
End User Programming for TILES:
Methods and Tools

Jonas Kirkemyr

Master of Science in Computer Science

Supervisor: Monica Divitini, IDI
Co-supervisor: Simone Mora, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

To my beautiful sons

Abstract

TILES is a toolkit consisting of both hardware and software. A tangible
embedded hardware device supporting user interaction, is part of the TILES
toolkit, and referred to as a TILES device. Creating applications for TILES
devices, which should respond to user-interactions from single and multi-
ple TILES devices, and communicating with both third-party services over
the Internet and other TILES devices, is a difficult and complex task to
endeavor, requiring great programming experience. This thesis will look at
different possibilities of lowering the threshold to develop applications for
TILES devices: textually, visually, and physically, for makers and computer
science students familiar with programming.

Lowering the threshold of creating applications for TILES, should facilitate
makers and computer science students in creating TILES applications, focus-
ing on user-interaction and integration with third-party services. A compre-
hensive review of state-of-the-art solutions regarding end-user development
tools, have helped in creating a development environment for TILES, includ-
ing a web-browser IDE, and a Domain-Specific Language. The design and
implementation of the DSL helps in abstracting the integration with third-
party services and handling user-interactions from multiple TILES devices.
The web-browser IDE facilitate use of the DSL, both textually and visually,
and testing applications for TILES by integrating a compiler for the DSL and
emulation of a TILES device directly in the development environment.

Evaluations were conducted on both the DSL, and the development environ-
ment as a whole, using focus groups consisting of makers, computer science
students, and professional programmers. The results highlight the ease of
use to get started creating applications for TILES, and the simplicity of the
DSL, which is able to be used for creating simple and complex applications
seamlessly.

i

Sammendrag

TILES er en kolleksjon av utviklings-verktøy best̊aende av maskinvare og
programvare. En interaktiv innebygd maskinvare som støtter brukerinterak-
sjon er en del av TILES, kalt for en TILES enhet. Det å lage applikasjoner for
TILES enheter som kan respondere p̊a bruker-interaksjoner fra en eller flere
TILES enheter, og samtidig kommunisere med b̊ade tredje-parts tjenester og
andre TILES enheter, er en vanskelig og kompleks oppgave som krever høye
programmerings ferdigheter. Denne rapporten vil se p̊a flere muligheter for
å senke terskelen med å begynne og utvikle applikasjoner for TILES enheter,
b̊ade tekstlig, visuelt og fysisk, for ”makers” og data-studenter som er kjent
med programmering.

Ved å senke terskelen med å lage applikasjoner for TILES, kan det legges til
rette for å la ”makers” og data-studenter lage applikasjoner for TILES, som
fokuserer p̊a bruker-interaksjon og integrering mot tredje-parts tjenester. En
omfattende gjennomgang av ”state of the art” løsninger av utviklingsverktøy
for sluttbrukere har hjulpet med å lage et utviklings miljø for TILES, som
inkluderer en IDE kjørende i en nettleser, og et domene-spr̊ak, kalt DSL.
Designet og implementering av domene-spr̊aket hjelper til å abstrahere in-
teraksjonen med tredje-parts løsninger, og for å h̊andtere bruker interaksjon
med flere TILES enheter. IDE’en som kjører i nettleseren legger til rette for
å bruke domene-spr̊aket, b̊ade ved bruk av tekst og visuelt. Utviklingsmiljøet
støtter ogs̊a å teste applikasjoner for TILES ved å integrere en kompilator
for spr̊aket, og emulere en TILES enhet direkte i fra utviklingsmiljøet.

Det ble gjennomført en evaluering p̊a b̊ade domene-spr̊aket og hele utviklings-
miljøet, ved å bruke fokus grupper best̊aende av ”makers”, data-studenter
og profesjonelle utviklere. Resultatet gir lys p̊a hvor enkelt det er å komme
i gang med utviklingen av applikasjoner for TILES, og hvor enkelt domene-
spr̊aket er i bruk, som uten problemer kan brukes for å lage enkle og kom-
plekse applikasjoner.

iii

Acknowledgments

This paper is written as part of my master thesis conducted at the Norwegian
University of Science and Technology. The work is an extension of a special-
ization project by Varun Sivapalan and myself Event-driven infrastructure
for the Internet of Things supporting rapid development [31].

I would like to thank my supervisors Monica Divitini and Simone Mora for
their support and great feedback throughout the work. I would also like
to thank Francesco Valerio Gianni, and those who participated in my user
evaluations.

A special thank you goes to my parents for their love and support, helping
me get where I am today.

Trondheim, June 10
Jonas Kirkemyr

v

Contents

Abstract i

Sammendrag iii

Acknowledgments v

Contents x

List of Tables xi

List of Figures xiv

Acronyms xv

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Research Questions . 3
1.4 Research Method . 3
1.5 Results . 5
1.6 Outline . 5

2 Problem definition 7

3 TILES Toolkit 11
3.1 Hardware . 12

3.1.1 TILES Device . 12
3.1.2 TILES Mobile . 13
3.1.3 TILES Cloud . 13
3.1.4 Infrastructure . 13

3.2 Software . 14
3.2.1 TILES Cloud . 14

vii

viii CONTENTS

3.2.2 TILES Mobile . 15
3.2.3 Client Libraries . 15

3.3 Overview . 16

4 Related work 19
4.1 Visual Programming . 20

4.1.1 Blocks . 20
4.1.2 Flowchart . 22
4.1.3 Data Flow . 23
4.1.4 Finite-State Machine 24
4.1.5 Behaviour Tree . 25
4.1.6 Event-Based Rules . 26

4.2 Physical Programming . 27
4.3 Mini-Language . 28
4.4 Overview . 31

5 Requirement Specifications 35
5.1 Language comparison . 35
5.2 Visual-language Comparison 38
5.3 TILES Development Environment 39
5.4 Domain-Specific Language . 42

6 Design 45
6.1 Introduction . 45
6.2 Use cases . 47
6.3 DSL . 52

6.3.1 Modules . 57
6.3.2 The language . 58
6.3.3 Example Application - Whack a Mole 64

6.4 TDE . 65
6.5 Emulator . 65

7 Implementation 67
7.1 DSL . 68

7.1.1 Modules . 68
7.1.2 Language . 77

7.2 Development Environment . 82
7.3 Emulator . 86
7.4 CLI . 89

8 Evaluation 93

CONTENTS ix

8.1 Pre-implementation evaluation 93
8.1.1 Discussion . 95

8.2 Implementation evaluation . 97
8.2.1 Discussion . 98

8.3 TDE requirement evaluation 99
8.4 DSL requirement evaluation 102
8.5 Language evaluation . 103
8.6 DSL Compilation evaluation 105
8.7 Application creation . 110

9 Conclusion 115
9.1 Results . 115

9.1.1 MRQ: How to implement a development environment,
specialized for makers, and computer science students
to easily create applications for TILES? 116

9.1.2 PRQ1: Which programming paradigm is best fit for
makers, and computer science students to create ap-
plications for TILES? 116

9.1.3 PRQ2: How should a cross-platform development en-
vironment for TILES be designed and implemented for
its target users? . 117

9.2 Future work . 118
9.2.1 Development environment 118
9.2.2 DSL . 119
9.2.3 Programming paradigms 119

References 121

A Programming Environments 125
A.1 Visual Blocks . 125

A.1.1 Scratch . 125
A.1.2 ScratchX . 126
A.1.3 Snap! . 126
A.1.4 Blockly . 126
A.1.5 App Inventor . 126
A.1.6 Ardublock . 127
A.1.7 Gameblox . 127
A.1.8 Scriptr; . 127
A.1.9 Zipato Rule Creator 127

B EBNF visual 129

x CONTENTS

C Focus Group 131
C.1 Online topics . 131
C.2 Language specification . 133

C.2.1 Table of contents . 133
C.2.2 Starting point . 134
C.2.3 TILES Identifier . 134
C.2.4 Me variable . 136
C.2.5 Commands . 136
C.2.6 Events . 137
C.2.7 Statements . 138
C.2.8 Data sources . 141
C.2.9 Example Applications 145

D TILES Toolkit 149
D.1 DSL Grammar Rules . 149
D.2 Primitives . 155
D.3 DSL Class-Diagram . 157

List of Tables

4.1 Related work overview . 32

5.1 Requirements for the TDE . 41
5.2 User Stories for DSL . 43
5.3 Acceptance criteria for User Stories 44

6.1 Use Case #1 - Retrieve TILES Devices 48
6.2 Use Case #2 - Update TILES Devices information 49
6.3 Use Case #3 - Create TILES application textually 50
6.4 Use Case #4 - Create TILES application visually 51
6.5 Use Case #5 - Restore TILES application 52

7.1 EventEmitter methods . 70
7.2 DSL types . 80

8.1 DSL types . 111

xi

List of Figures

1.1 The research process [27] . 4

3.1 TILES Toolkit Overview . 11
3.2 Interaction primitives for TILES. Source: Simone Mora . . . 12
3.3 Three-tier infrastructure for TILES 14
3.4 TILES Connect App layout. Source: Simone Mora 16
3.5 TILES Toolkit outline. Source: Simone Mora 17

4.1 Example of building Blocs for creating logic. Example show
the use of Scratch . 21

4.2 Example of a Flowchart . Example show the use of Flow-
gorithm VPL . 22

4.3 Example of a Dataflow . Example show the use of NODE-RED 24
4.4 Example of a Finite-State Machine. Example show the use of

Unity3D Macanim . 25
4.5 Example of a Behaviour Tree . Example show the use of Be-

haviour3 . 26
4.6 Example of Event-Based Rules . Example show the use of Kodu 27
4.7 Example of physical programming. Example show the use of

PrimoToys . 29
4.8 Example of a mini-language. Example show the use of Code-

Combat . 31

5.1 Language layer, where top layers have access to the underlying
layer . 37

6.1 Use Case diagram showing each Actors goal 47
6.2 Pipe-and-Filter pattern for events 56
6.3 User Story mapping . 56
6.4 Modules for the DSL . 58
6.5 TILES DSL - EBNF start . 63

xiii

xiv LIST OF FIGURES

6.6 Whack A Mole - VPL example 64
6.7 TILES Emulator . 66

7.1 TILES Software Components 67
7.2 Class-diagram TileDSL and UserDSL 69
7.3 Class-diagram User module 72
7.4 Class-diagram Event module 73
7.5 Class-diagram Command module 75
7.6 Class-diagram Data-source module 76
7.7 Class-diagram DSL Parser . 83
7.8 Class-diagram Development Environment 85
7.9 Development Environment - textual editor layout 85
7.10 Development Environment - visual editor layout 86
7.11 Development Environment - TILES layout 87
7.12 Class-diagram Emulator . 88
7.13 Emulator layout . 89
7.14 Emulator debug layout . 89
7.15 CLI example usage . 91

8.1 Demo of TILES . 99
8.2 TDE layout . 110
8.3 Build options menu . 111
8.4 Running TILES application 112
8.5 Syntax error TILES application 112
8.6 WhackAMole using emulators 113

B.1 TILES DSL - EBNF If statement 129
B.2 TILES DSL - EBNF Repeat statement 129
B.3 TILES DSL - EBNF Sync statement 129
B.4 TILES DSL - EBNF Events 129
B.5 TILES DSL - EBNF Commands 130
B.6 TILES DSL - EBNF TileEStatement 130

D.1 Interaction primitives for TILES. Source: Simone Mora . . . 156
D.2 UML class-diagram for the DSL modules 158

Acronyms

IDE Integrated Development Environment

IoT Internet of Things

LAN Local Area Network

VP Visual Programming

VPL Visual Programming Language

EUD End User Programming

DSL Domain-Specific Language

TUI Tangible User Interface

TD TILES Device

TC TILES Cloud

TDE TILES Development Environment

HTTP Hypertext Transfer Protocol

LED Light-Emitting Diode

CoAP The Constrained Application Protocol

JSON JavaScript Object Notation

XML Extensible Markup Language

MQTT Message Queuing Telemetry Transport

FR Functional Requirements

US User Story

CSS Cascading Style Sheets

xv

xvi ACRONYMS

API Application Programming Interface

AST Abstract Syntax Tree

SSL Secure Socket Layer

PEG Parsing Expression Grammar

SPA Single Page Application

CLI Command-Line Interface

Chapter 1

Introduction

TILES is a software and hardware development toolkit for Internet of Things
applications, focusing on user-interaction with embedded hardware devices.
TILES facilitates creating applications using an infrastructure which ab-
stracts the application logic from a hardware layer to a cloud-layer. Three-
layers makes up the infrastructure, for sending and receiving data between
each layer. A pre-study [31], which have served as a groundwork for this
thesis, have implemented an infrastructure abstracting the application logic,
and making the application logic more changeable. Work done in this the-
sis will be building on the already implemented infrastructure, to further
facilitate application creation for TILES.

1.1 Motivation

Prototyping and deploying applications for IoT systems is a hard task to en-
deavor. TILES want to simplify this prototyping process for makers and com-
puter science students, by introducing easy-to-use programming paradigms.
Makers and computer science students with some software development skills,
but not necessary interactive objects competencies, should be able to easily
create applications for TILES, and control interaction between multiple de-
vices. TILES consist of an ubiquitous and tangible computing device sup-
porting user interaction. This thesis builds on a pre-study [31] where the
motivation was to support application abstraction for TILES. From the pre-
study’s future work, a development environment for controlling and config-
uring TILES devices was suggested to be further investigated and imple-
mented.

1

2 CHAPTER 1. INTRODUCTION

Makers and computer science students have today multiple tools to help
them create code and applications for ubiquitous devices. These tools fails
to support controlling and interacting with multiple devices. With this thesis
I would like to help lowering the threshold for making TILES applications, by
providing a software platform where makers and computer science students,
can use their creativity and existing knowledge. I also find it interesting to
use my knowledge and state of the art technology, to create a development
environment for developing TILES applications.

1.2 Context

This thesis is part of the TILES project at the Norwegian University of Sci-
ence and Technology. The project consist of a tangible ubiquitous computing
system, referred to as the TILES toolkit. The infrastructure developed for
TILES creates a higher-level of abstraction for the application logic, making
it easy to change a TILES device’s behavior.

Makerspaces, Hackerspaces, and Fablabs are common communities that fo-
cus on using their knowledge to create physical goods (metalwork, wood-
work, fabrication, arts and crafts), and technology artifacts with the use of
open-source hardware and software [18]. These communities shares a vision
of making it easy for people to use computer interfaces that interacts with
the real-world, and configure them to their own need. They want to em-
power people by creating and changing the future with technologies they
create.

The pre-study successfully implemented an infrastructure providing a higher
abstraction of application logic, that help supporting modifiability as direct
access of the TILES devices is not necessary, and the application logic being
run from a common source.

Creating a development environment should ease the process of creating ap-
plications for TILES, and how these applications should be developed is the
focus for this thesis.

1.3. RESEARCH QUESTIONS 3

1.3 Research Questions

MRQ: How to implement a development environment, specialized for mak-
ers, and computer science students to easily create applications for
TILES?

PRQ1: Which programming paradigm is best fit for makers, and com-
puter science students to create applications for TILES?

PRQ2: How should a cross-platform development environment for
TILES be designed and implemented for its target users?

1.4 Research Method

The thesis is a continued work from a pre-study [31] completed in the autumn
2015. The pre-study introduced multiple suggestions for the future work, one
being a development environment for lowering the threshold for developing
applications for TILES. This corresponds with the supervisors vision for the
project. The research questions were determined from the suggested future
work, along with a literature review, which helped in reviewing the current
state of End-User-Development for tangible devices.

The research questions will be answered by building a prototype, and have
it evaluated by the target users. To design the artifacts and solve the im-
plementation problems addressed in the research questions, the design and
creation research strategy is used [27]. The design and creation research
strategy will help to create and use knowledge for implementing a solution
that will solve the problem at hand, analyze the implemented solution use
and performance, and to build and evaluate the final solution. Because the
development environment consist of three independent software components,
their implementation and testing can be run independently of each other,
before being combined and tested as a whole system.

The final evaluation were conducted through multiple user studies as shown
in the table below. Feedback from the evaluation was analyzed in a qualita-
tive manner.

4 CHAPTER 1. INTRODUCTION

Method Purpose
Survey To help retrieve feedback on a proposed design

before implementation, using a focus group con-
sisting a combination of the target users. Their
feedback should help to do further adjustments on
the system of any concerns they may have from
previous experience.

Observation Observe how the target users are able to use the
implemented system, and create applications for
TILES.

Group interview Evaluate the created language, to help find
strength and weaknesses of the language’s usabil-
ity and expressivity

Figure 1.1: The research process [27]

1.5. RESULTS 5

1.5 Results

The main result of this research is a computer-based product, consisting of a
Domain-Specific Language and a development environment, enabling makers
and computer science students to create applications for TILES. The DSL is
implemented specifically and customized for TILES, which can be compiled
to applications able to run in the TILES infrastructure. The development
environment is running in a web-browser, and consist of a text-editor and
a visual-editor where the DSL can be written, compiled and published to
the TILES infrastructure. The DSL and the development environment can
be used by makers and computer science students, to help integrate their
TILES devices into applications, and for creating application logic responding
to their interaction with a single or multiple TILES devices. This thesis
includes descriptive approaches used for implementing the DSL, which in the
future can be used by developers who want to extend and introduce more
functionality in the language.

There is also created multiple simple example applications using the DSL,
showing its simplicity, and the various areas for TILES applications, including
multiple TILES devices, reacting to user-interactions, controlling a TILES
device output interfaces, and communicating with third-party services. An
emulator of the TILES device is implemented and integrated within the de-
velopment environment, as a complementary to the physical device, which
should benefit the development process for TILES applications. By provid-
ing all necessary tools in the same development environment, makers and
computer science students can both create, verify code, and test applications
from their web-browser.

1.6 Outline

The motivation and research questions have been presented in this first chap-
ter. The problem to be solved is explained in chapter 2, and an overview of
the work which this thesis is based on is explained in chapter 3. The study
and state-of-the-art systems are described in chapter 4, which chapter 5 bases
its requirements for a DSL and an environment for using the DSL. How the
development environment and its tools should be implemented is further ex-
plained in chapter 6, before a throughly explanation of the implementation
process is given in chapter 7. Chapter 8 evaluate the work done, before the
evaluation’s results and answering the research questions are summarized in

6 CHAPTER 1. INTRODUCTION

chapter 9, with some suggested future works.

Chapter 2

Problem definition

End User Development[23, 33] is concerned about how end-users are able to
customize, modify, and create software, to make applications and customized
systems meaningful. Makers, and computer science students are the target
users for TILES and therefore referred to as TILES’ end-users. End-user
development for ubiquitous and tangible devices is a crucial element for IoT
to succeed [2]. Being able to control and create application for TILES usu-
ally requires a special set of skills and interests to do so. Not all end-users
have the necessary skills for developing applications, and might find it too
high of a threshold starting to create applications. Applications for tangible
objects should support to be reconfigured, since its use cannot be envisaged
at design time [4]. EUD removes the distinction between programmers and
users of software[33], and requires a system to provide a set of methods, tech-
niques and tools for non-professional software developers to do so. Unifying
ubiquitous and tangible computing devices opens a whole new specter for in-
teractive applications, applications which end-users are able to interact with,
for multiple domains [10], which non-professional developers should be able
to influence. EUD is initially done for software, and not IoT. Bringing EUD
concepts to TILES should help to ease the process of creating applications
for TILES.

There exist multiple solutions today running in a cloud-environment that
use simple rules, or actions triggers, to run when a configured condition is
met. The condition can be a given state of data from a given source, that
the cloud-environment is listening for. Usually these data sources are from
fixed hardware devices, configured for a specific task in a given scenario,
like home-automation. The existing solutions also provide different environ-
ments, based on the users’ expertise, for creating rules/applications, both

7

8 CHAPTER 2. PROBLEM DEFINITION

visually, textually, and physically.

”Most ubiquitous computing systems are targeted at a wide user population,
making it difficult to design a language that meets the needs of all users” [14].
Steve Hodges [16] believes the maker community will create interesting new
ubiquitous products in the years to come, mainly because of their wide va-
riety of skills they possess and how these communities work collaboratively
with open-source hardware and software. Modifying and extending example
projects, provided and shared within these communities, help others to ben-
efit from the experience of the community, and is argued to be an essential
tool for EUD to succeed [12]. Different level of abstraction for program-
ming is used depending on the target users. Lars Grammel [12] describes
three-levels of abstractions: high, intermediate, and low. A high level of ab-
straction requires no programming knowledge, but provides no flexibility by
only being able to reuse existing examples created by others. An intermedi-
ate level of abstraction requires knowledge about data types and being able
to call pre-defined components, but no flexibility in being able to customize
the underlying components. A low level of abstraction requires programming
knowledge, and gives the most flexibility where components can be created
by the users. By providing different levels of abstraction, users are able to
choose the appropriate level that fit their skills. Seth Holloway [17] argues
that expressive programming, a low abstraction, is needed for users to con-
figure a system to their need. The paper’s vision for ubiquitous computing is
the need of an extensible software platform where any device is able to com-
municate with and be configured by. This is not the goal for TILES however,
but the description of a system where ubiquitous devices are mapped to con-
ditions and actions is still relevant. The paper also fail to mention the usage
of multiple devices affecting each other, which is an important factor for
TILES.

Work done in the pre-study [31] was focused on creating an infrastructure
supporting real-time communication between TILES devices and client li-
braries, described in chapter 3. Being able to create applications for TILES,
and to configure multiple TILES devices requires a development-environment
configured for this purpose. Such an environment should help to reduce the
complexity of developing user-interaction applications for TILES. Makers
and computer science students should be able to use their creativity and in-
corporate TILES into multiple environments and use cases, whether thats in
games, notification system, or simple actions triggers. Using multiple TILES
devices together and incorporating them all into applications can create a
game like ’Whack-a-Mole’, where the player is to ’whack’ a mole whenever
it shows up on the game board. Translated for TILES usage this could be

9

tapping on the TILES device whenever its LED lights up. Another applica-
tion could be created as a notifier, to turn vibration on for a single device
whenever a new Twitter1 message (tweet) is posted with a given hashtag,
metadata tag usually found in social networking platforms. Incorporating
multiple Internet sources is also possible with applications for TILES. An
application checking weather forecast data could post a new twitter message
if it’s predicted there will be sunny tomorrow.

Users of TILES have multiple ways of interacting with a TILES device. Cre-
ating applications for a device that should respond to all user-interactions,
communicate with other third-party applications over the Internet, and other
available TILES devices is a complex process that includes multiple tech-
nologies for communication. Makers and computer science students are not
professional-programmers, and should be treated as such by not requiring
any knowledge about the underlying technology, to help reduce the complex-
ity of creating such applications. To setup an environment ready to create
applications can quickly become cumbersome when dealing with these three
different methods of communication and interaction handling. Moving all
the complexity behind the scenes and creating a higher-level of abstraction
will enhance the creativity for TILES target users when they only need to
focus on the application logic [13].

1http://twitter.com

http://twitter.com

Chapter 3

TILES Toolkit

TILES [32] is a toolkit consisting of both hardware and software. These set
of tools is designed to abstract application logic from an embedded hard-
ware device to a cloud-server, so that physical access to the hardware is not
required. The hardware is to transfer any commands and events, while the
software is to create and act on these events and commands. The TILES de-
vice is designed and created by my supervisor Simone Mora, and the software
in the TILES toolkit is developed by Varun Sivapalan and the author.

An overview of the TILES toolkit is shown in figure 3.1.

Figure 3.1: TILES Toolkit Overview

11

12 CHAPTER 3. TILES TOOLKIT

3.1 Hardware

The TILES toolkit consist of three layers, each consisting of some hard-
ware:

• TILES Device - hardware-layer

• TILES Mobile - gateway-layer

• TILES Cloud - cloud-layer

3.1.1 TILES Device

The TILES device (TD) is an embedded hardware device designed for user
interaction, with its internal sensors and actuators. An accelerometer sensor
is used for detecting whether the devices is moved or shaken. The device
also supports touch gestures which can be used for interaction. The different
touch gestures supported are: tap, double tap, force tap, swipe right, and
swipe left. Non-audible feedback is provided to the user by a vibration motor
and a LED-light. The LED-light is able to provide different light-colors
and intervals for how often the LED should be turned on and off. Speaker
is another feedback mechanism for the TILES device. The TILES device
specification and design is created by my supervisor Simone Mora. An outline
of the different inputs and outputs supported by the TILES device is shown
in figure 3.2. Inputs are user-events, generated by interacting with the TILES
device, while outputs are feedback generated by the device to its users.

Figure 3.2: Interaction primitives for TILES. Source: Simone Mora

The TILSE device has an internal Bluetooth module, used for wireless com-
munication with the TILES Mobile, a mobile-gateway, like a Smart-Phone.

3.1. HARDWARE 13

3.1.2 TILES Mobile

As the TILES device do not have a direct Internet connection, the TILES
mobile (TM) will provide an indirect connection by propagating all data both
from and to the TILES device. As long as the TILES mobile has an Internet
connection, whether that’s through WiFi1, or some mobile telecommunica-
tions like 3G or 4G.

For a connection to be established between the TM and TD over Bluetooth,
the TM need to search for and discover devices nearby.

3.1.3 TILES Cloud

The TILES Cloud (TC) is a server, accessible by anyone over the Internet.
The TC is communicating with the TM to receive and send data back and
forth.

3.1.4 Infrastructure

The three-tier infrastructure implemented during the pre-project [31], is a
bidirectional communication channel consisting of three-layers: cloud-layer,
gateway-layer, and a device-layer, as shown in figure 3.3. Real-time events
triggered on the TILES device, by its user, is sent over Bluetooth to the
gateway-layer, which is responsible to propagate this real-time events to the
cloud-layer. Communication between the gateway-layer and the cloud-layer
is done over MQTT2, a lightweight publish/subscribe message protocol. The
protocol provides a full-duplex communication channel over TCP, making
the cloud-layer able to indirectly control the TILES device’s feedback mech-
anisms by sending commands to the gateway-layer. The gateway-layer is re-
sponsible for propagating any commands from the cloud-layer to the TILES
device. The TILES devices is connected in a network, where each device
is uniquely identified by its MAC address3, allowing for data collection and
changing a device’s behavior. Data collection is done automatic, where data
is propagated to the cloud-layer when a user interacts with the TILES de-
vice, and semi-automatic/manual for controlling the unique identified TILES
devices from the cloud-layer by sending commands to them.

1Technology for connecting to a Wireless LAN http://www.wi-fi.org/
2http://mqtt.org/
3Unique identifier of a network interface, like Bluetooth

http://www.wi-fi.org/
http://mqtt.org/

14 CHAPTER 3. TILES TOOLKIT

Figure 3.3: Three-tier infrastructure for TILES

The three-tier infrastructure is designed to abstract the application logic
from the device-layer to the cloud-layer, where communication between each
layer is done by events and commands. Events are actions triggered on a
TILES device (its output), sent to the cloud-layer. Commands are actions
sent from the cloud-layer to the TILES device (its input), for controlling the
feedback mechanisms. Each event and command is published to a topic, used
to identify the various connected TILES devices.

3.2 Software

For each layer described in section 3.1, software is created to handle data
transmitted between each layer.

3.2.1 TILES Cloud

The TILES cloud (TC) is written in JavaScript using Node.js4. The TC is
running Ponte5, a library for publishing and receiving data through HTTP,
MQTT, and CoAP. Events triggered on a TILES device is received by the
TILES cloud, and the TILES cloud is able to send commands back to the
TILES devices. Both users and their TILES devices are stored in a database

4https://nodejs.org/en/
5http://www.eclipse.org/ponte/

https://nodejs.org/en/
http://www.eclipse.org/ponte/

3.2. SOFTWARE 15

storage, Mongoose6.

Accessing the stored user-data and the last received event from a TILES
device is available through the provided API. Accessing the API endpoints is
done over HTTP. Commands and latest events on a TILES device can also
be retrieved using the API, which is both supported over HTTP and CoAP.
This is an in-built feature provided by Ponte.

Real-time data is received by the TILES cloud MQTT broker. MQTT clients
(e.g. TILES mobile) can be connected to the broker for both publishing and
subscribing to topics. Subscription is used for receiving real-time events, and
publish for sending commands to a TILES device.

3.2.2 TILES Mobile

An application, TILES Connect app, is running on the TILES mobile (TM),
for registering, propagating data, and holding a connection to the TILES
cloud. The application is written in JavaScript, using Ionic7, a cross-platform
tool for developing mobile-applications using web-technology like CSS, HTML5,
and JavaScript. Figure 3.4 shows the layout of the application, and steps re-
quired to successfully connect to the TC and connecting TILES devices to
the TILES mobile.

3.2.3 Client Libraries

The TILES client libraries are designed to simplify the process of interacting
with the TILES devices connected to the cloud-layer, where developers only
need to focus on the application logic. With their wrapped in MQTT client
library, the client libraries connect to the cloud-layer with the use of MQTT,
like the gateway-layer. The client-libraries expands the infrastructure for
TILES further, and are able to subscribe/listen to topics. Any received event
to a topic is propagated from the cloud-layer to the designated client. The
libraries are implemented in Java, Javascript, Python, and C++, so devel-
opers are free to choose the language they are most comfortable with. The
client libraries were implemented to simplify the development process, en-
abling both experts and non-experts to create applications for TILES.

6http://mongoosejs.com/
7http://ionicframework.com/

http://mongoosejs.com/
http://ionicframework.com/

16 CHAPTER 3. TILES TOOLKIT

Figure 3.4: TILES Connect App layout. Source: Simone Mora

3.3 Overview

Figure 3.5 shows an overview of the whole infrastructure including hardware
and software.

3.3. OVERVIEW 17

Figure 3.5: TILES Toolkit outline. Source: Simone Mora

Chapter 4

Related work

Arduino is an open-source hardware platform popular used in Makerspace,
Hackerspace, and Fablabs communities. Creating hardware devices that in-
teracts with the real-world, and help users understand interaction paradigms,
like tangible and ubiquitous computing, is one of the goals which Arduino like
to accomplish [30, 8]. Creating applications for TILES, where makers and
computer science students are able to interact with their own environment
and conduct some actions based on these interactions using the application,
corresponds with the goal of Arduino and the vision of the Makerspace,
Hackerspace and Fablabs communities.

Multiple academic papers address the importance and the need of being able
to program ubiquitous device. Making it possible for end-users to create
applications for their own ubiquitous devices will help making these devices
more personal and to better fit in their own environment. It’s difficult for
the developers behind these ubiquitous devices to predict and consider all of
the possible solutions a device can be used; especially when multiple data-
sources is involved, from one or multiple devices and other Internet data-
sources, which could be combined in infinite ways. By lowering the threshold
for creating applications for TILES, makers and computer science students
should be able to customize their TILES device to their liking.

Today, there exists multiple approaches for creating applications [23]: tex-
tual, visual, and physical. A textual approach use text for writing instruc-
tions to be carried out by an application. A visual approach uses visual
elements, which are combined together to form a set of instructions. A phys-
ical approach, much like a visual approach, uses physical tangible elements
to form a set of instructions. Each approach has their benefit depending

19

20 CHAPTER 4. RELATED WORK

on the use case and the background knowledge for its target users. In this
chapter, each approach and the different state of the art solutions are de-
scribed. The end of the chapter provides an overview and short summary of
each solution.

4.1 Visual Programming

Visual Programming Language (VPL) is a programming language for creating
programs/software graphically. The language uses visual expressions used as
the syntax for the language. There exist multiple types of visual languages,
using different visual expressions [1]: Blocks, Flowchart, Data Flow, Finite-
State Machines, Behaviour Trees, and Event-based Rules. They all have in
common to ease the development of applications for novice programmers,
without the need of any programming experience.

4.1.1 Blocks

Block programming is an approach widely used in multiple solutions today,
and are found in environments for creating Android1 applications, games,
Arduino2 software, controlling smart-homes and other tangible objects. The
blocks come in different shapes, dictating how they can be connected to each
other. Users don’t need to learn the syntax of any programming language,
but rather look what shapes are able to be connected together.

Scratch3 [29] is a VPL aimed at children for creating games, interactive sto-
ries, and animations. Scratch have created a community around their prod-
uct, where their users can share and build on others work, to better learn from
each other, or just show off what they have been able to create. The system
is developed by ”Lifelong Kindergarten” group at MIT Media Lab. Appli-
cations are created in a visual editor, where blocks are connected together
as shown in figure 4.1. A ”mini-world” is shown next to the visual editor,
representing the state of the running application, and is updated when blocks
are removed, added, or updated. This helps its users to better understand
what each block accomplish, and what effect it has on the application which
the users are creating. The mini-world can control actuators movements,

1https://www.android.com/
2https://www.arduino.cc/
3https://scratch.mit.edu/

https://www.android.com/
https://www.arduino.cc/
https://scratch.mit.edu/

4.1. VISUAL PROGRAMMING 21

listen for input from users, output text, and create logic for controlling the
mini-world. By using drag and drop, users can easily create a simple appli-
cation, and modify it as they want. The project aims at appealing to people
and help them use their creativity to program simple applications, without
needing any programming experience.

Scratch is an open-source solution, and have inspired multiple projects by
either building on the same source-code, or use the same concept of visual
block programming. Other VPL using blocks is described in appendix A.1.
Some solutions is purely used educational, a way of making children adopt a
Programming Thinking and help in problem solving, while other focus purely
on application and game creation. Solutions that exists today are not able
to create blocks from already written code, but only transform the created
blocks into a programming language (Javasript, PHP, and Python).

Figure 4.1: Example of building Blocs for creating logic. Example show the
use of Scratch

22 CHAPTER 4. RELATED WORK

4.1.2 Flowchart

Flowchart inspired languages uses blocks and arrows to describe and show the
control flow within an application. A block of code is executed as created
visually, and follows a sequence defined by the connected arrows between
the blocks. The focus for a flowchart language is expressing the flow of
execution, which help to better identify and understand the different states
of an application.

Flowgorithm4 is a system for creating applications with the use of a flow
chart. Flowgorithm uses shapes representing actions for the application, and
helps the users to focus more on the application logic, instead of a program-
ming language. The system can export code to more high-level program-
ming languages like C++, C#, Java, Python, and many more. Flowgorithm
is a free application, so it’s possible for anyone to use and start creating
applications using a flow-chart. The system is however only available for
Windows.

Figure 4.2: Example of a Flowchart . Example show the use of Flowgorithm
VPL

4http://www.flowgorithm.org/

http://www.flowgorithm.org/

4.1. VISUAL PROGRAMMING 23

4.1.3 Data Flow

Data Flow uses blocks representing functions in a programming language.
The focus of Data Flow language is coherent with Flowchart inspired lan-
guages, to show the flow of execution, and data passed between each block.
Each block has an input/output marker, showing what data is passed to a
block, and what output the block generates. Most Data Flow languages are
aimed at professional designers, with coding knowledge, as each block usu-
ally consist of a classical programming language. The main idea with a Data
Flow language is to show the structure of a program, and how the data flows
within the system, visualized by the blocks.

Node-RED5 is a data-flow chart editor built on top of Node.js using JavaScript.
Nodes are connected together using arrows, which dictates the data-flow of
the application. It also incorporates a text-editor, where users are able to
write their own JavaScript code which should be run when a node is ac-
tive. Multiple nodes come pre-built with the system, for common operations
like accessing a database, twitter libraries, debug interface, and many more.
Users are also able to create and share nodes and full applications with each
other, by exporting a project to JSON6 file-format. Node-RED has a focus
on IoT and rapid-prototyping of IoT applications. The system supports dif-
ferent types of distributed IoT devices, and let users specify flows of data,
and how to process incoming data.

Juan Haladjian [15] describes TangoHapps, an IDE to create applications for
smart garments. While TILES do not focus on garments, both TangoHapps
and TILES are dealing with smart-devices and how applications should be
created for these devices. TangoHapps provide two tools/approaches for de-
veloping applications: Interactex, a visual programming environment, and
TextIT, a textual programming environment. The visual programming envi-
ronment is provided to lower the threshold for designing, developing, testing
and deploying applications to the smart-garments for users with little pro-
gramming knowledge. The textual environment offers software components
ready to be used for developing applications. Both Interactex and TextIT is
used to support developers with different backgrounds. The visual program-
ming environment for TangoHapps is using a Data Flow approach, by map-
ping the input and output interfaces for different components together.

5http://nodered.org/
6http://www.json.org/

http://nodered.org/
http://www.json.org/

24 CHAPTER 4. RELATED WORK

Figure 4.3: Example of a Dataflow . Example show the use of NODE-RED

4.1.4 Finite-State Machine

A Finish-State Machine language consist of states, represented as blocks, and
transitions between states, which are triggered by user-defined conditions.
As with Flowchart, a flow of execution is created by linking states. Moving
between states are controlled through the transitions and conditions between
the states, instead of inside them, like in a Flowchart language. Compared
to both Data Flow and Flowchart, the Finite-State Machine is harder to
understand, because of the use of text expressions needed to manipulate
state change conditions. The use of Finite-State Machine is good in viewing
the structure of a system, but requires more technical competence to be able
to configure it.

Unity3D7 is a game engine which provides a tool named Macanim, a Finite-
State machine visual language for creating animations for any visual object in
a game created by their engine. Multiple tools are made available additionally
to the finite-state machine editor to successfully create and control game
animations. The editor itself is used as an overview tool, to show the different
animation states and group them together, and can therefore not be used as
a tool alone for configuring states. The editor is a complex too to work with
and requires deep knowledge about the system.

7https://unity3d.com/

https://unity3d.com/

4.1. VISUAL PROGRAMMING 25

Figure 4.4: Example of a Finite-State Machine. Example show the use of
Unity3D Macanim

4.1.5 Behaviour Tree

A Behaviour tree is built on a tree structure consisting of parents and children
nodes. Each node within the tree are returning a state, which are made
available to its parent. A node can therefore have a behaviour that depends
on any state returned by its children, which will control the flow of execution.
The flow can be configured by adding other nodes instead of editing a node,
removing the need to a broad visual grammar and to edit any code inside
nodes.

Behaviour38 is a framework which can be used for applications that control
agents and/or devices in their environment, called agent-based applications,
whether that’s in games, simulations, or robotics. The project is open-source,
and consist of a visual-editor for combining nodes and creating applications
with the use of behavior trees. Libraries are also provided for both JavaScript
and Python, which are used by the visual editor for creating and exporting
code in a specific programming language. The framework is aimed for both
programmers and non-programmers, and provide capabilities for extending
the framework by introducing the ability to create customized nodes.

8http://behavior3.com/

http://behavior3.com/

26 CHAPTER 4. RELATED WORK

Figure 4.5: Example of a Behaviour Tree . Example show the use of Be-
haviour3

4.1.6 Event-Based Rules

Event-Based Rules are good for simple logic handling, and consist of rules
to trigger when a given event occurs. Each rule is defined by a visual block,
which can be connected by other blocks, creating a set of rules. The Event-
Based Rules are easy to understand because of its simplicity, which also make
it good for simple tasks, which in turn can make the language limited.

Kodu is a VPL for creating games for both PC and XBOX, created by Mi-
crosoft Research. The system is designed for users with no programming
experience, both children and adults. BBC micro:bits9, an embedded pro-
grammable hardware device, is supported by Kodu and introduces the use
of rule blocks to be used for creating simple applications that are able to
control and listen to its input and output interfaces. Each rule block consists
of an image that represents the capability each block provides.

9https://www.microbit.co.uk/

https://www.microbit.co.uk/

4.2. PHYSICAL PROGRAMMING 27

Figure 4.6: Example of Event-Based Rules . Example show the use of Kodu

4.2 Physical Programming

Physical programming is removing the need of a keyboard, mouse, and screen.
It involves users engaging with physical tangible elements to create a sequence
of instructions, which is compiled into a machine language ready to be run
in a computer system. Because of its use of tangible elements, physical
programming is usually referred to as tangible programming.

A tangible user interface (TUI) key idea is to give physical forms to dig-
ital information [21]. The tangible elements are used to give an abstract
representation of some code, and can consist of programming elements, com-
mands and flow-of-control structures [19]. Connecting these representations
forms a computer program. Like visual-programming, a tangible interface
removes the need of learning a complicated syntax, since users only need
to interact with abstract notations of some pre-defined code, and how these
tangible elements are implemented is of no concern to its users. Being able
to configure and control digitally content using physical elements help to
bridge the gap between the virtual and physical world [25], and have been
found to be positive for an educational purpose, and as an introduction to
programming.

Michal Horn and Robert Jacob [19] describes an approach using tangible

28 CHAPTER 4. RELATED WORK

interfaces and the implementation of two tangible languages. Their solu-
tion provides interfaces that can be connected together like puzzle pieces.
The pieces form instructions, which are carried out by physical or virtual
robots. The structure of the pieces is transferred to a computer, where
the instructions are compiled to either the Quetzal programming language,
which is usually used with LEGO Mindstorms, or the Tern language, used
for controlling virtual devices on a computer. Unlike TILES, their solution
is aimed at younger children to be used in educational environments, like
classrooms. TILES want to ease the process of developing applications for
the TILES devices, while Horn and Jacob focus on students learning collab-
oration and complicated syntax using tangible languages. Multiple concerns
are addressed and described for the design and implementation of the two
tangible languages because of the target users and the system’s area of use.
For TILES the implementation of a tangible language is still relevant, even
though TILES have a different area of use and target users.

PrimoToys10 provides a robot that uses tangible elements for controlling its
movements. Each tangible element represent a motion which the robot can
carry out, making it easy for children to comprehend. The different parts
offered by PrimoToys is shown in figure 4.7. The tangible elements are placed
on a board, which is compiled and uploaded to the controllable robot.

Little Bits11 is an approach on physical programing using tangible building
blocks, called bits, that can be snapped together using magnets to create a
circuit of blocks, where each block provides some input to the next. Each
block is pre-set with a feature, from power, input, output and logical op-
erators. The power is blocks which provides power to the whole circuit,
while the input is different sensors able to read from its surrounding area,
user-interactions or temperature data, outputs can control or notify its envi-
ronment using LEDs or motors, and the logical block can split up a circuit,
corresponding to if...else or other logical operators usually found in pro-
gramming languages.

4.3 Mini-Language

A mini-language, also called domain-specific language (DSL), is a program-
ming language with small syntax and simple semantic [5]. Creating a mini-
language requires commands, queries and control structures be made avail-

10http://www.primotoys.com/
11http://littlebits.cc/

http://www.primotoys.com/
http://littlebits.cc/

4.3. MINI-LANGUAGE 29

Figure 4.7: Example of physical programming. Example show the use of
PrimoToys

able to its users. With a known audience and usage content for the mini-
language, the language can be tailored to its needs and the users background
knowledge. Control structures, data types and keywords can be provided
that are only essential for the use case, and be provided in the users’ native
language. This together can help in creating an attractive, meaningful and
effective environment.

Because of a mini-language simplicity, learning the language does not requires
much time, so that the focus can be on developing the actual application
logic. Mini-languages are also used to help understand the principles of
programming, and more general purpose languages [5] like C, Pascal and
Lisp.

A mini-language is used as any other programming language, written in a
text-editor. Most IDE’s today have an interpreter, an auto-complete fea-
ture when writing code, and highlighting of important keywords and vari-
ables, which is important for mini-languages as well. Some mini-languages
incorporates a mini-world, with an actor which is controllable by the mini-

30 CHAPTER 4. RELATED WORK

language. Providing input commands, queries and control structures, the
users are able to observe the code-execution and how it affects the actor and
the mini-world.

CodeCombat12 is an online platform created to introduce students to pro-
graming by controlling a game, shown in figure 4.8. CodeCombat consist of
a text-editor and a visual mini-world. The mini-language is used to control
an actuator within the mini-world, and the users should use the provided
mini-language to circumvent any obstacles. JavaScript, Python, and Java is
available to be used for the mini-language, and multiple game boards and
characters are available so that users are able to customize their game expe-
rience.

Thomas Kubitza and Albrecht Schmidt [22] addressed the need for a toolkit
to help ease building applications for smart devices in interactive environ-
ments, where designers and developers can focus more on the application
logic. Configuration of the devices using the proposed toolkit is done in a
scripting language, JavaScript, and a web-based IDE where developers are
able to write code. The paper argues that the right set of tools for devel-
oping applications for smart-devices should empower people with different
background to create their own smart-environment, as Arduino has done for
physical prototyping. Compared to TILES, this toolkit also provides a client
software to remotely control and access a devices actuators and sensors, and
a central server which all the devices are connected to, where users are also
able to control each device using JavaScript. Unlike TILES, the toolkit is
aimed to be a multi-device system, for a heterogeneous set of devices. The
paper addresses the need of a visual programming tool (Blockly), that should
be built on top of the JavaScript layer.

DemoScript, described in [7], is a system for scripting cross-device wearable
applications, and provides a visually storyboard used to illustrate the step-
by-step execution of the application. The system consists of a web-IDE
which the user interacts with, and a server hosting the scripts developed
by the users. The Weave framework [6] is running in the backend of the
server, used for creating cross-device interactions with the use of scripting.
The framework is built on top of JavaScript, and provides an environment
to run the user-generated scripts. DemoScripts has a focus on testing with
its provided storyboard, which can be used to revise different aspects of a
program by direct manipulation [7]. Unlike TILES, the system is built for
cross-device interaction with devices of different variety of capabilities. The
paper also addresses the complexity of using multiple interactive devices,

12https://codecombat.com/

https://codecombat.com/

4.4. OVERVIEW 31

that are able to influence the application logic, which is a problem TILES
want to solve and make more easy to integrate into applications.

Orchestrator.js is a middleware for building applications for multi-devices in
heterogeneous environments [24]. This is a web-based tool, where a web-IDE
for implementing applications are provided. Users are able to manage their
embedded devices from a console, named Web Console. From the Web Con-
sole, user-created applications can be combined with registered devices, defin-
ing observers on actions triggered by devices. The system is also supporting
communicating with social applications, which is able to communicate with
embedded devices through the Orchestrator.js middleware. The middleware
does not know the capabilities a connected device provides however, which
need to be stated by the user itself. This is not the case of TILES where all
devices connected provides the same capabilities.

Figure 4.8: Example of a mini-language. Example show the use of Code-
Combat

4.4 Overview

This section summarize the papers and program solutions mentioned previ-
ously, and provides an overview of what type of programming they support
or mention.

Visual Programming Physical Programming Mini-Language
Demoscript X X

32 CHAPTER 4. RELATED WORK

TangoHapps X X
Quetzal language X
Tern language X
IoT Toolkit X X
Orchestrator.js X
Tangible program-
ming bricks

X

Scratch X
Flowgorithm X
Node-Red X
Unity3D X
Behaviour3 X
Kodu X
PrimoToys X
CodeCombat X

Table 4.1: Related work overview

As shown in the table, there exists multiple solutions supporting different
approaches for creating applications. Each system has in common wanting
to ease the development process for its users. For TILES, the different pro-
gramming paradigms used by the solutions is interesting, to see how state
of the art solutions wants non-programming experts to create applications
using their creativity. The systems focusing on ubiquitous devices is more
interesting for TILES, as these systems focus on how someone is able to use
these devices and incorporate them into applications. However, none of the
described solutions take into account the usage of multiple tangible devices,
that are able to be interacted with at the same time, and act together to
influencing the application logic. Other solutions also focus on supporting
different types of ubiquitous and tangible devices. TILES only need to focus
on supporting one device that provides the same capabilities. Creating a
tool where multiple interactive devices can influence the application logic is
a hard task to accomplish, which TILES would like to support.

By creating a mini-language, the language could be tailored and better suited
for TILES use, enabling TILES target users to easier express their desired
functionality through a Domain-Specific Language. Such an approach is
considered to improve End-User Development [23], and should provide an
intermediate abstraction of functionality, in which TILES target users are
able to use and call components within the language, but not create new

4.4. OVERVIEW 33

components. Using multiple programming approaches would ensure different
levels of complexity to be provided, and having a system that is able to adopt
to its users. Each abstraction would lead to an increase in complexity and
expressivity, ensuring that small changes are simple to accomplish, while
more complicated features only require a small increase in complexity [23].
Providing a DSL tailored for TILES usage is therefore argued to give its
users great expressivity, helping to accomplish desired functionality than a
conventional programming language would.

Many of the state-of-the-art systems are run in a web-environment, making
it more accessible to its users. By providing a development-environment as
a web-application, creating a community around TILES, in which its target
users are able to share knowledge with others, become more easy. Creating
a community around a system, is argued to be of great benefit for its users,
as is also shown by other state-of-the-art systems, i.e. Scratch, when users
are able to learn from others, and become inspired by others work. The
architectural aspect of a web-environment also helps in providing up-to-date
system without having its users update it manually. A way of integrating
a mini-world, as described for multiple state-of-the-art systems, in which
TILES target users are able to influence an applications behavior, can be
accomplished by implementing a web-based emulator, emulating a TILES
device.

Chapter 5

Requirement Specifications

Requirements for developing an environment for creating TILES applica-
tions is derived from chapter 4, Related work. A comparison between the
different programming approaches: textual, visual, and physical is done to
help choose which approach is the best fit for the different users of TILES:
makers and computer science students with some programming experience,
but not necessarily interactive objects competencies. To compare the dif-
ferent approaches, each solution is compared in terms of how well they fit
into the TILES infrastructure, and how they can be used to create TILES
applications.

5.1 Language comparison

All three approaches: visual, physical, and mini-language, provide a higher
abstraction of programming which could be used to help lowering the thresh-
old of creating applications for TILES.

A visual-programming approach is argued to make the programming task
easier for all users, both novice and professional programmers [26]. A visual
representation is also argued to be a more natural and efficient representation
than a textual approach [26, 28], since the human visual system is optimized
for multi-dimensional data, which could help to better generate and under-
stand visual code. By abstracting code using visual notations, much more
information of a program state can be presented than a purely textual ap-
proach. Information can be hidden away from its users about the underlying
implementation, so that syntax, variables, and data structures is stripped

35

36 CHAPTER 5. REQUIREMENT SPECIFICATIONS

away from the application logic. This can again empower its user to purely
focus on the application logic, and help lowering the threshold for creating
applications for TILES.

Physical programming introduces the ability to directly influence digital in-
formation by engaging with physical tangible objects in the real-world. As
with visual-programming, tangible objects that are available to its users rep-
resent a higher abstraction of some underlying information which the en-
gaging users do not need to have any knowledge about. Being able to di-
rectly influence behavior of an actuator without the need of a computer is
more appealing to younger children and supports collaboration and sharing
of code [19, 20]. Physical programming using tangible objects is found to
be equally easy to understand as a visual-approach [20], but more appealing
than both a textual- and visual-approach for users working in groups (i.e
classroom) [19]. A physical approach for developing applications for TILES
requires pre-built tangible interfaces to be deployed and made available to
its users.

A mini-language, DSL, is a language designed for a specific domain and use
case. A DSL can be implemented with several approaches [34]. All ap-
proaches generate abstract notations that makes up the DSL, to hide the
underlying details and give more expressive power to its domain. The dif-
ference is whether the general-purpose language should be made accessible
alongside with the DSL, to give a broader expressibility. To help lowering
the threshold for creating TILES applications, abstract notations should be
made available to its users, which does not require any knowledge of the un-
derlying system. A DSL can be implemented as a library, and be used both
by a textual-, visual-, and physical-approach for creating applications.

As the target users for TILES are makers and computer science students,
they are expected to have basic knowledge about the Internet, and open-
source hardware and software. Makers are in communities where sharing
of knowledge is important. Being able to store already created code, which
can be further re-built at a later stage, and easily shared between users
is therefore an important requirement for the development environment for
TILES, which a physical approach fails to acquire.

Software updates are more easily deployed and made available to everyone
at the same time when done over the Internet. A development environments
accessible using a computer is therefore able to always provide up-to-date
software to all its users. Users are able to store and share generated code
with others over the Internet, both in textual-form and visual-form. Im-
plementing a DSL as an underlying layer which both a textual, visual, and

5.1. LANGUAGE COMPARISON 37

physical approach are able to use, enhances modifiability, as a modification in
the underlying layer will be made accessible to all top-layers, as shown in fig-
ure 5.1. A textual and visual approach for developing applications for TILES
is prioritized for this thesis, as a physical approach with tangible devices is
too big of a task to accomplish with the provided time. Building a physical
approach on the common DSL can however be done in future works.

Figure 5.1: Language layer, where top layers have access to the underlying
layer

By supporting both textual and visual programming approaches should make
TILES available to users with different programming experience and back-
ground. Both approaches should give the makers and computer science stu-
dents a ”low floor”, ”high ceiling”, and ”wide walls”. Approaches with a low
floor is solutions that are easy to get started with. For TILES, this means
it’s easy to get started developing applications, as the target users are able
to choose an approach they are more comfortable with: textual or visual. A
high ceiling for the language means it provides expressive power for creating
applications, and let rather complex applications for TILES to be developed.
Using the DSL and the general-purpose language made available through
the DSL, makers and computer science students are provided with a wide

38 CHAPTER 5. REQUIREMENT SPECIFICATIONS

range of functionality, which they can make use of within their applications.
Wide walls refer to TILES being able to be incorporated into a wide range
of areas that is of interest to makers and computer science students, whether
that’s for games, notification and event-based applications (social network,
weather, etc.). With wide-walls, the makers and computer science students
are provided the freedom to incorporate TILES into any environment of their
choosing.

Alexandre Demeure, Sybille Caffiau, Elena Elias and Camille Roux [9] de-
scribes a study for home-automation and different tools for programming for
home-automation. The study includes users with different programming ex-
perience. Visual programming is found to be used in most houses because
of their simplicity. Both block visual programming, event-based rules visual
programming, and scripting languages are found to be used for these users.
VPLs are used by users with little programming experience, and scripting
languages for users with more programming experience. The paper argues
that a higher-level of abstraction should be provided for programming ubiq-
uitous devices, to more easily create rules, variables and access devices. Pro-
gramming abstractions using a DSL for TILES should therefore ease the
development process for creating applications.

As syntactic issues is not a problem for users with great programming ex-
perience [36], a visual-approach which removes e.g. syntax issues may seem
unnecessary. Applying VPL to TILES is however believed to be important
for supporting different approaches to create applications for TILES.

5.2 Visual-language Comparison

In this section, the visual programming environments described in chapter 4
and appendix A will be compared. For a tool to be successful incorpo-
rated into the TILES infrastructure, the system should be extendable, to
create custom visual elements that are of relevance to TILES. It should also
be possible to generate ready-to-use code of the visual-representation to a
programming language supported by the TILES infrastructure, preferably
JavaScript, as the solution is built on top of Node.js1, and the author has
more experience in this programming language.

Visual languages using the block approach for building applications, only
Snap! and Blockly are systems implemented in JavaScript, and which sup-

1https://nodejs.org/en/

https://nodejs.org/en/

5.3. TILES DEVELOPMENT ENVIRONMENT 39

ports generating custom blocks. Snap! is highly inspired by Scratch, and
incorporates a mini-world for executing the created applications. These
projects can be exported and used in other Snap! environments as well, but
for running the created applications stand-alone, the run-time environment
of Snap! is required. Exporting the created application from blocks to pro-
gramming code is only supported by Blockly. Each block represents a com-
bination of some programming code, and the combination of the connected
blocks can be exported to a programming language (Python, JavaScript,
PHP). This code is then able to be executed without any dependency of
Blockly. The use of a mini-world, which Snap! includes, could however help
with the development process when generating applications for TILES, but
is of no need when the application should be executed. Using Blockly for
the development environment for TILES would require a minimal set of de-
pendencies in the run-time environment on the cloud-server, and therefore
provide a better performance than with Snap!.

Node-Red is a data-flow visual programming language that is implemented
in Node.js (JavaScript), and support generating custom nodes. Node-RED
have a visual-editor for generating data-flows, which can be uploaded to
and executed in its server-environment. Incorporating Node-Red into the
existing infrastructure for TILES, would require both a client and server side
application. As the application instance would need to be run alongside the
TILES Cloud server, much work would be required to incorporate it into an
existing system.

The study of home-automation programming systems [9], also found that
most of the users were using visual languages that were using the block
approach, because of its simplicity and the expressibility, over the simpler
approach with event-rule creators. Because blocks for visual programming
provides a high-ceiling and low-floor, incorporating such a system would be
a good fit for TILES. Blockly is also found to be the most capable system to
implement into an existing infrastructure because of its simplicity, support
code-generation from visual-elements, and easily customizable because it’s
written in JavaScript.

5.3 TILES Development Environment

The requirement for creating the TILES Development Environment (TDE)
are based on the reviewed literature and related work in chapter 4, and
the comparisons in section 5.1 and 5.2. Textual online IDE editors were

40 CHAPTER 5. REQUIREMENT SPECIFICATIONS

compared in the previous study [31], where ACE2 were found to be the best
fit and is incorporated as a part of the TDE requirements as well. The
high-level requirements are meant to denote what is needed for creating an
environment which should help ease the process for developing applications
for TILES, and are shown in table 5.1.

Priorities of the requirements can either be Low, Medium, or High, denoting
the importance of a feature for the development environment to be ready for
use.

ID Requirement Description Priority Dependency
FR1 The TDE should

be run in a web-
environment

Running in a web-
environment as a web-
application should make
the system easy accessible
in a web-browser, and not
be dependent on any OS

H

FR2 The TDE should pro-
vide a textual-editor,
ACE, for writing code

The textual-editor that
should be implemented
is ACE, a web-IDE that
support multiple languages
for syntax highlighting

H FR1

FR3 The TDE should pro-
vide a DSL that ab-
stract common oper-
ations for accessing
other third-party ser-
vices and other TILES
devices

Third-party services are
other Internet applications
for fetching third-party
data, like weather and
social network data

H FR2

FR4 The DSL should be
built with JavaScript

This should ensure the lan-
guage to be easily imple-
mented into the existing TC

H

FR5 The TDE should pro-
vide a visual-editor,
Blockly, for generating
code visually

The visual-editor that
should be implemented
is Blockly, a block-based
visual editor that supports
customized blocks

H FR1

2https://ace.c9.io

https://ace.c9.io

5.3. TILES DEVELOPMENT ENVIRONMENT 41

FR6 The VPL should
be able to generate
JavaScript code from
the created visual
elements

Blockly supports export-
ing generated blocks to
both Python, JavaScript
and PHP out of the box

H FR5

FR 7 The VPL should cre-
ate visual representa-
tion of the abstract
DSL functionalities

This should ensure that all
functionalities made avail-
able with the DPL are ac-
cessible visually, and famili-
rize the users with concepts
for TILES to more easily
change between both con-
cepts

L FR3, FR5

FR8 The TDE should sup-
port saving both vi-
sual and textual code

Users are able to save their
work, and not loose any
progress

L

FR9 The TDE should sup-
port restoring both vi-
sual and textual code

Users are able to restore
previous work and further
customize it at a later stag

L

FR10 The TDE should sup-
port uploading of any
generated JavaScript
code to the TC

User-created applications
should be run in the TC

M

FR11 The TC should be
able to run user-
generated JavaScript
code in a sandbox
environment

User generated code
shouldn’t have access to
the TC environment and
influence resources an ap-
plication shouldn’t have
access to

L

FR12 The users should be
able to test their code
in a virtual environ-
ment

Should help users to write
applications with intended
features

L

Table 5.1: Requirements for the TDE

42 CHAPTER 5. REQUIREMENT SPECIFICATIONS

5.4 Domain-Specific Language

The requirements for the DSL is described as user stories, a way of formu-
lating requirements from users’ perspective. User perspectives for the DSL
are formulated from the perspective of TILES target users: makers and com-
puter science students, referred to as user in the user stories. The user stories
should help denote what features are required of a DSL to create applications
for TILES, and what makers and computer science students expect from the
TILES DSL. Each user story includes acceptance criteria, to known when a
user story is successfully implemented. The user stories could later be used
in a backlog, to help developing the features of the DSL.

As a/an I want to... so that...
US1 user send commands to a TILES

device
I can control its output in-
terfaces

US2 user be presented will all avail-
able commands that I’m
able to send to a TILES de-
vice

I can easily choose a com-
mand, without remember-
ing all of them

US3 user listen for events triggered on
a TILES device

I can act upon an incoming
event

US4 user identify incoming event I know which event was trig-
gered on the TILES device

US5 user identify each TILES device
registered to me

I know which devices I’m
able to create applications
for

US6 user use a device identification
name in my application

I can easily refer to one
of my registered devices
within the application code
by name

US7 user retrieve data from a third-
party source

I can use data from other
sources within my applica-
tion

US8 user send data to a third-party
source

I can store/notify/post my
data to other Internet appli-
cations

5.4. DOMAIN-SPECIFIC LANGUAGE 43

US9 user have application libraries
available for common Inter-
net services (Twitter, Face-
book, Weather)

I can more simple use ser-
vices that I’m more likely
to use, without the need
of copy/paste common code
for each application

US10 user have access to my stored
data

I can use TILES devices
that I have registered in my
applications for communi-
cation

US11 user provide a pattern of interac-
tion consisting of a TILES
device and an event

I’m able to trigger an action
when a certain pattern of in-
teraction is met

Table 5.2: User Stories for DSL

44 CHAPTER 5. REQUIREMENT SPECIFICATIONS

Acceptance
Criteria

US1
- User is able to control all interfaces of the TILES device
- Able to activate an interface
- Able to deactivate an interface

US2 - List off all interfaces are shown (e.g. LED, Vibrate, Speaker)

US3 - Application is notified when a user interacts with one of the
TILES device interfaces (Button, Shake...)

US4 - Application is able to parse incoming event message
- The identified event match the triggered event

US5 - List all devices registered to current user
- TILES devices listed are only registered to user

US6 - Using a TILES device’s name is interpreted as using the
TILES device’s MAC identification

US7 - Able to communicate with other HTTP service
- Result retrieved

US8 - Able to communicate with other HTTP service
- Able to send user-defined data along with the HTTP request

US9 - Libraries created with few user-inputs to start working with
its data

US10 - Access to stored username, and TILES registered
- Able to refer to TILES by their name

US11
- Able to provide a pattern matcher consisting of multiple
events and TILES devices
- Action run when given pattern is triggered

Table 5.3: Acceptance criteria for User Stories

Chapter 6

Design

This chapter will formulate an approach to help design the development sys-
tem for TILES, by first explaining the different actors within the system, and
what functionality they expect. A formal definition of a DSL is provided, a
language that should provide abstract functionalities to help ease the process
of creating applications for TILES

6.1 Introduction

Makers and computer science students with some programming knowledge
are the intended users for the TILES Development Environment (TDE), and
are therefore referred as the users of the system. They will be using the
TDE for creating applications for TILES, visually or textually. The envi-
ronment will provide abstract functionalities for TILES specific operations,
communication through the TILES infrastructure, and data-retrieval from
third-party services. The abstract functionalities, made available through a
designed DSL, will help lower the threshold for creating TILES applications.
Deep knowledge about the underlying system is not required when dealing
with abstract notations of the functionalities, and the users only need to be
concerned about how the abstract functions should be used. Using the DSL,
the users are able to tell other TILES devices what ”to do” and which data-
sources the application should retrieve data from. Simple knowledge of the
TILES device’s output interfaces, and the supported interaction methods, is
required, as these are mechanisms that need to be referenced and used in the
application logic

45

46 CHAPTER 6. DESIGN

Applications created by the users are to be run in the TILES infrastructure,
ready to respond to any incoming TILES events from users interacting with
their TILES devices. The DSL therefore need to be developed for the run-
time environment in the TILES infrastructure, as the created applications
are to be executed in this run-time environment. Moving the application
from the TDE to the TILES infrastructure requires the TDE to upload the
created application logic to the TILES infrastructure.

The TDE will also need to retrieve stored data in the TILES infrastructure
about the available TILES devices for its users. Each application is able
to communicate and integrate TILES devices into the application logic. In-
formation about the available devices for a user, helps the users to identify
which device can be references in the application logic. Each device is de-
noted with a custom name, along with its MAC address for identification.
This identification can be the reference name within the application, as both
custom names and MAC addresses should be unique.

Each actors goals are shown in figure 6.1. The user is here defined as the
users of the TDE, makers and computer science students, TC as the TILES
Cloud, and TD as the TILES Device. This use-case diagram is used to show
what goals each actor need to fulfill, to provide the desired functionality for
creating applications for TILES from a user perspective.

Creating applications for TILES requires different steps for the TDE to carry
out:

1. Connect to TC

2. Discover devices

3. Load textual/visual editor

(a) Load DSL

After these tasks are done by the system, the users are ready to start creating
applications for TILES:

1. Choose which device the application should be registered to

2. Pick event that should trigger application

3. Implement application logic

4. Upload application code to the infrastructure

6.2. USE CASES 47

Figure 6.1: Use Case diagram showing each Actors goal

6.2 Use cases

Use cases that are describing the most critical aspects of the TDE from the
maker and computer science student’s perspective is shown below, and are
referred to as users in each use case. These use cases are used to help denote
what actions is required by the user, and how the system should respond to
them.

48 CHAPTER 6. DESIGN

1 - TDE Retrieve TILES Device details
Will retrieve all stored information about all TILES devices
registered to the current user
Primary Actor User
Precondition TDE connected to TC

Trigger User click retrieve TILES Device
information

User Action System Action

1. Request TILES Device
information

2. Query TC to retrieve all TILES
Devices registered to user
3. Check if there are devices
registered for current user
4. Return requested TILES Devices
5. Store information client-side

Exceptional Paths
3.1 No devices registered to user
3.2 Returns empty set
3.3 Give error message
This ends the use case
5.1 No storage space free for storing
5.2 Give error message
This ends the use case

Table 6.1: Use Case #1 - Retrieve TILES Devices

6.2. USE CASES 49

2 - TDE Update TILES Device details
Will update an already registered TILES Device. Able to update
its custom name
Primary Actor User

Precondition TDE connected to TC.
TD for user retrieved

Trigger User click update TILES Device
information

User Action System Action
1. Input information to
update

2. Click update

3. Parse input data
4. Send parsed data to TC
5. TC Check if device exist for user
6. Update information
7. Return success message

Exceptional Paths
3.1 No data given to update
3.2 Give error message
This ends the use case
5.1 Device not found for user
5.2 Give error message
This ends the use case

Table 6.2: Use Case #2 - Update TILES Devices infor-
mation

50 CHAPTER 6. DESIGN

3 - TDE Create Textual Application
Describes the process to start creating application for TILES
textually. TILES Devices needs to be retrieved to be able to
reference them in-code
Primary Actor User

Precondition TD for user retrieved
DSL available

Trigger Open textual editor
User Action System Action
1. Open textual text-
editor 2. Load ACE editor 3. Load DSL library

4. Input program code 5. Highlight DSL syntax
6. Highlight JS syntax

7. Exit text-editor
Exceptional Paths

2.1 DSL library not found
3.2 Give error message
This ends the use case

Table 6.3: Use Case #3 - Create TILES application tex-
tually

6.2. USE CASES 51

4 - TDE Create Visual Application
Describes the process to start creating application for TILES
visually. TILES Devices needs to be retrieved to be able to
reference them in-code
Primary Actor User

Precondition TD for user retrieved
DSL available

Trigger Open visual editor
User Action System Action

1. Open visual editor 2. Load Blockly editor
3. Load custom blocks

4. Move and combine
visual blocks

5. Convert blocks to JS code 6. Generated code
7. Check code for endless loop

8. Exit visual editor
Exceptional Paths

6.1 Couldn’t generate and
verify code
6.2 Give error message
This ends the use case
7.1 Code includes endless loop
7.2 Give error message
This ends the use case

Table 6.4: Use Case #4 - Create TILES application vi-
sually

52 CHAPTER 6. DESIGN

5 - TDE Restore Code
User want to restore previous work and continue working where
they left of, or to add new functionality to already created
application
Primary Actor User
Precondition TDE connected to TC
Trigger Restore button pressed
User Action System Action
1. Input TILES device
that registered with
an application that
should be restored

2. Query TC to retrieve application
3. Check if device is registered with an
application

4. Return application code
5. Open editor with retrieved code

Exceptional Paths
3.1 No application found for device
3.2 Give error message
This ends the use case

Table 6.5: Use Case #5 - Restore TILES application

6.3 DSL

This section will describe the abstract functionalities that are required by
the DSL, to successfully create applications for TILES. The functionalities
described are derived from the user stories in table 5.2.

Sending commands to a TILES device requires the user to choose which com-
mand to send, and which device that should retrieve the created command.
To fulfill US6, referring to a device could be done by its stored name. US2
requires all commands to be public available and shown in the user interface,
which could be done in a callable function or Array with its input name. A
text-editor could be pre-configured to support intelligent code completion,
an auto-completion feature for the developer environment.

A command that can be interpreted by a TILES device consist of two ele-
ments:

• name - Entry storing the output interface which the command should

6.3. DSL 53

control. Output interfaces supported are shown in figure 3.2 ”Output”
column.

• properties - Extra properties to give more description on how the output
interface should be controlled, given as an array with maximum of two
elements.

The name element is a simple text string denoting the output interface which
the command should control. Each output interface supports different pat-
terns for controlling the interface, e.g. the LED can be turned on or off, be
set to blink, and to light up a specific color. When a command is specified
to be received by a TILES device to control its output interfaces, verification
of the created command should be done by the DSL before any command is
issued to a real TILES device. This is possible as the type of pattern sup-
ported by the output interface is given by the TILES device specification,
which should be reflected in the DSL. These command structures and the dif-
ferent types supported by each output interface are more difficult to handle
and remember by simple typing. Building in support for commands within
the DSL, and giving them easier to remember names, makers and computer
science students are not exposed to the structure of the commands, as the
example below:

1 {name:"led", properties :["on","blue"]}

Being able to respond to incoming events created by a user interacting with
a TILES device, requires a way to distinguish between the different events
that can be triggered. Not only does a listener need to be setup (US3),
it also needs to parse each incoming event to check that the event type
matches the type of event which the maker/student have put down in the
code(US4). An input event and a TILES device identification need to be
given as input to the DSL to successfully check the parsed event. When
an event is successfully parsed, the DSL needs to notify any listeners of the
newly occured event. By introducing the publish-subscribe pattern [3], the
DSL can publish a message to a given channel, depending both on the parsed
event and the TILES device that transmitted the event. Any subscriber for
the channel will then be notified of the incoming message. The publisher is
not able to know if there exist any subscribers on the channel, nor is it of any
concern, so the message will be published either way. This means there’s no
coupling between the subscribers and publishers.

An event triggered on a TILES device and sent to the infrastructure of TILES

54 CHAPTER 6. DESIGN

consist of two elements, denoting what kind of event was triggered on the
device. The structure is the same as a command:

• name - the name of the interaction being triggered on the TILES device.
Valid commands is shown in figure 3.2 ”Input” column.

• properties - Extra properties, providing more description to the event
that was triggered. The properties are sent as an array with a maximum
size of two elements.

The name elements are simple text strings, denoting the interaction being
triggered on the TILES device. The main interaction is described using the
name element, and the properties array is a more descriptive notation of the
interaction. When a TILES device is tapped, the main interaction will be
”tap”, whereas the properties will contain the string ”double” or ”single”,
depending on the type of interaction triggered. This is all handled by the
TILES device itself, and the DSL only need to be concerned about parsing
the incoming event correctly. Makers and computer science students are
not expected to handle the textual form of an event, but rather the parsed
data.

An example event received from a TILES device that need to be parsed before
it can be used in an application:

1 {name:"tap",properties :["double"]}

Using a user-created name as reference to a TILES device, instead of its
MAC-address, is much easier to remember and write in code. A problem
with using user-generated names as references is that these are changeable
names, which could make an already created application stop working if the
name of a device should be changed at any time. It’s therefore important that
the DSL has an inbuilt functionality for parsing from a TILES device’s name
to its MAC address, and the other way around. This should prevent name-
changing having any impact on already created applications. The name of
the TILES is only used when the application code is shown to the makers
and computer science students through the DSL. In the background, the
custom-name is replaced with the device’s MAC address, but never shown in
the user-interface.

The DSL should support retrieving or sending data to a third-party service
over HTTP. When the DSL are to conduct a HTTP-call, this communication
should be done asynchronous, to prevent locking down of the system while

6.3. DSL 55

waiting for the HTTP-result. This requires a callable function to be run when
the result of the HTTP-request is retrieved. The user will most likely want
to use the requested data, and should be given the option to input some
logic that should be run when the result is retrieved. Using the retrieved
data requires the user to correctly implement a custom data-parser on the
retrieved result. Incorrect implementation of a data-parser could lead to
an unsuccessful call to data that do not exists. As this step requires more
deep knowledge about handling third-party-services data, whether the result
includes HTTP, JSON or XML-data, providing libraries for services that are
more likely to be used, should help the users to prevent making calls that
may crash the application.

Accessing the stored data in the TILES infrastructure is required to know
which TILES devices are available in the running context. The DSL should be
able to retrieve this data, from the maker/student, and use this information
for fetching all TILES devices registered. Other stored data may also be of
interest for the DSL to incorporate into the TILES applications, and should
be made available in a user-context.

An interaction pattern consists of a TILES device identification and an event.
The DSL should support interaction patterns, to be able to listen for different
events from different devices. In code, there should be an ability to input a
set of TILES device identification names, along with an event, and the DSL
should tell when the given set of events is triggered by the given devices.
The pattern should only be recognized when the exact order of events is
triggered on each device. Supporting interaction patterns will give makers
and computer science students more opportunities for interacting with their
devices, and introduces a more complex usage scenario, when both single and
multiple events can be interpreted by the DSL.

Since any incoming event from a TILES device will notify the DSL, following
the publish-subscribe pattern, handling a set of events need to be built on top
of this pattern. The Pipe-and-Filter pattern [3] is able to transform stream
of data to a single output. When an interaction pattern is provided in code,
each element need to be setup as a filter mechanism, where an incoming real-
time event is transmitting through the ”pipe” of filters. At each filter, the
event is processed, and if the filter accepts the incoming event, deliver the
event to the next filter, and set the status of the filter to ”PROCESSED”.
Any ”PROCESSED” filter should just pass an event to the next filter. If the
event does not match the filtering process, already ”PROCESSED” filters
should reset their status, meaning the provided pattern did not match with
incoming events. If an event is transmitted through the whole pipe of filters,

56 CHAPTER 6. DESIGN

the interaction pattern is successfully carried out, and the DSL should be
notified. Figure 6.2 shows the outline of a pipe-and-filter mechanisms, where
the filter represent the provided interaction pattern, and event as parsed
events received from all TILES devices registered to the maker/student.

Figure 6.2: Pipe-and-Filter pattern for events

The mapping of the user stories is meant to show how the user stories should
be prioritized, under implementation, and sub-tasks that needs to be com-
pleted for the main user story to be completed. The mapping is shown in
figure 6.3.

Figure 6.3: User Story mapping

6.3. DSL 57

6.3.1 Modules

The user stories described in table 5.2 for the DSL outlines important func-
tionality which the DSL should be able to interpret. Modules can be created
for the DSL by dividing the user-stories into groups by what services they pro-
vide. Following the module design pattern [3] helps to separate functionality
provided by the DSL which enhances modifiability, portability and reuse. As
each module can be developed and maintained independent of each other,
the modules have no dependency of another. Each module can therefore
be changed without requiring other modules to be affected, which enhances
modifiability. Portability refers to how easily a module can be transferred
to and used in other environments. Following the module pattern for the
DSL should minimize the module’s platform dependency. As the DSL will
be part of the TILES toolkit, its modules will also be developed for TILES,
but not enclosed to a specific environment. The different modules that the
DSL should consist of is:

• User - Accessing user data, like TILES devices and username

• Event - Parsing incoming events from a TILES device, and able to
setup listeners

• Command - Creating commands that should be sent to a given TILES

• Data-source

– Weather - Retrieving weather data from an Internet API

– Facebook - Rretrieving and posting data using the Facebook API

– Twitter - Rretrieving and posting data using the Twitter API

– CustomHTTP - Communicating with custom third-party services

The DSL can at a later stage be extended with other modules, without
affecting already created modules. As the DSL is part of a layer-pattern,
as shown in figure 5.1, the DSL also need to implement an interface that
combines all the modules for the DSL. This unified interface, called a facade,
is made available to the top-layers to help use the underlying modules of the
DSL. This interface helps making the DSL modules more readable, as more
convenient methods can be created for the underlying modules. Figure 6.4
shows an outline of the different modules which the DSL should support, and
how these modules are available to the interface.

58 CHAPTER 6. DESIGN

Figure 6.4: Modules for the DSL

A module can consist of several sub-modules, together forming the whole
module, e.g. the HTTP module. The HTTP module consist of Internet-
service modules. The interface for the DSL need to make all sub-modules
accessible.

6.3.2 The language

A DSL for TILES should provide multiple abstract functionalities through
a simple language to help ease the communication with TILES devices and
other third-party services. A DSL should help makers and computer science
students to code less, and still do more. Less coding required to accomplish
bigger tasks will help ease the process of creating applications for TILES,
and provides makers and computer science students the full power over their
TILES devices with ease. Using the abstract DSL, quick prototyping using
TILES devices is possible, and applications can be written with just a few
line of code or visual elements.

The modules described for the DSL are to be made accessible through the
facade interface. This is the interface that is callable by the DSL. A language
is to be built on top of this interface, in which makers and computer science
students will call indirectly through the DSL. The facade interface provide the
methods callable by the language used for writing code to create applications
for TILES.

6.3. DSL 59

The DSL will be built on top of JavaScript, making the DSL a sub-language
of JavaScript. Providing the capability of mixing both the DSL and plain
JavaScript code in the application code for TILES applications, should help
makers and computer science students already familiar with JavaScript to
more easily create applications for TILES. The DSL will help in abstracting
TILES-specific code, resulting in fewer lines of code required to write, then
it would to use a pure JavaScript approach. As the language for the DSL
represent a higher level of JavaScript code, the DSL should be compiled down
to pure JavaScript code, which the TILES infrastructure is able to run. A
compiler is therefore required for this transformation, which takes a sequence
of characters and translates them to a lower-level of instructions.

The Visual Programming Language should provide the same features as
the DSL. By building the VPL on top of the DSL, the visual language is
able to call the abstract functions using a block approach. By customiz-
ing Blockly, the blocks can represent the abstract functionalities which the
Domain-Specific Language provides.

Designing the DSL requires a formal definition of its syntax. This is also
required by a compiler, so that the compiler is able to distinguish between
valid and invalid code. The grammar for the DSL consist of the syntax
defined for each DSL module (User, Event, Command and Data-Source), and
will be defined using the Extended Backus-Naur Form, a method of formally
defining context-free grammars. The EBNF will help in explaining how the
DSL code will be interpreted by a compiler. The compiler will first divide
each sequence of characters into tokens, which will be used by a parser for
generating an Abstract Syntax Tree, and use the AST to generated JavaScript
code [35]. All valid tokens are defined in the grammar of the language, as
visualized by the EBNF representation. A formal definition of the DSL, along
with a set of usage examples, should also help with the implementation of
the language. The textual representation of the valid syntax for the language
is shown below.

1

2 "Name" = ’TILEDSL ’
3 " Author " = ’Jonas Kirkemyr ’
4 " Version " = ’0.1.0 ’
5 "About" = ’TILEDSL for creating applications for TILES ’
6

7 "Start Symbol " = <Program >
8

9 ! DERIVED FROM JS LANGUAGE
10 ! --- Sets
11

60 CHAPTER 6. DESIGN

12 {ID Head} = { Letter } + [_] + [$]
13 {ID Tail} = { Alphanumeric } + [_] + [$]
14 { String Chars1 } = { Printable } + {HT} - ["\]
15 { String Chars2 } = { Printable } + {HT} - [\’’]
16 {Hex Digit} = {Digit} + [ABCDEF] + [abcdef]
17 { RegExp Chars} = { Letter }+{ Digit }+[’ˆ’]+[’$’]+[’*’]+[’+’]+[’?

’]+[’{’]+[’}’]+[’|’]+[’-’]+[’.’]+[’,’]+[’#’]+[’[’]+[’]’]+[
’_’]+[’<’]+[’>’]

18 {Non Terminator } = { String Chars1 } - {CR} - {LF}
19 {Non Zero Digits }={ Digit } -[0]
20

21 ! --- Terminals
22 !Rules
23 Identifier = {ID Head }{ID Tail}*
24 StringLiteral = ’"’ ({ String Chars1 } | ’\\’ { Printable })* ’

"’ | ’’ ({ String Chars2 } | ’\\’ { Printable })* ’’
25

26 HexIntegerLiteral = ’0x’ {Hex Digit }+
27

28 RegExp = ’/’ ({ RegExp Chars} | ’\\’ {Non Terminator })
+ ’/’ (’g’ | ’i’ | ’m’)*

29 DecimalLiteral = {Non Zero Digits }+ ’.’ {Digit}* (’e’ | ’E’)
{Non Zero Digits }+ {Digit}* | {Non Zero Digits }+ ’.’ {
Digit}* | ’0’ ’.’ {Digit }+ (’e’ | ’E’) {Non Zero Digits }+

{Digit}* | {Non Zero Digits }+ {Digit}* | ’0’ | ’0’ ’.’ {
Digit }+

30

31 Comment Start = ’/*’
32 Comment End = ’*/’
33 Comment Line = ’//’
34 ! END DERIVED FROM JS LANGUAGE
35

36 OpenBrackets = (’THEN ’ | ’{’)
37 CloseBrackets = (’END ’ | ’}’)
38

39

40 ! Grammar
41

42 <DsOption > ::= ’APIKEY ’ ’=’ StringLiteral
43 <TwitterOption > ::= ’CONSUMER_KEY ’ ’=’ StringLiteral
44 | ’CONSUMER_SECRET ’ ’=’ StringLiteral
45 | ’TOKEN ’ ’=’ StringLiteral
46 | ’TOKEN_SECRET ’ ’=’ StringLiteral
47

48

49 <TileId > ::= ’TILE ’ ’.’ identifier
50

51 <Equal > ::= Identifier ’=’ StringLiteral
52 <ArrayAccessor > ::= ’[’ Number ’]’ | ’[’ StringLiteral ’]’

6.3. DSL 61

53 <CommandInput > ::= ’(’ StringLiteral ’)’
54

55

56 <Setup > ::= ’SETUP ’ ’(’ ’)’ OpenBrackets <Options >
CloseBrackets

57 <Main > ::= ’MAIN ’ ’(’ ’)’ OpenBrackets <Code > CloseBrackets
58

59

60 <Statements > ::= <Statement > | <Statements > <Statement >
61 <Statement > ::= <IfStatement > | <RepeatStatement > | <

SyncStatement > | <IfSimple >
62

63 <Options > ::= <Option > | <Options > <Option >
64 <Option > ::= ’FACEBOOK ’ ’.’ ’OPTIONS ’ ’.’ <DsOption >
65 | ’TWITTER ’ ’.’ ’OPTIONS ’ ’.’ <TwitterOption >
66 | ’WEATHER ’ ’.’ ’OPTIONS ’ ’.’ <DsOption >
67 | ’CUSTOMHTTP ’ ’.’ ’OPTIONS ’ ’.’ <Equal >
68

69

70 <VariableList > ::= ’FACEBOOK ’ ’.’ ’FEED ’
71 | ’FACEBOOK ’ ’.’ ’PLACES ’
72

73 | ’TWITTER ’ ’.’ ’FOLLOWERS ’
74 | ’TWITTER ’ ’.’ ’FOLLOWING ’
75

76 | ’WEATHER ’ ’.’ ’CURRENT ’
77 | ’WEATHER ’ ’.’ ’FORECAST ’
78 | ’WEATHER ’ ’.’ ’HISTORY ’
79 | ’CUSTOMHTTP ’ ’.’ ’EVENT ’ ’.’ <Equal > ! OR CommandInput
80 | ’ME ’
81 | ’ME ’ ’.’ ’NAME ’
82 | ’ME ’ ’.’ ’ID’
83 | <TileId >
84 | ’TILES ’ ! Access stored TILES
85 | ’RANDOM ’ ’(’ <VariableList > ’)’
86

87

88

89 <Events > ::= <Event > | <Events > <Event >
90 <Event > ::= ’TWITTER ’ ’.’ ’LIVE ’ ’(’ StringLiteral ’)’
91 | <TileId > ’.’ ’TAPPED ’
92 | <TileId > ’.’ ’TAPPED ’ ’.’ ’SINGLE ’
93 | <TileId > ’.’ ’TAPPED ’ ’.’ ’DOUBLE ’
94 | <TileId > ’.’ ’TAPPED ’ ’.’ ’HOLD ’
95

96 | <TileId > ’.’ ’TILTED ’
97 | <TileId > ’.’ ’TILTED ’ ’.’ ’LEFT ’
98 | <TileId > ’.’ ’TILTED ’ ’.’ ’RIGHT ’
99 | <TileId > ’.’ ’TILTED ’ ’.’ ’UPDOWN ’

62 CHAPTER 6. DESIGN

100

101

102 | <TileId > ’.’ ’ROTATED ’
103 | <TileId > ’.’ ’ROTATED ’ ’.’ ’CLOCK ’
104 | <TileId > ’.’ ’ROTATED ’ ’.’ ’COUNTER ’
105

106 | <TileId > ’.’ ’SHAKED ’
107 | <TileId > ’.’ ’SHAKED ’ ’.’ ’HORIZONTALLY ’
108 | <TileId > ’.’ ’SHAKED ’ ’.’ ’VERTICALLY ’
109

110 | <TileId > ’.’ ’SHIFTED ’
111 | <TileId > ’.’ ’SHIFTED ’ ’.’ ’LIFT ’
112 | <TileId > ’.’ ’SHIFTED ’ ’.’ ’FREEFALL ’
113

114 <Commands > ::= <Command > ’;’ | <Commands > <Command > ’;’
115 <Command > ::= ’FACEBOOK ’ ’.’ ’POST ’ <CommandInput >
116 | ’TWITTER ’ ’.’ ’TWEET ’ <CommandInput >
117 | ’CUSTOMHTTP ’ ’.’ ’COMMAND ’ <CommandInput >
118

119 | <TileId > ’.’ ’LED ’
120 | <TileId > ’.’ ’LED ’ ’.’ Identifier ! RED GREEN BLUE WHITE

etc
121 | <TileId > ’.’ ’BLINK ’
122 | <TileId > ’.’ ’BLINK ’ ’.’ Identifier
123 | <TileId > ’.’ ’PLAY ’
124 | <TileId > ’.’ ’STOP ’
125 | <TileId > ’.’ ’PAUSE ’
126 | <TileId > ’.’ ’VIBRATE ’
127

128 <Code > ::= <Body > | <Code > <Body >
129 <Body > ::= <Commands > | <Statements > | <VariableStatement > |

<MemberAccess >
130

131 <IfStatement > ::= ’IF’ ’(’ <Event > ’)’ OpenBrackets <Code
> CloseBrackets

132 <IfSimple > ::= ’IF’ <Event > <Command >
133 <RepeatStatement > ::= ’REPEAT ’ ’(’ DecimalLiteral ’)’

OpenBrackets <Code > CloseBrackets
134 <SyncStatement > ::= ’SYNC ’ ’(’ <Events > ’)’ OpenBrackets <

Code > CloseBrackets
135 <VariableStatement > ::= ’VAR ’ Identifier ’=’ <VariableList > ’

;’
136

137 <MemberAccess > ::= Identifier | <MemberAccess > <ArrayAccessor
> | <MemberAccess > ’.’ Identifier

138

139 <Program > ::= <Main > | <Setup > <Main >

Listing 6.1: EBNF representation of TILES DSL

6.3. DSL 63

By defining all valid functionalities in the DSL using an EBNF notation,
which later can be used for creating a compiler, makers and computer science
students are able to be notified under the compilation process if any errors
are found in the code, syntax wise. From a developer perspective, who is
implementing the DSL functionalities, the functionalities need to be defined
both in an EBNF notation, along with the actual implementation, and keep
both updated. This is a concern for modifiability, as an update requires
both modules and compiler to be updated. From a maker and computer
science student perspective however, catching errors before any code is run
in the TILES-infrastructure is of greater importance, as an error will not be
directly visualized, as they don’t have access to the run-time environment of
the TILES-infrastructure directly.

The EBNF notation defines an initial layout of an application for the TILES
DSL to be valid syntax wise. A visual representation of this EBNF notation
is shown in figure 6.5.

Figure 6.5: TILES DSL - EBNF start

Below is the textual form of the start EBNF notation, where setup() is op-
tional

1 setup () THEN
2 <options >
3 END
4

5 main () THEN
6 <insert code >
7 END

Listing 6.2: TILES DSL - EBNF Start

64 CHAPTER 6. DESIGN

The visual representation of the EBNF language can be found in appendix B

6.3.3 Example Application - Whack a Mole

To help describe how both the DSL and VPL can be used when implemented,
an example application for both approaches is given using the DSL as an
example. The example application described Whack A Mole is a simple
game that expect the user to ‘Whack A Mole‘ when it appears for it to
disappear again. Translated for TILES usage, the user should tap on the
TILES device whenever the LED is turned on. The LED should be off, and
another random device should light up its LED again.

Here the DSL have made Tiles available in variables called ‘Tiles‘, and ref-
erences to specific TILES devices using its custom-name ‘Alpha‘.

1 main () THEN
2 var tile=Random(Tiles);
3 tile.led.green;
4 if(tile.tapped.single) then tile.led.off end
5 END

Listing 6.3: ‘Whack A Mole‘ - textual example

Figure 6.6: Whack A Mole - VPL example

6.4. TDE 65

6.4 TDE

The structure of the TDE should combine separate components to success-
fully support the process of developing applications for TILES. The com-
ponents consist of the DSL, a VPL, an IDE, called ACE, and a TILES
infrastructure client for communicating with the TILES infrastructure. The
infrastructure client is required for uploading and retrieving applications cre-
ated by the makers and computer science students. Makers and computer
science students using the TDE are able to act on both the textual- and
visual-editor from the user-interface of the TDE.

6.5 Emulator

Being able to test the created application once it’s published to the produc-
tion environment, makers and computer science students are able to check
whether the application work as intended or not. Using an emulator to act
as a real TILES device requires communicating with the emulator for both
sending events and receiving commands. From a maker and computer science
student’s perspective, the emulator behaves exactly like a real device. An
emulator would make the whole development process available in the same
environment, and further benefit the development process. Introducing test-
ing within the environment should help to ease the development process, since
the emulator can emulate interactions with multiple emulated devices.

The emulator has to support the same message structures as the TILES in-
frastructure, as it will act as another connected client to the TILES Cloud.
Only communication over MQTT is needed however, and requires to be con-
nected as the current maker/student, with a user-specified name. The devel-
oped application code will be running in the TILES infrastructure as well,
but instead of using physical TILES devices, an emulator version of a physical
TILES device could be used.

An example layout of the emulator is given in figure 6.7.

66 CHAPTER 6. DESIGN

Figure 6.7: TILES Emulator

Chapter 7

Implementation

The toolkit to create applications for TILES consist of three software compo-
nents: The DSL and its modules, a TILES Device emulator, and the TILES
Development Environment. How these software components are connected
are shown in figure 7.1. This chapter describes the implementation of each
component, and a description on how to use these components together to
create applications for TILES, from a maker and computer science student’s
perspective.

Figure 7.1: TILES Software Components

The toolkit were developed by using an agile approach, by building the toolkit
following its requirements, in table 5.1, and the user stories, in table 5.2 incre-
mentally. For the DSL, the user story mapping was used 6.3 to implemented
more prioritized features of the language. Each component of the system was
implemented independent of each other, and for each requirement and user
story implemented, the new feature was tested, along with the component it
resided within. As each component was completed, the toolkit was merged
and tested as a full-system, making sure the toolkit is able to interact with

67

68 CHAPTER 7. IMPLEMENTATION

each component. By following an agile approach, new features and require-
ments can easily be added throughout the implementation process. This was
an important feature, to provide continuous improvements of the toolkit,
and being able to more easily respond to change. Throughout the develop-
ment process, Trello1 was used, to organize and keep track of the progress.
Each requirement and user story were broken up in smaller tasks for easier
implementation, and helped with finding common functionality across the
components.

7.1 DSL

The DSL component consist of modules, described in section 6.3.1, and a
language parser and compiler. Code written in the DSL is compiled to
JavaScript, which use the implemented modules for creating the application
logic.

7.1.1 Modules

The DSL modules are implemented using TypeScript2, a superset of JavaScript.
The modules are designed to facilitate creation of the application logic for
a TILES application, and helps with abstracting the communication with
TILES devices, and other third-party services.

The TileDSL class is the main class, which combine and act as a facade for
all of the DSL modules. The class stores the current application code to
be run, user details and its TILES devices, and provides methods for com-
municating with third-party services and the user’s TILES devices. Upon
creation of the class, user details are retrieved from the database storage,
and stored in local variables for the current object. A MQTT connection
is also required for subscribing to events and publishing commands to the
user’s TILES devices. The TileDSL class handles communication with the
TILES devices through an implemented MQTT client, which is built on top
of the MQTT.js library3. The MQTT client retrieves events triggered on a
TILES device, and publish commands to control the TILES device’s output
interfaces. The TileDSL class is declared as an abstract class, which prevents

1https://trello.com/
2https://www.typescriptlang.org/
3https://github.com/mqttjs/MQTT.js

https://trello.com/
https://www.typescriptlang.org/
https://github.com/mqttjs/MQTT.js

7.1. DSL 69

the class to be instantiated, and only be extended by another class through
inheritance. The extended class will inherit all the properties of the TileDSL
class, except for direct access to its private variables. This is an important
property, as the TILES applications will be running in the scope of the in-
herited class, and won’t have access to the parent’s private variables or func-
tions. Properties that should not be accessible by the application itself, are
all declared as private in the parent class, which from a security perspective
will prevent the makers and computer science students of writing code that
may alter any configuration that is of importance for the application to run
properly (e.g. database access, MQTT and HTTP communication, and user
credentials). The parent class have control over the accessible functionality
in the application scope, by declaring variables and functions with different
access modifiers: private, protected, or public. A UML representation of the
TileDSL class, and its extended UserDSL class is shown in figure 7.2.

Figure 7.2: Class-diagram TileDSL and UserDSL

The EventEmitter class is an abstract publish/subscribe class, used for emit-
ting messages on class objects. The class supports different callback functions
to be run when an internal event is triggered on the object itself. The class
consist of three methods used for subscribing and publishing of events, as
shown in table 7.1 This class is extended by multiple classes, i.a. the TileDSL

70 CHAPTER 7. IMPLEMENTATION

class, to notify any listeners whenever the TILES application is ready to be
invoked, after retrieving user details from database, and when the MQTT
client is connected to the server.

Method Description
emit(event:string, data:Object[]) Trigger internal event on object
on(event:string, listener:Function) Listen for event
once(event:string, listener:Function) Listen for event once

Table 7.1: EventEmitter methods

The on and once functions take a callback function as input, which is to be
executed when an emit is done on the object, whenever the event string
literal are matching. Using the once function, will make sure the listener
function is only triggered once, by deleting the subscriber after the first
call.

An example for starting a TILES application is shown in a code snippet in
Listing 7.1. Line 4 set the application code to run when the run() function
is called in line 6. parse.code is omitted for simplicity, but contains a string
of calls to the internal methods of the UserDSL class. Line 5 specifies that
the callback function should only be called once, whenever the ”ready” event
is triggered on the UserDSL class.

1 var dsl = new UserDSL ();
2 dsl.debug = console .log;
3 try {
4 dsl. userFunction = new Function(’output ’, parse.

code);
5 dsl.once("ready", function () {
6 dsl.run ();
7 });
8 }
9 catch (e) {

10 console .log(e);
11 process .exit (0);
12 }

Listing 7.1: Run TILES application

7.1. DSL 71

User Module

The user module consists of the User class and the Tile class. Only an in-
stance of the user class is stored and directly accessible within the TileDSL
class, in the user variable. When starting a TILES application, a user is
identified by its username. The user class represents the maker/student run-
ning the TILES application. Its details and registered TILES devices are re-
trieved and stored within a user class instantiation. An UML representation
of the User module is shown in figure 7.3. The interfaces defined: iUser and
iTile, represent the same structure as the data stored in the database.

The Tile class extends the EventEmitter class, making it possible to emit
messages directly on the Tile object, and create listeners on the Tile objects.
This could be utilized by the Event module, to emit an event whenever a
new event is received from the physical TILES device.

Event Module

The Event module handle parsing of incoming events received from a TILES
device. The parsing make sure only valid events are processed by the different
modules. The event parser are built from the TILES documentation, which
determines the type of parameters that go along with an event name, as
shown in appendix D. The parser is able to determine the type of event, and
which TILES device triggered the event. The parsing process is a simple
logical comparison, as an event name only supports some fixed parameters.
The supported events are defined in a const variable, as shown in Listing
7.2.

1 const EVENTS = {
2 TAP: {
3 SINGLE: "single",
4 DOUBLE: "double",
5 TOUCH_HOLD : " touch_hold "
6 }
7 ...
8 }

Listing 7.2: Event const used for parsing

A UML class diagram representation of the Event module is shown in fig-
ure 7.4.

72 CHAPTER 7. IMPLEMENTATION

Figure 7.3: Class-diagram User module

The static parse function declared in the Event class is used to parse an
object representation, and check whether that object representation is a valid
TILES event. A successful parsing will return a new instance of the Event
class containing the event data, otherwise a null pointer is returned.

The Pipe class and iFilter interface is implemented following the Pipe-and-
Filter pattern, as describe in section 6.3. Multiple filters can be added to the
pipe class and stored in an array, using the add(...) method. Traversing

7.1. DSL 73

Figure 7.4: Class-diagram Event module

through the added filters is done in the order they were added, and each
filter is assumed to process the same data. The execute(...) function
only processes a filter at a time, and a filter can only be executed as long
its prior filters has its status set to true. The filters are designed to be
independent of each other, meaning they could all be run in parallel and
process the input data. However, the pipe class requires all prior filters to
be successfully processed before the next can be run, preventing unnecessary
computing time if any prior filters should fail. If one filter should fail, all prior
filters are reset and changes it’s status to false, and need to be processed
once again.

The EventFilter class is a specialized filter class, implementing the iFilter
interface. The EventFilter takes an input Tile object and parsed event, which
is used for checking whether a given TILES device have executed a given
Event. Adding an EventFilter to the Pipe class is possible by polymorphism.
The Pipe class is only concerned whether the input object of the add(...)
function implements the iFilter interface. The Pipe class is therefore not
restricted for a given use case, but can easily be extended by creating other
filter classes that implements the iFilter interface as well.

74 CHAPTER 7. IMPLEMENTATION

Command Module

The Command module is the module which generates commands to con-
trol a TILES device’s output interface. Pre-defined const variables of valid
commands that can be interpreted by a TILES device is included. These
variables are accessible to the command controllers, and the TileDSL class
itself. This helps makers and computer science students to control their de-
vice, by removing the burden of defining a command’s structure from scratch.
A pre-defined command which will turn the led on for a given TILES device
is shown in listing 7.3.

1 const turnOn = new Command ({
2 type: "led",
3 properties :["on"]
4 });

Listing 7.3: Led command

A UML class diagram representation of the Command module is shown in
figure 7.5. Each output interface on the TILES device has its own controller,
as shown in the class diagram. Each function in a controller generates a com-
mand, and are given a descriptive name, making it more easy to understand
what type of command is generated by each function. The controllers act as
a facade for the Command class, direct usage of the Command class would
therefore never be required. A controller’s task is to generate and send com-
mands to a TILES device. Sending a command to a TILES device is done
by using the MQTTClient class sendCommand function:

sendCommand (tile:Tile , command : Command);

The variable tile refer to the object instance of a TILES device which should
receive the command instance.

The command module contains a parser, same as the Event module, built
on the TILES documentation in appendix D. The different output interfaces
have pre-defined valid parameters that can be used, which is built within the
parser using simple logic validation. Parsing of commands is however less
of a concern compared to the parsing of incoming events, as the commands
are only available through the command controllers. Only the developer
will have access to the command class, and is responsible for creating valid
commands.

7.1. DSL 75

Figure 7.5: Class-diagram Command module

Data-source Module

The Data-source module contains a HTTP-client for accessing third-party
services. It includes a general HTTP-client, along with specialized classes
for accessing more common third-party services, like weather, Facebook, and
Twitter. The UML representation of the module is shown in figure 7.6. Each
specialized HTTP class includes interfaces, representing the data-structure
retrieved from its data-source. In the class diagram, the interfaces for Face-
book and Twitter is abstracted away for simplicity, as they follow the same
principle as shown by the interfaces connected to the Weather class. The

76 CHAPTER 7. IMPLEMENTATION

HTTPClient class is using functionality from the NodeJS package request4,
a simplified HTTP-client supporting most common usage scenarios with
HTTP, including encrypted connection (SSL), and oAuth5 support, an au-
thorization method for accessing protected data.

Figure 7.6: Class-diagram Data-source module

Returned data from third-party services are usually in XML6- or JSON 7 text-
format. By introducing interfaces and classes for the returned data-structures
from the third-party services, the data is abstracted into class-methods. Us-
ing the returned data doesn’t require to know it’s structure, resulting in a
easier data-retrieval and manipulation, when only the method-names for the
data-source class is required to be known. Should the data-structure ever
change for the third-party service, only modification of the class internal
logic are required because of its modifiability, which is a benefit for mak-
ers and computer science students, as their already created applications will
continue to work regardless of the data-structure change.

4https://github.com/request/request
5http://oauth.net/
6https://www.w3.org/TR/REC-xml/
7https://tools.ietf.org/html/rfc4627

https://github.com/request/request
http://oauth.net/
https://www.w3.org/TR/REC-xml/
https://tools.ietf.org/html/rfc4627

7.1. DSL 77

Calling a third-party service can be done through the standard HTTP meth-
ods: POST, PUT, DELETE, and GET. A simple example for storing some
data to a third-party source is shown in listing 7.4. The HTTPClient con-
structor take two parameters, url and type of HTTP method. In this exam-
ple, the HTTP request has a username header set, along with request data
stored within the data key, as shown in line 2 and 3. Line 5 triggers the
actual requests, and requires a callback function as an input to its method
call, which will be invoked when the HTTP-request has got a response from
its source.

1 var http = new HTTPClient ("https :// myurl", "post");
2 http. addHeader (" username ", " myusername ");
3 http. addData ("data","store my data");
4

5 http.exec(function(data: JSON){
6 if(data.status == true){
7 // data stored successfully
8 }
9 else{

10 // couldn ’t store data
11 }
12 });

Listing 7.4: HTTP-Client example

7.1.2 Language

From the EBNF notation in listing 6.1, a parser is created, which will be
generating AST’s from textual code. The parser is implemented using the
package PEG.js8. As the name indicates, the Parsing Expression Grammar,
described by Bryan Ford [11], is the implemented parsing method in the
PEG.js package. The PEG.js package is written in JavaScript, and is used,
like EBNF, to describe a set of valid grammar rules in a language. Listing 7.5
and 7.6 show a comparison of an EBNF rule and the corresponding PEG.js
rule respectively.

1 <IfStatement > ::= ’IF’ ’(’ <Event > ’)’
OpenBrackets <Code > CloseBrackets

Listing 7.5: DSL IF grammar - EBNF
8http://pegjs.org/

http://pegjs.org/

78 CHAPTER 7. IMPLEMENTATION

1 DSLIfStatement = ’IF’i ’(’ __ event:TileEvent __ ’)’
OpenBrackets body: SourceElements ? CloseBrackets

2 {return {type:’DslIf ’, event:event , body:
optionalList (body)};}

Listing 7.6: DSL IF grammar - PEG.js

A rule consists of a reference name, defined before the equality sign, and a
rule definition, a combination of strings and references to other rules. The
rule definition is assigned to the rule reference. PEG.js task is to create an
object representation, called an AST, from some given programming code. A
rule in PEG.js includes some JavaScript code, which specifies the structure
of the output object. The rule itself is specified before the open bracket: {,
as shown in listing 7.6 line 1. This is the rule which is compared to the input
programming code. The JavaScript code within the brackets, shown in line
2, will be executed when a match for the rule is found. The rule can also
consist of key-value pairs, denoted as key:value, where the value refers to a
rule reference, and the key act as a variable which stores the object output of
a rule reference. This key variable can be referenced in the JavaScript code
defined within the brackets. For the PEG.js example given in listing 7.6 line
1, the key event will store the object output of the TileEvent rule, which
follows the same pattern as the DSLIfStatement rule.

The following string will make the rule shown in listing 7.6 to be trig-
gered:

1 if(TILE.alpha.tapped) {
2 }

Listing 7.7: DSL IF string

Which will generate the following object representation:
1 {
2 "type": "DslIf",
3 "event": {
4 "type": " TileEvent ",
5 "event": "tap",
6 "tile": {
7 "type": "tile",
8 "name": "alpha"
9 },

10 "param": null

7.1. DSL 79

11 },
12 "body": []
13 }

Listing 7.8: DSL IF object representation

The implemented DSL language for TILES extends the JavaScript language.
The DSL grammar is built on top of the JavaScript grammar, which is pro-
vided as an example in the PEG.js source code9. By building the DSL gram-
mar on top of the JavaScript grammar, it’s possible to parse plain JavaScript
code along with the specified TILES DSL. Makers and computer science stu-
dents will have the full power of the JavaScript language, along with the
expressive DSL because of this extension. The PEG.js rule in listing 7.6
consist of more rule elements than the EBNF notation in listing 7.5. This
is mainly because the JavaScript grammar follows a specification, called the
ESTree Spec10, for how the structure of an output AST should be after
parsing some given JavaScript code, and which object types and rules are
supported. The rule reference SourceElements, shown in listing 7.6 line 1,
refer to an ESTree specification, which denotes what code may be placed
within the body of an DSLIfStatement. The PEG.js grammar rules for the
DSL is shown in listing D.1 in appendix D. The JavaScript grammar rules
are left out for simplicity.

The parsing process generates an AST, which needs to be compiled to a
programming language. As the AST follows the ESTree spec, which is defined
by the created grammar, the library astring11 is used for code generation. The
astring library is a library which is able to generate JavaScript code from an
ESTree-compliant AST. As the TILES DSL specifies its own grammar rules,
the astring library is extended, to support each AST type of the DSL. A list
of the different DSL types is listed in table 7.2. The description includes a
line number, referring to the PEG.js grammar definition in listing D.1.

Type Description Line
MainStatement The application logic is implemented

within this statement.
#167

OptionStatement The setup block for setting up third-party
services.

#160

ConsumerSecret Option for Twitter #66

9https://github.com/pegjs/pegjs
10https://github.com/estree/estree
11https://github.com/davidbonnet/astring

https://github.com/pegjs/pegjs
https://github.com/estree/estree
https://github.com/davidbonnet/astring

80 CHAPTER 7. IMPLEMENTATION

ConsumerKey Option for Twitter #64
Token Option for Twitter #68
TokenSecret Option for Twitter #70
FacebookAPI Option for Facebook #74
CustomHTTP Option for CustomHTTP #80
WeatherAPI Option for Weather #78
facebookvar Facebook variable #39
twittervar Twitter variable #41
weathervar Weather variable #43
mevar Current user variable #45
tile TILES variable for accessing TILES ob-

jects
#47

tiles Variable holding an object representation
of all TILES objects

#49

DslIf If statement for a TILES event, trigger-
ing a block of code when given event is
triggered

#135

DslIfSimple If statement for TILES event, triggering
a TILES command when given event is
triggered

#137

Repeat Repeat function to support simple looping #139
Sync Listening for a sequence of TILES events

triggered in the order given. Executes
a block of code when the sequence is
matched

#141

Random Returns a random value from a given in-
put

#143

Reset Re-start the application from the
MainStatement

#145

TileEvent Supported events for a TILES device used
for listening

#99

TileColor Supported LED-colors for the TILES de-
vice

#108

TileCommand Supported commands for controlling the
TILES device’s output interfaces

#121

DatasourceCommand Supported methods for accessing third-
party services

#125

Table 7.2: DSL types

7.1. DSL 81

Each type listed in the table above, requires its own method in the code-
generator, which defines what output to generate from an AST. The out-
put generated will be complainant with the DSL modules described in sec-
tion 7.1.1. The object in listing 7.8 refers to the DslIf type, and its generator
method is shown in listing 7.9. The method takes two arguments: node and
state. The node parameter is the part of the AST which matches the type
of the generator: DslIf with the input object in 7.8. The state parame-
ter is a data-stream class, handling the output string generation. Whenever
state.output.write is called, the parameter string is appended to the data-
stream. Within the generator method, a this reference is used, for calling
other generator methods, as shown in line 4 and 10 in the listing below. These
generators are not shown for simplicity, but follows the same pattern as the
DslIf generator. The corresponding code output after running through the
generator method for the DslIf type is shown in listing 7.10.

1 this. _generator .DslIf = function (node , state) {
2 if (node.event != null) {
3 if (node.event.tile != null) {
4 this[node.event.tile.type](node.event.tile ,

state);
5 state.output.write(".once (\"" + node.event.

event + "\", function (event){");
6 if (node.event.param != null)
7 state.output.write("if(event ==\"" + node.

event.param + "\")")
8 }
9 if (node.body != null) {

10 this[" BlockStatement "](node , state);
11 Parser. computeLastBlockPosition (state);
12 }
13 state.output.write("});");
14 }
15 }

Listing 7.9: DSL IF generator method

1 this.tiles.alpha.once("tap",function(event){
2 });

Listing 7.10: DSL IF generator output

The code-generator for the DSL is written in TypeScript, and extends the
astring library. An UML representation of the code-generator is shown in

82 CHAPTER 7. IMPLEMENTATION

figure 7.7, and referred to as the Parser class, as it parses an ESTree com-
pliant and generates JavaScript from the tree-structure. The code-generator
implements methods for each type described in table 7.2. Each type de-
scribed is implemented as an interface, describing the AST structure of each
type. Each interface extends the general ESTree.Node, as described in the
ESTree specification12. The Parser class is storing the generated JavaScript
in a local variable, and provides a method for storing the code-string to a
local file. The logic of creating a infinite looping application is implemented
within this class. The Reset type is automatically appended into the AST,
within the last block of a DSL type, as long as the Reset type is not found
in the parsed DSL code.

7.2 Development Environment

The development environment for TILES is a web-environment for developing
applications for TILES. The environment supports creating applications for
TILES by writing code, using the implemented DSL, in a text-editor ACE13.
Providing the development-environment as a web-environment makes it pos-
sible for makers and computer science students to use the provided text-editor
to write DSL code in their own web-browser. The parser of the DSL language
is created using PEG.js, as described in section 7.1.2. This parser is imple-
mented in JavaScript, which makes it possible to load the parser directly
within the browser. This helps with checking if the written code is syntac-
tically correct directly in the browser as its written, since the compilation
process can be run within the development environment. The compiler will
notify the environment if any syntax errors are found, with a descriptive mes-
sage, and the location of the syntax error. A syntactically correct DSL code
may be chosen to be uploaded to the TILES infrastructure, where it’s com-
piled once more and executed immediately. Compilation on the client-side
helps with the development process, by validating the code and provide with
the opportunity to fix any syntax errors before its run in the TILES infras-
tructure. As a compilation of the DSL is done once more when it’s received
in the TILES infrastructure, the development environment is uploading the
DSL code, and not the production-ready compiled code. Because of the
DSL’s expressivity, less data needs to be uploaded to the infrastructure, as
the compliant compiled code of the written DSL code, contains more text
and therefore more data. Storage and data-consumption wise, this is better

12https://github.com/estree/estree
13https://ace.c9.io/

https://github.com/estree/estree
https://ace.c9.io/

7.2. DEVELOPMENT ENVIRONMENT 83

Figure 7.7: Class-diagram DSL Parser

for the TILES infrastructure. Also, once the DSL is compiled, it’s not pos-
sible to check whether the compiled code is valid before actually running it.
Worst case, this could lead to a run-time error, and the application never
to be executed. Storing the uploaded DSL code in the TILES infrastructure
is also possible when the DSL code itself is uploaded. The DSL could then

84 CHAPTER 7. IMPLEMENTATION

later be retrieved and altered from any browser environment, which would
not be possible by storing the written DSL locally. Makers and computer sci-
ence students would not be bound to a fixed development environment, but
able to continue with their work from any browser running the development
environment.

The development environment is built using multiple tools and libraries.
The development environment is a web-application, consisting of JavaScript,
HTML, and CSS, built as a Single Page Application. A SPA loads all neces-
sary resources required for running an application, and creates the content of
the application dynamically as it’s needed. The SPA support is done through
a library14 created by the author, written in TypeScript. The static HTML-
files is built using Assemble15, supporting encapsulation of different elements
of a web-page, like its layout and pages. Handlebars.js16, a semantic tem-
plating system, is used as the template engine for Assemble, for supporting
the use of variables, looping, and other helper functions within HTML code.
Assemble’s task is to build these templates into static HTML files, ready to
be served by a web-browser. Handlebars.js is also used for creating dynamic
layouts for the development environment. Each dynamic layout is compiled
to JavaScript, which can be loaded by the application logic. The application
logic of the development environment is implemented using TypeScript, and
a UML class-diagram of the application is shown in figure 7.8.

Three routes are implemented for the development environment, as seen
in the UML diagram: Tile, Textual, and Visual. Each route loads its
own controller for handling the application logic for its route. The tex-
tual route creates an instance of the TextualEditorController, which han-
dles all logic of the textual-editor page. Figure 7.9 shows the dynamic
created layout for the textual route. The ACE editor is loaded, and the
TextualEditorController handles compilation, and communication with
the TILES infrastructure through the implemented TileApi class.

Figure 7.10 shows the dynamic created layout for the visual route. The
VisualEditorController creates a new Blockly instance, to control the
visual editor. The controller is able to generate textual code from the visual
representation residing within the Blockly instance.

Generating custom blocks requires a block-layout and a code-output to be
defined according to the Blockly specification17. These definitions are stored

14https://github.com/jonaskirkemyr/spa
15http://assemble.io/
16http://handlebarsjs.com/
17https://developers.google.com/blockly/guides/create-custom-blocks/

https://github.com/jonaskirkemyr/spa
http://assemble.io/
http://handlebarsjs.com/
https://developers.google.com/blockly/guides/create-custom-blocks/overview
https://developers.google.com/blockly/guides/create-custom-blocks/overview

7.2. DEVELOPMENT ENVIRONMENT 85

Figure 7.8: Class-diagram Development Environment

Figure 7.9: Development Environment - textual editor layout

in a JavaScript array, and loaded by the Blockly instance. The figure below
also shows an example of a custom created block. Specifying which blocks
to show in the visual editor is done using XML, and an example of loading a

overview

https://developers.google.com/blockly/guides/create-custom-blocks/overview
https://developers.google.com/blockly/guides/create-custom-blocks/overview
https://developers.google.com/blockly/guides/create-custom-blocks/overview
https://developers.google.com/blockly/guides/create-custom-blocks/overview
https://developers.google.com/blockly/guides/create-custom-blocks/overview
https://developers.google.com/blockly/guides/create-custom-blocks/overview

86 CHAPTER 7. IMPLEMENTATION

block is shown in listing 7.11. The development environment support creating
visual code, but because of time-restrictions, visual representations of the
implemented DSL is not created.

Figure 7.10: Development Environment - visual editor layout

1 <category name=" Listeners " colour="160">
2 <block type=" tile_on_device ">
3 <value name="id">
4 <block type=" tile_device " ></block >
5 </value >
6 <value name="action">
7 <block type=" tile_action " ></block >
8 </value >
9 </block >

10 </category >

Listing 7.11: Blockly - Custom block loading

An overview of the registered TILES is retrieved from the TILES infras-
tructure, and dynamically inserted within the TILES layout, as shown in
figure 7.11.

7.3 Emulator

The emulator is a web-application, built with TypeScript. The emulator is
stand-alone, but integrated within the development environment, to simply

7.3. EMULATOR 87

Figure 7.11: Development Environment - TILES layout

emulate an actual device. Multiple emulators are able to run simultane-
ously, and are not dependent of each other. The emulator works as a client
connected to the TILES infrastructure, supporting user interaction. Both
receiving commands and sending events is supported by the emulator, and
as an actual TILES device, it will control its output interfaces. The emulator
is a simpler web-application only consisting of a single static HTML file. The
application logic changes the status of the HTML elements, to simulate con-
trolling the output interfaces, and sending events based on interactions on its
buttons. A UML class-diagram of the emulator is shown in figure 7.12.

The Client class maintains a connection to the TILES infrastructure, for
receiving commands and sending events. The Device class maintains the
HTML elements which represents the different output interfaces and event
interactions. It’s the main class for the emulator, acting as a facade for the
other classes. The class handles all user-interactions and events creations
based on a triggered user-interaction, along with passing a command to the
appropriate class representation for the output interface. Each output in-
terface is represented with their own class for parsing a received command,
and changing the status of the HTML element based on the incoming com-
mand. Each output interface class inherits the same interface, iOutput. The
interface defines functionality which each output interface is required to sup-
port. Extending the emulator with a new output interface requires only an
inheritance of the iOutput interface, and an implementation of appropriate
methods for controlling its HTML element.

88 CHAPTER 7. IMPLEMENTATION

Figure 7.12: Class-diagram Emulator

The layout of the emulator is shown in figure 7.13, and includes highlighters
for easier description. Highlight 1 outputs the name set for the emulator.
In the picture below, this is ”alpha”. Highlighter number 2 is a status in-
dicating whether the emulator is connected to the TILES infrastructure or
not. It values can either be ”connected” or ”disconnected”. Highlighters 3-
5 shows the output interfaces for the emulator: LED, speaker, and vibrate
indicator. A debug console is also available by clicking the button indicated
by highlighter 6. The debug console is shown in figure 7.14.

7.4. CLI 89

Figure 7.13: Emulator layout

Figure 7.14: Emulator debug layout

7.4 CLI

A simple command-line-interface is provided for compiling and running the
written DSL locally. The CLI uses a library called minimist18 for parsing
command line arguments. The CLI is invoked by using Node.js locally, and
passing arguments in the following format:

18https://github.com/substack/minimist

https://github.com/substack/minimist

90 CHAPTER 7. IMPLEMENTATION

node <file.js > <input > <output > <options >

Each parameter is split by space. <file.js> refers to the Node.js file to
execute. All parameters provided after the first parameter is parsed by min-
imist. <input> is the path to the DSL file to be compiled, <output> is an
optional parameter, stating a path and filename, on where to store the com-
piled code locally. The different <options> available are shown in the table
below.

Parameter Optional Description
-u --username User to run application as
-r --run Run application immediately
-c --code DSL code to compile. Overrides <input>
-d --debug Print status of the compilation process

Example usage of the CLI is shown in figure 7.15, running the following
parameters:

build/dsl/dsl/index.js example / whackamole .dsl
example / whackamole .js -r -u jonas -d

The first parameter refers to the Node.js file to execute, which is the compiled
version of the TypeScript source. The second parameter refer to the .dsl
file containing the DSL code to compile. The output of the compilation is
provided by the third parameter. As this is an optional parameter, it can be
left out, and the default it output.js in the current directory run from the
command-line. The rest of the parameters specifies the application should
be run immediately after compilation, connect to the TILES infrastructure
using the username jonas, and that the status of the compilation process
should be outputted back to the console-line.

7.4. CLI 91

Figure 7.15: CLI example usage

Chapter 8

Evaluation

8.1 Pre-implementation evaluation

Before the implementation of the DSL and the development environment, an
online focus group were conducted, using an online tool called FocusGroupIt1.
The focus group contained 7 topics, where 6 of them required an answer from
the participants. The participants come from different backgrounds, includ-
ing computer science students, makers, and professional software developers.
The group consisted of 8 people, where 6 of them replied to all required top-
ics. The topics which required an answer from the participants are found in
appendix C.

The focus group were conducted to get feedback on the different scenarios
for developing TILES applications, to see if someone have had any previ-
ous experience with the same approaches. The participants were asked to
explain their previous experience on each topic, and if they had any good
or bad experiences following the explained approach. Their answers were
to help with planning the functionality for a development environment for
TILES. The bad experience could help with either not follow a certain ap-
proach, or making sure the same bad experience is not replicated within the
TILES development environment. The good experiences would help by try-
ing to replicate the same behavior in the process of creating applications for
TILES.

Only a few of the participants had any experience with developing in a web-
browser. Those with previous experience pointed out the benefit of not re-

1https://www.focusgroupit.com/

93

https://www.focusgroupit.com/

94 CHAPTER 8. EVALUATION

quiring a setup process to start developing, and the benefit of being provided
always up to date system, as an update would be made accessible to all
clients at the same time. As quoted by a participant coming from a maker
background: ”My experience is that the browser is today’s best approach for
all development (not high-end gaming)”. Another participant had experience
through different courses in school, but mainly editing a few lines using the
textual-editor in GitHub2, an online source code management system. The
same participants had concerns about reliability, mainly concerning losing
any work if the web-browser might refresh its state. This was backed up by
another participant, that though an auto-save feature would be a nice feature
when coding in a browser. Another concern was not having standard IDE
features available, like keyboard-shortcuts and code highlighting available.
A participant also said coding in a browser is not a problem as long they
are not working with a large code-base, including multiple files with a great
number of lines of code. Having the ability to code anywhere were discussed
as a benefit of using a browser-environment for coding.

Most of the participants had a great experience with the use of libraries
and APIs. One participant noted the struggle of understanding the different
definitions between a DSL, library, and an API, as the participant felt they
were the same. A great library which is easy to use would require a well-
written documentation, which was pointed out by all participants with a
previous experience using either libraries or APIs. Some also mentioned the
importance of providing samples on how to use a library, and that it had a
high usability, easy to understand for the users. The only negative experience
the participants had was with poorly documented libraries or APIs.

All participants were familiar with using a textual approach for development.
Their background on JavaScript were however different, where some used it
more as a necessity for creating web-pages, others were using it in their daily
work. The road of JavaScript, from being fairly used, to today being required
and used ”everywhere”, were discussed regarding JavaScript usage in larger
applications. One participant also felt JavaScript were following poor stan-
dards because it was not intended for heavy applications. Other participants
had no problem, because of its large community and large support. Regard-
ing a textual approach for development, one participant noted: ”A textual
approach allows the application to be comprehensive and complexed as pos-
sible with no restrictions except the language itself.”. Another participant
were thinking about other approaches than textual, and came in favor for a
textual approach: ”A textual approach gives better possibilities for the users,

2https://github.com/

https://github.com/

8.1. PRE-IMPLEMENTATION EVALUATION 95

creating applications by their own imagination and not restrained by a toolbox
given to them through a graphical toolbox.”. The users are here referred to
as makers and computer science students wanting to create applications for
TILES.

No participants had any great experience with visual programming, other
than simple testing. These were participants with a textual programming
background, and many of them saw a visual approach as a restricted way
of programming. ”I feel that you might cap your complexity by using the vi-
sual approach” was one of the concerns a participant had. Even though the
participants were familiar with a textual programming approach, they still
saw some advantages: ”... this would be really great for handling things like
smart-home events...”, and some argued that a visual programming approach
would provide a wider range of people to be able to create applications for
TILES because of its simplicity. Not all did agree with this statement how-
ever, and saw the visual approach as a more time consuming process to learn
and master properly. ”The end user who wants to build application-logic by
GUI, most likely also wants a GUI to interact with as well” was another im-
portant statement made by one of the participants, as this participant started
to think about the whole environment around application development for
TILES.

The use of emulators was familiar to the participants from both Android3 pro-
gramming and web-development. All participants saw the use of an emulator
as a good approach for testing. Especially if the TILES devices themselves
are missing some hardware features that may be emulated in an emulator,
or if someone has no immediate access to a TILES device. One participant
also noted that the use of emulator is a faster approach for testing applica-
tion than on an actual hardware device. For TILES use-case, a participant
did not see the benefit of an emulator however. Because JavaScript doesn’t
require any compilation, this participant thought publishing the application
directly, and test it on the fly, could be an equally good alternative as an
approach provided by an emulator.

8.1.1 Discussion

The focus group had some very interesting discussions and brought up many
aspects of importance for a development environment for TILES. A web-
browser environment for TILES seemed to be a great way to go, but with

3https://www.android.com/

https://www.android.com/

96 CHAPTER 8. EVALUATION

some concerns. Regarding these concerns and suggestions, a save feature was
implemented in the TILES Development Environment. The code is stored
in the local storage of the browser, and retrieved once the text-editor is
brought back up. With some minor tweaks, this could be changed to an auto-
save feature, saving the work after the writer stops typing. The ACE-editor
provides multiple sets of features, including many found in standard desktop
IDEs. Configuring keyboard shortcuts is a feature which the ACE editor
provides out of the box. This feature was implemented within the TDE as
well, by moving the cursor to the first line in the editor when ALT+G is pressed.
The ACE-editor also supports creating custom code highlighters. As the
DSL provides its own syntax, a custom syntax highlighter would be required
for the DSL to be recognized by the ACE-editor. This were not however
prioritized, because of time-restrictions. As the DSL is defined, creating
applications for TILES is not meant to include a large number of files. All
of the application logic will be defined within a main method. The number
of line numbers depends on the complexity of a TILES application.

Regarding the concerns of a visual approach, some may find a graphical ap-
proach of creating applications more easy to grasp. Especially those with less
programming experience. As the participants were very familiar with a tex-
tual approach, they are used with the freedom which a textual-approach pro-
vides. Others may find a textual approach providing too much freedom, and
don’t know where to start. Rather complex applications are also possible to
create using a visual approach, but may require another way of thinking than
a textual approach. Simple command and event handling were pointed out
by one of the participant to be a good fit for a visual approach, which corre-
spond with the TILES infrastructure and data-source communication.

The emulator approach had both some positive and negative notes from the
participants. The missing hardware emulation, and being able to more eas-
ily test an application with multiple emulators were found to be some strong
points for developing an emulator. As the TILES device is still under devel-
opment, an emulator would help regarding testing the functionality before
it’s actually supported by the device itself. When a new feature is added to
the hardware device, it can be already throughly tested in the TILES infras-
tructure because of the emulator. Regarding JavaScript not requiring any
compilation, the DSL however does. This is a process supported within the
development environment, to make sure no syntax errors are crashing the
application when it’s running in the TILES infrastructure. Even though an
application is syntactically correct, it may not act as the developer intended.
Testing the application logic requires the application to be communicating
with the TILES infrastructure. Regardless if an emulator is provided, the

8.2. IMPLEMENTATION EVALUATION 97

application still requires to be uploaded to the TILES infrastructure. The
emulator is therefore seen more as a tool while developing applications for
TILES, where makers and computer science students are able to emulate
their own devices, or add custom emulated devices. The makers and com-
puter science students are then helped with the whole development process,
from writing code, to compilation, and lastly testing, all from their web-
browser. The emulator removes any hassle it may be to connect their TILES
devices to the TILES infrastructure, and as pointed out by one of the par-
ticipants, provide a quicker way of testing.

The last topic, where the participants were to propose something of their
own ideas for a TILES development environment, none of the participants
came with any suggestions. The questions on this topic may have been too
open, compared to the previous topics, where direct questions on a given
functionality were provided.

8.2 Implementation evaluation

An evaluation of the implemented development environment for TILES were
conducted at an event hosted by TELL, a cooperation between NTNU4 and
SINTEF5. The event was presenting different ways of learning, using IoT, and
was held at DIGS in Trondheim. Around 30 persons attended the event, in
which the TILES were presented and demoing the TILES Development En-
vironment. The demo consisted of the full TILES infrastructure. A running
demo of the development environment were shown, along with the imple-
mented DSL, some example applications written using the DSL, and the
compilation, and running of the TILES application. Three TILES Devices
were brought to the demo, which were made accessible for user-interaction.
Multiple people from different backgrounds visited the TILES demo, and
were curious about learning what TILES is all about.

The demo was showing multiple aspects of the DSL language, including fetch-
ing data from third-party-services, listening and waiting for a single and a
sequence of events triggered by the TILES Devices. The demo started with
a presentation of the TDE for creating TILES applications. To help explain
the DSL, development environment, and its control over the TILES devices,
the text-editor contained an example code of the game WhackAMole, as de-
scribed in section 6.3.3. The compilation and uploading process were shown,

4https://www.ntnu.no/
5http://www.sintef.no/

https://www.ntnu.no/
http://www.sintef.no/

98 CHAPTER 8. EVALUATION

and a random TILES Device turned on its LED. The participants were very
intrigued on what just happened, and after a simple explanation of Whack-
AMole, they started quickly to play around with the TILES devices. As most
of the participants attending the demo came from a more technical back-
ground and already familiar with programming, they were very impressed
that just three lines of simple code were able to control the output interfaces
of the TILES Devices, and respond based on their interaction with it. One
participant that was looking into user-interacting objects at work, knew how
difficult it’s to create applications that respond to user-interactions. The par-
ticipant were very interested that the demo were showing the whole process
from writing code, to uploading and running the application in the infrastruc-
ture, and stated: ”I haven’t seen the process to be this simple before”.

Other participants that attended the demo also wanted a thoroughly walk-
through of the whole development process for creating applications for TILES,
and had questions about the implementation of the DSL. One participant in
particular, a former computer science student, meant the DSL would not be
required for a future implementation of a visual programming approach, as
the DSL were just compiling the code to JavaScript. This participant was al-
ready familiar with Blocky, and meant plain JavaScript code could be defined
for each block. When the process of the DSL was explained, and showing
the JavaScript equivalent code, which the parser compiles to, the participant
quickly understood the benefit of using a DSL as a bottom layer for each
programming approach, as it would be more simple to defined each custom
block, and it’s equivalent code output. The same participant observed after
interacting with the TILES Devices, and restarting the running application,
that the infrastructure were not storing any state of the output interfaces for
the TILES Device. Two of the devices had its LED turned on at the same
time. The participant explained how storing the state of an LED could be
implemented, but would require some change on the hardware device, which
in turn would drastically complicate the hardware code.

8.2.1 Discussion

The demo served its purpose by getting feedback from participants with
background in IoT, and programming experience. Participants with no pro-
gramming experience were however more careful regarding testing the de-
velopment system, and rather inspected the provided example code. The
participants were able to interact with the whole development environment,
from hardware to software. The feedback from the implementation evalua-

8.3. TDE REQUIREMENT EVALUATION 99

Figure 8.1: Demo of TILES

tion, were only positive regarding the simplicity of the DSL language, and
the potential for TILES because of it.

8.3 TDE requirement evaluation

This section will evaluate the implemented features based on the requirement
specification for the TILES Development Environment, see section 5.3. The
requirement evaluation is conducted, to make sure the implementation, as
described in chapter 7, meet the requirements needed for a development
environment for TILES.

A web-application, supporting both a textual-environment and a visual-
environment, using ACE and Blockly respectively, were implemented early
in the development process. This complies with the functional requirements:
FR1, FR2, and FR5.

Through the implementation of the DSL modules, section 7.1.1, the abstract
functionality facilitate an easier implementation of a custom DSL for TILES.
The logic behind the DSL is put behind two abstract facades. The first fa-
cade is encapsulating the DSL modules, which is the actual software code for
handling communication with the TILES infrastructure. The second facade

100 CHAPTER 8. EVALUATION

is the language itself, abstracting the DSL module facade further. The sec-
ond facade consist of a parser, which is responsible of generating calls that
is understood by the DSL module interface. Proper communication between
these facade requires proper interoperability, done through a tactic called
orchestrate. The orchestrate tactic is when an interaction between software
components are scripted, which is the case for the DSL parser. A set of lan-
guage types is translated to an equivalent call to the DSL module interface,
to execute the interface’s appropriate methods based on the parsed language
type. The interoperability of the encapsulated DSL modules is done by each
TILES application on execution. Modifiability is also one of the quality at-
tributes which the DSL modules provide. The modules have no coupling
between each other, making it more easy to do any future changes on the
modules, as a change will one affect that particular module. Focus on in-
creasing the cohesion, where common responsibility has been moved to the
same module, have been a concern from the start of the design process. The
decision of creating modules through division by responsibility, have helped
with the development distributability, in which a module could be imple-
mented one at a time, in any order. Abstracting common services through
inheritance, polymorphism, and defining classes as abstract, have helped with
implementing a service in a more general form, supporting easier extension
of the DSL modules. These are all tactics complying with FR3.

From the definition of the language syntax, and the use of PEG.js, as de-
scribed in section 7.1.2, the DSL is built with JavaScript, as defined by
FR4.

Section 7.2 describes the process of generating custom visual block elements.
Translating the combined blocks to JavaScript is also explained, with the
use of the VisualEditorController, complying with FR6. FR7, regarding
visual representations of the DSL, only a simple sample were provided be-
cause of time-constraints. A fully functional visual programming approach
is therefore not implemented. Because of the requirement’s priority, a vi-
sual approach was not prioritized over implementing a functional textual
programming approach. Requirements dependent on FR7 is however met,
meaning the system supports the implementation of visual blocks.

Both FR8 and FR9 are a feature described by the participants in the first fo-
cus group, described in section 8.1. Storing the DSL code locally is described
in section 7.2.

The implementation evaluation at DIGS, described in section 8.2, included a
running demo of uploading and executing TILES applications in the TILES
infrastructure. The demo both meet the requirement of FR10 and FR11.

8.3. TDE REQUIREMENT EVALUATION 101

The deployability of a TILES application includes how an application is up-
loaded to its running environment, and how it can be integrated into the
existing TILES infrastructure. The DSL code created in the development
environment were uploaded using the HTTP protocol through the POST
method. The uploading and executing of a TILES application do not af-
fect the existing execution of the TILES infrastructure. The infrastructure
was extended, by adding a child-process to the infrastructure, in which the
application were run in a sandbox environment. Any TILES applications ex-
ecuted are not able to influence any resources it should not have access to, by
running the application within a child-process. The application is however
dependent on its parent process, meaning if the infrastructure were to stop
its execution, all child-processes would stop executing as well. The parser
for the DSL are both needed in the development environment, and to be
integrated within the TILES infrastructure. The portability of the parser is
great, as it can easily be run in different environment: both client and server
side, with a simple change in its built configuration. The availability of a run-
ning TILES application is supported through exception handling. Each DSL
module, and the DSL module interface, provides multiple exception handlers,
to make sure the TILES application will continue its execution regarding if
an error should occur. The exception handling does however only prevent
minor errors to affect the application. If a more severe error occurs, including
logic error, which is created by the developer of the TILES application, the
application will stop execution.

The DSL parser also provides a command-line interface, as described in sec-
tion 7.1.2. The command-interface can both compile DSL code, and run
the compiled application directly from the command-line. The application
running will then be like just another client connected to the TILES in-
frastructure. From the CLI-interface, the application is running in its own
environment, where the state of the application is fully accessible from the
command line. This provides a way of testing an application further, but
requires extra setup, then using the development environment. The CLI-
interface complies with FR12.

The functional suitability of the development environment is meeting almost
all of its requirements, except FR7, where only the fundamental software
methods are provided. The implementation of the TDE is however seen
as successful, even though the visual DSL representations are missing. As
most of the work is completed regarding supporting custom visual blocks,
little effort is required for creating a fully functional visual programming
approach. As already stated, because of time-constraints, the creation of
custom blocks was not prioritized. The TILES Development requirement

102 CHAPTER 8. EVALUATION

can easily be further extended by adding new modules, because of its focus
on modifiability.

8.4 DSL requirement evaluation

This section will evaluate the implemented features based on the requirement
specification for the DSL, as described in section 5.4. Each requirement is
described as a user-story, with some acceptance criteria. Each user-story will
be compared to its acceptance criteria, followed by an example on how the
DSL is supporting a user-story.

The DSL provides syntax rules for successfully recognizing and parsing com-
mands that control the output interfaces for a specified TILES device. The
supported output interfaces implemented in the language is: LED, speaker,
and vibration. A language specification of the commands supported is
found in appendix C.2.5. The acceptance criteria for user story 1 are all met.
The user story 2, where a presentation of the available commands that are
available to use, is provided by the DSL parser itself. If a syntax error is
found, the parser provides an error message consisting of the legal syntax to
use as an example. If an unknown output interface is referred to in code, the
parser will notify the error, and list the available output interfaces.

Appendix C.2.3 describes how different TILES devices may be referenced
within the application. All registered TILES devices may be stored within a
variable, or only a single TILES, as long as its name is provided. Both TILES
and TILE.<tile name> is defined as keywords within the language. The
TILES devices available are retrieved from the database within the TILES
infrastructure, to make sure that only TILES devices that belong to the
user writing a TILES application, is referenced in code. TILES referencing
complies with user story 5, 6, and partly 10, where the name of a TILES is
used as a reference, rather its longer MAC-address. A Me keyword is provided
of the language as well, for accessing user stored data, like name and id. The
specification is given in appendix C.2.4.

Listening for events triggered on a TILES device, is provided through the if
statement, described in appendix C.2.7.

if(TILE.alpha.tapped){...}

8.5. LANGUAGE EVALUATION 103

This statement will set up a listener, and wait for the TILES device called
alpha, to be interacted with a tap. The code defined within the brackets
will be executed once the event is triggered. This examples also shows that
the application requires parsing of the received event data, to properly iden-
tify whether a tap event occurred. Events can also be further identified, by
providing an extra parameter on the event, as described in appendix C.2.6.
Adding .double at the end of the parameter within the if statement, the
code within the brackets will only be executed as long as a double tap oc-
curred. Both user story 3 and 4 are shown with the provided example to be
successfully implemented.

The language compatibility with third-party sources is described in appendix C.2.8,
which both list examples compliant with user story 7, 8, and 9. The support
of pre-defiend third-party sources is implemented within the language itself,
to help creating syntactically correct calls to the DSL modules. The exam-
ples provided within the language specification (see appendix C.2.9) shows
example of retrieving data, posting data, and integrating the retrieved data
within the application logic of a TILES application.

The sync keyword described in the language are listening for events triggered
in a given pattern. Its language specification is given in appendix C.2.7,
with a provided example of its use. The provided order makes sure the code
within its block are not executed before all events are triggered in the exact
order.

All user stories are successfully supported by the DSL. The language spec-
ification, given in listing 6.1, defines the syntax rules to accomplish these
features, while the implemented DSL modules carry out the logic behind the
code. Each user story is tested using the CLI of the DSL, making sure it’s
both compiled and run as expected.

8.5 Language evaluation

An evaluation of the language was conducted with two professional pro-
grammers, with a background as computer science students, as participants
through a group interview. They were already familiar with TILES, as they
also were a part of the focus group session described in section 8.1. Because
of the participants’ background, they are familiar with multiple program-
ming languages, and use programming as part of their daily work. Before
the evaluation started, they were presented with the language specification

104 CHAPTER 8. EVALUATION

included in appendix C.2. The participants were given some time to go
through the language specification, before providing their feedback on how
they perceived the language. The evaluation was conducted to be provided
with a more technical feedback on the language itself, and the perceived
usability of the language.

One of the first comments from the participants were the similarity of the
DSL with the Arduino programming language6. The Arduino programming
language provides a specified starting point, including a main method, run-
ning in an infinite loop. The DSL is inspired of the Arduino programming
language, and provides similar setup and main methods, where the main
method can optionally run in an infinite loop.

Both participants found the language easy to understand, especially as it
was built on similar syntax rules they were familiar with from other pro-
gramming languages. One of the participants commented on the if statement
however:

if ... then ...

This participant found the syntax to be similar with pascal and basic, two
programming languages using the same syntax as shown above. This is all
about preferences programmers have, and the participant noted he would
preferably support an if statement without the use of brackets, which are
supported in most major programming languages, like C, C++, Java, PHP,
and JavaScript:

if(...) ...

As the DSL is built on top of JavaScript, and follow many of its patterns,
the participant argued that following the same conventions would be more
beneficial for makers and computer science students. Since JavaScript can
be mixed with the DSL, removing the then keyword, would make the DSL
to be more close with JavaScript in terms of syntax, and also not require
three different methods of using the if keyword.

Both participants were familiar with using Node.js, and the hardware device
Raspberry pi7. They have been introduced to the use of libraries, for control-
ling different hardware devices like GPS and camera, attached to a Raspberry

6https://www.arduino.cc/en/Main/Software
7https://www.raspberrypi.org/

https://www.arduino.cc/en/Main/Software
https://www.raspberrypi.org/

8.6. DSL COMPILATION EVALUATION 105

pi device, running on NodeJS. The simplicity of communicating with these
hardware devices were compared to the DSL. If larger and complex appli-
cation is required, having the ability to use plain JavaScript along with the
DSL, were considered to be a great benefit for the language. The DSL is not
only making it more easy for makers and computer science students to create
applications for TILES, but also support a TILES application to be rather
complex because of the power of mixing JavaScript and the DSL.

The language was well received by both participants, and perceived as some-
thing they could quickly start to use, and create simple applications with.
Even one of the participants asked about the possibility of using this DSL
with his own IoT devices at home. As the DSL is created with TILES in
mind, porting to other devices would require a change for the code-generator,
after parsing the DSL. This is however a whole different area, not concerned
for the TILES toolkit. Creating a ”cook-book”, a set of example usage, of
the DSL language was proposed by the participants, to easier show how the
language could be used. A cook-book could also benefit as a documentation
and starting-point of the language, in which makers and computer science
students could base their applications on. One participant also asked how
the DSL were simplifying work, as opposed to just using a library. The next
section 8.6, will answer this question, in regards of comparing DSL code and
its equivalent compiled DSL code.

8.6 DSL Compilation evaluation

To show how the DSL helps in simplifying the process of developing ap-
plications for TILES, a set of DSL examples are provided, along with its
JavaScript equivalent. The compiler generates JavaScript code that calls
methods from the DSL module interface. The dsl keyword, is a reference
to the current scope in which the application is running. This evaluation is
meant to show how much the development process is simplified for makers
and computer science students. The compiled version of the TILES applica-
tion, is assigned to a new function, and passed to the TileDSL class, using the
set userFunction method, as shown in figure 7.2. The compiled version of
the DSL, is not executable itself, but needs to be run within the scope of the
TileDSL class. Listing ??, show how the compiled DSL may be added to the
scope of the TileDSL class, by replacing the compiled code with parse.code.
The DSL modules itself, contains over 2000 lines of code, which sets up the
application environment, initializes communication with the TILES infras-

106 CHAPTER 8. EVALUATION

tructure, and handles database management. The simple example of the
game WhackAMole can be defined in the DSL as follows:

1 main () {
2 var tile = random(TILES);
3 tile.led;
4 if tile.tapped then tile.led.off
5 }

The compiled Javascript, generates the following output:
1 var main= undefined ;
2 var options = undefined ;
3 main = function(dsl){
4 var tile = dsl.random(dsl.tiles);
5 dsl.led.turnOn(tile);
6 tile.once("tap", function(event){{
7 dsl.led. turnOff (tile);
8 return main(dsl);
9 }});

10 };
11 return output(options ,main)

The compiled version of WhackAMole, uses listeners, and the structure of the
DSL is still found within the compiled code. Line 2 in the DSL example:

var tile = random(TILES);

is equal to the compiled JavaScript:
var tile = dsl.random(dsl.tiles);

Not much differs between these lines, other the introduction of the dsl vari-
able. Once the application grows in size and complexity, the true benefit of
the DSL is shown:

8.6. DSL COMPILATION EVALUATION 107

1 setup (){
2 Facebook . options .apikey=" myapikey ";
3 Twitter . options . consumer_key ="ckey";
4 Twitter . options . consumer_secret =" csecret ";
5 Twitter . options .token="token";
6 Twitter . options . token_secret ="stoken";
7 }
8 main (){
9 if(TILE.alpha.tapped){

10 var test =1;
11 }
12 if TILE.alpha.tapped.double then TILE.beta.led.

green
13 repeat (3){
14 Facebook .post("my repeating facebook post

message ");
15 }
16 var i=0;
17 while(i <10){
18 ++i;
19 }
20 sync(TILE.alpha.tapped.single TILE.beta.shaked

TILE.ceta.tapped){
21 Facebook .post("test");
22 Twitter .tweet("hello");
23 TILE.beta.led.white;
24 }
25 random ({"test":"hello","teit":"hmm","jadda":"tenk"

});
26 random (["test","hello"]);
27 var tile=random(TILES);
28 }

108 CHAPTER 8. EVALUATION

The compiled version of the provided DSL example, is as follows:

1 var main= undefined ;
2 var options = undefined ;
3 options =function(dsl){
4 dsl. initFacebook (’myapikey ’);
5 dsl. initTwitter (’ckey ’,’csecret ’,’token ’,’stoken ’)

;
6 };
7 main = function(dsl){
8 dsl.tiles.alpha.once("tap", function(event){{
9 var test = 1;

10 }});
11 dsl.tiles.alpha.once("tap", function(event){if(

event =="double"){
12 dsl.led. turnOff (dsl.tiles.beta);
13 }});
14 for(var i=0;i <3;++i){
15 dsl. facebook .post("my repeating facebook post

message ");
16 }
17 var i = 0;
18 while (i < 10) {
19 ++i;
20 }
21 dsl. initPipe ("pipe0"
22 ,{tile:dsl.tiles.alpha ,event :{ name:"tap",event:"

single"}}
23 ,{tile:dsl.tiles.beta ,event :{ name:"shake"}}
24 ,{tile:dsl.tiles.ceta ,event :{ name:"tap"}});
25 dsl.once("pipe0",function (){
26 dsl. facebook .post("test");
27 dsl. twitter .tweet ({ status:"hello"},function(data

){});
28 dsl.led. turnOff (dsl.tiles.beta);
29 return main(dsl);
30 });
31 dsl.random ({
32 "test": "hello",
33 "teit": "hmm",
34 "jadda": "tenk"

8.6. DSL COMPILATION EVALUATION 109

35 })
36 dsl.random (["test", "hello"])
37 var tile = dsl.random(dsl.tiles);
38 };
39 return output(options ,main)

From this example, the structure becomes more complex to compare to each
other. A lot of calls are made to the dsl variable, and most of the keywords
in the DSL is not used within the compiled code. The sync keyword, in
line 20 of the DSL example, is compiled to the output shown in line 21 -
24 in the listing above. Instead of all being defined in a simple line, three
lines are required for the compiled code. The structure of the pipe-and-filter
patterns, described in section 7.1.1, becomes clearly visible. How the sync
keyword inner-working are is not visible at all, neither should it be. As in
programming, the language abstraction helps with hiding away details that
is of no concern to those who use it, as long as it’s working.

The provided examples are also in reference to how the DSL simplifies work,
as opposed to using a library. As described in section 8.5, this was a question
from one of the professional programmers. When using the DSL, the code
can be parsed before compilation, and therefore check if any syntax errors are
found. Using a library, this would not be possible before actually running the
code, which would have caused a type exception to be thrown, and stopped
the application from running. Any syntax errors found from the DSL parser,
will also contain a descriptive error message, to help fix the error, and includes
a list of keywords that the parser were expecting. This will clearly benefit
in the development process of TILES applications, as errors are found before
publish any applications to the TILES infrastructure. The DSL and the
equivalent JavaScript code show how much code is simplified by using the
DSL. The DSL also removes the term of listeners and asynchronous functions,
and replaces them with statements, like if, usually found in programming
languages. A statement is in the form as shown below, where logic is the
input parameter to the statement, while code refers to the code to execute
when the logic has occurred, or equals to true.

STATEMENT (logic){code}

110 CHAPTER 8. EVALUATION

8.7 Application creation

The following section will describe how makers and computer science students
are able to use the development environment, and start creating applications
for TILES. This description should show how easy the development environ-
ment has made it for makers and computer science students getting started
with TILES.

The development environment is run in a browser. The layout which makers
and computer science students will be using to create TILES applications
are shown in figure 8.2. The figure contains multiple highlight blocks, and
the explanation of each is shown in table 8.1.

Figure 8.2: TDE layout

Type Description
1 Left-sidebar Start the ACE text-editor for creating textual ap-

plications
2 Left-sidebar Start the Blockly visual-editor for creating visual

applications
3 Left-sidebar Not implemented. Debug interface logging data

sent to and from TILES infrastructure
4 Left-sidebar Documentation to help with creating TILES ap-

plications, includes the language specification (see
appendix C.2)

8.7. APPLICATION CREATION 111

5 Left-sidebar Overview of registered TILES devices
6 Header-menu If shown in current view, provide optional features

in a right-sidebar
7 Footer status bar Prints important status messages, whether an er-

ror occurred, or if a task was trigged successfully
Table 8.1: DSL types

The provided text-editor is pre-defined with the setup and main methods as
shown in the TDE layout figure. Makers and computer science students able
to write DSL code, compile it, and see it running in the TILES infrastructure
from the textual-editor layout. The compilation is run within the develop-
ment environment, making sure no syntax errors are found before uploading
the TILES application to the TILES infrastructure. The compilation can be
triggered using a keyboard shortcut, ALT+1, or using the header-menu, which
will bring up a right-sidebar menu shown in figure 8.3.

Figure 8.3: Build options menu

The build options menu provide
functionality for compiling the cur-
rent code typed in the textual-
editor, or store the code locally,
which is able to be restored the
next time the development envi-
ronment is run using the same
browser. The share code func-
tionality is not implemented. The
compilation process, and the exe-
cution of TILES applications are
shown in figure 8.4. Figure 8.5
show the error message created if a
syntax error found within the DSL
code.

Using emulated TILES devices, instead of physical is also possible when de-
veloping applications for TILES in the development environment. Figure 8.6
shows as example of using four emulators with the game WhackAMole. Each
emulator act as a TILES device, connected to the TILES infrastructure, as-

112 CHAPTER 8. EVALUATION

Figure 8.4: Running TILES application

Figure 8.5: Syntax error TILES application

signed with its own identifier name. The figure below shows the emulator
”test1”, top-left, using its speaker output interface, and the ”test3”, bottom-
left, emulator to having its led turned on.

8.7. APPLICATION CREATION 113

Figure 8.6: WhackAMole using emulators

Chapter 9

Conclusion

9.1 Results

Multiple evaluations were conducted on the components which makes up
the whole development environment. The first evaluation was conducted to
help with the implementation of a development environment for TILES, by
using the targets users to help create requirements. The second evaluation
were conducted to see how the target users were able to use the system,
from writing code to make it run in the TILES infrastructure. The third
evaluation were done on the DSL itself, including professional programmers,
to help find any constraints there may be in the language, and whether it
follows standard patterns usually found in other programming languages,
making sure the DSL is a simple language to use and learn.

Simplifying the process of creating applications for TILES has been the goal
for this work, which have been made possible through a simple develop-
ment environment, and the use of a Domain-Specific Language, designed for
TILES. The results regarding the research section denoted in section 1.3, will
be discussed further.

115

116 CHAPTER 9. CONCLUSION

9.1.1 MRQ: How to implement a development envi-
ronment, specialized for makers, and computer
science students to easily create applications for
TILES?

A development environment for TILES were successfully implemented, for
creating TILES applications. The created applications are able to be run
within the TILES infrastructure, communicate with TILES devices through
MQTT, and other third-party data-sources over HTTP. Application logic can
easily be created around these communication channels, by either running
a set of instructions when certain data are received, or sending pre-defined
data through a communication channel. The development environment is
written in TypeScript, which is compiled to JavaScript, and able to be run
in a web-browser. It supports textually and visually approaches for appli-
cation creation, by using the implemented DSL as a bottom layer for each
paradigm.

Simplifying the application creation were done by creating different software
modules, which abstract tasks that are difficult to accomplish from scratch.
The modules abstracted the communication with the TILES infrastructure,
by parsing incoming events from the TILES infrastructure, to easily respond
and listen for a single, or a set of events received, and easily control the output
interfaces for TILES devices using pre-defined methods, instead of handling
raw-data that are supported and understood by the TILES infrastructure.
The modules also abstract the communication with third-party services, by
implementing a general HTTP-client, and HTTP-clients for more commonly
used data-sources, like Facebook, Weather, and Twitter.

9.1.2 PRQ1: Which programming paradigm is best
fit for makers, and computer science students to
create applications for TILES?

Multiple programming paradigms were evaluated in this work: textually,
visually, and physically. For each paradigm, there are multiple style of pro-
gramming, e.g. visually programming includes both a block and flowchart
approach. Each paradigm has its strength-points, depending on the target
users, its use, and in what environment. For TILES, textually, visually, and
physically approaches could be used, and would be a good fit for the project.
Supporting multiple paradigms, more people could start creating applica-

9.1. RESULTS 117

tions for TILES, with an approach they would feel more comfortable with,
and fitting their background knowledge. Multiple solutions today for makers
and computer science students are usually using a textual approach, but the
visual approach is growing in support. The decision of creating a DSL for
TILES, were made to make it more easily to implement and integrate other
approaches. By having a common language for TILES, the DSL could be-
come a potential building block for other paradigms. This work implemented
a fully functional textual approach for creating applications for TILES.

As makers and computer science students most usually have experience in
textual programming, this approach were prioritized. The implementation
of the DSL, also made it possible to easily support a textual approach of
programming, as the DSL parses some text of code, and outputs its AST
representation.

9.1.3 PRQ2: How should a cross-platform develop-
ment environment for TILES be designed and
implemented for its target users?

The environment created for developing applications for TILES is running
in a browser. This makes it possible to use the environment independent
on what platform is used by the makers and computer science students,
as a web-browser is only required. By implementing the environment as a
web-application, updates are reached to everyone immediately, as the same
end-point solution is targeted. A web-application also requires no prior in-
stallations on the client-side, so that makers and computer science students
are able to start developing applications for TILES without any setup pro-
cess.

The TILES Development Environment were deployed and running at http:
//tilestoolkit.io/dsl/.

http://tilestoolkit.io/dsl/
http://tilestoolkit.io/dsl/

118 CHAPTER 9. CONCLUSION

9.2 Future work

9.2.1 Development environment

Functionality

In the development environment it’s possible to create textual applications,
retrieve data from the TILES infrastructure, and start emulators of exist-
ing or virtual TILES devices. In future work, the development environment
should be further improved, by adding more functionality. The environment
for using a visual block approach is implemented, but requires future work
according to implement block representations of the DSL. This should make
it possible to not only create textual applications for TILES, but also vi-
sual. The ACE text-editor used in the development environment comes with
syntax highlighting, and provides functionality for highlighting lines with
undefined syntax use. The ACE editor should be extended to support the
DSL types, and preferably provide an auto-complete feature to further help
in the development process for creating TILES applications. As the DSL is
not recognized by the ACE editor, legal syntax in the DSL is highlighted as
errors. A syntax highlighter, and an auto-completion feature would benefit
makers and computer science students, to write code more quickly, as the
editor would suggest keywords as defined by the DSL, and further make sure
syntactically correct code is created. An application manager, providing an
overview and management of the running applications, and storing all cre-
ated applications for later alterations, would benefit makers and computer
science students by giving them full control for starting, stopping, and re-
placing running applications. They should at all times be provided with an
overview of all their created applications, in which they can continue their
previous development. Providing a set of example applications as recipes,
in which could be used as a basis for new applications, would make it more
easy to get started with TILES application development.

Evaluation

Further user-evaluations of the development environment would be beneficial
by testing the environment’s usability. Providing user-scenarios, a set of
instructions a group of people would need to carry out, and observe how they
use the development environment, would help finding parts of the system in
which is more hard to understand or use. Because of time-constraints, a

9.2. FUTURE WORK 119

closed user-evaluation using user-scenarios were not conducted.

9.2.2 DSL

Documentation

A simple language specification of the DSL is created (appendix C.2), but as
mentioned by one of the participants in the language evaluation in section 8.5,
a cook-book could become beneficial for makers and computer science stu-
dents. A cook-book should provide more examples of the DSL, and benefit
as an introduction of the language. For each example, it’s important to state
what the expected output is, along with minor explanations of the more com-
plex code. Providing a set of recipes in the development environment would
also be beneficial for the DSL and could be used as documentation for its
use.

Extending

The DSL provides simple functionality for communicating with TILES de-
vices. As the TILES device provides more functionality, and possible output
interfaces, the DSL should be extended to support these as well. The lan-
guage could also be extended in supporting more language keyword to ac-
complish different types of interaction from multiple TILES devices. Support
for user-interactions triggered at the same time, and a delay functionality,
where the time between user-interactions are triggered are functionality that
in future work could be implemented. Also, one of the participants from the
language evaluation in section 8.5, were missing support where the order of
a sequence of events were not important.

Extension of the DSL capabilities, requires both the parser, code-generator,
and DSL-modules to be updated with the new functionality. The DSL-
modules needs to implement the feature itself, the parser need to recognizethe
new keyword and assign it to a type in the AST, and the code-generator needs
to be able to generate code from a new AST type.

9.2.3 Programming paradigms

The development environment supports creating applications textually, and
the foundation of supporting a visual approach. Future work of supporting

120 CHAPTER 9. CONCLUSION

the physical programming paradigm would benefit TILES more, and intro-
duce a new target group which are able to interact with physical objects
instead of digital tools. The physical approach could be built on top of the
DSL, making it more easy to introduce a new programming paradigm to the
TILES toolkit, as the fundamental logic is already defined in the DSL.

References

[1] craft ai — the maturity of visual programming. http://www.
craft.ai/blog/the-maturity-of-visual-programming/. (Visited
on 02/03/2016).

[2] Barbara Rita Barricelli and Stefano Valtolina. Designing for end-user
development in the internet of things. In End-User Development, pages
9–24. Springer, 2015.

[3] Len Bass. Software architecture in practice. Pearson Education India,
2007.

[4] Andrea Bellucci, Giulio Jacucci, Veera Kotkavuori, Bariş Serim, Im-
tiaj Ahmed, and Salu Ylirisku. Extreme co-design: Prototyping with
and by the user for appropriation of web-connected tags. In End-User
Development, pages 109–124. Springer, 2015.

[5] Peter Brusilovsky, Eduardo Calabrese, Jozef Hvorecky, Anatoly Kouch-
nirenko, and Philip Miller. Mini-languages: a way to learn programming
principles. Education and Information Technologies, 2(1):65–83, 1997.

[6] Pei-Yu Peggy Chi and Yang Li. Weave: Scripting cross-device wearable
interaction. In Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, pages 3923–3932. ACM, 2015.

[7] Pei-Yu Peggy Chi, Yang Li, and Björn Hartmann. Enhancing cross-
device interaction scripting with interactive illustrations.

[8] David Cuartielles. Opensource hardware and education. In End-User
Development. Springer, 2015.

[9] Alexandre Demeure, Sybille Caffiau, Elena Elias, and Camille Roux.
Building and using home automation systems: a field study. In End-
User Development, pages 125–140. Springer, 2015.

121

http://www.craft.ai/blog/the-maturity-of-visual-programming/
http://www.craft.ai/blog/the-maturity-of-visual-programming/

122 REFERENCES

[10] Paloma Dı́az, Ignacio Aedo, and Merel van der Vaart. Engineering the
creative co-design of augmented digital experiences with cultural her-
itage. In End-User Development, pages 42–57. Springer, 2015.

[11] Bryan Ford. Parsing expression grammars: a recognition-based syntactic
foundation. In ACM SIGPLAN Notices, volume 39, pages 111–122.
ACM, 2004.

[12] Lars Grammel and Margaret-Anne Storey. An end user perspective on
mashup makers. University of Victoria Technical Report DCS-324-IR,
2008.

[13] Saul Greenberg. Toolkits and interface creativity. Multimedia Tools and
Applications, 32(2):139–159, 2007.

[14] RG Hague. End-user programming in multiple languages. PhD thesis,
Citeseer, 2005.

[15] Juan Haladjian. Tangohapps: an integrated development environment
for smart garments. In Proceedings of the 2015 ACM International Joint
Conference on Pervasive and Ubiquitous Computing and Proceedings of
the 2015 ACM International Symposium on Wearable Computers, pages
471–476. ACM, 2015.

[16] Steve Hodges, Nicolas Villar, James Scott, and Albrecht Schmidt. A new
era for ubicomp development. Pervasive Computing, IEEE, 11(1):5–9,
2012.

[17] Seth Holloway and Christine Julien. The case for end-user programming
of ubiquitous computing environments. In Proceedings of the FSE/SDP
workshop on Future of software engineering research, pages 167–172.
ACM, 2010.

[18] Van Holm and Eric Joseph. What are makerspaces, hackerspaces, and
fab labs? Hackerspaces, and Fab Labs, 2015.

[19] Michael S Horn and Robert JK Jacob. Designing tangible programming
languages for classroom use. In Proceedings of the 1st international
conference on Tangible and embedded interaction, pages 159–162. ACM,
2007.

[20] Michael S Horn, Erin Treacy Solovey, R Jordan Crouser, and Robert JK
Jacob. Comparing the use of tangible and graphical programming lan-
guages for informal science education. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 975–984.
ACM, 2009.

REFERENCES 123

[21] Hiroshi Ishii. Tangible bits: beyond pixels. In Proceedings of the 2nd
international conference on Tangible and embedded interaction, pages
xv–xxv. ACM, 2008.

[22] Thomas Kubitza and Albrecht Schmidt. Towards a toolkit for the rapid
creation of smart environments. In End-User Development, pages 230–
235. Springer, 2015.

[23] Henry Lieberman, Fabio Paternò, Markus Klann, and Volker Wulf. End-
user development: An emerging paradigm. Springer, 2006.

[24] Niko Mäkitalo. Building and programming ubiquitous social devices.
In Proceedings of the 12th ACM international symposium on Mobility
management and wireless access, pages 99–108. ACM, 2014.

[25] Timothy Scott McNerney. Tangible programming bricks: An approach to
making programming accessible to everyone. PhD thesis, Massachusetts
Institute of Technology, 1999.

[26] Brad A Myers. Visual programming, programming by example, and pro-
gram visualization: a taxonomy. In ACM SIGCHI Bulletin, volume 17,
pages 59–66. ACM, 1986.

[27] Briony J Oates. Researching information systems and computing. Sage,
2005.

[28] John Pane and Brad Myers. Usability issues in the design of novice
programming systems. 1996.

[29] Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie
Rusk, Evelyn Eastmond, Karen Brennan, Amon Millner, Eric Rosen-
baum, Jay Silver, Brian Silverman, et al. Scratch: programming for all.
Communications of the ACM, 52(11):60–67, 2009.

[30] Albrecht Schmidt. Programming ubiquitous computing environments.
In End-User Development, pages 3–6. Springer, 2015.

[31] Varun Sivapalan and Jonas Kirkemyr. Event-driven infrastructure for
the internet of things supporting rapid development. 2015.

[32] M.Divitini S.Mora, F.Gianni. Tiles: an inventor toolbox for interac-
tive object. The International Working Conference on Advanced Visual
Interfaces AVI, 2016.

[33] Daniel Tetteroo and Panos Markopoulos. A review of research meth-
ods in end user development. In End-User Development, pages 58–75.
Springer, 2015.

124 REFERENCES

[34] Arie Van Deursen, Paul Klint, and Joost Visser. Domain-specific lan-
guages: An annotated bibliography. Sigplan Notices, 35(6):26–36, 2000.

[35] Peter Van-Roy and Seif Haridi. Concepts, techniques, and models of
computer programming. MIT press, 2004.

[36] Kirsten N. Whitley. Visual programming languages and the empirical
evidence for and against. Journal of Visual Languages & Computing,
8(1):109–142, 1997.

Appendix A

Programming Environments

A.1 Visual Blocks

A.1.1 Scratch

Scratch is a VPL aimed at children for creating games, interactive stories,
games, and animations. Scratch have created a community around their
product, where users can share and build on others work, to better learn from
eachother, or just show off what they have been able to create. The system
is developed by ”Lifelong Kindergarten” group at MIT Media Lab.

Scratch is run inside a ”mini-world” where users can engage on actuators,
by either controlling their movement, listening for input from users, output
text, create logic for controlling their mini-world, and much more. By using
drag and drop, users can easily create a simple application, and modify it as
they want. The project aims at appealing to people to use their creativity
to program simple application, without needing any programming experi-
ence. ”Scratch is found to help in learning mathematical and computational
concepts, being creative, reason systematically and work collaboratively” -
ref(Scratc:Programming for all).

Users can easily start using Scratch right away, and any change occuring in
their building blocks, are updated and shown in the mini-world, so users can
better understand exactly what teh added building block will trigger and do.
With the introduction of Scratch, multiple projects have been inspired by it,
and used the same concepts which are found in Scratch.

Scratch is open source.

125

126 APPENDIX A. PROGRAMMING ENVIRONMENTS

A.1.2 ScratchX

ScratchX is an extension of Scratch, that are built for use with embedded
hardware like Arduino, and connecting with the Internet for retrieving data
from e.g Twitter. ScratchX doesn’t have the same focus on the community as
Scratch has, mainly because ScratchX is still in the experimental phase.

http://scratchx.org/#home

A.1.3 Snap!

Snap! is an extended project of Scratch, reimplemented with the use of
Javascript. Users have the ability of building their own blocks to be used
within their application, and can better do more advanced processing, than
what is found in Scratch. Snap! also has built in support for classe, found
in object-oriented languages. These features requires the users to have more
of a technical background, and the focus group is therefore high-school or
college students, and not kids. The project is open source.

Snap! is built by the University of California at Berkelye.

http://snap.berkeley.edu/

A.1.4 Blockly

Blockly is a system for building VP editors. The library is written in
Javascript, and developed by Google. Blockly is a system that isn’t meant
for direct use by i.e. children, but a tool for creating systems like Scratch.
Blockly requires configurations and development for providing custom-built
blocks. Multiple solutions for VP are built with Blockly because it’s easily ex-
tendable. Code can be created from blocks and exported to both Javascript,
Python, and PHP. The project is open source.

https://developers.google.com/blockly/

A.1.5 App Inventor

App Inventor is a block drag and drop tool used for introduction to program-
ming and creating applications for Android. The system focus on users with

http://scratchx.org/#home
http://snap.berkeley.edu/
https://developers.google.com/blockly/

A.1. VISUAL BLOCKS 127

no programming experience, to easily create applications with minor effort.
App Inventor is created by MIT and Google.

A.1.6 Ardublock

Ardublock is a language using blocks for creating applications for Arduino,
builtin with custom blocks to match functions that are available for Arduino.
The system is built with Java, and is made open-source by its authors.

https://github.com/taweili/ardublock

A.1.7 Gameblox

Gameblox is a visual editor that is used for building games with the use of
dragging and dropping blocks, like Scratch. The main focus is on creating
games, and have therefore blocks customized for this purpose. The system
is built on Blockly, and creates games in Javascript, that can be run in any
browser. https://gameblox.org/

A.1.8 Scriptr;

Scriptr; is a system that interacts with embedded hardware and other online
services for fetching and posting data. Scriptr; supports applicatinos written
in plain Javascript, and also have an environment for creating applications
with the use of blocks, built on Blockly. With the introduction of Blockly,
they provide their end-users to easily create applications for acting upon
input created from embedded hardware, without the need of programming
experience, and to simplify the process of creating applications for IoT.

https://www.scriptr.io/home

A.1.9 Zipato Rule Creator

Zipato is a smart-home solution, providing different devices for controlling
a home. Zipato provides its own smart-phone application, in which can be
used to control each device inside a home, from Zipato. Zipato also provides
an online visual-editor for setting up rules, in which each device can be
controlled from.

https://github.com/taweili/ardublock
https://gameblox.org/
https://www.scriptr.io/home

128 APPENDIX A. PROGRAMMING ENVIRONMENTS

http://www.vesternet.com/resources/application-notes/apnt-9#.VrB1x_
krJ04

http://www.vesternet.com/resources/application-notes/apnt-9#.VrB1x_krJ04
http://www.vesternet.com/resources/application-notes/apnt-9#.VrB1x_krJ04

Appendix B

EBNF visual

Figure B.1: TILES DSL - EBNF If statement

Figure B.2: TILES DSL - EBNF Repeat statement

Figure B.3: TILES DSL - EBNF Sync statement

129

130 APPENDIX B. EBNF VISUAL

Figure B.4: TILES DSL - EBNF Commands

Figure B.5: TILES DSL - EBNF TileEStatement

Appendix C

Focus Group

C.1 Online topics

Topic 1 contained a brief explanation of TILES. A full description of TILES
can be found in chapter 3.

topic 2 Creating applications for TILES is proposed to be a browser-based
process, where the users are able to choose either a textual or visual
approach.
What is your previous experience of writing code in a browser environ-
ment? Can you think of any downsides of creating applications in a
browser?

topic 3 DSL - Domain Specific Language.
The created applications need to be run in the cloud-layer for TILES.
By creating a DSL (library), a textual and visual language can be
built on top of the DSL, so that both approaches can call functions
for controlling the interfaces of TILES (e.g. led, vibrate, speaker) and
access third-party services (e.g. twitter, facebook, weather). If the user
have multiple TILES devices registered, these can be controlled as well
using the DSL.
Examples:
- Tile.Alpha.lightOn
- Tile.Beta.lightOn
- var data = twitter.getLatestTweets()
How and when have you been using DSLs/libraries? What would you
say is important characteristics of a DSL/library? Have you ever had

131

132 APPENDIX C. FOCUS GROUP

any negative experiences with a DSL/library? If so, what didn’t work
that well?

topic 4 A textual approach for creating applications for TILES requires call-
ing functions of the created DSL. The cloud-layer is developed using
NodeJS (JavaScript), and requires any user-created applications to be
written in JavaScript as well.
Along with the available DSL functions, the users are also able to write
plain JavaScript code for creating the application logic.
Do you have any experience in using JavaScript, and if so, in what
situations? Do you see any cutback with using JavaScript as a pro-
gramming language to create TILES applications, or in general? What
do you think about providing a textual approach for creating TILES
applications? (benefits, ease of use etc.)

topic 5 Creating applications visually is proposed to be done using Blockly
(https://developers.google.com/blockly/). This is a block/puz-
zle approach, where different blocks are put together to create appli-
cations. Custom blocks can be created to match the DSL, and pro-
vides an overview of all the available functionalities. Other block-based
approaches for creating applications are ‘Scratch‘, ‘Snap¡, ‘AppInven-
tor‘(android)
Do you have any previous experience using a block approach for cre-
ating applications, or other visual approaches? What is your thoughts
about using blocks to create applications? Do you see benefits or dis-
advantages?

topic 6 An emulator is proposed to help with the development of applications,
where users are able to interact with a virtual TILES device, to test
their applications before publishing it to the cloud-layer.
Have you previously had any experience using emulators for other de-
vices in application development? If so, how did you use the emulator,
and was it a positive or negative experience? (please explain)
Do you think an emulator for TILES would be of any benefit in a de-
velopment environment for TILES? Do you have any thoughts about
how it could be used?
The attached picture shows example layout of an emulator, and the
‘buttons‘ at the bottom, shows the different user-interactions supported
by the TILES device

topic 7 From the briefly explained project proposals, do you see anything that
needs improvements?
Suppose you were in charge of the project, and were able to make one

https://developers.google.com/blockly/

C.2. LANGUAGE SPECIFICATION 133

change that would make the programming environment better. What
would you do?

C.2 Language specification

This document is intended to be an introduction of the TILES DSL. The
documentation contains explanination and simple examples describing the
features of the language. The TILES DSL is a simple language which sup-
ports both plain JavaScript code, and the language features described in this
document. The language is compiled to JavaScript, before it’s executed and
run in the TILES infrastructure.

C.2.1 Table of contents

1. Starting point

2. TILES Identifier

3. Me

4. Commands

5. Events

6. Statements

1. If

2. Repeat

3. Sync

134 APPENDIX C. FOCUS GROUP

4. Random

5. Reset

7. Data Sources

8. Example Applications

C.2.2 Starting point

The layout required by a TILES application is as follows:
1 setup (){
2 //my setup
3 }
4 main (){
5 //my application logic
6 }

The setup method is optional, and can be removed if it’s not required by
the application:

1 main (){
2 //my application logic
3 }

Within the setup block, only options for data sources are permitted. Please
refer to each data-source for available options. The setup block initializes the
applications before running the application logic residing within the main
block.

C.2.3 TILES Identifier

A TILES identifier is a reference to a TILES device registered to your user.
The reference to a TILES device is done through a keyword: TILE, followed
by the name of the TILES device. The identifier can only be used with
nd Referring to a TILES identifier is accomplished by the following, where
alpha is the name of the TILES device which should be referenced:

appendix:spec:events#events.a
appendix:spec:commands#commands..

C.2. LANGUAGE SPECIFICATION 135

1 TILE.alpha

Retrieving all registered TILES is accomplished through the TILES keyword.
This will return a nested object, consisting of key and value pairs. The
registered name will be the key, and the TILES device, represented as an
object, as the value. Each TILES device consist of the following key-value
pairs as well: id, active, name, and state. The id stores the TILES device
MAC-address, active referes to whether the TILES devices should be made
accessible in the TILES infrastructure, name the chosen reference name of
the TILES device, and state contains the latest event or command retrieved
from/to the device.

All TILES can also be stored within a variable for later referencing:
1 var myTiles = TILES;

The variable myTiles will now be a reference to all your TILES devices,
containing the following structure:

1 {
2 alpha :{
3 id:"123",
4 active:true ,
5 name:"alpha",
6 state: {name:’led ’, properties :[’on’]}
7 },
8 beta :{
9 ...

10 },
11 cita :{
12 ...
13 }
14 }

Accessing the state of alpha

1 // will now contain the object: {name:’led ’,
properties :[’on ’]}

136 APPENDIX C. FOCUS GROUP

2 var alphaState = TILES.alpha.state;

C.2.4 Me variable

Accessing your stored user details are available through the Me keyword. Both
the name and id are accessible from the DSL language.

1 Me.name; // access name
2 Me.id; // access id
3 var myId=Me.id; // store your id in a variable

C.2.5 Commands

Controlling the output interfaces on a TILES device is accomplished by a
command. The following output interfaces are currently supported to con-
trol: led, speaker, and vibrate.

Each output interface type have their own methods, corresponding to the
output interface ability.

An led for a given TILES device can be turned on, turned off, or set to
repeatedly be turned on and off. The default color for the led is blue.
Supported colors are: red, green, blue, and white.

1 TILE.alpha.led; // default to turning on the led with
a blue color

2 TILE.alpha.led.on; // default to turn on with a blue
color

3 TILE.alpha.led.on.green;// turn on led with a green
color

4 TILE.alpha.led.off;// turn off the led
5 TILE.alpha.blink;// repeatedly turn on and off with

default color
6 TILE.alpha.blink.green;// repeatedly turn on and off

with a green color

C.2. LANGUAGE SPECIFICATION 137

A speaker support start playing a sound, set it to pause, or stop it com-
pletely.

1 TILE.alpha.play; // play sound
2 TILE.alpha.pause; // pause play
3 TILE.alpha.stop; // stop speaker

Vibrate can either be turned on or off for a device
1 TILE.alpha. vibrate ; // default to on
2 TILE.alpha. vibrate .on; // start vibrating
3 TILE.alpha. vibrate .off; // stop vibrating

A variable referencing a TILES device can also be used with the output
interface commands:

1 var alpha=TILE.alpha;
2 alpha.led.on.green; // turn led on with a green color

for device alpha

C.2.6 Events

Listening for events triggered on devices are accomplished by an event.
Events can only be used within statements, as it requires some logic to be
executed when an event is triggered. You have multiple ways of interacting
with your TILES device:

• tapped

– single

– double

– hold

• tilted

– left

– right

138 APPENDIX C. FOCUS GROUP

– updown

• rotated

– clock

– counter

• shaked

– horizontally

– vertically

• shifted

– lift

– freefall

Each event includes a more detailed event, for example, tapping the TILES
device, can either trigger a single, double or hold event.

1 TILE.alpha.tapped // listen for both single , double
and hold event

2 TILE.alpha.tapped.single // listen for the single
event

3 TILE.alpha.tapped.double // listen for the double
event

4 TILE.alpha.tapped.hold // listen for the hold event

Please note these events are not supported by themselves, as a command,
only in statements!

C.2.7 Statements

Multiple statements are supported by the TILES DSL, which will be de-
scribed here

If

An if statement consist of an event and a corresponding body, encapsu-
lated within brackets { } which will be executed when the provided event

C.2. LANGUAGE SPECIFICATION 139

is triggered. Please refer to the events section, to get a list of supported
events.

Execute the code within the brackets when TILES device alpha is single
tapped:

1 if(TILE.alpha.tapped.single){
2 ...
3 }

Only a single event is supported for input to the DSL if statement. Operators
found in other programming languages like && and || are not supported

A more simple if statement is provided as well, which only support an event
and a command as input, divided by the THEN keyword. Listening for the
event will trigger the specified command.

Turn the led on for device beta when alpha is tapped (either single, double,
or hold)

1 if TILE.alpha.tapped then TILE.beta.led.on.red

Repeat

The repeat statement is a simple loop representation for the well-known for-
loop.

Repeat body statement 10 times:

1 var i=0;
2 repeat (10){
3 ++i;
4 }
5 //i = 10

140 APPENDIX C. FOCUS GROUP

Sync

The sync statement is a listener for multiple triggering events. The exact
order given is the exact order which will be set up for listening.

Beta single tapped, alpha double tapped, beta double tapped:

1 sync(TILE.beta.tapped.single TILE.alpha.tapped.
double TILE.beta.tapped.double){

2 ...
3 }

Note that each event is divided by a single space character. Triggering the
input events in a reverse order will not execute the statement!

Random

The random statement returns a random value from a set of parameter passed
to it. It supports both objects, arrays and TILES.

1 random ({"one":"hello", "two":"world"}); // return
hello or world

2 random (["hello","world"]); // return hello or world
3 random(TILES); // returns a random TILE device

The returned value may also be stored within a variable:

1 var tile = random(TILES);

Reset

The reset statement will start the application from the begining of the main
entry point.

This sample application will turn the led on for the device alpha, wait for it
to be tapped, then turn its led off, and start over again.

C.2. LANGUAGE SPECIFICATION 141

1 main (){
2 TILE.alpha.led.on;
3 if(TILE.alpha.tapped){
4 TILE.alpha.led.off;
5 reset; // return to start
6 }
7 }

C.2.8 Data sources

Data sources are used for communicating with third-party services. Each
data source is here explained, with a explanation of which options are re-
quired for them to be setup correctly. Commands to third-party services are
sending data, while events are referred to as retrieving data, corresponding
with TILES events and command handling.

Because the DSL is compiled to JavaScript, each data source event is requir-
ing a following block of code, which will run when the retrieved data is ready
for use.

Twitter

The keyword for refering to the Twitter data-source is Twitter. The capital
T is important for the command to be parsed correctly.

Commands:

• tweet - For posting a new tweet
1 Twitter .tweet("this is my first tweet # helloworld ");

Events:

• followers- retrieve a list of your followers

• following - retrieve a list of who you’re following

The retrieved data is stored within a variable ‘twitter‘.

142 APPENDIX C. FOCUS GROUP

1 Twitter . followers {
2 twitter .ids; // array containing the id of each

follower
3 }
4

5 Twitter . following {
6 twitter .ids; // array containing the id of each

follower
7 }

Options Required setup for facebook: Accessing the Twitter API is done
using oauth, and requires 4 different keys.

Required setup for twitter:
1 setup (){
2 Twitter . options . consumer_key ="my consumer key";
3 Twitter . options . consumer_secret ="my consumer

secret";
4 Twitter . options .token="my token";
5 Twitter . options . token_secret ="my secret token";
6 }

Please refer to the twitter application management for creating your keys.

Facebook

Commands:

• post - post a status to facebook
1 Facebook .post("This is my facebook post message ");

Event:

• feed - retrieves your current feed

https://apps.twitter.com/

C.2. LANGUAGE SPECIFICATION 143

• places - retrieves your checked-in places

The retrieved data is stored within a variable ‘facebook‘.

1 Facebook .feed{
2 for(var i=0;i< facebook .data.length ;++i){// loop

through all facebook feeds retrieved
3 facebook .data[i]. story; // story for feed
4 facebook .data[i]. message ; // message for feed
5 facebook .data[i]. created_time ; // feed creation

date
6 }
7 }
8 Facebook .places{
9 for(var i=0;i< facebook .data.length ;++i){// loop

through all facebook places retrieved
10 facebook .data[i]. place; // the place containing

it location (lat ,lon)
11 facebook .data[i]. created_time ; // tagged place

creation date
12 }
13 }

Options Required setup for facebook:

1 setup (){
2 Facebook . options .apikey="my apikey";
3 }

Please refer to the Facebook API for creating a valid api-key.

Weather

The weather data source only supports fetching weather data, and includes
therefore only events.

Events:

https://developers.facebook.com/

144 APPENDIX C. FOCUS GROUP

• current - fetch current weather

– Retrieves a large set of data accessible through its available vari-
able: temperature mintemp maxtemp humidity cloudiness rain
snow weatherInfo sunrise sunset time cityId cityName

• forecast - fetch foreact

– Retrieves a large set of data accessible through its available vari-
able: numbOfResult cityId cityName getWeatherInfo(<number>)
avgTemp avgMaxTemp avgMinTemp

• history - fetch history weather data

– Retrieves the same data set as current

1 Weather . current {
2 weather . temperature ;
3 ... // Refer to the event description above for a

definition of the data availables
4 }
5 Weather . forecast {
6 weather . avgTemp ;
7 ... // Refer to the event description above for a

definition of the data availables
8 }
9 Weather . history {

10 weather . temperature ;
11 ... // Refer to the event description above for a

definition of the data availables
12 }

Options Required setup for OpenWeatherMap:

1 setup (){
2 Weather . options .apikey="my apikey";
3 }

Please refer to the OpenWeatherMap API for creating a valid api-key.

http://openweathermap.org/api

C.2. LANGUAGE SPECIFICATION 145

CustomHTTP

The CustomHTTP is a more general HTTP client, with no predefined com-
mands or events. Commands can be triggered by the client through its
command keyword:

1 CustomHTTP . command ("post");// post data to set url

Options Required setup for a custom HTTP data-source client.

The CustomHTTP keyword assigns options to use with a HTTP-request by
setting custom data to its option key. The below example shows the structure
for assigning data to the custom http. <myoption> and <myvalue> can
here be replaced with anything of your choosing

1 setup (){
2 CustomHTTP . options .<myoption > = <myvalue >
3 }

Attaching an apikey field to the request-data, and specifying its url end-
point:

1 setup (){
2 CustomHTTP . options .apikey = "my api key";
3 CustomHTTP . options .url = "my website ";
4 }

C.2.9 Example Applications

The following provides multiple example of TILES applications using the
described functionality in the DSL.

WhackAMole: Turn a random TILES led on, wait for it to be tapped,
then turn the led off, and repeat the application. The repeat keyword is
automatically assigned to the last block of the TILES application, and do
not require it to be set manually.

146 APPENDIX C. FOCUS GROUP

1 main () {
2 var tile = random(TILES);
3 tile.led;
4 if tile.tapped then tile.led.off
5 }

Turn alpha led on, if current temperature is over 14 degrees. The weather
is fetched if a sequence of events are triggered by the alpha and beta TILES
respectively:

1 setup (){
2 Weather . options .apikey="APIKEY";
3 }
4 main (){
5 sync(TILE.alpha.tapped.double TILE.tapped.double){
6 Weather . current {
7 if(weather .temperature >14)
8 TILE.alpha.led.on.blue;
9 }

10 }
11 }

Combine multiple data sources: Here the repeat keyword is required, for the
application to be able to listen for all events after its first trigger.

1 setup (){
2 Facebook . options .apikey=" myapikey ";
3 Twitter . options . consumer_key ="ckey";
4 Twitter . options . consumer_secret =" csecret ";
5 Twitter . options .token="token";
6 Twitter . options . token_secret ="stoken";
7 }
8 main (){
9 if TILE.alpha.tapped.double then TILE.beta.led.

green
10 if(TILE.alpha.tapped.single){
11 Twitter .tweet("Tap interaction with the alpha

device");

C.2. LANGUAGE SPECIFICATION 147

12 repeat;
13 }
14 if(TILE.beta.tapped){
15 Facebook .post("Tap interaction with the beta

device");
16 repeat;
17 }
18 }

Appendix D

TILES Toolkit

D.1 DSL Grammar Rules

The listing below shows the grammar rules of the implemented DSL, using
PEG.js.

1 // TILE DSL
2 OpenBrackets = __ (’THEN ’i / ’{’) __
3 CloseBrackets = __ (’END ’i / ’}’) __
4

5 // Keywords
6 SetupToken = ’setup ’i ! IdentifierPart
7 MainToken = ’main ’i ! IdentifierPart
8 FacebookKeyword = ’Facebook ’ ! IdentifierPart
9 TwitterKeyword = ’Twitter ’ ! IdentifierPart

10 WeatherKeyword = ’Weather ’ ! IdentifierPart
11 CustomHTTPKeyword = ’CustomHTTP ’ ! IdentifierPart
12 MeKeyword = ’Me’ ! IdentifierPart
13 TilesKeyword = ’TILES ’ ! IdentifierPart
14 TileKeyword = ’TILE ’ ! IdentifierPart
15 RandomKeyword = ’RANDOM ’i ! IdentifierPart
16 ResetKeyword = ’RESET ’i ! IdentifierPart
17 RepeatKeyword = ’REPEAT ’i ! IdentifierPart
18 SyncKeyword = ’SYNC ’i ! IdentifierPart
19

20 TileDSLKeyword = SetupToken
21 / MainToken

149

150 APPENDIX D. TILES TOOLKIT

22 / FacebookKeyword
23 / TwitterKeyword
24 / WeatherKeyword
25 / CustomHTTPKeyword
26 / MeKeyword
27 / TilesKeyword
28 / TileKeyword
29 / RepeatKeyword
30 / SyncKeyword
31

32 DsBlock = OpenBrackets __ body: SourceElements ? __
CloseBrackets

33 {return {
34 type: ’BlockStatement ’,
35 body: optionalList (body)
36 };}
37

38 // Variables
39 FacebookVariable = FacebookKeyword ’.’ opt :(’feed ’/’

places ’) __ body:DsBlock
40 { return{type:’facebookvar ’,option:opt ,body:body };}
41 TwitterVariable = TwitterKeyword ’.’ opt :(’followers

’/’following ’) __ body:DsBlock
42 { return{type:’twittervar ’,option:opt ,body:body };}
43 WeatherVariable = WeatherKeyword ’.’ opt :(’current ’/

’forecast ’/’history ’) __ body:DsBlock
44 { return{type:’weathervar ’,option:opt ,body:body };}
45 MeVariable = MeKeyword type :(’.’ opt :(’name ’/’id’) {

return opt ;})?
46 { return{type:’mevar ’, option:type };}
47 TileId = TileKeyword ’.’ id: IdentifierName
48 { return{type:’tile ’, name:id.name };}
49 TilesVariable = TilesKeyword
50 { return {type:’tiles ’};}
51

52 TileDSLVariables = FacebookVariable
53 / TwitterVariable
54 / WeatherVariable
55 / MeVariable
56 / TileId
57 / TilesVariable

D.1. DSL GRAMMAR RULES 151

58 / RandomStatement
59 / ResetStatement
60

61 // Options
62 DsOption = ’APIKEY ’i __ ’=’ __ val: StringLiteral
63 { return val; }
64 TwitterOption = ’CONSUMER_KEY ’i __ ’=’ __ val:

StringLiteral
65 { return {type: ’ConsumerKey ’, init:val }; }
66 / ’CONSUMER_SECRET ’i __ ’=’ __ val: StringLiteral
67 { return {type: ’ConsumerSecret ’, init: val }; }
68 / ’TOKEN ’i __ ’=’ __ val: StringLiteral
69 { return {type: ’Token ’, init:val }; }
70 / ’TOKEN_SECRET ’i __ ’=’ __ val: StringLiteral
71 { return {type: ’TokenSecret ’, init: val }; }
72

73 OptionList = head: Option EOS tail: (__ Option EOS)*
{return buildList (head , tail , 1); }

74 Option = FacebookKeyword ’. options .’i val:DsOption
75 { return{type: ’FacebookAPI ’, init:val }; }
76 / TwitterKeyword ’. options .’ twitter :TwitterOption
77 { return twitter ; }
78 / WeatherKeyword ’. options .’i val:DsOption
79 { return{type:’WeatherAPI ’, init:val }; }
80 / CustomHTTPKeyword ’. options .’i val:

AssignmentExpression
81 { return {type:’CustomHTTP ’, init:val }; }
82

83 OptionBlock = OpenBrackets __ body:OptionList? __
CloseBrackets {

84 return optionalList (body);
85 }
86

87 // Events
88 TileTapped = tile :(TileId/ Identifier) ’.’ ’tapped ’

type :(’.’ type :(’single ’/’double ’/’hold ’) {return
type ;})?

89 { return {type:’TileEvent ’, event:’tap ’, tile:tile ,
param:type }; }

90 TileTilted = tile :(TileId/ Identifier) ’.’ ’tilted ’
type :(’.’ type :(’left ’/’right ’/’updown ’) {return

152 APPENDIX D. TILES TOOLKIT

type ;})?
91 { return {type:’TileEvent ’, event:’tilt ’, tile:tile ,

param:type }; }
92 TileRotated = tile :(TileId/ Identifier) ’.’ ’rotated ’

type :(’.’ type :(’clock ’/’counter ’) {return type
;})?

93 { return {type:’TileEvent ’, event:’rotate ’, tile:
tile , param:type }; }

94 TileShaked = tile :(TileId/ Identifier) ’.’ ’shaked ’
type :(’.’ type :(’horizontally ’/’vertically ’) {
return type ;})?

95 { return {type:’TileEvent ’, event:’shake ’, tile:tile
, param:type }; }

96 TileShifted = tile :(TileId/ Identifier) ’.’ ’shifted ’
type :(’.’ type :(’lift ’/’freefall ’) {return type

;})?
97 { return {type:’TileEvent ’, event:’vertical_shift ’,

tile:tile , param:type }; }
98

99 TileEvent = TileTapped
100 / TileTilted
101 / TileRotated
102 / TileShaked
103 / TileShifted
104 TileEvents = head: TileEvent tail :(__ TileEvent)*
105 { return buildList (head ,tail ,1); }
106

107 // Commands
108 TileColor = color :(’red ’i/’green ’i/’blue ’i/’white ’i)
109 {return {type:’TileColor ’, color: color };}
110 TileLedCommand = tile :(TileId/ Identifier) ’.’

command :(’led ’/’blink ’)
111 param :(
112 (color :(’.’ color:TileColor {return color ;}))
113 /(status :(’.’ status :(’on’/’off ’) {return status ;}))
114)?
115 EOS
116 { return {type:’TileCommand ’, tile:tile , command :{

type:’led ’,command : command }, param:param };}
117 TileSpeakerCommand = tile :(TileId/ Identifier) ’.’

command :(’play ’/’stop ’/’pause ’) EOS

D.1. DSL GRAMMAR RULES 153

118 { return{type:’TileCommand ’, tile:tile , command :{
type:’speaker ’,command : command }};}

119 TileVibrateCommand = tile :(TileId/ Identifier) ’.’
command :’vibrate ’ param :(’.’ param :(’on’/’off ’) {
return param ;})? EOS

120 {return{type:’TileCommand ’, tile:tile , command :{ type
:’vibrate ’,command : command },param:param };}

121 TileCommand = TileLedCommand
122 / TileSpeakerCommand
123 / TileVibrateCommand
124

125 DataSourceCommand = key:FacebookKeyword ’.’ ’post ’ ’
(’ __ val: StringLiteral __ ’)’ EOS

126 { return {type:’DatasourceCommand ’, ds:
extractOptional (key ,0) , method:’post ’, value:val
};}

127 / key:TwitterKeyword ’.’ ’tweet ’ ’(’ __ val:
StringLiteral __ ’)’ EOS

128 { return {type:’DatasourceCommand ’, ds:
extractOptional (key ,0) , method:’tweet ’, value:val
};}

129 / key:CustomHTTPKeyword ’.’ ’command ’ ’(’ __ val:
StringLiteral __ ’)’ EOS

130 { return {type:’DatasourceCommand ’, ds:
extractOptional (key ,0) , method:’command ’, value:
val };}

131

132 DslCommands = TileCommand / DataSourceCommand
133

134 // Statements
135 DSLIfStatement = IfToken ’(’ __ event:TileEvent __ ’

)’ OpenBrackets body: SourceElements ?
CloseBrackets

136 {return {type:’DslIf ’, event:event , body:
optionalList (body)};}

137 DSLIfStatementSimple = IfToken __ event:TileEvent __
’then ’i __ command :TileCommand

138 { return {type: ’DslIfSimple ’, event:event , command :
command };}

139 RepeatStatement = RepeatKeyword ’(’ __ number:
NumericLiteral __ ’)’ OpenBrackets body:

154 APPENDIX D. TILES TOOLKIT

SourceElements ? CloseBrackets
140 {return {type:’Repeat ’, number:number , body:

optionalList (body)};}
141 SyncStatement = SyncKeyword ’(’ __ events:TileEvents

__ ’)’ OpenBrackets body: SourceElements ?
CloseBrackets

142 {return {type:’Sync ’, events:events , body:
optionalList (body)};}

143 RandomStatement = RandomKeyword ’(’ __ random :(
TilesVariable/ ObjectLiteral / ArrayLiteral) __ ’)’
EOS

144 { return {type:’Random ’, random:random }; }
145 ResetStatement = ResetKeyword EOS?
146 { return {type:’Reset ’};}
147 DslStatement = DSLIfStatement
148 / DSLIfStatementSimple
149 / RepeatStatement
150 / SyncStatement
151

152 // DSL Program
153 MainBlock = OpenBrackets __ body: SourceElements ? __

CloseBrackets {
154 return {
155 type: ’BlockStatement ’,
156 body: optionalList (body)
157 };
158 }
159

160 Setup = SetupToken __ ’(’ ’)’ __
161 consequent : OptionBlock __{
162 return{
163 type: ’OptionStatement ’,
164 body: consequent
165 };
166 }
167 Main = MainToken __ ’(’ ’)’ __
168 consequent : MainBlock{
169 return{
170 type:’MainStatement ’,
171 consequent : consequent
172 };}

D.2. PRIMITIVES 155

173

174 TileProgram = Main / Setup Main
175 Program = TileProgram

Listing D.1: DSL GrammarSmall

D.2 Primitives

The table below list the different input and output primitives that should be
supported by the TILES device, and the TILES infrastructure.

156 APPENDIX D. TILES TOOLKIT

Figure D.1: Interaction primitives for TILES. Source: Simone Mora

D.3. DSL CLASS-DIAGRAM 157

D.3 DSL Class-Diagram

The following section show the UML-class diagram of the combined DSL
modules.

158 APPENDIX D. TILES TOOLKIT

Figure D.2: UML class-diagram for the DSL modules

	Abstract
	Sammendrag
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Context
	Research Questions
	Research Method
	Results
	Outline

	Problem definition
	TILES Toolkit
	Hardware
	TILES Device
	TILES Mobile
	TILES Cloud
	Infrastructure

	Software
	TILES Cloud
	TILES Mobile
	Client Libraries

	Overview

	Related work
	Visual Programming
	Blocks
	Flowchart
	Data Flow
	Finite-State Machine
	Behaviour Tree
	Event-Based Rules

	Physical Programming
	Mini-Language
	Overview

	Requirement Specifications
	Language comparison
	Visual-language Comparison
	TILES Development Environment
	Domain-Specific Language

	Design
	Introduction
	Use cases
	DSL
	Modules
	The language
	Example Application - Whack a Mole

	TDE
	Emulator

	Implementation
	DSL
	Modules
	Language

	Development Environment
	Emulator
	CLI

	Evaluation
	Pre-implementation evaluation
	Discussion

	Implementation evaluation
	Discussion

	TDE requirement evaluation
	DSL requirement evaluation
	Language evaluation
	DSL Compilation evaluation
	Application creation

	Conclusion
	Results
	MRQ: How to implement a development environment, specialized for makers, and computer science students to easily create applications for TILES?
	PRQ1: Which programming paradigm is best fit for makers, and computer science students to create applications for TILES?
	PRQ2: How should a cross-platform development environment for TILES be designed and implemented for its target users?

	Future work
	Development environment
	DSL
	Programming paradigms

	References
	Programming Environments
	Visual Blocks
	Scratch
	ScratchX
	Snap!
	Blockly
	App Inventor
	Ardublock
	Gameblox
	Scriptr;
	Zipato Rule Creator

	EBNF visual
	Focus Group
	Online topics
	Language specification
	Table of contents
	Starting point
	TILES Identifier
	Me variable
	Commands
	Events
	Statements
	Data sources
	Example Applications

	TILES Toolkit
	DSL Grammar Rules
	Primitives
	DSL Class-Diagram

