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Summary

In the present study the influence of standardized safety factors in large and heavy structures,
where the major loading arises from self-weight of the structure itself, is considered. For this
purpose, a reliability analysis of the Hardanger Bridge is performed. The loading is assumed
to originate from the self-weight of the bridge deck, hangers and main cables only, i.e. all
other loads are neglected.

The reliability analysis is performed by comparing axial loading and resistance capacity in the
main cables and hangers. The loading is calibrated by interpolation between a simulated
influence surface and estimated values of the self-weight and its location. Calibrations and
estimations of the axial loading are performed by taking advantage of a data simulation tools
and programs, such as MATLAB and ABAQUS. The resistance capacities are estimated from
obtained test data performed by the manufacturer, along with tabulated values in codes and
manuals.

Notice, simplifications and assumptions are made in this thesis in order to estimate input
variables in the analysis and to be able to perform the analysis itself. It is assumed that
uncertainties related to these simplifications and assumptions are negligible.

Use of ordinary numerical simulations for the reliability analysis is not possible due to low
failure probability. Hence, an Enhanced Monte Carlo method (developed at NTNU) is
applied. The method consists of parameterization of the limit state function M = R — S, thus
true probability of failure is found by extrapolation of the obtained failure probability data
from the parameterized limit state function. Results from the method give values for the
reliability index g in the range of {12.5 — 14.6}, corresponding values for the probability of
failure per year is equal to {1 - 107*8 — 5 - 10736}. However, it is important to notice the
inherent uncertainties in this results, due to the lack of available information in the
extrapolation work, along with uncertainties related to the portion of subjective assumptions
and simplifications. More simulations n should be performed in order to reduce the amount of
uncertainties. Despite the uncertainties, the results show significant higher safety level than
required in codes.

In order to strengthen the results, code calibration of partial safety factors corresponding to
axial loading and resistance capacity are carried out. The calibration process is performed by
using an iterative second-moment reliability method, along with a load and resistance factor
design format (LRFD). The calibration process was performed by taking advantage of the
useful data tools MATLAB and Excel. Results for the partial safety factors calibration are
compared to standardized safety factors from codes. By inserting standardized safety factors,
value for the reliability index g = 12.64 is obtained. This gives a probability of failure equal
topr = 6.76- 10737, which is in agreement with the result from Enhanced Monte Carlo
method.






Sammendrag

| denne masteroppgaven er det sett pa virkningen av standardiserte sikkerhetsfaktorer i
konstruksjoner hvor den stgrste delen av belastningen kommer fra egenvekten til
konstruksjonen selv. Til dette formal er det gjennomfart en palitelighetsanalyse av
Hardangerbrua hvor all annen belastning enn egenvekten er neglisjert.

Palitelighetsanalysen er gjennomfart ved & sammenligne aksial belastning og kapasitet i
hoved- og hengerkablene. Belastningen som pafares konstruksjonen som falger av
egenvekten er beregnet ved & modellere en «innflytelses flate», som estimerer aksial
belastning i kablene ut ifra paferte krefter og deres posisjon. De pafarte kreftene, som farer til
belastning i kablene, er antatt & stamme kun fra egenvekten til brodekket og kablene.
Datasimulering og programmering er benyttet til 4 estimere de aksiale belastningene.
Kapasitetene til kablene er beregnet ut ifra tester og malinger gjort hos fabrikanten, samt
standardiserte verdier gitt i Eurokode og handbgker.

Det er ogsa grunn til & nevne at forenklinger og subjektive antagelser er gjort i arbeidet med &
estimere verdiene til variablene, samt i gjennomfgringen av analysen. Det er dog antatt at
disse antagelsene vil gi holdbare resultater.

Pa grunn av lave sviktsannsynligheter var det ikke mulig & gjennomfare analysen ved bruk av
vanlige numeriske metoder. Det ble derfor benyttet en forbedret Monte Carlo metode, utviklet
ved NTNU. Metoden bestar i & parametrisere grensetilstandsfunksjonen M = R — S, noe som
gjer det mulig finne sviktsannsynligheter ved & bruke feerre simulering. Sann
sviktsannsynlighet finnes ved ekstrapolering av fremstilte sviktsannsynligheter fra den
parametriserte grensetilstandsfunksjonen. Metoden gir resultater for palitelighetsindeksen i
intervallet {12.5 — 14.6}. Dette tilsvarer sviktsannsynlighet per ar pa {1-107*8 — 5- 10736}
Det er viktig a veere klar over at det er stor usikkerhet knyttet til disse verdiene, bade pa grunn
av usikkerhet i ekstrapoleringsarbeidet, men ogsa som falger av mange subjektive antagelser.
Flere simuleringer n burde benyttes for & redusere usikkerheten. Pa tross av stor usikkerhet,
indikerer starrelsen pa resultatene et mye hgyere sikkerhetsnivaet enn hva som kreves i
Eurokode.

For & styrke resultatene er det ogsa gjennomfart en kalibrering av sikkerhetsfaktorer knyttet til
pafert belastning og kapasitet. Kalibreringen er gjennomfart ved a benytte et last og resistans
faktor utformings format (LRFD) og en «Second-Moment» palitelighetsmetode for estimering
av sviktsannsynlighet. Resultatene fra kalibreringen av sikkerhetsfaktorene er deretter
sammenlignet med standardiserte sikkerhetsfaktorer fra Eurokode. Ved innsetting av
standardiserte sikkerhetsfaktorer beregnes palitelighetsindeksen til 12.64, dette tilsvarer en
sviktsannsynlighet per &r pa 6.76 - 10737, Resultatene fra kalibreringen samsvarer bra med
resultatene fra Monte Carlo simuleringen.

| alle fasene av prosjektet, det vil si parameterestimering av inn og ut data, samt Monte Carlo
simuleringen i seg selv, er verktayet MATLAB benyttet. Til kalibrering av sikkerhetsfaktorer
er Excel benyttet. | tillegg er dataprogrammet ABAQUS benyttet til a simulere
Hardangerbroen og estimere «innflytelses flaten.
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1 Introduction

1.1 Background

The main content in this master thesis relay on prediction of failure probability and partial
safety factor estimation of large bridges, in order to study reliability of large civil engineering
structures. Technology is constantly changing and environmental requirements rise
increasingly. This causes considerations about how to improve the utilization of the resources.

Large and heavy constructions with a high self-weight relative to other loads tend to have a
low variation in the loading. The reason is that the variation in self-weight is extreme low
compared to other loads, as will be discussed in chapter 3 (Self-weight estimation).

Nowadays, structural calculations are based on standards and code calibrations, this involve
use of standardized partial safety factors. The partial safety factors are included in
calculations to handle the uncertainties related to the variability in loads and resistances. Since
the codes are supposed to be a general tool, i.e. used in all kinds of structural problems,
standardized partial safety factors may therefore become too conservative, consequently cost
economic increases and environmental inefficiency occurs.

From the facts stated above following hypothesis can be stated and will be covered in this
master thesis:

“In structures where the loading only (or nearly only) consist of self-weight, partial
safety factors from codes and standards will lead to oversizing and inefficiency, due to
low variance in the self-weight. ”

The comprehensive and well-known E39 project consist of engineering and construction of
several long and heavy bridges in order to achieve a ferry free road from Trondheim to
Kristiansand. Structural codes of today may be limiting and lead to unnecessary large costs, as
follows from the hypothesis stated above. Hence, the scope of this thesis is of high importance
in current and upcoming structural projects. For more information about the project, see [1].

1.2 Objective of work

Operational modal analysis of the Hardanger Bridge exposed to wind loads and reliability
analysis of the Hardanger Bridge with respect to flutter instability, have been considered in
previous studies, see [2], [3]. This thesis takes another point of view, and investigate the
effectiveness of design calculation from codes by providing reliability analysis of the
Hardanger Bridge exposed to self-weight loading. Hence, estimation of safety factors for
loading and the resistance capacity with respect to the bearing system are carried out and
compared with standardized partial safety factors.



Ch. 1 Introduction

The analysis is divided into four main steps. Firstly, estimation of the self-weight related to
the construction. Secondly, transformation of the self-weight loading into axial loading in the
cables of the suspension bridge is performed. Thirdly, estimation of the resistance capacities
with respect to the considered components is done. In the last part of the analysis,
comparisons between the previous estimates are done in order to provide results for the
reliability and effect of code based design calculations.

In the analysis, two modelling approaches are used to investigate the effect of self-weight
loading and the use of standards and codes. The first method (Second-Moment) provides
results and comparisons between calibrated partial safety factors and standardized safety
factors, along with results for the reliability index and the probability of failure. The second
method (numerical simulation) provides results for the reliability of the structure.

The thesis is organized into seven chapters, which will be described briefly in the following
section.

1.2.1 Organization of work

Chapter 2 consists of important theory behind structural reliability analysis and code
calibration. This theory is necessary for the further understanding of the aspect.

Chapter 3 consists of self-weight estimation of the Hardanger Bridge, along with important
assumptions and simplifications in the self-weight estimation.

Chapter 4 consists of resistance capacity estimation based on values from codes, standards,
manuals and available strength data. Important assumptions and simplifications of the
capacity estimation is included in this chapter.

Chapter 5 consists of strategies and procedures for the reliability analysis implementation and
code calibration process.

Chapter 6 consists of results and discussion from the previous chapters. The chapter is
subdivided into several sections, where each section present results from the above chapters.
Figures and plots from the analysis are included in this part of the thesis.

Chapter 7 consists of conclusion from the analysis performed in this thesis. In addition,
suggestions for further work of this subject are posted.

1.3 Hardanger Bridge

In this subsection, a brief introduction of the Hardanger Bridge is presented, along with
valuable information regarding the dimensions and costs of the project and engineering phase.

The Hardanger Bridge crosses the Eidfjord from Bu to Vallavik, and is the longest suspension
bridge in Norway. The bridge has a main span of 1310 m and a total length of 1380 m. It
takes place at the west coast of Norway and has the purpose of decreasing the running time by

2
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replacing the ferry between Bruravik and Brimnes, which has been a bottleneck at the
distance Odda-Voss. Figure 1.1 shows the location of the bridge.

Bugijelet

Kilometer

Figure 1.1: Map of the location bridge [4].

As can be seen from the map in figure 1.1, the bridge connects the north and south part of the
west coast and makes it possible to drive from Voss to Odda without any need for ferry.

The bridge has two pylons, which consist of two concrete columns and three transverse
girders called rigel. The steel box girder (part of the bridge deck) is a closed steel frame, with
geometry as shown in figure 1.2. The steel box girder was produced in 12 m lengths, which
were welded together in 60 m sections. The sections were installed by uplifting from a boat
and then fastened with the cables.
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Figure 1.2: Cross-section of the steel box girder [4].

The main cables consist of 19 bundles of 528 wires, each wire with a diameter equal to
5,3 mm. The 19 cable bundles are compacted together in a way that gives a circular cross-
section of the main cables. The main cables were installed by cable spinning from Bu to
Vallavik.

130 hangers connect the steel box girder to the main cables. All the hangers are installed in
the main span, with 65 hangers on each side of the steel box girder. The hangers are a “closed
cable” consisting of 7 layers of wire and has a diameter of 70 mm. Notice, due to the volume
of air in the hangers, effective cross-section area is obtained to be 3200 mm?, see appendix A.

Figure 1.3: Complete picture of the entire bridge with pylons, cables and steel box girder [4].
The construction of the bridge was carried out in three stages:

1. Work of excavating and blasting the anchorage system
4
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2. Installing the pylons with transverse girders (concrete work)
3. Installing the main cables, hanger cables and steel box girder (steel work)

Total economic cost of the bridge was 1350 mill. NOK, where cables and steel box girder
were the main cost. In addition, cost for supply routes, tunnels and client costs makes the
project a total cost of 2300 mill. NOK.
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2 Statistics and structural reliability

This chapter includes important statistics and probability theory, which are fundamental in
structural reliability analysis. In the first sections of this chapter a brief introduction of the
fundamentals of probability theory take place. Secondly, theory behind statistical analysis are
presented, where main statistical concepts and formulas to determine the values of statistical
variables and parameters are explained and derived. Different distribution functions are also
included in this review. The latter part of the chapter contains different methods to estimate
the reliability of a structure. The reliability analysis performed in this thesis rely on the
methods and statistics presented in this chapter.

Examples from structural problems are used in order to give a better understanding of the
different methods for calculation of structural reliability.

2.1 Fundamentals of probability theory

Probability theory is of high importance in order to perform a reliability analysis. Probability
theory is a wide and extensive theme, which include a lot of axiom, terminology and theorem.

Important concepts for the understanding of probability theory:

- Event, which is the case considered.

- Outcome space, which is the possible outcome of an event.

- Sample space , which describe the area in where all the possible outcome of the
events will occur.

The probability concept can be divided into three different parts: classical probability,
frequency and subjective probability.

e Classical probability: the number of cases where the event occurs divided by the
sample space, see (2.1).

P(4) = # of outcome for event A 2.1)

# of possible outcome

e Frequency: the relative frequency in which an event will occur, given many
independent recurrences under the same condition.

e Subjective probability: related to the degree of belief or confidence of an event to
occur. This is often used in statements, where the chance of the event to occur is
quantified by a subjective degree of belief.

It is important to know the differences between probability and frequency. Probability
describe the inherent chance of an event to occur. Frequency probability count the amount of
occurrence events given many repetitions with under the same condition(s).

Fundamental axioms of the probability theory according to axioms of Kolmogoroff (1933) [6]:

7
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1. The probability of event A, denoted P(A), is dimensionless and has an outcome
between 0 and 1.

2. The probability of the sample space P (L) is equal to 1, since this is the space in where
all the possible outcome will occur.

3. If the events E; do not possess any common elements, i.e. the events are mutually
exclusive (disjoint), then the probability of the union of the events is equal to the sum
of the probabilities of the individual events. (2.2) shows this axiom.

P(ﬁ Ei) = Q":’P(O E;) =zn:P(Ei) (2.2)
! =1 i=1

i=

Two other important concepts, used in following calculations, are the degree of independence
and conditional probability. The first concept states the dependency between events, i.e. the
fact that the occurrence of one event influences the occurrence of another event. The latter
concept is related to the influence of known information. What is the probability of an event
to occur given that another event already has occurred or not? This is called conditional
probability P(E;|E,) and is shown in (2.3).

P(E,|E,) = P (2.3)

For more extensive elaboration of probability rules, concepts and theories, see [6], [7], [8].

2.2 Fundamentals of statistical analysis

Usually the probability of an event is not a quantified value. This is the truth in most
structural probability issues.

When throwing a dice, the probability for each outcome in the sample space is equal to 1/6.
This is an inherent probability, because the dice has six sides and every side is as much likely
to occur as another. In structural probability calculations different kind of variables need to be
quantified. These variables are not always known and need to be estimated by statistical
analysis.

Estimation of the variables needed in the probability calculations, is usually done by tests of
specimens or by data from observations. A set of values from tests or observations are
collected in a sample. Each sample is then investigated statistically, to make an assumption of
the behaviour of the variable. The static may be interpreted to predict values or parameters
needed in further calculations.

2.2.1 Probability density function
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Assume a sample of values for the variable X obtained from a strength test of steel specimens.
The values from the test can be collected in a diagram, which shows the values of the
variables on the horizontal axis, and the number of occurrence for each values on the vertical
axis. The diagram shows the probability of occurrence for each value of the variable.

If the variable can take all values within a given outcome space, the diagram can be plotted as
a continuously curve. The curve is described by the probability density function (pdf),
denoted f(x). Where, x represents a given random value of the variable, while the curve
represents the probability of the value to occur.

Probabiltity density function
0.4 T T T T T T T T

0.35—

03—

0.25—

)
S
T
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Figure 2.1: Example of a probability density function for normal distributed variable with
zero mean and unit variance.

The probability density function predict the probability for all possible outcomes,
consequently P(X = x) = fx(x).

When the sample space is infinite, the probability for an outcome need to be considered as the
probability of X takes a value within a given interval Ax. Using mathematic expressions, the
probability in such case can be estimated as:

b
Pla<X<b)= ffx(x)dx (2.4)

The probability of X taking values on the entire sample space is equal to the probability of the
entire sample space:

Pl <X <) = [ G dr=1 (25)

It is important to note that the density function is not equal for all kinds of variables. There
exist several kinds of distributions; a couple of them are explained in following sections.
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2.2.2 Cumulative distribution function

The area under the probability density function curve is equal to the sample space. By
integrating this area, the cumulative distribution function (cdf) is found.

The cumulative distribution function, F(x), gives the probability of X taking a value less than
a certain number x, consequently P(X < x) = Fx(x). The capital letter X is an index for a
given variable, which can take a value on the entire sample space.

Cumulative distribution function
1
T T T T T T

09—

08—

0.7

06—

04—

03—

02—

01—

Figure 2.2: Example of a cumulative distribution function for normal distributed variable
with zero mean value and unit variance.

Mathematically the expression for the cumulative distribution function is given as:

Fy(x) = P(X < %) = f £ (6) dt (2.6)

Where t is a dummy variable.

2.2.3 Distribution parameters

Random variables are usually estimated from the distribution functions and parameters.
Important parameters in estimation of random variables are:

- Mean
- Variance
- Coefficient of variation

Mean is the average value of a sample and is denoted . The general equation for calculating
the mean value is given in (2.7).

10
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oo}

px = EX1 = [ x- frGodx @27)
Where E[X] is the expected value of the random variable X.

Often distributions have its own separate equation for calculating the mean value. The mean
value is then found by using constants related to each distribution.

Values in a sample or a distribution often varies from the mean in one or more direction.
Variance is a measure of the scatter in the values and is denoted ¢2. (2.8) shows the general
formula for the variance.

o

0}% = VARIX] = f(xi — px)? - fx(x)dx (2.8)

— 00

The standard deviation is a measure of the amount of variation (deviation) in the sample
values. The standard deviation is found by taking the square root of the variance and is
denoted o.

In a random sample, where the distribution function is not known, one may use other methods
to calculate the parameters. The parameters are replaced by so-called moments. The first
moment is the arithmerical mean my, and is the middle value in the sample. The second
moment, which is a measure of the scatter in the sample, is called the variance sZ. Formulas
for the mean and the variance are given in (2.9) and (2.10), respectively.

1 n
my == Z %, (2.9)
L=
n
n
f=—0 Z(xi —my)? (2.10)
1=

Where n is the number of values in the sample.

This way of estimating parameters involves some uncertainties, because my and s2 are
unbiased estimators of uy and oy.

Another important parameter in statistical analysis is the coefficient of variation p. The
parameter is the ratio between the mean value and the variance for each variable. (2.11) and
(2.12) gives the formula for the parameter when the distribution function is well-known and
unknown, respectively.

Ox
py = = (2.11)
X Ux
_3x (2.12)
Ux My

11
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2.2.4 Jointly distributed random variables and correlation

Structural reliability calculations often consist of more than one variable. Values to calibrate
the variables, used in structural reliability analysis, are often collected in pairs. Example of
this could be estimation of the dimensions (X) and the dead load (Y) of a beam. Collection of
the dead load Y is dependent of the dimensions of the beam X, since the dead load Y is the
product of the volume times the self-weight of the beam. The big question is whether there
exists any interdependency between the two variables.

By plotting pair of values for the two variables (x;, y;) in a coordinate system, it is often
easier to see how the variables affect each other.

TY
F RN Fy y (x.¥) y
x 77777 7«
plot 2D Histogram

Figure 2.3: Plot of each pair of observations (x;, y;) as a point in the corresponding
coordinate system and an isometric representation of the respective 2D histogram [6].

A probability distribution function consisting of several variables X;, is called a joint
distribution function.

For an event consisting of two (or more) continuously random variables, the probabilities of
occurrence given values of the variables are described by the joint cumulative distribution
function:

Fxy(x,y) =P[X<x)N ¥ <y)] =0 (2.13)

“The joint (bivariate) density function fy y (x, y) represent the probability that X takes a value
between x and x + Ax and Y a value between y and y + Ay as Ax and Ay each approaches
zero.” [8]

fry(6,y) =P[(x <X <x+Ax)N(y <Y <y+Ay)] (2.14)

12



Ch. 2 Statistics and structural reliability

The joint density function for the two variables X and Y, consist of the marginal density
functions fx(x), fy (¥) and the conditional probability distribution between the variables

fX|Y(x|y)-
for6y) = oy &IY) - fr ) = frx 1% - fx(x)  (2.19)

If the two variables are independent, the joint density distribution is equal to:

fry (6 y) = fx () - fr () (2.16)

Figure 2.4 shows the joint, marginal and conditional probability density functions for the two
variables X and Y.

M

fy )
(marginal)

W
o

Ty &)
(conditional)

Figure 2.4: Joint, marginal and conditional probability density
functions [8].

To measure the mutual dependence between the variables, two parameters covariance and
correlation coefficient are used.

The general formula for the covariance, when the distribution is known, is shown in (2.17).

Cov(, V) = oy = [[ =) & = ) fy (e y)dady 217

An important observation is that the covariance does not have the same dimension as the
standard deviation. The covariance consists of the deviation between values and the mean
value, for both of the variables.

If fxy(x) is a n-dimensional density function of correlated variables X = [X;, X,, ..., X,,]. The
covariance of X can be written on matrix form, and is equal to:

13
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Var(X;) w. Cov(Xy,Xy)
Cy = : ! “ :1 " (2.18)
X

Cov(Xp, X1) ... Var(Xy)

The correlation coefficient is dimensionless and is the ratio between the covariance and the
product of the standard deviation for the variables:

= p = XY (2.19)
Pxy =P Oy - Oy

The correlation coefficient varies from -1 to 1. Where 1 is perfectly correlated and -1 is
perfectly negative correlated. Usually the value of correlation coefficient is somewhere
between these values. Figure 2.5 shows how the correlation coefficient affect the dependency
between the variables.

Cormrelation coefficient greater than zero Correlation coefficient less than zero Correlation coefficient approximately equal zero
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Figure 2.5: Plots for different values of the correlation coefficient.

It is important to note that even though the figure 2.5 only shows linear correlation,
correlation between two variables may also have non-linear behaviour.

If p is equal to zero the two variables do not depend on each other, they are uncorrelated.

pxy =0 o fyy(xy) = fx(x) fr(¥) (220

If the values of the variables are found from random samples with unknown properties, the
formulas for the covariance and the correlation coefficient is shown in (2.21) and (2.22).

n
1
Cov(X,Y) = sgy = —=" Z(x" —my) - (y; — my) (2.21)
i=1

14
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Sxy (2.22)

2.2.5 Regression

Regression analysis is a useful tool in estimation of the correlation between two variables and
makes it possible to express one variable as a function of another. From the diagram left in
figure 2.5 it is possible to make a regression line between the two variables X and Y, as shown
in figure 2.6.

Linear regression
14 T T

+  obtained data points
linear regression line

Y-values

| | | | | |
1 2 3 4 5 6 7 8 9 10
Kvalues

Figure 2.6: Linear regression line that best fit the obtained data point.

For every value of X it is possible to estimate the true value of Y, by using the formula:

Y=aX+[+e€ (2.23)

The stochastic variable €, represent the error in the model, is independent and has a constant
variance for all attempt, € ~ N(0, 0%). o and B are regression coefficients.

The true value of the regression coefficients a and [ are not possible to measure, they have to
be obtained from the dataset. This is done by minimizing the error e; between the true
regression line y = ax + S, and the estimate of the linear regression y = ax + b.

The regression coefficients a and b are then estimated by using the method of least square:
n n n
SSE=Y e =) (-9’ =y i—a—bxy? (22
i=1 i=1 i=1

Yica(x — X)y;
sa=y—-bx , b= E (2.25)
Y Z?=1(xi — Xx)?

15
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Where, X and y denote the mean value of the variable X and Y, respectively.

2.3 Normal distribution

Normal distribution is one of the most used and important distribution function and is defined
as follows:

__ 1 (5EE) (2.26)
fx(x) oy - o e
_ (=4 (2.27)
Fy(x) = o \/_ J dx

Normal probability density function is symmetric about the mean value at the horizontal axis.
The distribution could be transformed into a standard normal distribution with mean value
equal to zero and standard deviation equal to one. Such transformation is shown in the
following equation:

X~N@o) & Z= )% ~N(0,1) (2.28)

The cumulative distribution function for standard normal distribution is denoted ®(Z). Values
for standard normal probabilities are tabulated (see appendix B), hence is the transformation
into standard normal space of high importance. The transformation is the crucial point in the
Hasofer and Lind method (section 2.9.1).

The standard normal probability density function is symmetric about the horizontal axis.
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Probability density function

standard normal pdf
— normal pdf

Figure 2.7: Plot of normal (green) and standard normal (blue) probability density function.

When a parameter consists of a mix of variables with different distributions, it is valid to
assume that the distribution function for the parameter is normal distributed. This assumption
is valid due to the Central-Limit-Theorem according to Freeman and Benjamin and Cornell
[11], [12]. Therefore, the normal distribution is of high importance, both in this thesis and for
general reliability analysis.

2.4 Lognormal distribution

The lognormal distribution is similar to the normal distribution, except it never accepts
negative values.

In some cases, the needs for a distribution function which never reach negative values is
required, e.g. in calibration of resistance. The strength of a structure will never reach negative
values, hence gives the lognormal distribution a better estimation of the resistance than a
normal distribution.

The lognormal distribution is expressed as follows:

nx—=A.,
&mzzjﬁgféﬁcﬂ (229)
C( ) (2.30)
FX(x)_fZ-x-\/Zn e 2 dx

0
Where, ¢ and A are lognormal distribution parameters.
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2.5 Gumbel distribution

Gumbel distribution is the type | extreme value distribution. The distribution takes only the
largest extreme values, hence the upper tail of the distribution is the most interesting part of
the distribution. The distribution is skewed as follows of the tail.

In some cases, the need for a value which has a very little possibility of exceedance, is of
great importance. In structural reliability analysis the chance of a load to exceed the resistance
of a structure is investigated. Such studies need a large extreme value of the load to ensure the
loading not being underestimating, thus collapse of the structure.

The formulas for Gumbel distribution or extreme-value distribution are expressed in the
following equations:

fX(x) = a- e(—a(x—u)—e(_a(X—u))) (231)

FX (x) — e(—e(_a(X—u))) (232)

Where, a and u are Gumbel distribution parameters.

2.6 Characteristic and design values

Values for the different resistance and load variables can be found from the probability
distributions. The most common way to determine the values is to use the characteristic value
of the variable. The characteristic value is determined on behaviour of the distribution
parameters for the variables and safety aspects. (2.33) shows the formula for the characteristic
value of variable X.

X = Ux — Ky - 0x (2.33)

As the formula shows, the characteristic value consists of the two most important parameters
from the distribution function: mean value and standard deviation. In addition, the
characteristic value is affected by a factor Ky. Ky is estimated on behaviour of the variable
influence on the reliability.

Resistance variables prevent the structure to fail, hence need for a low enough characteristic
value to ensure satisfying safety is of high importance. To ensure satisfying safety,
underestimation of the characteristic values for the resistance variables are performed. This is
done by using a low fractile-value. For normal distributed resistance variables, NS 3490 (NS)
assume 5% fractile-value [10].

The 5% fractile-value means that in 95% of the cases, the variable value falls above this
limit. In other word, there are 5% chance that the value of the variable is lower than the
characteristic value.

18
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For normal distributed load variables, the same procedure as for the resistance variables is
used except that a 95% fractile-value is now assumed according to NS 3490 [10]. In load
cases it is important to satisfy a characteristic value with low probability of exceedance.

When the fractile-value p is clarified, the Ky factor is estimated from the inverse cumulative
distribution function for a standard normal distribution.

Ky = ®'(p) = Fy*(p) (2.34)

Design value

The most general form of checking a structure is to include some partial safety factors Y. The
partial safety factor takes into account the fact that there might be some uncertainties related
to the variables and that there is a 5% chance that the characteristic value is being exceeded.

Another important effect related to the partial safety factor, is the ability to adjust the
variables. The variables are increased or decreased by multiplied or divided by the partial
safety factor. When a characteristic value is divided or multiplied by a partial safety factor it
becomes a design value.

ry =% (2.35)
143
Sa = Vs Sk (2.36)

2.7 Structural reliability analysis

Structural Engineers’ main task is to construct structures within an acceptable safety level.
For this purpose, codes and standards have been developed to decide whether the structure is
on the safe side or not. Although the codes stats whether the structure is safe or not, it says
nothing about the probability of failure for the structure. To get an insight in the probability of
failure of a structure, structural reliability analysis is a well-applied tool.

2.7.1 Reliability, Risk and probability of failure

“Reliability is defined as the probability that an item or facility will perform its
intended function for a specific period of time, under defined conditions.” [6]

This is a broad definition of the reliability concept, which indicate that the reliability concept
is a useful tool in many areas. In a structural engineering context, the following statement
better explains the definition of the structural reliability concept:

“The probability that a structure will not attain each specified limit state (ultimate or
serviceability) during a specified reference period.” [7]
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The limit state is a failure mode deciding whether the structure is on the safe side or not,
further explained in following sections.

The reference period refers to the interval of time the structure is affected by the load or the
estimated lifetime of the structure.

The reliability of a structure is the complementary event of the probability of failure for a
structure, or stated in another way the probability of failure for a structure is the opposite of
the probability for a structure to maintain stable during loading. Hence, the expression for the
reliability of a structure becomes:

r=1-— pr (237)
Where, p; denotes the probability of failure for a structure.

Probability of failure

The chance for a structure to fail is called the probability of failure. The calculation of the
probability of failure is explained in the following sections and can be obtained by using
different methods.

(2.37) shows that the probability of failure is the complement of the reliability, i.e. the
probability of failure for a structure is equal to the probability of the total outcome

space Q minus the probability of the structure to remain stable during loading or throughout
the reference period.

Risk

Risk is a measure of the magnitude of hazard in connection with an event. The estimation of
risk is a function of the probability of failure and the extent of damage:

R = p;-E[D] (2.38)
Here, R represent the term risk, while p, and E[D] denotes the probability of failure and
expected damage related to the event, respectively.

The expected damage (expected costs), can be given as numbers of injured (dead) people per
event or in monetary units. Since the probability of failure is dimensionless, the term risk gets
the same unit as the expected damage. Another way of calculating risk is by using the
frequency of failure h; instead of the probability of failure p.

R = hs - E[D] (2.39)

An example of this could be injured (dead) people in car accidents per year. If the number of
accident on a specific road is equal to 10 per year and the expected numbers of injured (dead)
persons per accident is 3, the risk related to the road is equal to: R =

10 accidents per year - 3 injured = 30 injured per year.

In some cases, the calculation of risk is affected by some difficulties. For example, the
probability of failure for a structure is usually very small, typically in the order of
magnitude {10~7 — 10~2°}, while the expected damage related to the failure is extreme high.
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By using (2.38) this result in a “zero-times-infinite” (0 - o) calculation of risk. This means
that the risk may have any value between zero and infinite. In such cases, an impact
assessment of the measures is often necessary.

In order to satisfy the requirement of structural reliability, the structure is classified into
reliability classes. The classes depend on the consequences related to a failure and required
security level. Different classes make different demands about the dimensioning. This is
tabulated in codes and standards, see [10], [20]. This way, the risk (related to the structure) is
included in the structural calculations.

2.7.2 Structural reliability problems

Basic structural problem

Basic structural reliability problem consider one load variable S resisted by one resistance
variable R, both with known probability density functions fs( ) and fz( ). Resistance is the
structures ability to resist loading. Resistance can be bending capacity, stress capacity,
deflection criterions, shear strength, etc. External or internal forces inflict loading on the
structure. External forces can be loads cased from climatic conditions like snow, wind, rain or
other loads applied from the outside. Internal forces apply to loads caused from interactions
between different elements in the structure. For example, a roof beam supported by two
columns, here the forces are transferred from the beam to the two columns.

Failure of a structure may be determined from different criterion related to the reliability and
serviceability of the structure, such as deflection, fractures, safety aspects, requirements for
vibration, etc.

In the following, failure of the structure is assuming to occur when the load S exceed the
capacity R of the structure (element) considered. The probability of failure can be expressed
as:

pf=P(R<S)=P(R-S<0) (2.40)

Or in a more general way

pr = P[G(R,S) < 0] (2.41)
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Where, G( ) is the limit state function, which define the limit between the safe and failure
domain of the structure considered. In the safe domain, the structure maintain stable during
loading, while in the failure domain the structure exceeds the safety limit and is qualified as
damaged and unstable. Consequently, probability of failure is equal to the probability of limit
state violation.

G < 0 : Failure
5 domain D

Figure 2.8: Two random variable joint density function
frs(r,s), marginal density functions fz and fs and failure domain D

[8].

The probability of failure is equal to the integral of the joint density function (see sections
2.2.2 and 2.2.4) over the area where the load S exceed the resistance R, represented by the
hatched failure domain D in figure 2.8. Hence, following equation for the probability of
failure can be established:

pr = P(R —-S5< 0) = f ffR,S(T' 5) dr ds (242)

If R and S are independent, i.e. fz s(r,s) = fr(r) - fs(s), the probability of failure is equal to:

o S2r

pr=PR-5<0)= f f fo() - fo(s) drds ~ (243)

— 00 —00

provided x > t, and that the two variables R and S are independent, equation 2.43 can be
further derived by using the formula of cumulative distribution function (2.6).
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pr= | FaGO- G (2.44)
This integral is known as a convolution i_ntegral.

The best way of explaining the integral in (2.44), is to look at the failure condition of the
problem. The structure will fail if the load exceeds the resistance, hence will the probability of
structural failure be equal to the probability that the value of S exceeds the value of R.

Let x denote a given value of interest. If S is equal to x, then failure will occur if R is less than
the given value x. The probability that S is equal to x, is explained in section 2.2.1 and found
by using the probability density function. While the probability that R is less than a given
value x, is found by using the cumulative distribution function as mention in section 2.2.2.

P(S = x) = fs(x) (2.45)
P(R < x) = Fp(x) (2.46)

To find the total probability of failure, the product of the two probabilities need to be
evaluated along the entire outcome space. If the two functions are continuously, the
probability of failure is equal to the integral of the product over the total outcome space
[—o0, oo]. Illustrated in figure 2.9.

A Foixifein

10 l

fyix)

feix)=lim P {x £ § < x+Ax)
{r=+{1)

] o
_/ IL.Hﬂ..r =
PFR5xl A=x

Figure 2.9: Basic R-S problem: Fy - f representation [8].

An alternative expression for the convolution integral is by using the concept of
complementary events:

pr= [ 1= G fo) da (2.47)
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Which is simply :

“the sum of the failure probabilities over all the cases of resistance for which load
exceeds the resistance”. [8]

General structural problem

In many structural problems, this simplification of the problem is not adequate to use since it
may not be possible to reduce the system into a simple one-to-one random variable problem,
with one independent load S and one independent resistance R variable.

Resistance and load are often compound of more than one dependent variable. The bending
capacity Mg, may for instance be found by using material strength f,,, and section modulus
W. While the design moment Mg, could follow from a uniformly distributed load Q over the
length L. Both of the variables Mz, and Mg, depend on the dimensions of the structure, hence
a dependency between the variables exists. There may also be cases where the loading or the
resistance consist of more than one applied load or resistance component, e.g. the loading on a
structure consist of both dead and live load.

The need for a more generalized version of the probability of failure expression is present. For
this purpose, a definition of the basic variables related to the structure need to be performed.

Basic variables are fundamental variables, which define and characterize the behaviour and
safety of a structure, e.g. dimensions, densities, material strength, etc. It is convenient to
choose the basic variables so that they are independent, this is not always possible though.

When the basic variables are proposed, the simple R — S form of the limit state function can
be replaced by a generalized expression in terms of all the basic variables. Assume a vector of
all the basic variables involved in the problem X, the simple variables for resistance R and
load S expressed in terms of the basic variables may be established by the following
equations:

R = Gr(X) (2.48)
S = Gy(X) (2.49)

Since the basic variables may be dependent, the cumulative distribution function for the
variables R and S need to be obtained by a multiple integration over the relevant basic
variables.

Fo(r) = f f (O dx (2.50)

T

And similarly for the load variable.

The expression for the F; and Fg can be used in (2.44) and (2.47), respectively.
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A more convenient way of estimating the probability of failure is by generalize the limit state
function G(R, S). In order to do this, expression for the variables R and S from (2.48) and
(2.49) are used.

G(R,S) 3 G(Gr(X),Gs(X)) = G(X) (2.51)

Example of a general limit state function: G = f(Q, G, E, D, X,,,, ¢). Where, the random
variables X are divided into variables of loads and actions Q, permanent loads G, material
properties E, geometrical parameters D and model uncertainties X,,,. The variable c takes into
account the influence of constants in the limit state function.

With the limit state function expressed as G (X), the generalization of the expression for the
probability of failure becomes:

ps=P[G(X) < 0] = f f fr(x)dx (2.52)
G(X)<0
Where, the joint density function fx(x), becomes integrated over the space of limit state
violation G (X) < 0, as is equal to the failure domain D in figure 2.8.

If the basic variables are independent, the expression for the joint density function is equal to
the product of the marginal density function for all the variables, see (2.16).

If the basic variables are dependent, the complexity increases and the concept of conditional
probability needs to be included, see (2.15).

There are essentially three ways of solving the multi-dimensional integration in (2.52):

1. Direct integration: This is possible only for some few special cases.

2. Transformation of the integrand to establish remarkable properties to determine
(approximately) the probability of failure. So-called “First Order Second Moment”
methods.

3. Numerical integration: Simulate values to perform the integration required, such as the
Monte Carlo simulation.

In the following sections, the three methods are further explained and performed by analysing
structural problems.

2.8 Direct integration

For some special cases, the convolution integral (2.44) is possible to solve analytically. The
method introduce a new parameter called the reliability index (safety index). The concept of
reliability index g, was invented by the American Professor C. A. Cornell [13], hence the
method is also named the method of Basler/Cornell (Basler invented the method in notation of
Cornell). The index is a measure of the safety level for an element considered and has
subsequently been improved in different ways.
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The main concept of the method is to establish a random variable for the safety aspects with
known distribution parameters. The random variable M, called the safety margin, is assumed
to be normal distributed and is equal to the limit state function:

M =G(X) (2.53)

and can be seen in figure 2.10

p o, Hpg

Figure 2.10: Shows the problem with its variables R, S and M [6].

The reliability index g3, is the distance between the failure domain and the mean value of the
structure measured in standard deviations, as can be seen in the lower diagram in figure 2.10.
From this observation following formula for the reliability index can be derived:

_Hm (2.54)
B o
Where u,, and a,, are the mean values and standard deviation for the safety margin,

respectively. These distribution parameters can be calculated by using computational rules
and the distribution parameters for the basic variables.

Hm = Hr — HUs (2.55)

0% = 0% + 02 — 2prs00%

Where, pgs is the correlation coefficient for the two variables.

(2.56)

If the random variables are uncorrelated, i.e. pgs = 0, the variance for the safety margin is
equal to:

o = 0f + ¢ (2.57)
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From the reliability index 3, the probability of failure can be estimated by using the following
equation:

pr = O(=F) (2.58)
Where ®() is the standard normal distribution function, with zero mean and unit variance.
Values for the cumulative distribution function, for different input values of g, are tabulated
in appendix B. It is important to note that the probability of failure is obtained from the
standard normal distribution, hence the results will only be exactly for normally distributed
variables.

In the following, an example is performed in order to give a better understanding of the
procedure of the method.

2.8.1 Example 2.1

Consider a simple supported beam (shown in figure 2.11), applied by one single load variable
S resisted by one resistance variable R.

AN AN
- 4
L

Figure 2.11: Simple supported beam with length L, loaded by a concentrated load S.

The random variables R and S are normally distributed, with mean value and standard
deviation equal to:
R~N(10kNm,2.25kNm)

S~N(3kN, 1kN)

The structure fails if the bending moment from the load S exceeds the bending capacity R.
The applied bending moment can be estimated from following formula, see [10]:

S-L (2.59)

Mgq =
4
Where L is the length of the beam and is deterministic equal to 5 m.
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Consequently, following failure limit state equation can be established:

G:R_¥:0 (2.60)

The safety margin equals the limit state function, hence the safety margin equals:

Mopr_23 (2.61)
4
With distribution parameters equal to:

5- 5-3

Hm = Hr — 5 = 10 — —— = 6.25 kNm (2.62)
4 4

5-0 25

oy = o + (TS)2 =225 + ;- 1> =381 kNm (2.63)

From these distribution parameters, the safety index g is estimated, hence the probability of
failure is determined.

Uy  6.25
=—=—==320 & = ¢(—3.20)=7-10"* (264)
oy V3.81 Pr ( )

2.9 Second — Moment and Transformation Methods

The integration of (2.52) cannot be solved analytically except for some special cases. In order
to solve the integral, methods to simplify the integration process have developed. A dominant
and well-known method is described in the following section.

The method bypassing the integration of (2.52) by transforming the integrand fx(x) to a
multi-normal probability density function, and then preform reliability estimations in
accordance with the procedure stated in section 2.8.

The reliability estimation is carried out by combining the first two moments of each variable
i.e. mean value and standard deviation, hence the name Second-Moment method. This way of
calculating the reliability index provides only exact probability of failure if the random
variables are normal distributed. When the variables have other distribution, the procedure
only provide a nominal failure probability.

2.9.1 The method of Hasofer and Lind

The method of Hasofer and Lind is a state-of-the-art in reliability analysis, because of the
wide area of application.

28



Ch. 2 Statistics and structural reliability

The method relay on the work of Basler/Cornell, i.e. the reliability index estimation (section
2.8). The main difference is that the method of Hasofer and Lind transform the limit-state
function into a standard normal space before calculation of the reliability index. The
transformation process is shown in (2.28). By doing the transformation, the ability to solve
complex limit state functions are possible. The transformation is done by standardised the
variables in the limit state function. See [14], for a more extended version of the method.

An example is performed in order to illustrate the method.

2.9.2 Example 2.2

Again, consider the simple supported beam in figure 2.11.

Now, assume that the limit state function consists of only two random variables R and S:
G=R—S (2.65)

Where R is the resistance capacity and S is the applied loading, both measured in [kN].

The variables R and S are transformed into standardised variables U; and U,, by using the
following formulas:

R —
U1 = ‘uR b R = U1 * O'R + ‘uR (266)
OR
S —
U2 = - Hs - S = U2 * 0g + Ug (2-67)
S

The new variables U; and U, are standard normal distributed with mean value equal to zero
and standard deviation equal to one. The expression for the variables R and S are inserted into
the limit state function, which will lead to a limit state function consisting only of the standard
normal distributed variables U; and U,:

G=R-S
= (Uy - og + pug) — (Uy " 05 + ) (2.68)
= (up —us) + Uy - op — Uy " 05

The safety index 8 can now be obtained analytical or graphic.

Analytical estimation of g is done by using the method of Basler/Cornell, see (2.54), where
the moments of the safety margin is equal to:

v = (kg — s) + py, - Or — Uy, * s (2.69)

oM = \/(Uul - 0g)% + (oy, * 05)? (2.70)
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Since the two random variables are independent and normal distributed and the limit state
function is linear, no transformation is needed. Thus, the probability of failure can be
calculated from (2.58).

Graphic estimation of S is best illustrated by figure 2.12.

fU §u D uy //Q
O
7N v
\&: p : Pf
|
Iluz i
fuz(“z)

Figure 2.12: Shows plot of the marginal and bivariate pdf, along with limit state
function in standard normal space [6].

The limit state function is transformed into the standard normal space, represented with the
standardised variables U; and U,. The limit state equation G = 0 separates the failure domain
from the safety domain. The reliability index g is defined as the shortest way from origin to
the limit state equation G = 0. Least square sentences are a helpful tool in finding the safety
index .

The point at the limit state equation closest to the origin is called the design point. The
coordinates for the design point can be estimated from the reliability index and the sensitivity
index a for each normal distributed variables U;:

w =B a (2.71)
Where, the sensitivity index « is a measure of the contribution of each variable in the limit
state function and may be establish from following formula:

(2.72)

Notice, that the term ¢ in the formula represent the constant variable related to the variable i.
In example 2.1, ¢ = Z.
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In original coordinates, the design point is equal to:

x: = u;k *0; — Ui (273)

The method explained above is only valid for linear limit state functions, with independent,
normally distributed variables. For other limit-state functions, the method is just an
approximation. In the upcoming sections, an extended version of the Hasofer and Lind
method is presented.

2.9.3 Extensions of the Hasofer and Lind method

The extension of the Hasofer and Lind method includes the facts that a limit state function:

1. May contain more than two variables
2. May not be linear
3. May contain variables with any kind of distributions

More than two variables

When a limit state function contains more than two variables, it is generally written as:

n
G=ay+ Z a;* X; (2.74)
=1

Where, a, denotes the constant term, while a; re_present the factor multiplied with the random
variable X;. X; is a given basic variable with distribution parameters y; and o;.

The reliability index f and the failure of probability p are found by (2.54) and (2.58). Where
Uy and ay, are estimated from following equations:

n
Hm = Qo + Z ai * Hi (2.75)
i=1

(2.76)

Non-linear limit state function

For non-linear limit state functions, the concept of Taylor series and iteration are used. The
limit state function is approximate as a Taylor series.

n
oG
G ~G(x) +Z(xi ) gl b
1=
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n n
G aG
~ G(x;) — E xf'ﬁlﬁ‘ E Xi'ﬁl* (2.77)
L . l

=1 =1
Further simplification of the equation leads to:

n
G~ ag+ 2 a; * X; (2.78)
i=1

Where the terms a, and a; are expressed in the following equations:

n
a0 =6~ ) ap-x] (2.79)
i=1
G
96 (2.80)
U=y It

Approximation of this kind, using only the first order term of the Taylor series, is called the
First Order Reliability Method (FORM). Consequently, if approximation including the second
order term as well, the method is known as the Second Order Reliability Method (SORM).

The sensitivity factor a can be found by using the terms a; from the Taylor approximation and
the standard deviations of the variable i. The safety margin M = G:

a; - o;

a; = (2.81)

Om

The sensitivity factor a and the reliability index S determine the fractile-value for the
variable. Consequently, (together with the distribution parameters for the variable) design
point values for the variables can be estimated by the following formula:

*

X =y —ay B oy (2.82)

Notice, the sensitivity index is positive for load variables, while it is negative for resistance
variables.

After approximation of the non-linear limit state function, the iteration process in order to
obtain the optimal design point starts. First the design point X* or the starting point for the
iteration process is chosen. The mean or characteristic values of the variables are often used.

From the design point it is possible to calculate the mean value and standard deviation of the
safety margin, reliability index, sensitivity index, and hence a new design point from the
formulas mention above. The iteration process becomes as follows:

1. Determine design point (X™*). Starting point values in first iteration.
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2. Calculate the values of a, and a; by inserting values from step 1 into (2.79) and
(2.80).

Estimate u,, and a,, from (2.75) and (2.76)

Calculate g from estimates in step 3 and (2.54).

Calculate a; from (2.81) and previously estimates of the parameters g, o; and a;.
Calculate a new design point from (2.82).

o ok~ w

The iteration process goes on until the deviation between prior and posterior reliability index
B convergence against zero. When this is done the failure of probability is found from (2.58).

Non-normally distributed variables

Non-normally distributed variables are often entering in structural reliability analysis. There
are two main approaches for estimating the reliability index, when the variables are non-
normally distributed:

1. Tail approximation
2. Transformation into standard-normal space

The latter approach consists of a transformation of all variables into the standard normal
space. This transformation is mentioned earlier in this section (2.9.1 and 2.9.2). Such
transformation often results in complex non-linear limit state functions.

The tail approximation replaces the original distribution by an equivalent normal distribution
at the design point. To make the approximation valid, the equivalent normal density and
distribution function needs to be equal to the origin distribution functions at the design point.

Fx(x*) = Fg' (x*) (2.83)

frG) = £ () (2.:84)
The equivalent normal distribution parameters are obtained from the following formulas:

W) =x* —af (x) - o7 (Fy (x)) (2.85)

of (x7) = (@ (Fx(x)) (2.86)

1
fx(x7)

These normal distribution parameters are used in further calculation of the reliability index
and failure probability. Such calculations are performed by using equations as mentioned
previously in this section.

2.9.4 Example 2.3

Consider a beam loaded by a concentrated force P as shown in figure 2.13.
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Figure 2.13: Rigidly clamped beam loaded by concentrated load P.

The beam fails if the maximum deflection u,,,, from P exceeds the deflection failure
criterion [7]:

The maximum deflection of the beam can be found from following formula, see [10]:

_5PP (2.88)
Umax = EE
Where, P is the concentrated load, [ is the length of the span, E is the modulus of elasticity
and I is the relevant moment of inertia.

Assume that P, I and E are uncorrelated random variables with mean values and standard
deviations equal to:

P~Gumbel(4 kN,1kN)

kN kN
E~Normal(2-10"— ,0.5-10" —)

m m
I~Normal(10~*m*,0.2- 10~* m*)

The length of the beam is deterministic and equal to [ = 5m. By inserting the length into
(2.87) and (2.88), the limit state equation of the beam becomes:

G=EI—78.12P <0 (2.89)

The basic variables are then standardized by using Hasofer/Lind transformation as in example
2.2. This lead to following limit state function:

G =(10"%+0.2-107*U,)(2- 107 + 0.5 - 107U,) — 78.12(uY + sNUy) =0  (2.90)
Where the standard normal distributed variables U,, U, and U; represent the basic variables
I, E and P, respectively.

The safety margin equals the limit state function obtained in (2.90), hence:

M= (10"%+0.2-107*U,)(2- 107 + 0.5 - 107U,) — 78.12(uN + oMU,  (2.91)
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Distribution parameters of the safety margin, i.e. mean value and standard deviation, provides
values of the reliability index according to (2.54).

The basic variable P is Gumbel distributed, thus a transformation into a normal distributed
variable with mean value Y and standard deviation oY is needed. The parameters are found
by using the formula (2.85), (2.86) and value for the design point. Design point corresponding
to the Gumbel distribution is estimated by inverting the formula in (2.32):

Ug = Fp_l(FN(u3)) = FP_I(‘D(U3)) (2.92)

and inserting the design point value for the standard normal distributed variable u;.

96% and 4% fractile values are assumed to be the starting point for the standardized
variables. This corresponding to stating point values equal to u = +1.74 (negative value for
resistance variables, positive value for the load variable). From this starting point following
parameter values for the normal distributed variable P are obtained:

G -1
u§ = F;1(1.74) = 6.03
ol =1.71

Since the problem consist of a non-linear limit state function an iterative process, with steps
as stated in non-linear limit state function, it needs to be performed in order to estimate the
reliability index. Values from the iteration process is shown in figure 2.14.
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Iteration 1 2 3 4 5 5
u, -1,74 -1,88 -1,25 -0,81 -0,66 -0,61
Uy 1,74 2,71 -3,02 -3,13 -3,18 -3,20
Uz 1,74 1,11 1,03 0,85 0,73 0,67
P (uz) 0,96 0,87 0,85 0,80 0,77 0,75

u§ 6,03 5,07 4,95 4,73 4,58 4,52
Fy(uf) 0,96 0,87 0,35 0,80 0,77 0,75
Fi () 0,05 0,16 0,18 0,23 0,26 0,28

ol 1,71 1,35 1,31 1,23 1,17 1,15

ul 3,05 3,56 3,61 3,63 3,73 3,75

g 0,73 0,61 0,67 0,73 0,75 0,76

Tpp 0,21 0,18 0,20 0,22 0,23 0,23

B 3,49 3,43 3,34 3,33 3,32 3,32

ay -0,54 -0,36 -0,24 -0,20 -0,18 -0,18

s -0,78 -0,88 -0,94 -0,96 -0,96 -0,96

s 0,32 0,30 0,26 0,22 0,20 0,20

Figure 2.14: Excel script from the iterative calculation.

The values tend to converge against a solution after approximately 6 iterations, as can be seen
in figure 2.14. The reliability index becomes equal to approximately 3.32, which give a
probability of failure of:

B =332 > pr=0(—p) =45-10"* (2.94)
Further, values of the sensitivity index a; becomes:

Random variable Sensitivity factor «;
Moment of inertia, / —0.18
Modulus of elasticity, E —0.96
Concentrated load, P 0.20

Table 2.1: Estimated values for the sensitivity factors «;.

The values of the sensitivity factors indicate that modulus of elasticity has a significant
contribution of impact in the limit state function, while the relevant moment of inertia and the
concentrated load have less contribution in the limit state function, provided values for the
variables given in this example.

2.10 Numerical iteration

Numerical iteration may solve complex problems where more than two variables are involved
and/or dependency between the variables exists. Still there is some cons related to the
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numerical solution tool. Growth of round-off errors and excessive computation times when
the dimensions of the integration increases.

Since limit state functions tend to be more general than a linear function and that the variables
rarely are normal distributed, methods to deal with this problem are developed. Because of the
increase in dimensions causes increasing computational effort, numerical methods to deal
with large integration problems are developed. These methods are simulations or Monte Carlo
methods. In the following section, different Monte Carlo methods are explained.

2.10.1 Monte Carlo Methods

Monte Carlo methods are used in cases where the complexity makes the use of other methods
too difficult and time-consuming. By using a high number of samples, the accuracy may
increase as the estimation of failure of probability occurs.

The Monte Carlo method is based on measurements of the limit state violation, i.e. when

G (X < 0). In order to estimate the probability of failure, values for the basic variables are
generated and inserted into the limit state function. An index I is made to count for every
violation of the limit state function.

The probability of failure is found from the following equation.

#of failure 1 (2.95)
Pf = §of tests n '
of tests n
Where, n is the number of simulations conducted.

This way of estimating the probability of failure is called Crude Monte Carlo simulation and
is the most familiar of the Monte Carlo methods. The method strongly depends on the
computational effort of the computer programs in order to get accurate results (high number
of simulations). Because of this, extensions of the method have been developed in order to get
acceptable results with reduce computational effort.

Important sampling

Important sampling is a more efficient approach of the Monte Carlo method, which can bring
enormous gains by reducing the number of simulations needed for an acceptable result. The
essence of the method:

“... take draws from an alternative distribution whose support is concentrated in the
truncation region.”[15]

Principle is to drawn values from specific intervals that are more valuable than others are
(they give greater function values), which result in a more accurate result. A probability curve
p(x) may be established to indicate the intervals of greater impact. The principle is:

I = f x-f(x)dx = %-p(x)dx (2.96)

F

Where [ p(x)dx = 1.
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Confidence interval

Deviations of the obtained failure probability might occur, because of the inherent uncertainty
related to the simulation method. The variation in the results, however, decreases as the
number of simulations increases. In order to obtain result within acceptable limits confidence
intervals for the estimator p, are applied.

Confidence interval gives an upper and lower limit for the estimated parameter. An
approximated (1 — a) - 100% confidence interval for p, can be estimated from:

The limits C* are established from:
Ct=ps+ z%apf (2.98)
Where, za is a critical value in the standard normal distribution, values for the parameter is
2
tabulated in appendix B.

The standard deviation of the estimated probability of failure o, ; can be found from:

S /Pf(l_pf) (2.99)
pr n

The number of simulations n, needed in order to achieve acceptable results, might be obtained
by taking advantage of the concept coefficient of variation (2.11) and rewrite the formula
above:

__L-pr (2.100)

It is assumed that the mean value of the probability of failure is equal to the estimated
probability of failure, i.e. Hp, =Dy In almost every large and complex structures, probability

of failure is small enough to assume: 1 —p; =~ 1.

Consider a beam similar to figure 2.13. Assume that the estimated probability of failure is
approximately equal to p, =~ 1077, and the coefficient of variation is equal to pp, = 0.1.By

using the formula in (2.100), n ~ 10° simulations are needed in order to achieve acceptable
results of the standard deviation g, -

Generation of basic variables

The number generation described in this section is only valid for a single variable with known
probability distribution and distribution parameters.
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Values of the basic variable are generated by using a computer program with a random
number generator, e.g. MATLAB or Excel. The random number generator produce random
numbers n; between zero and one. Values for the variable are estimated by invert the
cumulative distribution function Fx (x) for the variable and make use of the produced random
number n;:

— -1 2.101
x; = Fx " (n;) ( )
Figure 2.15 shows this.
Cumulative distribution function
i
09 —
08— —
07— |
06— —|
_ F(r) = 0.50
= 0 1
04 —
03 —
02— —
01 —
n | . r=35425 |
250 300 350 400 450

Figure 2.15: Generation of random variables. The cdf fits the lognormal distributed variable
R of the example 2.4 in section 2.10.1

The distribution function related to the variable account for the characteristics about the
distribution, i.e. generated values for a normal distributed variable, with mean equal to zero,
tend to be around zero. The reason for this is that the cumulative distribution function decide
the outcome of the variable value. If the slope is steep at an interval [a, b] at the vertical axis,
all generated numbers within the interval will cause approximately the same values for the
variable. Figure 2.16 shows the variation in values from the same generated number for two
different distributions.
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Figure 2.16: Cdf for normal distributed variable X, with different variances (steep and gentle
slope).

2.10.2 Example 2.4

Once more, a simply supported beam with load effect S and resistance capacity R is
considered.

S
AN AN
S SIS
ltf ;
L

Figure 2.17: Simply supported beam with concentrated load S and length L.

Now assume that the resistance R is Log Normal distributed and the load effect S is Gumbel
distributed, with following distribution parameters:

R~Log N(5.87,0.03) [MPa]
S~Gumbel(100,10)[kN]
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The beam is assumed to fail if the moment from the applies load P exceeds the resistance
capacity, see [10]:

SL
G(R,S)=R-W <0 (2.102)
Where W is the section modulus and L is the length of the beam and is deterministic L = 5m.
Values for the variables R and S are generated by using the method stated above (section

2.10.1 generation of basic variables). The generalizations r and s are thus inserted in the limit
state function:

s;-L
G(r,s)=r-W — l4 (2.103)

This procedure is repeated 10° times. In 139 cases failure occur, hence the probability of
failure becomes:

139 - 2.104
Py =<5z = 139107 (2.104)

2.10.3 Enhanced Monte Carlo method

The method was presented by Naess et al. at Department of Mathematical Sciences, NTNU.

“The aim of this method is to reduce computational cost while maintaining the advantages of
crude MC simulation...” [17]

The main idea behind the method is to enable prediction of the probability of failure by
utilizing available results, i.e. making a function in order to predict the probability of failure.
A brief presentation of the method is presented in the this section.

Probability of failure is equal to the probability of limit state violation, p = P(M < 0). In

order to obtain the probability of failure, when large number of simulation is required, a
“reduced” limit state function is created:

M) =M — py(1=2) (2.105)
Where A is a scaling factor between zero and one. Consequently, the probability of failure for
the new limit state function is equal to:

psr(1) = P[M(2) < 0] (2.106)

As can be seen from (2.105), M(1) = M, hence p¢(1 # 1) > p,. This indicate that less
simulations n is needed in order to obtain failure probabilities for the reduced limit state
function, provided that 1 < 1.

Crude Monte Carlo method often requires large number of simulations n in order to achieve
acceptable results, when the probability of failure are approaching zero (small values). This
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makes the method time-consuming and comprehensive, hence Enhanced Monte Carlo method
is preferred used.

The probability of failure is assumed to behave as follows:

pr(1) = q - exp{—a(1 — b)‘} (2.107)

When 4 — 1, the probability of failure converge against the true solution. g, a, b, c are
unknown parameters, which can be estimated by using a number i € {1, ..., m} of known data
point for different values of 4, i.e. (4;, ps(4;)). The parameters are optimized by minimizing
the mean square error function on the log level, i.e. minimizing the sum of following function
for all data point m.

F(q,a,b,c) = z w; (log (pf (Ai)) —log(q) + (a(1; — b)) (2.108)

=1

w; is a weighting factor, which emphasis more reliable data point and prevents the
heteroscedasticity of the estimation problem at hand. In the following calculations, the
weighting factor is assumed to be calculated by following equation:

w; = (log C*(A) —log C~(A,))2 (2.109)

C*(A,) is the upper and lower limit related to the confidence interval for the estimator Dy
Formula for the confidence interval is given in (2.98).

As follows from the mean square error function, if ps(4;) = 0 the minimizing process will
stop. Thus, lower values of A need to be chosen. The minimization of the mean square error
function is performed with a Levenberg—Marquardt least squares optimization method
included in the MATLAB function Isgnonlin [18]. For a more extensive presentation of the
Enhanced Monte Carlo method, see [16].

2.10.5 Example 2.5

Assume a simply supported beam, as seen in figure 2.17, exposed to a concentrated
force S~N(50,5). The beam has a resistance capacity R~N(100,10) and a correlation
coefficient pgs € {0,0.3}.

In order to obtain the reliability index and the probability of failure of the beam, an analytical
solution as well as a Crude Monte Carlo simulation and an Enhanced Monte Carlo simulation
are performed.

Analytical solution
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Since the two random variables are normally distributed, an analytical solution of the
convolution integral in (2.44) is possible in order to obtain the probability of failure. The
calculation is straightforward according to the procedure stated in section 2.8. Result from the
calculation is given in table 2.2.

PRs 0 0.3
B 4.47 5.13
P 3.85-10-° 1.45-10~7

Table 2.2: Results for the reliability index and probability of failure from the analytical
solution.

The result shows that the probability of failure decrease with increasing positive correlation
between the variables. With other words positive correlation reduces the chance of load S
exceed the resistance R.

Crude Monte Carlo

Crude Monte Carlo simulation is performed according to section 2.10.1, by using a simple
MATLAB script. MATLAB possess a random number generation tool, which generate values
for the basic variables in the limit state function. 108 simulations are used and table 2.3 shows
the results.

Prs 0 0.3
B 448 5.09
Dy 3.75-107° 1.8-1077

Closy, +10.1% +46.2%

Table 2.3: Reliability index, probability of failure and 95% confidence intervals calculated
using n = 108 simulations.

The results from the Crude Monte Carlo simulations are consistent with the theoretical results,
but prs = 0.3 give some deviations in the confidence interval.

Enhanced Monte Carlo

Enhanced Monte Carlo simulation is preformed according to the procedure stated in section
2.10.3. 10% — 107 simulations are preformed in order to obtain result in accordance with
theoretical and Crude Monte Carlo simulation. Accuracy might have been improved by
increasing the number of simulations, but shows the advantages of computational effort
related to the method. Results from the simulation are shown in table 2.4.

PRs 0 0.3

B 4.47 5.15

Py 3.85-107° 1.31-1077
Clysos +99.8% > +100%
Ngim 10° 107

Table 2.4: Reliability index, probability of failure, 95% confidence interval calculated using
n = 10% and 107.

The result clearly shows that the method provide result within acceptable limits with a smaller
number of simulation than the Crude Monte Carlo simulation. When complex problems are
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considered, this is a valuable property in order to obtain acceptable result without spending
too much effort in computational work.

The confidence interval, however, are much larger for the Enhanced Monte Carlo Method
compared to the Crude Monte Carlo method. The reason for this is that the confidence
intervals for the Enhanced Monte Carlo is not centred around the probability of failure, it is
extrapolated in the same way as for the extrapolation curve. First confidence intervals for the
different values of 4;,i € {1, ..., m} are estimated in order to calculate the weighting

factor w; used in estimation of the parameters g, a, b, c. Then new confidence interval for the
obtained extrapolation curve F(q, a, b, c, 1) are estimated for calibration of new extrapolation
curves for the confidence intervals. Because of these repetitive procedures, values of the
confidence intervals often become greater than the ordinary confidence intervals related to
Crude Monte Carlo simulation.

pfiom NLLS (1) 1

pf from linreg
— pffrom shift Cl+
— pffrom shit G-
pf from NLLS Cl+ [
pffrom NLLS CI- []

Figure 2.18: The extrapolation curve of the enhanced method, when p = 0.3. Blue dots are
pr(A), black and red curves estimate failure probability and confidence limits, respectively.

2.11 Deriving partial safety factors

Structural reliability analysis involves many uncertainties and constraints. The safety factors
consider these uncertainties when deriving reliability index or dimensions. Partial safety
factors are denoted Y in reliability analysis, and is a tool to adjust the limit state function in a
wanted direction.

Partial safety factors are standardized in structural codes. The factors are derived from
investigations and calculation, to make the structures satisfy the requirements related to the
safety aspects. The partial safety factors are conservative, which may result in an ineffective
use of resources by overestimating the necessary resistance of the structures.
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The safety factors are included in the limit state function by using the design values of the
variables. Design value is mentioned in section 2.6. Using the limit state function in (2.65) as
an example, following limit state function can be obtained:

T

G=R-S§S - g=1"d—$d=y——sk-ys (2110)
R

The partial safety factors can be derived in different ways. The estimation of the factors often
depends on the method used in solving the reliability problem.

By using the method of Hasofer/Lind, the factors are estimated from the values related to the
design point x*. The design point is supposed to converge against the right solution, hence the
design value. This leads to following expressions for the partial safety factors:

Xq =X
Vs Xk =M —a; B o; (2.111)
=Mi—ai'ﬁ'0i
Vs —xk

The expression above is for load/action variables. For a resistance variable, the partial safety
factor is found by flipping the expression, i.e. yz = ys .

Sensitivity factors a; = +{0.7 — 1} are assumed recommended by The Nordic Committee on
Building Regulations (NKB, 1978) [9]. This, however, provides a 5% fractile value for the
resistance variable when f = {1.645 — 2.35}.

Another way of estimating the partial safety factors is by using a “safety level”. The “safety
level” is consistent with a given level of failure probability or more precisely a target
reliability index S,. Iteration process are needed in order to obtain estimates of § equal to £;.
The partial safety factors are continuously updated with new values to make the reliability
index B converges toward f;.

Values for the S, is stated in codes and standards, see [20].

Optimization algorithms may be used for this purpose.

2.12 Series and parallel systems

Structures are often simplified as systems or combination of systems, to make the reliability
calculations possible. A system is a pairing of several elements. An element is a part of the
entire construction, which is capable of existing as a single unit. To investigate the entire
system as a combination of several elements, the probability of failure for each element is
necessary to know. There are two types of system: series and parallel system.

Series system
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If the entire system fails if one element fails, the system is a series system. The probability of
failure for the entire system is equal to the probability of the union of elements in the system.
By using the law of de Morgan [7], the expression for the system probability of failure is
obtained from following equations:

Pr=P(E;UE,U--UE;U--UE))
=1-PENEN—NEN-E) (2.112)
=1-[I (1 —pp)
Where py. is the probability of failure for the element i, while capital Py is the probability of
failure for the entire system.

Notice, this expression is only valid if the elements are statistical independent.

If the elements are perfectly correlated, the probability of failure for the entire system is equal
to:

Parallel system

If the entire system fails when all the elements in the system have failed, the system is a
parallel system. When the elements are statistical independent, the probability of failure for
the entire system is equal to the intersection of the probability of failure for all elements.

n
Pr = P(E, N E, NN E;N-Ey) =ﬂpﬁ (2.114)
i=1

When the elements are perfectly correlated, the probability of failure for the entire system is
equal to:

Upper and lower bounds

From the above expressions for the system probability of failure, following upper and lower
bounds for series and parallel system are obtained, respectively:

n
) (2.116)

n
i=1

In practice, constructions are usually combination of several series and parallel systems.
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3 Self-weight estimation

All structures are exposed to some kinds of actions. Actions are “forces”, which affect the
structure in a way that causes internal or external effects, such as deformations, stresses,
material deterioration, etc. Forces arise from the surrounding environment and can be of
natural character: wind, snow, rain, earthquake, temperature, etc. or it can be associated with
human activities.

In structural calculations, it is more common to use the term load instead of action. The
reason for this is that action is a rather general concept, while the expression load is related to
structural concerns. Since this thesis is of structural affair, the term load is preferred.

This thesis will include estimations connected to structural components exposed to self-
weight loading. In order to obtain reliable data for the self-weight, simplifications of the
structures are made. A more detailed description of the simplification is presented latter in
this chapter.

3.1 Characterizing load

Loads can be categorized in many different ways. In structural context, the loads are often
divided into classes of durability:

e Permanent loads: loads that occur during the entire (or nearly entire) reference period.

e Variable loads: loads that variate with a high frequency in time.

e Accidental loads: loads that occur very rarely at time. (Earthquake, fire, hurricane,
etc.)

3.2 Self-weight

The self-weight of a structure is the weight of the structure itself and is characterized by the
following three statements:

e The probability of the load to occur at an arbitrary point-in-time is close or equal to
one.

e The uncertainties related to the magnitude of the load is negligible.

e The variability over time is negligible.

Since the variability over time is negligible, the self-weight is considered as being a
permanent load. Because of the small variation in magnitude and occurrence, the self-weight
can be estimated as a normal distributed load.

The self-weight of a given component (structure) is estimated from following equation [19]:
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- : (3.1)
G fvp gav

Where G, p and V is the self-weight (measured in force [N]), density and volume of the
component, respectively.

3.2.1 Uncertainties

Even though the variations of the magnitude of the load are negligible at one point of the
structure, uncertainties related to the self-weight over the entire structure (or several
structures) may arise. These uncertainties concern about following variations:

e Variation inside one component
e Variation between different components in the same structure
e Variation between different structures

A component is a part of the entire structure in this context, for example a floor in an office
building.

3.2.2 Density

The density of a component is found by doing investigations of the material in the component.

Material Mean value [KN/mq] Coefficient of variation
Steel 77 0.01
Concrete 25 0.03
Timber (pine) 5.1 0.1
Timber (spruce) 4.4 0.1

Table 3.1: Mean value and coefficient of variation for weight density [19].

Densities in different points within a component or structure might vary. The correlation
between two points in a structure or a component is in this thesis estimated from the following
formula [19]:

_(Ary? (3.2)

p(87) = po+ (1 = py) - (@)

Where p,, Ar and d is correlation between two points far away from each other (in the same
member), distance between the two points and correlation length, i.e. measure of the

correlation structure, respectively.

Due to the difficulties related to the estimation process of correlation within a component
(element), general formulas for the correlation are invented, as shown in (3.2). By using this
method of estimating the correlation between points within a component uncertainties arise.

Parameters, i.e. correlation between two points far away p, and correlation length d, in the
formula need to be assumed either from judgement or obtained data, e.g. from tests,
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investigation, codes and standards, etc. Hence, the results relay on the accuracy in the
judgements of the parameter estimations.

In addition, uncertainties arise as follows from the assumption of the general formula itself.
The correlation estimated from (3.2) is assumed to behave exponential, which may not be the
case in every considered component.

Correlation coefficient for density

0.98 — —

0.96 — —

0.92— —

Correlation coefficiant

09— —

0.88 — —

0.86 - —

0.84 ! |
0 50 100 150

distance between element

Figure 3.1: Curve for correlation coefficient for densities and dimensions for steel and
asphalt deck.

In absence of information related to the parameters following values for the correlation
between two points far away from each other p, and the correlation length d can be used:

Parameter Value
10 m (beam or column)
d 6 m (plate)
3 m (volume)
Po 0.85

Table 3.2: Values for the parameters in the correlation function (3.2) [19].

3.2.3 Volume

The volume of the component is determined from the dimensions. The mean values for the
volume are assumed to be equal to the nominal values of the dimensions, while the standard
deviations are a function of the values of the deviation in dimensions.

Material Mean value Standard deviation
Steel 0.01*Anom 0.04*Anom
Concrete (anom > 1000mm) 3mm 10 mm
Concrete (anom < 1000mm) 0.003*anom 4+0.006*anom

Table 3.3: Mean values and standard deviations for deviations of cross-section dimensions
from their nominal values [19].

49



Ch. 3 Self-weight estimation

A, om and a,,,, represent the nominal values of the cross-section area and dimensions,
respectively.

Deviation in dimensions at one point in the member might affect the dimensions in another.
Correlation between two points in a member can be calculated by using (3.2), according to
JCSS [19].

3.3 Self-weight estimation

Structural calculations of today are carried out in accordance with structural codes and
standards, supplemented by a National Annexes. The basis of calculations in codes and
standard should be able to fit every purpose of design calculations and still remain within
satisfactory safety limits. Because of the large size of application area, codes and standards
have to take into account the uncertainties related to the applied load, e.g. the size of surface
exposed to loading, load duration, variation in magnitude in load. For this purpose, different
load coefficients are invented and developed.

Deviations, however, in the magnitude of applied load may arise as follows discrepancies in
expected values or unforeseen events and circumstances. Due to this fact, a factor y is
invented to ensure a safety level within acceptable limits. The safety factor is related to the
loading case only, which lead to a partial safety factor for the loading ys, where the capital
letter S represent the loading case.

Partial safety factors for loading are determined to be 1.35, in the Norwegian Annex [20].
Consequently, following requirement for self-weight estimation based on structural codes is
present:

Wp =vs  Wen (3.3)

WD = 135WCh
Where, Wp and W, represent the design and characteristic self-weight, respectively. Design
values are used in every design calculation, except for a few special cases.

In the present work, self-weight estimation of the Hardanger Bridge is done in order to
conduct a reliability analysis of the construction. The estimation is carried out based on
formulas and values stated in this chapter, in addition to some simplification and
measurements from the basis of calculation paper for the structure, see appendix A.

3.4 Self-weight estimation of the Hardanger Bridge

Self-weight is the only load considered in this thesis, and it is assumed that the self-weight of
the Hardanger Bridge consist of the weight of the bridge deck, hangers and main cables only.
The reason for this assumption is to reduce the complexity of the problem. In addition, these

components constitute the major part of the self-weight loading of the structure, i.e. self-
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weight loading of the pylons is assumed to be carried by the pylon itself. Hence, the
simplification is assumed to give a high enough accuracy.

The self-weight of the main cables and hangers are applied to the components directly by
including gravity and densities of the components in the simulation of the bridge.

In order to obtain the self-weight of the bridge deck, a rectangular plate (1320 - 14.5 m?)
equal to the bridge deck is simulated. Figure 3.2 illustrate this.

Element nr:

Figure 3.2: Simulated mesh of the bridge deck. Yellow numbers indicate element numbers.
Red arrows indicate self-weight of element and location. Black numbers indicate dimensions.

This plate is meshed into 264 elements, where each element (10 - 7.25 m?) gives a force
contribution to the self-weight by the formula:

Fgi =pi gV (34)
Where V; and p; is the volume and density of the element, respectively.

For simplicity, the bridge deck is assumed to consist of an asphalt deck on top of the steel box
girder. The steel box girder and the asphalt deck are simulated with a squared cross-section in
order to reduce the complexity. Both of these assumptions are considered to give small
enough uncertainties.

For the asphalt deck thickness is assumed to variate along the cross-section and length of the
bridge deck, while for the steel deck the cross-section is assumed to variate. Consequently,
estimation of volume V; is assumed to consist of the random variables thickness t and cross-
section A, for the asphalt and steel deck, respectively.

The self-weight estimation of the simulated bridge deck is performed by using a MATLAB
script. Embedded normal and multivariable distribution functions along with a random
number generator are used in order to obtain characteristic values for the density and
dimensions.

51



Ch. 3 Self-weight estimation

Both the density and dimension variables in the self-weight estimation are assumed to be
normal distributed. This assumption may cause some uncertainties, but due to the Central-
Limit-Theorem, it is qualified as good enough, according to Freeman and Benjamin and
Cornell [11], [12].

Density correlation

Correlation coefficients of the densities for the steel and asphalt deck are obtained from codes,
according to (3.2) [19]. Values for the far away correlation and correlation length are assumed
appropriate:

po = 0.85 (3.5)
d=20m

Value of the far away correlation p, is obtained from table 3.2. VValue for the correlation
length d is assumed higher than the standardized values in table 3.2, hence d = 20 misa
good estimate for both deck. These assumptions are assumed to give uncertainties of little
importance.

Dimension

Mean values and standard deviations of the deviation in the dimensions (see table 3.3),
complicate the calculations. Consequently, calibration of the dimensions needs to be done in
the following steps:

For steel deck:

1. Calculate the mean value and standard deviation of the deviation in the cross-section
by inserting value for A4,,,,, in table 3.3.

2. Estimate the deviation of the cross-section from the calculated values in step 1, by
using a 90% fractile-value.

3. Use the value from step 2 and nominal value (mean value) to calibrate the cross-
section dimension. Assume normal distribution and correlation coefficient between the
different cross-sections.

90% fractile-value for standard deviation of the cross-section is assumed conservative, due to
the fact that the elements are precast sections made by one manufacture. The fractile-value is
found according to (2.34).

For asphalt deck:

1. Estimate the standard deviation of the deviation in the thickness, by assuming
coefficient of variation equal to 10%.

2. Obtain mean values for the deviation in thickness from manuals [27].

3. Use values from step 1 and 2 to calculate thickness dimensions by assuming normal
distribution. Include correlation between the different thickness dimensions.

According to table 3.3, coefficient of variation for dimensions of the concrete deck is assumed
to be equal to 5%, when the dimensions are less than 1000mm (t = 80mm). Since the
variation in asphalt is assumed to be greater than a cast in situ concrete, a coefficient of
variation equal to 10% is assumed to give values within an acceptable limit. Variation in
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asphalt is assumed greater than variation in cast in situ concrete, because the formwork
corresponding to cast in situ concrete provides a lower variance. Asphalting do not require
any kind of formwork, thus greater variance.

Values for the nominal dimensions (thickness and cross-section) are stated in the basis of
calculation (see appendix A) and in manuals from Norwegian Public Roads Administration
[27]:

Apom = As = 0.5813m? (3.6)
Apom = t = 0.08m (3.7)

Dimension correlation

Characteristic values for the dimensions are assumed correlated with correlation coefficients
in accordance with the correlation coefficient for the densities (3.2) and table 3.2 [19].

Location of the self-weight loading

The self-weight is assumed uniformly distributed over the entire bridge deck, since the bridge
deck is assumed double symmetrical the coordinates for the resultant force for each element is
set in the middle of each element.
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4 Resistance capacity estimation

The ability of a structure to withstand loading, is the resistance capacity of the structure. The
magnitude of the resistance capacity for a structure depends on material properties and
dimensions of the structure.

Material properties determine whether the structure is ductile or brittle, have a high or low
strength, the magnitude of strain due to increasing stresses, corrodes or not, etc. Dimensions
of the structure determine how much of these material properties are available. In other
words, to ensure a specific level of resistance capacity in a structure, the elements of the
structure must consist of a material with satisfactory properties as well as right dimensions.

This chapter comprises important comments and concepts related to the estimation process of
resistance capacity. In the latter part, procedure for capacity estimation of the Hardanger
Bridge along with assumptions and uncertainties are presented.

4.1 Material properties

Material properties are defined from test specimens, which have been investigated in
laboratory by carefully exposure of increasing loads. Tests of specimens need to be carried
out in a certain way in order to get reliable results, strict (standardized) rules and requirements
for the implementation of the tests are therefore determined.

Main characteristics of the mechanical behaviour of a material, such as modulus of elasticity
and material strength, are described by a two dimensional stress-strain curve, as shown in
figure 4.1. In addition, useful properties such as yield stress, limit of proportionality, strain at
rupture and maximum stress, can be found from the diagram.
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Figure 4.1: Stress-strain curve.

Materials might possess different kind of properties, which may be used in various areas.
Concrete for instance has low tensile strength because of brittleness in the material thus are
concrete elements used in columns, where the major loading occurs in compression.
Prestressed steel has a high tensile strength and is therefore very suitable for use as main
cables in suspension bridges. Consequently, carefully selections of materials are of high
importance in order to gain maximum resistance capacity.

Materiale Strength properties Coefficient of variation
Prestressing steel fpx = 1570 MPa 0.025
Structural steel S355 fyk = 355 MPa 0.07

Table 4.1: Material strength properties for different materials [21], [22], [23], [24].

Where f,, and f,,, are characteristic values for the tensile strength and yield strength,
respectively.

4.1.1 Variation and correlation

Material properties might vary both in time and space. The variation of the material properties
can be divided into three levels:

1. Global (macro): variations primarily result of production technology or strategy, e.g.
different manufactures. Global variations might also arise from statistical uncertainty.

2. Local (meso): spatial correlation within the system, not too large distance between the
considered points.

3. Micro: rapidly fluctuating variations and inhomogeneity. Variation in pore size in the
material might be an example.
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Spatial correlation within the system (local variation) is of high impact when resistance
capacity is estimated. Discrepancies in material properties for different element of the system,
may cause under- or oversizing of the resistance capacity.

Consider a suspension bridge with main cables consisting of a thousand wires. If several wires
are damaged at same location, the resistance capacity of the main cable is lower in the area
close to the damage than points far away. The reduction of the resistance may lead to lack of
capacity (or in worst case collapse) when loading. Therefore, it is necessary to include
correlation in resistance capacity estimation.

Correlation between points in the material is not always defined in codes and standards or
other manuals, due to the fact that investigations and tests of correlation within an element
(component) of the same material are conducted in a very small extent. Use of information
about the correlation for a given structure (or element) may also result in uncertainties when
used in other structures, because of the differences between the structures.

Because of the absence of information regarding the correlation coefficients, an exponential
function (similar to the self-weight correlation function (3.2)) are used in the following
calculations. This is only an assumption though.

4.1.2 Uncertainties

Spatial variation in strength from one point to another may occur. Variations in material give
rise to uncertainties due to the fact that the material might behave different than expected.

Uncertainties may also occur due to discrepancies between the measured properties in
specimens and real structures. These uncertainties need to be accounted for:

- Deviations in properties between observed structural properties and predicted
properties

- Deviations as follow variations in workmanship when incorporating the material in
structures and laboratory

- Deviations due to scaling

- Uncertainties due to alterations in time

There may also be other uncertainties related to the determination of material properties and
behaviour (not mentioned here), which might have greater impact than the listed ones, that
should be accounted for.

4.2 Resistance capacity estimation

Resistance capacity estimation of today is based on standardized construction calculation and
tabulated data. Codes and standards are used to decide dimensions of structure elements in
order to obtain a required safety level of the construction. For this purpose, different material
and dimensions coefficients are developed and derived.
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To ensure, however, an acceptable safety level within the elements, safety factors to deal with
the occurrence of unexpected events within the material, such as bursts, ruptures, cracks, are
developed. Similar to the partial safety factor for loading in section 3.3, the safety factor is
related to estimation of the resistance capacity only. Hence, partial safety factor for resistance
capacity yx are developed.

Values for the partial safety factors differ for various kinds of materials. Table 4.2 gives
Norwegian values of the safety factors for different materials.

Material Yr
Structural steel 1.05
Wires and cables 1.20

Table 4.2: Partial safety factors for the material resistance [21], [24].

As can be seen from the table, nominal values for the resistance need to be divided by the
partial safety factor, in order to account for uncertainties related to unexpected events. Hence,
following equation for resistance capacity estimation can be obtained, see [10]:

R
Ry, = Zk (4.1)

Where R, and R, are the design and characteristic resistance capacity, respectively. Design
values are further used in almost every design calculation.

In the following section, procedures and assumptions for estimation of the resistance capacity
for the Hardanger Bridge are presented. In the latter part some important notes regarding the
uncertainties involved are mentioned.

4.3 Resistance capacity of Hardanger Bridge

In the reliability analysis of the Hardanger bridge (considered in this thesis) resistance
capacities are expressed in terms of characteristics values and distribution parameters, i.e.
mean value and standard deviation.

The Hardanger Bridge is a rather big and complex construction, with many components
sharing the load. Because of the complexity, simplifications of the structure are assumed in
order to quantify the resistance capacity more easily.

The reliability analysis performed in this thesis includes comparisons of the axial loading and
resistance capacity in the hangars and main cables. Consequently, calculation of the resistance
capacity of the structure correspond to capacity estimation of the hangers and main cables
only.

The hangers and main cables are part of the entire bearing system of the bridge and are
assumed to carry the loading obtained from the self-weight of the bridge deck, hangers and
main cables (see section 3.4). The hangers and main cables are divided into 266 components
(further explained in sections 5.2.1), thus resistance capacities and axial loading in each of the
266 components are estimated in order to perform the reliability analysis.
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Ch. 4 Resistance capacity estimation

4.3.1 Resistance capacity of main cable

The main cables consist of 528 parallel wires tied together in 19 bundles. Resistance capacity
of the main cable consist of strength contribution from these 10032 wires. Even though the
wire appears as a unitary element, variation along the wire may arise. Variation of this kind
causes reduction in strength capacity due to length effect. The length effect is assumed to
reduce the strength capacity by 10% [25], [26].

The main cable, however, consist of several wires in parallel. The interaction between these
wires are assumed to reduce the strength capacity due to the Daniel’s effect. The Daniel’s
effect is assumed to reduce the strength capacity by 8% [25], [26].

The resistance (strength) capacity of the wires is calculated from obtained tensile strength data
from the manufacturer, see [5] and appendix C. The data is interpreted by using statistical
tools to calculate mean values and standard deviation (see section 2.2.3). The tensile strength
data is measured as stress, with units MPa.

In order to obtain resistance capacity of the main cables, values from the obtained strength
data multiplied with the cross-section area of the main cable are performed.

The cross-section area of the main cable can be estimated from following formula and
obtained data for the cross-section dimension:

d’ 4.2
Amain = Awire * Nwire = 4 " Nyire (4.2)
Where d and n,, ;.. is the diameter and number of wires in the main cable, respectively.
Hence, following formula for the resistance (strength) capacity of the main cables are found:
Ruain = Amain * ok, - 0.9 - 0.92 (4.3)
Where fy, .., is nominal value for tensile strength of the wires.

Correlation between the components (or element of the main cable) are assumed to be
exponential (similar to (3.2)), with variables equal to:

po = 0.9 (4.4)
d =50m

The reasons for this assumptions are due to the fact that each elements of the main cable
consist of the same wires. In addition, all of the wires are produced by the same manufacture

[5].

4.3.2 Resistance capacity of hanger
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Estimation of the resistance capacity in the hanger elements are rather difficult to obtain since
there is no tensile strength data from tests available. Tabulated strength values from codes and
manuals, therefore, are used.

The hangers are assumed to consist of prestressed steel, similar to the main cables. Table 4.1
states nominal values and coefficient of variation for prestressed steel.

The capacity values are multiplied with the cross-section of the hangers, in order to estimate
the resistance capacity.

Cross-section of the hangers Apgnger = 3200mm?, see appendix A. This is lower than the
expected area calculated from dimensions, due to the fact that the cable is coiled.
Following equation for hanger capacity can be obtained:

RHanger = AHanger ) fpk (4.5)
Where f, is nominal value for tensile strength of prestressing steel.

Values for the correlation coefficient between the different hangers are not stated in the basis
of calculation or other manuals/codes. Hence, an exponential curve for the correlation
coefficient (similar to (3.2)), along with conservative assumptions for the variables are used.

po = 0.5 (4.6)
d =30m

Reasons for these assumptions are based on lower correlation between the hangers, due to
separately production by different manufactures [5]. This might lead to a lower correlation
coefficient than obtained by investigation, but it is assumed to be conservative.

4.3.3 Uncertainties

Tabulated resistance values from codes and standards are usually intended for use in code
calibration and design calculations, therefore the values are often conservative. This means
that the values are undersized in order to meet the safety margin.

Tensile strength data from tests tend to shows a much greater resistance capacity than the
tabulated values, as can be shown in the table 4.3. Provided similar tabulated values for the
main cables as for the hangers.

components Mean values Coefficient of variation
Hangers (tabulated) 1570 MPa 0,025
Main cables (measured) 1686 MPa 0,01

Table 4.3: Estimated and obtained tensile strength data for the components [22], [23], [24],
appendix C.

Because of the deviations in main cables (measured) and hanger (tabulated data) strength
data, uncertainties will arise. Measured data with low variation have a much smaller overlap
area with the loading than the tabulated data with greater variation. Hence, probability of
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Ch. 4 Resistance capacity estimation

failure for the hangers (tabulated data) tend to be larger than for the main cables (measured
data). Low probability of failure is difficult to estimate, hence larger probability of failure will
dominate in the reliability analysis. Figure 4.2 illustrates this.

Probability density functions for R and S

—S5
R main cables
R hanger

fir) and f(s)

20

Figure 4.2: Pdf for the normal distributed variables R and S. Blue curve is load variable, red
and green curves are resistance variables in hangers and main cables, respectively. Red and
blue curve have a much greater area of intersection than blue and green curve, hence
probability of failure for the hangers will dominate.
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5 Reliability analysis of the
Hardanger Bridge

Review the hypothesis stated in the introduction: structures, where self-weight constitutes the
major part of the loading, tend to be oversized as a result of the standardized design
calculation.

In order to test the validity of the hypothesis, a reliability analysis of the Hardanger Bridge,
along with calibration of partial safety factors, are carried out. Strategies and procedures for
implementation of the reliability analysis and the partial safety factor calibration are presented
in the following sections.

The reliability analysis and calibration process are carried out by taking advantage of the
computer programs MATLAB, Excel and ABAQUS. In addition, simplifications of the
problem are assumed to make the calculations more easily feasible and still maintain reliable
accuracy.

5.1 Short on solution strategy

A brief review of the solution strategy for reliability analysis and partial safety factor
calibration is presented in the following steps:

1. Simulation of the bridge in ABAQUS with respect to force estimation.

Estimation of the self-weight of the construction (stated in chapter 3)

Calibration of the component force due to self-weight loading (MATLAB)

Estimation of the resistance capacity of the structure (stated in chapter 4)

Reliability analysis of the structure and partial safety factor calibration (MATLAB and
Excel)

AN

Notice, the reliability analysis and the partial safety factor calibration are performed by
simply analysing the reliability in the main cables and hanger components only. This
simplification is stated in section 4.3, as well as in the following sections.
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Estimation of resistance capacity from tensile

test data, Eurocodes and manuals: Simulation of bridge in ABAQUS
Hmaimcaiss [MPa]

Estimation of self-weight:
ORmameates [MPA] E=4,-g'p; [kN]
Hananger [MPa] FE,=Ltb-g-p, [kN]
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TRyanger [MPE] Calibration of influence surface E =FE+E [kN]

Random number generation of resistance Calibrate axial loading in hanger and main cables:

capacities from distribution parameters: Simaimcants ]
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Reliability analysis by use of
Enhanced Monte Carlo method:
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> Partial safety factor estimation:
¥Yr
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Figure 5.1: Flow-chart of the solution strategy for the reliability analysis and partial safety
factor calibration.

5.2 Simulation in ABAQUS

ABAQUS CAE is a simulation tool, to solve complex problem and FEM analysis with
reduced running time at low costs. ABAQUS makes it possible to simulate complex and
difficult systems and models for all kinds of industrial applications, see [28], [29] for more
information.

In this thesis, ABAQUS is used to simulate the Hardanger Bridge and its applications. The
Hardanger Bridge is, as can be seen in section 1.3, a complex structure with many important
components of high impact. In order to solve this kind of problems by using the method
described in section 5.1, several simplifications are made.

5.2.1 Components
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Ch. 5 Reliability analysis of the Hardanger Bridge

The bridge is simulated by using solid elements of the main components, i.e. pylons, cables,
hangers and steel box girder. The table 5.1 gives the number of element and numbering of the
elements of each component:

Structural element Number of element Numbering
Pylon 145 elements at each pylon | At Vallavik: 20 000-series
At Bu: 30 000-series
Main cable 66 elements in main span at | North side: 1000-1067
each cable (1000 and 1067 in side span)
2 element in side span at South side: 2000-2067
each cable (2000 and 2067 in side span)
Hanger 65 elements at each side North side: 5002-5066
South side: 6002-6066
Box girder 328 elements 1-328

Table 5.1: Bridge components with corresponding numbering of elements.

ODB: HardangerBuildInitial.odb Abaqus/Standard 6.14-1 Wed Apr 15 10:52:44 Vest-Europa (sommertid) 2015

. Step: Step-10 5
- Increment  1: Step Time = 1.000

Figure 5.2: Simulated Hardanger Bridge in ABAQUS.

The bridge deck (steel box girder) is simulated as a simple beam, with simplified geometry.
Assumptions of the geometry are done in order to obtain the effect from the applied loading
only. Equipment and tools such as lifts, construction machinery, workers, lightning, railing,
signs, etc., (used under and after construction) are not included in this simulation.

The hanger cables are simulated as 65 equally spaced elements along each sides of the bridge
deck between the pylons, 130 elements in total. The cross section of the hangers is modelled
in accordance with the information given in section 1.3 and basis of calculation (appendix A).

The main cables are divided into 134 elements. 132 elements are simulated in the main span,
with length equal to the distance between the hangers, while 4 elements are simulated in the
side span (between the pylons and the anchoring at Vallavik/Bu). As for the hangers, the
cables are modelled in accordance with the specification given in appendix A and in section
1.3.
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Ch. 5 Reliability analysis of the Hardanger Bridge

In further calculation, the concept component comprises the considered components only, i.e.
the hangers and main cables. In all 266 components are considered in the analysis.

X000 X001
.

main cables: X000-X067
hangers: YO02-Y066

Bl

B8

\ OPPRISS
12800

North side
Main cables: 1000-series
Hangers: 5000-series

South side
Main cables: 2000-series

Hangers: 6000-series GRUNNRISS

s 276823870
¥ - L2655 185 \&

Figure 5.3: Illustration of the components. Drawings of the bridge are obtained from
Norwegian Public Roads Administration [4]. Numbering done in accordance with the
simulation.

The bridge deck is assumed to be a part of the loading carried by the components, while the
pylons are assumed to only carry its own self-weight. These assumptions may lead to
uncertainties, but the accuracy is assumed to be high enough.

Notice, the bridge deck may also achieve failure due to the fact that the bridge deck is
carrying the self-weight loading between the hangers, but this is not included in this thesis.

The bridge, however, is assumed linear behaviour after construction.

5.2.2 Influence surface

In order to include the loading in the simulation, an influence surface is modelled. Since this
thesis concern about the self-weight loading only, it is assumed that the loading take place at
the bridge deck. Hence, the influence surface is modelled as an approximation of the bridge
deck.

As a simplification, the loading is assumed to be applied only at the top of the bridge deck.
This simplification may involve uncertainties due to the fact that loads may be applied at
several other locations, but since the self-weight of the bride deck, which is high compared
with others loads, takes place at the bridge deck discrepancies are assumed negligible.

The influence surface is modelled by a 1320x14,5 m? rectangular plate with 67 nodes
equally spaced at each long side, as shown in figure 5.4.
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Ch. 5 Reliability analysis of the Hardanger Bridge

One at a time, a unit load is placed in each of the 134 nodes and the corresponding forces in
the 266 components (hangers and main cables) are measured in order to obtain the influence
surface.

Figure 5.4: Influence surface with node numbers (red) and dimensions (black).

When the self-weight loading of the bridge deck is applied, corresponding axial forces in each
of the 266 components are calibrated by using interpolation formulas between the loading and
locations of the loading and the influence surface. For this purpose, the computer program
MATLAB is used.

5.3 Calibration of axial loading in MATLAB

MATLAB is a programming language used in calculation of several iteration and complex
mathematical problems. The program has a wide range of embedded codes, which is of high
importance in more complex mathematical calculations, see [30] for more information.

In the reliability analysis and the partial safety factor calibration, MATLAB is used for four
purpose:

e Self-weight estimation

e Transformation of the self-weight loading into axial forces in each component
e Estimation of distribution parameters related to the loading forces

e Estimation of the failure probability of the Hardanger bridge

5.3.1 Axial load calibration
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Ch. 5 Reliability analysis of the Hardanger Bridge

The calibration process of the axial loading in the components due to the self-weight loading
of the bridge, are divided into two main parts.

Firstly, the self-weight of the Hardanger Bridge is estimated, in accordance with section 3.4.

Secondly, axial loading is calibrated by transformation of the self-weight loading into applied
axial loading in each of the 266 components.

When the self-weight and its coordinates are estimated as described in sections 3.4, axial
forces in the components (hangers and main cables) are obtained by interpolation between the
self-weight forces and its coordinates and the influence surface.

This simulation is done n times in order to increase the accuracy, i.e. n characteristic values
for the axial forces (due to the applied self-weight) are obtain. The simulations n are collected
in a matrix for further calculations.

Due to high running time 3 - 10° simulations of the transformation process are performed.

5.4 Reliability analysis

The reliability analysis of the Hardanger Bridge is performed by using the Enhanced Monte
Carlo method elaborated in section 2.10.3.

The method was carried out by using a MATLAB script and estimated values for the
resistance capacities and the axial loading from sections 4.3.1, 4.3.2 and 5.3.1, respectively.

It is assumed that the components work as a series system, due to the fact that redistribution
of forces will cases significant deformation or in worst case collapse. Hence, if one
component fail, the structure is assumed to become unstable, i.e. series system according to
section 2.12.

5.5 Calibration of partial safety factors

Calibration of partial safety factors is performed on behaviour of estimated distribution
parameters for the axial loading and the resistance capacity.

5.5.1 Parameter estimation

Loading, S

When the axial loading forces in the components are found (section 5.3.1), distribution
parameters for the loading, i.e. mean value and standard deviation, are determined by
assuming normal distributed loading. The self-weight loading is a sum of contributions from
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Ch. 5 Reliability analysis of the Hardanger Bridge

all elements of the structure, which is assumed to behave normal distributed according to the
Central-Limit-Theorem, see Freeman and Benjamin and Cornell [11], [12].

The embedded function fitdist (MATLAB) is used to obtain mean values and standard
deviations for each of the 266 components. Because the force simulation is done 3 - 10°
times, the fitdist function will provide values within an acceptable limit.

Resistance, R

Distribution parameters for the resistance capacities are assumed normal distributed, due to
contribution of resistance capacity from all components. This assumption is valid according to
the Central-Limit-Theorem, see Freeman and Benjamin and Cornell [11], [12].

Distribution parameters for the resistance capacity, however, are obtained from test and
tabulated data as elaborated in chapter 4.3.1 and 4.3.2.

5.5.2 Calibration process

The calibration of the partial safety factors comprises an iterative process for minimizing
deviation between a wanted reliability level B, and the estimated reliability index £, as
mentioned in the last part of section 2.11.

The minimization of the deviation is done by optimizing values of the partial safety factors
(vs, Yr)- The optimization process is performed by taking advantage of problem solver, which
IS an optimization tool in the computer program Excel.

Estimated reliability is found by considering the violation of the limit state function of the
structure (in accordance to section 2.7.2). In the following sections equations for the limit
state function and the reliability index are stated.

Limit state function

Since the main cable and hanger components are assumed to behave as a series system, failure
in each of the 266 components need to be considered. Consequently 266 limit state functions
need to be developed.

Each of the components are assumed to be loaded by only one axial tensile force, related to
the self-weight loading. From this assumption following limit state function for each of the
266 components can be obtained:

Gi = Ri - Si (51)
Where R; and S; are the resistance capacity and axial loading for each component,
respectively.

Reliability index

The formula for the reliability index is stated in section 2.8 and equal to:
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Ch. 5 Reliability analysis of the Hardanger Bridge

g = MR Hs (5.2)

[ 2 2

Provided limit state function equal to (5.1).
By using the concepts of design and characteristic values, the expression can be rewritten.

YRYs 1
T+ kzCOV; 1+ k,COVs

b= (5.3)
(&)2 N (M)Z
T+ ksCOVs T+ kpCOVy

Where COVy and COV; are coefficient of variation for the resistance capacity and the loading,
respectively, see (2.11).

Target reliability index

A target reliability index of 8, = 5.2, is obtained in order to estimate a structure within a
reasonable limit. A reference period of 1 year is assumed, this is conservative and will give a
higher safety level. The target reliability is found in codes by considering the consequences
related to a failure of the structure and assumption regarding the reference period, see [20].

In the optimization process, partial safety factors for the loading and the resistance will
become equal. This is true based on the fact that the partial safety factors are acting together
as a product in the formula (5.3), hence the problem solver would not be able to distinguish
between the two partial safety factors.
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6 Results and discussion

Based on estimated input parameters in chapter 3 and 4, a reliability analysis on the
Hardanger Bridge is performed according to the procedure elaborated in chapter 5. In
addition, partial safety factors for the loading and resistance are estimated. For this purpose,
important and valuable statistical tools and methods elaborated in chapter 2 are used.

Results and discussion of the estimated input parameters are presented in the first part of this
chapter. In the latter part, results and discussion of the reliability analysis and the partial
safety factor calibration take place. At the end of this chapter, a comparison between the two
methods of estimating reliability index and probability of failure are presented.

Notice, since the reliability analysis of the bridge is carried out by considering the main cable
and hanger components only (according to previous assumptions), estimated input parameters
of the applied loading and resistance capacities for the corresponding components are carried

out.

Methods and procedures for the estimations and calibrations are performed in accordance to
previously elaborated theory (see chapter 2).

The aim of this thesis is to show the oversizing of large structures with self-weight as the
major loading. In order to state the validity of the hypothesis, comparisons of measured and
tabulated values of the variables for the components are proposed.

6.1 Load calibration

The procedure for load calibration in this thesis (accounted for in chapter 3 and 5) relay on
estimates of the considered explicit loading, namely the self-weight. The self-weight is used
in calibration of the axial loading, corresponding to the main cables and hanger components
of the structure.

6.1.1 Self-weight

The self-weight is a product of the density, gravity and the volume of the structure, see (3.1).

The self-weight of the structure is assumed to consist of the weight of the bridge deck, along
with self-weight of the components. The axial loading caused by the self-weight of the
components itself is included in the simulation in ABAQUS. Self-weight estimation of the
bridge deck is performed according to section 3.4.
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Estimated values for dimensions, densities and self-weights for the elements (see figure 3.2)
are presented in the followings. The length of each elements is assumed to equal 10m,
consequently estimates for the length are not presented.

Dimension

Estimations of the dimensions for the steel and asphalt deck are made in accordance with the
procedure mentioned in section 3.4. For asphalt deck, the width of the cross-section is
assumed constant equal to the width of the simulated bride deck (14.5 m), while the thickness
t variate. For the steel deck the cross-section of the simulated bridge deck A, is assumed to
variate.

Distribution parameters for the variables (A, t), are obtained from manuals and basis of
calculation (appendix A), along with assumption stated in section 3.4. Results of the
parameter estimation is stated in table 6.1.

Deck Mean value Standard deviation
Steel (Cross-section area) 0.5813 m? 0.0356 m?
Asphalt (Thickness) 0.08 m 0.008 m

Table 6.1: Mean values and standard deviation for the dimension variables A and t.

Figure 6.1 shows histograms of the generated values for the steel cross-section and asphalt
thickness, given the normal distributed parameters from table 6.1.
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Figure 6.1: Probability density plot for (a) steel cross-section (b) asphalt thickness for
element 1 (according to figure 3.2).

As expected from the tabulated data in table 6.1, most of the values for the cross-section and
thickness of the steel and asphalt deck (4, t) respectively, tend to become approximately
equal to the mean values, i.e. little variance. The reason for this is due to the low standard
deviations in the measurements.

Figure 6.2 shows bivariate density function for two adjacent elements in the simulated bridge
deck and for two “far away from each other” elements. Two adjacent element have a distance
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Ar = 10m, while two “far away from each other” elements have a distance Ar = 1310m, as
can be seen in figure 3.2.

(&) (b)

+  joint pdf for steel cross-gection, element 1 and 2

+ joint pdf for asphalt thickness, element 1 and 2

Figure 6.2: Joint pdf for (a) steel deck Ar = 10m, (b) asphalt deck Ar = 10m, (c) steel deck
Ar = 1310m, (d) asphalt deck Ar = 1310m.

As seen in figure 6.2, positive correlation between two adjacent elements appear in both
asphalt thickness and steel cross section. For “far away from each other” elements,
discrepancies between the values of the two elements increases, i.e. the dependency between
the values decrease. The reason for the increasing discrepancies is most likely to originate
from the assumed correlation coefficient.

The correlation coefficient for the interaction between elements within a structure are carried
out by using an exponential function (3.2) and section 3.4 (dimension correlation). The
exponential function give decreasing values of correlation for increasing distance Ar, hence
increasing discrepancies between elements when Ar increase, given all other values remain
constant.

Densities

Estimation of the densities for the steel and asphalt deck in each element are carried out by
using a multivariable distribution function and distribution parameters from table 3.1.

Deck Mean value Standard deviation
Steel 77 KN/m? 0.77 KN/m?
asphalt 25 kN/m?® 0.75 kN/m?®

Table 6.2: Mean values and standard deviations of the density values for each deck.

The standard deviations are obtained from the numbers noted in table 3.1 and the formula for
coefficient of variation (2.11).

Values for the densities are assumed to correlate after formula (3.2), with associated input
values stated in section 3.4 (density correlation)

Figures 6.3 shows plots of the density distribution for the steel and asphalt deck.
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Figure 6.3: Probability density plot of the density for element 1 (see figure 3.2) for (a) steel

deck, (b) asphalt deck.

Distribution of the density values are as for the dimensions characterized by low variation,
due to low variance from the estimated distribution parameters in table 6.2.

Figure 6.4 shows plots of the joint probability distribution between different elements for both

steel and asphalt deck.

w10t ta)
8.2 . : ; ;

+  joint pdffor steel density, element 1 and 2
Lt
PR

L L L L L L L

73 74 75 7B 77 78 79 8 8.1
4

* 10

x 10 ()

T T T T T
+  joint pdf for steel density, element 1 and 132
T

x1t

281

261

24r

221

w10’ ]

+  joint pdf for asphalt density, element 1 and 2

+

L L L L L L L
1 22 23 24 25 26 27 28 29
4

®10

10 ()

T : T T T
+  joint pdf for asphalt density, element 1 and 132
+

al 22 23 24 25 28 27 28 28
4
%10

Figure 6.4: Joint pdf of the densities for (a) steel deck Ar = 10m, (b) asphalt deck Ar =
10m, (c) steel deck Ar = 1310m, (d) asphalt deck Ar = 1310m.

Just like the dimension values, greater scatter is obtained in the density values for the “far
away from each other” elements than for adjacent elements. Reason for this is due to the
identical correlation coefficient curve used for the dimensions and densities, i.e. justification
for the increasing discrepancies in density values (when elements are far from each other) is

the same as for the dimensions.
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Self-weight

Self-weight estimation of the steel and asphalt deck for the element are done in accordance
with the method described in sections 3.4 and 5.3.1.

Plots of the self-weight distribution for the steel and asphalt deck, along with the self-weight
distribution for the entire deck as well, are shown in figures 6.5 and 6.6.
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Figure 6.5: Probability density plot for the self-weight of (a) steel deck, (b) asphalt deck. For
element 1 (see figure 3.2).
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Figure 6.6: Probability density plot for the entire bridge deck. For element 1 (see figure 3.2).

Due to the fact that self-weight of the entire bridge deck is the sum of the two deck layer
(steel and asphalt), observations and characteristics detected in the previous results is valid for
the self-weight estimation as well.

One important note from this observation is the little variance in the values. As the hypothesis
in the introduction states, oversizing of structures occur due to little variance in loading. The
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structure considered in this thesis (Hardanger Bridge), therefore, meet the constraints stated in
the hypothesis.

6.1.2 Component force estimation

The force calibration, with respect to the components, is performed in accordance with the
procedure stated in section 5.3.1.

From the calibrated force values, found by using the procedure stated in section 5.3.1, normal
distributed parameters for the axial loading (corresponding to each component) are estimated
by using the method described in the section 5.5.1 (Loading, S).

Table 6.3 shows mean values of the mean values and coefficients of variation for the hanger
and main cable components, respectively.

component Mean value Coefficient of variation
Hanger 114 655 kN 0.028
Main cable 887 kN 0.043

Table 6.3: Mean values of the mean values and coefficients of variation for the axial loading
in the hanger and main cable components.

Plots of distribution of axial forces in the hangers and main cables, related to the self-weight
loading is shown in figure 6.7. Notice, values for the distribution parameters, stated in table
6.3, are estimated from the distribution of forces in figure 6.7, assuming normal distribution.
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Figure 6.7: Probability density plots for the axial loading forces in component (a) 1000
(main cable), (b) 5002 (hanger). Figure 5.3 illustrate the components.

As can be seen from the figure 6.7, values for the axial loading in the components tend to
variate within a range of {9.2 - 102kN, 10.4 - 102kN} for the hanger (element 5002), and
within a range of {1.1- 10°kN, 1.4 - 10°kN} for the main cable (element 1000). Figure 6.7
gives higher values for the hanger loading, than the tabulated mean values in table 6.3. This
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deviation may arise from the fact that the tabulated values consists of contributions from all
the hanger components, while the figure only provide values for hanger component 5002.

Normal distribution, however, is assumed for both the hanger and main cable loading, which
is consistent with the plot in figure 6.7.

Figure 6.8 shows plots of the dependency between different components. Number of the
components are stated in table 5.1.
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Figure 6.8: Joint pdf for the axial loading forces in components (a) 1000 and 1001 (main
cable), (b) 5002 and 5003 (hanger), (c) 1000 and 2067 (main cable), (d) 5002 and 6066
(hanger). Figure 5.3 illustrates the components.

The plots show that the discrepancies between axial loading barely exist for the main cables,
while there is a slight occurrence of discrepancies between hanger components, with
increasing distance between the components. From these results, it is reasonable to believe
that a higher correlation coefficient between the main cable components than for the hangers
exists. The reason for this may be due to the fact that the axial loading in the main cable
components are distributed into all main cable components, thus all components are assumed
to carry approximately the same loading and the correlation is high. While the axial loading in
the hanger components arises from loading near or close to the hanger component, hence
different hangers do not carry the same loading and have a smaller correlation.

6.2 Resistance estimation

Estimation of the resistance capacity of the components are performed in accordance to the
rules and procedure stated in chapter 4. Estimation of the hanger capacities need to be carried
out by the use of codes, because of the lack of available information. Main cable capacities
are estimated from tensile test data.

Values of the resistance capacities are shown in table 6.4.
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Component Mean value Standard Area of the Coefficient of
(Yield stress) deviation (Yield | cross-section variation
stress)
Main cable 1686 MPa 18.2 MPa 0.2213 m2 0.011
Hanger 1570 MPa 40 MPa 0.0032 m2 0.025

Table 6.4: Mean value, standard deviation, area of cross-section and coefficient of variation
for the resistance capacity for the hanger and main cables components.

Density plot of the resistance capacity for components 1000 (main cable) and 5002 (hanger),
are shown in figure 6.9. The different components are illustrated in figure 5.3.

x 10" (@ (b)
8000 : : .

T T T T T
I 10=ding forces in the hangers, element 1

T T T T T T
I (o=cing forces in the main cables, element 1

7000 -

6000 -

5000 -

4000 -

3000 -

2000 -

1000 -

10 102 104 106 108
x10° x10°

Figure 6.9: Probability density plot of the resistance capacity for component (a) 1000 (main
cable), (b) 5002 (hanger).

Provided similar tabulated values of the material properties for the hanger and main cable
components. Coefficient of variation are smaller for the main cables than the hangers. This
means that the uncertainties related to the variation in capacity estimation are lower for
estimates obtained from tests than from codes.

A higher mean value gives a higher resistance capacity, due to the fact that the resistance
capacity is a function of the material properties f,, see (4.3) and (4.5). Hence, resistance
capacities from codes tend to be smaller than capacities estimated from test data.

A lower variance and a higher mean value indicates that the estimated capacities from test
data have a higher capacity and less uncertainties, while capacities estimated from codes have
a lower capacity with a greater uncertainty. Hence, the resistance capacity estimated from
codes tend to be undersized compared with the capacities obtained from the test data.

With a lower resistance capacities and greater variance, the area of the probability of failure
becomes bigger, due to the fact that the area for overlap with the loading curve increase.
Lower variance and a higher capacity decrease the area of failure, i.e. decrease the area of
intersection between loading and resistance, as can be seen in figures 4.2 and 6.10. This
means that the failure of probabilities will increase with the use of code estimation process,
higher probability of failure lead to higher degree of dimension needed.
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It is important to notice that the resistance capacity also depend on the cross-section of the
component. The hanger components have smaller cross-sections than the main cables
components, consequently resistance capacity in the hanger components will be less than
resistance capacity in the main cable components.

Probability density functions
PN T

ff \ —s

Normal distributed variable with low variance
Y Normal distributed variable with high variance
\

t R (low variance)

04

03

025

02

f(x)

0.05—

Figure 6.10: Curves for normal distributed variables with high and low variance and pdf for
axial loading. Grey and yellow areas show the respective py.

Figure 6.11 shows plots of the dependency between different components. Figure 5.3 and
table 5.1 illustrate the different components.
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Figure 6.11: Joint pdf of resistance capacities between components (a) 1000 and 1001 (main
cable), (b) 5002 and 5003 (hanger), (c) 1000 and 2067 (main cable), (d) 5002 and 6066
(hanger).

The plots in figure 6.11 show that the discrepancies between resistance capacities increases
with increasing distance between the components. This is in agreement with the assumptions
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made in section 4.3. Notice, the assumptions result in a rather low correlation between the far
away from each other components, i.e. inner distance Ar = 1350 m and Ar = 1290 m for the
main cable and hanger components, respectively. The main cable components consist of the
same wires and most of the hanger components are produced by the same manufacturer, this
may lead to a higher correlation coefficient than the assumed correlation coefficient in this
thesis.

6.3 Reliability analysis

The reliability analysis was carried out according to the procedure stated in section 5.4.

Table 6.5 shows values for the reliability index, probability of failure and confidence intervals
forn € {10*,105, 3-105} iterations of the Enhanced Monte Carlo method.

Iterations B Pr ct Cc
10* 12.46 5.86- 10736 7.08 10730 1.30- 10736
10° 14.36 4.83-10"% 3.83-107%4 1.65-107°°
3-10° 14.61 1.285- 10748 4.83-10"% —1.40-107°0

Table 6.5: Values for the reliability index, probability of failure, confidence limits for
n simulations.

Figure 6.12 shows plot from the calculation process.
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Figure 6.12: The extrapolation curve of enhanced method. Blue dots are obtained pf from
data points. Black and red curves estimate probability and confidence limit, respectively.
Number of simulations, n = 10°.
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As can be seen from the figure 6.12 and table 6.5, the probability of failure p, €
{1073¢,107*%} when A — 1. This leads to a reliability » = 1 — p; = 1, which indicate that
the structure satisfy the safety requirement far too well.

Even though the results state a way too high reliability, there is some uncertainties that need
to be mentioned. Because of the low probability of failure, estimation of the probability of
failure related to A cannot be obtain for values of A close to 1, i.e. P(4;) =

NaN (Not a Number) {4 = 0.16}. Estimation of the probability of failure function, (2.106),
may therefore become uncertain as follows from lack of information for A € {0.16, 1.0}.

The confidence interval, illustrated in figure 6.12 as dashed red lines and tabulated in table
6.5, cover a wide range of values due to the lack of obtained data P(A;) from estimations.
Calculation of the confidence interval is explained in section 2.10.1 (confidence interval).

Provided assumption done in previous sections, limit state violation tend to occur in the
hanger components only as A — 1. This indicate that the main cables have a higher safety
level than the hangers, hence the hanger capacities need to be improved in order to obtain a
higher safety level.

6.4 Code calibration (Second-Moment)

By using the results from section 6.1 and 6.2, along with the calibration strategy elaborated in
section 5.5, calibration of the partial safety factors is possible.

Results of the partial safety factors calibrated in this master thesis for n = 3 - 10° simulations,
along with partial safety factors found in codes and standards are presented in the table below.

Partial safety factor

Calibrated from reliability
analysis

Current norm of EC
standards

Yr

1.05

1.20

Ys

1.05

1.35

Table 6.6: Partial safety factors for the resistance capacity and loading. Calibrated from the

reliability analysis performed and obtained from codes [20], [24].

Figure 6.13 shows the code calibration process.
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component mysS [N] sigmaS [N] COVs myR [N] sigmaR [N] COVr Kr -1,64| beta Aﬁ
main cable north side (1000} 125398568 3443286,75 0,02745874 308970525 3344118,03 0,010823421 Ks 1,64 5,68868989 0,23881781
119152528 3329678,18 0,02734467 308970525 3344118,03 0,010823421 P targ 5,2 5,03526527 0,18945385
118698932 3323688,03 0,02300098 308970525 3344118,03 0,010823421 py.i) 126,058793 5,62916028 0,18417855
118242240 3312513,14 0,02801463 308970525 3344118,03 0,010823421 TR 1,04950205 5,62768245 0,18291227
117833776 3299786,94 0,02800374 308970525 3344118,03 0,010823421 S 1,04950205 5,62886096 0,18392173
117436664  3286792,3 0,02798779 308970525 3344118,03 0,010823421 B min 4,27266531 5,63058907 0,18540695
117052824 3274114,71 0,02797126 308970525 3344118,03 0,010823421 pf max 9,6575E-06| 5,63238052 0,18695292
116682008 3261950,14  0,0279559 308970525 3344118,03 0,010823421 5,63404678  0,1883966
116324296 3250266,28 0,02794142 308970525 3344118,03 0,010823421 5,63561802 0,18976306
115979760 3239017,83 0,02792744 308970525 3344118,03 0,010823421 5,63713693  0,19108869
115643464 3228196,25 0,02791387 308970525 3344118,03 0,010823421 5,03861211 0,19238059
115330480 3217754,17 0,02730023 308970525 3344118,03 0,010823421 5,64008317 0,19367843
115025880 3207654,84 0,02738638 308970525 3344118,03 0,010823421 5,6416043 0,19501436
114734712 3197969,06 0,02787272 308970525 3344118,03 0,010823421 5,64309135 0,19632995
114457043 3188646,58 0,02785889 308970525 3344118,03 0,010823421 5,64459933  0,19766856
114192944 3179704,54 0,02784502 308970525 3344118,03 0,010823421 5,64611298  0,19901679
113942464 3171116,48 0,02783086 308970525 3344118,03 0,010823421 5,64765888 0,20039847
113705656 3162911,98 0,02781666 308970525 3344118,03 0,010823421 5,6492096 0,20178926
113482576 3155081,74 0,02780235 308970525 3344118,03 0,010823421 5,65077507 0,20319816

Figure 6.13: Estimation of the partial safety factors by using problem solver in excel. n =
3 - 10° simulations are performed.

The results show that the partial safety factors from standards and codes causes oversizing of
the applied loading and the resistance capacity, according to (2.35) and (2.36) and section
2.11. Partial safety factors for loading gives the highest deviation between calibrated and
tabulated values, as can be seen in the table 6.6. Hence, partial safety factor for loading
contribute most to the oversizing.

It is important to note that the code calibration does not consider the differences between the
two partial safety factors, and thus will the partial safety factors be equal. As discovered in
section 6.2, codes and standards are underestimating the resistance capacities, consequently,
partial safety factors from codes and standards will lead to under estimation of the resistance
capacity and oversizing of the loading.

By inserting partial safety factors from codes (table 6.6) into the formula (5.3), following
values for the reliability index and the probability of failure are obtained:

B =12.64
pr=6.76-10"%

Notice, it is assumed that the system is a series system, hence minimum value of  is obtained
in order to be conservative. The variables, however, are assumed normal distributed in order
to use (2.58) for estimation of the failure probability.

The lowest values of the reliability index £ appear in the hanger components only, low values
of the reliability index result in a higher value of the failure probability, according to (2.58).
This indicate that provided assumptions made in previous sections failure tend to occur in the
hanger components, similar to the results from the Enhanced Monte Carlo method.

The results show that partial safety factors from codes and standard gives high reliability
indexes and low failure probabilities.

6.5 Comparisons

By comparing the two reliability analyses of the Hardanger Bridge for n = 3 -

10° simulations, following result is obtained:
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6.1
prnhanced MC < pfSecond Moment ( )

Hence:
(6.2)

.BEnhanced MC > ﬁSecond Moment

The Enhanced Monte Carlo method provides confidence intervals with great range, due to the
uncertainties related to the lack of information.

The Second-Moment method assume normal distribution of the resistance capacities and a
target reliability index of 5.20, in order to obtain values for the partial safety factors and
estimation of failure probability.

Failures tend to occur in the hanger components in results from both of the methods.

The components are assumed to act as a series system and simplifications of the structure in
order to reduce computational effort are done.

Assumptions about the resistance capacity values for the hangers are made from obtained data
and exponential function of the correlation coefficient are proposed for the resistance
capacities.

In order to perform reliability analysis of the structure, assumptions and simplifications are
done for both of the method, which lead to uncertainties in the results for both of the methods.

The results, however, from the two different approaches indicate that the structure is heavily
oversized. Requirements for the reliability index related to structure with high amount of
expected damage are equal to:

B € {430 — 5.20} (6.3)
Where the range in value correspond to the value of the reference period [20].

Because the estimated reliability indexes from both of the reliability analysis is way above
this requirement, the analyses together state an oversizing of the structure.
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7 Conclusion

In the present study, a reliability analysis of the Hardanger Bridge has been performed using
two different methods:

1. Second-Moment method based on load and resistance factor design format (LRFD)
2. Enhanced Monte Carlo simulation

The analysis was separated into three main parts. Firstly, calibration of the lading, secondly
estimation of the resistance and at last comparisons of the results from the two previously
parts.

Results from the Second-Moment method gave partial safety factors for the resistance and
loading equal to 1.05, which is much lower than the standardized partial safety factors from
codes equal to {1.20, 1.35} for the resistance and loading, respectively. By taking advantage
of the standardized partial safety factors, estimates for the reliability index {12.6} and failure
probability {10737} were obtained.

Enhanced Monte Carlo method gave estimates of the reliability index in the range {12.4 ,
14.6%}, which corresponds to a probability of failure in the range {10736 ,107*8}. These
results involve a lot of uncertainties due to the fact lack of information when 1 — 1. Even
though the confidence interval indicate a huge amount of uncertainties related to these results,
the estimates show a significant higher safety level than required in codes and standards.

The results of the failure probability showed that hanger components tend to fail during
estimation, hence the hanger components seemed to be the weakest one, i.e. ratio between
capacity and loading is lower for hangers compared to main cable components. Provided
consideration due to the assumptions made in previous chapters.

Both of the solution strategies show that the reliability of the bridge is widely oversized. The
Second-Moment method showed that standardized partial safety factor for the loading
contribute most to the oversizing of the structure. The main reason for this is due to the fact
that the standardized partial safety factors ensure reliable results for all kind of structural
problems. Stated in another way, to ensure reliable results for structures exposed to all kind of
action forces, i.e. safety requirements are fulfilled, overestimation of the partial safety factors
appears. Results from the load calibration showed that structures exposed to dead load only
have a rare occurrence of large deviations, in other words dead load have a low variance.
Standardized partial safety factors for loading account for high a variance, thus a high
oversizing of the self-weight loading.

The conclusion of the reliability analysis is in agreement with the stated hypothesis:

Structures, where the main loading consist of dead load, tend to be oversized due to the low
variance in the loading.

The effects of the use of codes and standard use in design calculation, in structures where self-
weight is the major loading, are oversizing and inefficiency use of resources. Oversizing leads
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to excessive use of materials and resources, thus the structure becomes cost inefficient and
harming the environment.

In order to conduct the reliability analysis in an acceptable manner, several assumptions were
made. Firstly, the limit state function was assumed to consider axial loading and resistance for
the hangers and main cables only, consequently reliability analysis and code calibration were
performed on the hanger and main cable components. In addition, the structure was assumed
to behave as a series system.

The loading in each component was calibrated by taking advantage of an influence surface, as
mentioned in sections 5.2.2 and 5.3, and by estimating the self-weight of the bridge deck
chapter 3.

The resistance was estimated on behaviour of codes, manuals and available data from tensile
tests. Assumptions of the correlation between the components may cause uncertainties related
to the results, but within acceptable limit for the total conclusion.

Both the loading and the resistance capacities were assumed to behave normally distributed,
due to the effect of the Central-Limit-Theorem, see Freeman and Benjamin and Cornell [11],
[12].

All assumptions made in the analysis are considered to include some uncertainties. The
uncertainties are assumed to be within acceptable limits of accuracy compared to the
magnitude of the results, which is way above safety requirements from codes.

Further, the reliability analysis is carried out by using two different methods, both of the
methods are well-known and often used methods in reliability analysis. The Second-Moment
method uses the two first moments of each random variable in the limit state function to
derive the reliability index, hence the name Second-Moment. In this analysis, the method uses
the strength based terminology Load and Resistance Factor Design (LRFD) format, which
compare required strength to actual strength by including several safety factors Y in the
calculations, see [31].

The second method is a Monte Carlo method, which involve repetitive iterations. The method
generate n simulations of the random variables included in the limit state function and count
the occurrence of limit state violation, when the generations are applied. Due to the large
number of iterations needed in order to obtain good results, the Crude Monte Carlo method
tend to be too time consuming. Hence, the Enhanced Monte Carlo method was applied in
order to reduce the number of iteration needed. The Enhanced Monte Carlo method is
elaborated in section 2.10.3.

7.1 Further work

In further work, reliability analysis with more attention to reduction of the uncertainties
should be performed.
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As stated in the previous section, assumptions and simplifications due to reduction of the
complexity of the problem where made. Considerations and investigation of following steps
should be accounted for in order to increase the accuracy of the results:

- More consideration of the entire bearing system. Include contribution from pylons,
bridge deck, fundaments, etc. in the resistance and loading estimation.

- Consider taking advantage of other distribution. For instance, Gumbel distributed
loading and Log-Normal distributed resistance capacity.

- Further investigation of the correlation coefficient and estimation of characteristic
values for the loading and resistance capacity.

- Taking advantage of more advanced computational tools in utilization of the Enhanced

Monte Carlo method, i.e. gather more data points (Ai, Df (Ai)), especially for higher
values of 4;.

In addition, in order to increase the reliability of the analysis other steps not mentioned here
should also be considered, e.g. uncertainties due to the statistical tools used, simplifications of
the structure, human error, etc.

Attention of other loads acting simultaneously and cooperation of loading should be
considered. In this thesis, the major loading is assumed to consist of the self-weight of the
structure. Investigation and research about the validity of this assumption should be made in
order to increase the reliability of the statement “...where the loading only (or nearly only)
consist of self-weight...” (hypothesis). In addition, reliability analysis of similar structures, i.e.
major loading consist of self-weight, should be performed in order to strengthen the
credibility of the conclusion in this study.
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Statens vegvesen

12-2950 HARDANGERBRUA
BEREGNINGER
KAPITTEL 1: GRUNNLAG

5 Til godkjenning 14.11.2008 AGK Bl Bl

4 Til teknisk delgodkjenning. supplert 31.10.2007 AGK Bl Bl

3 Til teknisk delgodkjenning, supplert 13.08.2007 AGK Bl Bl

2 Til teknisk delgodkjenning, supplert 06.03.2007 AGK GAG Bl

1 Til teknisk delgodkjenning 16.01.2007 AGK GAG Bl
Revisjon | Revisjonen gjelder Dato Utarb. av Kontr. av Godkj. av
Prosjekt: Revisjon

12-2950 Hardangerbrua
5

Figure A.1: Basis of Calculation.
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| iy | Hardangerbrua SIDE | 1-7
Statens vegvesen Kapll‘lel 1 : Gmnnlag DATO 1 41 1 .2003
Teknologiavdelingen sicn. | AGK

1.4 Hoveddata
1.4.1 Geometri

Spennvidde 1310 m

Filheyde beerekabel 121 m

Seilingshayde 55 m

- bredde 300 m

Kjerebanebredde 9 m

Gangbanebredde 325 m

Kotehayde S-punkt Vallavik 102,763 m

Kotehayde S-punkt Bu 102,763 m

K.otehayde T-punkt Vallavik 187.5 m

Kotehayde T-punkt Bu 187.5 m

Planumskote ved tam 527711 m

Planumskote ved brumidte 63,5 m

Avstand mellom kabelplan 145 m

Avstand mellom S-punkter, Vallavik 17,319 m

Avstand mellom S-punkter, Bu 17,319 m
1.4.2 Stivhet
Awvstivningsbasrer: MNedlegg 1.3/
A=05813m°
Ix = 0,972 m*
ly = 16,448 m* \
Iy = 2,460 m*
Iy = 4,298 m? .
E = 210.000 N/mm® !
Horisontal neytralakse: - 1953 mm fra undersiden

Vertikal naytralakse:

Skjersenter: - 1759 mm fra undersiden
- 155 mm til side for vertikal nayftralakse

Figure A.2: Basis of Calculation.
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Baerekabler:
A=022132 m® (effektivt stalareal pr. baerekabel) TKT!

E = 200.000 Nfmm? 124

Hengestenger:
A = 3200 mm®

E = 160.000 N/mm?

Merknad vedrarende E-modul for hengestenger:

P et senere tidspunkt (under produksjonen av hengestengene) skal den faktiske E-modulen
fastlegges ved strekkpraving. Inntil dette er utfert baseres analysene pa angitt E-modul. Angitt E-
modul for hengestenger er basert pa resultater fra strekkpreving av lukket, spiralslatt kabel fil andre
bruer. Det vises spesielt til rapport fra strekkpreving av baerekabler @97 til Lysefjordbrua.

Tam:

Stivheten vil bli vurdert spesielt ifm. analyse og dimensjonering av tam i hovedkapittel 4. Inntil mer
detaljerte beregninger og vurderinger foreligger, kan det i globale analyser regnes med felgende avre
og nedre grense for E-modul:

Ecurisser = 40 000 N/mm?
Ecisset = 10 000 Nimm?

Merknad:

Som det fremgar er urisset E-modul sterre enn betongmaterialets E-modul = Ey = 29.764 MNfmm?.
Den angitte E-modul pa 40 000 N/mm* er ment 4 fange virkningen av armering og i analyser regnes
den effektive E-modul derfor starre enn E,.

Figure A.3: Basis of Calculation.
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1.4.3 Masse

i) Detaljert oppsett

Awstivningsbazrer: Nedlegg 1.4/

Langsgaende stal 4563 kg/m

Ledeskovler (2 stk) 114 kg/m

Tverrskoft 1119 kg/m

Medre hengestangsfester B4 kg/m

Rekkverk mifesteplater 183 kg/m

Belegning (membran og slitelag) 2674 kg/m

Elektroinstallasjoner etc. 35 ka/m

Transportskinne IPE 120 11 kg/m

Lysmaster mffesteplater 5 kg/m

Sluk 3 kg/m

Overflatebehandling 34

Sum 8825 kg/m

Lengde avstivningsbazrer 1308 m

Tonnasje | hovedspenn 11 543 tonn

Bazrekabler: TKTT

Baerende tverrsnitt 17374 kg/m

Sink 58,5 kg/m

Vikletrad 41,5 kg/m

Kabelrekkverk 7.0 kg/m

Polyetylenduk 6,6 kg/m

Sum (pr. baerekabel)™ 1851 kg/m

Lengde basrekabel i hovedspenn 2x13392 M

Tonnasje | hovedspenn 4 958 tonn

Tonnasje inkl. bakstag 6520 tonn

* malt pr. lengdeenhet baerekabel - ikke horisontal projeksjon.

Figure A.4: Basis of Calculation.
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Hengestenger, 130 stk: Nedlegg 1.4/
Spiralslatt tau 1594 tonn

Hengestanghoder 52,3 tonn

Hengestenger 31-35 (staépejemn) 7.0 tonn

Lagerdetaljer hengestanghoder 15,1 tonn

@vre hengestangsfeste 1654 tonn

Tonnasje i hovedspenn 399.2 tonn

Fordelt langs avstivningsbazrer 305 kg/m
(3992000/1308)

Kabelklemmer bakstag: Mat.liste D54/
Totalt antall kabelklemmer 44 stk

Vekt pr. kabelklemme inkl. bolter 336 kg

Tonnasje kabelklemmer bakstag 15 tonn

Ekv. masse langs eit bakstag™ 19 kg/m
** malt pr. lengdeenhet bakstag = 15 000 / (4x191,5)
Samlet tonnasje i hovedspenn:

Awvstivningsbaerer 11 543 tonn

Baerekabler 4 958 tonn

Hengestenger 399 tonn

Totalt 16 900 tonn

Massetreghetsmoment i hovedspenn: Nedlegg 1.4/
Avstivningsbasrer 222 860 [kgm/m]

Bazrekabler 194 586 [kgm‘/m]

Hengestenger 10 965 [kgm®/m]

Totalt, avrundet 428 411 [kgm¥ym]
il) Nekkeltall til bruk I globale analyser /K2/

Teoretisk iht. Brukes i globale Awvik
oppsett over analyser i K2/ [%]

Masse pr. lapemeter [kg/m]:

Avstivningsbazrer 8 825 8832

Baerekabler inkl. alt 2=1851 2x 1848

Hengestenger 305 295

Totalt 12832 12 823 -0.07
Massefreghetsmoment [kgm-/m]:

Avstivningsbazrer 222 860 224 346

Basrekabler 194 586 194 271

Hengestenger 10 965 9 829

Totalt 428 411 428 446

| de globale analysene i hovedkapittel 2 benyttes mao. massedata som avviker arlite i forhold til
teoretiske verdier fra masseberegningen i vedlegg 1.4. Grunnen til defte er @rsma justeringer som ble
gjort i masseberegningen etter at de globale analysene var ferdigstilt. Avvikena har ingen praktisk
betydning for analyse eller dimensjonering. Kabelgeometriberegning for montasjetegning baseres pa

teoretiske verdier.

Figure A.5: Basis of Calculation.
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1.5 Materialer

Awvstivningsbaerer fy = 355 N/fmm? nos
E = 210.000 N/mm?®

Baerekabler f, = 1570 N/mm? 121
E = 200.000 N/mm?®

Hengestenger f, = 1570 N/mm?
E = 160.000 N/mm?

Tamfundament Fasthetsklazse B35' 117

Spredesadelfund. . = 45 N/mm?

Forankringskloss fos = 35 N/mm?*

Forankringsplate fon = 27,3 Nimm?
fin = 2,00 N/mm’

E., = 26.968 N/mm*
E = 27.602 N/mm?

Tam Fasthetsklasse B45 M
Viadukt fs = 55 N/mm?*
Spredekammer fos = 45 Nfmm?
f = 34,3 Nlmm?
fin = 2,30 N/mm®
E., = 28.879 N/imm?
E. = 29.764 Nimm?®
Understap Fasthetsklasse B5S nar
av sadel pa fs = 67 Nimm?
tarntopp fes = 55 Nimm?
f = 39,8 Nlmm*
fin = 2,55 M/mm®
Ee = 30.197 N/mm?
Es = 31.611 Nimm®
'B35 betong:

B35 betong brukes i massive konstruksjonsdeler og utferes som spesiell lavwarmebetong for & gi
redusert varmeutvikling under herding og redusert termisk opprissing i herdefasen. Betongens

fasthetsegenskaper mht. dimensjonering er som for vanlig B35 betong.

Materialfaktorer:

Generelt benyttes materialfaktorer i trad med prosjekteringsreglene og NS 3472 og NS 3473.

Materialfaktorer tarn:
For tamene gjelder spesielt: For ordinaer bruddgrensetilstand benyttes reduserte materialfaktorer for

betong og armering i trad med NS 3473 tabell 4. Under dimensjoneringen tas det hensyn til avvik i
tverrsnitisdimensjoner.

Figure A.6: Basis of Calculation.
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Standard normalfordeling
O(z)=P(Z < z)

z | 00 i1 02 03 L4 A5 L6 07 08 09
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<26 .0047 0045 0044 0043 0041 0040 0039 0038 0037 0036
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21192000 20601 2033 2005 1977 1949 1922 1894 .[B67
24200 2389 2358 2327 2296 2266 2236 2206 2177 (1148
2743 2709 2676 2643 2611 2578 2546 2514 2483 2451
085 3050 3015 2081 2946 2012 2877 2843 2BI0 2776
3446 3409 3372 3336 3300 3264 3228 3192 3156 3120
JE21 3783 3745 3707 3669 3632 3594 3557 3520 3481
A207 4168 4120 4000 4052 40M3 3974 3936 3897 3859
4602 4562 4522 4483 44943 4404 4364 4325 4286 4247
S000 4960 4020 4880 4840 4801 4761 4721 4681 4641

L
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Table B.1: Tables of Standard Normal Probabilities for negative Z-scores.
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Standard normalfordeling
B(z) = P(Z < z)
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6255 6293 6331 .6368 6406 6443 6480 6517
6628 6664 6700 L6736 6772 6808 6844 6879
6985 7019 7054 .TOR8 7123 7157 7190 7724
7324 7357 73RO 7422 7454 .T4B6 7517 .7549
J642 7673 7704 7734 7764 7794 7823 7852
7939 7967 (7995 8023 8051 8078 8106 8133
8212 8238 8264 .B289 8315 BMO 8365 8380
Bd46)  .B485 B508 8531 .8554 .BS577 8590 8&7I
B686 .RT08 .B729 8749 8770 8790 8810 .R830
BEEE  ROO7 8925 8944 R962 BUBD 8997 .OOIS
9066 9082 0000 9115 9131 9147 9162 9177
9222 9236 9251 9265 9279 9292 9306 93|19
9357 9370 9382 9394 0406 9418 0420 044]
9474 9484 0495 0505 9515 9525 0535 .0545
9573 9582 9591 9599 9608 0616 9625 9633
9656 9664 9671 9678 9686 9693 0600 0706
9726 9732 9738 9744 9750 9756 9761 9767
9783 9788 9793 9798 9803 9808 9812 987
D830 9834 983K 9842 9846 98BS0 9854 .OR5T
9868 .OB71 9875 9878 .9RRI .O884 9887 .OR9(
G898 9901 9904 9906 9909 9911 9913 9916
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9941 9943 9945 0946 9948 9949 995] 0052
9956 9957 9950 9960 9961 9962 9963 9964
9967 9968 9060 9970 9971 9972 9973 0974
9976 9977 9977 D978 9979 9979 G9RD .0OK|
D082 9983 O0R4 0084 9985 .GOBS .00RG .DURG
D987 9988 99BR 9980 99RO 9989 0000 000
9991 9991 9992 9992 9992 0992 9993 0993
0994 9994 9994 9994 0994 9995 0005 0995
0995 9096 9096 0996 U006 0996 9996 0007
9997 9997 9997 9997 0097 0907 0007 0998
9098 9998 9998 9998 DOU§ UYOR 000 099g
9999 9999 9099 0909 9999 9999 GY9Y gOgY
9999 9999 9999 9999 0009 QDO 0009  Qg9g

Table B.2: Tables of Standard Normal Probabilities for positive Z-scores.
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Kritiske verdier i standard normalfordelingen
P(Z>z)=«

~tt

o
2| 0.842
5

|

A5 1 1.036

1] 1.282

£75 | 1.440

05 | 1.645

04 | 1751

03 | 1.8B8I

A25 | 1.960

02 2.054

01 2326

005 | 2.576
001 | 3.090
0005 | 3.291
0001 | 3.719
L0005 | 3.891
00001 | 4.265
000005 | 4.417
000001 | 4.753

Table B.3: Critical values in standard normal distribution.
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Tensile test data
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Figure C.1: Tensile test data from Bridon.
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Figure C.2: Tensile test data from Bridon.
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Figure C.3: Tensile test data from Bridon.
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Figure C.4: Tensile test data from Bridon.
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Figure C.6: Tensile test data from Bridon.
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A B C D E F G H J K L
1 1680 1680 1680 1650 1680 1700 1700 1680 1670 1680 1720 1690
2 16590 1700 1710 1700 1730 1690 1690 1680 1690 1690 1720 1720
3 1690 1680 1670 1680 1690 1680 1680 1680 1650 1710 1680 1680
4 1680 1700 1670 1670 1680 1710 1710 1660 1680 1670 1690 1690
3 1680 1660 1700 1680 1730 1660 1660 1700 1680 1670 1700 1680
53 1700 16590 16590 1710 1720 1690 1690 1660 1700 1690 1690 1690
7 1670 1670 1730 1660 1690 1690 1690 1650 1690 1670 1670 1700
8 16590 1670 1680 1680 1720 1660 1660 1660 1690 1650 1650 1680
9 1690 1700 1700 1670 1710 1700 1700 1670 1660 1690 1690 1680
10 16590 1670 1700 1650 1710 1690 1690 1710 1690 1680 1680 1690
11 1710 1696 1730 1660 1690 1690 1690 1650 1690 1710 1690 1690
12 1700 1696 1700 1670 1680 1690 1690 1690 1680 1680 1670 1690
13 1670 1707 1720 1670 1680 1690 1690 1650 1670 1700 1700 1700
14 1700 1670 1700 1670 1660 1700 1700 1680 1710 1690 1700 1700
15 1710 1670 1730 1690 1660 1680 1680 1680 1660 1720 1700 1680
15 1700 16590 1720 1680 1710 1680 1680 1670 1700 1700 1690 1690
17 1690 1680 1720 1650 1710 1690 1690 1650 1650 1700 1670 1680
18 1680 1700 1720 1670 1700 1670 1670 1680 1660 1700 1710 1660
19 1700 1690 1720 1670 1720 1690 1690 1680 1680 1650 1700 1690
20 16590 16590 16590 1680 1680 1690 1690 1690 1690 1690 1700 1700
21 1710 1710 1690 1660 1670 1670 1670 1710 1690 1670 1690 1690
22 1680 16590 1700 1700 1680 1700 1700 1710 1690 1670 1680 1700
23 1670 1670 1720 1710 1680 1700 1700 1690 1670 1700 1690 1710
24 1720 1680 1680 1680 1680 1690 1690 1700 1660 1680 1680 1680
25 1700 1660 1680 1700 1680 1680 1680 1670 1740 1680 1680 1720
26 1700 1680 1650 1680 1680 1660 1660 1680 1710 1690 1710 1690
27 1670 1680 1660 1700 1660 1690 1690 1670 1690 1650 1670 1690
28 1710 16590 1670 1700 1670 1660 1660 1710 1670 1620 1660 1660
29 1700 1690 1670 1690 1680 1660 1660 1710 1660 1650 1710 1690
30 1670 1680 1680 1670 1680 1670 1670 1680 1680 1670 1730
Figure C.7: Excel script of obtained tensile test data from Bridon.
A B C D E F G

1 |tensile strength test (hanger)

2 |fy [Mpa] A(x-mean)*2 sum of fy 605259

3 1680 35,50035304 35,50035304|mean pr. trad 1686 MPa 6488,328 kN

4 1690 16,33600763 16,33600763|sum of A 119296,4

5 1690 16,33600763 16,33600763 | VAR pr. trad 333 MPa 1282,42 kN

6 1680  35,50035304 35,50035304

7 1680 35,50035304 35,50035304|Areal trad 3848,451

8 1700 197,1716622 197,1716622|STD pr. trad 18,25459 MPa

9 1670 254,6646984 254,6646984

10 1690 16,33600763 16,33600763

11| 1690 16,33600763 16,33600763

12| 1690 16,33600763 16,33600763

1 31 1710 578,0073168 578,0073168

Figure C.8: Statistical interpretation of the obtained tensile test data.
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