This tells us that a parallel shift in the forward rate curve is the dominant move-
ment. Further, the second PC changes sign only once for both the Norwegian and
American market, which means it describes a twisting of the forward rate curve.
However, the second PC for the European market changes sign twice, which means
in this case the second most dominant move is caused by a bending. Lastly, the
third PC is different in all of the three markets. The third PC in Norway changes
sign twice, which tells us that presumably the third largest movement in the for-
ward rate curve is caused by a bending. However, for the European market the
third PC changes sign only once, which means the movement in the forward rate
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curve is caused by a twisting. Furthermore, the third PC in US changes sign three
times, which means it’s economical meaning is not straight forward. These prin-
cipal component results from the forward rate curve give less intuitive economical
meanings than the results obtained by applying the same procedure on the yield
curve.

Table 8.11: PCA for the Norwegian market

Eigenvalues Value Cum variation explained
A1 2.715829e-04 0.4956323
Ao 1.034839e-04 0.6844879
A3 5.656838e-05 0.7877238
A4 4.972145e-05 0.8784643
As 3.862965e-05 0.9489625
A6 2.796612¢-05 1

In Tables 8.11, 8.12 and 8.13 we see the respective eigenvalues for the PCA of the
Norwegian, European and American market. We clearly see that decay of eigenval-
ues are slower in the Norwegian market, compared to the European and American
market. We also see that the US market has the fastest decay in eigenvalues. This
suggests that the Norwegian interest market is more illiquid. Also, we see that
X¢ in the US market gives approximately no contribution to the analysis, which
means it can be secluded.

Table 8.12: PCA for the European market

Eigenvalues Value Cum variation explained
A1 2.972935e-04 0.5063628
A2 1.899770e-04 0.8299396
As 7.133703e-05 0.9514438
Aq 2.010044e-05 0.9856797
A5 4.515412e-06 0.9933706
A6 3.892250e-06 1

Table 8.13: PCA for the US market

Eigenvalues Value Cum variation explained
A1 8.394414e-04 0.6407358
A2 2.942566e-04 0.8653384
A3 9.893878e-05 0.9408572
A 4.709726e-05 0.9768060
A5 3.038694e-05 1

Ao 2.077477e-11 1
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Further, to find the volatility factors used in HJM we use equation (5.1.8). The
factors are illustrated in Figure 8.11. We clearly see that the first factors are
contributing the most. Furthermore, we see that the US has the biggest volatility
factors.

NOR EUR us

Figure 8.11: The absolute value of the volatility structure for the HJM-framework.

8.7 Volatility of Forward LIBOR Rate Curve

In Figure 8.12 we see the rolling volatility of the Ls returns in the Norwegian,
European and US market. It gives the same results as seen in Chapter 8.1, namely
that the simple moving average reacts slower and less aggressive to the market
volatility compared to the exponentially weighted moving average. It also shows
that the financial crisis creates large peaks in the volatility. However, from the
rolling volatility we see that the European and American Lj reacts more to the
financial crisis, compared to the Norwegian Ls.
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Figure 8.12: Rolling volatility of the log returns of the Ls-rate.

8.8 Correlation in Portfolio Simulation

In order to simulate the life insurance portfolios, we need to know whether the
respective stock indexes and the Libor rates are independent or not. This is the
reason why the Kendall’s tau test is used to check for statistical dependence [18].
In Table 8.14 we see the P-values of Kendall’s tau coefficient test, tested on the
respective stock indexes versus the LIBOR rates. The null hypothesis is that
the data are independent, which means we reject the null hypothesis for all of
the LIBOR rates in Norway with regards to a 10% significance level. However,
in Europe we fail to reject the independence between the stock index and the 1
day, 1 year and 2 years LIBOR rates. In US, we fail to reject the independence
between the stock index and the 1 day, 4 years and 5 years LIBOR rates with a
10% significance level.
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Table 8.14: P-values of Kendall’s tau coefficient test.

1d Libor 1y Libor 2y Libor 3y Libor 4y Libor oy Libor
Norway < 2.22e-16 < 2.22e-16 < 2.22e-16 < 2.22e-16 < 2.22e-16 < 2.22e-16
Europe 0.2744 0.2265 0.9570 0.0581 0.03943 0.0434
us 0.2973 0.0006 0.0003 0.0041 0.1663 0.1597

Since the Kendall’s tau coefficient test failed to reject independence between several
of the stock indexes and the LIBOR rates, we simulate the stock index and the rates
through a correlation matrix. This is estimated by using the EMWA technique
explained in Chapter 5.3.3. In Table 8.15 we see the estimated correlation matrix
of the Norwegian market. We observe that the correlations between OSEBX and
the LIBOR rates are significant, and the correlation coefficients are all positive.
This also coincide with the results from the Kendall’s tau test, namely that the
dependency is significant.

Table 8.15: Correlation matrix of the Norwegian market

1d Libor 1y Libor 2y Libor 3y Libor 4y Libor 5y Libor OSEBX
1d Libor 1 0.2066 0.4594 0.2973 0.2455 0.2562  0.1174
ly Libor | 0.2066 1 0.5860 0.4842 0.4070 0.4910  0.1737
2y Libor | 0.4594 0.5860 1 0.4772 0.5069 0.5721  0.2258
3y Libor | 0.2973 0.4842 0.4772 1 0.3059 0.5310  0.1641
4y Libor | 0.2455 0.4070 0.5069 0.3059 1 0.4808  0.1671
5y Libor | 0.2562 0.4910 0.5721 0.5310 0.4898 1 0.1867
OSEBX | 0.1174 0.1737 0.2258 0.1641 0.1671 0.1867 1

In Table 8.16 we see the estimated correlation matrix of the European market.
Again we observe the correlation matrix coincides with the Kendall’s tau test re-
sults, namely that 3y, 4y and 5 years LIBOR rate have a significantly correlation
with the stock index. However, the Kendall’s tau test fails to reject the indepen-
dence between the 1 year LIBOR rate and the stock index on a 10% significance
level, even though the absolute value of its correlation coefficient is of equal size
as the coefficient between the 3 years LIBOR rate and the stock index. We also
notice that the 1d, 1y and 2 years LIBOR rate have positive correlation with the
stock index, while the 3y, 4y and 5 years LIBOR rates have negative correlation
with the stock index.
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Table 8.16: Correlation matrix of the European market

1d Libor 1y Libor 2y Libor 3y Libor 4y Libor 5y Libor SXP5
1d Libor 1 0.2145 0.1004 0.1062 0.0836 0.1154  0.0054
ly Libor | 0.2145 1 0.7305 0.4589 0.3115 0.4464  0.0361
2y Libor | 0.1004 0.7305 1 0.7288 0.5068 0.7319  0.0061
3y Libor | 0.1062 0.4589 0.7288 1 0.4336 0.8051  -0.0354
4y Libor | 0.0836 0.3115 0.5068 0.4336 1 0.7849  -0.0299
5y Libor | 0.1154 0.4464 0.7319 0.8051 0.7849 1 -0.0365

SXP5 0.0054 0.0361 0.0061  -0.0354  -0.0299  -0.0365 1

In Table 8.17 we see the estimated correlation matrix of the US market. Here we
notice that all of the correlations coefficients between the LIBOR rates and the
stock index are negative, opposite of what is the case in the Norwegian and the
US market. We also see that the 1y, 2y and 3 years LIBOR rates have the largest
correlation with the stock index, and this also coincides with the Kendall’s tau
test results. Further, we notice that in all of the markets the correlation between
the LIBOR rates are in general larger than the correlation between them and the
respective stock index. If we ignore the diagonal elements, the largest correlation
coefficient in the Norwegian market is between the 1y and 2 years LIBOR rates.
The largest correlation in the European market is between the 4y and 5 years
LIBOR rates. This is also the case in the US market.

Table 8.17: Correlation matrix of the US market

1d Libor 1y Libor 2y Libor 3y Libor 4y Libor 5y Libor S&P 500
1d Libor 1 0.1573  -0.0237  0.0645 0.0275 0.0793  -0.0026
ly Libor | 0.1573 1 0.6656 0.6593 0.4717 0.5520  -0.0637
2y Libor | -0.0237  0.6656 1 0.5601 0.3270 0.3568  -0.0417
3y Libor | 0.0645 0.6593 0.5601 1 0.5081 0.6189  -0.0391
4y Libor | 0.02759  0.4717 0.3270 0.5081 1 0.7806  -0.0293
5y Libor | 0.0793 0.5520 0.3568 0.6189 0.7806 1 -0.0318
S&P 500 | -0.0026  -0.0637  -0.0417  -0.0391  -0.0293  -0.0318 1
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Results

9.1 HJM-Framework
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Figure 9.1: Spot rate simulated in 1 year from 10.14.2015 in Norway, Europe and
US.

From equation (5.1.6) we have simulated the forward rates in Norway, Europe and
US up until six years into the future, with 30000 Monte Carlo simulations. In
Figure 9.1 we see the result of the spot rate simulated in 1 year. We clearly see
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that the simulated rate is dependent upon its initial value. Also we notice that
the European market has more exposure to negative rates, while the Norwegian
market predicts the largest rates. We further see that all of the distributions look
normal, as they should be.

Further, in Figure 9.2 we see the result of the spot rate simulated in five years. We
still see that the European spot rate is symmetric about its initial value, but with
larger tails. However, both the Norwegian and American rate has more exposure
to positive rates than negative rates. Further, we notice the spot rate in 5 years
covers a wider rate interval compared to the 1 year case. This is logical because
further into the future means more uncertainty.

NOR EUR us

18
1
10
1

10
1

10
1

Density
Density
Density

T T T T T T T T T T T T T T T T
-0.05 0.00 0.05 0.10 -0.10  -0.05 0.00 0.05 0.10 =010 0.00 0.10 0.20

Rate Rate Rate

Figure 9.2: Spot rate simulated in 5 year from 10.14.2015 in Norway, Europe and
US.

The means and standard deviations of the simulated spot rate for Norway, Europe
and US is given in Table 9.1. From the table we see that Europe has a much
lower spot rate simulated both in 1 year and 5 years copmared to Norway and US.
This makes sense since Europe at today’s date has a significantly lower rate level
than in the Norwegian and American market. We further see that the simulated
spot rate in the US market includes more variance compared to the rate in the
Norwegian market, which means the US spot rate has fatter tails as can be seen
in Figures 9.1 and 9.2.
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Table 9.1: Means and standard deviation of the simulated spot rate in Norway,
Europe and US

1 year mean 5 years mean 1 year std 5 years std

Norway 0.00921 0.02307 0.01013 0.02242
Europe 0.00021 0.00646 0.00752 0.02402
Us 0.00732 0.02517 0.02402 0.03591

The HIM-framework uses Gaussian variables which means it is a significant prob-
ability that the rates can turn negative. From Figures 9.1 and 9.2 we notice that
there is a chance the rates go negative both in 1 year and 5 years forward in time.
This probability is significantly bigger in the European market because of a lower
rate level compared to the Norwegian and American market. The Norwegian mar-
ket is further less likely to develop negative rates compared to the European and
American one. This is confirmed in Figure 9.3 where the rates in Europe after the
financial crisis can very well turn negative. We also notice that the probability of
negative rates in all of the markets is in general decreasing with longer maturities,
which means the model predicts larger rates in the future.
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Europe and US.
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9.2 LIBOR Rate

For the LIBOR market model we have simulated LIBOR forward rates in Nor-
way, Europe and US using equation (5.2.5) up until six years into the future with
30000 Monte Carlo simulations. As in the HJM case, we clearly see in 9.4 that
L1(1), namely the LIBOR forward rate in one year between year 1 and 2 is con-
centrated around its initial values, but with much less variance compared to the
HJM case. Also we notice that the densities look lognormal with small variance.
The lognormal distribution implies that the rates cannot go negative, which again
means that the probability of LIBOR forward rates below zero is zero. We also
see that the LIBOR rate in Europe is significantly smaller than in the Norwegian
and American market.
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Figure 9.4: L;(1) simulated in Norway, Europe and US from 10.14.2015.

Further, in Figure 9.5 we see the result of the LIBOR forward rates simulated in 5
years, namely Ls(5). We still observe that the European Ls5(5) is lower than in the
Norwegian and US market. Also we notice that the simulated European and US
L5(5) are very similar, with the US predicting a LIBOR forward rate a little larger
than the Norwegian one. Further, we see the Ls(5) covers a wider rate interval
compared to the 1 year case. This is also logical because further into the future
means more uncertainty.
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Figure 9.5: L5(5) simulated in Norway, Europe and US from 10.14.2015.

The means and standard deviations of the simulated L;(1) and L;(5) in Norway,
Europe and US are given in Table 9.2. Again, we see the same pattern as in the
HJM case, namely that the European rates have much lower values compared to
the Norwegian and American ones. The table values also confirm what we can
see from Figure 9.5, namely that the simulated Ls(5) is very similar in both the
Norwegian and American market.

Table 9.2: Means and standard deviation of the simulated L;(1) and Ls(5) in
Norway, Europe and US.

Li(1) mean Ls(5) mean Lq(1) std Ls(5) std

Norway 0.00916 0.02405 0.00153 0.01804
Europe 0.00015 0.00590 2.4642e-05  0.00775
Us 0.00725 0.02574 3.6827e-05  0.02338
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9.3 Valuation of Floors

For the Heat-Jarrow-Morton model we simulate the short rate forward in the
future annually up to six years. Further, as explained in Chapter 5.1.3 we assume
a floorlet on every grid point, namely each year. We saw earlier that there is
significant probability for a negative spot rate on these simulation points, and this
will again strongly affect the price of the floor. The question whether to allow
negative interest rates or not creates a big dilemma here. In other words, the
HJM-framework allows negative rates, but if this is applicable to the real world
it would change most of the financial models used today. Further, the LMM does
not allow negative rates, which means it would dramatically under-price the floor
values if negative rates are possible. Aswell as with the HJM-framework, the
LMM-framework also assumes floorlets annually up till six years. These floorlets
are priced accordingly to Chapter 5.2.2.
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Figure 9.6: Floor prices for six annually floorlets in Norway, Furope and US cal-
culated from 10.14.2015.

In Figure 9.6 we see the floor prices in the Norwegian, European and US market
priced in the HJM-setting, LMM-setting and by Black’s model. In the Black’s
model the price is calculated by using the same time grid as in the LMM, with
the following LIBOR forward rate between the periods. Firstly, we see the price of
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the floor increases with increasing strike price for all the models, which it should.
Further, it is evident that the greatest difference between the pricing models is that
the HJM-model gives non-zero prices for floors having a strike price below zero,
while this is not the case for the LMM and the Black’s model. We also see that
the floor prices in Europe are significantly higher than in the Norwegian and US
market. This makes sense since lower rates should imply higher floor prices. We
also observe that in Figure 9.6 the price calculated from the HJM-model deviates
a lot from the LMM price in the interval [—0.02,0.02], especially reaching its
maximum around the current spot rate, and then starts to get closer to the others
again with increasing strike price. This is due to HJM having more of the rates
in this interval, while modeling the rate with LMM increases the probability that
the floor would end up in the money with increasing strike price, compared to
HJM.

9.3.1 Floor Price Dependency on Number of Lets
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Figure 9.7: Floor prices calculated in the HJM-framework with varying number of
floor lets in Norway, Europe and US simulated from 10.14.2015.

In Figures 9.7 and 9.8 we can see the floor price dependency on number of floor
lets in Norway, Europe and US, both by using the HJM-framework and the LMM-
framework respectively. We see that the floor prices increase in general with in-
creasing number of lets, both in the HJM and the LMM-setting. This makes sense
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since the floor price formula depends on the maximum function. Further, we ob-
serve that the largest price jump in the high strike region is caused by going from
one floor let to two floor lets. However in the HJM-setting, for low strikes the
largest price jump is caused by going from two lets to three lets. In the HJM-
setting for high strike prices we see that in Norway and US each floor let after the
second one contributes to approximately the same jump in the floor price, while
in the European market the second and third floor let creates greater jumps in
the floor price compared to the fourth, fifth and sixth. However, in the LMM-
setting we see the same trend for all of the markets in the high strike price region,
namely that the jumps in floor price decreases with increasing number of floor
lets. Again, we observe that the HIM-framework gives higher floor prices than the
LMM-framework, which is due to HJM’s exposure to negative interest rates.
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Figure 9.8: Floor prices calculated in the LMM-framework with varying number
of floor lets in Norway, Europe and US simulated from 10.14.2015.

9.4 Paid-Up Policy Portfolios

In Figure 9.9 we can see the result of the paid-up policy portfolios held by the
life insurance companies six years in the future. We have simulated the LIBOR
forward rates together with the stock index 30000 times. In this chapter we also
have multiplied the VaR and ES estimates explained in Chapter 6, with minus 1
because of easier interpretation. This means that a lower VaR estimate implies
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more money at risk. We see that for all of the markets, the mean gain increases
with increasing share in the stock index, but it decreases with an increasing floor
guarantee. This makes sense since the life insurance companies need to pay out
more with higher floors, and also the positive drift of the equity increases the
mean of the portfolio. Further, we see that the Norwegian market has the highest
mean gain, while the European market has a much higher probability of achieving
negative mean gain. This is evident because of the low-rate environment in the
European market. An interesting observation is that the Norwegian market gives
a significantly higher mean gain than the US market, even though the rate level in
the two economies are about the same. The reason for this is because the observed
drift of the Norwegian stock index is twice the size of the US stock index, as we
can see in Table 8.1.
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Figure 9.9: Mean gain of the paid-up policy portfolios held by the life insur-
ance companies in Norway, Europe and US simulated 6 years in the future from
10.14.2015.

Further, in Figure 9.10 we can see the 95% VaR of paid-up policy portfolios held
by the life insurance companies 6 years in the future. Again, we notice that the
European market offers a much lower VaR estimate compared to the Norwegian
and US market. We also see that in the Norwegian and US market we obtain a
positive VaR if the life insurance offer a low enough floor with a low enough share
in the stock index. This is not the case for the European market. This situation
is not very applicable in the Norwegian and US market however, since customers
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would rather put the money in the bank than buy such a low floor.
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Figure 9.10: 95% VaR of the paid-up policy portfolios held by insurance companies
in Norway, Europe and US simulated 6 years in the future from 10.14.2015.

Furthermore, it is also interesting to look at the difference in gain densities between
offering a high floor guarantee versus a low floor guarantee, while keeping the stock
share constant. In Figure 9.11 we can see the simulated density of keeping a 30%
stock share with a 3% floor. We notice that the gain density in the Norwegian
market has a little bit more variance compared to the European and US market,
but also that the gain in the Norwegian and US market are much higher than in
the European market. We also see the 95% VaR and 95% ES estimates in each
of the markets. We see that it is much more likely for the insurance companies in
Europe to loose money compared to the Norwegian and US market, assuming the
same floor guarantee and stock share. We also notice that the ES estimates are
less than the VaR estimates, which coincides with theory.
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Figure 9.11: Gain density of the paid-up policy portfolios held by the life insurance
companies simulated 6 years in the future from 10.14.2015. Based on 30% stock
share and a 3% floor.

Evidently, when the life insurance companies offers a lower floor guarantee, the
mean gain will increase. This is confirmed in Figure 9.12. Here we can see the gain
densities with still a 30% stock share, but now with a 1% floor. We notice that the
densities has shifted to the right compared to the 3% floor densities. Now the 95%
VaR and 95% ES estimates in both the Norwegian and US markets are positive,
while the European estimates are still significantly negative. Again we observe
more variability in the Norwegian density compared to the other markets.



76 CHAPTER 9. RESULTS

B 95%VaR B 95%VaR B 95%VaR
m 95%ES m 95%ES m 95%ES

0.020
0.025

0030
L

0.025
0.020

0.015

0.020

0.015

D
0.010
D
0,015
L

0010
L
0.010

0.005

0.005

) J

T T T T T T T T T T T T T T T T
0 50 100 150 200 250 -50 0 50 100 150 0 50 100 150 200

0.000 0,005
L L
0.000

0.000

Company's gain Comgany's gain Company’s gain

Figure 9.12: Gain density of the paid-up policy portfolios held by the life insurance
companies simulated 6 years in the future from 10.14.2015. Based on 30% stock
share and a 1% floor.

In the end we want to look into how big of a share we need to put into the equity
market, in order to have a positive mean gain. In Table 9.3 we can see the the
necessary share in all of the markets, given a floor guarantee. We see that the
Norwegian market requires less equity share in order to have positive mean gain,
compared to the US and European market. Also we observe that with a 2% or
higher floor we need more than 100% of the money in the equity market to achieve
a positive mean gain in Europe. The reason why we need a less equity share in the
Norwegian market compared to in the US market, is again because of the higher
observed drift in the Norwegian equity market.

Table 9.3: Stock share needed for positive mean gains

Floor Stock Share (NOR) Stock Share (EUR) Stock Share (US)

1% 0% 76 % 0%
2% 0% > 100 % 0 %
3% 7% > 100 % 13 %
4% 19 % > 100 % 28 %
5% 31 % > 100 % 44 %

Further, in Table 9.4 we can see the VaR estimates given a % share in the equity
market and a floor guarantee in the Norwegian market. The numbers marked
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in red corresponds to the respective stock shares listed in Table 9.3. Since the
European market only had one equity share in Table 9.4 less than 100%, we only
list the VaR estimate of this position, which is -48.0119. This is still a very low
VaR estimate, which stems from the fact that the rates are much lower in the
European market compared to the Norwegian and US markets.

Table 9.4: 95% VaR estimates for Norwegian life insurance companies

Floor | 0 % Stock 7 % Stock 19 % Stock 31 % Stock
1% 3.6852 3.3012 -0.8216 % -5.2836
2% -0.4196 -1.3073 -5.6622 % -10.2160
3% -5.9074 -7.5581 -12.0682 -16.6047
4% -11.8665 -14.5223 -19.0710 -23.6392
5% -19.2398 -21.9409 -26.5158 -31.0444

In Table 9.5 we see the VaR estimates given a % share in the equity market and
a floor guarantee in the European market. The numbers marked in red again
corresponds to the respective US stock shares listed in Table 9.3. We see that the
VaR estimates in the US table is slightly less than in the Norwegian table. This
is partly due to higher stock share, and also because of less observed drift in the
US equity market compared to the Norwegian one. Again, we also notice that
the VaR estimates in all of the markets decreases with increasing stock share, and
increasing floor guarantee.

Table 9.5: 95% VaR estimates for US life insurance companies

Floor | 0 % Stock 13 % Stock 28 % Stock 44 % Stock
1% -1.8346 -0.6708 -4.0164 % -8.7400
2% -6.3721 -5.23995 -8.9848 % -13.6955
3% -11.4840 -10.76521 -14.8840 -19.6773
4% -17.3030 17.0515 -21.3892 -26.2438
5% -23.4894 -23.9849 -28.5019 -33.3635
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Chapter 10

Discussion and Conclusion

From the stock index analysis chapter it is evident that all of the equity markets
fell drastically in value during the dot-com bubble and the financial crisis. This
shows some of the disadvantages related to creating a portfolio with stocks. In
other words, the uncertainty in the stock price development can cause critical ad-
justments into the financial policy within a firm. We could also see from the fitted
normal and student-t densities that they were not perfect, but with the student-t
fit performing better than the normal fit. This makes sense since the student-t
distribution has one more parameter to be fitted compared to the normal distri-
bution, as well as the student-t distribution assigns higher probability to extreme
events compared to the normal one. However, the observed density had fatter
tails than both of the fitted densities. Another interesting observation is that the
observed drift of the Norwegian equity market is twice the size of the US equity
market, as well as the European market had a significantly lower observed drift
than both of the other markets.

In most of the introductory financial courses we learn that receiving money now
is preferred over receiving money in the future, i.e. there exists a risk free in-
terest rate larger than zero. However, the low-rate environment particularly in
Europe today is challenging the classical concept of interest rates. The densities
of the simulated spot rate in Figures 9.1 and 9.2 confirms this. These interest
rates are modeled through the HJM-framework, while we can see the simulated
LMM rates in Figures 9.4 and in 9.5. From these figures we also notice the biggest
difference between the two frameworks, namely that HJM produces both positive
and negative rates, while LMM only allows positive rates. This is because LMM
simulates interest rates under a lognormal assumption. Further, through the HJM-
framework we see that the probability of negative rates are significant. However,
the probability of negative rates are greater in the European market than in the
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Norwegian or US market. It is evident that the closer the today’s rate is to zero,
the higher the probability is of a negative rate in the future.

The HIM and LMM frameworks have several differences, but they also share one
important detail. Namely they both have to be calibrated to the market in order to
give correct interest rate option prices. It is evident that the volatility factors de-
termines the models in both cases, and this means that market calibration should
be done on the volatility factors. In this thesis the HIM-model has been calibrated
by using historical data with PCA, while the LMM-model has been calibrated by
historical data using EMWA. The reason for using historical volatility is that it
gives a good insight into the risks we face when trading in the market, based on
previous events.

From the Monte Carlo simulation we notice a large price gap around the cur-
rent spot rate for the HJM, LMM and Black’s pricing model. Because of negative
rates in the HJM-framework, it prices floors larger for negative and zero rates
compared to the LMM-framework. However, the LMM-framework produces more
in-the-money floors for higher strike prices, which is the reason the LMM floor
price gets closer to the HJM floor prices for increasing strike prices. Furthermore,
it would be a poor decision to price low-strike floors with the lognormal framework
LMM. This is because zero-strike floors indeed has a value in some markets. In
other words, if an investor only expects positive rates, he potentially can loose a
lot of money. On the other side, for an old-style market with large positive rates
we ought to be careful with pricing the floors through the HJM-framework. This
is because zero-strike floors might very well be worthless in this case. Further,
from the floor price dependency chapter we see that the floor price increases in all
of the markets with increasing number of lets, as well as the largest price jump is
caused by going from one floorlet to two floorlets.

The European market has significantly lower rates compared to the other mar-
kets, and combined with a lower observed drift of the equity market, this in turn
makes it much harder to offer the same floor as in the Norwegian or US market.
For instance, in order to keep the mean gain of the paid-up policy portfolios pos-
itive when offering a floor guarantee of 1%, the European life insurance need to
place 76% of their money in equity, while the Norwegian and US life insurance
do not need any shares in the equity market. Another interesting result is that
even though the Norwegian and US market have about the same rate level, the
Norwegian life insurance needs to place less of their money in equity compared to
the US life insurance, in order to achieve the same mean gain.
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To sum up, it is evident that the low-rate environment we now experience are
pushing the life insurance companies into new territories. The floors offered by
the life insurance companies are now priced higher than before, and because of
the low rate-level the life insurance companies receives less money from their bank
deposits than earlier. This means the life insurance companies need to increase
their stock share, in order to prevent a negative mean gain from their portfolios.
However, the problem with this form of yield hunting is that the risk of loosing
money greatly increases with increasing share in the equity market. This in turn
increases the importance of having well-diversified stock portfolios. We also no-
tice that the portfolio’s VaR increases with increasing floor guarantee, as expected.

For further work it would be interesting to perform a sensitivity analysis of the
value of A\, used in the EWMA framework. Another possibility would be to cap-
ture the historic volatility using a GARCH model. However, since these models
are based on historic data, it will always react to the market with a delay as we
could see in Chapter 8.1. This could be improved by estimating the real implied
volatility observed in the markets, calculated from observed floor prices today.
Furthermore, there are several regulations regarding how much of the money the
life insurance companies may place in risky assets. This means it would also be
interesting to optimize the portfolio gain/VaR with regards to restrictions of the
VaR or the equity share of the company. Lastly, we could also simulate the port-
folios through another framework than the LMM-framework. The reason for this
is that we saw the lognormal assumption of the historical relative changes in the
forward rate did not hold very well with short maturities in Chapter 8.5.
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Appendix A

Probability Theory

A.1 Probability Space

Definition 1: Measure

A measure p assigns positive numbers to sets A : u(A) € R

Definition 2: Algebra

A collection A of subsets of the space X is an algebra if

X eA,
Ae A= A€ A,

ABcA=AUBCA.

Further, A is closed under finitely many set operations.

Definition 3: ¢ -algebra
A is a g-algebra if it is an algebra and for A,, € A,n € N, we have UA,, € A
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Further, A is closed under countably many set operations.

Definition 4: Probability Space

The triple (2, A, P) is a probability space, where (2 is a set, A is a o-algebra of
subsets of €2, and P is a probability measure, P(£2) = 1, on A. See [21] for a more
thorough introduction.

A.2 Tto’s Lemma

If we have a stochastic differential equation of the form

dS = wu(t,S)dt +w(t,S)dX(t), (A.2.1)

then given f(S), with dX? — dt as dt — 0 with probability 1, then Ito’s lemma
says that

w2d2—f)dt. (A.2.2)

df 1
2 dS2

_ df

df

See [5] for proof.

A.3 Brownian Motion

A stochastic process X; is Brownian motion if the following conditions hold

.XOZO.

X; has independent increments, which means if d < t’ <t < u, then X, — X;
and Xy — X, are independent stochastic variables.

For d < t, X; — X4 is normally distributed with E[X; — X,;] = 0 and
VAR[X; — X4 =t — d.

X, is almost surely continuous.
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A.4 Lognormal Walk

Assuming the geometric Brownian motion

dS(t) = uS(t)dt + oSt)dX (¢),

by investigating the process Z; = f(t,S;) = In S; with Ito’s lemma we obtain

dZ(t) = —

dZ(t) = (u — %az)dt +odX (t),

/0 " az() = /0 e %&)dm /O " dX (1),

Z(T) - 2(0) = (u - ga) T 4o (X(T) - X(0)).

InS(t) = InS(0) + (u — %cﬂ) T+ oX(t),

which leads to the lognormal walk

That is
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A.5 Central Limit Theorem

Let (X1, ..., X,,) be a random, independent and identically distributed sample from
a specific distribution with mean g and finite, nonzero variance 0. Then the
limit x x

lim 2L F A (A.5.1)

n—o0 n

approaches the normal distribution with mean g and variance %2

See [17] for proof.



