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Problem description 
Wireless power transfer is the technology to transfer power without any conductors touching. The 

type of wireless power transfer that is most commonly researched is to use magnetically coupled 

inductors. This technology is called Inductive power transfer, and it provides a good and stable 

connection as long as the coils are relatively close to each other and correctly aligned. For marine 

applications the coils are moving, which makes it crucial to have a good control system to control 

the power flow and output voltage and currents. 

This master thesis will investigate the requirements, operation and performance of control 

techniques for wireless charging in marine applications. This will be done by using simulation 

tools to study the magnetic coupling as the coupling is changed by movement of the coils. The 

inductive power system must have a controller which can handle the changes and be able to 

control the output to fit the application. Marine and offshore applications tend to have large 

power ratings, which introduce some new challenges. The Matlab/Simulink environment will be 

used for such analyses. Initially the model from the specialization project will be further 

developed, and then a controller can be tested and designed using Matlab/Simulink. 
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Abstract 
This report is a master thesis whose purpose is to show the steps in designing a control system 

used for regulating a system for inductive power transfer (IPT) of marine vessel and offshore 

applications.  

The constant increase in focus on green energy and CO2-emission reductions has led to an 

increase in electrification. Especially electrification of the transportation sector has great impact 

on the global CO2-emissions, thus the amount of vehicles and marine vessels that runs on 

electricity has increased rapidly and still is. This is where wireless power transfer (WPT) will be 

an important technology. Wireless power transfer refers to the art of transferring power without 

the need of physical contact. In this thesis only “inductive power transfer” (IPT) will be covered, 

because it is the most promising technology for charging vehicles and providing large power 

transfer to vessels or offshore applications. “Inductive power transfer” is in principle a coreless 

transformer that transfers power via the induced magnetic field created by the coil on the sending 

side that induces currents in the coil on the load side. This technology has several perks compared 

to cables, such as: increased safety, easy to connect, minimizes the need for maintenance of the 

power supply and it is well suited for rough environments.  

During the autumn 2015, some models of a basic IPT-system were made, and measurements of a 

working IPT prototype were done. The prototype was part of a SINTEF project on battery 

charging marine vessels. This thesis is the continuation of this project, and the objectives are to 

upgrade the average, nonlinear time-invariant model found in the project work and then linearize 

it. The linearized model is then analyzed for six different cases where the coupling coefficient is 

changed and the respective transfer functions are extracted. The transfer functions are analyzed 

with respect to control theory, and the possibility of second order approximations are tested. 

Finally the design procedure of an initial controller for the IPT system is done by the use of 

MatLab/Simulink. 

The results from the analysis of the transfer functions shows that the transfer functions have valid 

second order approximations at low coupling coefficients, but as the coupling gets stronger (coils 

are separated by a smaller air gap) the approximation becomes invalid. The second order design 

methods provide the best tools for handling design of a controller, but because systems may not 

always be represented by a second order approximations in its operation range, Other methods 

should be explored. For the area that cannot be approximated, design using computer tools are 

proposed. The theory behind the computer tools should be further studied in order to more easily 

design controllers that can adapt to changes in the system transfer function according to the 

coupling of the coils.  
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 For further work I propose to look more into the second order approximation to be able to 

represent more transfer functions as second order approximations. Additionally, the relationship 

between the coupling coefficient and how the poles and zeroes are located should be looked into. 

The mathematical model, based on coupled mode theory, used to model the IPT-system should 

be further developed. 
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Sammendrag 
Denne rapporten er en avsluttende masteroppgave ment for å vise veien til å designe et 

kontrollsystem for et induktivt kraftoverføringssystem for marine fartøy og offshore utstyr.  

Den konstante økningen av fokus på miljø, fornybar energi og reduksjon av CO2-utslipp har ført 

til økt elektrifisering. Spesielt stor er elektrifiseringen av transportsektoren siden den står for mye 

av de globale CO22-utslippene. Elektriske biler og marine fartøy som går på bare strøm har økt 

betydelig, og fortsetter å øke. Dette et marked der trådløs kraftoverføring vil være en viktig 

teknologi å satse på. Trådløs kraftoverføring refererer til kunsten å overføre strøm uten å trenge 

fysisk kontakt. I denne oppgaven vil bare «induktiv kraftoverføring» bli dekket, fordi det er den 

mest lovende teknologien for å kunne lade elektriske kjøretøy og for å kunne overføre de store 

mengdene kraft som trengs for å drive marine fartøy og elektrisk utstyr offshore. Et induktivt 

kraftoverføringssystem er i prinsippet en kjerneløs transformator som overfører strøm via 

magnetfeltet som dannes rundt spolen på kraftkilden sin side, og tas opp av den andre spolen på 

lastsiden. Denne teknologien har flere fordeler ovenfor kabler, som f. eks: økt sikkerhet, lett å 

tilkoble, minimaliserer behovet for vedlikehold og er veldig robust og tåler tøffe værforhold.  

Gjennom høsten 2015, ble modeller av et grunnleggende «induktivt overføringssystem» laget og 

flere målinger av en fungerende prototype ble gjort. Prototypen var en del av et SINTEF prosjekt 

som omhandlet batterilading av ferger med et «induktivt overføringssystem». Denne oppgaven er 

en fortsettelse på dette prosjektet, og målene er som følger: Å oppgradere den ulineære, 

tidsuavhengige gjennomsnittsmodellen av systemet og deretter linearisere det. Den lineariserte 

modellen blir deretter testet for seks caser som simulerer endring i koblingen til spolene 

avstanden mellom dem endres, og transfer funksjonen kan trekkes ut ved hjelp av MatLab. 

Transfer-funksjonene blir analysert med vanlig reguleringsteknikk, og det er ønskelig at disse kan 

bli representert av andre ordens tilnærminger. Til slutt vises design-prosedyren, og førstegangs-

kontroller blir designet i MatLab/Simulink. 

Analysen av transferfunksjonene viser at når systemet drives med stort luftgap er andre ordens 

tilnærming gyldig, men ved mindre luft gap/sterkere kobling ser det ut til at andre ordens 

tilnærming ikke er gyldig. Designmetoder basert på annengrads tilnærminger gir de beste 

verktøyene for å designe en kontroller, men det er ikke alltid en andreordens tilnærming er 

gyldig. Siden noen operasjonstilstander av det «induktive kraftoverføringssystemet» kan gi 

transferfunksjoner som ikke kan representeres med andreordens tilnærminger, burde andre 

alternative designmetoder utforskes. Derfor foreslås det å sette seg inn i dataverktøy og designe 

kontroller ved hjelp av teorien som brukes av programmer som Control System Manager som er 

en del av Matlab. Dette kan brukes for å designe en kontroller som tilpasser seg endringer av 

koblingsstyrken til spolene.  

For videre arbeid foreslår jeg å utforske annengrads tilnærminger mer, for å kunne representere 

flere transfer funksjoner godt nok som annengrads tilnærminger. I tillegg, burde forholdet 
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mellom lokasjonen til poler/nullpunkter med koblingskoeffisienten til spolene. Modellen som er 

blitt brukt til å beskrive «induktiv kraftoverføringssystemet», bør utvides og undersøkes mer. 
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1 Introduction 
 

Electricity is the most important infrastructure in the modern world. Almost every part of our 

daily life demands electricity. Traditionally, electricity is produced by huge centralized power 

plants burning fossil fuel. But today, the focus gets more shifted towards CO2-emission 

reductions and towards increasing the percentage of energy created by renewable energy sources. 

By phasing out the electricity production based on fossil fuel, electricity becomes more attractive 

as the main energy medium for all sectors. It is a consensus that reduction of climate gases and 

increase in renewable energy is the first step in the right direction to a sustainable energy 

production. Especially the transport sector has great potential when it comes to reducing the 

usage of fossil fuels, either by using hybrid systems or fully electrical propulsion. 

As the focus on electricity increases, more research is focused on making the electrification of the 

transport and marine sector possible. This will require large power transfers, which presents some 

security hazards when using conventional cables and sockets to “plug” the application to the 

power source for charging. This is where wireless power transfer (WPT) introduces new 

possibilities that increase safety and facilitate the establishment of the power transfer.  

Wireless power transfer is a general term for transferring power without the need of physical 

contact, but in this thesis the focus will be solely on inductive power transfer (IPT). To further 

explain the concept of inductive charging, an electrical vehicle (EV) is shown in Figure 1.1 where 

an adapter is mounted on the vehicle.  

 

Figure 1.1 shows how Plugless offers electrical vehicle customers to charge their cars wirelessly[1]. 

 

This adapter is connected to the car’s electrical system and the parking pad is connected to the 

grid. The power transfer is possible because both the pad and the mounted adapter each contain a 
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coil that is magnetically coupled to the other. This means that current running through the coil in 

the parking pad creates a varying magnetic field that induces currents in the receiving coil of the 

adapter. The car needs to be parked in the correct spot and it charges automatically. This 

technology has also been introduced to consumer products like cell phones, cameras and other 

electronics with batteries. 

It is quite simple to design IPT-systems for stationary applications like a parked car or consumer 

electronics as the coupling between the coils are constant. Even though it seems simple in theory, 

many factors need to be taken into account when designing an IPT-system. Changes in the load 

and changes in the coupling are the most typical challenges that may change both power transfer 

capacity and the voltage and current magnitudes to the load. In order to cope with these 

challenges, both the design of the components and the control system are important. In this thesis 

the main focus is on control design. 

Wireless power transfer saves time and reduces wear and tear compared to traditional solutions. 

Another promising use of wireless power transfer is in bio-implants that typically have a battery 

pack. Earlier, the patient needed to have another surgery to replace the batteries, or even worse, 

have an external power source and wires through the tissue to power the implant. Inductive 

power transfer (IPT) allows the external power source to simply be placed in the vicinity of the 

implant to power it. 

 

1.1 Background for WPT 
The physics behind wireless power transfer is based on both Maxwell’s equations that were 

postulated in 1862, and on Ampere’s and Faraday’s work. Ampere’s circuit law describes how 

the current and the electric field in a conductor are proportional to the magnetic field circulating 

the cross section of the conductor. Faraday’s law of induction describes how changes in the 

magnetic field around a circuit induce an electromotive force (emf). These laws were the 

foundation of the field of electrical engineering, and since that time scientists have searched for a 

way to transfer power without the need of wires. Faraday made direct current (dc) machines and 

alternating current (ac) machines possible, and Nikola Tesla greatly improved these when he 

invented the induction machine[2]. Wireless power transfer does happen between the stator and 

rotor of the induction machine, but the coupling distance is very short and contained. Nikola 

Tesla was a genius when it came to electrical engineering and he dedicated his life to exploring 

the phenomenon electricity and its limits. Especially the thought of wireless power transfer 

intrigued him[3]. Tesla did several experiments on wireless power transfer by using the famous 

tesla coils, but they were neither reliable, efficient nor safe for practical applications. The failed 

experiments on wireless power in the late 19
th

 century led to a breakthrough in sending 

information wirelessly, but for almost a century wireless power transfer seemed like an 

unreachable dream. During the 1800’s and most of the 1900’s there were huge discoveries made 

on long distance communication, but nothing happened on the wireless power transfer front. 
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WPT began to fetch academic interest in the late 1970’s in the field of powering electrical 

vehicles[2]. In the 1980’s a huge project on IPT-driven vehicles was conducted by The Partner 

for Advanced Transit and Highways and called the PATH-project. This project was done in 

California and developed a roadway powered IPT vehicle with a variable air gap[4]. They 

managed to couple a bus using IPT and achieving 60% efficiency at a controlled gap of 50-

100mm. The tests showed that up to 40 kW could be transferred if the bus battery was totally 

discharged[4]. The gap was increased to 150-200mm when power transfer was not needed. This 

system used capacitive detuning of the pickup system to control the power. This demanded huge 

amounts of reactive power from the generator, which was possible, but at reduced efficiency. The 

PATH project was later abandoned due to higher costs and more losses than anticipated.  

With the rapid development of new and better power electronics, the WPT industry has grown 

from a technological curiosity in 1995 to the billion-dollar industry it is today. Close to the 

millennia shift huge progress has been made on WPT of short gap and stable coupling 

applications. After gaining full understanding of stationary IPT-systems, the research has been 

focused on handling changes in parameters like coupling and load. Research on new ways to 

model IPT-systems, and research on control systems governing the power transfer and voltages 

and currents to ensure desired operation has increased a lot in the last decade[2]. This research is 

important to be able to: optimize bio-implants, and to charge offshore applications and electric 

powered vessels while waves move the pickup adapter relative to the power source.  

 

1.2 WPT today and in the future 
The huge increase in research on wireless power transfer and the capabilities of today’s power 

electronics have made it possible to make working prototypes for the transport sector. The 

Plugless pad shown in the introduction is one example of a working prototype that the customers 

appreciate. Another new prototype that is very relevant to this thesis is made by the marine 

company Wärtsilä, which focuses on new energy solutions for the marine sector. They have 

designed a prototype of a wireless charging station for marine vessels that also works as the 

mooring[5]. This can make not only the charging of battery ferries easier, but also eliminate the 

need for many huge and cumbersome cables when providing ships in port electricity (cold 

ironing). Medical implants have also greatly improved as wireless power transfer has been 

developed. Implants can now be powered deep into the body from the outside without harmful 

wires through tissue[6]. Research on medical micro robots, that is powered and controlled by a 

WPT connection, is also a field of research[7]. The main barrier for a huge WPT revolution today 

is the difference in cost and the reduced efficiency compared to traditional solutions[8]. But the 

costs are being reduced, and a lot of research on maximum power tracking is done[9].  

In the future, WPT-systems will enable power to be transferred wirelessly at acceptable 

efficiencies everywhere within a set domain. One such domain may be apartments, mono rails 

and other railway systems, or the roads themselves may power the cars. This will enable great 
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reduction in the needed battery capacity of appliances or even remove the need for batteries for 

some[6]. Especially the transport sector will benefit greatly from this since the batteries in EV 

represent the majority of the weight of the vehicle. The greatest challenge is to implement WPT 

in a cost efficient way. However, great improvements of the technology are made every year. 

1.3 Objectives 
During autumn 2015, the specialization project that this thesis is an extension of was done. There, 

mathematical models and simulations for a simple IPT-system were developed, which needed to 

be further tested. The first objective of this thesis is to improve the mathematical models and the 

simulations to be good approximations of the real system. When the models are updated, the next 

objective is to make a linear approximation of the system to facilitate the design of a control 

system. When the linearization is performed and the desired transfer function is extracted, the 

final objective can be fulfilled. The final objective is to design a controller for a simple IPT-

system by the use of classic control theory. As a side objective, the possibilities and challenges of 

wireless power transfer will be considered and discussed. 

 

1.4 Limitations 
This thesis will only cover the basic topologies of IPT-systems, where the power electronics are 

modeled as voltage sources, and the circuit is described by simple resistors, inductors and 

capacitors. There are also other ways to transfer power wirelessly, but for this thesis inductive 

power transfer is chosen. Also, in order to get manageable results, the nonlinear system needs to 

be linearized and only basic linear control theory will be used to analyze and design the 

controller. For the design of the controller, a certain interval of different strengths of the magnetic 

coupling between the coils will be analyzed, and only linear movement of the coil will be 

considered. That means that the rotation of coils during operation is considered small enough to 

be neglected for marine and offshore applications. Available papers focusing on marine and 

offshore applications are scarce, but most traits and phenomena regarding IPT-systems are the 

same for all IPT applications.  

 

1.5 Approach 
The first objective will be achieved by testing the response from several successive changes in 

the input, unlike the single step change in the earlier project. The linearization of the nonlinear, 

time-invariant averaged model, is done according to the steps done by Hongchang et al.[10]. 

First, linearize the system using state space model (time domain), then transform it to frequency 

domain (see chapter 4.3 for details). The design of the controller is done in several steps: first, the 

linearized transfer function needs to be checked for the system settings giving the best coupling 

between the coil, then the lowest acceptable coupling. Individually, these settings give quite 

different transfer functions and responses. The two different transfer functions need to be 
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simplified, preferably from a fourth order system to a second order approximation of the system. 

Then, a controller is designed in frequency domain using Bode plots and basic control theory 

procedure. The additional objective is reached by reading recent research on WPT-systems and 

cross reference introductions from several papers. 

 

1.6 Structure of report 
In chapter 2, the basics for an inductive power transfer is explained and the most important 

components are shown. This includes the magnetically coupled coils, the effects of changes in the 

relative positioning of the coils, and why the coupled coils need capacitive compensation. 

Finally, a working IPT-system is explained. To be able to work and analyze an IPT-system, we 

need to make mathematical models. 

 Chapter 3 explains how the different models have been derived, what they are used for, and the 

needed simulations of a basic IPT-system is shown. The default parameters will be defined and 

comparisons between models will help verify the validity of the model, which will be used for 

further studies. 

Chapter 4 is all about control theory used to analyze the IPT-system. The chapter starts with, 

introducing both modelling in frequency domain and time domain, and making a short 

comparison of the two methods. Followed by theory and expressions used to linearize the 

nonlinear averaged model. After the process of linearization is explained, second order systems 

are explained. Theory used to make a second order approximation of the higher order IPT-system 

is also explained, and important design criteria are explained with respect to the IPT-system and 

second order approximations. This chapter is concluded with, some theory on 

controllers/compensators to optimize the IPT-system will be given. 

Chapter 5 will use the theory explained in chapter 4 on six different cases to simulate the effect of 

coil misalignment. The six cases will be modelled, then linearized using MatLab and finally 

analyzed. The results will be shown for each step on the way accompanied by important 

discoveries.  

Chapter 6 discusses the design of a controller using computer tools 
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2 System theory for an inductive 

power transfer system 
 

An inductive power transfer system is one way to transfer power from a power source to an 

application without the need of physical connection of conductors. This chapter will explain the 

theory behind the IPT-system and highlight its important components. An understanding of how 

the physical system and its components behave is important in order to design appropriate control 

systems. 

 

2.1 Mutually coupled magnetic circuit 
The heart of an inductive power transfer system is the magnetic link formed between the two 

circuits. The circuit for the power source is mutually coupled to the circuit of the application that 

needs power. This thesis will only handle two circuit systems with one sending side and one 

receiving side. Current running in the primary side induces a voltage in the secondary circuit as is 

indicated in Figure 2.1. There will only be a current present in the secondary circuit if there is a 

load present.  

Magnetic coupler

V1 = f(I1 ,I2) V2 = f(I1 ,I2) 

I1 I2 

 

Figure 2.1 shows two magnetically coupled circuits[11]. 

With the scope limited to only two circuits, the magnetic coupling also known as inductive 

coupling can be described by the following three parameters: 

𝐿11  : Self Inductance of Coil 1;  

𝐿22  : Self Inductance of Coil 2; 

𝑀 : Mutual Inductance between Coil 1 and Coil 2. 

The most known application of inductive coupling is found in a standard transformer, where the 

magnetic coupling is enhanced by having an iron core to properly guide the flux. For contactless 

power transfer applications, the typical medium between the sending coil and the receiving coil 

will be high reluctance materials such as air, water and all sorts of protective plastic materials. A 
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coefficient that describes the strength of the inductive coupling between two coils is called 

“coupling coefficient” and is defined as: 

11 22

M
k

L L



          (2.1) 

From energy conservation it can be shown that this coefficient has to be in the range from zero to 

unity[11], where a coupling coefficient of zero means no coupling at all, and unity means ideal 

coupling with no leakage flux (ideal transformer). Mutually coupled circuits can typically be 

represented by an equivalent based on the relationship between the currents and voltages of the 

coupled circuits, or an ideal transformer equivalent. Equation (2.2) shows the relationship of the 

voltages and currents as functions of the self-inductances and mutual inductance. 

1 11 1 2

2 22 2 1

V j L I j M I

V j L I j M I

 

 

   

   
         (2.2) 

These equations describe the equivalent representation shown in Figure 2.2 a) where the 

contribution from the mutual inductance can be modeled as voltage sources. This representation 

is advantageous in some situations, but the ideal transformer equivalent has advantages that 

makes it more used. The transformer equivalent combines the two circuits into one circuit, which 

is more intuitive to work with. Additionally, the physical number of turns can be described in this 

model if necessary. 

   a) Based on coupling equations        b) Ideal transformer equivalent 

V1
2j M I 

L11
I1 

V2

L22
I2 

1j M I 
 

V1

Llk,1
I1 

V2

I2 Llk,2

Lmag

N1 : N2

 

Figure 2.2 shows two equivalent representations of mutually coupled circuits[11]. 

The relationship between the two equivalents are given in equation (2.3), given that the currents 

and voltages at both coil terminals are equal[11]. 

1

2

1 11

2

2 22

mag

lk mag

lk mag

N M
L M

N n

L L L

L L n L

  

 

  

          (2.3) 
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In eq.(2.3), Llkn is the leakage inductance at coil 1 or 2 depending on subscript, and N1 and N2 

refer to the number of turns on coil 1 and coil 2 respectively. Notice how n is defined as N2:N1, 

which is often used when handling transformer equivalents. 

2.1.1 Power transfer efficiency for two mutually coupled circuits 

Another important parameter concerning inductive power transfer is the quality factor of the 

coils. The quality factor (Q) can be defined as the ratio of energy stored (𝐸𝐿𝑖) in the circuit 

reactance related to the power dissipated (𝑃𝐿𝑜𝑠𝑠,𝑖) in the equivalent resistance of the coil 

(𝑅𝑎𝑐,𝑖)[12]. The angular frequency of operation (𝜔𝑜) is important for the resulting quality-factor 

of a coil. 

𝑄 = √𝑄1𝑄2;     𝑄𝑖 =
𝜔𝑜𝐸𝐿𝑖

𝑃𝐿𝑜𝑠𝑠,𝑖
≈

𝜔𝑜𝐿𝑖

𝑅𝑎𝑐,𝑖
        (2.4) 

 

As shown in the book about inductive powering[13], the efficiency of mutually coupled coils can 

be expressed as a function of the quality factor (Q) and the coupling coefficient (k): 

 

  

2

max 2
2

2
1

1 1

k Q

k Q
k Q




  


  

        (2.5) 

The approximation is valid when (Q×k) >>1. The quality factor for inductively coupled circuits is 

the geometric average of the individual quality factors of both the sending and receiving inductor 

which is shown in eq (2.4). 

2.1.2 The effect of coil misalignment 

The coupling coefficient defined in eq. (2.1) varies greatly with the relative positions of the 

sending and pickup coil. In total, there are six different possible misalignments that can be 

divided into two groups. The first group of misalignment is lateral misalignment, which means 

distance between coils, horizontal displacement and vertical displacement of the coil(s). The 

other group is angular misalignment, which means rotation of one or both coils along up to three 

axes. These misalignment groups are not considered to be strongly correlated[14], which makes it 

possible to study their effects individually. In this thesis only lateral misalignment will be 

considered, as the angular misalignment is smaller for larger applications like charging ferries or 

large offshore applications. In the pre-project of this thesis, several measurements of the changes 

in the inductances and the coupling coefficient with varying lateral misalignment were 

conducted[15].   
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Figure 2.3 shows a surface plot of the effect of misalignment on the coupling coefficient, surface is locked at k=0.185[15]. 

It is clear from Figure 2.3 that the relative vertical and horizontal position is also important for 

the coupling coefficient. The effect of lateral misalignment diminishes as the distance between 

the coils increase [14, 15]. The data used to make the surface plot in Figure 2.3 are taken from a 

prototype at SINTEF during autumn 2015, and the measurements are shown in Appendix B. The 

dimensions of the coils used for the measurements are 210mm height by 100mm width. This is 

important because the change in k depends on the misalignment compared to the coil’s 

dimensions, which in turn makes the coil design important for the performance of the IPT-

system. Only the coils from the prototype IPT-system at SINTEF will be used along with the 

measurements done in the specialization project. Coil design and optimization of other 

components is not considered in this thesis. 

These measurements will be used to determine the relevant intervals of the system parameters 

later in this thesis. The self- inductances of each of the coils as well as the coupling coefficient 

are the base parameters that define the model. Thus it is important to have measurements of how 

they change with respect to distance and lateral misalignment.  

 

2.2 Need for capacitive compensation 
In chapter 2.1, it is shown that inductively coupled circuits can be represented by a transformer 

equivalent. An inductive power transfer system is pretty much a coreless transformer, which 

results in huge leakage inductance compared to conventional transformers. The increased leakage 

inductance creates problems that have to be compensated for. This is why capacitors are used to 

reduce and even nullify the effect of the leakage inductance to run the system in resonance. The 

capacitive compensation is meant to minimize the VA rating of the power source on the primary 

side, and maximize the power transfer to the secondary side. The ideal operation for both sides is 

when the power only has a real component, which happens when the capacitive impedance 

cancels out the inductive impedance from the leakage inductance. Compensation is also a 
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prerequisite to let the system operate at high efficiency. The compensation may facilitate the 

operation of the power electronics in zero voltage switching[16]. 

 

Another use of the capacitors is to be able to keep the output current or output voltage constant 

by choosing the compensation topology for each side designed for the application. Usually the 

compensation is kept simple with either a capacitor in series (S) or in parallel (P) on primary and 

secondary side, which gives the four possible basic topologies shown in Figure 2.4. The four 

basic topologies are: S-S, S-P, P-S and P-P where the first and second letter represents primary 

and secondary side respectively.  

 

   

Figure 2.4 shows the four basic compensation topologies[17]. 

Out of the four basic compensation topologies only the S-S and S-P configurations are 

considered. That’s because the series compensation on primary side is suited for high voltage 

sources, while parallel compensation suits high current sources. The prototype for an IPT-system 

at SINTEF has a voltage source in the form of an inverter.  

2.2.1 S-S compensation 

One of the common topologies is to add capacitors in series on both sides of the air gap to cancel 

out the self-inductances L11 and L22 shown in Figure 2.5. The capacitors need to be chosen so that 

the circuits are run in resonance at the given system frequency (f0).  

 

Figure 2.5 shows two mutually coupled circuits that are S-S compensated. 
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When calculating the required capacitance it is common to calculate the load side capacitor C2 

first. By using complex representation of the impedances on the load side and making sure the 

imaginary part of the impedance equals zero, the expression for the load side compensation is 

found: 

𝐶2 = 
1

𝐽𝜔0
2𝐿22

          (2.6) 

The secondary capacitor is easy to calculate for every basic topology, but when calculating the 

needed capacitance on sending side, another factor needs to be taken into account. In addition to 

the impedance of the sending side circuit also the reflected impedance of the secondary side seen 

from the voltage source also needs to be compensated. The mutual coupling shown in Figure 2.5 

is based on the coupling equations, which is why the coils are represented by voltage sources. In 

order to derive an expression for the reflected impedance, simply consider the load side 

compensated and in resonance and derive the expression for the current I2. Insert the expression 

for I2 into the coupling equation for the primary side and the reflected impedance is found: 

𝑍′ = −𝑗𝜔𝑀 ∙
𝑗𝜔𝑀

𝑅
= 

𝜔2𝑀2

𝑅
        (2.7) 

As seen from eq. (2.7) the reflected impedance is purely resistive for an S-S compensated system, 

which makes the calculation of the primary side capacitance just as simple as when calculating 

C2.  

𝐶1 = 
1

𝐽𝜔0
2𝐿11

          (2.8) 

The greatest advantage of the S-S topology is the fact that neither C1 nor C2 vary with changes in 

coupling coefficient nor with varying loading conditions. This ensures that operation in resonance 

is preserved even as system parameters vary. 

2.2.2 S-P compensation 

The other basic topology considered in this thesis is the S-P topology, which is shown in Figure 

2.6. The procedure to calculate the magnitude of compensation needed is done just as shown for 

S-S topology. 
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Figure 2.6 shows two mutually coupled circuits that is S-P compensated. 

Thus, the load side is to be considered first. Although this time it can be advantageous to make a 

Norton equivalent of the secondary side to simplify the calculations: 

 

Figure 2.7 shows the Norton equivalent of the load side of the system shown in Figure 2.6. 

The system is operated in resonance if the combined impedance of the self-inductance L22 and the 

capacitor C2 are seen as infinite from the Norton current source. This gives us eq (2.9) that leads 

to an expression for the load side capacitance in eq (2.10): 

𝐿22||𝐶2 =
𝑗𝜔𝐿22∙ 

1

𝑗𝜔𝐶2

𝑗𝜔𝐿22−
𝑗

  𝜔𝐶2

         (2.9) 

𝐶2 =
1

𝜔2𝐿22
          (2.10) 

The magnitude of capacitive compensation on the load side for S-P topology is the same as found 

for the S-S topology, but this is not the case for the sending side. To determine the needed 

compensation on the sending side, the load side current I2 needs to be inserted in the coupling 

equation concerning the sending side. Unlike the S-S topology, the reflected impedance now does 

have an inductive part: 

𝑍′ = −
𝑗𝜔𝑀

𝐼1
∙
𝑗𝜔𝑀𝐼1

𝑗𝜔𝐿22
= −𝑗𝜔 

𝑀2

𝐿22
        (2.11) 

This means that the compensation on the sending side has to take the inductive reactance into 

account. The resulting expression for C1 for S-P topology is: 
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𝐶1 =
𝐿22

2

𝜔2𝐿22
∙

𝐿22
2

(𝐿11𝐿22−𝑀2)
= 𝐶2 ∙

𝐿22
2

(𝐿11𝐿22−𝑀2)
       (2.12) 

The calculation of C1 is still quite simple, but since C1 is now a function of the mutual inductance 

(M), this topology cannot keep the system in resonance if the coupling changes. In eq. (2.1) it is 

shown that the coupling coefficient and the mutual inductance are closely related. They both 

change according to the geometry of the coupled coils, and their positions are relative to each 

other as described in chapter 2.1.2. The needed capacitances on sending and loading side vary 

differently according to coupling coefficient, which demands more complex models. To keep the 

models manageable, the scope of this thesis is thus limited to the S-S topology for capacitive 

compensation. 

2.3 Inductive power transfer system 
A working IPT-system needs more components than two coupled coils to work as intended. The 

currents and voltages going to the load need to be controllable, and the system must be kept in 

resonance. With the help of Figure 2.8 a simple IPT-system and each component in it will be 

explained, from the connection to the grid to the connected load. 

 

Figure 2.8 shows a block diagram of a battery charging IPT-system connected to the grid with the necessary power 
electronics[18]. 

The grid operates at either 50 or 60 Hz, and the connection point may be three phase or single 

phase. The frequency of the grid needs to be increased to operate an IPT-system efficiently, 

which is why power electronics are located closest to the grid connection. A rectifier transforms 

the power from AC to DC in preparation to control the frequency and voltage magnitude going to 

the coupled inductors. The component responsible for setting the desired frequency and voltage 

magnitude is the H-bridge inverter. Controllable thyristors or more advanced switching 

components make sure the input voltage is a square wave that oscillates between VDCin and –

VDCin with high frequency. The inverter is a very important component for the control aspect of 
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this system, as both voltage and frequency can be controlled by this component. The effect of 

frequency will be discussed in chapter 2.4. 

In order to minimize stresses on components, the system needs capacitive compensation to ensure 

that the sending coil operates in resonance. The compensation is located between the inverter and 

the sending coil, and some basic compensation solutions were introduced in chapter 2.2.  The 

final component on the sending side is the primary coil that is linked magnetically to the 

secondary coil on the pickup side. Currents in the sending coil induce a magnetic field, which in 

turn induces a current in the pickup coil. This is the main characteristic of an IPT-system, which 

makes it possible to transfer through non-conductive materials.  

The coil on the pickup side also needs to be compensated to maximize the power transfer 

capability. The pickup compensation ensures that the secondary coil is also run in resonance 

during operation. The current induced in the pickup coil needs to be rectified because of the high 

operating frequency needed for the inductive power transfer. This is why another rectifier is 

needed to make the current and voltage as smooth as possible before it is fed into the load. This 

rectifier is usually just a full wave diode rectifier to be more cost efficient. The final step before 

the load is either an inverter for AC loads or DC/DC converter for DC loads as a final refinery for 

the output voltage and/or current, but in some cases no converter is needed after the rectifier, as 

the voltage and current can be controlled to some degree by the sending side inverter. In Figure 

2.8 the load is a battery which is charged by the IPT-system. The load depends on the actual 

application, but IPT-systems are often used to charge batteries, which is the case for wlwctrica 

vehicled, electrical ferries and most of the commercial WPT applications.  

Charging a battery is fundamentally different from having a normal resistive load, because the 

equivalent load changes according to the amount of energy stored in the battery, defined as “state 

of charge”. Additionally, the charging process has two different modes that is illustrated by 

Figure 2.9. When charging a flat battery, the current is kept constant while the voltage increases 

linearly. This is called “constant current-mode” and is the main mode when charging a battery 

application. The second mode is the last phase when the linearly increasing voltage has reached 

the set voltage limit as the battery is near fully charged. The voltage is now kept constant at the 

limit value Vmax, while the current decreases exponentially as the battery gets closer to fully 

charged. 
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Figure 2.9 shows the charging profile of a battery as a function of time[11]. 

In short an IPT-system needs to be run in resonance, or at least close to resonance at a certain 

operation frequency. However, the operating frequency may be changed within a given 

bandwidth to meet desired control objectives. The control of the outputs mostly relies on the 

sending side inverter, which governs both frequency and voltage magnitude. But also DC-DC 

converters can be used either on sending side or receiving side to give more control possibilities. 

 

2.4 The effect of system frequency 
The system frequency governs the design and the magnitude of different losses as it is increased. 

But the operation frequency may be optimized if we look at the IPT-system as a whole and 

analyse the trade-offs. From eq. (2.4) and (2.5) it is shown that as frequency increases, the 

efficiency of the coupled coils increase, but an increase in frequency affects much more than just 

the power transfer between the coils. Especially the switching losses in the power electronics 

increase as the frequency is increased. An increase in frequency also reduces the dimensions of 

the coils, which saves material. The seemingly limiting factor is how the switching losses 

increase linearly as the operation frequency is increased. An analysis of the combined losses of 

every component of the IPT-system is needed to find the ideal frequency. Research on resonating 

converters that minimize the switching losses by doing zero voltage switching or zero current 

switching may help increase the optimum frequency limit. Another thing to consider is the need 

of the application, and the IPT-systems efficiency is very important with high power applications. 

Marine and offshore applications typically need power transfers of kW or MW, which are 

enormous amounts of power. 
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3 Derivation of the models 
 

In order to determine the design of the control system, the IPT-system has to be represented by 

mathematical models. A model based on coupled mode theory has been chosen for this thesis, 

where the envelope of the coil currents and capacitor voltages on both primary and secondary 

sides are described. This chapter introduces three models:  

1. The dynamic model based on the electric circuit of the IPT-system and its dynamic 

equations. 

2. The second model is a nonlinear, averaged time invariant model which describes the 

envelope of the dynamic model. This is the main model used in this thesis. 

3. The final model is a model in Simulink consisting of actual electric components as a 

control for the purely mathematical models. 

The electric circuit that these models are based on is shown in Figure 3.1. The IPT-system is S-S 

compensated and includes a full bridge inverter on the sending side, and a full wave rectifier on 

the receiving side. The rectifier and inverter can be represented by square wave voltage sources 

as shown in Figure 3.2. 

 

Figure 3.1 shows an S-S compensated IPT-system including the inverter and rectifier[10]. 

The voltage across the capacitors uc1 and uc2 and the current running through the coils iL1 and iL2 

are important state variables for the dynamic model. The subscript indicates what side of the IPT-

system the parameter is taken from. Where 1 is primary side and 2 is secondary side. 

 

Figure 3.2 shows the simplified circuit of an S-S compensated IPT-system, where the inverter and rectifier are modelled as 
voltage sources [10]. 
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Figure 3.2 can be expressed mathematically by doing a simple circuit analysis of the IPT-system. 

The equations in eq. (3.1) make the foundation of the models that are considered in this thesis. 

{
 
 
 

 
 
 𝐿1

𝑑𝑖𝐿1

𝑑𝑡
+𝑀

𝑑𝑖𝐿2

𝑑𝑡
+ 𝑢𝑐1 + 𝑅1𝑖𝐿1 = 𝑢1 
 

𝐶1
𝑑𝑢𝐶1

𝑑𝑡
= 𝑖𝐿1                                            

 

𝐿2
𝑑𝑖𝐿2

𝑑𝑡
+𝑀

𝑑𝑖𝐿1

𝑑𝑡
+ 𝑢𝑐2 + 𝑅2𝑖𝐿2 = 𝑢2
 

𝐶2
𝑑𝑢𝐶2

𝑑𝑡
= 𝑖𝐿2                                           

       (3.1) 

The parameters that the models are based on are shown in Table 3.1. The parameters are in 

general set to match a real IPT-system like the prototype at the SINTEF lab in Trondheim. The 

primary and secondary inductances are taken from this prototype when the air gap is 50mm and 

no further misalignment, but the inductances need to be adjusted because the frequency used here 

is different. The resistances on the other hand are primarily set to facilitate the modelling and 

calculations. The rest of the needed parameters are easily calculated when the inductances, the 

coupling coefficient and the system frequency are set. 

Table 3.1 shows the default parameters for the models (if nothing else is mentioned these values are used)[15]. 

Parameter Formula Value Comment 

 System frequency         (f) Set 5 kHz  

Coupling coefficient       (k) Set 0.20 From measurements 

Primary inductance       (L1) Set 35.1 μH*Kf From measurements 

Secondary inductance   (L2) Set 22.9 μH*Kf From measurements 

Primary resistance        (R1) Set 1.5 Ω  

Secondary resistance    (R2) Set 1.5 Ω  

Mutual inductance        (M) 𝑘 ∙ √L1 ∙ L2 5.67 μH  

Angular frequency        (𝝎𝒔) 2𝜋 ∙ 𝑓 31415.93 rad/s  

Primary capacitor         (C1) 1

√𝜔𝑠2 ∙ L1
 

72.0 nF  

Secondary capacitor      (C2) 1

√𝜔𝑠2 ∙ L2
 

110.61 nF  

Equivalent inductance (𝑳𝝈𝟏) 
𝐿1 −

𝑀2

𝐿2
 

33.7 μH From eq. (3.2) 

Equivalent inductance (𝑳𝝈𝟐) 
𝐿2 −

𝑀2

𝐿1
 

22.0 μH From eq. (3.2) 

Primary resonant  

angular frequency        (𝝎𝟏) 

1

√L1 ∙ 𝐶1
 

31415.93 rad/s  

Secondary resonant  

angular frequency        (𝝎𝟐) 

1

√L2 ∙ 𝐶2
 

31415.93 rad/s  
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In table 3.1the default parameters are shown. A change in the system frequency from assumed 

100 kHz in the specialization project to a more realistic frequency of 5 kHz is used to have 

manageable switching losses. This needs to be compensated for when using the measured self-

inductances, which is where the factor Kf is used: 

𝐾𝑓 =
𝑆𝑦𝑠𝑡𝑒𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

𝑆𝑦𝑠𝑡𝑒𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 ℎ𝑖𝑔ℎ 𝑝𝑜𝑤𝑒𝑟 𝐼𝑃𝑇 𝑠𝑦𝑠𝑡𝑒𝑚
=
100000

5000
= 20 

The parameters given in Table 3.1 are treated as default settings in this thesis, but later, the 

parameters like the coupling coefficient and inductances will be changed to simulate coil 

misalignment. 

 

3.1 Dynamic model 
One way to model the dynamics of an IPT-system is to rearrange the circuit equations shown in 

eq. (3.1), where the parameters iL1, iL2, uC1, uC2 are considered to be state variables and u1 and u2 

are considered as control variables.  

 

{
 
 
 

 
 
 𝐿𝜎1

𝑑𝑖𝐿1

𝑑𝑡
= −𝑅1 ∙ 𝑖𝐿1 +

𝑀𝑅2

𝐿2
∙ 𝑖𝐿2 − 𝑢𝐶1 +

𝑀

𝐿2
∙ 𝑢𝐶2 + 𝑢1 −

𝑀

𝐿2
∙ 𝑢2

 

𝐿𝜎2
𝑑𝑖𝐿2

𝑑𝑡
=

𝑀𝑅1

𝐿1
∙ 𝑖𝐿1 − 𝑅2∙𝑖𝐿2 +

𝑀

𝐿1
∙ 𝑢𝐶1 − 𝑢𝐶2 −

𝑀

𝐿1
∙ 𝑢1 + 𝑢2       

 

𝐶1
𝑑𝑢𝐶1

𝑑𝑡
= 𝑖𝐿1                                                                                              

 

𝐶2
𝑑𝑢𝐶2

𝑑𝑡
= 𝑖𝐿2                                                                                             

    (3.3) 

Where: 

𝐿𝜎1 = 𝐿1 −
𝑀2

𝐿2
;     𝐿𝜎2 = 𝐿2 −

𝑀2

𝐿1
 

By using the rearranged equations in eq. (3.3), a simulation of the transient behavior of the 

system can be simulated in a Simulink environment. The block named Differential Equation 

Editor (DEE) has been a vital part to solve and provide the desired outputs from the mathematical 

models.  
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Figure 3.3 shows the DEE block used to simulate the dynamic model, and the output shown graphically for inductor current 
iL1. 

The DEE-block allows sets of first order differential equations to be solved. In Figure 3.3, the 

equations are inserted in the field marked green, as functions of the state variable and control 

variables. In the field marked in a blue box the desired outputs are selected. In the orange box the 

initial conditions are set, which determines the shape of the initial transient. 

In the output of the inductor current L1 shown in Figure 3.3, four transients are present: The 

initial transient and the three transients that are made by changing the input voltages u1 and u2 

using step functions in Simulink. U1 is the input voltage and U2 is the output voltage, and an 

increase in the input of the physical system leads to an increase in the output voltage. This is why 

it is modelled with step changes in both of the inputs. These changes in the inputs are meant to 

simulate changes in operation conditions which the system may experience during operation. The 

average model has been simulated in the same simulation and has been given the exact same 

parameters and input signals. 

 

3.2 Average model 
An average model is derived in order to reduce the order and complexity while still having 

enough information to design the control system for the WPT-system. This model has been based 

on the findings of Hongchang et al.[10], where coupled mode theory (CMT) is used to model the 

coupled coils. CMT is a vast field that is well described in Haus and Huang (1991)[19], and it can 

be applied to passive structures, such as coupled waveguides and coupled resonators. In this 

thesis only the coupled resonators are relevant for the modelling of the IPT-system, because the 

coils combined with series compensation can be regarded as a resonating tank. Hongchang et al. 

have used “coupled energy orthogonal modes of positive energy”[19] and describes the inductor 

currents and capacitor voltages as functions of the amplitude an and the phase of the mode θn as 

shown in eq. (3.4).  



20 
 

{
 
 

 
 𝑖𝐿𝑛 = √

2

𝐿𝑛
∙ 𝑎𝑛cos (𝜔𝑠𝑡 + 𝜃𝑛)

 

𝑢𝑐𝑛 = √
2

𝐶𝑛
∙ 𝑎𝑛sin (𝜔𝑠𝑡 + 𝜃𝑛)

        (3.4) 

The first step to deriving the average model is to substitute eq. (3.4-3.6) into eq. (3.1). The results 

are in the needed format for the DEE block in Simulink. The intermediate results before the 

averaging of the model are shown in Appendix A. They are compared to the results of 

Hongchang et al. and sorted like this: to the left are the results straight from Maple Soft by 

solving the equation sets, while the results as sorted in the paper by Hongchang et al. are on the 

right. 

Note that this thesis differs when deriving the average model based on coupled mode theory 

compared to Hongchang et al. mainly because of two reasons: Here the converters are full wave 

instead of half wave, and the dead time of the converter switches are neglected. 

 

{
 
 

 
 𝑑𝑖𝐿1

𝑑𝑡
= √

2

𝐿𝑛

𝑑𝑎𝑛

𝑑𝑡
 cos(𝜔𝑠𝑡 + 𝜃𝑛) − 𝑎𝑛 (𝜔𝑠 +

𝑑𝜃𝑛

𝑑𝑡
) sin(𝜔𝑠𝑡 + 𝜃𝑛)

 
𝑑𝑢𝑐1

𝑑𝑡
= √

2

𝐿𝑛
 
𝑑𝑎𝑛

𝑑𝑡
 sin(𝜔𝑠𝑡 + 𝜃𝑛) − 𝑎𝑛 (𝜔𝑠 +

𝑑𝜃𝑛

𝑑𝑡
)  cos (𝜔𝑠𝑡 + 𝜃𝑛)

   (3.5) 

 

{
𝑢1 = 𝑠𝑔𝑛[cos(𝜔𝑠𝑡)] ∙ 𝑣1          

 
𝑢2 = −𝑠𝑔𝑛[cos(𝜔𝑠𝑡 + 𝜃2)] ∙ 𝑣2

        (3.6) 

 

In order to simplify the model, a time invariant model is made by neglecting the high frequency 

terms by averaging the model over one period 𝝎s. The equations in Figure 3.4 will be the 

foundation for further investigation of the IPT-system. In the specialization project prior to this 

thesis the derivation of the average model is better described, but the simulation and verification 

of the model has been updated in this master thesis. The simulations in which the models are 

compared and thus verified will be covered in chapter 3.3. 
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Figure 3.4 shows the equations of the averaged model in the desired format[15]. 

 

The averaged model is also simulated in Simulink by the use of the DEE block. In order to have 

control over the four equation sets shown in Figure 3.4, a MatLab script is needed. This script 

contains the parameters used for both models. It also contains sections that facilitate the insertion 

of the equations into the DEE block. This main script which has the default parameters and 

settings is shown in Appendix C 
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Figure 3.5 shows the DEE block defining the averaged model, including the resulting output of inductor current iL1. 

The initial conditions shown in Figure 3.5 in the orange box are set to give a similar start-up 

transient as the dynamic model, but it is difficult to make a good general configuration of the 

initial conditions that fit for variations in the simulation parameters. This is why the start-up 

transient is not considered in detail when making a controller. The default initial conditions will 

be used unless they lead to instability in the simulations. In the blue window in Figure 3.5 the 

number of outputs from the block is chosen.  
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3.3 Simulation for validation of the averaged dynamic model 
The first step in verifying the averaged model is to make a Simulink model that has the same 

settings and parameters, and check if the outputs match the dynamic model. Both of the models 

have several step-up and step-down blocks multiplied with their inputs to check if the dynamic 

behavior of the models coincides. Both models are present in Figure 3.6, where the upper DEE 

block describes the dynamic model and the lower DEE-block describes the averaged model. The 

dynamic model has two square wave inputs that are phase shifted by 90 degrees, and includes 

step functions which are included in both the subsystems u(1) and u(2). The phase shift is 

because of the properties of the mutually coupled inductors. 

 

 

Figure 3.6 shows the simulation that compares the two mathematical models. 

The relationship between the outputs of the two models is given by eq. (3.4) and the gain blocks 

in the model make sure the amplitude of the inductor currents and capacitor voltages are 

obtained. To keep the simulation manageable, only the amplitudes a1 and a2 are considered in this 

model, because including the phase θ1 and phase θ2 would make the model too complicated for 

the scope of this thesis. 

The Simulink model shown in Figure 3.7 shows the resulting inductor current on the primary side 

when the default settings from chapters 3.1 and 3.2 were used. It is verified that the averaged 

model works as expected and creates an envelope that covers the positive amplitude of the 

dynamic model. Except for the initial transient, the model reacts quite correctly to sudden 

changes in the system amplitude. In Figure 3.7 the dynamic model is oscillating plot in red, while 
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the averaged model is the blue curve that follows the amplitude of the dynamic model in red. 

Similar results are obtained from the other outputs too. 

 

Figure 3.7 shows the resulting primary inductor current iL1 from both the DEE blocks. 

By verifying that the averaged model is a good approximation, it is appropriate to linearize the 

averaged model at stable operating points where the transient has settled. The linearized model is 

then used to extract a transfer function of the input voltage to the output current. 
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4 Control theory 
 

This chapter will explain some basic control theory terms, and cover much of the methodology 

that has been used to design a controller for the IPT-system. This chapter does not contain 

specific results from the MatLab scripts, but will explain how and why the controller is needed 

and designed, and finally show the different types of controllers. 

When designing a control system for an electrical application, the basic equations derived from 

ohm’s law and Kirchhoff’s laws are the foundation of the model used to analyze the system. But 

real systems are often too complicated to create an exact model of, which is why engineers have 

to spend a lot of time applying correct approximations. The approximations have to both simplify 

the mathematical model of the system and preserve the system behaviour as close to the real 

system as possible.  

The basic equations derived from ohm’s and Kirchhoff’s laws provide a differential equation that 

can describe the relationship between an input r(t) “reference point” and the output y(t) 

“controllable variable”. In eq. (4.1) the general form of a linear, time-invariant differential 

equation is shown[20]. 

𝑎𝑛
𝑑𝑛𝑐(𝑡)

𝑑(𝑡)𝑛
+ 𝑎𝑛−1

𝑑𝑛−1𝑐(𝑡)

𝑑(𝑡)𝑛−1
+. . . . . +𝑎1

𝑑𝑐(𝑡)

𝑑𝑡
+ 𝑎0𝑦(𝑡) = 𝑏𝑚

𝑑𝑚𝑟(𝑡)

𝑑(𝑡)𝑚
+ 𝑏𝑚−1

𝑑𝑚−1𝑟(𝑡)

𝑑(𝑡)𝑚−1
+. . . . . +𝑏1

𝑑𝑟(𝑡)

𝑑𝑡
+ 𝑏0𝑟(𝑡)  (4.1) 

The basic equations describing the S-S-compensated IPT-system are shown in eq. (4.2), and 

because there are four energy storages present in the IPT-system, four equations are needed. Thus 

this is a fourth order system. 

{
 
 
 

 
 
 𝐿1

𝑑𝑖𝐿1

𝑑𝑡
+𝑀

𝑑𝑖𝐿2

𝑑𝑡
+ 𝑢𝑐1 + 𝑅1𝑖𝐿1 = 𝑢1 
 

𝐶1
𝑑𝑢𝐶1

𝑑𝑡
= 𝑖𝐿1                                            

 

𝐿2
𝑑𝑖𝐿2

𝑑𝑡
+𝑀

𝑑𝑖𝐿1

𝑑𝑡
+ 𝑢𝑐2 + 𝑅2𝑖𝐿2 = 𝑢2
 

𝐶2
𝑑𝑢𝐶2

𝑑𝑡
= 𝑖𝐿2                                           

        (4.2) 

Where u1 and u2 are signum functions with v1 and v2 as the magnitudes of the inputs, this is 

shown in eq. (3.5). The basic equations are further developed to give the desired mathematical 

model of the IPT-system as shown in chapter 3.2. 

The goal of the mathematical model is to derive the relationship between the input and output. 

There are two popular methods to do this: Transfer functions in the frequency domain, and state 

equations in time domain. This thesis will focus on modelling in frequency domain, and the 
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sending side voltage (v1) is chosen as the input, while the receiving side current (i2) is chosen as 

output. 

 

4.1 Modelling in frequency domain 
When representing a physical system in a mathematical model, the input and output should be in 

separate entities. Another attribute that is desired is the ability to model several subsystems more 

easily. From the differential equation shown in eq. (4.1), the input and output are not easily 

separated. This is where the Laplace transform makes handling systems based on differential 

equations easier to handle mathematically by transforming the system from time domain to 

frequency domain.  

ℒ[𝑓(𝑡)] = 𝐹(𝑠) = ∫ 𝑓(𝑡)𝑒−𝑠𝑡
∞

0−
𝑑𝑡         (4.2) 

Where 𝑠 is a complex variable on the form: (𝑠 = 𝜎 + 𝑗𝜔). Thus, there is a Laplace transform of 

the function f(t) if the integral shown in eq. (4.2) converges[20]. Notice that the lower limit of the 

integral is “0-“, which implies that even if the initial conditions at t=0 is discontinuous, the 

integration can start prior to the discontinuity. As this property of the Laplace transform ensures 

that even though most differential equations are discontinuous at the initial conditions, they can 

be transformed to frequency domain as a Laplace function by knowing the initial condition 

before the discontinuity.  

By the use of Laplace transformation on the equations representing a physical system, we can 

make a transfer function for this system. A transfer function allows the separation of the input, 

output and system into three separate parts. Additionally, transfer functions allow simple 

algebraic mathematics to be sufficient when combining subsystems.  

Our IPT-system has four energy storages, which implies that it can be modelled as a fourth order 

system. To explain the transfer function of a 4th-order system a 4th-order, linear, time-invariant 

differential equation is enough: 

𝑎4
𝑑4𝑦(𝑡)

𝑑(𝑡)4
+ 𝑎3

𝑑3𝑦(𝑡)

𝑑(𝑡)3
+ 𝑎2

𝑑2𝑦(𝑡)

𝑑(𝑡)2
+ 𝑎1

𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑎0𝑦(𝑡) = 𝑏4

𝑑4𝑟(𝑡)

𝑑(𝑡)4
+ 𝑏3

𝑑3𝑟(𝑡)

𝑑(𝑡)3
+ 𝑏2

𝑑2𝑟(𝑡)

𝑑(𝑡)2
+ 𝑏1

𝑑𝑟(𝑡)

𝑑𝑡
+ 𝑏0𝑟(𝑡)  (4.3) 

Where 𝑦(𝑡) and 𝑟(𝑡) are output and input respectively, and the a’s, b’s and the form of the 

differential equation depends on the parameters of the IPT-system. By taking the Laplace 

transform on both sides we get: 

 (𝑎4𝑠
4 + 𝑎3𝑠

3 + 𝑎2𝑠
2 + 𝑎1𝑠

1 + 𝑎0) 𝑌(𝑠) = (𝑏4𝑠
4 + 𝑏3𝑠

3 + 𝑏2𝑠
2 + 𝑏1𝑠

1 + 𝑏0) 𝑅(𝑠)    (4.4) 

Now the ratio between the output and input is easily found and the three entities are separated: 

𝑌(𝑠)

𝑅(𝑠)
= 𝐺(𝑠) =

(𝑏4𝑠
4+𝑏3𝑠

3+𝑏2𝑠
2+𝑏1𝑠

1+𝑏0) 

(𝑎4𝑠4+𝑎3𝑠3+𝑎2𝑠2+𝑎1𝑠1+𝑎0)
        (4.5) 
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The ratio G(s) is called the transfer function of the system, and it is evaluated with zero initial 

conditions. Systems in frequency domain are often presented as a block diagram where blocks 

between the output and input represents the transfer functions representing the different 

subsystems. Block diagrams is a mathematical modelling method that is a very important tool to 

show complex systems more intuitively. This shows how a transfer function is a function 

connecting the input to the output. Although in this thesis the fourth order IPT-system will first 

be described by a state space model in time-domain before extracting the transfer function 

between the sending side voltage and the receiving side current. 

 

4.2 Modelling in time domain 
The modelling in frequency domain in chapter 4.1 is often called the classic method, which has 

several advantages when it comes to modelling simple systems. With the classic method it is 

quick and intuitive to test the step response of a system and check the stability. Even though it is 

an efficient and intuitive method, it has more limitations and drawbacks compared to modelling 

in time domain. Transfer functions only exist if the system is a linear, time-invariant system or 

can be approximated as such. More complex systems with several inputs and outputs cannot be 

modelled in frequency domain.  

The method using time domain is referred to as state space- or modern approach, and is 

applicable on both nonlinear systems and linearized systems. Even systems with several inputs 

and outputs can be modelled using state space approach, but this method is not as intuitive. More 

calculation and more understanding of the system and the differential equations are needed to 

grasp the physical understanding of changes in parameters when using state space. 

To explain the derivation of a state space model, some parameters needs to be defined: State 

variables, system variables and state equations. State variables are variables that are linearly 

independent, which means that you cannot express a state variable algebraically using other state 

variables. The system variables are variables that can be evaluated algebraically from the state 

variables and the input(s). The state equations are simultaneous, first order differential equations 

which define each state variable, and normally the number of state variables and state equations 

are equal to the order of the system. Here is a list of how to derive the state space model[20]:     

1. Select the proper state variables. 

2. Check the order of the system and write that many simultaneous differential equations in 

terms of the state variables. 

3. If the initial conditions t0 of the state variables and the inputs t ≥  t0 are known, the 

differential equations can be solved for the state variables for t ≥  t0. 

4. Then by solving the state variables and inputs for t ≥  t0 algebraically, the other system 

variables are found. This algebraic equation is called the output equation. 
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5. The state equations and the output equation combined with the input and state variables 

give us the state space representation of the system in the form: 

�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
�̇� = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

          (4.6) 

Where:  �̇� = time derivative of the state vector,  �̇� = time derivative of the output(s),  

  𝑥(𝑡) = the state vector containing each of the state variables 

  𝑢(𝑡) = the input or control vector 

  A = system matrix (jacobian matrix), B = input matrix,  

  C = output matrix,   D = feed forward matrix 

 

4.3 Linearization of the nonlinear averaged model 
The nonlinear averaged time-invariant model shown in chapter 3.2 is a fourth order system 

defined by the equations shown in Figure 3.4. The state variables are defined as sending side 

mode amplitude a1 and phase angle θ1 and receiving side mode amplitude a2 and phase angle θ2. 

The IPT-system can be represented as one compact block as shown in Figure 4.1, where x is the 

state vector, v1and v2 are the inputs and f is the state equations from Figure 3.4 expressed as a 

vector. 

 

 

Figure 4.1 shows the compact format of the IPT-system. 

Where: 

𝑥 = (

𝑎1
𝜃1
𝑎2
𝜃2

) , 𝑓 = (

𝑓1
𝑓2
𝑓3
𝑓4

)   and   
𝑑𝑥

𝑑𝑡
=

(

 
 
 
 

𝑑𝑎1

𝑑𝑡
𝑑𝜃1

𝑑𝑡
𝑑𝑎2

𝑑𝑡
𝑑𝜃2

𝑑𝑡 )

 
 
 
 

 

The currents i1 and i2 from Figure 4.1 are the average port currents during a switching period. 

They are chosen to represent the model’s outputs and can be expressed using the state variables. 

From Hongchang et al. the relationship between the state variables and the output currents is 

found to be [10]:  
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{
 

 𝑖1 = 𝑔1(𝑥) =
1

𝜋
√
2

𝐿1
𝑎1cos (𝜃1)

𝑖2 = 𝑔2(𝑥) = −
1

𝜋
√
2

2
𝑎2           

   and    𝑔(𝑥) = (𝑔1(𝑥)
𝑔2(𝑥)

)     (4.7) 

 

Modelling in time domain is used in this thesis as a stepping stone to achieve the desired transfer 

function, which is to be used for further studies. The transfer function from input voltage v1 to 

output i2 (see Figure 3.1) is extracted from the state space model after the linearization of the 

nonlinear averaged model is performed. 

4.3.1 Why a linearized model is desired 

In control theory we differentiate between linear systems and nonlinear systems. The practical 

difference between the two is the fact that it is relatively easy to handle linear systems compared 

to nonlinear systems. A linear system must possess two properties: Superposition and 

homogeneity. Superposition means that the output response of a system to the inputs is the sum 

of the responses from each of the individual inputs[20]. If input r1(t) yields an output y1(t) and 

r2(t) yields response y2(t), then the sum of the inputs give this result: r1(t) + r2(t) = c1(t)+c2(t). The 

property homogeneity describes how the system responds to a multiplication of the input by a 

scalar. The response of a linear system has to include the same scalar as the scalar multiplied by 

the input. Shown by symbols: A*r1(t) = A*c1(t). Only if both of these properties are present the 

system can be regarded as linear. 

The definition of a linear system is quite strict, and few practical systems are linear in every part 

of their field of operation. Effects like saturation, deadzone, friction and other complex 

phenomena leads to nonlinearities, but we can linearize nonlinear systems around a stable 

operating point. If any nonlinear components are present in the system, it is necessary to linearize 

the system to be able to define a transfer function for the system.  

4.3.2 Jacobian linearization and Jacobian matrices 

When linearizing the nonlinear averaged model, the Jacobian linearization method is used to 

make a small signal representation of the IPT-system. The compact representation of the IPT-

system from Figure 4.1 will be used. 

�̇� = 𝑓(𝑥, 𝑢)           (4.8) 

Where:     x is the state vector and u is the input vector: (
𝑣1
𝑣2
) 

The first step is to spot the nonlinear component and derive the nonlinear differential equations. 

The nonlinear differential equation is linearized for small inputs around an equilibrium point. The 

equilibrium point is where the system is at steady state for a given equilibrium input, such 

that[21]: 
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𝑓(�̅�, �̅�)  = 0           (4.9) 

Where: �̅� = 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑖𝑛𝑝𝑢𝑡 𝑎𝑛𝑑  �̅� = 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 𝑝𝑜𝑖𝑛𝑡 

At the equilibrium point, we know that at a constant equilibrium input the state of the system will 

stay fixed at 𝑥(𝑡) = �̅� for all t. But we are not interested in what happens exactly at steady state, 

which is why we introduce deviation variables to study small changes of input around the 

equilibrium point.  

𝛿𝑥(𝑡) = 𝑥(𝑡) − �̅�          (4.10) 

𝛿𝑢(𝑡) = 𝑢(𝑡) − �̅�          (4.11) 

This relabelling of variables defines the equilibrium point as the systems zero. This allows the 

variables 𝑥(𝑡) and the inputs 𝑢(𝑡) to be related by the differential equation in eq. (4.1). 

 

By substituting eq. (4.10) and (4.11) into eq. (4.8), we get: 

�̇�𝑥(𝑡) = 𝑓(�̅� + 𝛿𝑥(𝑡), �̅� + 𝛿𝑢(𝑡))        (4.12) 

In order to linearize this differential equation, a Taylor expansion of the right hand expression is 

made, where the higher (higher than first) order terms are neglected. 

�̇�𝑥(𝑡) ≈ 𝑓(�̅�, �̅�) +
𝑑𝑓

𝑑𝑥
𝛿𝑥(𝑡) + 

𝑑𝑓

𝑑𝑢
𝛿𝑢(𝑡) ≈

𝑑𝑓

𝑑𝑥
𝛿𝑥(𝑡) + 

𝑑𝑓

𝑑𝑢
𝛿𝑢(𝑡)    (4.13) 

Where 𝑓(�̅�, �̅�)  = 0 

Since the higher order terms are neglected, we can consider this a linear differential equation that 

approximately govern the deviation of the variables 𝛿𝑥(𝑡) and 𝛿𝑢(𝑡), but only if the deviations 

are small. It is important to remember the connection between the normal parameters and the 

small signal parameters (𝛿𝑥, 𝛿𝑢) that is shown in eq. (4.10) and (4.11) 

𝐴 ≔
𝑑𝑓

𝑑𝑥
 ∈ 𝑅4×4    𝐵 ≔

𝑑𝑓

𝑑𝑢
∈ 𝑅4×2      (4.14) 

The matrices A and B are constant matrices, and we can define the linearized system as: 

�̇�𝑥(𝑡) = 𝐴𝛿𝑥(𝑡) +  𝐵𝛿𝑢(𝑡)         (4.15) 

This is called the Jacobian Linearization of the nonlinear system, close to the equilibrium point 

(�̅�, �̅�). This linearization provides a very good approximation to the nonlinear system when the 

deviations are small. The same procedure is used to derive the matrices which describe the small 

signal output.  

�̇�𝑦(𝑡) = 𝐶𝛿𝑥(𝑡) +  𝐷𝛿𝑢(𝑡)         (4.16) 
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Where the matrices C and D are given by these expressions for the IPT-system: 

𝐶 ≔
𝑑𝑔

𝑑𝑥
 ∈ 𝑅2×4    𝐷 ≔

𝑑𝑔

𝑑𝑢
= 0*𝑅2×2        (4.17) 

Now the linearized state space model for the IPT-system is defined by the four matrices: A, B, C 

and D. The matrices are changed according to the configuration of the IPT-system and the choice 

of equilibrium point. As equilibrium point, the final steady state value is used. The Matlab-script 

shown in Appendix C uses the information from the parameters of the IPT-system, and the 

equilibrium point is found by running a simulation in Simulink for each configuration of the 

coupling. By using the linearized matrices, the script derives the matrix of transfer functions 

G(s): 

𝐺(𝑠) = [

�̂�1

�̂�1

�̂�1

�̂�2
�̂�2

�̂�1

�̂�2

�̂�2

] = 𝐶 × (𝑠 ∗ 𝐼 − 𝐴)−1 × 𝐵       (4.18) 

The transfer function marked in yellow in eq. (4.18) is the only transfer function that will be used 

when designing the controller. This is because the input voltage is set and controlled by the 

inverter, and the output current to the receiving side is the most important output to control. The 

actual results from the MatLab scripts and the Simulink model of the changes in the transfer 

function will be covered in chapter 5. 

 

4.4 Second order approximation 
In order to have simple analytical expressions of how a system responds, it is advantageous to 

model higher order systems by making a second order approximation model of the system. But 

not every higher order system may be represented accurately by a second order equivalent. Figure 

4.2 shows some examples of second order systems and how the configuration of the poles defines 

the response of the system. The poles must be in the left half-plane in order to have a stable 

system. Two purely real poles result in an overdamped step response without any oscillations 

around the final value, while two purely imaginary poles means the system is undamped and 

oscillates around the final value. Typically poles have both a real part (σ) and one imaginary part 

(jω) and they always occur in pairs on the form: σ ± jω. The complex poles give an 

underdamped response. This response does not settle at the final value immediately, but have 

damped oscillations that eventually settle at the final value according to the ratio between the real 

and imaginary part of the poles.  

 



32 
 

 

Figure 4.2 shows different configurations of second order systems: transfer functions, poles and step responses[20] 

 

Before the equations for a general second order system is shown, two definitions need to be 

introduced. First is the frequency of the oscillations of the second order system without damping, 

which we define as: “natural frequency” (𝜔𝑛). For electrical systems this refers to the system 

response if the resistance is neglected and only capacitors and inductors are present. The second 

definition is called “damping ratio” (𝞷). This parameter is defined as a measure of exponential 

decay frequency of the envelope to the natural frequency[20]: 

ξ =
Exponential decay frequency

𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 (𝑟𝑎𝑑 𝑠⁄ )
=

1

2𝜋
 
𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑝𝑒𝑟𝑖𝑜𝑑 (𝑠𝑒𝑐𝑜𝑛𝑑𝑠)

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝑡𝑖𝑚𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡
     (4.19) 

As mentioned earlier, the modelling will be in frequency domain using transfer functions. A 

general second order system can be modelled by this transfer function: 

𝐺2𝑛𝑑(𝑠) =
𝑏

𝑠2+𝑎𝑠+𝑏
          (4.20) 

For an undamped system the coefficient 𝑎 is zero which makes the natural frequency by 

definition equal to square root of 𝑏. Also assuming that the system is underdamped and has a 

complex pole where the real part, 𝜎, then is equal to −𝑎/2. The magnitude of 𝜎 is then the 

exponential decay which is part of the definition of the damping ratio. This means that:𝜉 =
|𝜎|

𝜔𝑛
=

𝑎 2⁄

𝜔𝑛
 and 𝜔𝑛 = √𝑏. Thus, the general second order system can be represented using only 𝜉 and 𝜔𝑛: 
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𝐺2𝑛𝑑(𝑠) =
𝜔𝑛
2

𝑠2+2𝜉𝜔𝑛𝑠+𝜔𝑛
2         (4.21) 

The second order approximation is desirable because these systems are well covered in literature, 

and most of the important system parameters have simple analytical expression. This makes the 

design of a controller for second order approximations more systematic and efficient, but the 

approximation must be verified before the design of the controller can begin.When we are 

approximating the higher order IPT-system to a simple second order system, there are some rules 

of thumb that is utilized. 

4.4.1 Neglecting poles located far from the dominating pole(s) 

According to Nise[20], the effect of an additional pole may be neglected if the pole is located at 

least five times as far away from origin as the dominating poles on the real axis in the s-plane. 

This is because in time domain the real part of a pole determines the exponential decay. But this 

is only an approximation which should be verified either by simulation or performing a partial 

fraction expansion. If the other poles are negligible, the system can be represented by only the 

dominant poles. For an underdamped system, the dominating poles are always the complex pole 

pair closest to the origin. For other systems it is the pole closest to origin, except if a pole is in the 

right half plane of the S-plane, but this means the system is unstable. 

4.4.2 The effect of a zero and zero/pole cancellation 

Adding a zero to a second order system does not change the nature of the response, but rather 

change the amplitude and residues of it. In general, the effect of adding a pole can be analyzed in 

Laplace domain by multiplying a transfer function C(s) by a zero (s+a) that gives the response 

C(s): 

(𝑠 + 𝑎)𝐶(𝑠) = 𝑠𝐶(𝑠) + 𝑎𝐶(𝑠) 

Thus, the effect of a zero on the response can be separated into two parts; one derivative part of 

the original response, and a scaled version of the original response. This means that if a is very 

large, the Laplace transform of the response can be regarded as equal to 𝑎𝐶(𝑠). This means that if 

a pole is located far from the origin compared to the dominating poles, it can be regarded as a 

constant with the value 𝑎. If the zero is located close to the dominating poles, the derivative term 

prevails and may increase overshoot and has more effect on the response. Zeroes can only be 

simplified if they are located far from the dominating poles or if they can be cancelled by a pole 

in Laplace domain. 

Let us consider a third order system with a dominant pole pair and one pole along the real axis 

with a zero which is close or equal to the third pole: 

𝑇(𝑠) =  
𝐾(𝑠 + 𝑧1)

(𝑠 + 𝑝3)(𝑠2 + 𝑎𝑠 + 𝑏)
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If 𝑧1 = 𝑝3 the zero cancels out the pole perfectly and T(s) becomes a second order system. But 

that rarely happens with real systems that have identical poles and zeroes. This makes it 

necessary to determine when a zero and a pole are similar enough to cancel each other. This 

clearly depends on the desired accuracy, and is determined by partial-fraction expansion of the 

transfer function that allows the contribution from each pole to be compared. Depending on the 

desired accuracy, the third pole may be cancelled if its contribution is much less than the other 

poles. Nise propose that around two magnitudes of difference are enough to cancel the zero with 

the third pole with acceptable accuracy. 

By using the rules, our IPT-system may be approximated to a second order system which allows 

well defined analytical expressions for the control design criteria. First the second order 

approximation must be verified through simulation.   

 

4.5 System control criteria 
When a control engineer evaluates a system, he often measures three general properties of a 

system: the stability, the transient response and the steady state error of the system. Parameters 

which characterize each of the general properties need to be calculated and dimensioned to fit the 

purpose of the system. The three design criteria will be explained and be linked to the design of 

this IPT-system design. 

4.5.1 Stability 

Stability is the most important requirement for a control system as both the other properties of a 

system becomes meaningless for an instable system. In this thesis only linear time-invariant 

(LTI) systems will be considered, and for these systems there are definitions for: stable, unstable 

and marginally stable systems. The output y(t) can be divided into two parts for a linear system: 

𝑦(𝑡) = 𝑦𝑓𝑜𝑟𝑐𝑒𝑑(𝑡) + 𝑦𝑛𝑎𝑡𝑢𝑟𝑎𝑙(𝑡) 

The forced response is the actual change in input, but the natural response is an oscillation which 

depends solely on the system. The most basic definition of stability defines a system stable if a 

bounded input produce a bounded output, which means that the natural response goes to zero as 

time approaches infinity. On the other hand, if the natural response does not reduce to zero as 

time approach infinity, we define the system either unstable or marginally stable. If the response 

grows towards infinity it is definitely unstable, but if the system is undamped and oscillate with 

the same magnitude forever, it can be considered marginally stable. Note that an unstable system 

will destroy itself if no safety measures are included in the design. Both marginally stable and 

unstable systems are undesirable for our IPT-system. The IPT-system has to be stable. 
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4.5.2 Transient response 

The transient response refers to how the system behaves in time domain when changes in the 

input are done. In Figure 4.3 the input is a step function, which is the type of input function that 

will be used in this thesis. Here, the transient response can be quantified according to certain 

parameters. The transfer functions are fourth order, but as a first estimation second order 

approximations will be made to model the system. For second order systems the transient 

response is well defined with analytical expressions for the parameters describing the transient 

behaviour. The parameters are summarized in Figure 4.3 and the equations are shown only for 

second order systems that are on the form defined in eq. (4.21). 

 

 

Figure 4.3 shows the step response and define the different parameters of a second order system with a step input[20] 

 

Risetime (Tr): 

The time it takes the step signal to go from 10% of final value to 90% of final value is defined as 

the rise time. There is no accurate analytical relationship between the rise time and the damping 

ratio 𝞷. Instead, it is common to set 𝝎nt as the normalized time variable and set the value of 𝞷. 

Then, the normalized rise time (𝝎nTr) in Figure 4.4 is the graph created by solving the difference 

between the values of 𝝎nt that give 90 and 10 percent of the final value when the damping ratio is 

set. By using a computer to solve for different values of 𝞷 the graph is made, but this is only valid 

for underdamped second order systems at 𝞷=0.1 to 0.9. 
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Figure 4.4 shows the normalized rise time for a second order under damped response vs. damping ratio[20] 

 

Peak time: 

The time it takes the transient to reach the first peak is defined as the peak time (Tp) 

𝑇𝑝 =
𝜋

𝜔𝑛√1 − 𝜉2
 

 

Percent overshoot (%OS) 

The relative difference in magnitude between the peak and the final value is normalized using the 

final value as the reference. The normalized peak overshoot is referred to percent overshoot 

(%OS) typically measured in percent. 

%𝑂𝑆 =
𝑐𝑚𝑎𝑥 − 𝑐𝑓𝑖𝑛𝑎𝑙

𝑐𝑓𝑖𝑛𝑎𝑙
= 𝑒

−(
𝜉𝜋

√1−𝜉2
)

× 100 

The overshoot is only dependent on the damping ratio 𝞷, which means that the damping ratio 

easily can be read from the step response of a second order system/ approximation: 

𝜉 =
−ln (%𝑂𝑆 100⁄ )

√𝜋2 + 𝑙𝑛2(%𝑂𝑆 100⁄ )
 

 

Settling time: 

The time it takes the transient amplitude to reach below two percent of the final value is defined 

as the settling time. 

𝑇𝑠 =
−ln (0.02√1 − 𝜉2)

𝜉𝜔𝑛
≈

4

𝜉𝜔𝑛
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The step response mostly tells about the speed of the system and how the transient behaves when 

the input changes. The damping ratio is an important factor which defines much of how the 

transient response behaves. For a second order system the damping ratio and natural frequency is 

easy to determine, and thus the transient response analysis is quite straight forward. 

Most of the applications receiving power from an IPT-system tolerate settling times of seconds 

and overshoot is not a great problem for short durations, but it should be kept under control. For 

example, a battery ferry is connected for several minutes each time it reach the docks, thus 

reaching final value after some seconds is acceptable. 

4.5.3 Steady state 

Another important design objective is the steady state of a system. Ideally, the output should 

settle exactly at the desired value. But this is not always the case, thus a steady state error is 

defined as the difference between the given input and the resulting output. Typically, three types 

of system inputs are used for control systems: Step function for constant position, ramp function 

for constant velocity and parabola for constant acceleration. The IPT-system uses a step input, so 

only step input will be covered. In Laplace domain a step input is described as 1/s. The steady 

state error E(s) is defined as input R(s) minus output Y(s) and can be modelled using a unity 

feedback block diagram.  

 

 

Figure 4.5 shows a general unity feedback system represented as a block diagram 

Several steady state errors in control systems come from nonlinear sources like gear backlash and 

start-up voltage limit of a motor, but nonlinear sources are not considered in this thesis. Apart 

from nonlinearities, the IPT-system itself and the input type introduce a steady state error. 

When calculating the resulting error, the final value theorem is used. By analysing a unity 

feedback system as time approaches infinity or in Laplace domain when “s” approaches zero, the 

steady state error can be measured for any transfer function which is stable.  

𝑒(∞) = lim𝑠→0
𝑠𝑅(𝑠)

1+𝐺(𝑠)
          (4.7) 

In eq. 4.7 the final value theorem is shown and R(s) is the step input (1/s) that cancels the “s” in 

the numerator. This means that the error depends on the value of G(s) as “s” approaches zero, the 

greater the value of G(s) is the less the error becomes. This means that a gain introduced in the 

forward loop results in lower error, but at the same time increases the overshoot of the system. By 
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introducing integrator (1/s) in the forward loop and still have a step input, the resulting error 

becomes zero as 1/s*G(s) approaches infinity. The integrator can give an output even if there is 

no input, but it also makes the settling time and rise time longer, thus slowing down the system. 

Electrical systems with a gain compensation to reduce steady state error can be achieved by using 

passive elements. Introducing an integrator to eliminate the error completely requires active 

components that might need their own voltage source, although recent development of power 

electronics has reduced the downside of active compensators.  

  

To summarize, the stability of a system is a prerequisite for any control system in order to control 

the output and set the other two criteria. Trade-offs needs to be made between the improvements 

of the step response vs. the steady state error. Everything needs to be taken into account when 

designing a controller. For the IPT-system it is very important that the output going to the 

application is within its specification voltage and current. Introducing an integrator as a 

compensator and have zero error would be preferable, as long as it does not slow down the 

system too much. 

 

4.6 Basic controller designs 
As shown in chapter 4.5, there are three general design criteria for a control system. Each of these 

criteria has to be within certain limits to work as intended, but this rarely is the case for real non 

ideal systems. The IPT-system is designed to be efficient and to be able to transfer large amounts 

of power, but this does not necessary give good control design. This is why instead of directly 

making the changes to the system, additional zeros and poles may be added to the system in 

cascade or in a feedback loop as compensation[20]. The added zeroes and poles can reduce or 

even eliminate steady state error, and can improve the step response of the system.  

There are three basic forms of compensation: pure gain controller, integral controller, and 

derivative controller. Compensation by pure gain results in reduced steady state error, but at the 

same time increase the percent overshoot of the transient response. Integral compensation is used 

to reduce the steady state error while keeping the transient response close to the original 

response. The derivative compensation improves the transient response while keeping the steady 

state error unchanged or even improved. In Table 4.1 the controllers: PI, PD and PID are ideal 

compensators, where P stands for proportional, I for integral and D for derivative. The ideal 

compensators may reduce the steady state error to zero and improve the transient response, but 

there are a few drawbacks. One drawback is that these compensators require active components 

that mean increased cost for more advanced power electronics. The derivative term in both PD 

and PID creates noise which grows proportional to the frequency. This causes trouble for the 

system at higher frequencies and lead to saturation and system failure.  
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Table 4.1 shows a summary of the different basic controllers; their function, Transfer function and other characteristics[20]. 

Compensator Function Transfer function Characteristics 

Pure gain Reduce steady state error 𝐾 Increase overshoot 

PI Eliminate steady state error 𝐾
𝑠 + 𝑍𝑐
𝑠

 

1. Increase system type 

2. Error becomes zero 

3. Active circuits required 

Lag Reduce steady state error 𝐾
𝑠 + 𝑍𝑐
𝑠 + 𝑃𝑐

 
1. Error does not become zero but is improved 

2. Active circuits are not required 

PD Improve transient response 𝐾(𝑠 + 𝑍𝑐) 
1. Active circuits are needed 

2. May cause noise and saturation in transient 

response 

Lead Improve transient response 𝐾
𝑠 + 𝑍𝑐
𝑠 + 𝑃𝑐

 
1. Pole at -Pc is more negative than zero at -Zc 

2. Active circuits are not required 

PID 
Improve both steady state 

error and transient response 𝐾
(𝑠 + 𝑍𝑙𝑎𝑔)(𝑠 + 𝑍𝑙𝑒𝑎𝑑)

𝑠
 

1. Zero at –Zlag reduce steady state error 

2. Zero at –Zlead improves transient response 

3. Active circuits required 

Lag-lead 
Improve both steady state 

error and transient response 
𝐾
(𝑠 + 𝑍𝑙𝑎𝑔)(𝑠 + 𝑍𝑙𝑒𝑎𝑑)

(𝑠 + 𝑃𝑙𝑎𝑔)(𝑠 + 𝑃𝑙𝑒𝑎𝑑)
 

1. Increase system type 

2. Error becomes zero 

 

 

Another technique is to make compensator from passive elements like resistors, inductors and 

capacitors. These are not considered ideal compensator, but they are cheaper, and do not require 

additional power sources. Additionally, the noise and saturation is cancelled when using a non-

ideal derivate (lag-compensator). The disadvantages are mainly that the steady state error can 

only be reduced, not eliminated as an ideal integrator does. Such compensators are called lag- and 

lead compensator that represents integral compensation and derivative compensation 

respectively. In Table 4.1 it is clear how the transfer functions are different between the ideal and 

non-ideal compensation. The design of compensation will be done in frequency domain and only 

the lag, lead and combinations of them will be considered. This is due to the advantages 

mentioned and because the modelling in frequency domain facilitates the design of non-ideal 

compensators. 
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5 Modelling and analysis of the 

transfer functions 
 

In chapter 3, the mathematical models of the IPT-system are shown, and in this chapter the 

nonlinear, averaged time-invariant model will be linearized. From the linearized model, the 

transfer function between the input voltage “v1” and the output current “i2” can be extracted and 

analysed. The parameters will be changed for the inductances and coupling coefficient simulating 

change in the relative position of the coils during operation. From the SINTEF prototype IPT-

system measurements were taken, and are now used to analyse how the transfer function change 

as parameters are changed. In Table 5.1 only the parameter which depends on the relative 

distance of the coils are listed. The system frequency is kept at 5 kHz which also makes all the 

angular frequencies stay constant during changes of coil distance. The coupling coefficient and 

the self-inductances are taken from the measurements done earlier, and multiplied with the 

constant kf to compensate the reduced frequency of a real IPT-system, shown in Appendix B. 

Table 5.1 shows the parameters used for each of the operating distances considered in this thesis. 

Parameter d=20mm d=30mm d=40mm d=45mm d=50mm d=60mm 

System frequency 

(f) 
5 kHz 5 kHz 5 kHz 5 kHz 5 kHz 5 kHz 

Coupling 

coefficient (k) 
0.611 0.4610 0.3470 0.3010 0.2620 0.2010 

Primary 

inductance (L1) 
819.00μH 750.0μH 717.40μH 708.60μH 701.60μH 693.60μH 

Secondary 

inductance (L2) 
534.80μH 490.0μH 468.80μH 463.00μH 428.80μH 454.00μH 

Mutual 

inductance (M) 
404.4µH 279.47µH 201.24µH 172.41µH 148.65µH 112.79µH 

Primary 

capacitor (C1) 
1.237µF 1.3509µF 1.4123µF 1.4299µF 1.4441µF 1.4608µF 

Secondary 

capacitor (C2) 
1.8965µF 2.0698µF 2.1634µF 2.1906µF 2.2106µF 2.2340µF 

 

5.1 Linearization of the nonlinear averaged model 
The linearization of the averaged model is done in MatLab with minor help from Simulink 

simulation to locate equilibrium points to define the operating point of the linearization. The 

operating point depends on what distance or value of coupling coefficient that is used, which is 

why five scripts are made to define the parameters and the operating point at each position of the 

coils. From Appendix the distances chosen is 20mm, 30mm, 40mm, 50mm and 60mm, all of 

them with no further misalignment. Initially, from the specialization project, the system 

frequency was set to 100 kHz, but this high frequency results in massive switching losses with 
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the current transistor technology. That is why the frequency is now set to 5 kHz that led to 

modifications to the measured self-inductances L1 and L2 by multiplying them with the 

factor 𝐾𝑓 = 20 as defined in chapter 3.1. 

In order to easily be able to change between the different operation distances, several Scripts 

define the parameters for each of the six cases. The parameters that changes as the operation 

distance is changed are marked in red. The parts of the script that is highlighted in light blue 

define the step changes of the inputs of the models, where step1 to step 3 define at what 

simulation time the step changes happen and “deltax” defines the amplitude of the changes: 

𝑠𝑡𝑒𝑝1 = 𝑢1 ∗ 𝑑𝑒𝑙𝑡𝑎𝑥,    𝑠𝑡𝑒𝑝2 =
𝑢1

𝑑𝑒𝑙𝑡𝑎𝑥2
    𝑎𝑛𝑑     𝑠𝑡𝑒𝑝3 = 𝑢1 ∗ 𝑑𝑒𝑙𝑡𝑎𝑥    (5.1) 

Script used to define parameters before the general linearization script is run: 

%Basic system parameters and calculated values based on well-known formulas 
f=5000 
ws=2*pi*f 
k=0.201 
L1=(34.68e-6)*(100000/f) 
L2=(22.70e-6)*(100000/f) 
R1=1.5 
R2=1.5 
M=k*sqrt(L1*L2) 
C2=1.001/(ws^2*L2) 
C1=1/(ws^2*L1) 
Lsigma1=L1-(M^2)/L2 
Lsigma2=L2-(M^2)/L1 
w1=1/sqrt(L1*C1) 
w2=1/sqrt(L2*C2) 
y=0 
step1=0.015  %first step change happens after 0.015 seconds of simulation 

step2=0.02  %second step change happens 0.015 seconds into the simulation 
step3=0.025  %third step change happens 0.015 seconds into the simulation 
deltax=0.90; %defines the magnitude of the change in the step inputs 

 

% operation point taken from simulation of the averaged model 
X1=0.008819; 
X2=0.0007968; 
X3=0.00289; 
X4=-1.572; 

%inputs 
u1=1.0; 
u2=1.0; 

 

The method that is used to extract the transfer function between 1 and i2  

1. Choose what distance the system is run in, and run the script with the correlated 

parameters. 

2. Run the general linearization script, shown in Appendix C: Matlab scripts, which 

performs the following steps: 
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a. Define the state vectors, and the matrices and their functions. 

b. Solving the matrices A, B, C and D numerically by inserting the values of the state 

variables from the given operating point.  

c.  Transforming from state space representation to transfer function representation, 

makes it possible to extract the wanted transfer function. 

d. The transfer function between the input voltage and output current is negative 

because the output current is originally defined in the opposite direction of the 

current flow. A positive transfer function is preferable, so the current direction has 

been redefined to the opposite direction compared to Figure 4.1. 

e. The positive transfer function is then analyzed by locating all the poles and zeroes 

that can be plotted in the S-plane. 

f. Additionally a Bode plot and step plot is drawn to extract more information about 

the system. 

g. The plots are being held to be able to compare the IPT-system’s behaviour at 

different coupling coefficients. The different cases are color coded.  

The transfer functions have been listed in Table 5.2 according to the relative distance between the 

coils when the measurements of the inductances were taken. MatLab originally presented the 

transfer functions with unnecessarily large coefficients in each term. To simplify, both the 

numerator and the denominator have been divided with the lowest common coefficient of the 

transfer function, which are the third order term in the numerator. The color code that is used for 

every plot is also shown in Table 5.2. 

Table 5.2 shows the transfer functions for each of the six operation distances and tells the pole composition and the color 
code. 

Distance Resulting transfer function Poles Color code 

60mm  𝑮𝟔𝟎(𝒔) =
𝑠3  +  1.414e07 𝑠2  +  1.457e11 s +  2.774e14

10.98 𝑠4  +  1.54e05 𝑠3  +  7.361e08 𝑠2  +  2.168e12 s +  2.862e15
 

2 complex 

and 2 real 
Magneta 

50mm 𝑮𝟓𝟎(𝒔) =
𝑠3  +  8.844e07 𝑠2  +  9.089e11 s +  2.28e15

48.87 𝑠4  +  7.178e05 𝑠3  +  4.357e09 𝑠2  +  1.575e13 s +  2.899e16
 

2 complex 

and 2 real 
Blue 

45mm 𝑮𝟒𝟓(𝒔) =
𝑠3  +  9.244e07 𝑠2  +  9.659e11 s +  2.824e15

41.93 𝑠4  +  6.487e05 𝑠3  +  4.6e09 𝑠2  +  1.842e13 s +  4.064e16
 4 complex Black 

40mm 𝑮𝟒𝟎(𝒔) =
𝑠3  +  9.818e07 𝑠2  +  1.051e12 s +  3.61e15

35.62 𝑠4  +  5.927e05 𝑠3  +  5.053e09 𝑠2  +  2.234e13 s +  5.95e16
 4 complex Green 

30mm 𝑮𝟑𝟎(𝒔) =
𝑠3  +  1.187e08 𝑠2  +  1.337e12 s +  6.377e15

25.09 𝑠4  +  5.157e05 𝑠3  +  6.989e09 𝑠2  +  3.649e13 s +  1.423e17
 4 complex Cyan 

20mm 𝑮𝟐𝟎(𝒔) =
𝑠3  +  1.689e08 𝑠2  +  1.965e12 s +  1.304e16

16.45 𝑠4  +  4.801e05 𝑠3  +  1.253e10 𝑠2  +  7.278e13 s +  4.146e17
 4 complex Red 
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5.1.1 The importance of second order approximation 

The transfer functions of the system are all fourth order transfer functions. The problem with 

higher order systems is that there is no analytical expressions for the parameters giving the 

information we need to design an optimal controller. This is why being able to derive a working 

second order approximation is essential when working with control systems. Second order 

systems are well equipped with analytical expressions for almost any parameter needed to 

evaluate the three design criteria explained in chapter 4.5. 

 

5.2 Locating and analysing the poles and zeroes 
From the transfer functions the zeroes and poles is found. They give most of the information 

about the system for an initial analysis. The first criterion is stability, which is ensured if all the 

poles are located in the left half plane of the S-plane. This implies that the real part of the pole is 

negative. Then, the poles and zeroes are tested against the rules of thumb in chapter 4.4 in order 

to simplify the transfer functions.  

The zeroes and poles are listed in Table 5.3, where each parenthesis shows what value of s makes 

the transfer function yield zero and infinite respectively. The poles/zeroes that can be 

neglected/considered constant have orange font, while the poles and zeroes that may be cancelled 

against each other is given red font. When analysing the six transfer functions it seems that only 

the rules of thumb can be applied when the system is operated at low coupling coefficients 

(𝑘 ≤ 0.262) that in this case only occurs in two of the operating distances (50mm and 60mm). At 

higher coupling coefficients new complex poles and zeroes is introduced, which reduce the 

chances of finding a valid second order approximation.  

 

Table 5.3 lists the values of s that yields zeroes and poles.  

Distance Zeroes Poles Comments 

60mm (1.4133 × 107), (7791.7), (2518.8) 
(1514.1 + 𝑗3108.9), (1514.1 − 𝑗3108.9), 
(2595.7), (8393.8) 

Possibly pole cancelling 

and neglection of zeroes 

and poles far from the 

dominating poles 

50mm (8.8434 × 107), (5928.5), (4348.8) 
(1740 + 𝑗4011.3), (1740 + 𝑗4011.3), 
(6221.6), (4987.3) 

Possibly pole cancelling 

and neglection of zeroes 

and poles far from the 

dominating poles 

45mm 
(9.2428 × 107), (5225.1 + 𝑗1802.8), 
(5225.1 − 𝑗1802.8) 

(1987 + 𝑗4543.5), (1987 − 𝑗4543.5) 
(5748.4 + 𝑗2524.8), (5748.4 − 𝑗2524.8) 

Additional complex zeroes 

and poles 

40mm 
(9.8173 × 107), (5354.4 + 𝑗2846.3), 
(5354.4 − 𝑗2846.3) 

(2419.9 + 𝑗5031.6), (2419.9 − 𝑗5031.6) 
(5900.2 + 𝑗4333.1), (5900.2 − 𝑗4333.1) 

Additional complex zeroes 

and poles 



44 
 

30mm 
(1.1867 × 108), (5634.3 + 𝑗4689.8), 
(5634.3 − 𝑗4689.8) 

(2962.2 + 𝑗5264), (2962.2 − 𝑗5264) 
(7315.4 + 𝑗10094), (7315.4 − 𝑗10094) 

Additional complex zeroes 

and poles 

20mm 
(1.6891 × 108), (5817.6 + 𝑗6582.8), 
(5817.6 − 𝑗6582.8) 

(2935.3 + 𝑗5892.6), (2935.3 − 𝑗5892.6) 
(11660 + 𝑗21112), (11660 + 𝑗21112) 

Additional complex zeroes 

and poles 

 

From the transfer functions in Table 5.2 the zeroes and poles have been located and are plotted in 

the S-plane in Figure 5.1 and Figure 5.2. They are shown in two separate plots to be more 

comprehensive, as the markers in the MatLab scatterplot is hard to enlarge.  

 

 

Figure 5.1 shows the poles and zeroes of the transfer functions: 45mm, 50mm and 60mm 

 

When analyzing the location of the poles and zeroes of the transfer functions, it was discovered 

that the transfer functions with lowest coupling coefficient (d=50mm and d=60mm) was different 

from the cases with higher coupling coefficient (less air gap). The dominating poles are a 

complex pair for every transfer function, but the remaining poles and zeroes are only present 

along the real axis for the cases: d=50mm and d=60mm. This makes it much more likely that a 

second order approximation can be made for those transfer functions. For the other transfer 

functions, the third and fourth pole also make a complex pole pair, which makes it less likely that 

a second order approximation is possible. Additionally, two of the three zeroes of the small air 

gap transfer functions are complex, which also makes a second order approximation less likely to 

be valid.  
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The third zero of every transfer function is located several magnitudes away down the real axis 

from the dominating poles, and can simply be considered as constants. The other zeroes also 

might either be far enough from the dominating poles or able to cancel a pole. This needs to be 

tested by plotting Bode- and step plots of the original transfer functions and compare with a 

second order approximation. 

 

Figure 5.2 shows the poles and zeroes of the transfer functions: 20mm, 30mm and 40mm 

Some trends on how the poles and zeroes change as the coupling changes can be observed in 

Figure 5.1 and Figure 5.2.  

 The dominating poles become further away from origin as distance is decreased, both the 

real and imaginary part increases (exception at 30mm, which is closer to origin than at 

20mm) 

 The zeroes and the other poles are also located further from the origin as the distance 

between the coils increase, and at a certain distance (between 45mm and 50mm in this 

case) the two of the real zeroes and two of the real poles becomes complex poles. 

 It seems like a lower coupling coefficient makes a second order approximation more 

plausible. 

 

5.3 Verification of the second order approximations 
 The analysis of the zeroes and poles shows that as the coupling gets stronger, the accuracy of a 

second order approximation declines. As a verification method, the bode plots of three operation 
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distances has been compared to their second order approximations. The distances chosen are the 

smallest air gap, the widest air gap and the 45mm air gap case.  

The procedure used to make a second order approximation of the system is to neglect poles that 

are far away from the dominating poles in the left half plane. Additionally the zeroes that are 

further left than the dominating poles will be considered as constants. Additionally, poles and 

zeroes which are close are cancelling each other out. The numerator of the approximation thus 

becomes a constant “K” and the denominator only consists of the dominating poles of the original 

transfer function. As an example, the transfer function of the widest air gap can be simplified.   

𝐺60(𝑠) =
𝑠3  +  1.414e07 𝑠2  +  1.457e11 s +  2.774e14

10.98 𝑠4  +  1.54e05 𝑠3  +  7.361e08 𝑠2  +  2.168e12 s +  2.862e15
   

≈
𝐾

10.98 ∗ (𝑠 + 1514.1 + 𝑗3108.9)(𝑠 + 1514.1 − 𝑗3108.9)
                          

Where:  

 𝐾 = lim𝑠→0 𝐺60(𝑠) ∗  lim
𝑠→0
(10.98 (𝑠 + 1514.1 + 𝑗3108.9)(𝑠 + 1514.1 − 𝑗3108.9)) 

When calculating the equivalent constant “K” the simple method is to divide the constant term of 

the numerator original transfer function with the constant denominator, and then multiply it with 

the constant term introduced by the poles in the second order approximation. The resulting 

transfer function is: 

𝐺60(𝑠) ≈
1.159𝑒06

𝑠2 + 3028𝑠 + 1.196𝑒07
    

When the second order approximation is made, it is plotted as a Bode plot in the same figure as 

the Bode plot of the original transfer function to compare and judge the accuracy of the 

approximation. The same comparison is also done with a step response plot created by a basic 

MatLab command.   
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5.3.1 Comparison of 𝑮𝟔𝟎(𝒔) and its second order approximation 

Figure 5.3 and Figure 5.4 are both used to determine the validity of the second order 

approximation of the transfer function of the widest air gap: 

 

Figure 5.3 shows a comparison of the Bode plots of the original transfer function and its second order approximation for the 
operation distance of 60mm 

 

 

Figure 5.4 shows a comparison of the “closed loop step responses” of the original transfer function and its second order 
approximation for the operation distance of 60mm 
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From the plots shown in Figure 5.3 and Figure 5.4, the second order approximation is as expected 

very close to the original transfer function at widest air gap. The second order approximation 

seems to give slight underestimations of the magnitude, the phase in the Bode plot, and also 

underestimates the first peak in the step response plot. The approximation is not perfect, but it is 

close enough to be considered valid. This means that for low coupling coefficients a controller 

may be designed by using well known design methods based on second order systems. 

5.3.2 Comparison of 𝑮𝟒𝟓(𝒔) and its second order approximation 

Figure 5.5 and Figure 5.4 are both used to determine the validity of the second order 

approximation of the transfer function of the widest air gap. The approximation is expected to be 

less accurate because additional complex poles are present.  

 

 

Figure 5.5 shows a comparison of the Bode plots of the original transfer function and its second order approximation for the 
operation distance of 45mm 

The second order approximation of the medium air gap is even less accurate, as was expected 

when additional complex poles are present. The Bode plot in Figure 5.5 shows that the secondary 

approximation is similar to 𝐺45(𝑠), but less accurate. From the step response plot in Figure 5.4, it 

is larger deviations between the approximation and the original transfer function. Although the 

approximation is beginning to deviate more as the coupling coefficient increase, it can be used as 

a coarse first design of a controller. For this system the borderline between a good enough second 

order approximation and an invalid approximation is found at a coupling coefficient around: 

𝑘 = 0.30. 
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Figure 5.6 shows a comparison of the “closed loop step responses” of the original transfer function and its second order 
approximation for the operation distance of 45mm 

 

5.3.3 Comparison of 𝑮𝟐𝟎(𝒔) and its second order approximation 

Figure 5.7 and Figure 5.8 are both used to determine the validity of the second order 

approximation of the transfer function of the medium wide air gap.  

 

Figure 5.7 shows a comparison of the Bode plots of the original transfer function and its second order approximation for the 
operation distance of 20mm 
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The analysis of the poles and zeroes indicates that this approximation is much less accurate as 

additional complex poles with a huge imaginary component are present. This is verified in Figure 

5.7 and Figure 5.8 since the second order approximation severely deviates from the original 

transfer function “𝐺20(𝑠)”. It is obviously not acceptable to model the transfer function of the 

smallest air gap with a second order approximation. The additional complex poles and zeroes 

have too heavy impact to be ignored. 

 

 

Figure 5.8 shows a comparison of the “closed loop step responses” of the original transfer function and its second order 
approximation for the operation distance of 20mm 

 

The evaluation of whether the second order approximation to model the fourth order IPT-system 

is valid or not, depending on the coupling coefficient, is summarized in Table 5.4. The grading 

system used ranges from very good to very bad, where very good is almost identical and very bad 

is very large deviation. The intermediate steps are the following: good, fairly good, quite bad and 

bad. Fairly good is considered the borderline between whether the deviation is too great to accept 

or is acceptable. The other intermediate transfer functions (𝐺50(𝑠), 𝐺40(𝑠) and 𝐺30(𝑠)) are 

assumed to fall in between the extremities. By running the MatLab script for the other transfer 

functions, this assumption has been confirmed, see Appendix D. 
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Table 5.4 shows the summary of how well the second order approximation is representing their original transfer functions. 

Transfer 
function 

Coupling 
coefficient 

Magnitude 
(Bode plot) 

Phase 
(Bode plot) 

Step response Verdict 

𝑮𝟔𝟎(𝒔) 0.201 Very good Very good Good Valid 

𝑮𝟓𝟎(𝒔) 0.262 Good Good Fairly good Valid 

𝑮𝟒𝟓(𝒔) 0.301 Fairly good Fairly good Less good Barely valid 

𝑮𝟒𝟎(𝒔) 0.347 Quite bad Quite bad Bad Not valid 

𝑮𝟑𝟎(𝒔) 0.461 Bad Bad Very bad Not valid 

𝑮𝟐𝟎(𝒔) 0.611 Very bad Very bad Very bad Not valid 
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6 Design of a controller 
 

The fact that the second order approximation is not valid for all the cases means the design 

procedure for the controller must be divided into two. When the system is running at weak 

coupling, the controller steps may be designed by using common second order design methods. 

But as the air gap is reduced and the coupling coefficient is increased, and a second order 

approximation might not be valid, other design methods must be used. One important tool that is 

based on heavy simulations is computer tools. A computer can solve higher order transfer 

functions by running thousands of simulations in quite a short time. The computer tool is only 

used as a second choice to cope with transfer functions that clearly cannot be modelled by a 

second order approximation. 

 

6.1 Advanced computer tools: Control System Manager 
One of the alternate methods is to use computer tools, such as the (siso) tool that is included in 

the MatLab 2015a and the simulation tool Simulink. Siso stands for single input, single output 

(SISO) controllers and is part of an app called Control System Designer. This app let you design 

controllers by using interactive Bode, root locus and Nichols graphical editors that allows for 

adding, modifying and removing controller poles, zeroes and gains. This tool makes it possible to 

quickly see the effects of adding poles, zeroes and gains because you can immediately see the 

Bode plot change as parameters are changed. The app may also offer automated PID, Linear-

Quadratic Gaussian (LQG) and Internal Model Control (IMC) tuning. Analysis of controllers and 

systems, as well as an optimization-based tuning option is among the tasks that can be done using 

this computer tool.  

To illustrate how simple it is to design the controller according to set design criteria a controller 

for 𝐺20(𝑠) is designed using (SISO) tools. As seen from the Figure 5.7, the uncompensated 

system does not cross the 0dB line, which means the phase margin is infinite. Additionally, the 

phase never reaches -180˚, which gives infinite gain margin too. This means the system is very 

stable, but when the other design criteria are checked in Figure 5.8 it is evident that the IPT 

system needs compensation. The steady state error is huge and need to be taken care of by 

introducing a controller.  

𝑒𝑠𝑡𝑒𝑎𝑑𝑦 𝑠𝑡𝑎𝑡𝑒 20 = lim𝑠→0
1

1+𝐺20(𝑠)
= 

1

1+
1.304e16

4.146e17

= 0.9695      (6.1) 

 

As a first step to design a controller, a desired value for the parameters describing the three 

design criteria are chosen. Phase margin and gain margin describes the stability of the system, if 
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either the gain or phase margin is zero or negative the system is unstable. The phase margin does 

also reflect the degree of damping in the system. To have good margins and ensuring stability the 

phase margin is desired to be around 55˚ and the gain margin over 15dB. Because of the high 

frequency of the system, it seems the settling time is very fast even for the uncompensated 

system. For an IPT system, a settling time below one second is acceptable. The steady state error 

is very important to minimize, which ensures the IPT system works as intended. As a first 

estimate less than 1% is proposed. A comparison of the uncompensated system versus the desired 

design parameters is shown in Table 6.1.  

 

Table 6.1 compares the design criteria of the uncompensated system with a PI compensated system. 

Parameters Desired Uncompensated system Comments 

Phase margin At least 55˚ Infinite Steady state error is 

greatly increased 

Gain margin At least 15 dB Infinite  

Stable system? Yes Yes System is very robust 

Settling time Less than 1 second 1.3ms System speed is good 

Percent overshoot Less than 20% 19%  can be improved 

Steady state error Less than 5% 97%  must be improved 

 

According to the analysis of the uncompensated system the steady state error is huge and needs to 

be drastically reduced. The best method to reduce the steady state error is to introduce an 

integrator in the forward loop accompanied by a gain to control the phase and gain margins.  

6.1.1 Design procedure using Control System Toolbox 

The integrator and the gain can be designed using the Control System Toolbox app in MatLab.  

The design procedure is very intuitive and simple: 

1. Step 1 is to enter: “controlSystemDesigner('bode',Tfsys)” after the general linearization 

script is run and a bode plot will appear in a new window: 
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Figure 6.1 shows the Open-loop Bode Editor of the SISO toolbox, where Bode plots can be manipulated intuitively. 

 

 

 

2. Open the analysis tag and select: “Response to step command”: 

 

 

Figure 6.2 shows the related closed loop step response of the resulting compensated system. 

 

3. Introduce a pole in the origin to add the integrator. Then, as indicated in Figure 6.1, the 

Bode plot itself can be moved with the cursor to obtain the desired phase margin. 

4. For each selected phase margin, write down data from the step response and open the 

“Design” tab and select: edit compensator to find the current value of Ki.   

The results, from testing an integrator with a gain in the forward loop at phase margins from 40˚ 

to 75˚, are shown in Table 6.2. The system seems to get better as the phase margin is increased, 

but the overshoot starts to occur on the second peak of the step response at around 65˚ phase 

margin, see Figure 6.3.  
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Table 6.2 shows how the controller gain (Ki) and the other parameter change as the phase margin is changed. 

Phase 

margin 

Integrator gain 

(Ki) 

Gain 

margin 

Settling time Percent 

overshoot 

Steady state 

error 

40˚ 2.1894e+05 13dB 1.6ms 17% Zero 

45 ˚ 1.8609e+05 14.4dB 1.35ms 13% Zero 

50 ˚ 1.669e+05 15.4dB 1.4ms 10% Zero 

55 ˚ 1.5558e+05 16dB 1.4ms 8% Zero 

60 ˚ 1.3989e+05 16.9dB 1.4ms 5% Zero 

65 ˚ 1.2886e+05 17.6dB 1.2ms 2.5% Zero 

70 ˚ 1.2079e+05 18.2dB 1.2ms 1.5% Zero 

75 ˚ 1.1124e+05 18.9dB 1.2ms 1% Zero 

 

This method to design a controller is very intuitive and yields great understanding of how the 

system reacts to different configurations of poles, zeroes and gains. Any compensator type can be 

selected, and by moving the Bode plot or the step response plot your specifications are met. This 

is a good first design phase to get to know the system and decide which controller is needed. The 

down side is the try and error part that makes it difficult to design a general controller that can 

cope with changing transfer functions depending on the operation of the IPT system. 

 

Figure 6.3 the resulting closed loop step responses of the compensated G20 (s) as the phase margin is set to different values  
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Advanced computer tools could be used to design the controller for every possible configuration 

of the IPT-system, as the order of the system does not matter. The drawback is the inability to 

design the controller analytically. This means that the changes in the compensator, as the 

coupling coefficient change, is not possible to determine analytically. Thus, control design using 

computer tools may be less usable when designing a controller for the IPT system with variable 

coupling coefficient  
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7 Discussion 
During the specialization project last autumn [15] I made the foundation of the averaged 

nonlinear time-invariant model, but during the process of writing this thesis an important error 

was found. The assumed system frequency was way too high to transfer the huge amounts of 

power that was intended. Thus, the model needed to adapt to a much lower frequency. The 

current frequency is set to 5kHz, which is one 20
th

 of the old system frequency. This change 

introduced new challenges when the measured inductances from the specialization project. To 

adapt the models two things had to be done:  

 First, because inductance relies on the system frequency, the measured self-inductances 

were divided with the change of frequency (K 𝑓 = 20). 

 Second, the step timings needed to be changed. 

The system frequency of the measurements is not exactly 100kHz as assumed in the 

specialization project, but the measurements will still give the correct relationship between 

coupling coefficient and the distance between the coils. The measured self-inductances from the 

prototype can still be used to model a full-scale IPT system. This is because a change in the 

relative distance between the coils should change the self-inductances following the same 

relationship as the measured inductances. 

5kHz might still give huge switching losses, but the purpose of this thesis is to explore the 

possibilities of designing a proper controller for a high power IPT-system. The current research 

on power electronics based on silicon carbide will enable IPT-systems to be run at higher 

frequencies. The increased frequency will increase the overall performance and efficiency of the 

system as well as reduce the physical size. It will be important to have established good controller 

designing methods to make IPT cheaper and better than cables. The modelling method used for 

describe the IPT is also an important research topic.  

I believe the averaged, nonlinear time-invariant model based on CMT proposed by Hongchang et 

al. is a good way to model the basic IPT system. The calculations are complicated, but definitely 

manageable, and it seems to be a good model to base the control design on as the required 

information is kept. The model follows the amplitudes of the dynamic model, based on the basic 

differential equations of the mutually linked circuits, quite good for several configurations of the 

parameters. One thing I have had trouble with is to match the initial transients of the averaged 

model with the dynamic model, but the most important is the changes in inputs during operation. 

Another thing I have noticed is that the average model does not deal with sudden increase of the 

input, this problem is noticed whenever the initial conditions are set to low. This also happens if 

the step inputs of the model are set to drop down to zero and back up. I believe this happens 

because there is a limit of how quickly the average model can increase and still follow the 
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envelope. This should not pose any problem during normal operation of an IPT system, but it 

could pose a problem. 

The linearization process has been gradually become more and more automatic as the scripts in 

Appendix C evolved. The transfer functions have been analysed, and much effort has gone to 

check for possible second order approximations for the fourth order transfer functions extracted 

from the linearized model. I have primarily only used the rules of thumb mentioned in chapter 4, 

but additional measures could potentially help achieving a valid second order approximation even 

for most of the small air gap transfer functions. By changing the values of the dominating poles, 

an approximation may be found even for some of the systems with additional poles. This method 

is hard to generalize, which is why I have not used it. This basic IPT system covered in this thesis 

does not represent every IPT system, by this I am trying to say that there is not certain IPT 

systems always gets impossible to apply second order approximation at higher coupling 

coefficient. I just observe that there is a correlation between the coupling coefficient and how 

well a general second order approximation describes the system. I also assume that there are IPT 

systems that cannot be approximated to a second order system for every coupling coefficient 

within its operation range. This is why I have proposed computer tools to be used for solving 

those higher order transfer functions, and possibly include the scripts and method used by the 

computer tool and utilize it when designing a controller.  

When designing a controller for second order systems the procedures are well known, and the 

important parameters mostly have defined analytical expressions that can be utilized both in time 

domain as well as frequency domain. I have shown how the computer tool “(SISO) control 

design toolbox” in MatLab works, to explore how a system reacts to added poles, zeroes and 

gains, but I have not had the time to dig into the theory behind the computer tool. When 

designing a controller, I propose that the controller can be designed mainly by using second order 

approximations and use the well-established second order relationships to facilitate the control 

design greatly. But at the same time have a tool ready to deal with operation points of the IPT 

system that does not allow the transfer function to be represented by a second order 

approximation. From the analysis of poles and zeroes, it is clear that additional complex poles 

with large imaginary value in the vicinity of the dominating poles means the system cannot be 

approximated. 
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8 Conclusion 
The future of wireless power transfer is exciting, and large improvements are possible as the 

power electronic technology is evolving. The averaged model based on “coupled mode theory” 

has been reliable when describing the basic IPT system. The model gives a graph that follows the 

transients quite well, and provides the needed information the system. One thing that could be 

improved is the capability to correctly react to large and sudden increase of the input signal.  

The process of linearization of the averaged, nonlinear time-invariant model has been generalized 

to a good degree. Much effort has been put into making second order approximations of the 

resulting transfer functions to be able to use well established methods for controller design. The 

general rules used in this thesis have been proven to work on systems whose transfer function 

does not include large complex additional poles. However, it is possible to tune the location of 

the dominating poles to represent high order systems as second order approximations more 

accurately. 

The design of a controller for this particular IPT system cannot solely be modeled by using 

second order control methods because of the large additional complex poles introduced at the 

smallest air gap. The second order design methods provide the best tools for handling design of a 

controller, but the IPT-system may not always be approximated for all coupling coefficients. This 

is why other methods also should be explored. This is why the usage of advanced computer tools 

is suggested as a good approach to handle the higher order transfer functions that cannot be 

approximated. The theory behind the computer tools should be further studied in order to more 

easily design controllers that can adapt to changes in the system transfer function according to the 

coupling of the coils.  

For further work I propose to look more into the second order approximation to be able to 

represent more transfer functions as second order approximations. Additionally, the relationship 

between the coupling coefficient and how the poles and zeroes are located should be looked into. 

The averaged model based on coupled mode theory should also be further developed. 
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Appendix A   
 

The model based on CMT befor it is averaged 
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Appendix B   
 

Measured inductances from the SINTEF prototype 

Measured misalignment 
Self-inductance  

(Open loop) 
Calculated M 

Total inductance 
(inductance in series) 

Calculated k Control 

d (mm) x (mm) y (mm) L11 (μH) L22 (μH) (Lb-La)/4 (μH) La (μH) Lb (μH) M/root(L11*L22)   

20.00 0.00 0.00 40.95 26.74 20.22 27.26 108.13 0.611 -0.005 

25.00 0.00 0.00 38.86 25.38 16.70 30.79 97.59 0.532 0.05 

30.00 0.00 0.00 37.50 24.50 13.96 34.05 89.90 0.461 0.025 

35.00 0.00 0.00 36.54 23.86 11.80 36.79 84.00 0.400 0.005 

40.00 0.00 0.00 35.87 23.44 10.06 39.16 79.38 0.347 0.04 

45.00 0.00 0.00 35.43 23.15 8.63 41.32 75.84 0.301 0 

50.00 0.00 0.00 35.08 22.94 7.44 43.23 72.97 0.262 -0.08 

55.00 0.00 0.00 34.86 22.77 6.39 44.92 70.49 0.227 -0.075 

60.00 0.00 0.00 34.68 22.70 5.65 46.13 68.74 0.201 -0.055 

65.00 0.00 0.00 34.55 22.61 4.94 47.34 67.11 0.177 -0.065 

70.00 0.00 0.00 34.41 22.53 4.35 48.35 65.74 0.156 -0.105 

75.00 0.00 0.00 34.33 22.49 3.87 49.19 64.65 0.139 -0.1 

80.00 0.00 0.00 34.29 22.46 3.42 50.02 63.69 0.123 -0.105 

85.00 0.00 0.00 34.27 22.43 3.07 50.64 62.90 0.111 -0.07 

90.00 0.00 0.00 34.25 22.43 2.72 51.29 62.17 0.098 -0.05 

95.00 0.00 0.00 34.22 22.41 2.42 51.84 61.53 0.087 -0.055 

100.00 0.00 0.00 34.18 22.39 2.19 52.28 61.02 0.079 -0.08 

105.00 0.00 0.00 34.18 22.38 1.98 52.63 60.56 0.072 -0.035 

110.00 0.00 0.00 34.16 22.37 1.78 53.06 60.17 0.064 -0.085 

115.00 0.00 0.00 34.15 22.36 1.61 53.38 59.81 0.058 -0.085 
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120.00 0.00 0.00 34.14 22.37 1.47 53.64 59.52 0.053 -0.07 

125.00 0.00 0.00 34.12 22.36 1.33 53.90 59.21 0.048 -0.075 

130.00 0.00 0.00 34.11 22.36 1.21 54.11 58.96 0.044 -0.065 

135.00 0.00 0.00 34.10 22.36 1.13 54.31 58.81 0.041 -0.1 

140.00 0.00 0.00 34.10 22.37 1.03 54.53 58.63 0.037 -0.11 

145.00 0.00 0.00 34.09 22.38 0.95 54.66 58.44 0.034 -0.08 

150.00 0.00 0.00 34.09 22.38 0.86 54.84 58.29 0.031 -0.095 
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Appendix C: Matlab scripts 
 

Default parameters for the IPT models and simulations 

%Basic system parameters and calculated values based on well-known formulas 
f=5000 
ws=2*pi*f 
k=0.262 
L1=(35.08e-6)*(100000/f) 
L2=(22.94e-6)*(100000/f) 
R1=1.5 
R2=1.5 
M=k*sqrt(L1*L2) 
C2=1.001/(ws^2*L2) 
C1=1/(ws^2*L1) 
Lsigma1=L1-(M^2)/L2 
Lsigma2=L2-(M^2)/L1 
w1=1/sqrt(L1*C1) 
w2=1/sqrt(L2*C2) 
y=0 
step1=0.015 
step2=0.02 
step3=0.025 
deltax=0.90; 

  
%% The representation of the averaged model constants (term by term) 
% A1 through A5 are the constants of d/dt(a1) sorted by term (top-bottom)   
A1=L2*R1/(2*(L1*L2-M^2)) 
A2=M*sqrt(L1)/(2*sqrt(C2)*(L1*L2-M^2)) 
A3=M*R2*sqrt(L1)/(2*sqrt(L2)*(L1*L2-M^2)) 
A4=sqrt(2)*L2*sqrt(L1)/(pi*(L1*L2-M^2)) 
A5=sqrt(2)*M*sqrt(L1)/(pi*(L1*L2-M^2)) 

  
% B1 through B5 are the constants of d/dt(ø1) sorted by term (top-bottom) 
B1=L2*sqrt(L1)/(2*sqrt(C1)*(L1*L2-M^2)) 
B2=M*sqrt(L1)/(2*sqrt(C2)*(L1*L2-M^2)) 
B3=M*R2*sqrt(L1)/(2*sqrt(L2)*(L1*L2-M^2)) 
B4=sqrt(2)*L2*sqrt(L1)/(pi*(L1*L2-M^2)) 
B5=sqrt(2)*M*sqrt(L1)/(pi*(L1*L2-M^2)) 

  
% a1 through a5 are the constants of d/dt(a2) sorted by term (top-bottom) 
a1=(L1*R2)/(2*(L1*L2-M^2)) 
a2=(M*sqrt(L2))/(2*sqrt(C1)*(L1*L2-M^2)) 
a3=(M*R1*sqrt(L2))/(2*sqrt(L1)*(L1*L2-M^2)) 
a4=(sqrt(2)*L1*sqrt(L2))/(pi*(L1*L2-M^2)) 
a5=(sqrt(2)*M*sqrt(L2))/(pi*(L1*L2-M^2)) 

  
% b1 through b4 are the constants of d/dt(ø2) sorted by term (top-bottom) 
b1=L1*sqrt(L2)/(2*sqrt(C2)*(L1*L2-M^2)) 
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b2=M*sqrt(L2)/(2*sqrt(C1)*(L1*L2-M^2)) 
b3=M*R1*sqrt(L2)/(2*sqrt(L1)*(L1*L2-M^2)) 
b4=sqrt(2)*M*sqrt(L2)/(pi*(L1*L2-M^2)) 
%% The relationship between the constant terms and their state variables 

  
% list of state variables in a format which can be used by the DEE block 
x(1)=a1 
x(2)=ø1 
x(3)=a2 
x(4)=ø2 

  
%State 1 in correct format 
-A1*x(1)-A2*x(3)*sin(x(2)-x(4))+A3*x(3)*cos(x(2)-x(4)) 
+A4*u(1)*cos(x(2))+A5*u(2)*cos(x(2)-x(4)) 

  
%Xo (initial condition) 
0.001 

  
%State 2 in correct format 
-ws+w1/2+B1-B2*x(3)*cos(x(2)-x(4))/x(1)-B3*x(3)*sin(x(2)-x(4))/x(1) 
-B4*u(1)*sin(x(2))/x(1)-B5*u(2)*sin(x(2)-x(4))/x(1) 

  
%Xo (initial condition) 
-pi/6 

  
%State 3 in correct format 
-a1*x(3)+a2*x(1)*sin(x(2)-x(4))+a3*x(1)*cos(x(2)-x(4)) 
-a4*u(2)-a5*u(1)*cos(x(4)) 

  
%Xo (initial condition) 
0.001 

  
%State 4 in correct format 
-ws+w2/2+b1-b2*x(1)*cos(x(2)-x(4))/x(3)+b3*x(1)*sin(x(2)-x(4))/x(3) 
+b4*u(1)*sin(x(4))/x(3) 

  
%Xo (initial condition) 
0 
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General linearization script: 

%define parameters and vectors  
x1 = sym('x1'); 
x2 = sym('x2'); 
x3 = sym('x3'); 
x4 = sym('x4'); 
u1 = sym('u1'); 
u2 = sym('u2'); 

  
x=  [x1; x2; x3; x4]; 
u= [u1; u2]; 

  
f1=-A1*x1-A2*x3*sin(x2-x4)+A3*x3*cos(x2-x4)+A4*u1*cos(x2)+A5*u2*cos(x2-x4); 
f2=-ws+w1/2+B1-B2*x3*cos(x2-x4)/x1-B3*x3*sin(x2-x4)/x1-B4*u1*sin(x2)/x1-

B5*u2*sin(x2-x4)/x1; 
f3=-a1*x3+a2*x1*sin(x2-x4)+a3*x1*cos(x2-x4)-a4*u2-a5*u1*cos(x4); 
f4=-ws+w2/2+b1-b2*x1*cos(x2-x4)/x3+b3*x1*sin(x2-x4)/x3+b4*u1*sin(x4)/x3; 

  
g1=1/pi*sqrt(2/L1)*x1*cos(x2); 
g2=-1/pi*sqrt(2/L2)*x3; 

  
%% differentiating resulting in the desired matrices to find the state space 

model 
F=[f1;f2;f3;f4]; 
fx=[diff(F,x1) diff(F,x2) diff(F,x3) diff(F,x4)]; 
fdu1=diff(F,u1); 
fdu2=diff(F,u2); 

  
dg1=[diff(g1,x1) diff(g1,x2) diff(g1,x3) diff(g1,x4)]; 
dg2=[diff(g2,x1) diff(g2,x2) diff(g2,x3) diff(g2,x4)]; 

  
%% Equilibrium point of current operation of IPT-system 

  
x1=X1; 
x2=X2; 
x3=X3; 
x4=X4; 
u1=1.0; 
u2=1.0; 

  
%% Substituting the values of the state variables into the matrices and 

simplfy  
Fx= vpa(subs (fx), 50); 
fdu= vpa (subs ([fdu1 fdu2]), 50); 
dg= vpa (subs([dg1; dg2]), 50); 
%% Here the matrices are just prepared for the Simulink model (not used 

further) 
digits(50) 
A= double(Fx) 
B= double(fdu) 
C= double(dg) 
D= [0 0; 0 0]; 
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%% Transform between state space and transfer functions 
I= eye(4); 
 

s=sym('s'); 
As=s*I-Fx; 
Gs=dg*inv(As)*fdu; 
Tf=simplify (Gs) 

 
%% extracting only the desired transfer function from "v1" to "i2" 
[n,d]=numden(Tf(2,1)); 
[n,d]=numden(Tf(2,1)); 
num21=sym2poly (n); 
den21=sym2poly(d); 

 
Tf21=tf(num21,den21) 

  
% Defining the output current to be positive by changing the defined 

direction.  
Tfsys=-Tf21 

  
%% Information about the poles and zeroes of the positive transfer function. 
Z= zero(Tfsys); 
P= pole(Tfsys); 
Yz = imag(Z).' 
Xz = real(Z).' 
Yp = imag(P).' 
Xp = real(P).' 

  

  
%% Scatter plot of the poles and zeroes of Tfsys   
figure(1) 
grid on 
scatter(Xp,Yp,'*',i) 
hold on 
scatter(Xz,Yz,'o',i) 

  
%setting proper axis limits  
if any(max(Xp) > 0) 
    xlim([1.1*min(Xp), 1.1*max(Xp)]) 
else 
    xlim([1.1*min(Xp), 0]); 
end 
if any(max(Yp) > min(Yp) ) 
    ylim([1.1*min(Yp), 1.1*max(Yp)]) 
else 
    ylim auto 
end 

  
%step response of the transfer function (color coded "i") 
figure(2) 
step(Tfsys,i); 
hold on 
% Bode plot of the transfer function (color coded "i") 
figure(3) 
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grid on 
Bode(Tfsys,i); 
hold on 

 

 

The script section that derives the second order approximations: 

Script for d=60mm 

%% Calculation of the second order approximation at d=60  

(needs more work to be a general approach) 
K=-num21(4)/den21(5)*(Xp(3)^2+Yp(3)^2) 
s=sym('s') 
zp = collect(simplify (K/((s-P(2))*(s-P(3))))) 
[na,da]=numden(zp); 
numa=sym2poly (na); 
dena=sym2poly(da); 
Tfapprox=tf(numa/dena(1),dena/dena(1)) 
Tfacl=feedback(Tfapprox,1) 
Pa=pole(Tfapprox) 
Za=zero(Tfapprox) 
[r,p,k] = residue(numa, dena) 

 

Script for d=45mm 

%% Calculation of the second order approximation at d=45 

(needs more work to be a general approach) 
K=-num21(4)/den21(5)*(Xp(3)^2+Yp(3)^2) 
s=sym('s') 
zp = collect(simplify (K/((s-P(3))*(s-P(4))))) 
[na,da]=numden(zp); 
numa=sym2poly (na); 
dena=sym2poly(da); 
Tfapprox=tf(numa/dena(1),dena/dena(1)) 
Tfacl=feedback(Tfapprox,1) 
Pa=pole(Tfapprox) 
Za=zero(Tfapprox) 
[r,p,k] = residue(numa, dena) 
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Appendix D 
Evaluation of second order approximations:  

 

Figure D.1 shows a comparison of the Bode plots of the original transfer function and its second order approximation for the 
operation distance of 50mm 

 

Figure D.2 shows a comparison of the Bode plots of the original transfer function and its second order approximation for the 
operation distance of 40mm 
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Figure D.3 shows a comparison of the Bode plots of the original transfer function and its second order approximation for the 
operation distance of 30mm 

 

Bode plot and step response of the integrator compensated system 
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