
Credit Risk Modelling with Expected
Shortfall
A Simulation-based Portfolio Analysis

Kjartan Kloster Osmundsen

Master of Science in Physics and Mathematics

Supervisor: Jacob Laading, MATH
Co-supervisor: Roy Endré Dahl, UiS

Department of Mathematical Sciences

Submission date: June 2016

Norwegian University of Science and Technology



 



i

Preface

This thesis is written at the Department of Mathematical Sciences at the Norwegian Univer-

sity of Science and Technology (NTNU) in the period January to June 2016. It represents a

term workload and leads to the degree Master of Science.

I would like to direct great thanks to my supervisor Jacob Laading for stimulating discus-

sions, brilliant guidance and constructive feedback.

Thanks are due to a Norwegian savings bank group that provided the corporate portfolio

data material used in the thesis. My appreciation also goes to Roy Endré Dahl at the Uni-

versity of Stavanger (UiS) for helping setting the scope of the thesis and contributing with

valuable inputs. Thanks also to Sindre Lorentzen and Kjell Bjørn Nordal for very helpful

feedback.

Stavanger, June 2016

Kjartan Kloster Osmundsen



ii



iii

Abstract

The Basel Committee’s minimum capital requirement function for banks’ credit risk is based

on a risk measure called Value at Risk (VaR). This thesis performs a statistical and economic

analysis of the consequences of replacing VaR with another risk measure called Expected

Shortfall (ES), a switch that has already been set in motion for market risk. The empirical

analysis is carried out by means of both theoretical simulations and real data from a Norwe-

gian savings bank group’s corporate portfolio.

ES has some well known conceptual advantages compared to VaR, primarily by having

a better ability to capture tail risk. ES is also sub-additive in general, so that it always re-

flects the positive effect of diversification. These two aspects are examined in great detail,

in addition to comparing parameter sensitivity, estimation stability and backtesting meth-

ods for the two risk measures. All comparisons are conducted within the Basel Committee’s

minimum capital requirement framework. The findings support a switch from VaR to ES for

credit risk modelling.

Sammendrag

Baselkomiteens kapitalkravfunksjon for bankenes kredittrisiko er basert på risikomålet "Value

at Risk" (VaR). Oppgaven foretar en statistisk og økonomisk analyse av konsekvensene av

å erstatte VaR med det alternative risikomålet "Expected Shortfall" (ES), en endring som

allerede er blitt satt i gang for markedsrisiko. Den empiriske analysen gjøres ved hjelp av

både teoretiske simuleringer og reelle data fra næringslivsporteføljen til en norsk sparebankgruppe.

ES har noen kjente konseptuelle fordeler sammenlignet med VaR, først og fremst ved å ha

en bedre evne til å fange opp halerisiko. ES er også generelt sub-additivt, slik at det alltid re-

flekterer den positive effekten av diversifisering. Disse to punktene undersøkes nøye. I tillegg

sammenliknes de to risikomålene med hensyn til parameterfølsomhet, estimeringsstabilitet

og metoder for modellvalidering. Alle sammenligninger er utført innenfor Baselkomiteens

kapitalkravrammeverk. Funnene støtter en overgang fra VaR til ES for modellering av kredit-

trisiko.
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Chapter 1

Introduction

1.1 Why Regulate Banks?

The capital levels of banks play a key part in this thesis. Banks must meet specific minimum

requirements for their capital (equity), enforced by national supervisory authorities. The

regulations are in most cases binding, meaning that the required capital is higher than what

the banks regard as an optimal capital structure. Unlike most other sectors, the failure of one

bank tends to weaken its competitors in the short run, because banks are exposed to each

other both directly and indirectly [1]. A failure of a single bank may therefore have a negative

impact on a whole country’s banking sector. As problems in the banking sector may cause

major consequences for the overall economy, the national governments find it necessary

to regulate the banks to reduce the possibility for such problems to occur. The economic

challenges ensuing from the financial crisis in 2008 increased the attention paid to the issue

of bank solvency.

The Modigliani–Miller theorem states that the value of a firm is independent of how the

firm is financed, including dividend policy and debt ratio [2], [3]. The reasoning is that the

firm cannot create value through financial decisions because the shareholders can dupli-

cate or reverse these decisions themselves through their own transactions in the financial

markets [4]. For example, a shareholder can acquire a replacement for missing dividends

by selling shares, and a desire for a higher debt ratio can be obtained by taking out a private

loan. The theorem is based on idealistic assumptions of a liquid and complete financial mar-

ket, so that one can use arbitrage arguments for valuation. Some of these assumptions will

in practice not be met, most importantly the assumption of no bankruptcy costs. Also less
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extreme economic strains, such as financial stress, suggest a sensible debt ratio. Firms that

end up in a stressed financial position often feel forced to make short-term decisions that

harm long-term value. Thus, firms will normally choose financial solutions and financial

counterparties that provide low probability of financial distress and bankruptcy. Special reg-

ulations in the banking industry do however counteract some of these disciplinary factors.

For example, in many countries the government insures the bank customers’ deposits, thus

reducing the incentives for bank customers to adequately assess the banks’ financial condi-

tion. Hence, market discipline in terms of high debt ratio is partly put out of action. The fact

that systemically important banks often can expect to be rescued by the government when

experiencing financial problems ("too big to fail") has the same effect.

The banking industry is operating in a mixed economic context in which traditional the-

ory of corporate finance does not have full validity. Instead, one can get some insight by

studying regulation theory [5]. Using this theory one can derive optimal bank regulation

from a socioeconomic perspective, taking into account that the firms know their portfolios

better than the regulator (asymmetric information). Acknowledging that deposit guarantees

and potential rescue of systemically important banks partly puts disciplining market forces

out of play, governments have implemented direct regulation of banks’ risk-weighted capital

ratio.

If the regulatory minimum capital requirements exceeds the level that an individual bank

deems adequate, the regulation is likely to result in increased costs for that bank. If these

costs are passed on to the bank’s customers, economic costs will arise. The added capital

does however increase the bank’s resilience to losses. More resilient banks reduce the likeli-

hood of banking crises [6].

1.2 Thesis Content

The Basel Committee on Banking Supervision has its origins in the financial market turmoil

that followed the breakdown of the Bretton Woods system of managed exchange rates in

1973. After the collapse of Bretton Woods, many banks incurred large foreign currency losses.

In response to these and other disruptions in the international financial markets, the Com-

mittee was established in 1974 by the central bank governors of the G10 countries 1. The

1A group consisting of the countries that agreed to participate in an agreement to provide the International
Monetary Fund with additional funds to increase its lending ability, established in October 1962.
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Committee was designed as a forum for regular cooperation between its member countries

on banking supervisory matters. Its aim was and is to enhance financial stability by improv-

ing supervisory knowhow and the quality of banking supervision worldwide. After starting

life as a G10 body, the Committee has expanded to 28 member countries. The Committee’s

standards are not legally enforceable, but it is expected that the individual national authori-

ties implement them [7].

This thesis focuses on the Basel Committee’s minimum capital requirement for banks’

credit risk. Since 2004 banks have been allowed to calculate their minimum capital require-

ments using risk parameters estimated by internal models [8]. The amount of capital the

banks are required to hold for each of their loans are calculated by a mathematical function

using the estimated risk parameters probability of default (PD) and loss given default (LGD)

as inputs. The thesis will describe in detail the mathematical models that were used to derive

this function, and examine its implications by applying empirical analysis.

The minimum capital requirement function for credit risk is based on a risk measure

called value at risk (VaR). In January 2016, the Basel Committee published revised standards

for minimum capital requirements for market risk [9], which include a shift from value at

risk to expected shortfall (ES) as the preferred risk measure.

Banks have been allowed to use internal VaR models as a basis for measuring their market

risk capital requirements since 1997 [7], i.e. seven years before the same applied to capital

requirements for credit risk. Internal credit risk models were not allowed at an earlier stage

due to the fact that they are not a simple extension of their market risk counterparts. Data

limitations is a key impediment to the design and implementation of credit risk models [10].

Most credit instruments are not listed with a market value, meaning that there are no histor-

ical prices to base future projections on. As there is no market values to compare with the

book values, there is no impairment loss. Loss occurs only at default events, and the infre-

quent nature of these events makes it difficult to collect enough relevant data. The long time

horizons also make the validation of credit risk models fundamentally more difficult than

the backtesting of market risk models.

The Basel Committee has currently not considered a transition from value at risk to ex-

pected shortfall for measuring credit risk. However, as the development of credit risk models

lies a few years behind the market risk models, there is reason to believe that this might be

considered in a not so distant future.
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The main objective of this thesis is to explore what the consequences would be if the

Basel Committee were to also shift from VaR to ES for the computation of credit risk. It will

include an introduction to the two different risk measures and a thorough comparison, with

respect to both theoretical properties and practical use. The effects of a possible shift from

VaR to ES will be measured using both simulated data and real data from a Norwegian sav-

ings bank group’s corporate portfolio.

The input parameters for the capital requirement function, PD and LGD, are estimated

using the banks’ internal risk models. This thesis examines how sensitive the capital require-

ment function is to uncertainty in these estimates. This is tested by simulating values for PD

and LGD, and letting the relative standard deviations represent the uncertainty in the banks’

estimates. The capital requirement is calculated using the simulated values, which enables

us to study the relationship between the parameters’ and capital requirement’s relative stan-

dard deviations.

The thesis also examines how VaR and ES values are affected by the tail properties of

the loss distributions, by simulating losses from distribution functions with different tail

weights. Lastly, model validation through backtesting is compared for VaR and ES.
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Chapter 2

Bank Regulation

In this chapter we present both former and present versions of the Basel Committee’s capital

adequacy framework. We also introduce the Committee’s proposals for future regulations.

The Basel Committee aims to enhance financial stability by improving the quality of

banking supervision worldwide. It seeks to achieve its aims by setting minimum standards

for the regulation and supervision of banks. In addition to promoting common understand-

ing and improving cross-border cooperation, the Committee is also exchanging informa-

tion on developments in the banking sector and financial markets to help identify current or

emerging risks for the global financial system [7].

2.1 Basel I

There was strong recognition within the Committee of the overriding need for a multina-

tional accord to strengthen the stability of the international banking system and to remove a

source of competitive inequality arising from differences in national capital requirements [7].

The Basel Committee published its first capital measurement system for the banking sector

in 1988, commonly referred to as the Basel Capital Accord (Basel I). The Accord introduced a

minimum capital (equity) requirement given by 8 % of the risk-weighted assets (RWA):

K ≥ 0.08 ·
n∑

i=1
RW i Ai ,

where K is the minimum capital requirement, RW i is the risk weight assigned to asset i and

Ai is the credit risk exposure of asset i .
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The Committee introduced a standard of five different risk weight levels: 0, 10, 20, 50 and

100 % [11]. For example, cash and government bonds were assigned a risk weight of 0 %,

claims on most banks were weighted with 20 %, mortgages were given a risk weight of 50 %

and claims on the private sector were weighted with 100 %. Half of the required capital had

to be core capital (4 % of the RWA). Common equity (share capital and retained earnings)

should amount to half of the core capital (2 % of the RWA).

2.2 Basel II

In 2004 the Basel Committee published a new capital adequacy framework to replace the

1988 Accord: the Revised Capital Framework (Basel II). The new framework was designed to

improve the way regulatory capital requirements reflect underlying risks and to better ad-

dress the financial innovation that had occurred in the recent years. The new framework

comprised three pillars. Pillar 1 represents the minimum requirements for bank capital,

building on the standardised rules from Basel I. Pillar 2 is a collection of rules for supervi-

sory review of a bank’s capital adequacy and internal assessment process. Pillar 3 contains

disclosure requirements of banks’ activities, to strengthen market discipline and encourage

sound banking practices [7].

Pillar 2 is intended to capture risk elements that are not covered or only partially covered

by the capital requirements of Pillar 1. Such risks may include concentration risk, interest

rate risk, currency risk and model risk. Banks are required to assess their overall capital ad-

equacy in relation to their risk profile, and at all times keep a strategy for maintaining their

capital levels [8]. Additional capital requirements can be set by the supervisory authorities

if they consider that the level of the bank’s capital is not sufficiently adapted to their risk

profile.

2.2.1 Internal Ratings Based Approach

The introduction of Basel II also opened the possibility for banks to calculate the assets’ risk

weights by internal models, instead of using the given standard rates (the standardised ap-

proach). To be able to use this internal ratings based (IRB) approach, the bank’s risk models

have to be approved by the national supervisory authorities. A bank that uses this approach

is called an IRB bank.
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If the IRB bank’s internal models implies lower risk weights than the standard rates, the

minimum capital requirement will decrease. Since equity is the most expensive form of fi-

nancing, the IRB banks have incentives to calculate artificially low risk weights. To remedy

this issue the Basel II framework included a temporary lower limit for the risk weights. The

lower limit is defined as a percentage of the original risk weights from Basel I and is therefore

called the Basel I transitional floor. Since 2009 the floor level has been 80 % [8].

2.3 Basel III

Even before Lehman Brothers collapsed in September 2008, the need for a fundamental

strengthening of the Basel II framework had become apparent. The banking sector had en-

tered the financial crisis with too much leverage and inadequate liquidity buffers [7]. The

third regulatory framework from the Basel Committee, published in 2010, keeps the concept

of the three pillars of Basel II. The emphasis is on Pillar 1, for which the Committee has fo-

cused on qualitative requirements. The total minimum capital requirement is still 8 % of the

RWA, but now 75 % of the capital (6 % of the RWA) must be core capital, and 56.25 % of the

capital (4.5% of the RWA) must be common equity [12]. A comparison of the different Basel

versions are shown in Table 2.1.

Basel III also requires that banks have capital buffers beyond the minimum capital re-

quirement, so they will be prepared for periods of financial instability. A conservation buffer

consisting of common equity should constitute 2.5 % of the RWA. The banks must also hold

a countercyclical buffer consisting of common equity, that varies between zero and 2.5 % of

the RWA. The level of this buffer should be cyclical, and is determined on an ongoing basis

by national authorities. The idea behind this is that the banks should build capital in good

times, so that they can better cope with recessions [12].

There is also an additional buffer requirement for banks that are identified as system-

ically important, both globally and nationally. Global systemically important banks must

hold additional core capital corresponding to 1-3.5 % of the RWA, depending on the bank’s

systemic importance. This requirement will be introduced gradually from 2016, and will be

in full effect from 2019 [13].

The Basel Committee has also introduced a leverage ratio, which is an absolute and un-

weighted minimum capital requirement. This minimum requirement is currently set to 3 %



8 CHAPTER 2. BANK REGULATION

of total exposure, and is scheduled to be phased in from 2018 [12].

Basel I Basel II Basel III
Minimum ratio of total capital to RWAs 8 % 8 % 8 %
Minimum ratio of core capital to RWAs 4 % 4 % 6 %
Minimum ratio of common equity to RWAs 2 % 2 % 4.5 %
Supervisory review No Yes Yes
Market dicipline and disclosure No Yes Yes
IRB approach No Yes Yes
Conservation buffer - - 2.5 %
Countercyclical buffer - - 0 - 2.5 %
Systematically importance buffer - - 1 - 3.5 %
Leverage ratio - - 3 %

Table 2.1: Comparison of the Basel Committee’s three different capital adequacy frame-
works.

2.4 Upcoming Regulations

The standardised approach for determining risk weights is up for revision, and the Basel

Committee’s second consultation on this subject was published in December 2015 [14]. The

new standardised approach is intended to be more risk sensitive, while still keeping its sim-

plicity compared to the IRB approach. The Basel Committee is also consulting on the de-

sign of a new capital floor framework based on the Basel II/III standardised approaches [15],

which is supposed to complement the leverage ratio introduced as part of Basel III. This

framework will replace the current Basel I transitional floor. The capital floor is part of a

range of policy measures that aim to enhance reliability and comparability of risk-weighted

capital ratios.

A hypothetical portfolio benchmark exercise was conducted by the Basel Committee in

2013 [16]. The purpose of this exercise was to identify the degree of "practise-based" varia-

tion in risk weights for credit risk across major international banks using the IRB approach.

A total of 32 participating banks calculated a total capital requirement for the same hypo-

thetical portfolio, using their internal models to determine the risk weights. The study found

a high degree of consistency in banks’ assessment of the relative riskiness of the different

obligors in the portfolio. However, considerable variation in the levels of the estimated risk

was found, as expressed by the banks’ estimates for probability of default (PD) and loss given

default (LGD). A separate survey of bank practices for estimating exposure at default (EAD)

also found significant differences.
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The Basel Committee is currently consulting on a package of proposed policy measures

that will improve the comparability of risk weights that are calculated using the IRB approach

for credit risk [17]. These proposals include removing the option to use the IRB approach for

certain exposures, and added constraints on model parameters for exposures still eligible

for the IRB approach. Loans to banks and other financial institutions, equities and large

corporates (belonging to consolidated groups with total assets exceeding 50 billion euros) is

proposed to be subject to the standardised approach. Banks, other financial institutions and

large corporates are usually considered to be low-default exposures, which makes it difficult

to obtain enough observations to reliable estimate the model parameters. For equities, the

Committee argues that it is unlikely that banks will have specific knowledge concerning the

issuer over and above public data.

The Committee proposes applying floors to PD, LGD and credit conversion factors used

to determine EAD for off-balance sheet items. The proposed floors for corporate exposures

are a 0.05 % PD floor, a 25 % LGD floor for unsecured exposures and a 0-20 % LGD floor

for secured exposures, depending on collateral type. When choosing the proposed levels for

the parameter floors, the Committee has taken into account that banks could get incentives

to shift their exposures to higher risks to avoid the effect of the parameter floors. Consis-

tency with the standardised approach has also been a priority. In addition to the parameter

floors, the Committee has also proposed greater specification of parameter estimation prac-

tices [17].
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Chapter 3

Credit Risk Modelling

In this chapter we start with a general introduction to credit risk modelling, then shifting

focus to the specific model choices made by the Basel Committee when deriving a mathe-

matical function for calculating regulatory capital under the IRB approach.

Credit risk models encompass all of the policies, procedures and practices used by a bank

in estimating a credit portfolio’s probability density function (PDF) of future credit losses.

Such models contribute to an improvement in a bank’s overall ability to identify, measure

and manage risk. The models also allow banks to analyse marginal and absolute contribu-

tions to risk, and are used for determining concentration and exposure limits within a portfo-

lio. The initial motivation for developing credit risk models was the desire to produce quan-

titative estimates of the amount of economic capital needed for banks to absorb substantial

losses. In addition to economic capital allocation, the applications of credit risk models in-

clude risk-based pricing and performance evaluation using risk-adjusted return on capital.

As credit risk models have gained a large role in banks’ risk management processes, they are

now also utilized for supervisory and regulatory purposes [10].

Correlations are vital in assessing risk at the portfolio level since they capture the inter-

action of losses on individual credits. Nearly all credit risk models assume that these corre-

lations are driven by one or more risk factors that represent various influences on the credit

quality of the borrower. Such risk factors can include industry, geographic region and the

general state of the economy. The assumptions about the statistical processes driving these

risk factors determine the overall mathematical structure of the model and the shape of the

PDF. In some cases, a specific functional form for the PDF is assumed and the empirical re-

sults are calculated analytically. In other cases, simulation of the underlying risk factors is
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used to numerically provide a PDF [18].

Stress tests aim to overcome some of the uncertainties in credit risk models by specifying

particular economic scenarios and judging the adequacy of bank capital against those sce-

narios, regardless of the probability that such events may occur. Scenarios covered include

deterioration in credit ratings or market spreads, changes in LGDs, shifts in default proba-

bilities and changes in correlation structures [10].

Models adopting a bottom-up approach measure credit risk for each loan based on an

explicit evaluation of the creditworthiness of each borrower. A top-down approach measures

credit risk for buckets of loans with similar risk profiles, where loans within each bucket are

treated as statistically identical [10].

3.1 Risk Parameters

This section defines the main parameters used to model credit risk.

Probability of default (PD) is the probability that a borrower will be unable to meet the

debt obligations. This probability is defined for a particular time horizon, typically one year.

Exposure at default (EAD) is the lender’s outstanding exposure to the borrower in case of

default.

Loss given default (LGD) is the lender’s likely loss in case of default. Usually stated as a

percentage of the EAD.

The expected loss (EL) is the average credit loss a bank can expect on its credit portfolio

over the chosen time horizon. The expected loss is calculated as the mean of the loss distri-

bution, and is typically covered by provisioning and pricing policies [19]. The expected loss

of a single loan can be calculated as follows:

EL = PD ·E AD ·LGD. (3.1)

Banks typically express the risk of a portfolio with the unexpected loss (UL), which is the

amount by which the actual credit loss exceeds the expected loss. The economic capital

held to support a bank’s credit risk exposure is usually determined so that the estimated

probability of unexpected loss exceeding economic capital is less than a target insolvency

rate. The potential unexpected loss which is judged too expensive to hold capital against, is

called stress loss, and leads to insolvency. This is illustrated in Figure 3.1. The PDF of future
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credit losses is the basis for calculating the unexpected loss, and the target insolvency rate is

chosen so that the resulting economic capital will cover all but the most extreme events.

Expected loss Unexpected loss Stress loss

Potential credit losses

F
re

qu
en

cy
 o

f l
os

s

Figure 3.1: The three different types of loss in credit risk modelling.

3.2 Models Adopted by the Basel Committee

This section presents the models that have formed the basis for the derivation of the Basel

Committee’s mathematical function for calculating regulatory capital under the IRB approach.

The Committee’s preferred risk measure is also defined.

3.2.1 The Merton Model

Merton [20] models the default probability of a firm based on its assets and liabilities at the

end of a given time period. The model assumes that the firm’s debt is given by a zero-coupon

bond with face value B and maturity T . The value of the firm’s equity and debt at a given time

t is denoted by St and Bt . Merton assumes that the firm’s equity does not receive dividend,

and that no new debt is issued. Also omitting transaction costs and taxes, the value of the
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firm’s assets is given by

Vt = St +Bt , 0 ≤ t ≤ T.

The payout for the shareholders and debtholders at time T is given by

ST = max(VT −B ,0) = (VT −B)+, BT = min(VT ,B) = B − (B −VT )+.

The value of the firm’s equity may thus be considered as the payout of a European call option

on its assets, with a strike price equalling its debt. The value of the firm’s debt may in the

same way be considered as the debt amount plus a short European put option on its assets,

with a strike price equalling its debt [21].

Merton further assumes that the value of the firm’s assets follows a diffusion model of the

form

dVt =µV Vt d t +σV Vt dWt , 0 ≤ t ≤ T, (3.2)

where µV ∈ R and σV > 0 are constants, and Wt is a standard Brownian motion. The solu-

tion of the stochastic differential equation (3.2) for time T with initial value V0 can be found

analytically: VT =V0 exp
((
µV − 1

2σ
2
V

)
T +σV WT

)
. This implies that

lnVT ∼ N

(
lnV0 +

(
µV − 1

2
σ2

V

)
T,σ2

V T

)
.

The probability of default is thus given by

P (VT ≤ B) = P (lnVT ≤ lnB) =Φ
(

ln(B/V0)− (µV − 1
2σ

2
V )T

σV
p

T

)
, (3.3)

whereΦ is the cumulative distribution function of the standard normal distribution.

The Merton model provides a useful context for modelling credit risk, and is used in prac-

tical implementations by many financial institutions. However, it has admittedly also some

drawbacks. For most firms the assumption that the financing consists of a one-year zero

coupon bond is an oversimplification. Also, the assumption of normally distributed losses

can lead to an underestimation of the potential risk in a loan portfolio. The most important

shortcoming of the Merton model might be that the firm’s value is not observable, which

makes assigning values to it and its volatility problematic [22].
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3.2.2 Vasicek’s Loan Portfolio Model

Vasicek [23] derived a loan portfolio model in 1991, based on the Merton model. It mod-

els the probability of default conditional on a common risk factor. The model assumes a

portfolio of n equally large loans, but he also shows that this assumption can be relaxed if

the portfolio consists of a large number of loans where no single loan is too dominant. The

probability of default on a single loan is denoted p, and is given by (3.3). The value of the

borrower’s assets is assumed to have a pairwise correlation ρ. All loans have the same ma-

turity T . Li denotes the gross loss (before recoveries) on the i -th loan, so that Li = 1 if the

i -th borrower defaults and Li = 0 otherwise. The gross loss ratio for the portfolio is given by

Lr (n) = 1
n

∑n
i=1 Li .

Vasicek uses the diffusion model (3.2), which means that the value of the assets of firm i

at time T can be expressed as lnVi (T ) = lnVi +µi T − 1
2σ

2
i T +σi

p
T Xi . The variables Xi are

jointly standard normal distributed with equal pairwise correlations ρ, and can therefore be

represented as 1

Xi = Y
p
ρ+Zi

√
1−ρ, (3.4)

where Y , Z1, Z2, . . . , Zn are mutually independent standard normal distributed variables. The

variable Y can be interpreted as a portfolio common factor, such as an economic index, over

the interval (0,T ). The first term in (3.4) is the firm’s exposure to the common factor and the

second term represents the idiosyncratic risk [23].

On this basis Vasicek proves that when Y is constant, the probability for loss on a single

loan conditional on Y is given by

p(Y ) = P [Li = 1|Y ] =Φ
(
Φ−1(p)−Y

p
ρ√

1−ρ

)
. (3.5)

A drawback with the Vasicek model is that it is a purely static, one-period model. In practice,

portfolio default rates move in a predictable way from period to period, and exhibit quite

well-defined time series properties. Ignoring these properties in risk and capital calculations

may lead to an erroneous perception of true risk [24].

1See [21] for details, example 3.34, page 104.
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3.2.3 Value at Risk

Value at Risk (VaR) describes the risk of holding a portfolio over a given time period. As the

term indicates, VaR is a risk measure defined as the largest possible loss over the time period,

provided that the probability for an even larger loss does not exceed a certain level. A formal

definition [21] is the following:

Definition 1 (Value at Risk). Given a confidence level q ∈ (0,1), the VaR of a portfolio for the

confidence level q is given by the smallest number l such that the probability for the loss L

exceeding l is not larger than (1−q):

V aRq (L) = inf
{
l ∈R : P (L > l ) ≤ 1−q

}= inf
{
l ∈R : FL(l ) ≥ q

}
,

where FL(l ) = P (L ≤ l ) is the cumulative distribution function of the loss variable.

This means that VaR is simply a quantile of the loss distribution. Note that by definition,

VaR does not give any information about the size of the losses that occurs with a probability

less than 1−q . This can be problematic if the loss distribution is heavy-tailed.

3.2.4 The ASRF Model

The Asymptotic Single Risk Factor (ASRF) model was developed by Michael B. Gordy in 2003.

As the name suggests it models risk using only one risk factor, which may be interpreted

as reflecting the state of the global economy. The model is constructed to be portfolio-

invariant, so that the marginal capital requirement for a loan does not depend on the prop-

erties of the portfolio in which it is held [25]. A capital charge to a loan may therefore be

based only on its own characteristics. This makes the model applicable for a wide range of

countries and institutions, and thus very suitable for regulatory purposes.

The ASRF model is based on two fundamental assumptions which ensure the desired

portfolio-invariance:

Assumption 1. There is only a single systematic risk factor driving correlations across borrow-

ers.

Assumption 2. No exposure in a portfolio accounts for more than an arbitrarily small share

of the total exposure.
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By using the strong law of large numbers, Gordy proves the following:

Proposition 1. If Assumption 2 holds, the portfolio loss ratio conditional on X = x will almost

surely converge to its conditional expectation as n →∞ : Lr (n)−E [Lr (n)|x] → 0.

Proposition 1 implies that as the exposure share of each asset in the portfolio goes to zero,

the idiosyncratic risk in portfolio loss is diversified away. In the limit, the loss ratio converges

to a fixed function of the systematic risk factor X [25].

Let αq (X ) denote the q th quantile of the systematic risk factor X . In other words, αq (X )

denotes the value at risk at confidence level q . The quantiles of E [Ln |x] take on a particularly

simple and desirable asymptotic form when Gordy imposes an additional restriction:

Assumption 3. The systematic risk factor X is one-dimentional.

Gordy proves that Assumption 3 yields the following result:

Proposition 2. If Assumption 3 is satisfied, the following applies for n > n0:

αq (E [Ln |X ]) = E [Ln |αq (X )].

Building on Proposition 2, Gordy further proves the following:

Proposition 3. If Assumptions 1-3 hold, then:

P
(
Ln ≤ E

[
Ln |αq (X )

])→ q and |αq (Ln)−E
[
Ln |αq (X )

] |→ 0,

where the last part may also be written as |V aRq (Ln)−V aRq (E [Ln |X ]) |→ 0.

Prepositions 2 and 3 are the core of the Basel Committee’s capital requirement func-

tion. It presents a portfolio invariant rule to determine capital requirements by taking the

exposure-weighted average of the individual assets’ conditional expected losses. However,

the portfolio invariance comes along with some drawbacks as it makes recognition of di-

versification effects very difficult. Judging whether a loan fits well into an existing portfolio

requires the knowledge of the portfolio decomposition and therefore contradicts portfolio

invariance. Thus the ASRF model is based on the assumption of a well diversified portfo-

lio [22].

3.3 The Basel Committee’s Capital Requirement Function

Basel II made it possible for banks to use internal risk models to estimate PD, EAD and

LGD [8]. These estimates are used as input parameters for a mathematical function that
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returns the capital requirement for the specific loan. This capital requirement function is

based on Gordy’s ASRF model, which allows the use of a bottom-up approach, as it does not

depend on portfolio composition. This makes the resulting capital requirement function

applicable for a wide range of countries and institutions, which of course is an important

prerequisite for a global regulatory practice. As well-diversified banks is a main assumption

of the ASRF model, banks are expected to address their deviations from this ideal under the

Pillar 2 framework [19].

The probability of default conditional on the systematic risk factor X is calculated by

Vasicek’s adaptation of the Merton model (3.5):

PD(X ) =Φ
(
Φ−1(PD)−X

p
Rp

1−R

)
,

where R is the Basel Committee’s notation for the correlation constant.

By choosing a realization of the systematic risk factor equal to the q th quantile αq (X ), we

obtain the following expression as X is assumed to be normally distributed:

PD(αq (X )) = PD(Φ−1(1−q)) = PD(−Φ−1(q)) =Φ
(
Φ−1(PD)+Φ−1(q)

p
Rp

1−R

)
. (3.6)

The capital requirement is expressed as a percentage of the exposure at default. The ex-

pected loss for each loan is thus calculated with (3.1) without the EAD-factor. Based on

Proposition 2, the q th quantile of the expected loss conditional on the systematic risk fac-

tor X is calculated as follows:

αq (E [L|X ]) = E [L|αq (X )] = PD(αq (X )) ·LGD. (3.7)

The LGD value used in (3.7) must reflect economic downturn conditions in circumstances

where loss severities are expected to be higher during cyclical downturns than during typi-

cal business conditions [19]. This so-called "downturn" LGD value is not computed with a

mapping function similar to that used for the PD value. Instead, the Basel Committee has

decided to let the banks provide downturn LGD values based on their internal assessments.

The reason for this is the evolving nature of bank practices in the area of LGD quantification.

The Basel Committee’s capital requirement only considers the unexpected loss. As the

ASRF model delivers the entire capital amount, the expected loss PD ·LGD has to be sub-
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tracted from (3.7). When finally inserting (3.6) for PD(αq (X )), we arrive at the Basel Com-

mittee’s capital requirement function:

K = LGD ·Φ
(
Φ−1(PD)+Φ−1(0,999) ·pRp

1−R

)
−PD ·LGD, (3.8)

where the Committee has chosen the confidence level q = 0.999. This means that losses on

a loan should exceed the capital requirement only once in a thousand years. The reason why

the confidence level is set so high is partly to protect against inevitable estimation error in

the banks’ internal models [19].

Under the Basel III regulation, banks must multiply (3.8) by a factor of 1.06, based on an

impact study of Basel II conducted by the Basel Committee [26]. The capital requirement

function is also multiplied by an adjustment factor for the maturity of the loan, as long-term

credits have higher risk than short-term credits. The maturity adjustment M A is given by

M A = 1+ (M −2.5) ·b(PD)

1−1.5 ·b(PD)
,

where M is years to maturity and b(PD) = (0.11852−0.05478 · ln(PD))2.

As mentioned above, R is the loan’s correlation with the systematic risk factor, and it is

determined from information about the borrower. For loans to states, institutions and large

enterprises (annual revenues above 50 million euros) [19] the following formula applies:

R = 0.24−0.12

(
1−e−50·PD

1−e−50

)
. (3.9)

We see that the R value will lie in the interval [0.12−0.24]. If the enterprise’s annual revenue

is less than 5 million euros, the R value is decreased by 0.04. If the annual revenue is between

5 and 50 million euros, the R value is decreased by 0.04·(1−(S−5)/45), where S is the annual

revenue.

For retail exposures the maturity adjustment M A is not included, and the correlation R

is calculated as follows:

R = 0.16−0.13

(
1−e−35·PD

1−e−35

)
. (3.10)

The R value for residential mortgages and qualifying revolving retail exposures is not calcu-

lated by (3.10), but are defined as constant values of 0.15 and 0.04, respectively [19].
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For financial institutions whose total assets are greater than 70 billion euros, or is lacking

supervision, the R value is multiplied by 1.25 [12].

As the capital requirement (3.8) is expressed as a percentage of total exposure, one must

multiply by E AD to get the capital requirement stated as a money amount. As this amount

shall constitute 8 % of the risk-weighted assets, the risk-weighted assets are calculated by

multiplying the capital requirement with 12.5 (1/0.08).

Thus, to conclude, the risk-weighted assets are calculated as:

RW A = 12.5 ·K ·E AD.
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Chapter 4

Coherent Risk Measure

In this chapter we introduce the concept of coherent risk measures. We explain why value

at risk is not a coherent risk measure, and further elaborate on its undesirable properties as

a consequence of this fact. Thereafter, the coherent risk measure expected shortfall is pro-

posed as an alternative to value at risk. Finally, we derive a version of the Basel Committee’s

capital requirement function that is based on expected shortfall.

In the paper Thinking Coherently[27] from 1997, Artzner et al. defined what properties

a statistic of a portfolio should have in order to be considered a sensible risk measure. The

following four properties should be fulfilled by such a coherent risk measure:

Definition 2 (Coherent risk measure). A risk measure ρ assigns a number ρ(X ) to a random

variable X representing asset returns (positive numbers for losses). This number indicates the

riskiness of the position. For each pair of random variables X and Y (dependent or not) as well

as for each number n and for each positive number t , a coherent risk measure must satisfy all

the following properties:

(i) ρ(X +Y ) ≤ ρ(X )+ρ(Y ) [sub-additivity]

(ii) ρ(t ·X ) = t ·ρ(X ) [homogeneity]

(iii) ρ(X ) ≤ ρ(Y ), if X ≤ Y [monotonicity]

(iv) ρ(X −n) = ρ(X )−n [risk-free condition]

Property (i ) ensures that the risk measure behaves reasonably when adding two posi-

tions. It reflects the positive effect of diversification. Property (i i ) states that multiplied loss

means multiplied risk. Properties (i ) and (i i ) together imply the convexity of the function

ρ [27]. Property (i i i ) simply states that portfolios with smaller losses are assigned smaller
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risk. Property (i v) states logically that any amount of certain earnings/losses results in the

risk decreasing/increasing by the same amount.

These four properties of coherence are all logical, and corresponds to most people’s con-

cept of risk. Acerbi and Tasche [28] have even stated that speaking of non-coherent risk

measures is useless and dangerous. If a risk measure is not coherent, they choose to not call

it a risk measure at all. For them, the coherence properties define the concept of risk itself

via the characterization of the possible operative ways to measure it.

4.1 Value at Risk

Value at risk is not a coherent risk measure, as it has been shown [27] that it is not sub-

additive in general. Thus, a merger of two portfolios may have a greater VaR than the sum of

the VaR of the individual portfolios. This contradicts basic diversification theory, and is con-

sidered as one of the biggest flaws of VaR. Another property of VaR that is often pointed out

as a weakness is that it does not give any information about the size of the losses that occurs

with a probability less than 1−q . This can be particularly problematic if the loss distribution

is heavy-tailed, and is commonly referred to as tail risk. Assets with higher potential for large

losses may appear less risky than assets with lower potential for large losses.

However, VaR is sub-additive if the loss distribution belongs to the elliptical distribution

family and has finite variance, making it a coherent risk measure in these cases [29]. This in-

cludes the normal distribution, Student’s t distribution (for ν> 2) and Pareto distribution (for

α> 2). For these distributions, VaR becomes a scalar multiple of the distribution’s standard

deviation, which satisfies sub-additivity.

Even though value at risk is not sub-additive in general, it still remains the most widely

used risk measure. The reason seems to be that its practical advantages are perceived to

outweigh its theoretical shortcomings. Value at risk is considered to have smaller data re-

quirements, easier backtesting and in some cases easier calculation than alternative risk

measures [30]. Value at risk is also popular because of its conceptual simplicity. The eco-

nomic capital calculated by VaR at a confidence level q corresponds to the capital needed to

keep the firm’s default probability below 100 · (1−q) %.
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4.2 Expected Shortfall

Artzner et al. [27] proposed an alternative risk measure for value at risk, which satisfied all

four coherence axioms. This risk measure is called tail conditional expectation (TCE), and is

closely related to value at risk:

Definition 3 (Tail Conditional Expectation). Given a confidence level q ∈ (0,1), tail condi-

tional expectation is defined as

TCEq (L) = E
[
L|L ≥ VaRq (L)

]
,

where VaRq (L) is the value at risk at the same confidence level.

The tail conditional expectation is thus the expectation of loss, given that the loss is be-

yond the VaR level. However, the TCE is only a coherent risk measure when restricted to

continuous distribution functions. For general distributions, TCE may violate sub-additivity.

Acerbi and Tasche [28] later proposed a more advanced version of TCE that is coherent also

for general distributions:

Definition 4 (Expected Shortfall). Given a confidence level q ∈ (0,1), expected shortfall is de-

fined as

ESq (L) = E
[
L|L ≥ VaRq (L)

]+ (
E

[
L|L ≥ VaRq (L)

]−VaRq (L)
)(P

[
L ≥ VaRq (L)

]
1−q

−1

)
,

where VaRq (L) is the value at risk at the same confidence level.

When P
[
L ≥ VaRq (L)

]= 1−q , as is always the case if the probability distribution is con-

tinuous, the last term from Definition 4 vanishes and it is easy to see that the ES equals the

TCE in this case.

By using the definition of conditional probability and a change of variables, the expected

shortfall can also be written as an integral over the VaR values for all confidence levels u ≥ q :

ESq (L) = 1

1−q

∫ 1

u=q
VaRu(L)du . (4.1)

From Definition 4 and (4.1) it is clear that expected shortfall does not have the same degree

of tail risk as value at risk. Unlike VaR, ES can distinguish between two distributions of future

net worth that have the same quantile but differ otherwise.
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A critique of ES is the fact that tail behaviour is taken into account through an averaging

procedure. Medina and Munari [31] claim that averages are poor indicators of risk, thus

making ES a potentially deceiving measure of risk.

4.2.1 Capital Requirement Function Using Expected Shortfall

The ASRF model is also applicable for expected shortfall. Gordy has proved an equivalent of

Proposition 3 regarding expected shortfall [25]:

Proposition 4. If Assumptions 1-3 hold, then |ESq (Ln)−ESq (E [Ln |X ]) |→ 0.

Proposition 4 implies that ES-based capital charges are portfolio invariant under the same

assumptions as VaR-based capital charges. It is thus possible to derive a version of the Basel

Committee’s capital requirement function (3.8) that is based on expected shortfall [32].

Recall from Chapter 3 that the expected loss conditional on the q th quantile of the sys-

tematic risk factor X is given by:

V aRq (L) = LGD ·Φ
(
Φ−1(PD)+Φ−1(q)

p
Rp

1−R

)
. (4.2)

To derive a corresponding equation for expected shortfall, we apply (4.1) to (4.2):

ESq (L) = 1

1−q

1∫
u=q

LGD ·Φ
(
Φ−1(PD)+Φ−1(u)

p
Rp

1−R

)
du . (4.3)

Using the substitution x := −Φ−1(u) so that du /d x = −φ(x),x(u = q) = −Φ−1(q) and x(u =
1) =−Φ−1(1) =−∞ [32], (4.3) leads to:

ESq (L) = LGD

1−q

−∞∫
x=−Φ−1(q)

Φ

(
Φ−1(PD)−x

p
Rp

1−R

)
· (−1) ·φ(x)d x

= LGD

1−q

−Φ−1(q)∫
x=−∞

Φ

(
Φ−1(PD)−x

p
Rp

1−R

)
·φ(x)d x .

(4.4)
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By applying the identity 1

c∫
−∞

Φ(ax +b)φ(x)d x =Φ2

(
bp

1+a2
,c;

−ap
1+a2

)
,

where Φ2(·) stands for the bivariate cumulative normal distribution function, (4.4) can be

expressed as

ESq (L) = LGD

1−q
Φ2

(
Φ−1(PD),−Φ−1(q);

p
R

)
. (4.5)

The bivariate cumulative normal distribution function is defined as

Φ2(x, y,ρ2) = P (X ≤ x,Y ≤ y) =
x∫

u=−∞

y∫
v=−∞

1

2π
√

1−ρ2
·exp

(
−1

2

u2 −2ρuv + v2

1−ρ2

)
d v du,

where X and Y are standard normal distributed random variables, with a correlation of ρ.

By replacing (4.2) with (4.5), the expected shortfall version of the Basel Committee’s cap-

ital requirement function (3.8) becomes

K = LGD

1−q
Φ2

(
Φ−1(PD),−Φ−1(q);

p
R

)
−PD ·LGD, (4.6)

where q is the confidence level and R is the correlation factor for the systematic risk factor.

1See (30.c) in [33]
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Chapter 5

Value at Risk Versus Expected Shortfall

In January 2016, the Basel Committee published revised standards for minimum capital re-

quirements for market risk [9], which include a shift from value at risk (VaR) to expected

shortfall (ES) as the preferred risk measure. The Committee stated that the former market

risk framework’s reliance on VaR as a quantitative risk metric stems largely from historical

precedent and common industry practice. This has been reinforced over time by the re-

quirement to use VaR for regulatory capital purposes. However, the Committee recognized

that a number of weaknesses have been identified with VaR, including its inability to capture

tail risk [34].

The Basel Committee has currently not considered a transition from VaR to ES for mea-

suring credit risk. However, as the development of credit risk models lies a few years behind

the market risk models, there is reason to believe that this might be considered in a not so dis-

tant future. In this chapter we will compare VaR and ES as credit risk measures. In addition

to elaborate on the implications of the fact that only one of them is a coherent risk measure,

we will examine how the Basel Committee’s capital requirement function is affected by the

choice of its underlying risk measure. There will be a particular focus on the confidence level

calibration of the ES version.

5.1 Sub-additivity and Tail Risk

As pointed out in Chapter 4, value at risk satisfies sub-additivity when the loss distribution

belongs to the elliptical distribution family and has finite variance. In these cases, value at

risk actually provides the same information about the tail loss as expected shortfall. The
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reason being that both risk measures becomes a scalar multiple of the loss distribution’s

standard deviation [29].
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Figure 5.1: Comparison of the 95 % VaR (blue) and the 95 % ES (green) for a standard normal
distribution and a Cauchy(0,0.5) distribution.

Figure 5.1 shows a comparison between the 95 % VaR and 95 % ES for a standard nor-

mal distribution and the more heavy-tailed Cauchy(0,0.5) distribution. Both distributions

belongs to the elliptical distribution family, but the Cauchy distribution’s variance is unde-

fined. Thus, value at risk is not sub-additive for the Cauchy distribution. Expected shortfall is

by definition exceeding value at risk for equal confidence levels. The extent of the difference

between these two risk measures depends on the loss distribution. We see that the differ-

ence for the Cauchy distribution is substantial compared to the difference for the normal

distribution.

Yamai and Yoshiba provide a simple example 1 of how the tail risk of VaR may result in

serious practical problems in credit portfolios. A modified version of this example follows:

first, suppose a bank holds a credit portfolio consisting of 100 corporate loans to different

firms, each with a one year default probability of 1 percent, and a recovery rate of zero

(LGD=100 %). The exposure at default is $1 million for each loan. For simplicity, it is as-

sumed that the occurrences of defaults are mutually independent. From (3.1) we have that

the expected loss for each loan is $ 10000. Assuming a 1 % net lending margin ($10000),

each loan is thus priced at $20000. This means that the bank earns $20000 for each firm not

defaulting, while it loses $1 million for each defaulting firm. Thus, the bank loses money if

more than one firm defaults in one year, making the probability of loss approximately 26 %

1Example 2 in [29]
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(1−0.99100 −100 ·0.9999 ·0.01). As the probability of loss exceeds 5 %, the 95 % VaR for this

diversified investment will have a positive value.

Second, we consider the bank investing the same total amount of $100 million in a large

loan to only one of the firms. For this concentrated investment the probability of loss is only

1 % and the 95 % VaR is thus -$2 million: the loan price. As the probability of default is below

5 %, the potential of default is disregarded at the 95 % confidence level. We also observe that

value at risk is not sub-additive in this case as the VaR of the diversified portfolio is larger

than the VaR for the concentrated portfolio. Table 5.1 shows the value at risk and expected

shortfall for both the diversified and the concentrated investment. We see that ES is able

to detect the tail risk, resulting in correctly pointing out the concentrated investment as the

most risky investment.

95 % VaR 95 % ES
100 loans $1.06 million $1.52 million
1 loan -$2.0 million $18.4 million

Table 5.1: 95 % value at risk and expected shortfall for a diversified investment and a concen-
trated investment. Positive numbers correspond to loss, negative numbers indicate profit.

This example shows how value at risk can disregard the increase of potential loss due

to credit concentration. One should therefore always ensure that credit concentration is

limited by complementary measures when using VaR for risk management. In the Basel

Committee’s regulatory framework, this issue is addressed in Pillar 2.

5.2 Confidence Level

Since the purpose of regulatory capital requirements is to ensure that banks hold sufficient

capital to withstand significant losses, a very high confidence level seems reasonable. How-

ever, other considerations offset this to some degree. The capital guidelines are meant to

be minimum regulatory standards, and safe and prudent banks will almost certainly be ex-

pected to hold actual capital amounts higher than these minimums. If this is the case, then

it would be desirable to establish a confidence level that are lower than the ones that safe

and prudent banks apply for internal purposes[18]. The confidence level for value at risk

is set as high as 99.9 % for credit risk, to protect against estimation errors and other model

uncertainties.
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The expected shortfall version of the Basel Committee’s capital requirement function (4.6)

was derived using the same assumptions as for the VaR version (3.8). Namely, the assump-

tion of a normal distribution for the systematic risk factor, which leads to the loss distribu-

tion also being normal. To really benefit from a change to the more tail risk sensitive ES, one

would possibly assume a more heavy-tailed loss distribution. In that case, it could be justi-

fiable to apply a confidence level resulting in a slightly smaller capital requirement, as one

could argue the increased tail risk sensitivity reduces the model risk.

Although the derived ES version of the capital requirement function is based on the same

assumptions as the VaR version, the difference between the two risk measures is significant

enough that the two functions behave quite differently. We now try to determine if it is pos-

sible to choose a confidence level for the ES version that makes it behave like the 99.9 %

VaR version. Given the definition of ES, this confidence level must be lower than 99.9 %.

Figure 5.2 shows the ES capital charge calculated by (4.6) for confidence levels 99.5-99.9 %,

compared to the 99.9 % VaR capital charge.
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Figure 5.2: Comparison of the Basel Committee’s capital requirement function (dotted line)
and the expected shortfall version of this function. Five different confidence levels is used
for the ES version.
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Conducting a least squares fit over the interval PD ∈ (0,1), we found that the confidence

level 99.742 % made the ES version most similar to the 99.9 % VaR version. There is how-

ever considerable differences for the smallest PD values, as shown in Figure 5.3. Table 5.2

shows the resulting confidence level for least squares fits over different PD intervals. We see

that the confidence level is noticeably lower for the intervals only containing small PD val-

ues. By choosing the confidence level that gives the best fit over the whole (0,1) interval,

the ES version of the capital requirement function will slightly increase capital charges for

loans with low probabilities of default, and slightly decrease capital charges for loans with

high probabilities of default. As the Basel Committee has proposed to apply floors to the PD

estimation [17], this may be considered a good thing.
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Figure 5.3: The difference between the calculated capital requirement from the ES version
with confidence level 99.742 % and the standard 99.9 % VaR version. Positive y-values mean
that the ES version results in a higher capital charge. The left graph gives a detailed view for
small PD values, while the right graph shows the whole (0,1) interval.

PD interval ES confidence level
(0,0.005) 99.708 %
(0,0.05) 99.726 %
(0,1) 99.742 %

Table 5.2: The confidence level that makes the ES version of the capital requirement function
most similar to the 99.9 % VaR version, for PD values in the given interval. Found by least
squares fit.

Figure 5.4 shows the difference from the 99.9 % VaR version when the ES confidence level

is chosen to 99.708 %: the level that minimizes the difference for PD values less than 0.005.

At this confidence level, the capital charge is still increasing for the smallest PD values and

decreasing for large PD values. The change from increase to decrease do however occur at

PD ≈ 0.003, compared to PD ≈ 0.21 for the confidence level fitted to the whole (0,1) interval.
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Figure 5.4: The difference between the calculated capital requirement from the ES version
with confidence level 99.708 % and the standard 99.9 % VaR version. Positive y-values mean
that the ES version results in a higher capital charge. The left graph gives a detailed view for
small PD values, while the right graph shows the whole (0,1) interval.

5.2.1 Data Set

In addition to simulated values, this thesis will also make use of a data set. The data set

contains information about corporate loans issued by a Norwegian savings bank group from

March 2015 to January 2016. The data set contains about a fifth of the group’s total corporate

portfolio from this period, picked randomly. This amounts to a total of 109045 loans. For

each loan, the data set contains numbers for EAD, LGD and PD. The loans’ correlation to the

systematic risk factor are also included.
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Figure 5.5: The distribution of LGD and PD values in the data set.

Figure 5.5 provides some insight about the data set, by displaying density plots of the LGD

and PD values. We see that most of the loans are deemed to have low risk. In fact, 90.8 % of

the loans have been assigned a probability of default of 0.05 or less. Only 2.1 % of the loans

have a PD value greater than 0.15. The majority of the values for loss given default is also
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in the low end of the scale, with 68 % of the loans having a LGD value of 0.25 or less. There

are however also a substantial number of loans that have high LGD values, unlike what is the

case for the PD values.

Figure 5.6 shows a histogram of the capital charges calculated using the loan parameters

from the data set. We see that the 99.742 % expected shortfall version results in a smaller

proportion of loans in the left part of the histogram than for the 99.9 % VaR version. This

corresponds well with Figure 5.3. In total, the 99.742 % ES results in a 1.4 % greater capi-

tal charge for the loans in the data set. However, the PD values from the data set are not

uniformly distributed on the interval (0,1). Since most of the PD values are 0.05 or less, we

see from Table 5.2 that a lower confidence level will probably result in a capital charge more

similar to the 99.9 % VaR version. A least squares fit reveals that a 99.726 % ES version would

be the closest fit to the 99.9 % VaR version for this data set, which results in a capital charge

increase of 0.2 %.
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Figure 5.6: Histogram showing the distribution of the capital charges calculated using pa-
rameter values from the data set, using both 99.9 % VaR (top) and 99.742 % ES (bottom).

For market risk, the Basel Committee has replaced a 99 % VaR with a 97.5 % ES [9]. This

is consistent with a least squares fit over the whole interval PD ∈ (0,1), as seen in Table 5.3.
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This table is the market risk equivalent to Table 5.2, with a 99 % confidence level used for

VaR. If the Committee introduces a shift to ES for credit risk models, it is thus most likely

that the chosen confidence level will be close to 99.742. As mentioned, this would result

in a 1.4 % greater capital charge for the data set portfolio. It would imply a capital charge

constituting 8.12 % of the risk-weighted assets, compared to the current 8 %. The increase

will be smaller for a portfolio with a larger proportion of loans with high default probability.

Moreover, the 0.12 % increase of the capital ratio is small compared to the various capital

buffers introduced by Basel III.

PD interval ES confidence level
(0,0.005) 96.939 %
(0,0.05) 97.225 %
(0,1) 97.463 %

Table 5.3: The confidence level that makes the ES version of the capital requirement function
most similar to a 99 % VaR version, for PD values in the given interval. Found by least squares
fit.
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Chapter 6

Parameter Sensitivity

In this chapter we will examine how the uncertainty of the banks’ parameter estimates affects

the output from the Basel Committee’s capital requirement function, using both value at risk

and expected shortfall. This is carried out by simulating LGD and PD values. The estimation

uncertainty of these two parameters is represented by the relative standard deviation of the

probability distributions they are sampled from.

6.1 Simulating LGD Values

The simulation method used for the LGD values is based on a model for recovery rates de-

veloped by Jon Frye [35]. Frye’s model adapts some of Michael Gordy’s work, and lets the

recovery rate depend on the systematic risk factor X . LGD values are related to the recovery

rates R in the following simple way:

LGD = 1−R.

Frye’s model is similar to Vasicek’s asset value model (3.4). The recovery rate for firm j is

expressed as

R j =µ j +σq X +σ
√

1−q2Z j , (6.1)

where Z j is a standard normal variable independent of X . This implies that R j is normally

distributed with expected value µ j +σq X and variance σ2(1− q2). The parameter q is the

correlation between the recovery rate R j and the systematic risk factor X .
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Following a proposal from Schönbucher 1, we apply a logistic transformation F (Y ) =
exp(Y )

1+exp(Y ) on (6.1), to limit the R values (and thus also the LGD values) to the interval [0,1].

The simulations use the same confidence level for X as the capital requirement function

(3.8), but with opposite sign as the recovery rate decreases in financial recession:

x =−Φ−1(0,999) =Φ−1(0,001). This gives the following distribution for the LGD values:

Y ∼ N
(
µ+σqΦ−1(0,001),σ2 (

1−q2)) ,

�LGD = 1−R = 1−F (Y ) = 1− exp(Y )

1+exp(Y )
.

(6.2)

6.2 Simulating PD Values

Over a time period, a firm either meets the loan terms or defaults. This makes it natural to

model the number of default occurrences m by applying a binomial distribution:

m ∼ Bi n(n,PD),

where PD is the bank’s estimated value for the probability of default, and n is the number of

simulations.

After completing the n simulations, the probability of default is estimated as

P̂D = m

n
.

The values for P̂D will thus be centered around the expected value PD , and these simulated

values are thus a representation of the uncertainty in the bank’s PD estimate. The variance

of P̂D is inversely proportional to the number of simulations:

Var
(
P̂D

)= Var
(m

n

)
= 1

n2
Var(m) = PD(1−PD)

n
.

1See [36], pages 147-150.
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6.3 Calculation of Parameter Sensitivity

To simulate �LGD values representing different degrees of estimation uncertainty, five differ-

ent values are used for σ in (6.2). The chosen values range from 0.05 to 0.45, with increments

of 0.1. q is kept constant at 0.2. The P̂D values are simulated in a similar way, where five

different values of n represent varying degrees of estimation uncertainty. For each of the five

σ values there are simulated N different �LGD values, and N different P̂D values are simu-

lated for each of the five n values. These five values for n are chosen so that the five different

series of P̂D values have the same relative standard deviations as the corresponding five dif-

ferent series of �LGD values . This is achieved by selecting n values that satisfy the following

equation:

√
Var

(
P̂D

)
PD

=
√

1−PD

nPD
=σ�LGD rel =⇒ n = 1−PD(

σ�LGD rel

)2 PD
,

whereσ�LGD rel is the relative standard deviation of a �LGD value series, and PD is the expected

value of P̂D . Figure 6.1 shows how the distributions of the simulated values depends on σ

and n.
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Figure 6.1: The distributions of 10000 simulated LGD and PD values, with expected values
of respectively 0.45 and 0.01. The LGD values shown are simulated with three lowest σ val-
ues, and the PD values are simulated with the three n values that result in the same relative
standard deviations.

The simulated �LGD and P̂D values are used pairwise to calculate the corresponding capi-

tal requirement values. The loan maturity is chosen to one year, so that the adjustment factor

M A equals one. The correlation factor is chosen to be calculated as for loans to firms with

annual revenue above 50 million euros, given by (3.9). These choices result in the capital
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requirement function (3.8) taking the following form

K̂ = �LGD ·Φ


Φ−1(P̂D)+Φ−1(0,999) ·

√
0.24−0.12

(
1−e−50·P̂D

1−e−50

)
√

0.76−0.12
(

1−e−50·P̂D

1−e−50

)
− P̂D · �LGD . (6.3)

The corresponding version of the expected shortfall capital requirement function (4.6) takes

the form

K̂ =
�LGD

1−q
·Φ2

Φ−1(P̂D),−Φ−1(q);

√√√√0.24−0.12

(
1−e−50·P̂D

1−e−50

)− P̂D · �LGD . (6.4)

The capital requirements (6.3) and (6.4) are calculated for all 25 possible combinations of σ

and n. At last, the relative standard deviation of the calculated capital requirements for each

of these combinations are computed:

σK rel =

√√√√∑N
i=1

(
Ki −K

)2

N −1

/
K .

Since (6.3) and (6.4) are proportional to �LGD , it is not interesting to vary the expected value

of �LGD , as it will only result in a linear scaling of the capital requirement’s variation. The

expected value of the simulated �LGD values is set to 0.45 for all the different σ values. To

achieve this, for each differentσ value in (6.2), we must calculate a µwhich gives this desired

expectation value. However, several different expectation values will be used for the P̂D sim-

ulations, to see how this impacts the resulting standard deviations of the calculated capital

requirements.

6.4 Results

Figure 6.2 shows the relative standard deviation of the simulated capital requirement for

99.9 % value at risk, for different expectation values for PD. For each of the different expec-

tation values, there are 25 different values for the standard deviation of the capital require-

ment, which corresponds to different combinations of the five levels of uncertainty for both

the PD and LGD simulations. As one would expect, the capital requirement’s uncertainty

increases with increasing parameter uncertainty. What we are interested in, is which of the

two parameters’ uncertainty that affects the capital requirement the most.
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Figure 6.2: Relative standard deviation of the 99.9 % VaR capital requirement (6.3), given the
relative standard deviation for PD and LGD. Calculated for six different expectation values
of PD, with the expected value of LGD equal to 0.45. Using N = 10000 simulations for each
calculation.

We see from Figure 6.2 that the uncertainty of the capital requirement is heavily influ-

enced by the expected value of the simulated PD values, especially when the standard devia-

tion of the simulated PD values are at a high level. When the expected probability of default is

close to 0.3, the capital requirement uncertainty is almost only influenced by the uncertainty

of the simulated LGD values. The uncertainty of the PD values plays a greater role when the

expectation of PD is either small or above 0.4. But even for E [PD] = 0.0005 the LGD uncer-

tainty is most influential, as we see that the rightmost column is a slightly darker red than

the upper row. However, when the expected value of the probability of default exceeds 0.7,

the PD uncertainty is extremely influential, and the standard deviation of the capital require-

ment increases significantly. This can be seen in Figure 6.3, where the expected value of the

simulated PD values are 0.8. Note that the colors in this figure correspond to larger relative

standard deviations than in Figure 6.2.

Looking at (6.3) it is clear that e−50·P̂D is the part of the capital requirement function that



40 CHAPTER 6. PARAMETER SENSITIVITY

E[PD]= 0.8

0.03

0.08

0.13

0.19

0.22

0.03 0.08 0.13 0.18 0.23
Rel. SD LGD

R
el

. S
D

 P
D

0.2
0.4
0.6
0.8

Rel. SD K

Figure 6.3: Relative standard deviation of 99.9 % VaR capital requirement (6.3), given the
relative standard deviation for PD and LGD. Calculated for E [PD] = 0.8 and E [LGD] = 0.45,
using N = 10000 simulations.

explains the influence of the PD values’ uncertainty when the expectation of PD is small.

For expectation values of PD close to zero, this part of the function is sensitive to very small

changes in the PD value. This sensitivity gradually becomes smaller for larger PD values, and

for PD values larger than 0.1 this part of the function will remain approximately constant.

The function partΦ−1(P̂D) is particularly sensitive when the expected value of PD is close to

zero or one.

The major impact on the capital requirement’s uncertainty for large expectation values

of PD is due to the last term in (6.3). For large PD values, the value of the last term becomes

large enough so that its variation affects the variation of the whole function.

When the same simulation method was carried out using expected shortfall, the confi-

dence level was chosen to 99.742 %, as it was shown in Chapter 5 that this confidence level

results in the capital requirement closest to the 99.9 % VaR. For large expected values of PD,

there were virtually no difference in the capital requirement’s uncertainty between the ES

and VaR approach. For smaller expected values of PD the ES approach resulted in reduced

uncertainty, as shown in Figure 6.4. We see that the relative reduction is largest when the

LGD uncertainty is low and the PD uncertainty is high. This reduction is however only a few

percent, so there is not that much of a difference between the two approaches regarding the

parameter sensitivity.
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Figure 6.4: Percentage reduction in the relative standard deviation of the capital requirement
by switching from 99.9 % VaR (6.3) to 99.742 % ES (6.4), given the relative standard deviation
for PD and LGD. Calculated for three different expectation values of PD, with the expected
value of LGD equal to 0.45. Using N = 10000 simulations for each calculation.

Because the relative reduction of the capital requirement’s relative standard deviation is

largest for the combination of the lowest LGD uncertainty and the highest PD uncertainty,

we decide to calculate the reduction for this case using different confidence levels for the

expected shortfall. Figure 6.5 shows the results for confidence levels ranging from 99.4 % to

99.9 %. We see that the relative uncertainty reduction is largest for the combination of high

confidence levels and low PDs. The combination of large PDs and smaller confidence levels

also stands out. We see that switching to ES also increases the uncertainty in a few cases,

especially for large PD values at the 99.9 % confidence level.

As both the VaR version (6.3) and the ES version (6.4) of the capital requirement function

are based on the same assumptions and models, the only distinction between the two ver-

sions is the risk measure. The results in this section thus show how a credit model’s parame-

ter sensitivity can depend on the chosen risk measure. In Chapter 5 we saw from Figure 5.3

that the 99.742 % ES version resulted in a higher capital charge than the 99.9 % VaR version

for PD values below 0.21, with considerable increasing relative difference for PD values be-

low 0.01. Figure 6.4 shows that the lowest PD values also cause the most notable difference

between the VaR and ES version when it comes to the relative standard deviation of the cap-

ital requirement. This is of course no coincidence. As the difference between the ES and

VaR version increases for the small PD values, the ES version will result in a smaller change

in capital charge than the VaR version for the same change in these PD values. The ES ver-

sion thus makes the capital charge depend on these values in a more stable manner, thereby

reducing the relative standard deviation.
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Figure 6.5: Percentage reduction in the capital requirement’s relative standard deviation by
switching from 99.9 % VaR to ES with different confidence levels. The results are shown for
different expectation values for the probability of default. The relative standard deviation of
the simulated PD and LGD values is set constant to 23 % and 3 % respectively. The expected
value of LGD is equal to 0.45. Using N = 10000 simulations for each calculation.

There could be both advantages and disadvantages with a capital requirement function

that is less sensitive to the PD parameter in the lowest end of the scale. On the plus side,

one could argue that this to some degree reduces the banks’ incentive to estimate artificially

low PD values. At the same time this might be viewed as counterproductive, since the fun-

damental idea behind the IRB approach is a more risk sensitive capital charge. In case of a

change of risk measure from VaR to ES, one would probably also make changes to the model

itself. To really benefit from a change to the more tail risk sensitive ES, one could assume a

more heavy-tailed loss distribution.
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Chapter 7

Loss Distributions

In this chapter we will examine how value at risk and expected shortfall depend on the tail of

the loss distribution. Using parameter values from the data set mentioned in Chapter 5, we

will simulate loss realizations by assuming different loss distributions. The simulated loss

values are used to create VaR and ES estimates for different confidence levels. Both the level

and the uncertainty of these estimates are compared. It is also tested how the results depend

on the number of simulations.

7.1 Simulation

As mentioned in Chapter 3, the Basel Committee’s capital requirement function calculates

the probability of default conditional on the systematic risk factor X using Vasicek’s adapta-

tion of the Merton model (3.5):

PD(X ) =Φ
(
Φ−1(PD)−X

p
Rp

1−R

)
, (7.1)

whereΦ is the cumulative distribution function of the standard normal distribution and R is

the asset correlation expressing the borrowers exposure to the systematic risk factor X .

We simulate conditional PD values by using simulated X values in (7.1). The PD and R

values used in this calculation are obtained from the data set. For each simulated X value,

the conditional PD is calculated for the data set’s 109045 loans. We want to simulate loss dis-

tributions with different tail weights. This is achieved by simulating the X values by drawing

from different probability distributions. Figure 7.1 shows the probability density function

of the distributions that will be used to simulate the X values. The standard normal distri-
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bution is used as a baseline. The Cauchy distribution is chosen as it provides different tails

weights by changing the scale parameter. The scale parameters 0.5, 1, 1.5, 2 and 2.5 are used.
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Figure 7.1: Probability density function for the Cauchy distribution with five different scale
parameters ranging from 0.5 to 2.5. The probability density function of the standard normal
distribution is also included, with dotted lines.

The conditional probabilities of default for the Cauchy distribution is calculated using a

modified version of (7.1):

PD(X ) = FC

(
F−1

C (PD)−X
p

Rp
1−R

)
,

where FC is the cumulative distribution function of the Cauchy(0,1) distribution.

To simulate losses, loan j is considered defaulted if a uniformly distributed random num-

ber U j ∈ [0,1] is smaller than or equal to the simulated conditional PD value. For the de-

faulted loans, the conditional PDs are multiplied with the associated LGD and E AD values

from the data set to obtain the money amount lost:

L(X ) =
J∑

j=1
1{PD j (X )≥U j } ·LGD j ·E AD j , (7.2)
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where 1{} is the indicator function and J = 109045.

The simulation of loss as shown in (7.2) is then repeated N times, so that the N different

loss values constitute a representation of the assumed loss distribution. Following Yamai and

Yoshiba [37] we take the VaR estimator at confidence level α as the (N · (α−1)+1)th largest

loss value, and the ES estimator as the mean of the (N · (α−1)+1) largest loss values.

We simulate M sets of N different loss values, to obtain better estimates for VaR and ES,

namely the means of the two sets of M different estimators. This way we can also study the

standard deviations of the two final estimates. The whole procedure is carried out for five

different confidence levels.

The size of the data set makes this process quite time consuming for big values of N and

M . The simulation code is written in R [38]. Multicore computer processing was enabled to

speed up the process, using the packages foreach, parallel and doParallel.

7.2 Results

Figure 7.2 shows three different simulated loss distributions, each consisting of N loss values

simulated using (7.2). The systematic risk factor X has been drawn from, respectively, the

Normal(0,1), the Cauchy(0,1) and the Cauchy(0,2.5) probability distributions. We see that

the Cauchy distributed risk factors result in distributions with much heavier tails than for

the normal distributed risk factor. For the Cauchy distributed risk factors, the scale param-

eter does not seem to have a big impact on the tail length. The bigger scale parameter does

however result in a noticeably heavier tail. Figure 7.3 shows the means and relative stan-

dard deviations of M = 100 VaR and ES estimates produced using the simulation method

described above, in addition to the percentage difference between the corresponding results

for ES and VaR. Each estimate is calculated using N = 5000 simulated loss values, and is

calculated at five different confidence levels for each of the six loss distributions.

As one would expect, we see from Figure 7.3 that the VaR and ES estimates are most

dependent on the confidence level for the most heavy-tailed loss distributions. This applies

especially to the ES estimates, as they are affected by the whole tail regardless of confidence

level. The gap between the VaR and ES values is decreasing for higher confidence levels,

as this causes VaR to take into account a greater part of the distribution function. Since an

increase in scale parameter for the Cauchy distribution results in a noticeably heavier tail,
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Figure 7.2: Simulated loss distributions given different probability distributions for the sys-
tematic risk factor. From the top: Standard normal distribution, Cauchy distribution with
scale parameter 1 and scale parameter 2.5. All three distributions consist of N = 5000 simu-
lated loss values. Two different y-axis are used to make the unlikely tail events more visible.

but not a longer tail, the difference between the two risk measures is actually decreasing

when increasing the scale parameter. Note that the largest scale parameters used do result

in loss distributions that are probably more heavy-tailed than what one would realistically

expect.

When it comes to the estimates’ relative standard deviation, the results are more varying.

Only the standard normal loss distribution leads to increasing relative SD for higher confi-

dence levels. This is also the only loss distribution that results in the ES estimates having

the highest relative SD for all five confidence levels. This implies that the losses beyond the

VaR quantile level varies more than the quantile level itself, meaning that the ES estimates

require a larger sample size to ensure the same level of accuracy as the VaR estimates. This is

not the case where we have negative values in Figure 7.3c, as this means the VaR estimate has

the highest relative SD. This is the case for all the Cauchy loss distributions when the confi-

dence level is 99 % or higher. The reason being that these loss distributions are so long-tailed
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that the largest simulated losses do not vary much between each simulation set.

The most notable result from Figure 7.3 is that the difference between value at risk and

expected shortfall is highly dependent on the assumed loss distribution. As mentioned in

Chapter 5, the closest equivalent to the 99.9 % VaR is a 99.742 % ES. For the 99 % VaR, the

closest equivalent is 97.465 %. Thus, it does not make sense to compare the mean and rela-

tive standard deviation of the 99.9 % VaR with the corresponding numbers for the 99.9 % ES,

and so on. Considering this, ES has the lowest relative SD also for the standard normal loss

distribution.

VaR Mean (billion NOK) Relative SD

Dist\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
Normal(0,1) 7.150 8.844 11.266 14.528 17.367 0.020 0.025 0.038 0.046 0.083
Cauchy(0,0.5) 3.407 4.232 9.969 49.370 87.391 0.010 0.047 0.161 0.203 0.168
Cauchy(0,1) 4.216 7.916 28.724 78.021 111.764 0.033 0.094 0.192 0.138 0.071
Cauchy(0,1.5) 5.703 12.699 47.093 95.243 116.444 0.061 0.123 0.150 0.100 0.029
Cauchy(0,2) 7.627 20.165 59.256 104.599 118.500 0.069 0.162 0.108 0.079 0.010
Cauchy(0,2.5) 9.804 28.666 68.016 111.612 119.038 0.067 0.132 0.077 0.051 0.004

(a) Value at Risk

ES Mean (billion NOK) Relative SD

Dist\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
Normal(0,1) 9.764 11.619 14.163 17.504 20.256 0.024 0.030 0.041 0.066 0.092
Cauchy(0,0.5) 12.017 20.228 40.833 80.496 105.006 0.103 0.120 0.136 0.115 0.093
Cauchy(0,1) 20.506 35.335 66.161 102.409 116.822 0.092 0.100 0.096 0.070 0.026
Cauchy(0,1.5) 28.172 47.888 80.862 110.684 118.442 0.081 0.085 0.070 0.040 0.009
Cauchy(0,2) 34.977 57.992 89.703 115.064 119.077 0.084 0.083 0.061 0.025 0.003
Cauchy(0,2.5) 41.637 66.734 96.889 117.241 119.248 0.068 0.065 0.050 0.017 0.001

(b) Expected Shortfall

100 · (ES-VaR)/VaR Mean Relative SD

Dist\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
Normal(0,1) 36.6 31.4 25.7 20.5 16.6 19.5 21.7 9.8 43.4 11.4
Cauchy(0,0.5) 252.7 378.0 309.6 63.0 20.2 987.2 154.9 -15.9 -43.2 -44.8
Cauchy(0,1) 386.3 346.4 130.3 31.3 4.5 176.8 6.9 -50.1 -49.7 -63.7
Cauchy(0,1.5) 394.0 277.1 71.7 16.2 1.7 34.1 -30.8 -53.7 -60.3 -68.7
Cauchy(0,2) 358.6 187.6 51.4 10.0 0.5 21.9 -48.5 -43.2 -68.7 -67.1
Cauchy(0,2.5) 324.7 132.8 42.4 5.0 0.2 1.1 -51.1 -34.5 -67.9 -69.5

(c) Percentage difference

Figure 7.3: The mean and relative standard deviation of M = 100 VaR and ES estimates, for
different confidence levels (CL). Each estimate is calculated using N = 5000 simulated loss
values, simulated using the probability distribution indicated in the leftmost column for the
systematic risk factor. The percentage difference between the corresponding ES and VaR
results is also shown.

Figure 7.4 shows how the number of simulations, N , affects the relative standard devia-

tions of the VaR and ES estimates. As one would expect, the relative SD decreases when you
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increase the number of simulations. The size of this reduction appears to be about the same

for both the VaR and ES estimates, even if the levels differ. The relative reduction thus being

largest for the estimates with the smallest relative SD. However, do still keep in mind that ES

must have a smaller confidence level than VaR if the two risk measures are to result in the

same capital charge.

Figure 7.5 is a graphic representation of a selection of the results in Figure 7.4, for the

standard normal distribution and the Cauchy(0,2.5) distribution. We compare the VaR and

ES estimates for confidence levels that result in approximately the same capital charge. We

see that the 99.7 % and 97.5 % ES estimates for the normal distribution have slightly smaller

relative SD for all four N values, compared respectively to the 99.9 % and 99 % VaR. The

decrease in relative SD as a function of N appears to be linear for both VaR and ES, and

the corresponding VaR and ES lines have about the same slope. However, the 99.9 % VaR

estimate for N = 5000 deviates from this. For the more heavy-tailed Cauchy distribution, the

decrease rate in relative SD is slowing down for large N , especially for the ES estimates. The

99.9 % VaR estimates are approaching zero for large N , thereby reaching lower relative SD

than the 99.7 % ES estimates.

To summarize, this chapter shows that the difference between value at risk and expected

shortfall is highly dependent on the assumed loss distribution. It also confirms that the rela-

tive standard deviations of both VaR and ES estimates decrease when the number of simula-

tions increase, and that the rate of this decrease is roughly the same for both risk measures.
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VaR Normal(0,1) Cauchy(0,0.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.041 0.056 0.070 0.088 0.117 0.020 0.105 0.397 0.532 0.430
2500 0.030 0.038 0.053 0.067 0.090 0.014 0.060 0.320 0.321 0.255
5000 0.020 0.025 0.038 0.046 0.083 0.010 0.047 0.161 0.203 0.168
10000 0.013 0.019 0.025 0.037 0.043 0.007 0.038 0.120 0.168 0.125

Cauchy(0,1) Cauchy(0,1.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.078 0.259 0.396 0.292 0.228 0.133 0.376 0.373 0.243 0.170
2500 0.051 0.164 0.327 0.173 0.149 0.083 0.170 0.192 0.139 0.084
5000 0.033 0.094 0.192 0.138 0.071 0.061 0.123 0.150 0.100 0.029
10000 0.025 0.062 0.139 0.104 0.036 0.039 0.088 0.109 0.077 0.019

Cauchy(0,2) Cauchy(0,2.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.147 0.274 0.238 0.193 0.117 0.176 0.288 0.192 0.130 0.089
2500 0.100 0.201 0.144 0.113 0.058 0.098 0.172 0.120 0.077 0.029
5000 0.069 0.162 0.108 0.079 0.010 0.067 0.132 0.077 0.051 0.004
10000 0.046 0.104 0.055 0.057 0.005 0.059 0.100 0.055 0.035 0.001

(a) Value at Risk

ES Normal(0,1) Cauchy(0,0.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.049 0.061 0.081 0.112 0.140 0.266 0.310 0.348 0.325 0.293
2500 0.037 0.046 0.062 0.088 0.116 0.172 0.200 0.219 0.190 0.162
5000 0.024 0.030 0.041 0.066 0.092 0.103 0.120 0.136 0.115 0.093
10000 0.017 0.022 0.029 0.041 0.057 0.089 0.104 0.114 0.087 0.060

Cauchy(0,1) Cauchy(0,1.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.204 0.218 0.205 0.166 0.138 0.215 0.223 0.192 0.137 0.108
2500 0.152 0.164 0.147 0.109 0.075 0.104 0.110 0.089 0.069 0.037
5000 0.092 0.100 0.096 0.070 0.026 0.081 0.085 0.070 0.040 0.009
10000 0.066 0.072 0.069 0.047 0.012 0.059 0.064 0.052 0.032 0.005

Cauchy(0,2) Cauchy(0,2.5)

N\CL 0.95 0.975 0.99 0.997 0.999 0.95 0.975 0.99 0.997 0.999
1000 0.157 0.161 0.133 0.093 0.061 0.156 0.145 0.110 0.071 0.049
2500 0.111 0.112 0.088 0.053 0.024 0.092 0.087 0.065 0.032 0.013
5000 0.084 0.083 0.061 0.025 0.003 0.068 0.065 0.050 0.017 0.001
10000 0.055 0.056 0.043 0.019 0.002 0.052 0.047 0.037 0.008 0.000

(b) Expected Shortfall

Figure 7.4: The relative standard deviations of M = 100 VaR and ES estimates, for different
confidence levels (CL) and different number of simulated loss values, N , used for each esti-
mate. The loss values are simulated using the probability distribution indicated in the table
headers for the systematic risk factor.
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Figure 7.5: Relative standard deviation of the VaR (dotted lines) and ES (solid lines) estimates,
for N simulations. 99.9 % and 99 % confidence levels are used for VaR, while 99.7 % and
97.5 % confidence levels are used for ES. The estimates are calculated from simulated loss
values, from both a standard normal distribution and a Cauchy(0,2.5) distribution.
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Chapter 8

Backtesting

Backtesting is a method used for model validation, where statistical procedures are used to

compare actual losses to former risk measure forecasts. In this chapter we will compare

backtesting for value at risk and expected shortfall, with respect to both theoretical proper-

ties and practical implementation. Lastly, we backtest both the VaR and ES version of the

Basel Committee’s capital requirement function, using the simulated loss values from Chap-

ter 7 as loss realizations.

8.1 Elicitability

Gneiting [39] proved in 2010 that expected shortfall is not elicitable, as opposed to value at

risk. This discovery led many to erroneously conclude that ES would not be backtestable,

see for instance [40]. Elicitability is defined as follows [41]:

Definition 5 (Elicitability). A statistic φ(Y ) of a random variable Y is said to be elicitable if it

minimizes the expected value of a scoring function S:

φ(Y ) = argmin
x

E [S(x,Y )].

If you want to compare different forecasting procedures, this is typically done by using a

scoring function (error measure), such as the absolute error or the squared error, which is

averaged over forecast cases. Thus, the performance criterion takes the form [39]

S̄ = 1

n

n∑
i=1

S(xi , yi ), (8.1)
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where xi are point forecasts, the yi are the corresponding realizations and S is the scoring

function. Most scoring functions are negatively oriented, that is, the smaller, the better.

Thus, we favour the forecasting procedure that minimizes (8.1).

In simple terms, Definition 5 says that a statistic is elicitable if there exists a scoring

function S that makes this statistic the best forecasting procedure according to (8.1). The

mean and the median represent popular examples, minimizing the mean square and abso-

lute error, respectively. The q th quantile, hence VaR, is elicitable with the scoring function

S(x, y) = (1{x≥y} −q)(x − y), where 1{} is the indicator function [41].

8.2 Backtesting Value at Risk

A popular backtesting method for value at risk is based on the following violation process:

It (q) = 1{L(t )>VaRq (L(t ))}, (8.2)

where 1{} is the indicator function and t denotes the time period.

Christoffersen [42] shows that VaR forecasts are valid if and only if the violation process

It (q) satisfies the unconditional coverage hypothesis: E [It (q)] = 1−q in addition to It (q) and

Is(q) being independent for s 6= q . Under these two conditions, the violations are indepen-

dent and identically distributed Bernoulli random variables with success probability 1− q .

Hence, the number of violations has a Binomial distribution.

To test the unconditional coverage hypothesis, we compare the fraction of violations to

the VaR confidence level. Let T1 denote the number of violations (It (q) = 1), let T0 denote the

number of cases where the VaR is not exceeded by the loss (It (q) = 0) and let T denote the

number of observations (T1 +T0). For a violation fraction T1/T , the hypothesis T1/T = 1−q

can be tested using a likelihood ratio (LR) test:

LR =−2ln[L (q)/L (T1/T )] =−2ln
[
qT0 (1−q)T1 /(T0/T )T0 (T1/T )T1

]
=−2ln

[(
q

T0/T

)T0
(

1−q

T1/T

)T1
]

. (8.3)

As the number of observations goes to infinity, (8.3) will be distributed as a χ2 with one de-

gree of freedom. The null hypothesis is less likely to be true for larger LR values [42].
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8.3 Backtesting Expected Shortfall

It turns out that even if ES is not elicitable, it is still ’2nd order’ elicitable in the following

sense [43]:

Definition 6 (Conditional Elicitability). A statistic φ(Y ) of a random variable Y is called con-

ditionally elicitable if there exist two statistics π̃(Y ) and π(Y ) such that

φ(Y ) =π (Y , π̃(Y )) ,

where π̃(Y ) is elicitable and π(Y ) is such that π(Y ,c) is elicitable for all c ∈R.

Conditional elicitability is a helpful concept for the forecasting of risk measures which

are not elicitable. Due to the elicitability of π̃(Y ) we can first forecast π̃(Y ) and then, in a

second step, regard this result as fixed and forecast π(Y ,c) due to the elicitability of π(Y ).

With regard to backtesting and forecast comparison, conditional elicitability offers a way of

splitting up a forecast method into two component methods and separately backtesting and

comparing their forecast performances [43]. This applies to ES, as it is simply a mean of

quantiles, and both the quantiles and the mean are elicitable.

Tasche et al. [43] proposes a backtesting method for ES that is as simple as the VaR viola-

tion method, based on the following approximation:

ESq (L) = 1

1−q

∫ 1

u=q
VaRu(L)du

≈ 1

4

[
VaRq (L)+VaR0.75q+0.25(L)+VaR0.5q+0.5(L)+VaR0.25q+0.75(L)

]
. (8.4)

If the four different VaR values in (8.4) are successfully backtested, then also the estimate of

ESq (L) can be considered reliable subject to careful manual inspection of the observations

exceeding VaR0.25q+0.75(L). These tail observations must at any rate be manually inspected

in order to separate data outliers from genuine fair tail observations.

Acerbi and Szekely [41] have recently argued that elicitability has to do with model selec-

tion and not with model testing, and is therefore irrelevant for the choice of a regulatory risk

standard. They show that expected shortfall is directly backtestable, by introducing three

model-free, nonparametric backtesting methods for ES. These tests generally require more

storage of information than typical VaR tests, but introduce no conceptual limitations or

computational difficulties of any sort. Compared to these test procedures, the simple back-
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testing method based on (8.4) has the advantage of not relying on Monte Carlo simulation

for the statistical test [43].

Backtesting of VaR tests the validity of a given model by comparing the frequency of the

loss beyond estimated VaR with the confidence level of VaR. On the other hand, the back-

testing using expected shortfall must compare the average of realized losses beyond the VaR

level with the estimated expected shortfall. This requires more data than the VaR backtest-

ing, since the loss beyond the VaR level is infrequent, thus the average of them is hard to

estimate accurately [29]. The backtesting approach based on (8.4) is attractive not only for

its simplicity but also because it illustrates this fact. For market risk, the Basel Committee

uses a similar backtesting approach for a 97.5 % ES, which is based on testing VaR violations

for the 97.5 % and 99 % confidence levels [9].

8.4 Results

Table 8.1 shows results for the VaR violation process (8.2) for 100000 simulated normal loss

values as loss realizations, using the simulation method from Chapter 7. This backtesting

method is conducted for four different confidence levels, which are chosen from (8.4) as the

four VaR confidence levels that approximates a 99.7 % expected shortfall.

C L T0/T LR p
0.997 0.99694 0.120 0.723
0.99775 0.99774 0.004 0.947
0.9985 0.9984 0.653 0.419
0.99925 0.99916 1.040 0.308

Table 8.1: Proportion of simulated loss values not exceeding the Basel Committee’s Capital
Requirement, the value of the corresponding likelihood ratio test and the test’s p-value. This
is calculated for the four different VaR confidence levels (C L) that approximates a 99.7 %
expected shortfall. 100000 simulated loss values is used for each confidence level.

We see from Table 8.1 that the proportion T0/T of simulated loss values not exceeding

the Basel Committee’s Capital Requirement (3.8) is approximately equal to the confidence

levels. The values for the likelihood ratio test are all low, resulting in high p-values. The

null hypothesis E [It (q)] = 1−q is thus accepted for all four VaR confidence levels, at all rea-

sonable confidence levels for the LR test. These results indicate that also the estimate of

ES0.997(L) calculated by (4.6) could be considered reliable.
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Note that the results in Table 8.1 are produced by comparing simulated loss values to the

very model they are simulated from. Naturally, the backtesting method thus concludes that

the model we are trying to validate is reliable. Of course, backtesting with actual loss data

will in most cases result in significantly smaller p-values. In practise, backtesting of credit

risk models can also be quite problematic. The infrequent nature of default events makes it

difficult to collect enough relevant data, especially for the tail of the loss distribution. The

long time horizons further complicate the data collection. The purpose of this theoretical

backtesting example is merely to illustrate how model validation works, and to show that

backtesting ES does not have to be more complicated than backtesting VaR.
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Chapter 9

Conclusion

The Basel Committee’s minimum capital requirement function for banks’ credit risk is based

on a risk measure called Value at Risk (VaR). This thesis performs a statistical and economic

analysis of the consequences of replacing VaR with another risk measure called Expected

Shortfall (ES), a switch that has already been set in motion for market risk. This is accom-

plished by using both theoretical simulations and real data from a Norwegian savings bank

group’s corporate portfolio.

By correctly calibrating the ES confidence level, it will produce approximately the same

capital requirement for credit risk as with VaR, where the largest difference occurs for loans

with low default probability. A switch from VaR to ES will involve some clear conceptual im-

provements, primarily a better ability to accurately capture tail risk. ES is also sub-additive

in general, unlike VaR, so that it always reflects the positive effect of diversification. There

has been some uncertainty regarding the backtesting abilities of ES, but the thesis shows

that backtesting of ES does not have to be more complicated than backtesting VaR. The pa-

rameter sensitivity and estimation stability of ES have also been examined, and appear to be

similar as for VaR, if not slightly less sensitive and more stable.

This thesis shows that the difference between ES and VaR is highly dependent on the as-

sumed loss distribution. Since ES considers the entire loss distribution, it is more suitable for

credit risk models that assume more heavy-tailed loss distributions than the normal distri-

bution. For such distributions, this thesis shows that the estimation stability of ES is clearly

better than for VaR.

The advantages of switching to ES must be weighed against costs and challenges associ-

ated with a transition to this risk measure, especially concerning practical implementation.
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However, as this risk measure switch has already been set in motion for market risk, banks

are going to have practical experience with ES before this switch potentially also happens

for credit risk. In addition, ES is after all based on VaR, so we are talking about adjusting the

existing system, not creating a new system from scratch. Taking all this into consideration,

the conclusion is that the findings of this thesis support a switch from VaR to ES for credit

risk modelling.
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Appendix A

Acronyms

ASRF Asymptotic Single Risk Factor

CL Confidence Level

EAD Exposure At Default

EBA European Banking Authority

EL Expected Loss

ES Expected Shortfall

IRB Internal Ratings-Based

LGD Loss Given Default

LR Likelihood Ratio

PD Probability of Default

PDF Probability Density Function

RWA Risk-Weighted Assets

TCE Tail Conditional Expectation

UL Unexpected Loss

VaR Value at Risk
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