
Usability of Commercial mHealth Toolkits
From a Developer Perspective
An Empirical Evaluation of Google Fit, Apple

HealthKit and Samsung Digital Health

Nemanja Aksic
Petter Astrup
Erik Gunnar Jansen

Master of Science in Computer Science

Supervisor: Babak Farshchian, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

i

Preface

This study is a master thesis that aims to evaluate the leading commercial mHealth

Toolkits. The associated subject code is TDT4900. The thesis is conducted in the last

semester of the master degree program in Computer Science at the Norwegian Uni-

versity of Technology and Science(NTNU), the spring semester of 2016. The thesis is

written for the Department of Computer and Information Science. The idea that lead

to the master thesis came from discussions on the subject with our supervisor Babak

Farshchian. It is assumed that the readers of this thesis have a technical background.

Trondheim, 2016-06-10

Nemanja Aksic Petter Astrup Erik Gunnar Jansen

ii

Acknowledgment

Firstly, we would like to thank our supervisor, Babak A. Farshchian, Researcher and Re-

search Manager at SINTEF and Adjunct Associate Professor at the Norwegian University

of Science and Technology for his help and feedback in our research process. Secondly

we would like to thank all the students that participated in our observation study and

lastly we would like to thank all the developers that contributed to the study by answer-

ing the questionnaire we posted online.

P.A., N.A. and E.G.J.

(Your initials)

iii

Abstract

Self-monitoring and sharing of data to enhance personal fitness and health has rapidly

increased in popularity, and as a result, there has emerged a market for delivering tools

supporting development and usage of technology that can contribute to this emerging

trend. This thesis aims to describe and evaluate the leading development platforms in

this field from the perspective of a developer developing mobile health applications.

The conducted research consisted of a case study where data was generated from on-

line documents, online questionnaires, and from the development of example applica-

tions using different mobile health platforms. In addition, we performed an observa-

tion study with students where we gave the students concrete tasks with the examined

mHealth Toolkit platforms, with corresponding interviews and questionnaires. The

three platforms Apple HealthKit, Google Fit, and Samsung Digital Health(SDH) were

found relevant, examined and then compared, to find strengths and weaknesses of each

platform with regards to the stated issues. The analysis was used to evaluate the pro-

ductivity, usability and added creativity to the development process for developers by

using the named mHealth Toolkits.

With the thesis, we found that when designing an mHealth Toolkit to be utilized by de-

velopers when developing mobile health applications and services, there are several

concerns that need to be addressed to increase the efficiency and productivity of the

developer. From the document analysis, we found that the Toolkits differ in techni-

cal architecture, data models and application development process, where the most

important finding was that Google Fit cannot be used for Health purposes. The ex-

ample system revealed that mHealth applications can be developed using both Apple

HealthKit and SDH, using significantly less time and lines of code with HealthKit. From

the observation study, we found that both Apple HealthKit and SDH simplified the over-

all development process. In addition, SDH’s API proved to have a more intuitive nam-

ing and a more descriptive documentation than HealthKit. HealthKit’s higher level of

implementation was however more intuitive. The questionnaire with experienced de-

velopers revealed that Apple HealthKit scored highest among the three with developers

commenting that no toolkit is stable/reliable enough to be used in production. Despite

this, the evaluated Toolkits show potential and if the mHealth Toolkit providers address

iv

the identified concerns, they might be viable solutions in the foreseeable future.

Keywords: mHealth Toolkits, Samsung Digital Health, Apple HealthKit, Google Fit, de-

veloper productivity, developer efficiency, mobile health application

Contents

Preface . i

Acknowledgment . ii

Abstract . iii

1 Introduction 3

1.1 Problem Description and Motivation . 3

1.2 Research Questions . 5

1.3 Scope and Contributions . 7

1.4 Structure of the Report . 7

2 Background and Previous Work 11

2.1 Background . 11

2.1.1 Software Toolkits . 12

2.1.2 mHealth Toolkits . 12

2.2 Previous Work . 13

3 Methodology 17

3.1 Conceptual Framework . 18

3.2 Research Strategy . 19

3.3 Data Generation Methods . 20

3.3.1 Documents . 20

3.3.2 Observations . 21

3.3.3 Questionnaires . 23

3.3.4 Interviews . 23

3.3.5 Example System Development . 25

v

vi CONTENTS

3.4 Data Analysis . 26

3.4.1 Qualitative Data Analysis . 26

3.4.2 Quantitative Data Analysis . 28

4 Analysis of mHealth Toolkits Documents 31

4.1 Google Fit . 31

4.1.1 Technical Architecture . 32

4.1.2 Data Structure and Storage . 34

4.1.3 Actor Network . 36

4.1.4 Application Development Process . 40

4.2 Apple Health . 43

4.2.1 Technical Architecture . 43

4.2.2 Data structure . 48

4.2.3 Actor Network . 51

4.2.4 Application Development Process . 54

4.3 Samsung Digital Health . 55

4.3.1 Technical Architecture . 55

4.3.2 Data Structure . 58

4.3.3 Actor Network . 58

4.3.4 Application Development Process . 63

4.4 Findings . 64

5 Development of Example System with mHealth Toolkits 67

5.1 Architectural Rationale . 67

5.2 System Description . 68

5.2.1 Blood Glucose Application . 69

5.2.2 Patient-Hospital Application . 72

5.2.3 Backend . 78

5.3 Development Metrics . 78

5.4 Findings . 79

5.4.1 Qualitative Data Findings - Apple HealthKit 79

5.4.2 Qualitative Data Findings - Samsung Digital Health 81

5.4.3 Quantitative Data Findings - Apple HealthKit & SDH 82

CONTENTS vii

6 mHealth Toolkits Observation Study 85

6.1 Observations . 85

6.2 Questionnaires . 87

6.3 Interviews . 88

6.4 Metrics . 88

6.4.1 Observations . 89

6.4.2 Questionnaires . 89

6.5 Findings . 89

6.5.1 Qualitative Data Findings . 90

6.5.2 Quantitative Data Findings - Apple HealthKit & SDH 97

7 Questionnaire with Experienced Developers 101

7.1 Description . 101

7.2 Process and Participation . 102

7.3 Findings . 104

8 Summary of Findings 107

9 Discussion 109

9.1 Discussion of Findings . 109

9.1.1 Chapter 4 Discussion . 109

9.1.2 Chapter 5 Discussion . 110

9.1.3 Chapter 6 Discussion . 113

9.1.4 Chapter 7 Discussion . 119

9.2 Research Questions . 121

9.2.1 Research Question 1 . 121

9.2.2 Research Question 2 . 122

9.2.3 Research Question 3 . 123

9.2.4 Research Question 4 . 124

9.3 Research limitations . 124

10 Conclusion and Future Work 127

10.1 Conclusion . 127

10.2 Future Work . 128

CONTENTS 1

Bibliography 129

A Acronyms 135

B Access to generated Data 137

C End User Issues 139

C.1 Accuracy and Synchronization . 139

C.2 Battery Drain . 140

C.3 Third-party Connectivity . 141

D Questionnaires 143

D.1 Observation Study Questionnaire . 144

D.2 Experienced Developers Questionnaire . 146

E Consent Form 153

E.1 Consent Form . 154

2 CONTENTS

Chapter 1

Introduction

The following chapter will introduce the problem description and motivation for doing

the research as well as the research questions formulated to drive the research in this

study. The scope and contribution of the thesis and a thesis outline will also be pre-

sented.

1.1 Problem Description and Motivation

The computing power of smartphones and the increased significance of cloud storage

and sharing has drastically changed the opportunities within mobile healthcare, and as

a result, a need for innovative hardware devices and development Toolkits/platforms to

handle interaction with these devices has emerged. The Toolkits/platforms provide the

developers with a lot of functionality, where the most important is means to store and

access a user’s health data in a centralized data store.

In the context of health and mobile devices, mHealth is an expression that surfaces.

mHealth is an abbreviation for mobile health and is used to describe mobile devices or

applications that affect health-related aspects. In [45], professor John Orzechowski de-

scribes mHealth "as the access, provision and/or delivery of healthcare interactions—anywhere,

anytime—facilitated by mobile and/or wireless technologies".

3

4 CHAPTER 1. INTRODUCTION

The incorporation of mHealth into the healthcare sector is becoming continuously more

common. According to a market report published by MarketsandMarkets (a market re-

search and consulting firm, ranked #2 in the world in premium market research studies

published annually), that the mHealth market will increase by 33,4% and reach USD

59.15 Billion by 2020[39]. In addition, Buttarelli[2015] states that “mHealth offers a

wealth of new opportunities, in terms of better and more responsive healthcare for in-

dividuals, better disease prevention and lower healthcare costs for welfare systems and

greater opportunities for businesses”[23]. PwC[2012] has conducted research regard-

ing mHealth using a survey and interviews where the participants were managers of

healthcare institutions and information technology companies. A part of the research

consisted of asking the participants to name the “Top drivers for patients to consider

beginning to use or increasing use of mHealth applications/services”[48]. The top three

drivers given were: increased efficiency for healthcare providers, reduction of health-

care costs and greater user control of own health. These drivers are also among the

motivations for developing and employing a Toolkit for healthcare enhancement.

In the mHealth market today there is a range of applications that track and access fit-

ness data. A search for “fitness” and “health” in Google Play Store and Apple App Store

resulted in over 100 applications for each search term in each of the stores. The way

these applications are developed, and how the data they generate and access are han-

dled varies. The main idea behind a mHealth Toolkit is to abstract away functionality

common to the mHealth applications and provide the developers with tools to make it

easier to create mHealth applications. Our definition of a mHealth Toolkit is, based on

our preliminary study, a set of tools in the form of libraries and APIs that assist in the cre-

ation of an mHealth application. The tools include APIs to store and access data, man-

age data permissions in addition to the libraries, used to access sensor data from the

mobile device. The terms mHealth Toolkit(s) and Toolkit(s) will be used interchange-

ably in the remaining chapters.

Little to no significant research has been conducted on mHealth Toolkits and how they

affect the developer. Our motivation for this study is to explore the leading mHealth

Toolkits from the developer perspective and investigate how they can add value to the

1.2. RESEARCH QUESTIONS 5

development process of an mHealth application and increase the developer produc-

tivity. It is important to evaluate the leading mHealth Toolkits because the evaluation

might give insight to platform providers in how they can improve the experience of us-

ing mHealth Toolkits for the developer, assess their approach when it comes to techni-

cal architecture and thereby simplify development of mHealth applications. The find-

ings from this thesis might also be generalizable to other types of platforms and Toolk-

its. According to Kay et al.[2011] in an article from World Health Organization(WHO), a

list of the most significant barriers to mHealth implementation, includes themes such

as; knowledge and technical expertise[36]. If the mHealth Toolkits can provide an ab-

straction of low-level implementation and provide tools to the developer that simplifies

the process of building mHealth applications, these barriers can be passed.

The Toolkits were selected based on criteria described in section 2.1.2 and were eval-

uated and investigated by conducting a literature study, developing an example sys-

tem, conducting an observation study with students, and sending questionnaires to

experienced mHealth Toolkit developers. These data generation methods allowed us

to examine how the selected mHealth Toolkits differ with regards to technical architec-

ture, data models, and application development process and how they add value to the

development process of mHealth applications.

1.2 Research Questions

With the goal of exploring the leading mHealth Toolkits from the developer perspec-

tive and investigate how they can add value to the development process of an mHealth

application, we have formulated the following research questions:

1. RQ1: What separates the technical architecture, data models and application de-

velopment process of the leading mHealth Toolkits and what aspects affect pro-

ductivity for a developer?

• This research question is formulated to investigate the differences of the

leading mHealth Toolkits. We will investigate their technical architecture,

data models and application development process in order to determine

6 CHAPTER 1. INTRODUCTION

what aspects that affect the productivity of developers.

2. RQ2: How do new adopters perceive the mHealth Toolkits in terms of documen-

tation and development process when creating a fundamental mHealth applica-

tion?

• This research question is formulated to investigate how new adopters per-

ceive the mHealth Toolkits. If the mHealth Toolkits are to be used and ac-

cepted within the developer community, they should be easy to learn and

use. This research question is asked to investigate the ease to learn and

use a mHealth Toolkit, by having students without prior experience with the

mHealth Toolkit in question develop a fundamental mHealth application in

a predefined environment. We define a fundamental mHealth application

as an application that can store and retrieve Health data.

3. RQ3: What is the view on mHealth Toolkits seen from the experienced developers

and new adopters based on their experience?

• This research question is formulated to investigate what the view develop-

ers with different experience have on the mHealth Toolkits. In order to im-

prove, mHealth Toolkits must absorb developer experiences and adapt ac-

cordingly. This research question concerns experienced and newly adopt-

ing developer’s perspective on the use of and experience with the mHealth

Toolkits.

4. RQ4: What mHealth Toolkit is best equipped to be utilized in development of an

mHealth service in terms of developer productivity?

• This research question is formulated to investigate how mHealth Toolkits

can be used in an mHealth service. mHealth toolkits are built indepen-

dently and they follow no common practice or industry standards. This re-

search question is asked in order to ascertain which mHealth Toolkit is best

equipped to be utilized to create a mHealth service if one were to be utilized.

1.3. SCOPE AND CONTRIBUTIONS 7

1.3 Scope and Contributions

This thesis will focus on evaluating the leading mHealth Toolkits from the developer

perspective and investigate how the mHealth Toolkits affect developer efficiency and

productivity when developing an mHealth application. We have selected this scope

because it gives us the ability to provide a thorough evaluation from the developer per-

spective.

The main contribution of this research will be a theory based on the analysis obtained

by investigating the described case, namely developers using mHealth Toolkits for the

creation of mHealth applications and how these mHealth Toolkits can provide support

and enforce productivity for a developer when developing mHealth applications. In

other words, the theory will provide insight into how the productivity of a developer is

affected with the use of the chosen mHealth Toolkits.

1.4 Structure of the Report

The master thesis is divided into 10 chapters. In addition to the introduction chapter,

there are 9 chapters, which will be presented below.

Chapter 2 Background and previous work

In this chapter, we will describe the background and previous work related to the thesis.

The concept of Toolkits will be described and elaborated, both in form the of Software

Toolkits as well as the more specified mHealth Toolkits. The process in our preliminary

study of selecting relevant mHealth Toolkits to evaluate will also be discussed. Lastly,

the previous work related to our thesis will be presented.

Chapter 3 Methodology

In this chapter, we will introduce the methodology used in the research. The concep-

tual framework will be described, the chosen research strategy will be presented and

elaborated, the data generation methods will be presented, and finally the data analy-

sis process will be presented and elaborated.

8 CHAPTER 1. INTRODUCTION

Chapter 4 mHealth Toolkits

In this chapter, the chosen mHealth Toolkits will be presented. Each mHealth Toolkit

will be presented with the same structure. First, the technical architecture of the mHealth

Toolkits will be presented, then their data structure and storage, an actor-network of the

different actors in the environment of the mHealth Toolkit will be provided, and finally

the application development process of the Toolkits will be described.

Chapter 5 Development of Example system with mHealth Toolkits

In this chapter, the process of developing an example system will be described. The

different parts of the system will be presented and described in detail. The metrics we

chose to track during the development process will then be presented.

Chapter 6 mHealth Toolkits Observation Study, Interviews and Questionnaires with

Developers

In this chapter, the observation study, interviews and questionnaires conducted with

students are described. Details of the observation study are described first before the

interviews and questionnaires are described.

Chapter 7 Questionnaire with Experienced mHealth Toolkit Developers

In this chapter, the questionnaire we conducted with experienced mHealth Toolkit de-

velopers will be described. The process of creating and distributing the questionnaire

will be described.

Chapter 8 Summary of Findings

In this chapter, the summary of findings from our research will be presented. It will

include findings from all the data generation methods.

Chapter 9 Discussion

In this chapter, our findings will be discussed with regards to the background, previous

work, and the stated research questions.

1.4. STRUCTURE OF THE REPORT 9

Chapter 10 Conclusions and Future Work

In this chapter, we will draw conclusions and propose future work within the field of

development with mHealth Toolkits based on our research findings.

10 CHAPTER 1. INTRODUCTION

Chapter 2

Background and Previous Work

In this chapter, the background and previous work related to our research will be de-

scribed. In the background section, the factors and findings from our autumn project

that influenced our initial choices in the thesis research process will be described. The

autumn project was conducted in the subject TDT4501 Specialization Project in the fall

of 2015. The master thesis may be seen as a continuation of this project, where the

project acted as a preliminary research study. After the background section, the previ-

ous work relevant to our thesis will be presented

2.1 Background

This section will describe the process leading to the aspects focused on in our mas-

ter thesis research. The findings from the aforementioned specialization project es-

tablished a baseline for our research by providing a definition of an mHealth Toolkit,

a selection of relevant mHealth Toolkits, as well as generated data for each of the se-

leceted ones. The generated data included details concerning technical architecture,

data structure, data storage, application development process and actor networks. We

choose to structure this information into a separate section, namely Chapter 4: mHealth

Toolkits.

11

12 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

2.1.1 Software Toolkits

PCMag defines a Software Toolkit as “A single utility program, a set of software routines

or a complete integrated set of software utilities that are used to develop and maintain

applications and databases”[46], while Dictionary.com describes a toolkit as “a set of

tools designed to be used together or for a particular purpose”[27]. Hence, Software

Toolkits are not general purpose, but rather a coordinated set of instruments geared

to solving a problem. Software Toolkits are important because they abstract away low-

level implementation, make simple things achievable through a few lines of code, en-

ables more rapid prototyping[31] and enables development of products at a lower cost[16].

It also increases developer productivity since the focus is moved to being creative rather

than handling low-level implementations. In addition, software Toolkits standardize

the way applications within a given field are developed and enables reusage of compo-

nents.

2.1.2 mHealth Toolkits

Based on our preliminary study, our definition of an mHealth Toolkit is a set of tools in

the form of libraries and APIs that assist developers when creating a mHealth applica-

tion. These APIs and libraries provide functionality for data storage and access, granting

data type permissions, and access to sensor data from a mobile device.

Our preliminary study, which involved discovering and evaluating mHealth Toolkits

potentially suitable, resulted in a small set of Toolkits deemed relevant. The discovery

consisted of a range of composed keyword searches performed in Google Search and

Google Scholar, where the sources were published articles and blog posts, scientific pa-

pers, plus the Toolkits’ documentation. The criteria we based our choice on were how

many developers that used them, the documentation quality, the tools, the amount of

partnerships within the health segment, and how much resources the manufacturer of

the Toolkit had. The evaluation based on the given criteria resulted in the following be-

ing chosen for further assessment: Apple HealthKit, Google Fit, and Samsung Digital

Health(SDH). All are actors with a substantial market share that provide a vast range of

technology and a platform with extensive documentation. The results from the evalua-

tion for each of the chosen Toolkits will be elaborated in Chapter 4.

2.2. PREVIOUS WORK 13

2.2 Previous Work

In this section, previous work relevant to our thesis will be discussed. First, papers re-

lated to how Software Toolkits affect developer efficiency are presented and then papers

regarding the usability of Toolkits/APIs for developers and how different aspects of the

Toolkits/APIs affects the developer are presented.

Von Hippel and Katz[2002] discuss the importance of a Toolkit, and in the conclusion

of the paper they write: “We conclude by proposing, as we did at the start of this arti-

cle, that toolkits for user innovation will eventually be adopted by many manufactur-

ers facing heterogeneous customer demand”[53]. The paper gives reason to believe that

Toolkits are important to increase user innovation. The idea behind using Toolkits in

software development is to abstract away difficult tasks for the application developer.

Software Toolkits include abstractions of functionalities that are time-consuming to im-

plement and are common elements across applications, e.g. low-level implementations

of a remote server connection or access to a device sensor. Greenberg[2007] states that

a Toolkit should: “Remove low-level implementation burdens common to all groupware

platforms (e.g. simplified access to communications, data sharing, concurrency control,

session management)”[31]. In addition, he states that: “GroupKit considerably simpli-

fied groupware development e.g., using GroupKit we reimplemented GroupSketch and

GroupDraw in a few hours using very little code. Other simple groupware tools were sim-

ilarly rapid to build: a brainstorming tool in 74 lines, a graphical concept map editor

in 213 lines, a file-sharing system in 51 lines, and a text-chat system in 80 lines of code”.

These findings indicate that Toolkits make developers more productive in terms of lines

of code and time used to complete given programming tasks.

Clarke[2004] describes how the usability of software tools affects developer efficiency.

It discusses the user-centered design approach, where the objective is to "make sure

that you understand the characteristics of users and how those characteristics impact the

way they expect the API to work"[24]. Further, the paper discusses the psychological

term affordance in relationships to APIs and states that "APIs expose affordances. Every

API has a set of actions that it can perform. Therefore, usability problems can exist in an

14 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

API that are related to users not perceiving the affordances the API supports". The paper

concludes by stating the need to "understand the characteristics of users and how those

characteristics impact the way they expect the API to work". The discussion and findings

in this paper give reason to believe that in order to create a programming tool, such as

a Toolkit, the key is to understand the programmer using the tool. The belief that you

need to understand the developer in order to make a good programming tool is under-

lined in Henning[2007], where the author states that “APIs should be designed from the

perspective of the caller”[33].

Scheller and Kühn[2012] evaluate a specific API, namely a file zipping API and want to

identify influencing usability factors for the two most common concepts of APIs: classes

and methods. They do so by conducting a study with 20 programmers and 2 different

API variants and evaluate how differences between the APIs influence usability when

instantiating classes and calling methods. They found that "A high number of classes

has a negative impact on performance when searching for a class and gives a negative

impression to the programmers"[51] and that "calling methods with more parameters

also takes more time". Regarding the naming of the API’s classes, they write that: "If

a class or method name didn’t meet the programmer’s expectations, he/she would need

much more time finding it". Additionally, they state that "the study results indicate that

the experience of a programmer has no significant influence on performance". The study

concerns classes and methods and they purpose for future work that "further studies

will need to be conducted to get a broader understanding of usability aspects for different

API design decisions, like annotations, class inheritance, interfaces and XML configura-

tion". The findings from Scheller and Kühn[2012] gives reason to believe that the classes

and methods of programming tool such as a Toolkit or an API need to be structured in

a way that is easy to understand and learn for the developer.

In Bloch[2006], the importance of good documentation is emphasized. Here, one key

is that "Documentation matters. No matter how good an API, it won’t get used without

good documentation"[21]. In Robillard[2009] the importance of good documentation is

investigated through a survey and interviews with developers. The survey’s core con-

sisted of a three-part, open-ended question on the obstacles developers faced learning

2.2. PREVIOUS WORK 15

APIs. Regarding the interviews, the author writes: “I again chose an open-ended, loosely

structured style of qualitative interview, which consisted of asking participants to sum-

marize their work with the API and explain the obstacles they faced”[49]. The study gives

insight into how developers feel about APIs, for example, one of the answers received

through the survey was: "I don’t understand the design intents behind the API, the over-

all architecture, why certain functions are designed as such". Based on the findings, the

paper concludes that "A major result of the survey is that resources topped the list of ob-

stacles to learning APIs. This is a good reminder that efforts to improve the usability of an

API’s structure need to be complemented by efforts to improve the resources available to

learn them". With that statement the author wants to convey that in addition to a good

documentation, supplementary information such as code examples must be present in

order to encourage an efficient learning process for developers using the software tool.

In this section, we have presented previous work that is related to our thesis. First,

papers related to how Software Toolkits affect developer efficiency were presented. The

previous work presented in that paragraph is related to RQ1. It is related to RQ1 because

the papers suggests that a Toolkit can improve developer efficiency.

Secondly, the papers regarding the usability of Toolkits/APIs for developers are related

to RQ2 and RQ3. They are related to RQ2 because both the papers and RQ2 assess how

the user perceive Toolkits/APIs. RQ2 aims to investigate how developers grasp a Toolkit,

and the papers state that it is important to design Toolkits/API with the user in focus

and always have in mind how the user will grasp the API/toolkit. The papers are related

to RQ3 because both the RQ and the papers concern the views of developers.

Lastly, papers describing how the different aspects of the Toolkits/APIs, including classes,

methods and documentation, affect the developer were presented. These aspects con-

cern all of our RQ’s.

16 CHAPTER 2. BACKGROUND AND PREVIOUS WORK

Chapter 3

Methodology

Experiences and
motivation

Literature review

Research
Questions

Conceptual
framework

1:1

Survey

Design and
Creation

Experiment

Case Study

Action Research

Ethnography

1:N

Interviews

Observations

Questionnaire

Documents

Qualitative

Quantitative

Strategies
Data generation

methods

Data analysis

Figure 3.1: Research Process [44, p. 33]

In this section, the research process will be described. A graph depicting an overview

of the process can be viewed in Figure 3.1, where the relevant components are high-

lighted with a thick red border. This process is based on the process described in “Re-

searching Information Systems and Computing”[44]. Each of these components, such

as research strategy, data generation methods and data analysis will be described in

further detail in this section.

17

18 CHAPTER 3. METHODOLOGY

3.1 Conceptual Framework

In an attempt to perform this study we have detailed a conceptual framework, which

follows the definition as described by Miles and Huberman[1994]: “A conceptual frame-

work explains, either graphically or in narrative form [both are much preferred], the

main things to be studied – the key factors, constructs or variables – and the presumed

relationships among them”[41, p. 18].

TOOLKITS
TECHNICAL ARCH

DOCUMENTATION

DATA MODELS

▪ Characteristics

▪ Characteristics
▪ Context

▪ Characteristics
▪ Context

DEVELO
PER

▪
Characteristics

PRODUCTIVITY AND SUPPORT
INDICATORS

▪ Quantitative

▪ Qualitative

• Lines of code
• Time to learn
• Time to complete

• Interviews
• Observations
• Questionnaire

Figure 3.2: Visual description of conceptual framework

The conducted study empirically evaluates the leading mHealth Toolkits in terms of

technical architecture, data models and documentation. Another aspect of the study

will be to look at how developers are affected with regards to productivity and support.

Figure 3.2 is a visual representation of the conceptual framework, which describes the

aspects to be examined and their interrelations.

3.2. RESEARCH STRATEGY 19

Within the “TOOLKIT” box, there are three aspects we will be focusing our attention on:

“TECHNICAL ARCH”, “DOCUMENTATION” and “DATA MODELS” respectfully. “TECH-

NICAL ARCH” represents the technical architecture of the mHealth Toolkit to be stud-

ied, namely the “characteristics”, which represent distinct aspects of the Toolkits from

a technical point of view. The “DOCUMENTATION” box is self explanatory as it rep-

resents Toolkits’ documentation. The “characteristics”, represent the structure and us-

ability of the documentation, will be evaluated in multiple “context’s”(i.e. settings). The

final box “DATA MODELS”, focuses on the Toolkit choices of storing data and its “char-

acteristics”. The context property in this case will represent in what setting it will be

evaluated, e.g. whether health or fitness data is stored.

The aspects described above will all be assessed in relationship to a “DEVELOPER” and

each other; an arrow represents a relation. A developer has certain “characteristics” in

terms of experience, which are considered in the study. Productivity and support indi-

cators represent the variables within our study, which will be described in further detail

in the following chapters.

3.2 Research Strategy

The motivation behind this study is to explore and investigate how mHealth Toolkits

support and affect the productivity of application developers. To gain insight into these

aspects, we adopted a case study as the research strategy. The main reason for adopting

a case study is that we wished to examine mHealth Toolkits within a simulated con-

text through observations, supported by additional data sources related to the Toolkits’

effect on developer productivity. Since we wanted to describe and understand these as-

pect, our case study was determined to be a descriptive one, because it “leads to a rich,

detailed analysis of a particular phenomenon and its context”[44, p.143]. In our case

the phenomenon is developer efficiency and productivity, the context is development

of mobile health applications, and its units of analysis are the Toolkits: Apple HealthKit,

Google Fit and SDH. In accordance with the main focus of the case study, namely the

current status of mHealth toolkits, the study was mainly short-term and contemporary;

but it can also be seen as a historical study, due to the fact that a majority of the litera-

20 CHAPTER 3. METHODOLOGY

ture found on the subject is based on earlier events.

3.3 Data Generation Methods

In compliance with the norm for case studies, it was important for us to have multiple

sources of data, both quantitative and qualitative, in order to obtain an adequate ba-

sis for the results to be validated against other sources. Quantitative data was vital to

provide quantifiable measures of developer productivity and support, while qualitative

data was valuable to be able to abstract themes and patterns that we deemed important

for our research questions. With this requirement in mind, it was highly suitable with a

case study strategy encouraging the use of multiple data generation methods. The pre-

vious study described in section 2.1.2 resulted in three Toolkits found relevant(Apple

HealthKit, Google Fit, SDH), and for each of these three was data generated by em-

ploying the following methods: document analysis, observations of participant devel-

opment, questionnaires, interviews, and mHealth example system development. The

methodology of each of these methods will now be described.

Method RQ1 RQ2 RQ3 RQ4
Documents & Analysis of
online publications,regarding
Google Fit, HealthKit and SDH:

Observations:

Observations of students programming
in predefined environment; 7 students
with Apple HealthKit and
9 with Samsung Digital Health(SDH).

Questionnaires:
Numerical answers from students
post-observations, numerical and textual
answers from experienced developers.

Interviews:
Transcriptions of interviews with students after their first programming experience
with given Toolkit (HealthKit and SDH)

Example System Development:
Development of system with mobile applications that utilizes the main functionality
of HealthKit and SDH

Table 3.1: Relation between the generated data and research questions it provides an-
swers to

3.3.1 Documents

The aforementioned Toolkits were focused on in the generation of data from docu-

ments their documentation, technical class structure and hierarchy(addressing RQ1).

The data was obtained by the same process as previously described in the previous

paragraph, except that a different set of keywords in the searches was used. The list of

3.3. DATA GENERATION METHODS 21

keywords included: “Google Fit”, “Apple HealthKit”, “Samsung Digital Health”, “mHealth”,

“developer”, “development”, ”application”, “healthcare”, “service” , “partnerships”, “pro-

ductivity”, “usability”. An important note is that this process resulted in Google Fit be-

ing excluded from the data generation with the remaining methods(due to reasons de-

scribed in section 4.1 and elaborated in section 5.2 and 9.1.1).

During the data generation and analysis, there were two concerns, the first being the

evaluation of the validity of found documents with regards to their purpose and pro-

cess, and the second being the amount of relevant documents available. An attempt

to increase the validity of the found documents involved putting more weight on sci-

entific publication than other sources, and using those with more citations and having

a lower inclusion criteria of five citations(listed by Google Scholar) for all documents

published before 2014. The amount of available relevant documents, and especially

scientific publications, was estimated to be low, and it was hence decided to put more

weight on the other sources in compliance with the method triangulation technique[44,

p. 37].

3.3.2 Observations

In order to investigate the elements affecting how new adopters perceive the develop-

ment of a fundamental application, it was decided to conduct observations(addressing

RQ2). Participants for the observations were selected according to non-probabilistic

convenience sampling and were hence chosen mainly due to their availability and will-

ingness to be involved[40]. It involved recruiting participants among fellow computer

science students both for development with Apple HealthKit and SDH. The require-

ments for participation were a minimum of two years of experience with computer

science from a university, no previous exposure to or experience with the designated

Toolkit, and experience with the corresponding programming language and the inte-

grated development environment(IDE).

The observations were overt, i.e. the participants were aware that they were being ob-

served. The observations were conducted by watching the interactions of the partici-

22 CHAPTER 3. METHODOLOGY

pants solving tasks in the designated development environment. The researchers’ de-

gree of participation during observation was passive participation, meaning that “ac-

tivities are observed in the setting but without participation in activities”[35]. The par-

ticipants were also asked to complete a questionnaire and an interview following the

end of the observation.

The main source of data collected during the observations were video recordings cap-

tured by a screen recording software on the environment computer. These video record-

ings were to be used as a basis for quantitative and qualitative analysis of the partici-

pants’ actions. In addition, the observers took field notes of general observations during

each observation.

Due to the time spent conducting each observation and the length of the study, it was

possible that these time constraints would prevent us from attaining a sufficient sample

size and relevance. Nevertheless, the time constraint was overshadowed by the problem

with recruiting participants that met the requirements, which seemed to have a greater

impact in our case. The attained sample set affects both the findings from quantitative

and qualitative data analysis.

The required sample size for qualitative data analysis is highly related to factors such

as the type and the goal of the study, and Marshall[1996] states that “an appropriate

sample size for a qualitative study is one that adequately answers the research ques-

tion”[40]. As mentioned previously, the qualitative data generated from the observa-

tions only served as a supplement to data generated from the interviews, and the re-

quired sample size was hence equal to the required sample size for the interviews. The

difficulty in attaining a relevant sample set should also be mentioned, which we over-

came through the use of a non-probabilistic convenience selection approach and the

fact that the population of this case study is considered to be relatively homogenous

makes the issue negligible.

3.3. DATA GENERATION METHODS 23

3.3.3 Questionnaires

Self-administered questionnaires were used as a method for generating additional data

in relation to developers’ thoughts, with the purpose of being applied to both develop-

ers recently exposed to an experience using a Toolkit as well as developers who have

passed this stage and gained valuable experiences(addressing RQ3). In our study, two

variants of questionnaires were composed: one to be completed along with the ob-

servations, and the other aimed at developers with established experience with the

Toolkit(s) in question. The first questionnaire was answered post-development by the

participants in the observations to supplement the other data generated from the ob-

servations, while the second was used in an attempt to reach out to developers with

programming experience with the Toolkits.

Both questionnaires included the same quantitative questions with a clearly de-

fined scale for the answers, but since the experienced developers did not participate

in an interview, they were also asked to answer qualitative questions to make it possi-

ble for them to provide additional thoughts.

As with the observations, the analysis of quantitative data generated from the ques-

tionnaires was impacted by the sample size, and the number of questionnaires related

to the observations was limited by the pool of participants and we knew that the ques-

tionnaire aimed at experienced developers was susceptible to receiving few responses.

In an attempt to increase the number of received responses the questionnaire was sent

out via all communication channels expected to have a chance at reaching experienced

developers.

3.3.4 Interviews

Interviews were selected as the main source of qualitative data to gain a deeper insight

into aspects affecting the development process, the developer productivity, and the

comparable differences between the Toolkits, based on the views of developers after

obtaining unprecedented experience(addressing RQ2 and RQ3). The interviews were

determined to be semi-structured with the advantage that they “consist of several key

questions that help to define the areas to be explored, but also allows the interviewer or

24 CHAPTER 3. METHODOLOGY

interviewee to diverge in order to pursue an idea or response in more detail”[28]. Au-

diotaping was used during the interview to record the conversation to be used in data

analysis.

An essential challenge when conducting interviews is related to the interviewer’s per-

formance during the process, including the need to act similarly in all interviews and

asking clarifying follow-up questions to the interviewee’s initial answers. It was crucial

to meet both of these needs across interviews with all participants developing with the

same Toolkit and across the set of Toolkits examined. The significance of this challenge

was increased because the interviews were to be conducted by two different interview-

ers, which could result in inconsistencies. Actions taken to prevent such inconsisten-

cies were having the interviewers plan and discuss the interview process together, and

then collaboratively create a predefined protocol with guidelines to be followed by each

interviewer.

Mentioned earlier in this section, is the sample size for generating qualitative data an

issue both for observations and the interviews. Regarding semi-structured interviews,

which was the structured chosen, there seems to be some dispute in the literature about

the required sample size. For example, there’s Morse[2000] that states that “If, when us-

ing semistructured interviews, one obtains a small amount of data per interview ques-

tion (i.e., relatively shallow data), then to obtain the richness of data required for qual-

itative analysis, one needs a large number of participants (at least 30 to 60)”[42], in-

dicating a relatively large sample size required in our case. On the other hand, there’s

Guest et al.[2006] stating that “they found that saturation occurred within the first twelve

interviews, although basic elements for meta themes were present as early as six inter-

views”[32]. Further, they state that ”If the goal is to describe a shared perception, belief,

or behavior among a relatively homogeneous group, then a sample of twelve will likely

be sufficient as it was in our study”. It’s important to note that even though Morse[2000]

suggests a size of at least 30, it is only in the case of semi-structured interviews where a

small amount of data per question is obtained, and in an attempt to obtain richer data

several follow-up questions were asked to clarify and elaborate on answers.

3.3. DATA GENERATION METHODS 25

When generating qualitative data, being highly relative and subjective by nature, it is

important to validate the results to strengthen the claim of validity. Our attempt at

strengthening this claim involved a triangulation of the data that was related to the in-

terviews and observations, where the data from interviews was checked against data

from the screen recording notes and observation field notes. The themes identified

in the transcription analysis were checked for occurrences in the supplementary data,

and the occurrences of themes were checked across interviews, rather than basing the

findings on a single statement or individual.

3.3.5 Example System Development

A data generation method used that is not described in “Researching Information Sys-

tems and Computing”[44] is what we have defined as example system development.

The example system development consisted of developing a system with mobile appli-

cations, developed by us, to simulate a simulated mobile health service to be employed

by patients and healthcare personnel in prevention and treatment of a given chronic

disease. The rationale behind the development was to obtain more in-depth and de-

scriptive data from a developer’s point of view, regarding the technical structure, doc-

umentation, and the interconnection of the developed application within a simulated

ecosystem scenario(addressing RQ1, RQ2, RQ3 and RQ4). The system was aimed to be

as realistic as possible, while at the same time avoiding aspects that were not relevant

to our research questions. Only the basic functionality and architecture of the service

were to be simulated, and other non-functional requirements such as security and pri-

vacy were disregarded as they fell out of the scope of our research.

The generated quantitative data from the development included development time

and lines of code, in addition there were taken notes of problems and challenges expe-

rienced with each mHealth Toolkit, which was qualitative data.

It was challenging to develop a system from a realistic scenario that could be gener-

alized, and at same time limit the required resources by disregarding certain concerns,

to not have the quantitative data being affected by the development of irrelevant func-

tionality.

26 CHAPTER 3. METHODOLOGY

3.4 Data Analysis

The case study included a wide range of methods for generating data, both qualitative

and quantitative data, where the qualitative data was given principal emphasis as “it’s

the main type of data generated by case studies”[44, p.266]. All five of the abovemen-

tioned methods generated qualitative data, while quantitative data was generated from

observations, questionnaires and example system development. This section describes

the overall process of analysing each of the two data types, by identifying common and

distinct elements across the various generation methods.

3.4.1 Qualitative Data Analysis

Qualitative data analysis was performed to evaluate the research in light of the stated

research questions. All of the qualitative generated data, except for the video and au-

dio recordings from the observations, was textual. It was therefore decided to per-

form a general approach to analysing the data, with minor variations depending on

the method that generated it. The approach consisted of manually exploring the tex-

tual data inductively using a form of content analysis to generate themes and explana-

tions based on the relevance to the research questions. The criteria for and degree of

relevance of the textual data was determined by the interpreters, and was hence sus-

ceptible to subjectivity in spite of attempts made to be unbiased by staying close to the

actual data.

Data from documents was analysed to provide technical details for each of the chosen

Toolkits, interview data was chosen to be the main source for evaluating unprecedented

development experience, the questionnaire data was the main source of established

experience, and the remaining data was used as a supplement for evaluating both un-

precedented and established experience.

Documents

In the analysis of data generated from documents, documents were regarded as con-

tainers of data to be analysed without the concern of the production and exchange of

them. A qualitative technique that consisted of an examination of themes covered in

3.4. DATA ANALYSIS 27

a selection of documents was used. The process consisted of manually labeling data

into relevant themes and recognizing similarities and differences between them. This

process was conducted in an iterative fashion over a period of about one month where

each iteration consisted of re-evaluation and re-analysis of the updated data collection

before the final collection of relevant themes was established.

Interviews

For the analysis of interview transcripts, a manual approach was applied, based on the

“Five stages of data analysis” in Pope et al.[2000] framework approach for analysing

qualitative data[47]. The transcripts were first browsed and notes of first impressions

were taken. Then the transcripts were “coded”, which involved going through them

more meticulously to label significant sentences and sections. A part was deemed sig-

nificant if it was relevant to the stated research questions, if the interviewee explicitly

stated that it was important, or if it had previously been read about something similar

in a publication. The common characteristic among these reasons was the fact that we

as the interpreters considered them to be important. After the initial coding, the dis-

tinctive occurrences of the codes were counted across the set of interviewees(i.e. there

could only be one occurrence per participant).

The set of codes were first grouped into three groups related to the interview ques-

tions(Toolkit usefulness, positive experience, negative experience). Then the process

of eliminating codes was performed by merging similar codes and removing codes that

were regarded as unimportant by the criteria to only have one occurrence and not be-

longing to any other the codes. To provide relevance to the research questions, the

initial groups were regrouped into more descriptive and specialized ones, where each

group formed a theme that was given a generalized name. Each themes’ set of codes

was checked for distinct occurrences across participants to give the themes an occur-

rence value.

28 CHAPTER 3. METHODOLOGY

Observations, Questionnaires & Example Development

Before performing textual analysis, the video recordings from the observations were

watched to produce textual data from the video footage. General notes of each par-

ticipant’s actions during development were written down in the same manner as the

written field notes, which together formed the basis for supplementing and checking

the validity of the data analysis of interview data. Additionally, any non-relevant ques-

tionnaire answers received from experienced developers were discarded.

Textual data generated from observations, questionnaires and example development,

was analysed using the same approach. The textual data consisted of notes in the form

of sentences, and these notes were reviewed to recognize relevant themes and their oc-

currences. The themes produced by the interview data analysis were used as the main

set of relevant themes.

3.4.2 Quantitative Data Analysis

Observations

The video recordings were also watched to perform quantitative analysis. The quanti-

tative data analysis consisted of measuring each participant’s task completion time, the

number of tasks completed, and the development time spent IN available documen-

tation versus in IDE. Statistical analysis was performed on the measures in an attempt

to describe the relationship between the number of tasks completed and the ratio be-

tween time spent in documentation and IDE, by calculating the correlation between

the two variables.

Questionnaires

The “D-T Scale”[55] was used for all questions with quantitative answers. The scale is a

continuous scale ranging from Terrible(equivalent to value 1) to Delighted(equivalent

to value 7). The main reason that the scale was deemed suitable was that “The mea-

sure has reasonable reliability, converges with other rating scales and free-response

measures”[55]. The data analysis consisted of calculating the arithmetic mean of the

3.4. DATA ANALYSIS 29

answer’s equivalent values, per question for each Toolkit in question, to quantify the

developer’s thoughts and experience.

Example Development

The quantitative data regarding the amount of code lines and the time needed to de-

velop a given functionality or application was measured for development with each of

the given Toolkits. The measures were used to compare the developers’ development

of a more complete application with each toolkit.

30 CHAPTER 3. METHODOLOGY

Chapter 4

Analysis of mHealth Toolkits

Documents

In this chapter, we will present the analasys of mHealth Toolkit documents we had con-

ducted. Based on our preliminary study, our definition of a mHealth Toolkit is a set of

tools in the form of libraries and APIs assisting developers in the creation of a mHealth

application. These APIs and libraries provide functionality for data storage and access,

managing data type permissions, and access to sensor data from a mobile device. As

mentioned in section 2.1.2, we found that the market leading mHealth Toolkits are Ap-

ple HealthKit, Google Fit and SDH. For each one, the architecture, data structure and

storage, and application development process will be elaborated. In addition, actor net-

works for the mHealth Toolkits will be presented to provide an overview of the ecosys-

tem of actors related to the mHealth Toolkit in question. In the end, the findings will be

presented. The findings from this chapter will contribute to answer RQ1.

4.1 Google Fit

In this section, we will describe the Google Fit platform. The focus will be on describing

its technical architecture, data models, and application development process. Accord-

ing to its documentation, Google Fit aims to be “An open platform that lets users control

31

32 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

their fitness data, developers build smarter apps, and manufacturers focus on creating

amazing devices” and introduce “New APIs to make building fitness apps and devices

easier”. In other words, Google aims to make fitness data more available both to the de-

velopers and end users of Google Fit. Google Fit has a development platform and a user

platform, consisting of applications that can be used to access and track fitness data.

The development platform consists of a set of APIs and a SDK for mobile develop-

ment. The APIs support storage, retrieval, and manipulation of data, and are accessible

through both the SDK and REST API. The SDK has additional functionalities including

Bluetooth data exchange, access to sensor data, and tracking of user activities. Several

third-party applications, e.g. Nike Running and Strava, are integrated with Google Fit to

utilize its activity tracking functionality. Integration with Google Fit enables third-party

applications to interchange and synchronize data via Google’s server network.

4.1.1 Technical Architecture

In this section, we will look at the technical architecture of Google Fit, specified in the

deployment diagram in Figure 4.1. Artifacts and components crucial to the Toolkit will

be described in detail from a technical perspective, focusing on their properties, roles,

as well as underlying structures.

Figure 4.1: Deployment diagram for the Google Fit platform

4.1. GOOGLE FIT 33

In Figure 4.1, is a diagram depicting the physical deployment of software components(artifacts)

on hardware components(nodes) for a third-party application with Google Fit integra-

tion. The boxes represent nodes and the rectangles within boxes the artifacts that are

deployed on the given node. As seen in the diagram, is all communication coordinated

through the Google Fit API, which is deployed on the Google Cloud Platform and acts

as a mediator between the data storage and applications that connect to the API.

Figure 4.2: Google Fit Web portal

As a part of Google Fit, user applications are provided; a web portal where the users

can log in and access their historical fitness data, and applications for Android phones

Figure 4.3: Google Fit Android
Dashboard App

and Android Wear that make it possible to track fitness

data utilizing device sensors. The web portal supports

devices that have a browser that supports the Google

Fit web portal. Figure 4.2 shows a view of the deploy-

ment of the web portal in the Chrome browser. The

application for Android devices requires Android ver-

sion 2.3 and above[30]. Figure 4.3 shows an example of

deployment on OnePlus One with Android 5.1.1. The

application for Android Wear can also be deployed on

a smartwatch that supports Android Wear. If a user

has the Android Fit application installed on his/her

device, the application will automatically track fitness

data based on the data stream received from the sen-

34 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

sors on the device. The application will automatically determine what kind of activity

the user is performing and store it in Google Fit. The application also provides the user

with a visualization of historical fitness data. Additionally, both the web portal and the

applications for Android and Android Wear will present the user’s goals based on their

progression.

The Google Fit SDK consists of a set of APIs that are accessible after installing it. The

Sensors API provides sensor data from Android devices and wearables connected to the

devices. The Recording API provides automated storage of fitness data using subscrip-

tions. The History API provides access to the user’s fitness history and functionality to

manipulate it. The Sessions API provides the option to store fitness data with additional

session data. The Bluetooth Low Energy API enables access to Bluetooth low energy de-

vices that are connected to a smartphone and allows them to store data in Google Fit.

The Config API provides additional settings for Google Fit such as the configuration of

custom data types.

The REST API provided by Google Fit is a resource used to access fitness data from

the Google Fit fitness store, and it is available to all platforms. The REST API provides

functionality for accessing and manipulating datasets and sources, and creation and

manipulation of sessions. To connect to the REST API, a developer would have to send

a request to Google for authorization to obtain an access token for the information the

user has stored in Google Fit. When the developer obtains the access token, the appli-

cation can make HTTP requests to the REST API to access the information.

4.1.2 Data Structure and Storage

This section will describe the data structure and data storage mechanisms of Google Fit.

First, the data structure will be described, then its data types and storage mechanisms.

In the data model, some data types are predefined. The predefined data types are called

public data types and include simple data types(See [29] for a complete overview). There

are also aggregate public data types that are predefined and consists of aggregates of

4.1. GOOGLE FIT 35

basic data types. In addition to the public data types Google has created custom data

types can be customized by defining data type attributes. With the custom data types,

there is little restriction to the types of data that can be stored in Google Fit. Google

states in their documentation [29] that a custom data type is only accessible from the

application that defined it. If another application were to access the data it would have

to request a shareable data type from Google. A shareable data type has the same func-

tionality as a custom data type, but other applications can access the data as well. If

another application wants to write to a shareable data type, the developer has to get

permission from the creator of the shareable data type.

Google Fit is used for storing and tracking of fitness data. As mentioned in [34], is

Google’s main focus fitness and nutrition. This statement is backed by the guidelines

section of the ‘Google Developer Documentation’ for Google Fit. In the section ‘Respon-

sible use of Google Fit’ of the documentation[30], Google states the following: “Do not

use Google Fit APIs for non-fitness purposes, such as storing medical or biometric data,

selling data, or using data for advertising”[30]. This statement leads to the conclu-

sion that Google’s intention with Google Fit is to store fitness data rather than health

data. Storage of health data has previously been attempted by Google with the ‘Google

Health’ platform[9]. Google Health was depreciated in 2011[9] because “Google Health

isn’t having the broad impact that we hoped it would”[9]. With Google Health, Google

wanted to target people who would benefit from a digital health record. The failure of

Google Health might be the reason why Google decided not to address healthcare with

Google Fit.

Data that applications write to Google Fit is stored in Google’s cloud storage. Conse-

quently, the data tracked by a device connected to Google Fit will be accessible to all

other devices connected to Google Fit. For example, if a user uses two different smart-

phones, the data will be synchronized to both devices. The solution increases the data

accessibility for developers. Rather than connecting to the application on the device,

the developers can access the available APIs. While this form of data storage is great

for fitness applications, it might be an issue for applications handling health data. If

Google were to change their targeting strategy to include the health segment, it needs

36 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

to address aspects concerning the platform’s data storage and data security.

4.1.3 Actor Network

This section will provide an overview of the different actors that are a part of the Google

Fit ecosystem. The overview is represented as an actor-network diagram.

Figure 4.4: Actor-network diagram for the Google Fit platform

Figure 4.4 shows all of the main actors of the Google Fit ecosystem. The Google Fit

API is the core of the ecosystem. It contains access points for retrieving and storing

data for all users of the system and they connect the various components of the system

together. An example scenario is a user accessing the Google Fit Application on his/her

smartphone to review his historical step count for the last month. The user acts on the

4.1. GOOGLE FIT 37

smartphone that acts on the app. The application acts on the Google Fit APIs through

an internet connection to retrieve the historical step count. The API for step count then

acts on Google Cloud Storage to retrieve the correct data which propagates the act to

Google’s servers where the actual data is located.

Table 4.1: Description of Actor-network in Figure 4.4.

Actor Description Acts on

Technical

Google Fit Mobile Appli-

cation

Application that can be

used on Android devices

which automatically

tracks the activity of the

user. It can also be used

to register fitness data

manually and display

statistics.

Google Fit APIs

Google Fit Web Portal Online portal where users

can access their fitness

history and change their

fitness goals.

Google Fit APIs

Google Fit Android Wear

Applications

App for smartwatch

where you can display

your tracked activity. It

also makes it possible to

track heart rates when a

sensor is available on the

smart watch.

Google Fit APIs or An-

droid App through Blue-

tooth low energy

Google Fit APIs Online access points for

retrieving and storing

data.

Google Cloud Storage

38 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

Continued Description of Actor-network

Actor Description Acts on

Google Cloud Storage Google’s system for ac-

cessing cloud storage.

Has connection to all of

the servers belonging to

Google.

Google Servers

Third-party Applications Different applications

that are using the Google

Fit APIs to store data,

retrieve data or both.

Google Fit APIs, Third-

party servers

Human

Third-party Developers People using the Google

Fit to develop third-

party applications for the

Google Fit platform.

Third-party App, Google

Fit APIs, Third-party Busi-

ness Analysts

Google Developers Developers hired by

Google in order to im-

prove the API and apps

offered by Google

Android App, Online

Portal, Android Wear App,

Google Fit APIs,Google

Business Analysts

Users People using the applica-

tions that are part of the

Google Fit Platform

All Smartphones, com-

puters, Android Wear

Watch

Healthcare Personnel Healthcare personnel

who potentially can ac-

cess data stored in Google

Fit.

Computers

4.1. GOOGLE FIT 39

Continued Description of Actor-network

Actor Description Acts on

Google Business Analysts Google’s business people,

who analyze the business

marked and communi-

cate with the developers

regarding what should

and should not be made.

Google Developers

Third-party Business An-

alysts

Third-party business peo-

ple, who analyze the busi-

ness marked and commu-

nicate with the develop-

ers regarding what should

and should not be made.

Third-party Developers

Physical

Android Phones Phones that run the An-

droid operating system.

Android App

Computers Computers and other de-

vices that can be used in

order to access the Google

Fit Web Portal.

Google Fit Web Portal

Android Wear Watches Smartwatches that are

running Android and

support Android Wear.

Android Wear App

Google servers Google’s server park .

Third-Party Servers Servers of third-party ap-

plications .

End of Table

40 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

4.1.4 Application Development Process

In this section, we will describe how developers can use the developer tools to access

the functionality of Google Fit. First, the initial setup process will be described, then

an example of ways to connect to the framework. The description and examples were

collected from the Google Fit documentation[4] and Google’s Github repository[2].

There are two different use cases for a developer using Google Fit. One is the use of

the Android SDK and the other one is the use of Google Fit REST API. To connect to

the REST API, a rest service is needed in the application to make requests. For devel-

opment, Android Studio IDE is required, and Google Services must be included in the

application project. For an application to make requests through the REST API or the

SDK, the application needs to be authorized with OAuth 2.0. When creating a new ap-

plication, the developer needs to request a ClientId for the application, which is used

for authorization and to provide appropriate access to the API requests. When the Cli-

entid is obtained, the implementation can start. In order to make calls to the API, one

needs to build a GoogleApiClient, where one specifies which of the Google Fit APIs that

is to be accessed. We performed the connection to Google Fit process in order to inves-

tigate the connection process further. The findings will be presented in section 4.4.

The most important access point of the Google Fit APIs is the History API, used to read

and write data. The implementation of a connection to the History API includes a call

to the function displayed in Listing 4.1. It takes the mClient, which is the result of the

setup process and a readRequest that specifies what kind of data the developer wants

to retrieve from the History API, as parameters. The developer can specify in the read-

Request what kind of data he/she would like to receive. To get the retrieve the correct

data, the developer needs to make an accurate readRequest. The readRequest is similar

to an SQL query where the developers can specify different parameters for the read-

Request by for example calling the setTimeRange function that can be used to retrieve

data within a specific time period. The actual call to the API, displayed in the Listing

4.1, is an asynchronous call where the answer from the API call invokes the onResult

function:

4.1. GOOGLE FIT 41

1 Fitness . HistoryApi . readData (mClient , readRequest) . setResultCallback (

2 new ResultCallback <DataReadResult > () {

3 @Override

4 public void onResult (DataReadResult dataReadResult) {

5 //do something with the r e s u l t

6 }

7 }

8) ;

Listing 4.1: Call to the Google Fit History API

The process of connecting to the other APIs in the SDK is similar to connecting to the

History API. For the Sensor API, you pass a dataSourceRequest with the findDataSources

function. For the Recording API, you call the subscribe function with the data type you

want to monitor through the Recording API. For the Sessions API a created session for

a given fitness activity is passed with the functions startSession and stopSession. For the

Bluetooth Low Energy API, you call the startBleScan to scan for devices and claimBleDe-

vice and unclaimBleDevice to claim and unclaim devices.

As mentioned previously, a developer can create customized data types with the Config

API, and an example is shown in Listing 4.2 on the next page. In the example, a data type

for blood glucose levels is created. First, you create a DataTypeCreateRequest that can

be set with the name and the fields of the custom data type in question. Then the cre-

ateCustomDataType function of the Config API is called, which is asynchronous. The

response from the API invokes the result callback function. If the creation succeeds,

the DataType will be returned in the callback. After configuration of the custom data

type, the History API can be used to perform data insertion and retrieval as previously

described. Despite the fact that it is possible to create custom data types, Google is tar-

geting fitness data with Google Fit and will therefore not allow applications to create

custom data types that include health data[29]. The functionality for health data types

exists, but Google will not allow a publication of such an application because it is not in

compliance with their terms[30].

42 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

1 private void buildCustomDataType () {

2 DataTypeCreateRequest request = new DataTypeCreateRequest . Builder ()

3 . setName("com. example . petter . f i t . blood")

4 . addField ("Time" , Field .FORMAT_STRING)

5 . addField ("Value" , Field .FORMAT_INT32)

6 . build () ;

7

8 PendingResult <DataTypeResult> pendingResult = Fitness . ConfigApi .

createCustomDataType (mClient , request) ;

9 pendingResult . setResultCallback (

10 new ResultCallback <DataTypeResult > () {

11

12 @Override

13 public void onResult (DataTypeResult dataTypeResult) {

14 DataType customType = dataTypeResult . getDataType () ;

15 insertCustomData (customType) ;

16 }

17 }

18) ;

19 }

Listing 4.2: Code for building a custom data type in Google Fit

4.2. APPLE HEALTH 43

4.2 Apple Health

A large amount of fitness and health applications currently exist in the Apple App-

Store, which provides the users of the iOS platform with tools to get in shape and to

stay healthy. At the Worldwide Developer Conference(WWDC) in 2014, along with the

launch of iOS 8 (operating system for Apple mobile devices), Apple introduced HealthKit[19].

HealthKit’s core functionality consists of allowing applications that provide fitness and

health services to share their data with the “Health” application and each other.

By introducing an own Health app, all of a user’s health data can be stored in a cen-

tralized and secure location, and it provides users with the choice of determining what

data to share with a particular application. HealthKit enables users to combine data

from several applications, while at the same time allowing hardware manufacturers

to create companion applications for their products(e.g. blood glucose measurement

devices and heart-rate monitors) and provide this data to both users and developers.

Ryan Faas, a reporter for CITEworld writes: ”Like Samsung, Apple is building a platform

rather than a complete health solution. Much as with its new home automation plat-

form, Apple isn’t trying to build an overarching Apple solution so much as its providing

developers and hardware makers with a way for their new and existing products to ex-

change data”[14]. What this means is that with HealthKit, Apple provides a platform for

others to build on top of and showcase their products through the AppStore. In the sec-

tions below we will go into detail on HealthKit in terms of technical architecture, data

structure and its application development process.

4.2.1 Technical Architecture

In this section, we will look at the architecture of a system that implements HealthKit,

specified in Figure 4.5. Artifacts and components crucial to the Toolkit will be described

in detail from a technical perspective, focusing on their properties, roles, as well as un-

derlying structures that they conform to. A deployment diagram for an application,

implementing the Toolkit, consisting of several artifacts. The boxes represent physical

devices that consist of different components and artifacts relevant to the application.

The most important of the boxes is the lower middle one, representing the iPhone de-

44 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

Figure 4.5: Diagram of physical deployment of artifacts on nodes for the Apple
HealthKit

vice with its deployed artifacts. All artifacts directly related to the Toolkit are deployed

on the iPhone because HealthKit and its functionalities are a part of the iOS SDK. The

box on the left portraits a third-party server that may or may not be involved(depending

on whether the developer chooses to implement his/her protocol for cloud storage of

data).

Health App

Figure 4.6: Apple Health App
Dashboard

In this section we will look into one of the HealthKit’s

artifacts, the Health App, often referred to as just

Health. Health is an application that comes bundled

with version iOS 8 and iOS 9, and its functionality

within HealthKit is to work as a “command center”

for a user’s fitness and health data. In other words,

data collected from Health App and other third-party

applications that integrate HealthKit is administered

by the application(Health App is shown in Figure 4.6).

Health gives the user the option to either permit or re-

ject third-party access to the “Health Store” that acts

as a vault containing the user’s personal health data,

as described by Apple[20].

4.2. APPLE HEALTH 45

(a) Permitted Data Types for an app (b) Data sources in HealthKit

Figure 4.7: Examples from HealthApp

Figure 4.7a shows the screen where the user is asked

to grant an application permission to certain data. Also, the application presents a vi-

sualization of data gathered by all of the user’s applications. Figure 4.7b shows the data

sources in the form of applications and devices.

In addition to displaying data and administering permissions, the Health app also pro-

vides a user with the opportunity to enter data manually, as well as to export it, e.g.

when switching to a new phone. Exporting the data results in a zipped file containing

the user’s raw data information in the XML format.

46 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

HealthKit API

HealthKit is a platform that lets a developer store and retrieve fitness and health data

in/from a device. This section describes the technical aspect of the platform, aimed

at providing developers with a more in-depth overview of the HealthKit API. The ac-

tual API is embedded within iOS since the launch of HealthKit(in version 8). The API

is accessed by importing the HealthKit package, and it is represented in the form of

functions of a class within the HealthKit package called HKHealthStore. Functions are

analogue to API reference points that access the “vault” in the Health app. Functions to

request access, store and retrieve data are available to developers, in addition to func-

tions regarding accessibility of HealthKit (as it is only available on iPhones).

The categories of functions can be seen in Figure 4.8 below as “Accessing HealthKit” ,

“Reading Characteristics Data”, “Working with HealthKit Objects”, “Working with Work-

outs” and “Querying HealthKit Data“. The functions belonging to each category can

be accessed through Apple’s Integrated Development Environment (IDE), Xcode, when

creating applications using HealthKit. The application development process will be ex-

plained in further detail in section 4.2.4. The API is restricted to the iOS SDK, i.e. the

platform only targets users who have an Apple iPhone (and with the recent release of

watchOS 2, Apple iWatch), restricting the overall user base drastically.

4.2. APPLE HEALTH 47

Figure 4.8: HealthKit API functions - From HealthKit Reference Framework[6]

48 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

4.2.2 Data structure

This section will encompass a description of HealthKit’s data structure, covering class

hierarchy, data types, as well as the form and structure of the actual storing mecha-

nism(the centralized database). Before exploring the data structure in depth, there are

certain aspects that must be addressed. Within HealthKit, data is stored in the form

of objects in a local single instance encrypted object-oriented database (OODB). What

this entails is that the structure for data storage contains objects with corresponding

functions, predefined schemas and inheritance hierarchies; in contrast to traditional

databases where data is stored in predefined tables. The class used to represent such

objects is called HKObject.

Figure 4.9: Data Type Hierarchy in HealthKit

A stored object conforms to one of 70+ predefined data types available in HealthKit’s

HKObjectTypes, which are instances belonging to one of five data types. In order to ex-

plain this in further detail, we need to examine the Figure 4.9 above, which illustrates

the hierarchy of data types. At the top we see the HKObjectType class, with two child

classes, namely HKCharacteristicsType and HKSampleType. Within HKCharacteristic-

sType we find the data pertaining to characteristics of the user that are constant, e.g.

date of birth and blood type.

4.2. APPLE HEALTH 49

HKSampleType is again divided into subcategories that relate to the actual data types.

These categories are determined by the nature of the measured data. The nature of data

for an HKQuantityType for example, is quantity, where a data sample is represented by

a numerical value and a unit used to measure blood glucose levels. A data sample of

HKCategoryType interprets values based on predefined enums or categories.

HealthKit does not currently allow users to create custom data types, however due to

the mechanism used to categorize data into five larger types, Apple has a possibility to

open creation of custom subtypes to developers, such as the 70+ preexisting ones.

Figure 4.10: Relation between data types and data samples within HealthKit class hier-
archy

The structural choices of data and the data types are reflected in the class structure,

which is illustrated in Figure 4.10. The class of each data type has a corresponding class

used to define a subclass of HKSample objects that contain the data values. Now that

the overall structure has been covered, we will look at what a data sample consists of:

Each sample requires a start and an end date in order to map when it was measured.

Additionally, it needs a sample type to determine its sample kind. Based on the sample

type, a sample contains either a value and a type identifier, or a quantity and type iden-

tifier. A value is raw numerical data evaluated in context of the type identifier, while a

quantity, represented by the class HKQuantity, is formed by a measured numerical data

and a unit to represent the data, e.g. meters or deciliters. A unit is also represented by

50 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

its own class called HKUnit. Common for all samples is the device parameter, which

contains an alphanumerical string called a UUID, which is a unique identifier for data

source(phone, external sensor or another application).

Looking back at the start of this section, the HealthStore was defined as a single in-

stance encrypted database, meaning that the applications accessing the HealthStore

require authorization for each class of data readings. ”The result is that you consolidate

all your health related data in one place, and can selectively give access to subsets of it to

other applications on your iPhone handset (and to revoke permissions at any time)“[54].

Due to this structure of having encrypted data located on the users device without ex-

ternal backup, Apple has instead of trying to define a protocol for data exchange, al-

lowed developers to implement such functionality, guided by restrictions and regula-

tions. The entire structure is possible to export in a XML format, alternatively using ser-

vices such as Open mHealth, that converts the exported data into a JSON format[50].

Due to data being accessed through a centralized encrypted database, we had a con-

cern regarding the data access and data storage between multiple applications in real-

time. An interesting discovery made when going through various community sites and

forums was that certain users complained about data loss and slow data access when

accessing large amounts of data and trying to access it simultaneously from another

application[12, 37].

4.2. APPLE HEALTH 51

4.2.3 Actor Network

This section will provide an overview of the different actors that are a part of an ecosys-

tem where applications and technology are used with the platform. The overview is

represented as an actor-network diagram.

Figure 4.11: Actor-network diagram for the Apple HealthKit platform

Figure 4.11 shows the main actors within the ecosystem of the Apple HealthKit plat-

form. The diagram shows that the Health App, as well as the HealthKit, plays a sig-

nificant role in the ecosystem. The application is built with HealthKit, and the Health

App handles the database and the permissions manager of the platform. An example

scenario would be a user accessing the Health App from an iPhone to review his/her

52 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

measured blood glucose levels from the past two days. The user would act on the appli-

cation, which acts on the HealthKit by retrieving the data. Moreover, to store this data,

the heart rate would have had to come from either an Apple Watch or another third-

party application. As seen in Figure 4.11, the cloud option has to be implemented by

the developers or some other third-party, as the data is only stored locally on the device.

Table 4.2: Description of Actor-network in Figure 4.11.

Actor Description Acts on

Technical

Apple HealthKit Framework part of the iOS

SDK.

Third-party application,

Health App, iOS Device

iOS Health App Provides the user with a

way to set permissions re-

garding data types. Views

and exports health data

Third-party application,

Exported medical files,

Users, Apple HealthKit

Third-party applications

(iOS)

Range of applications

developed to integrate

and take advantage of the

functionality of HealthKit

and wearable device to

provide end users and

healthcare staff with

useful information.

Third-party watch ap-

plication, Third-party

Cloud, HealthCare

Provider, Apple HealthKit,

Users

Third-party applications

(watchOS)

Applications developed

for use on wearable

devices to provide func-

tionality enhancing the

device’s sensor technol-

ogy.

Apple Watch, Users,

Third-party iOS Applica-

tion

4.2. APPLE HEALTH 53

Continued Description of Actor-network

Actor Description Acts on

Human

Developers People responsible for

developing an appli-

cation using HealthKit

framework.

Third-party applications

(iOS and watchOS),Apple

HealthKit, iOS Health App

Users End users using one or

more of applications pro-

vided in the network by

HealthKit, including pa-

tients.

Apple Watch, iOS Device,

iOS Health App, Third-

party applications (iOS

and watchOS), Exported

Medical Files

Healthcare Provider Healthcare staff who can

access third-party appli-

cation or exported medi-

cal files

Third-party application

(iOS), Exported Medical

Files

Physical

iOS devices iPhones running iOS 8 or

higher.

Third-party Application

(iOS), Users

Apple Watch Wearable technology

running watchOS, with a

special application con-

nected to accompanying

third-party application

on the phone.

Third-party applications

(watchOS), Users

Third-party Servers Servers for storing data

from third-party applica-

tions, managed by third-

party. developers/busi-

nesses

Third-party cloud

End of Table

54 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

4.2.4 Application Development Process

To provide insight into the development process of an application using Apple HealthKit,

this section will describe the various steps a developer goes through in a specific con-

text, e.g. the development of an diabetes journal app. The first part of the process is to

acquire the correct tools, in other words, Apple’s IDE Xcode with the newest iOS SDK

(currently iOS 9.3.2).

Once set up, the next step to creating an application with HealthKit is to check for

availability and instantiate a store object instance. Seeing as how the HealthStore is

a centralized database on the device, the HealthStore is a Singleton pattern instance,

as instantiation of only one store is allowed. In order to read or write a certain type

of data, HealthKit requires that application developers request authorization from the

user to read or write data types, sometimes requiring both due to privacy concerns. Re-

quests are implemented by calling the requestAuthorizationToShareTypes function on

the HealthStore object. In the context of a diabetes journal, we would request to both

read and write an HKQuantityType which has a type identifier of HKQuantityTypeIden-

tifierBloodGlucose. What this indicates is that we wish to have access to a HKQuantity-

Type of type Blood Glucose.

Subsequently one can now implement the required functions needed for the diabetes

journal. A useful feature of our application would be to store our blood glucose levels

after measuring them. Storage of data in HealthKit is done in an object oriented fash-

ion, meaning that data is stored in the database in the form of objects. HealthStore

provides a function called saveObject, that takes an HKSample (or a subclass of it) and

a completion function. In the case of the diabetes journal we measure blood glucose,

therefore the HKSample subclass HKQuantitySample would be used. In order to create

a HKQuantitySample one needs to use the init constructor which takes a start and end

date of the sample, a specific quantityType (as the one created when requesting autho-

rization in previous paragraph), a quantity represented by HKQuantity which takes a

value and a unit (represented by HKUnit).

4.3. SAMSUNG DIGITAL HEALTH 55

To retrieve data, HealthKit uses the notion of queries. Using a subclass of the abstract

class HKQuery, we construct a query to retrieve exactly the data we require. From our

use case, the diabetes journal app, we might want to retrieve the stored blood glucose

data for one week at a time. To implement this feature, we can use a HKSampleQuery,

which in the init constructor takes in an HKSampleType (in this case equivalent to the

quantity type from the request process, as HKSampleType is a parent class of HKQuan-

tityType class), a predicate, numerical limit of number of objects to be retrieved and a

sort descriptor. When the query is created, the executeQuery function is called on the

store object, passing the created query as the parameter.

Both saveObject and executeQuery have completion parameters, where a developer

handles the further process of app and data.

4.3 Samsung Digital Health

In this section, we will provide an overview of the Samsung Digital Health(SDH) plat-

form including its technical architecture, data structure, ecosystem and developers sup-

port.

Samsung’s website states the following about what SDH’s contributions are: “SDH helps

application developers and healthcare providers thrive in an open environment that

connects sensors, devices and partner services. Users can experience various fitness and

health services through Samsung Digital Health”[13]. In others words, the aim is to pro-

vide developers and healthcare providers with better tools to support users in gaining

improved knowledge of their health, and also designing goals and guide them towards

reaching them. In the following sections, the different aspects that concern Samsung’s

stated contributions of SDH will be addressed.

4.3.1 Technical Architecture

In this section, we will look at the overall architecture of a system that implements SDH,

further specified in the deployment diagram in Figure 4.12 below. Artifacts and compo-

56 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

nents of such a system will be described from a technical perspective, focusing on their

properties and functionality. This section also provides an overview of the different ac-

tors that are a part of an ecosystem where applications and technology are used with

the platform. The overview is represented as an actor-network diagram.

Figure 4.12: Diagram of physical deployment of artifacts on nodes for the SDH platform

Figure 4.12 depicts a diagram of the physical deployment of software components(artifacts)

on hardware components(nodes) for a system where a third-party application is inte-

grated with SDH. The boxes represent nodes and the rectangles within boxes the arti-

facts that are deployed on the given node. Wearable devices run Android OS and can

interconnect with both a mobile computing device and a third-party server. The third-

party server is deployed by a database with an API enabling data access. A mobile device

is deployed by the platform’s general purpose application S Health and an API, plus a

third-party application. Artifacts deployed on the mobile device is the centerpiece that

acts as a mediator between Samsung’s and the third-party’s application, wearables and

servers.

4.3. SAMSUNG DIGITAL HEALTH 57

SDH SDK

Figure 4.13: SDH’s pack-
ages

The SDH software evelopment kit(SDK) is a tool for en-

abling data access and exchange between Samsung’s own

mobile application S Health and third-party applications.

The SDK is composed of two parts, namely the Health Data

Package and the S Health Service Package. The two pack-

ages are not dependent on each other, and can be used

concurrently.

S Health

S Health is an application available for devices accessible via Google Play Store. With

S Health, an individual can track everyday activities, get coaching to reach goals, and

download training programs to improve fitness. It enables measuring and understand-

ing of personal fitness and health by tracking movement and collecting samples from

built-in sensors in devices and wearables. As of the release of v.4.5 it is no longer only

compatible with Samsung’s devices, but also all non-Samsung Android devices[11] (Re-

quires v4.4. Kitkat or above).

Health Data Package

The Health Data Package is a package with functionality for storing, accessing and shar-

ing data in a secure manner. Data is stored in a store that keeps user data collected by

S Health secure, and can be accessed through the provided APIs. The package also in-

cludes an interface for handling control of user permissions. It provides a simple way

for users to control what data they want to share, and without such defined permis-

sions, a third-party application will not be granted access to the data store.

S Health Service Package

While the previous package addresses access and storage of data, the S Health Service

Package addresses data presentation. The basic building blocks of S Health are the

Tracker and the Tracker Tile that provide categorization and visualization of data. A

Tracker monitors or measures a given data type and a Tracker Tile is a box visualizing

58 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

the data type. The package features a Tracker Tile manager that lets third-party devel-

opers implement support for posting or removing a Tracker Tile in S Health. A developer

can, for example, define own Tracker Tiles to support a defined custom data type.

4.3.2 Data Structure

SDK does not provide an API to access data that is externally stored, e.g. in cloud stor-

age, it is only possible for the application to read or write data that is stored by the S

Health application on the same device. SDH does provide persistent storage of the col-

lected data, which is implemented with options to synchronize data to a remote storage

unit where the data is linked to a registered account, but as mentioned does Samsung

not provide an API to access such data. This means that the SDK does not facilitate data

exchange directly with applications and vendors, but data has to be accessed through

the S Health application that acts as a hub that restricts data flow and access. From a

developer’s point of view this is a noticeable limitation of the transfer and sharing of

health data collected by the applications, and as a consequence all vendors that want

to utilize SDH’s functionality have to succumb to its standard of storage, access and vi-

sualization of data with all the restriction and limitations that follows.

To store data in the store, the data has to be defined as a type of health data, and can ei-

ther be stored as a predefined type(e.g. blood glucose or steps) or as a custom data type

defined and customized by the third-party developer. A custom type provides prop-

erties not covered by the predefined types and can be defined with all new properties

or with importing existing type. All data types are normalized according to units in the

“International System of Unit”, and data inserted to store must hence be unified accord-

ingly.

4.3.3 Actor Network

This section will provide an overview of the different actors that are a part of an ecosys-

tem where applications and technology are used with the SDK platform. The overview

is represented as an actor-network diagram.

4.3. SAMSUNG DIGITAL HEALTH 59

Figure 4.14: Actor-network diagram for the SDH platform

Figure 4.14 shows an overview of the main actors involved in the ecosystem of the SDH

platform and describes how the different actors affect each other. The number of arrows

in the diagram indicate that the actors with the most relations in the ecosystem are

Technical ones: the S Health application and third-party applications that other actors

depend on to interconnect. The S Health application acts as a mediator between third-

party applications with their respective dependants and the store of collected user data.

It handles permissions, retrieval, and storage of such data.

60 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

Table 4.3: Description of Actor-network in Figure 4.14.

Actor Description Acts on

Technical

S Health application Application for use on An-

droid devices which auto-

matically tracks data from

sensors or manually by

users, and visualizes data

in a beneficial way for the

user.

Samsung cloud servers

SDH APIs Access points for access-

ing and read/write data

from/to S Health.

S Health Application

Third-party applications Range of applications

developed to integrate

and take advantage of the

functionality of the SDH

platform and wearable

device to provide end

users and healthcare staff

with useful information.

SDH APIs

Wearable applications Applications developed

for use on wearable

devices to provide func-

tionality enhancing the

device’s sensor technol-

ogy.

S Health

4.3. SAMSUNG DIGITAL HEALTH 61

Continued Description of Actor-network

Actor Description Acts on

Human

Developers Persons developing appli-

cations for the SDH plat-

form.

Third-party applications,

SDH APIs

Users End users using one or

more applications pro-

vided in the network

by the SDH platform,

including patients.

Wearable devices, An-

droid devices

Healthcare Personnel Healthcare staff who

can access applications

that accesses, enhances

or visualizes data from

S Health or the SDH

platform.

Computers

Physical

Android devices Devices that are running

the Android OS.

S Health application,

Third-party applications

Wearable devices Wearable technology run-

ning Android OS. Needs

to be a registered partner

accessory with Samsung

to act on S Health directly.

Wearable applications,

Third-party applications,

S Health application

Computers Computers and other de-

vices that can be used

in order to access third-

party applications.

Third-party applications

Samsung cloud servers Samsung’s server park.

62 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

Continued Description of Actor-network

Actor Description Acts on

Third-party Servers Servers for storing data

from applications, man-

aged by . developer-

s/businesses.

End of Table

4.3. SAMSUNG DIGITAL HEALTH 63

4.3.4 Application Development Process

On a general level, the official development process of applications with SDH consists

of the following steps:

1. Download the SDH SDK

2. Integrate the SDH SDK into your application and test with S Health or SDK’s tools.

3. Publish the application integrated with the SDK in Google Play.

4. Apply for Partner Apps by filling in the request form.

As described in section 4.3.1, there are two packages offered by the SDK. Out of the two,

only the Health Data Package was focused on in this research, because the two pack-

ages can be integrated independently and because integration of the S Health Service

Package was not deemed relevant to the purpose of this research. The SDK Health Data

package consists of an API with a range of classes to be employed, but here’s a closer

look at its most important classes along with a short description of their functionality:

• HealthConstants: Defines constants for predefined and custom data types.

• HealthData: Used to manage data in the form of objects.

• HealthStore: Provides a connection to the health data store to query data.

• HealthPermissionManager: Handles requests for permission from end user to

read and/or write specific data types.

• HealthResultHolder: Interface representing the result of invoking function.

• HealthResolver: Used to insert, read, update, delete data, and provide some ag-

gregate functions.

• HealthObserver: Implementation of the observer pattern, where observer receives

a notification when subject data is changed.

The steps to access data along with the main APIs needed for each step is depicted in

Figure 4.15 below. An application needs to initialize the health data service, connect

to the health data store, and acquire data permission(s), before being able to query the

health data store’s data in S Health.

64 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

Figure 4.15: Flow for data access

4.4 Findings

This section will present findings from Chapter 4. Most of the data presented in Chap-

ter 4 are results of our literature study and did not directly lead to any findings, but the

findings presented in this section were attained by analyzing the data and examining

the relevant aspects of the mHealth Toolkits.

A finding from Chapter 4 is that Google Fit is different from both Apple HealthKit and

Samsung Digital Health with regards to technical architecture, the way data is stored

and the types of data that are allowed to be stored. Google Fit employs Google’s cloud

storage, which means that new data from any application that is connected to the Google

Fit API will synchronize with Google Cloud Servers. HealthKit handles storage by con-

necting to the HealthKit API, and SDH through an interface. The data for both HealthKit

and SDH is stored on the phone. In addition, Samsung gives the user the possibility to

synchronize the data that is stored in the SDH application to the cloud. This is in con-

trast to Google Fit since the synchronization with cloud storage is not a required, but

rather a choice of the user.

Another finding from Chapter 4 is that the setup process of Google Fit is more extensive

than we believed initially. The code provided by Google through the Github repository

consists of 150 codelines in total. When we tried to use the provided example code,

we were not able to connect without modifying the code due to the use of the await

function on asynchronous functions, which did not work when the application was de-

ployed on a device running Android. Using the setResultCallback function solved this

4.4. FINDINGS 65

issue. We used six full working hours for the process of setting up the system and to be

able to perform calls to the API.

66 CHAPTER 4. ANALYSIS OF MHEALTH TOOLKITS DOCUMENTS

Chapter 5

Development of Example System

with mHealth Toolkits

In this chapter, the example system we developed with mHealth Toolkits will be de-

scribed. First, we will discuss our architectural approach. Secondly, the system will be

described. Thirdly the metrics we tracked in the development process will be presented,

and lastly, the findings from the system will be presented. The system will include func-

tionality for reading and writing data both internally on device and externally to another

device or server. The findings from this chapter will contribute to answer RQ4.

5.1 Architectural Rationale

In this section, we will provide a rationale for the architectural approach of the devel-

oped example system. In the research process, we examined the way mHealth Toolkits

can be used in a healthcare service to provide value for a doctor when treating a patient.

After an initial search for ways in which data from mHealth Toolkits are and can be used

in a healthcare service, we found the Mayo Clinic app[18]. The Mayo Clinic app is a pa-

tient app that can collect data the user has gathered with Apple HealthKit and send it

to the Mayo Clinic servers. The Mayo Clinic app can also push patient data to Apple

HealthKit, making the information flow bidirectional. In practice it functions as a por-

67

68 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

tal between the patient and the clinic. The system is described in Figure 5.1 below.

In our research, we also found examples of sensors that can connect to the mHealth

Toolkits to provide automated and more accurate data. An example is the iHealth Gluco-

Smart application[17] that connects to the iHealth Glucometer[8]. This system lets the

user read his/her glucose values and export them to Apple Health where the data can

be distributed to the Mayo Clinic app.

Figure 5.1: Architecture of the Mayo Clinic app

5.2 System Description

In this section the developed system will be described. The deployment diagram below

in Figure 5.2 displays its architecture. The core components of the system are the appli-

cations for Android and iOS that includes a Patient-Hospital application(PH-app) and a

Blood Glucose application(BG-app) for both Apple HealthKit and SDH, and the hospi-

tal API deployed on a Cloud server. Google Fit was excluded from this development due

to not being intended to be used to store medical data, as earlier mentioned. Google

Fit does not support storing of glucose related data because storing medical data in the

5.2. SYSTEM DESCRIPTION 69

Figure 5.2: Deployment diagram of example system with the BG-app and PH-app for
both HealthKit and SDH, and the hospital server

Cloud is not seen as an alternative as long as its cloud storage solution cannot guarantee

the safety of the data.

5.2.1 Blood Glucose Application

The main task of the BG-app is to let the user read and write glucose data from and

to the data store of the toolkit. The best way to accurately capture the data would be

through a blood sugar device containing a Bluetooth sensor that the user connects to

the phone. We investigated the possibility of acquiring such a device, but were not able

to acquire one due to cost and time limitations. Therefore, we abstracted away the

sensor support functionality and gave the responsibility of data input to the user. The

purpose of the application was to make a calculator for blood glucose, where the user

can input a blood glucose value and how many carbohydrates he/she is going to eat.

The calculator will then return a suggested amount of insulin for the user to inject. The

fact that the application provides value for the user, namely calculating the suggested

amount of insulin, giving the user an incentive to use the application.

70 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

Apple HealthKit Solution

An implemented solution employing Apple HealthKit comprised of an iOS application.

The HealthKit framework was imported and used as a tool to provide data storage and

an interface to share the gathered data with other applications, provided that the proper

user authorization was granted.

The main purpose of the application is to collect blood glucose measurements and cal-

culate insulin needed. The application follows the same overall process as described

in section 4.2.4 with regards to data access, requiring few additions for calculation of

insulin. First, the application’s GUI presents the user with a field to input a blood glu-

cose measurement and intake of carbohydrates, but before enabling the user to use this

functionality the application has to complete the following steps:

• Instantiate a store object using HKHealthStore.

• Request the authorization to access and store the needed data type.

The instantiation protocol can be found in Apple HealthKit Reference Framework[6],

however, the information for the authorization request was found through an external

source [43]. The user can then input the values requires to write the blood glucose value

to the store and to calculate the amount of insulin needed. Once the user presses calcu-

late, the inserted value will be passed to an appropriate function within HealthKitDel-

egate (a class made to handle all functions of requesting access, storing and accessing

data from HealthStore). The function encapsulates the raw data within a HKQuanti-

tySample and stores it in the Health Store as explained in section 4.2.2.

The application’s purpose is to provide functionality for registering samples of specific

data, in this case blood glucose data, and abstract it away from the information pre-

sented to the user (what amount of insulin the user needs to take). The application

serves as an example of how applications that register health data from users, either

by the use of sensors or manual input, can be stored within HealthKit and shared with

other applications. HealthKit provides the user with a centralized data store containing

all of the user’s health data, limiting access to applications chosen by the user.

5.2. SYSTEM DESCRIPTION 71

Samsung Digital Health Solution

The solution with SDH was an Android application where the SDK’s Health Data Pack-

age was employed as a library to provide functionality for data exchange with S Health

through its interfaces. As mentioned previously, the application’s main purpose is to

collect blood glucose sample data and calculate needed insulin. The application follows

the same overall process as the one depicted in Figure 4.15 in section 4.3.4 to provide

data access, and little other functionality was needed to complete the application. The

application’s GUI prompts the user to input a blood glucose measurement and intake

of carbohydrates, but before enabling the user to use this functionality the application

has gone through the three following steps that are required to write data to the store:

• Initialization of HealthDataService(service)

• Connecting service to HealthDataStore(store) with a ConnectionListener interface

for handling the callback when application is connected or disconnected with the

store.

• The HealthPermissionManager handles requesting the user for permissions to

read the BloodGlucose data type, which is the only permission needed. The per-

mission is requested when the user opens the app, and access to read glucose

data from the store is not permitted until the user has granted the request.

The user can then input the values required by the application to write the blood glu-

cose to the store and to calculate the amount of insulin needed. HealthDataResolver’s

InsertRequest interface is used to make a request to insert the blood glucose value, and

the value has to be encapsulated in a HealthData object to be compatible with the In-

sertRequest. It is mandatory to set the data type and source device of the HealthData

object for the store to be able to process and give an identifier to the data.

The purpose of this application is to abstract the functionality for storing samples of

a specific data type, in this case blood glucose data, away from other functionality such

as data processing. This application is an example of how applications that only col-

lect specific types of data, either by user input or by sensor, can be shared with SDH’s

S Health application. The purpose of S Health is to collect sample data and to store

72 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

it in its data store, providing applications with centralized access to all types of health

data. Devices that want to use this application are therefore required to have S Health

installed.

5.2.2 Patient-Hospital Application

The purpose of the PH-app was to make the user able to transfer data stored in the

data store of the given mHealth Toolkit to a healthcare institution. The application en-

ables the user to log in to its patient account and register with a doctor, in the role of

a patient. When the user has finished the registration process, the blood glucose data

can be transferred to the Hospital server from the data store of the mHealth Toolkit in

question. We chose to only let the application export blood glucose data due to time

limitations, but the application could potentially transfer all types of health data stored

in the data store.

Apple HealthKit Solution

Similar to the application described previously, this section will be looking at a scenario

where a healthcare institution wants to create an application that handles the commu-

nication and data exchange between the institution and the patient. The application

enables exchange of user data between patients and their doctors to aid monitoring

and treatment of diseases, e.g. Diabetes. The technical specification of the process in-

volving the external server managed by the healthcare institution and an application

utilizing HealthKit will be described in detail in the following paragraphs. The textual

description is supplemented with sequence diagrams that depict the technical inter-

action behind the two main processes and can be viewed in Figure 5.3 and Figure 5.4

below.

In the initialization phase, which is illustrated by the sequence diagram in Figure 5.3,

the application will have to perform the same availability check and authorization re-

quest as in the previous application(BG-app). Assuming that the device used is an

iPhone, the isHealthKitAvailable function will first be called and following the user will

be prompted to authorize the sharing of data types. Once the user has authorized use

5.2. SYSTEM DESCRIPTION 73

Figure 5.3: Sequence diagram of the process initializing HealthKit and call to API to
register patient

of requested data types, the user will then be prompted to select a doctor from a list. In

the background the list is retrieved using the hospital REST API access point by sending

a GET request, and the results are presented to the user in a dropdown list. To create

a GET request, we can use a class called NSURLSession built in iOS which takes a URL

and a completion handler. The completion handler parses the JSON and defines the

handling of the retrieved data. Passing the data to the GUI provides the user with op-

tions in the dropdown list. Selecting the doctor and pressing next, leads the user to a

new screen prompting for a name to be submitted. On submit, a POST request is sent

to the API to create a patient. The process is finalized when the application receives a

response with a valid identifier(patientId) that is stored in the device’s local storage.

74 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

Figure 5.4: Sequence diagram of the process of reading data from store and sending it
to server

The second part of the process is depicted as a sequence diagram in Figure 5.4, and it

consists of reading the blood glucose value from the HealthStore and sending them to

the hospital using the server API. As the API does not accept calls from a user that is

not registered, this process cannot be performed before the initialization is completed.

Reading the blood glucose values from store is done by creating an HKSampleQuery

that requires a sample type (to which we supply an HKQuantityType with a type iden-

tifier for Blood Glucose). Below is the code needed to extract the last weeks values,

assuming the user only measures blood glucose once a day.

1 func readGlucoseData (resultsHandler : ((query : HKSampleQuery , r e s u l t s : [HKSample] ? ,

error : NSError ?)−>Void) !) {

2 l e t bloodGlucose = HKQuantityType . quantityTypeForIdentif ier (

HKQuantityTypeIdentifierBloodGlucose)

3 l e t query2 = HKSampleQuery . i n i t (sampleType : bloodGlucose ! , predicate : ni l ,

l i m i t : 7 , sortDescriptors : ni l , resultsHandler : resultsHandler)

4 store ? . executeQuery (query2)

5 }

Listing 5.1: Code for extracting the latest 7 blood glucose values

5.2. SYSTEM DESCRIPTION 75

Once the values are extracted, a session is created by using the NSURLSession.sharedSession

function. Next a JSON object is created with the required parameters: the patientId re-

trieved from local storage and the results received from the query. After creating this

object, a NSMutableURLRequest is created, setting the request type to POST and serial-

izing the post parameters using NSJSONSerialization. The final step is to perform the

actual sending of values to the server, which is done by calling the dataTaskWithRequest

function on the session object.

As mentioned, this application only enables reading and sending of blood glucose val-

ues measured in the last few week, but it is possible to provide additional functionality

due to the application’s modularity. If for example a different criteria for the values is

needed, just the HKSampleQuery needs to be modified. To add support for reading or

writing of additional data types can be done by modifying the requestAuthorization-

ToShareTypes parameters and the query.

Samsung Digital Health Solution

If a healthcare institution wants to create an application with SDH that includes the

functionality described at the beginning of the section, an application is needed that

handles communication between the external server and the S Health app regarding

the specific patient-hospital relation. A more detailed and technical description of how

the main parts of this application were implemented with SDH and the Android plat-

form will now follow. The textual description is supplemented with sequence diagrams

that depict the technical interaction behind the two main processes and can be viewed

in Figure 5.5 and Figure 5.6 below.

76 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

Figure 5.5: Sequence diagram of the process initializing HealthStore and call to API to
register patient

This application uses the same interfaces as the BG-app for setting up connection to the

store and handling permissions(except for requiring a read permission, not write). The

first main process is initializing store and connecting, as well as registering the patient,

which is depicted as a sequence diagram in Figure 5.5. Before using the application for

data exchange, the user must grant the permission and go through a registering process.

Here, the user is prompted with a list of available doctors to choose from, retrieved from

the server API via a GET request. By selecting a doctor and entering his/her name the

user can press submit, which leads to a POST request being sent to the API to create a

patient. The process is finalized when the application receives a response with a valid

identifier(patientId) that is stored in the device’s local storage.

The second process consists of reading data from the store and sending it to the server,

which is depicted as a sequence diagram in Figure 5.6. Here, the user would like to read

and send blood glucose values, which can only be performed after the user is registered.

This user action is a two-step process: reading values locally from store, and sending

values remotely to the server API. The first step consists of using the ReadRequest along

with a Filter to read blood glucose data measured on the current day from the store, set

with a ResultListener interface to receive the corresponding result asynchronously. The

second step is to read the patientId from local storage and enclosing it with the received

result value(s) in a POST request to the server API, enabling the hospital to access and

review the patient’s blood glucose values.

5.2. SYSTEM DESCRIPTION 77

Figure 5.6: Sequence diagram of the process of reading data from store and sending it
to server

As mentioned, the application uses the HTTP protocol for its request methods to com-

municate with the remote server API, more specifically by employing the Java class

HttpURLConnection. Due to Android’s single thread model, each HTTP request is pro-

cessed separately by an AsyncTask(Android class) to avoid blocking the UI-thread. The

data format used to exchange data with HTTP is JSON, and the Jackson library is used

for converting Java objects to/from JSON. JSON combined with Jackson simplifies the

data exchange as it provides a structure for serializing objects sent to/from the server

API that is written in Javascript, and because Jackson maps the two different object rep-

resentations used by the two artifacts.

This application only enables reading and sending of blood glucose values measured

on a specific day, but additional functionality can easily be added due to the applica-

tion’s modularity. If for example a different criteria for the value(s) is needed, just the

Filter needs to be modified. To add support for reading or writing of additional data

types it can be done by implementing similar functions and HTTP requests, and by

adding the correct permissions.

78 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

5.2.3 Backend

The Hospital Backend consists of a server with a database and a REST API that the PH-

apps can use as an access point. The backend was written in Node.js and deployed on

the Heroku platform. We have chosen not to implement any security protocol for the

API access because the purpose of connecting to a REST API is to investigate how devel-

opers collect data from the mHealth Toolkit data stores and convert them to a format

that can be sent to the REST API. Using an advanced authentication mechanism would

only have resulted in a more complicated process than necessary. In addition, we were

not allowed to use authentication protocols that are used within governmental health-

care as they are classified. For example, the id-porten authentication[7] that is used in

Norway does not permit anyone without permission and authorization access to the

development environment of the protocol.

A framework for Node.js, Express, was used to set up the REST API, which gave the abil-

ity to create routes and structure for the REST API. The database of the project was

the NoSQL alternative MongoDB, which has a document object store. The Javascript li-

brary MongooseJs, customized for Node.js, was used for the connection to the MongoDB

database. The format for all data exchanged with the API was in JSON. The reason for

using the JSON format is that it is a lightweight, text-based, language-independent data

interchange format[25].

5.3 Development Metrics

In this section, we will present the metrics we tracked during the application develop-

ment. The metrics were chosen based on what quantitative data that is possible to track

when developing such a system.

The primary quantitative data tracked during development of the example system were

development time and lines of code. Total development time was tracked for each

of the two applications described in section 5.2. While the total amount of code re-

quired was also tracked for each of the two applications; this metric was separated into

5.4. FINDINGS 79

three different categories for each of the two applications. Therefore, there were in to-

tal six different metrics that tracked lines of code, where each of them tracked the total

amount of code needed to implement a particular functionality of an application. For

the BG-app, the functionalities were: “Initialize service and connect to Store”, “acquire

data permissions” and “calculating insulin and writing measurement to store“. And the

functionalities for the PH-app were: “Register/Create Patient(getDoctors, createPatient,

store patientId locally)”, “Read values from Store” and “Send value to server API(retrieve

patientId, createReadings)”. All the described metrics were tracked for both the system

employing SDH and HealthKit.

5.4 Findings

This section will cover the qualitative and quantitative findings from the development

of the example system described in Chapter 5. The qualitative findings from the de-

velopment with Apple HealthKit and SDH will first be presented separately, then the

quantitative findings of the two Toolkits jointly.

5.4.1 Qualitative Data Findings - Apple HealthKit

The following section will cover the findings from qualitative data regarding the devel-

opment of the example system with Apple HealthKit. During the development, notes

of personal experiences were taken by the developer responsible for implementing the

BG-app and the PH-app with HealthKit. The notes along with comments in the written

code served as a basis for the qualitative analysis. The initial phase of the development

was the creation of the BG-app. As it turned out, the BG-app required a majority of the

critical HealthKit capabilities: initializing a connection to HealthStore, requesting au-

thorization to write data and writing data. The description of each of these steps can be

found in section 5.2.1.

The initial examination of HealthKit and its documentation revealed a poor structure.

Certain figures and a large amount of text made the Toolkit seem overly complex. Tak-

ing the time to go through the text, but also discovering and watching the "Introducing

80 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

HealthKit"[15] video to perceive the structure helped make things more understand-

able. Once one has the overview of the structure, only a rudimentary knowledge of

programming and a basic understanding of Swift is required to get started.

The initial stage of the implementation phase involved initialization of the HealthStore,

which was done with a single line of code. Finding information relevant to the next

stage regarding authorization for reading and writing data turned out to be challeng-

ing; searching through the reference documentation[6] provided by Apple was not al-

ways intuitive and certain parts of the navigation seemed broken. Due to this, third-

party documentation in the form of tutorials[43] was used as a supplement to Apple’s

documentation. Eventually, a sample application provided in the documentation was

discovered, but otherwise there were few code examples.

Implementing the write functionality required creating an HKSample with the user-

provided information, and storing to the HealthStore utilizing the saveObject function

(see section 4.2.4). This entails that Apple follows object-oriented concepts for storing

data samples. Based on the structure, creation of data samples from the user-provided

data was logical, due to being restricted to a limited amount of classes provided by

HealthKit.

The development process of the PH-app was almost equivalent to the BG-app, differ-

entiating only in the final step where the PH-app required implementation of function-

ality to read data, rather than just write. This process involved more time being spent

browsing the documentation because the process of reading data followed traditional

database principles using queries rather than the same object-oriented concepts for

writing data in the BG-app. The implementation of the connection to the REST API was

purposefully omitted due to lack of relevance with regards to HealthKit functionality.

5.4. FINDINGS 81

5.4.2 Qualitative Data Findings - Samsung Digital Health

The development of the example system with SDH resulted in findings based on notes

taken during the development process. These notes consisted of personal thoughts and

experiences formulated by the developer responsible for implementing the BG-app and

the PH-app with the SDH SDK. This section will present findings from the notes, regard-

ing the development of these two applications and their common aspects.

At the start of the development of the BG-app an aspect distinctive to SDH was dis-

covered, which was due to SDH’s Android Studio requirement: the need to add meta-

data information in the androidmanifest.xml file. The documentation did not make

it clear that permission values had to be specified in the xml-file in order to make the

permission API work. The development process also established that the SDK draws a

clear distinction between classes and interfaces. In addition, the use of a familiar nam-

ing conventions for classes and functions(such as “insert”, “observer” and “constant”)

makes the class hierarchy more intuitive for the user. An exception to the intuitive class

naming is the use of the word resolver in the HealthDataResolver(see section 4.3.4) class

which was not immediately recognized as a link to reading and writing data. These find-

ings were validated by the development of the PH-app, which consisted of the same ex-

periences regarding naming conventions(“read” and “result”) when reading data with

the HealthDataResolver.

The development of the second application, the PH-app, exposed negative aspects con-

cerning class implementations related to reading and retrieving data. First of all, the

need to call the HealthDataResolver.ReadResult.getResultCursor function was confus-

ing as it was not clear that the Cursor class is used as the structure for iterating database

records. Second of all, there was confusion around how the result is requested and

retrieved with regards to the setting of result properties. More specifically, the Health-

DataResolver.ReadRequest.setProperties function is used to define which properties of a

given data type(in this example HealthDataConstants.BloodGlucose, see section 4.3.4)

to be read, and the results are retrieved by passing a property to the Cursor.getColumnIndex

function. As properties are used to both define what data to request and retrieve, it

82 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

should be intuitive that these properties are directly related to a specific data type and

results requested is structured with a column property, which is not the case.

After completing the development of the two aforementioned applications, common

aspects could be used to extract findings regarding the overall development with the

SDK. SDH simplified health data access and handling by providing an interface used for

creating both custom and predefined types, enabling the use of numerous data types

and measurements. It also provided a modular implementation of user permissions

that was easy to use and that makes the user more consciously aware of data access.

From the perspective of a developer possessing fundamental programming experience

with mobile development with Java, and no previous experience with SDH, it was cer-

tainly achievable to create such a system as described in section 5.2 with the help of the

available documentation with its examples and without any assistance from external

resources.

5.4.3 Quantitative Data Findings - Apple HealthKit & SDH

The findings from the quantitative data generated from the example system develop-

ment with both Apple HealthKit and SDH will be presented together in this section.

These findings consisted of the results for the tracked metrics described in section 5.3,

including time to complete the applications and amount of code lines required to im-

plement each of the functionalities of the applications. Data from both of the developed

applications were divided into three functionalities each and can be viewed in Table 5.1

below. All six functionalities are listed with a description and code, where the codes for

the functionalities of the BG-app are shortened with code BG-FX and the functionalities

of the PH-app are shortened with code PH-app FX, where X represents the numerical

identifier of the given functionality. The implementation of needed GUI elements was

excluded from these functionalities and their corresponding results.

5.4. FINDINGS 83

Code Functionality(exclusive GUI
code)

BG-app F1 Initialize service and connect to
Store.

BG-app F2 Acquire data permissions.
BG-app F3 Calculating insulin and writing

measurement to store.
PH-app F1 Register/create Pa-

tient(getDoctors, createPatient,
store patientId locally)

PH-app F2 Read values from Store
PH-app F3 Send value to server API(retrieve

patientId, createReadings)

Table 5.1: List of functionalities comprising the BG-app and the PH-app

In Table 5.2 below, an overview of the results from the tracked metrics for each of the

two Toolkits(HealthKit and SDH) is listed. The metrics include the amount of hours

spent to complete the BG-app and the PH-app, and the number of code lines written

to implement each functionality listed in Table 5.1 above. The following types of code

lines were excluded from the results: empty lines, imports, class wrappers, and other

code lines that were not specifically relevant to the given functionality.

Metric Toolkit: SDH Apple
HealthKit

BG-app: time to complete(hours): 18 9.5
PH-app: time to complete(hours): 24 13
Number of code lines(BG-app F1) 20 5
Number of code lines(BG-app F2) 24 7
Number of code lines(BG-app F3) 20 9
Number of code lines(PH-app F1) 198 77
Number of code lines(PH-app F2) 38 6
Number of code lines(PH-app F3) 81 49

Table 5.2: List of measures from the development of the BG-app and the PH-app

84 CHAPTER 5. DEVELOPMENT OF EXAMPLE SYSTEM WITH MHEALTH TOOLKITS

Chapter 6

mHealth Toolkits Observation

Study

This chapter will describe the observation study conducted with computer science stu-

dents, where participants attempted to solve programming tasks in a predefined en-

vironment. In addition to the observations, this section describes the interview that

was conducted with and the questionnaire that were filled out by each participant. The

interview was held and the questionnaire supplied after the finalization of the obser-

vation. The questions were related to the participant’s experience related to the tasks

completed in the observation. After the observation study is presented and elaborated,

the findings will be presented. The findings from this chapter will contribute to answer

RQ1,RQ2 and RQ3.

6.1 Observations

The observations involved participants implementing solutions for predefined tasks in

a predefined development environment, conducted in a laboratory setting. The pool

of participants consisted of one group developing in an environment with HealthKit

and the other with SDH(see Table 6.1 for a more detailed description of the develop-

ment environments). The development consisted of having each participant attempt

85

86 CHAPTER 6. MHEALTH TOOLKITS OBSERVATION STUDY

to solve four predefined tasks by programming in the given environment. For each

task, the participant was given a task description and a maximum time limit of 30 min-

utes. Each task could result in two situations: either a participant completing the task

within the time-frame or not. In both cases, the participant was asked to move on to

the next task chronologically until all four were completed. In an attempt to minimize

the occurrence and effect of non-Toolkit related issues, each task was structured with a

pre-coded skeleton that provided the participant with a minimal setup to run the appli-

cation, except that it lacked the Toolkit-related code needed to implement the required

functionality.

The task description varied between the two environments, but the core functionality

to be implemented was essentially the same. The selection of functionality for each task

was based on the essential features each Toolkit provides. The following list describes

the functionality to be implemented:

1. Connect to data store

2. Create permissions

3. Read value

4. Write value

The observation of each participant was conducted individually and before conducting

the observation, the participant was given a brief introduction about what he/she was

going to do in the study and why, before giving consent. Present during each observa-

tion were two people from the research team: one in the role of the main observer who

provided the participant with information and another in the role of an observer secre-

tary. Both observers were present overtly and took field notes during the observations.

The field notes primarily serve as a supplement because screen recordings of the com-

puter were used to provide a detailed account of all of the participant’s actions during

development.

As the researchers present were participant-observers with a passive role, i.e. the activ-

ities were observed in the setting but without participation[35], the participant could

6.2. QUESTIONNAIRES 87

not contact the observers for assistance that might aid the participant in solving the

task at hand.

Detail Provider Apple Samsung
SDK HealthKit Samsung Digital

Health
IDE Xcode Android Studio
Programming lan-
guage

Swift 2 Java

Computer Mac PC

Table 6.1: Details of the development environments for the two providers Apple
HealthKit and Samsung Digital Health, used in the observation study

6.2 Questionnaires

Following the completion of all development tasks, the participant was asked to fill out

a questionnaire that included five questions related to the participant’s feelings regard-

ing the Toolkit and its documentation. The D-T Scale was used as the metric scale for

these question, which can be viewed in Table 6.2 below.

Question Answer format Qualitative/Quantitative
data

Q1: How do you feel
about the overall develop-
ment experience?

D-T Scale Quantitative

Q2: How do you feel
about your ability to be-
come familiar with with
the Toolkit?

D-T Scale Quantitative

Q3: How do you feel
about the programming
experience?

D-T Scale Quantitative

Q4: How do you feel
about the structure of the
documentation?

D-T Scale Quantitative

Q5: How do you feel
about the descriptiveness
of the documentation?

D-T Scale Quantitative

Table 6.2: List of questions comprising the questionnaire answered by participants

88 CHAPTER 6. MHEALTH TOOLKITS OBSERVATION STUDY

6.3 Interviews

As with the questionnaires, the interviews were conducted post-development. Each

interview was conducted individually with the participant, with the person conduct-

ing the interview being the main observer from the observation to avoid confusion and

maintain consistency. The purpose of the interview was to gain insight into the partic-

ipants’ thoughts, feelings and experiences regarding the environment and the Toolkit

that the participant had been exposed to. Audio tape recording was used to record the

conversation that would later be transcribed and analysed. The interviews followed a

semi-structured approach, chosen due to it being well suited for discovery. The struc-

ture involved having a list of 3 main questions to ask the interviewee, consisting of:

“In what way did the mHealth Toolkit enforce your programming creativity?”, “What are

your positive experiences regarding the development?” and “What are your negative ex-

periences regarding the development?”. It was possible to change the order of the ques-

tions according to the conversation flow, and it was also possible to ask additional ques-

tions depending on the answers given and the subjects mentioned by the interviewee.

Avoidance of ambiguity is crucial for discovery of themes, and in this respect, the abil-

ity to ask additional questions proved to be very useful in our interviews. The reason

is that there was a strong tendency among the interviewees to give ambiguous answers

and statements that the follow-up questions were successful at clarifying.

A major advantage of such a structure is that the interviewee was able to provide more

details about the raised subjects and was also able to introduce own thoughts deemed

relevant. On the other hand, it is important to note that it limits the discovery to per-

sonal accounts and feelings, and may hence not be used to draw generalizations about

a wider population.

6.4 Metrics

In this section, the different metrics that were tracked during the observations and

questionnaires that were based on data that can be measured will be described. As

interviews by nature are qualitative, no interview metrics are presented.

6.5. FINDINGS 89

6.4.1 Observations

Of the metrics tracked during the observation study, the most straightforward to mea-

sure was the number of tasks completed by a participant. This metric is valuable be-

cause it is understandable by outsiders and comparable across groups of participants.

The second metric was task completion time, namely the time a participant uses to

complete a given task, which is a good metric, also due to the previous reasons. Lastly,

the time spent in the IDE and each of the available documentation sources individually

and combined as a total was measured. The motivation behind this choice was to at-

tempt to describe the documentation’s affect on the participants’ development process.

6.4.2 Questionnaires

In the case of the questionnaires, user satisfaction was the main metric measured with

the D-T Scale(presented in section 6.2). In this case the satisfaction is related to the

predefined environments described in Figure 6.1, where the user is an application de-

veloper with a fundamental level of experience with the given environment. The user

satisfaction was measured quantitatively with a given set of questions answered by the

participants.

6.5 Findings

This section will present the findings from all data generated from the observation

study, including notes from video recordings and field notes, interviews and question-

naires answered by the students participating in the development study. The findings

include both findings gained from qualitative and quantitative data. The qualitative

findings from interviews, field notes and video recording notes are first presented for

Apple HealthKit and SDH separately, with the list and description of the themes iden-

tified from the qualitative data analysis. Then the quantitative findings from the mea-

sures tracked in the video recordings and the answers from the questionnaires will be

presented for HealthKit and SDH jointly.

90 CHAPTER 6. MHEALTH TOOLKITS OBSERVATION STUDY

6.5.1 Qualitative Data Findings

Apple HealthKit - Interviews, field notes & video recording notes

The following section will present the findings from the qualitative analysis performed

on the data gathered from the process described in Chapter 6, specifically regarding

Apple HealthKit. From the sources listed in the title, we identified relevant themes by

analysing the transcribed data. For example, in an interview participant AAPL01 said:

"Pleasantly surprised by the size and complexity of the Toolkit", while AAPL07 stated the

following about the benefit of using HealthKit: "... Removes the complexity of storing/re-

trieving values as well as in creating a backend/structure in order to do the same thing".

These quotes along with others from the participants were grouped together to form

a theme called "Toolkit structure" describing their commonalities. This is an example

of how transcribed quotes are related to a certain theme, and similar relations exist for

all of the remaining themes. The themes were discovered as a result of the process de-

scribed in section 3.4.1, and the themes along with their description are shown in Table

6.3 below.

Following the discovery of the themes, the next stage was to categorize them further

into parent themes. A parent theme describes the concept that mutually binds the dis-

covered themes, e.g. documentation descriptiveness and documentation usefulness

would be grouped within the parent theme documentation.

6.5. FINDINGS 91

Theme Description
Toolkit usefulness Statements regarding usefulness of the

mHealth Toolkit.
Naming conventions Statements regarding naming conventions

of methods, classes and terms within the
Toolkit.

Class confusion Statements regarding confusion/lack of in-
formation on what class to use.

Toolkit structure Statements regarding the structure of the
mHealth Toolkit.

Toolkit structure issues Statements regarding issues around the
structure of the Toolkit(classes, methods,
objects).

Implementation issues Statements regarding issues during/about
implementation.

Concreteness Statements regarding issues during/about
implementation.

Lack of examples Statements regarding the lack of examples
within documentation.

Documentation Structure Statements regarding the document struc-
ture.

Navigation issues Statements regarding navigation issues
within the documentation.

Example confusion Statements regarding confusion around
provided example in the documentation.

Table 6.3: List of themes and their description, identified from interviews with partici-
pants developing with HealthKit

During interviews, the participants were asked to elaborate on their experience. Can-

didate AAPL05 was quoted saying: "..there were certain methods that were supposed to

be used and these were defined to do no more and no less that exactly what was needed"

with AAPL06 concluding that HealthKit was:"easy to learn, and fairly easy to use.". These

in addition to similar quotes from candidates AAPL03 and AAPL07, formed the parent

theme "Toolkit general", which represents statements regarding HealthKit overall.

The parent theme "Class hierarchy and naming" was formed on the basis of quotes

belonging to several categories. An example is AAPL04 stating that "I’m not used to

iOS naming conventions, as other languages follow the standard set/get method names.",

which belongs to the "Naming conventions theme", was grouped with the quote from

AAPL02 stating "I feel it is correct of Apple to provide building blocks (user ref. To HKUnit,

HKSample, etc) and create something out of that. Happy with the way that was done".

92 CHAPTER 6. MHEALTH TOOLKITS OBSERVATION STUDY

Both candidates provided valuable information regarding the class hierarchy or naming

and are therefor categorized under the same parent theme.

When evaluating HealthKit, another aspect that appeared crucial to our partici-

pants was implementation of tasks. Participants AAPL03 and AAPL06 commented on

the isHealthDataAvailable function, saying: "Why can’t it find isHealthDataAvailable()

method in the store object?" and "Unsure what object to call the method isHealthDataAvail-

able with" respectively. This lead to the creation of "Class implementation" theme.

Lastly, the majority of quotes consisted of thoughts or comments regarding the doc-

umentation. AAPL01 disclosed that: "Documentation was good" however noted that

"There are few examples compared to other frameworks". Candidates AAPL03 and AAPL06

backed up the notion of lack of examples by saying "good swift examples in certain

parts" and "I feel they should have placed some code examples for use of this class" re-

spectively.

In Table 6.4 below, the discovered themes along with their parent themes are presented,

along with the occurrences of both, for the interview data analysis. For each theme, the

number of its distinct occurrences was counted across the interviewees(participants)

that completed the Apple HealthKit version of the tasks. I.e. if there were more than one

occurrence in the transcript of an interview with a statement related to a specific theme,

it would only be counted once towards the total amount of distinct occurrences. In the

same manner, the number of distinct participants related to each of the parent themes

was counted across the aforementioned theme occurrences, not allowing a participant

to be counted more than once.
Parent Themes(distinct
#participants)

Themes(distinct occurrences)

Toolkit general(4) Toolkit usefulness(4)
Class hierarchy and nam-
ing(7)

Naming conventions(1), Class confu-
sion(4), Toolkit structure(5), Toolkit struc-
ture issues(3)

Class implementation(2) Implementation issues(2)
Documentation(7) Concreteness(2), Lack of examples(3),

Structure(6), Navigation issues(4), Example
confusion(3)

Table 6.4: List of themes and their parent themes, along with occurrences of both, iden-
tified from interviews, for HealthKit

6.5. FINDINGS 93

Additionally, data was generated in the form of field notes during observations and

from reviewing the video recordings during the analysis stage, to validate the identified

themes and occurrences. Therefore, the format of the results from this data analysis is

the same as described above with interview transcriptions, and can be viewed in Table

6.5 below.

Parent Themes(distinct
#participants)

Themes(distinct occurrences)

Toolkit general(0) Toolkit usefulness(0)
Class hierarchy and nam-
ing(3)

Naming conventions(2), Class confu-
sion(2), Toolkit structure(0), Toolkit struc-
ture issues(1)

Class implementation(4) Implementation issues(4)
Documentation(2) Concreteness(0), Lack of examples(2),

Structure(1), Navigation issues(0), Example
confusion(2)

Table 6.5: List of themes and their parent themes, along with occurrences of both, iden-
tified from field notes and recording notes, for HealthKit

94 CHAPTER 6. MHEALTH TOOLKITS OBSERVATION STUDY

SDH - Interviews, field notes & video recording notes

The following section will present the findings from the analysis performed on the data

generated from interviews, field notes and video recording notes generated in the pro-

cess described in Chapter 6, concerning SDH. The transcripts from the interviews were

used to identify relevant themes based on the analysis process described in section

3.4.1. The complete list of themes and their description can be viewed in Table 6.6

below.

Theme Description
Toolkit usefulness Statements regarding tasks and connecting

to store being simplified by Toolkit.
Permission issues Statements regarding struggle with under-

standing and using the Permission related
classes.

Class relation confusion Statements regarding difficulties with un-
derstanding how the various classes are re-
lated, especially classes related to reading
values.

Interface for database R/W-access Statements regarding difficulty with retriev-
ing read results with the Cursor interface.

Class pattern issues Statements regarding issues with imple-
mentations of Filter and Builder Pattern.

HealthData parameter issues Statements regarding issues related to set-
ting correct parameters of the HealthData
object used for writing values, including
confusion around mandatory parameters
and usage of Offset parameter.

Intuitive Request-classes Statements regarding the intuitivity of the
ReadRequest and InsertRequest classes and
how they simplified tasks solving.

Documentation eased task solving Statements regarding the significance of
the documentation for improved task pro-
ductivity and task solving.

Descriptive documentation Statements regarding the descriptiveness of
the documentation including the ease to
find relevant information and good exam-
ples.

Not descriptive documentation Statements regarding not descriptive doc-
umentation including large of amount of
time spent searching in and becoming fa-
miliar with the documentation.

Table 6.6: List of themes and their description identified from interviews with partici-
pants developing with SDH

6.5. FINDINGS 95

Each of the identified themes described above were, in compliance with our qualitative

data analysis approach, grouped into more generalizable parent themes, where each

parent theme described the overarching aspect binding the themes together. Therefore,

were each parent theme connected to the interviewees’ statement via this relation to

these themes.

An example of how the interview data was related to the identified themes is the

first parent theme "Toolkit general", only comprised of positive statements of the theme

"Toolkit usefulness", where participant PS04 stated that "The code and the descriptive

documentation gives you a better starting point than starting from scratch" and partici-

pant PS06 stated that "It offers a library that simplifies the tasks at hand".

The theme “Permission issues” was based on the quotes by participant PS07 stat-

ing that he/she “Used a lot of time to understand how the permissions were structured”

and participant PS06 stating that “Permissions were a little cumbersome. Struggled with

putting together three classes PermissionType, PermissionKey and PermissionResult to

set up Permissions”. In a similar fashion were statements related to the theme "Class

relation confusion", which together with "Permission issued" formed the parent theme

"Class hierarchy and naming".

The parent theme "Class implementation" comprised of the themes "Interface for

database R/W-access", "Class pattern issues", "HealthData parameter issues" and "In-

tuitive Request-classes". Regarding the theme "Class pattern issues" the statements

included participant PS07 stating that: "I found information in API-ref about Read-

Request, but I did not understand how to create a Request with parameters with Builder"

and regarding the theme participant PS02 stated that: "I did not know the meaning of

the word Offset. I had a hard time figuring out what to put in the Offset field, so I tried to

run the program without it, but that did not work". In a similar fashion were statements

related to the remaining two of the abovementioned themes.

The parent theme "Documentation" comprised of negative and positive statements

related to the themes "Documentation eased task solving", "Descriptive documenta-

tion" and "Not descriptive documentation". For example, related to the theme "Docu-

mentation eased task solving" participant PS01 stated that: "In the case of both the tasks

I completed, the documentation was crucial for my success", and related to the theme

"Not descriptive documentation" participant PS04 stated the following about a specific

96 CHAPTER 6. MHEALTH TOOLKITS OBSERVATION STUDY

task: "I didn’t like the documentation here. I didn’t figure out which functions to use, and

that I had to use Filter for setting time range. It was poorly explained".

For each theme, the number of its distinct occurrences was counted across the nine

interviewees(participants) developing tasks with SDH. I.e. if there were more than one

occurrence in the transcript of an interview with a statement related to a specific theme,

it would only be counted once towards the final amount of distinct occurrences. In the

same manner, the number of distinct participants related to each of the parent themes

was counted across the aforementioned theme occurrences, not allowing a participant

to be counted more than once.

These themes and their corresponding parent themes, along with the occurrences of

both, for the interview data analysis are listed in Table 6.7 below.

Parent Themes(distinct
#participants)

Themes(distinct occurrences)

Toolkit general(9) Toolkit usefulness(9)
Class hierarchy and nam-
ing(6)

Permission issues(2), Class relation confu-
sion(4)

Class implementation(9) Interface for database access(3), Class pat-
tern issues(3), HealthData parameter set-
ting issues(7), Intuitive request classes(3)

Documentation(9) Documentation eased task solving(8), De-
scriptive documentation(5), Not descrip-
tive documentation(3)

Table 6.7: List of themes and their parent themes, along with occurrences of both, iden-
tified from interviews, for SDH

As mentioned, were data from field notes and video recording notes also analysed. The

findings gained from these analyses were gained to supplement and check the validity

of the identified themes and occurrences from the interview transcripts, and hence this

list follows the same format as the previous one. These results can be viewed in Table

6.8.

6.5. FINDINGS 97

Parent Themes(distinct
#participants)

Themes(distinct occurrences)

Toolkit general(0) Toolkit usefulness(0)
Class hierarchy and nam-
ing(9)

Permission issues(3), Class relation confu-
sion(9)

Class implementation(6) Interface for database access(1), Class pat-
tern issues(2), HealthData parameter set-
ting issues(4), Intuitive request classes(0)

Documentation(8) Documentation eased task solving(4), De-
scriptive documentation(7), Not descrip-
tive documentation(3)

Table 6.8: List of themes and their parent themes, along with occurrences of both, iden-
tified from field notes and recording notes, for SDH

6.5.2 Quantitative Data Findings - Apple HealthKit & SDH

The following section presents the findings from analysis of quantitative data from the

conducted observation study described in Chapter 6. These findings were a result of

an analysis of data generated from screen recordings of the participants’ development

during the observations, and the questionnaires completed by these participants post-

development.

Screen Recordings

A vital part of the observation study consisted of screen recordings of the participants’

actions, used as a basis for quantitative data analysis. Based on the observations met-

rics described in section 6.4.1, there was derived a list of measures relevant to developer

efficiency and productivity. The list is as follows:

• M1: Average percentage of time spent in documentation

• M2: Corr(X, Y), Correlation between variable X and variable Y

– Where X = Tasks completed for participant P(i).

– Where Y = Mean(TS(D)/TS(IDE)), mean average of ratio between time spent

in documentation and time spent in IDE in each of the 4 tasks for participant

P(i).

• M3: Number of participants solving one or more task within time limit.

98 CHAPTER 6. MHEALTH TOOLKITS OBSERVATION STUDY

• M4: Average number of tasks completed within time limit.

Measure M1 gives information on the portion of time participants spent in documen-

tation, regardless of whether they completed a task or not, to reveal the significance

of each Toolkit’s documentation. M2 shows whether or not there is a correlation be-

tween number of completed tasks and the ratio between time spent in documentation

and IDE. The correlation coefficient illustrates the statistical relationship between vari-

ables, and can provide an indication to whether or not there is a dependence between

the two. The results of M2 will be discussed in section 9.1.3 in light of this statement:

"Any coefficient between 0.3 and 0.7(plus or minus) is regarded as demonstrating a rea-

sonable correlation"[44, p. 258]. The reason for choosing percentage of time spent in

documentation and using a ratio between time spent in documentation and IDE, was

to be able to disregard the difference in completion time and whether or not a task was

completed. Both M3 and M4 provide information on what Toolkit the participants had

more success with and the degree of their success, with M4 providing information with

more granularity than M3. The results of measures M1-M4 for Apple HealthKit and SDH

are shown in Table 6.9 below.

Toolkit \Measures M1 M2 M3 M4
Apple HealthKit 43,1% 0.7294 7/7(100%) 2,57
SDH 41,2% 0.1564 6/9(66%) 1,00

Table 6.9: Resulting measure for M1-M4, for each of the two evaluated mHealth Toolkits

Questionnaires

The following section will present the findings gathered from questionnaires filled out

by observation study participants post-development. For each of the Toolkits, mean

average values were calculated for all of the five questions. The D-T Scale determined

the values (1-7) where 1 represents Terrible, and 7 represents Delighted according to

the process described in section 3.4.2. The resulting score for Apple HealthKit and SDH

can be viewed in Table 6.10. The referred questions can be found in Table 6.2 in section

6.2.

6.5. FINDINGS 99

Toolkit \Question Q1 Q2 Q3 Q4 Q5 Total
Apple HealthKit 5,0(0,76) 5,0(0,53) 4,9(0,64) 3,9(0,64) 4,2(0,64) 4,6
SDH 5,0(1,05) 4,8(1,13) 4,9(1,10) 4,6(1,26) 5,0(0,94) 4,8

Table 6.10: Mean average scores of questions from the questionnaires answered post-
observation. Standard deviation for each question is listed in parenthesis

100 CHAPTER 6. MHEALTH TOOLKITS OBSERVATION STUDY

Chapter 7

Questionnaire with Experienced

Developers

In this chapter, we will describe the process we went through of creating a question-

naire and distributing it to experienced mHealth Toolkit developers. The reason why

we wanted to create and distribute the questionnaire is to gain insight into how devel-

opers are using the mHealth Toolkits in real life settings and how using them affects

their creativity. First, the questionnaire will be described. Secondly, the process of dis-

tributing the questionnaire and the participation from developers will be elaborated.

Lastly, the findings will be presented. The findings from this chapter will contribute to

answer RQ3.

7.1 Description

In this section, the questionnaire will be described in detail. We created the ques-

tionnaire based on the questionnaire from the observation study described in Chap-

ter 6. The D-T scale was used as the scale for quantitative answers. For qualitative

data, we asked questions where the participants could write textual answers. Develop-

ers were first asked if they had experience with the mHealth Toolkits in question(Apple

HealthKit, Google Fit and SDH). If they had experience with one or more of the mHealth

101

102 CHAPTER 7. QUESTIONNAIRE WITH EXPERIENCED DEVELOPERS

Toolkits, they were given questions about that(those) Toolkit(s). The questions for all

Toolkits were the same, and they are listed in Figure 7.1 below.

Question Answer format Qualitative/Quantitative
data

Q1: How do you feel
about the overall develop-
ment experience?

D-T Scale Quantitative

Q2: How do you feel
about your ability to be-
come familiar with with
the Toolkit?

D-T Scale Quantitative

Q3: How do you feel
about the programming
experience?

D-T Scale Quantitative

Q4: How do you feel
about the structure of the
documentation?

D-T Scale Quantitative

Q5: How do you feel
about the descriptiveness
of the documentation?

D-T Scale Quantitative

Q6: If found efficient, in
what way did it increase
your efficiency?

Text Qualitative

Q7: How would you de-
scribe the Toolkit’s effect
on development creativ-
ity?

Text Qualitative

Table 7.1: List of questions comprising the questionnaire answered by experienced de-
velopers

7.2 Process and Participation

The following section will describe the process of reaching out to developers with mHealth

Toolkit programming experience. The target group of this questionnaire consisted of

people that are developers and have experience with one of the Toolkits in question(Apple

HealthKit, Google Fit and SDH). To reach out to the developers, we tried to identify

and use all possible communication channels. We identified these as developer forums

for the Toolkits in question, emails to developers of partner applications to the Toolk-

its(applications that have integration to the Toolkit in question) and computer science

student forums.

7.2. PROCESS AND PARTICIPATION 103

In our process of distributing the questionnaire, we tried posting in mHealth Toolkit

developer forums. Some of the Toolkit providers would not let us put the questionnaire

up on the forum as they did not want to be involved in the research. For example, we

got this answer from Apple: "The developers can be contacted by the people following the

information found on the App Store in case needed but it cannot be made through Ap-

ple, and we cannot provide information on the contacts we have for privacy matter". We

were unavailable to post in the Samsung developer forum because we never received a

confirmation email after registering. We were able and allowed to post in the forum of

Google Fit.

The next step was to contact all registered partner applications via email. We sent

emails to their support emails, available in Apple AppStore and Google Play Store. These

partner applications were found by searching in the various application stores and per-

forming Google searches. The email contained the link to the questionnaire and asked

the person who received it to forward it to developers with mHealth Toolkit develop-

ment experience. In total, 63 different applications providers were contacted via email

and we got 19 answers from the support departments of the respective applications

that were not automatically generated by their email system. Some replied that they

had answered the questionnaire, while other informed us that the questionnaire had

been forwarded to developers, and others could not answer the questionnaire due to

the company’s security policy.

The questionnaire was also posted in a student group on Facebook with Computer

Science students. The aforementioned group is for all students that are attending the

computer science program at the Norwegian University of Science and Technology. The

answers from this channel were mostly unusable because most respondents had no ex-

perience with any of the Toolkits in question.

In total, we received 22 answers. From these, only 12 answers contained usable data

as the other 10 had no prior experience with the toolkit(s). Of the 12 answers, 4 were

related to Google Fit, 4 to Apple HealthKit and 4 to SDH.

104 CHAPTER 7. QUESTIONNAIRE WITH EXPERIENCED DEVELOPERS

7.3 Findings

In this section, the findings from the questionnaires filled out by experienced develop-

ers will be presented. As mentioned in Chapter 7, we reached out to developers through

forums, emails and posts in social media. The response consisted of only 12 answers

usable in the analysis, which was a lower degree of participation than expected. First,

the quantitative data will be presented, then the qualitative data.

Table 7.2 presents the results of the quantitative data collected from the questionnaires.

For all of the questions for each Toolkit, we calculated mean average values using the

D-T Scale values(1-7) where 1 represents Terrible, and 7 represents Delighted. The re-

ferred questions can be found in Table 7.1 in section 7.1.

Toolkit \Question Q1 Q2 Q3 Q4 Q5 Total
Apple HealthKit 5,00(1,22) 5,50(0,87) 4,75(1,09) 5,50(0,50) 5,25(0,83) 5,20
Google Fit 4,75(0,83) 4,75(0,43) 4,75(0,83) 4,00(1,22) 4,75(0,83) 4,60
SDH 4,75(1,09) 5,00(0,71) 4,25(1,48) 4,00(1,22) 3,50(1,12) 4,30

Table 7.2: Mean Average Score results from questionnaire with experenced developers.
Standard deviations is displayed in parentheses

From the answers to the questions that gave qualitative textual answers in the ques-

tionnaire, we deducted certain themes. The themes that most answers fell underneath

were, as described in Table 7.3, complaints about the stability of the mHealth Toolkits,

the added value of data sharing and API design of the mHealth Toolkits.

Theme Description
Bugs and stability Statements regarding bugs and stability of the mHealth

Toolkit in question.
Added value of data shar-
ing

Statements regarding what kind of value the mHealth Toolkit
in question adds to the developer in terms of data sharing.

API design Statements regarding the design of the API of the mHealth
Toolkit in question.

Table 7.3: List of themes and their description, identified from textual questionnaires
answers of experienced developers

7.3. FINDINGS 105

Two of the developers that participated in the questionnaire complained about bugs

and stability of the Toolkits. For example one of the participants wrote the following

about Apple HealthKit: "It has had so many bugs, and has many to this date, that it’s

frustrating to use. Hence, we try to avoid relying on it, which limits the gained room for

creativity". Another example is a participant that wrote the following about SDH: "Bad

SDK code bring bad code to project. Library fails periodically in production".

Seven of the questionnaire participants mentioned the added value of data storage and

sharing from the mHealth Toolkits in their answers. All of the seven developers that

mentioned the added value of data storage and sharing from the Toolkits felt that they

became more productive in developing an application since the Toolkits handled the

data storage for them. For example, one of the participants wrote the following about

Google Fit: "It makes me more creative since I do not need to create my own backend

and therefore can focus on actually implementing the application and adding features

instead of making a backend". Another wrote the following about Apple HealthKit "It

allows data sharing in ways that were not possible previously, so it generally allows for

more creativity and use cases".

Participants of the questionnaire had both positive and negative things to say about

API design. Google Fit was criticized for its API design. For example, one of the partici-

pants wrote the following about the Google Fit API: "API is not properly designed, seems

to me too academic and too generic". Another participant complained about the setup

process of Google Fit by writing that "The setup process is however quite extensive and

could be simplified. I used one working day before I was able to make calls to the APIs.

The most challenging part was to understand the example code for connection provided

by Google on their GitHub". The API design of SDH, on the other hand, received pos-

itive feedback from a participant answering that: "API is simple but covers most cases

and doing what you expect".

We tried to use the same parent themes as we did in previous sections for the themes

found from the questionnaire with experienced developers. The themes and their par-

ent themes are listed in Table 7.4.

106 CHAPTER 7. QUESTIONNAIRE WITH EXPERIENCED DEVELOPERS

Parent
Themes/Theme
Source

Themes(distinct occurrences)

Toolkit general Bugs and stability(2), Added value of data
sharing(7)

Class hierarchy
and naming

API design(3)

Class implemen-
tation

API design(3)

Documentation -

Table 7.4: List of themes and their occurrence, along with corresponing parent themes,
identified from questionnaires with experienced developers

Chapter 8

Summary of Findings

This chapter will summarize the findings from our research as presented in sections 4.4,

5.4, 6.5 and 7.3 respectively.

In section 4.4, we discovered that Apple HealthKit and SDH had more in common in

terms of data storage as both stored data locally of the device, with Google Fit only us-

ing cloud storage. In addition it was discovered that the setup process of Google Fit,

was quite extensive.

Section 5.4 presented findings from Chapter 5. This section described data obtained

through implementation of an example system. It revealed that the system could be

developed using both Apple HealthKit and SDH, with HealthKit using substantially less

time and lines of code to develop. Additionally, the implementation revealed that within

both toolkits there was confusion regarding class naming.

An observation study was the source of the findings in section 6.5. The qualitative data

gathered from interviews revealed that both HealthKit and SDH were useful to the par-

ticipants, and that use of Toolkits simplified the solving of tasks. Furthermore, concerns

regarding the class structure and implementation were revealed, with participants us-

ing either platform complaining about specific aspects of the platform. Comments and

quotes regarding documentation revealed that while SDH participants were mostly sat-

107

108 CHAPTER 8. SUMMARY OF FINDINGS

isfied, HealthKit’s documentation was criticized for lack of examples. The quantitative

data supported these facts, with HealthKit scoring lower than SDH in the questionnaire

filled out by the participants post-development.

The previous chapter collected questionnaire data from experienced developers, and

the findings were presented in section 7.3. This questionnaire revealed that Apple HealthKit

scored highest among the three, with developers commenting that either toolkit is sta-

ble/reliable enough to be used in production.

Chapter 9

Discussion

In this chapter, we will discuss the research conducted in this thesis. First we will in-

terpret and discuss the findings of the research, and then we will revisit and answer the

research questions stated in section 1.2. Lastly, we will evaluate the research in terms of

its significance and in light of existing knowledge on the subject. All papers that are ref-

erenced in this chapter has already been introduced and we only use extractions from

the previous works in the following sections(see section 2.2. for the complete descrip-

tion of previous works).

9.1 Discussion of Findings

In this section, the findings from the research will be discussed. The findings will be

discussed in the same order as they were presented in chapter 8. First, the findings from

the mHealth Toolkits chapter will be discussed. Then, we will discuss the findings from

the example system development. Following that, findings of our observation study

will be discussed, and lastly we will discuss the findings from the questionnaire with

experienced developers.

9.1.1 Chapter 4 Discussion

In this section, the findings from chapter 4 regarding technical architecture; the way

data is stored and the type of data is allowed to be stored will be discussed. The other

109

110 CHAPTER 9. DISCUSSION

finding regarding the setup process of Google Fit will be discussed in section 9.1.2 due

to its relevance to the discussion of the examples system we developed.

As presented in section 4.1 and 4.4, Google Fit differs from Apple HealthKit and SDH

with regards to what data types that can be stored and how the data is stored. Both

Apple HealthKit and SDH use the device as the primary storage for data, while Google

only stores data in its cloud storage. For the developer, this might seem irrelevant, but

it is important to keep in mind the need for secure storage of health data. Developers

that are developing mHealth applications must examine the rules and restrictions for

data storage in a given country. In most countries, cloud storage is a violation of the

requirements and laws regarding storage of health data. The previous failure of Google

Health described in section 4.1.2 indicates that it is difficult to implement cloud storage

of health data. Developers should therefore stick to solutions that store health data in a

secure manner on the device such as Apple HealthKit.

Since Google Fit is not meant to store health data, it is reason to believe that Apple

HealthKit and SDH are suited for developing mHealth applications, while Google Fit is

not. This is the reason for our decision to exclude Google Fit from our developer ob-

servation study and our example system development. Additionally, Google Fit lacks a

data type for blood glucose that we used in the observation study and the development

of an example system.

9.1.2 Chapter 5 Discussion

The following section will discuss the selected mHealth Toolkits, with regards to the

findings from the example system development presented in section 5.4. In addition to

interpreting the findings through evaluation based on experience and previous work,

this section will provide information to answer RQ4 along with providing partial infor-

mation for answers to RQ1, RQ2 and RQ3. Do note that the discussion is written from a

developer’s point of view.

9.1. DISCUSSION OF FINDINGS 111

There are fundamental differences between the Toolkits with regards to the context of

developing mHealth applications. Apple limits the development of iOS applications

to OS X users and as a result, the development of HealthKit applications is limited to

iPhone devices, as discussed in sections 4.2 and 5.2. Compared to HealthKit, SDH is

based on the Android platform, which is open-source and provides a lower “entry cost”

(the cost to create and publish an application a store). and therefore makes SDH avail-

able to the entire Android device portfolio1. What this entails is that Samsung has a

larger opportunity to affect markets where developers have limited resources compared

to Apple who seems to be targeting the modern healthcare market, evidenced by their

cooperation with EPIC and Mayo Clinic[18] as referenced in the introduction of Chap-

ter 5.

In order to understand what separates the selected Toolkits and thereby provide a par-

tial answer to RQ1, their differences were examined through development of an exam-

ple system. The example system should be thought of as a semi-realistic example of

how a healthcare provider might facilitate the use of applications built by employing the

selected Toolkits. Additionally, as mentioned by Greenberg[2007] in Chapter 2, Toolkits

are supposed to abstract common and general problem areas within a domain. Con-

sidering this, we will discuss the aspects that affect productivity during development.

Delving into the setup process, findings from section 4.4 revealed that Google Fit, in

comparison to HealthKit and SDH, requires a more extensive setup time and substan-

tial amount of code. Setup time is defined as the time it takes to set up everything

required to use the Toolkit. As Google Fit was excluded due to reasons described in sec-

tion 5.2, only Apple HealthKit and SDH will be discussed. From the qualitative findings,

we notice that the setup time of HealthKit was quite short according to the responsible

developer, requiring only one codeline to instantiate the HealthStore. SDH required the

developer to add information in the androidmanifest.xml file. In addition, with SDH

the developer needed to download and install relevant jar-libraries from the Samsung’s

online developer resources. When comparing the two, we conclude that HealthKit has

1Samsung Digital Health is restricted to Samsung devices running Android 2.3 or higher and/or non-
Samsung devices running Android 4.4 or higher

112 CHAPTER 9. DISCUSSION

a more straightforward setup, due to HealthKit being more tightly integrated into the

iOS platform than with SDH is with Android.

HealthKit’s higher level of abstraction is evident when inspecting the quantitative data.

Development with SDH shows that it is inferior to HealthKit with regards to time and

number of lines of code required to complete the example system. To implement the

same functionality, HealthKit required approximately 50% lines of code less than SDH.

For example, SDH required 20 lines of code to implement initialization and connection

to the store, where the same was accomplished in 5 lines with HealthKit. The experi-

ence of the developers that implemented the system for HealthKit and SDH was not

a cause for the resulting disparity between the two, as the they had approximately the

same amount of experience. Other possible causes must therefore be examined.

Apple imposes structural limitations on the developer in the form of categories of classes:

each sample type(data type) had a corresponding sample class(actual data object) and

each sample type was defined based on predefined constants provided by Apple in the

documentation(type identifier(s)). In practice, this meant that the developer could only

create applications that used data belonging to one of the predefined types. SDH pro-

vided the developer with the option to create custom data types, based on a standard

object. On one hand these restrictions are negative as they restrict the scope of appli-

cations that could be created. On the other hand, the creation of applications using

predefined data types can be completed in less time.

Becoming familiar with the structure of a Toolkit or an API is usually done through its

documentation. The structure and usability of the documentation of HealthKit and

SDH will be evaluated in light of the findings relating to the developers’ thoughts from

section 5.4 in the previous chapter. Based on the findings presented in section 5.4.1,

we conclude that a developer with no previous experience with SDH can implement

the described applications with the help of the available documentation without assis-

tance from any external resources. The same was the case with HealthKit, but there

was a difference in the documentation used; external documentation in the form of tu-

torials was also used due to insufficient examples provided by Apple. This lead us to

9.1. DISCUSSION OF FINDINGS 113

the belief that SDH has a more descriptive documentation with a superior structure,

however, these findings alone are insufficient and to justify this statement additional

findings supporting it will be discussed in section 9.1.3.

Regarding class architecture, the findings of section 5.4 revealed fundamental differ-

ences regarding the implementation process. SDH applies consistent concepts and

naming related to the process of reading and writing data using the HealthDataRe-

solver class, while Apple shows inconsistencies by applying object-oriented concepts

to writing data with the saveObject function and traditional database concept with the

HKQuery class for reading data. One could argue that the approach used by HealthKit

confuses the developers. There were also some concepts within SDH that caused con-

fusion, such as the implementation of the Builder and Filter design patterns, and espe-

cially the use of the Cursor class for iterating database records. Looking back at devel-

opment time and lines of code in Table 5.2, the numbers suggest that developing with

HealthKit is far more efficient, but as with the findings regarding the documentation,

are these findings alone not sufficient to support this claim.

9.1.3 Chapter 6 Discussion

In this section, the findings from qualitative data presented in section 6.5.1 and the

findings from quantitative data presented in section 6.5.2 will be summarized and dis-

cussed. The qualitative findings will be discussed first, followed by the quantitative

findings.

Discussion of Qualitative Findings

The findings from the analysis of qualitative data generated from the observation study

described in section 6.5.2 will be discussed in this section, for each of the parent themes

individually. The findings from the interview data are primary, while the findings from

field notes and video recording notes are supplementary.

114 CHAPTER 9. DISCUSSION

Toolkit General: For HealthKit, there were 4 participants with statements regarding

the general Toolkit usage, while there were 9(all participants) with SDH. They all stated

that the given Toolkit was useful by making the tasks easier to solve. Both had no oc-

currences in the supplementary findings and hence did not validate the primary find-

ings, but it is important to note that these statements were directly related to a ques-

tion asked in the interviews and it was therefore difficult to observe such occurrences

from the participants’ actions. As these results comprised of more than half of the par-

ticipants, they indicate that both Toolkits simplified task solving, although to a greater

extent with SDH. Greenberg[2007] states that a Toolkit should “Remove low-level imple-

mentation burdens”[31], and it is likely that our findings are due to the removal of such

burdens in the given Toolkits. These findings support the conclusion of Von Hippel and

Katz[2002] that ”Toolkits for user innovation will eventually be adopted by many manu-

facturers facing heterogeneous customer demand”[53], as time not spent implementing

basic functionality can be instead be invested in user innovation.

Class Hierarchy and Naming: In the interviews, both HealthKit and SDH had many

occurrences of statements regarding naming of classes and functions, and their class hi-

erarchy; 7 for HealthKit and 6 for SDH. For HealthKit they were predominantly related

to naming inconsistencies(notably the use of the HKHealthStore.saveObject function

to write and the HKHealthStore.executeQuery function to read), but also related to the

relations between classes of the hierarchy, while for SDH they were related to the rela-

tions between classes used to read values and to manage permissions. These findings

were validated by the 3 occurrences in the supplementary findings for HealthKit and

9(all participants) for SDH. The reason why the number of occurrences of the supple-

mentary findings can exceed those of the primary findings such as in this example, is

because the participants were not conscious of or had forgotten certain events at the

time of the interviews.

In a study of different variants of an API, Scheller and KühnScheller and Kühn con-

cluded that “If a class or method name didn’t meet the programmer’s expectations, he/she

would need much more time finding it”[51]. In light of this conclusion, we can infer

that the identified issues with understanding the names of classes and functions of

HealthKit affected the developer productivity negatively, compared to if it had been put

9.1. DISCUSSION OF FINDINGS 115

more weight to the developer’s expectations when designing the API and its naming. It

is also reasonable to assume that the confusion around class relations within the class

hierarchy decreased productivity for both Toolkits.

Class Implementation: Clarke[2004] states that: “usability problems can exist in an

API that are related to users not perceiving the affordances the API supports”[24]. I.e. how

the API classes are implemented affects the way developers perceive their affordances,

and this aspect will be discussed here.

With HealthKit there were 2 occurrences of issues related to class implementations

and 4 from the supplementary findings, where the prominent issue was related to the

class function HK Heal thDat aStor e.i sHeal thDat a Avai l able. The issue was due

to the function being static, and thereby requiring to be called on the HKHealthStore

class, not the instance fo this class. This distinction lead to confusion because the par-

ticipants did not know that an initialization of the object was not needed, i.e. they did

not perceive the affordance of this class function. The use of static functions is non-

existent in SDH, hence SDH has a more consistent class implementation in this respect.

There were 6 occurrences with SDH in the primary findings related to class implemen-

tation, validated by 9(all participants) occurrences in the supplementary findings. All

themes consisted of issues, except for a theme where participants commented on the

intuitivity of the Request-classes(Heal thDat aResol ver.ReadRequest/Inser tRequest).

The occurrences included three main issues that were due to participants not perceiv-

ing the affordances of the API implementations, possibly revealing an inadequacy in

the API. The first issue was related to setting a mandatory parameter of the Health-

Data class, the Heal thConst ant s.Bl oodGl ucose.T I MEOF F SET that considers time

zones, which was a cause of confusion due to the name itself, why it was needed and

that this property was related directly to each type of HealthConstants class. In con-

trast, this was not an issue with HealthKit, as the handling of time offset is abstracted

away by using the NSDate class. The second issue was related to SDH’s implementation

of the Builder and Filter pattern; there were problems with understanding how to use

the Builder class to build a ReadRequest and the Filter class to filter read values by date

time. The last issue was concerned with the use of the Android Cursor class for iterat-

ing the retrieved database records. Here, an alternative implementation for retrieving

116 CHAPTER 9. DISCUSSION

the result could instead involve the use of the Iterator interface, which is a part of the

standard Java API. The last two issues seemed to occur because the implementations

varied from what the participants expected based on their previous Java programming

experience. In contrast, HealthKit does not require knowledge such design pattern im-

plementations within the SDK.

Documentation: Robillard[2009] states that: “A major result of the survey is that re-

sources topped the list of obstacles to learning APIs. This is a good reminder that efforts

to improve the usability of an API’s structure need to be complemented by efforts to im-

prove the resources available to learn them”[49]. Among the available resources men-

tioned, the main resource for learning is the documentation of the Toolkits and the

corresponding APIs provided by the Toolkit providers. The findings consisted of oc-

currences of statements regarding the benefit of using the documentation of HealthKit

and SDH, both positive and negative. For HealthKit there were 7(all participants) oc-

currences in the primary findings related to the documentation specifically, and 2 in

the supplementary findings. The occurrences included 3 participants describing the

documentation as helpful and descriptive, and 6 participants criticizing its lack of de-

scriptiveness. These findings are validated by 1 and 3 occurrence(s) in the supplemen-

tary findings, respectively. While for SDH, there were 9(all participants) occurrences in

the primary findings, and 8 in the supplementary findings. The occurrences included

9(all participants) participants describing the documentation as helpful and descrip-

tive, and 3 participants criticizing its lack of descriptiveness. The supplementary find-

ings validate these findings by 8 and 3 occurrences respectively. According to these

findings is SDH’s documentation more descriptive and useful when learning its APIs,

when compared to HealthKit.

Discussion of Quantitative Findings

In this section the quantitative findings presented in section 6.5.2 will be discussed for

both Apple HealthKit and SDH, and compared to determine differences and similarities

between the two. These findings include the measurements M1-M4 based on data from

the observation screen recordings and the data from the questionnaires filled out by the

participants.

9.1. DISCUSSION OF FINDINGS 117

Observation screen recordings

M1: The average percentage of time spent in documentation was 43,1% for HealthKit

and 41,2% for SDH, resulting in a difference of 1,9%. These numbers show that for both

Toolkits, the participants used a significantly less amount of time in the documentation

than in the IDE, but the difference between the two is insignificant.

M2: M2 describes the correlation coefficient between the average number of tasks

completed and the average of the ratio between time spent in documentation and time

spent in IDE, averaged over the set of participants. For HealthKit the correlation was

0,7294. According to the citation introduced in section 6.5.2 stating that “Any coeffi-

cient between 0.3 and 0.7(plus or minus) is regarded as demonstrating a reasonable cor-

relation”[44, p. 258], is this measure sufficient to conclude that there is a strong corre-

lation between the two variables. I.e. in the case of HealthKit, increased time spent by

a participant in documentation leads to an increased number of tasks completed.

With SDH, the measure was 0,1564, indicating a weak positive correlation between

the variables with the given data set, but not sufficient to make any conclusion.

M3: M3 describes the number of participants solving at least one task within the given

time limit. For HealthKit this measure was 7 out of 7 participants(100%), and with SDH

6 out of 9(66,7%), resulting in a difference of 33,3% in HealthKit’s favour. As a signif-

icantly larger portion of participants developing with HealthKit managed to solved at

least one task, it is reasonable to assume that the developers were more productive de-

veloping with HealthKit than with SDH.

M4: M4 describes the average number of tasks completed by the participants. For

HealthKit the result was 2,57 tasks, and it was 1,00 for SDH, resulting in a difference of

1,57 tasks(39% of the total tasks). We consider that a difference in 39 percentage points

in HealthKit’s favour is sufficient to conclude that the participants were more efficient

and productive in their overall development with HealthKit than with SDH.

118 CHAPTER 9. DISCUSSION

Questionnaires The quantitative findings from the questionnaires with the partici-

pants in the observation study presented in section 6.5.2, consisted of the resulting

mean average score(score) for each of the five questions answered and all five in to-

tal, for HealthKit and SDH individually. The D-T Scale[55] was used for scoring, with a

score range of 1-7.

The mean average score of all five questions in total was 4,6 for HealthKit and 4,8 for

SDH, resulting in a difference of 0,2 in SDH’s favour. The difference is not significant,

but the numbers show that both of the Toolkits got an above average score on questions

concerning documentation and overall development. Concerning the scores of individ-

ual questions, only the score of question 4(Q4) and question 5(Q5) had significance as

they were the only questions where a large variation in the scores was identified. For

Q4, the difference between the two Toolkits were 0,7 in SDH’s favour, i.e. the develop-

ers rated the structure of the documentation significantly better. For Q5, the difference

between the two Toolkits were 0,8 in SDH’s favour, i.e. the developers rated the descrip-

tiveness of the documentation significantly better.

Both Q4 and Q5 were related to the Toolkits’ documentation, and according to the D-T

Scale the participants had mixed feelings about HealthKit’s documentation, but were

mostly satisfied with SDH’s documentation. While on the remaining questions, con-

cerning the overall development and the ability to become familiar with the Toolkits,

the score difference between the two was negligible and participants were mostly satis-

fied with both.

We end this section by summarizing the discussion and comparison of the qualitative

and quantitative findings of HealthKit and SDH. Both Toolkits simplified the overall

task development process for the sample of participants involved in the study. Con-

fusion due to the relations of classes in the class hierarchy also occurred with both of

them. SDH proved to have a more intuitive naming of classes and functions, while

the higher level of implementation caused less confusion in HealthKit compared to the

class implementations in SDH. Regarding their documentation, a strong indication was

found that SDH’s documentation was more descriptive as there were significantly less

9.1. DISCUSSION OF FINDINGS 119

occurrences of issues related to its structure. The quantifiable measures implied that

HealthKit is more productive in terms of number of task completed and the number

of participants completing at least one task. In addition, a strong positive correlation

was identified between the time spent in the documentation and the number of tasks

completed in development with HealthKit.

9.1.4 Chapter 7 Discussion

Our findings from the questionnaire with experienced developers presented in this sec-

tion are essential to understand the way mHealth Toolkits affect experienced develop-

ers. The findings from the questionnaire will also contribute to answer research ques-

tion 3(RQ3). As mentioned in chapter 7 and section 7.3; the participation was lower

than we expected. Even though we used a variety of communication channels to reach

out to developers, the number of participants was lower than expected. Reasons might

be that there are few people with experience with the Toolkits in question and that our

email did not reach the right recipients. A consequence of the low sample size is that

the resulting findings of the questionnaires are uncertain, especially those found from

quantitative data. We found three themes when analyzing the qualitative data. In the

remainder of this section, the quantitative data will be discussed, before these three

themes will be elaborated.

For the questions with quantitative data from the D-T Scale(1-7)[55], the results show

that Apple HealthKit has the highest total average score with 5,20, which is higher than

both SDH and Google Fit, with 4,30 and 4,60 respectively. The main reasons why Ap-

ple HealthKit has the highest average score are questions Q4 and Q5, which concern

the documentation of the mHealth Toolkits. The fact that Apple HealthKit has a sig-

nificantly higher score on the questions regarding the documentation gives reason to

believe that Apple HealthKit has a better documentation than the other two Toolkits

in question. Documentation is as described in section 2.2 a very important aspect of

an Toolkit/API. As stated in Bloch[2006], "Documentation matters. No matter how good

an API, it won’t get used without good documentation"[21]. On another side, as earlier

mentioned, we cannot deduce such statements with 100% certainty because of the low

sample size in the questionnaire.

120 CHAPTER 9. DISCUSSION

The first theme we found from the qualitative data analysis was complaints about bugs

and stability of the mHealth Toolkits. The reliability of data storage is key when de-

veloping an application. When a developer states the following about Apple HealthKit

"However, it has had so many bugs, and has many to this date, that it’s frustrating to

use. Hence, we try to avoid relying on it", it is reason to question the reliability of Apple

HealthKit. The same goes for SDH, due to a developer that stated the following: "Bad

SDK code bring bad code to project. Library fails periodically in production". The prob-

lem with these answers is that they only state that the mHealth Toolkits has bugs, but

does not specify what kind of bugs. These bugs might have been fixed by the mHealth

Toolkit providers, or they might be continuous problems that the providers have been

unable to fix. If a user experiences a bug, it might not necessarily be an actual bug, just

deficient Toolkit/API design. Clarke[2004] states, as discussed in section 2.2, that the

affordance of a Toolkit/API is crucial in Toolkit/API design. The developer needs to be

able to perceive all affordances of the Toolkit/API. The failure to do so might lead to the

developer experiencing the Toolkit/API as buggy.

The second theme we found in section 7.3 is the added value of data storage and sharing

of the Toolkits. The comments and overall impression from the participating develop-

ers described in section 7.3 shows that the data storage and sharing features of mHealth

Toolkits are highly appreciated by the developers. The positive effect of the data storage

and sharing features is that developers can make an mHealth application without the

need of a backend service and also collect data from other applications. These findings

are aligned with the findings in Greenberg[2007] where one of the findings is that the re-

moval of low-level implementation simplifies the development process and allows the

developer to give more focus to the high-level functionality of the application resulting

in an improved application.

The last theme we found in section 7.3 is the API design of the mHealth Toolkits. De-

velopers perceived the design of the APIs and the documentation differently. Some had

positive experiences and some had negative experiences. We received three answers

that concerned this theme. Two of them were negative comments about the API design

9.2. RESEARCH QUESTIONS 121

of Google Fit. The negative comments gives reason to believe that the API design of

Google Fit is not intuitive for developers. If the API design of Google Fit is not intuitive

for the developer, the developers might prefer other options. As described in previous

work in section 2.2, is a good API design essential for it to be easy to learn and use for

developers.

9.2 Research Questions

In this section, we will revisit and answer the research questions we initially stated in

section 1.2. In the following four subsections, each of the research questions will be

answered based on our findings and discussion. They will be addressed in the same

order as they were presented in section 1.2.

9.2.1 Research Question 1

The following paragraphs will review and answer research question 1(RQ1) described in

section 1.2. The research question is as follows: What separates the technical architec-

ture, data models and application development process of the leading mHealth Toolkits

and what aspects affect productivity for a developer? The research question is answered

by reviewing the findings from chapters 4, 5, 6 and 7.

The technical architecture and data models of the evaluated mHealth Toolkits differ

in a few aspects. Firstly, Apple HealthKit and SDH store health data encrypted on the

device, while Google Fit only stores health data in its cloud storage. SDH also has an

optional possibility to synchronize data from the device to cloud. The types of data

stored also differ between the three; compared to the other two, Google Fit explicitly

state that it should only be used to store fitness data. When delving into the architec-

ture of each Toolkit, we discovered that HealthKit provides data type classes for each

category of data with accompanying data sample classes. On the other hand does SDH

provide a clear distinction between classes and interfaces in it SDK. Google Fit and SDH

both provide developers with a way to create custom data types, while HealthKit devel-

opers are restricted to predefined data types.

122 CHAPTER 9. DISCUSSION

Regarding their application development process, there are certain differences between

the Toolkits. The setup process is more extensive with Google Fit than with the other

two. SDH is slightly more difficult to set up than Apple HealthKit where the functional-

ity works straight out of the box. As earlier mentioned, does Google Fit store data in the

cloud and connects to a REST API to access and store data, thus differing from HealthKit

and SDH. These discoveries combined with the fact that Google Fit does not allow stor-

age of health data, lead to our decision to exclude Google Fit from further investigation

in our research. When it comes to the two remaining Toolkits, HealthKit requires fewer

code lines than SDH. Based on our findings, we conclude that HealthKit provides the

developer with more abstraction than SDH.

Based on the abovementioned aspects, we can conclude that mHealth Toolkits make

developers more productive. Based on our findings, there is a low entry cost for devel-

opers both for Apple HealthKit and SDH. While SDH is considered simple, HealthKit

on the other hand provides a higher level of abstraction, which in terms of develop-

ment time and code lines means more productive programmers. However, there are

issues regarding the stability of both SDH and Apple HealthKit as discovered through

the questionnaire with experienced developers.

9.2.2 Research Question 2

In this section we will review and answer research question 2(RQ2) described in sec-

tion 1.2. The research question is as follows: How do new adopters perceive the mHealth

Toolkits in terms of documentation and development process when creating a fundamen-

tal mHealth application? This research question is answered by reviewing the findings

and discussion from the observation study conducted with students.

The findings revealed that the participants found both Apple HealthKit and SDH use-

ful when solving problems, with both Toolkits providing abstractions of low-level im-

plementations of functionality, HealthKit more so than SDH. From the findings from

the observations, we discovered that the participants using Apple HealthKit on average

9.2. RESEARCH QUESTIONS 123

completed more tasks(1,57 tasks more) than with SDH, and all of them completed at

least one task, compared to SDH where only 66% managed to do the same. Both sets

of participants managed to eventually grasp the main Toolkit concepts, although there

were several occurrences of confusion regarding what classes to use. The class confu-

sion was more prominent with HealthKit; the participants were confused by its naming

conventions and certain classes with similar names, thereby making it difficult to dif-

ferentiate the classes. With SDH the main issue was the implementation of permissions

and retrieving read results from store.

Regarding the documentation, the participants had mixed feelings. Some liked the

provided documentation and some found it difficult to understand. When extracting

themes regarding challenging aspects of the documentation we identified the following

themes: concreteness, lack of examples, structure, navigation issues, documentation

eased task solving, descriptive documentation, not descriptive documentation and ex-

ample confusion. Apple received a lower score on the questionnaire we gave the stu-

dents with regards to the documentation. On average, the participants also spent more

time in the HealthKit documentation than in the Samsung documentation, with 43,1%

for HealthKit and 41,2% for SDH.

9.2.3 Research Question 3

In this section we will review and answer research question 3(RQ3) described in section

1.2. The research question is as follows: What is the view on mHealth Toolkits seen from

the experienced developers and new adopters based on their experience? This research

question will be answered by reviewing the findings and discussion for the question-

naire answered by experienced developers and the observation study conducted with

students.

Our answer to this question is based on the findings from the both the questionnaire an-

swered by experienced developers and the questionnaire answered by new adopters(participants

of the observation study). From the experienced developers, we found that all three

Toolkits (Apple HealthKit, Google Fit, and SDH) provided a simple way to read and write

124 CHAPTER 9. DISCUSSION

data. While the Toolkits did simplify this process, some found HealthKit and SDH to be

unstable abd unreliable due to bugs in the source code. When asked to rate their overall

thoughts according to the D-T Scale[55], HealthKit scored the highest among the expe-

rienced developers, where they on average were mostly satisfied/pleased. Regarding

Google Fit and SDH the general opinion was mixed/mostly satisfied among the experi-

enced developers. Overall, the new adopters were mostly satisfied with both HealthKit

and SDH, with SDH scoring 0,2 higher mainly due to HealthKit’s lower scores on the

questions regarding its documentation.

9.2.4 Research Question 4

In this section, we will review and answer research question 4(RQ4) described in sec-

tion 1.2. The research question is as follows: What mHealth Toolkit is best equipped to

be utilized in development of a mHealth service in terms of developer productivity? This

question will be answered by reviewing the findings and discussion from the develop-

ment of an example system with Apple Healthkit and SDH.

Our findings show that using Apple HealthKit when developing a mHealth service leads

to both shorter development time and fewer code lines, compared to development with

SDH. The collected data shows that using Apple HealthKit leads to fewer code lines

than SDH for the whole subset of functionalities implemented. The findings give rea-

son to believe that Apple HealthKit is better equipped to be utilized in development of

a mHealth service in terms of developer productivity.

9.3 Research limitations

In this section, we will evaluate the research in terms of significance and the existing

knowledge on the subject. We will discuss the significance of our contribution and what

changes that could have been made to increase the degree of its significance.

We chose to include Google Fit in the study even though it does not directly address

health data. The reason is that Google is one of the main actors in the technology world

9.3. RESEARCH LIMITATIONS 125

today and it is reasonable to assume that they want to take part in the future of the

mHealth industry. Even though it is only addressing fitness data currently, it might

change its scope to include health data in the future. Google is a networking company,

while Samsung and Apple have their primary focus on hardware, which may be the

reason why they have chosen their respective data storage mechanism. Google uses a

cloud architecture in order to make the users dependent on their data storing network.

Apple and Samsung, on the other hand, makes the users dependent on their hardware

devices by storing the data on the devices. As we have seen in this study, the most realiz-

able of the two abovementioned is the on-device storage-approach, due to the success

of Apple HealthKit with the Mayo Clinic and the previous failure of Google Health.

Regarding the development of the example system, the chosen design was based on

the architecture of the pre-existing Mayo Clinic App[18] because we felt it reflected a

prime use case of the technology. Despite this, our solution could have been improved

by reaching out to hospitals in order to establish what requirements were needed to de-

velop a more applicable and realistic system.

The sample set of participants selected for the observation study described in Chap-

ter 6, were selected according to convenience sampling resulting in recruiting com-

puter science students from our university. This strategy was advantageous because it

let us recruit a larger sample size and spend significantly less time recruiting, but the

drawback is that these students were acquaintances of us, resulting in our handling of

and communication with them being especially prone to subjectivity. This subjectivity

might have affected the formality of the conducted observation study and the data gen-

eration process, which could have been avoided by recruiting a more varied sample set.

In the questionnaire answered by experienced developers, we tried to contact the de-

velopers in question for follow-up questions. We wanted the participants to elaborate

their textual answers, but it was difficult to reach out to these developers since the an-

swers were given anonymously. We could have anticipated that we would receive such

answers and incorporated follow-up questions into the questionnaire beforehand. A

better solution would have been to give the participants the possibility to leave their

126 CHAPTER 9. DISCUSSION

email in the questionnaire for follow-up questions. Then we could have sent individual

follow-up questions to the participants in order to make them elaborate their answers.

In spite of the abovementioned issues that could have been addressed differently, the

findings from the research are still valid. Some of the findings could have been aug-

mented further in order to make them more comprehensive. The research is significant

because, as mentioned in chapter 1.3, there is a lack of previous work on mHealth Toolk-

its. We found related papers regarding Toolkit/API usability and improved efficiency of

Toolkits, but none of them were directly related to mHealth or any of the evaluated

Toolkits. It is important to emphasize mHealth because it is a growing field.

Chapter 10

Conclusion and Future Work

10.1 Conclusion

In this study, we have studied the phenomenon of developers’ efficiency and productiv-

ity in the context of their development of mobile health applications. The units of the

analysis performed to describe the given phenomena and its context were the following

mHealth Toolkits: Apple HealthKit, Google Fit, and Samsung Digital Health.

In order to investigate the selected mHealth Toolkits we composed four research ques-

tions, concerning the development process of experienced developers and new adopters,

and the fundamental differences between the evaluated Toolkits. The research ques-

tions were answered by the findings generated by a literature study that reviewed pre-

vious work on the field, development of an example system, an observation study with

students, and an online questionnaire with experienced developers.

We have found that when designing a mHealth Toolkit to be utilized by developers

when developing mobile health applications and services, there are several concerns

that need to be addressed in order to increase the efficiency and productivity of the

developers, including aspects related to the usability of the Toolkits’ API and their cor-

responding available resources. In light of these concerns, we conclude that the present

state of Apple HealthKit, Google Fit and Samsung Digital Health is not satisfactory from

127

128 CHAPTER 10. CONCLUSION AND FUTURE WORK

the view of application developers requiring a Toolkit that enhances their performance.

Despite this, the evaluated Toolkits show potential and if they address the identified

concerns they might be viable solutions in foreseeable future.

10.2 Future Work

This section will describe the authors’ thoughts with regards to future work, based on

the experiences from the research. Certain steps on what future work will consist of will

be elaborated in the paragraphs below.

As mentioned in previous chapters, did some of the experienced developers that an-

swered the questionnaire complain about bugs in the mHealth Toolkits. As we men-

tioned in section 9.3, we should have reached out to the developers in question for

follow-up questions. We did not do so, hence further work both for the field and the

Toolkit providers would be to identify these bugs of the Toolkits and address them. The

abovementioned can be achieved with more in-depth questionnaires and interviews

with developers, or by performing system testing of the Toolkits. It is important to in-

vestigate these bugs further because making developers able to rely on the mHealth

Toolkits as primary storage for mHealth applications is key to the success of the Toolk-

its.

Developing a healthcare service by utilizing mHealth Toolkits should, in addition to

be tested with large data quantities, be evaluated by inspecting whether or not the en-

cryption process affects application performance and thereby increasing the amount

of issues that the developers have to address. In addition, it would be beneficial to de-

velop applications similar to the described BG-app and PH-app, only without the help

of the Toolkits, and then compare the results to further evaluate the Toolkits’ impact on

developer productivity and creativity.

Bibliography

[1] Community: Using iphone | apple support communities. https://discussions.

apple.com/community/iphone/using_iphone.

[2] Github - googlesamples/android-fit. https://github.com/googlesamples/

android-fit.

[3] Google fit - fitness tracking - android apps on google play. https://play.google.

com/store/apps/details?id=com.google.android.apps.fitness.

[4] Google fit | google developers. https://developers.google.com/fit/.

[5] Google fit developers - community - google+. https://plus.google.com/

communities/103314459667402704958.

[6] Healthkit framework reference. https://developer.apple.com/library/ios/

documentation/HealthKit/Reference/HealthKit_Framework/index.html#

//apple_ref/doc/uid/TP40014707.

[7] Id-porten | eid.difi.no. http://eid.difi.no/nb/id-porten.

[8] ihealth portable wireless blood glucometer - ap-

ple. http://www.apple.com/shop/product/HJ152ZM/A/

ihealth-wireless-blood-glucometer-with-50-test-strips?fnode=4a.

[9] Official google blog: An update on google health and google

powermeter. https://googleblog.blogspot.no/2011/06/

update-on-google-health-and-google.html.

129

https://discussions.apple.com/community/iphone/using_iphone
https://discussions.apple.com/community/iphone/using_iphone
https://github.com/googlesamples/android-fit
https://github.com/googlesamples/android-fit
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
https://developers.google.com/fit/
https://plus.google.com/communities/103314459667402704958
https://plus.google.com/communities/103314459667402704958
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/index.html#//apple_ref/doc/uid/TP40014707
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/index.html#//apple_ref/doc/uid/TP40014707
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HealthKit_Framework/index.html#//apple_ref/doc/uid/TP40014707
http://eid.difi.no/nb/id-porten
http://www.apple.com/shop/product/HJ152ZM/A/ihealth-wireless-blood-glucometer-with-50-test-strips?fnode=4a
http://www.apple.com/shop/product/HJ152ZM/A/ihealth-wireless-blood-glucometer-with-50-test-strips?fnode=4a
https://googleblog.blogspot.no/2011/06/update-on-google-health-and-google.html
https://googleblog.blogspot.no/2011/06/update-on-google-health-and-google.html

130 BIBLIOGRAPHY

[10] S health - android apps on google play. https://play.google.com/store/

apps/details?id=com.sec.android.app.shealth.

[11] Samsung introduces the next generation of s health, expands

compatibility. http://www.samsungmobilepress.com/2015/09/

22/samsung-introduces-the-next-generation-of-s-health,

-expands-compatibility-to-other-android-devices.

[12] Why is the health app so slow? : iphone. https://www.reddit.com/r/iphone/

comments/2sj1w9/why_is_the_health_app_so_slow/.

[13] (2012). Samsung introduces s health application

for gsiii. http://www.samsung.com/uk/news/local/

samsung-introduces-s-health-application-for-galaxy-s-iii.

[14] (2014). 25 experts weigh in on the apple health app.

[15] (2014). Introducing healthkit - wwdc 2014 - videos - apple developer. https:

//developer.apple.com/videos/play/wwdc2014/203/.

[16] (2015). Google platform overview. https://developers.google.com/fit/

overview.

[17] (2016). ihealth gluco-smart on the app store. https://itunes.apple.com/us/

app/ihealth-gluco-smart/id571576516?mt=8.

[18] Anderson, B. (2014). Mayo clinic news net-

work. http://newsnetwork.mayoclinic.org/discussion/

mayo-clinic-app-integrated-with-apple-health-now-available-for-free-download/.

[19] Apple. Healthkit - apple developer. https://developer.apple.com/

healthkit/.

[20] Apple. Hkhealthstore class reference. https://developer.apple.com/

library/ios/documentation/HealthKit/Reference/HKHealthStore_Class/

index.html.

https://play.google.com/store/apps/details?id=com.sec.android.app.shealth
https://play.google.com/store/apps/details?id=com.sec.android.app.shealth
http://www.samsungmobilepress.com/2015/09/22/samsung-introduces-the-next-generation-of-s-health,-expands-compatibility-to-other-android-devices
http://www.samsungmobilepress.com/2015/09/22/samsung-introduces-the-next-generation-of-s-health,-expands-compatibility-to-other-android-devices
http://www.samsungmobilepress.com/2015/09/22/samsung-introduces-the-next-generation-of-s-health,-expands-compatibility-to-other-android-devices
https://www.reddit.com/r/iphone/comments/2sj1w9/why_is_the_health_app_so_slow/
https://www.reddit.com/r/iphone/comments/2sj1w9/why_is_the_health_app_so_slow/
http://www.samsung.com/uk/news/local/samsung-introduces-s-health-application-for-galaxy-s-iii
http://www.samsung.com/uk/news/local/samsung-introduces-s-health-application-for-galaxy-s-iii
https://developer.apple.com/videos/play/wwdc2014/203/
https://developer.apple.com/videos/play/wwdc2014/203/
https://developers.google.com/fit/overview
https://developers.google.com/fit/overview
https://itunes.apple.com/us/app/ihealth-gluco-smart/id571576516?mt=8
https://itunes.apple.com/us/app/ihealth-gluco-smart/id571576516?mt=8
http://newsnetwork.mayoclinic.org/discussion/mayo-clinic-app-integrated-with-apple-health-now-available-for-free-download/
http://newsnetwork.mayoclinic.org/discussion/mayo-clinic-app-integrated-with-apple-health-now-available-for-free-download/
https://developer.apple.com/healthkit/
https://developer.apple.com/healthkit/
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HKHealthStore_Class/index.html
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HKHealthStore_Class/index.html
https://developer.apple.com/library/ios/documentation/HealthKit/Reference/HKHealthStore_Class/index.html

BIBLIOGRAPHY 131

[21] Bloch, J. (2006). How to design a good api and why it matters. In Companion to the

21st ACM SIGPLAN symposium on Object-oriented programming systems, languages,

and applications, pages 506–507. ACM.

[22] Brent, R. No, phones aren’t more accurate than fitness wearables | wired. http:

//www.wired.com/2015/03/fitness-tracking-test/.

[23] Buttarelli, G. (2015). Reconciling technological innovation with data protection.

[24] Clarke, S. (2004). Measuring api usability. Doctor Dobbs Journal, 29(5):S1–S5.

[25] Crockford, D. (2006). The application/json media type for javascript object nota-

tion (json), 2006a. URL http://tools. ietf. org/html/rfc4627.

[26] Cross, D. Google fit is a bit sh*t - it doesn’t sync! * dan is cross. http://www.

daniscross.co.uk/2015/06/google-fit-is-a-bit-it-does-not-sync/.

[27] Dictionary.com. Toolkit search definition. http://dictionary.reference.

com/browse/toolkit?s=t.

[28] Gill, P., Stewart, K., Treasure, E., and Chadwick, B. (2008). Methods of data col-

lection in qualitative research: interviews and focus groups. British dental journal,

204(6):291–295.

[29] Google. Fitness data types | google fit | google developers. https://developers.

google.com/fit/android/data-types.

[30] Google. Terms and conditions | google fit | google developers. https://

developers.google.com/fit/terms.

[31] Greenberg, S. (2007). Toolkits and interface creativity. Multimedia Tools and Ap-

plications, 32(2):139–159.

[32] Guest, G., Bunce, A., and Johnson, L. (2006). How many interviews are enough? an

experiment with data saturation and variability. Field methods, 18(1):59–82.

[33] Henning, M. (2007). Api design matters. Queue, 5(4):24–36.

http://www.wired.com/2015/03/fitness-tracking-test/
http://www.wired.com/2015/03/fitness-tracking-test/
http://www.daniscross.co.uk/2015/06/google-fit-is-a-bit-it-does-not-sync/
http://www.daniscross.co.uk/2015/06/google-fit-is-a-bit-it-does-not-sync/
http://dictionary.reference.com/browse/toolkit?s=t
http://dictionary.reference.com/browse/toolkit?s=t
https://developers.google.com/fit/android/data-types
https://developers.google.com/fit/android/data-types
https://developers.google.com/fit/terms
https://developers.google.com/fit/terms

132 BIBLIOGRAPHY

[34] Holzworth, E. and Stokes, A. How will apple healthkit and google fit affect health

apps? an illustrated guide. http://littlegreensoftware.com/blog/mhealth/

how-will-apple-healthkit-and-google-fit-affect-health-apps-an-illustrated-guide.

[35] Kawulich, B. B. (2005). Participant observation as a data collection method. In

Forum Qualitative Sozialforschung/Forum: Qualitative Social Research, volume 6.

[36] Kay, M., Santos, J., and Takane, M. (2011). mhealth: New horizons for health

through mobile technologies. World Health Organization, pages 66–71.

[37] kevinjalbert. Anyones health kit app stop working? | apple support communities.

https://discussions.apple.com/thread/6568048?start=165&tstart=.

[38] MA, C., HA, B., KG, V., and MS, P. (2015). Accuracy of smartphone applications and

wearable devices for tracking physical activity data. JAMA, 313(6):625–626.

[39] marketsandmarkets.com (2015). Mhealth solutions market by connected devices

& services – 2020 | marketsandmarkets. http://www.marketsandmarkets.com/

Market-Reports/mhealth-apps-and-solutions-market-1232.html.

[40] Marshall, M. N. (1996). Sampling for qualitative research. Family practice,

13(6):522–526.

[41] Miles, M. B. and Huberman, A. M. (1994). Qualitative data analysis: an expanded

sourcebook. Sage Publications.

[42] Morse, J. M. (2000). Determining sample size. Qualitative health research, 10(1):3–

5.

[43] NatashaTheRobot.com (2014). Healthkit: Getting fitness data. https://www.

natashatherobot.com/healthkit-getting-fitness-data/.

[44] Oates, B. J. (2005). Researching information systems and computing. Sage.

[45] Orzechowski, J. Why is mhealth important? | university of illinois at

chicago. http://healthinformatics.uic.edu/resources/articles/

why-is-mhealth-important/.

http://littlegreensoftware.com/blog/mhealth/how-will-apple-healthkit-and-google-fit-affect-health-apps-an-illustrated-guide
http://littlegreensoftware.com/blog/mhealth/how-will-apple-healthkit-and-google-fit-affect-health-apps-an-illustrated-guide
https://discussions.apple.com/thread/6568048?start=165&tstart=
http://www.marketsandmarkets.com/Market-Reports/mhealth-apps-and-solutions-market-1232.html
http://www.marketsandmarkets.com/Market-Reports/mhealth-apps-and-solutions-market-1232.html
https://www.natashatherobot.com/healthkit-getting-fitness-data/
https://www.natashatherobot.com/healthkit-getting-fitness-data/
http://healthinformatics.uic.edu/resources/articles/why-is-mhealth-important/
http://healthinformatics.uic.edu/resources/articles/why-is-mhealth-important/

BIBLIOGRAPHY 133

[46] PCMag. Toolkit definition from pc magazine encyclopedia. http://www.pcmag.

com/encyclopedia/term/52987/toolkit.

[47] Pope, C., Ziebland, S., and Mays, N. (2000). Analysing qualitative data. Bmj,

320(7227):114–116.

[48] PwC (2012). Emerging mhealth: Paths for growth.

[49] Robillard, M. P. (2009). What makes apis hard to learn? answers from developers.

Software, IEEE, 26(6):27–34.

[50] Schaefbauer, C. 3 painful lessons learned build-

ing with healthkit. http://www.openmhealth.org/

3-painful-lessons-learned-building-with-healthkit/.

[51] Scheller, T. and Kühn, E. (2012). Influencing factors on the usability of api classes

and methods. In Engineering of Computer Based Systems (ECBS), 2012 IEEE 19th

International Conference and Workshops on, pages 232–241. IEEE.

[52] scuderiadank Reddit, U. Having problems with google fit? don’t expect a fix any

time soon : Android. https://www.reddit.com/r/Android/comments/3aa2f3/

having_problems_with_google_fit_dont_expect_a_fix/.

[53] Von Hippel, E. and Katz, R. (2002). Shifting innovation to users via toolkits. Man-

agement science, 48(7):821–833.

[54] Waring, I. An initial dive into apples new health app

(and healthkit api). http://www.ianwaring.com/2014/06/05/

an-initial-dive-into-apples-new-health-app-and-healthkit-api/.

[55] Westbrook, R. A. (1980). A rating scale for measuring product/service satisfaction.

The Journal of Marketing, pages 68–72.

[56] Zahid, I., Ali, M. A., and Nassr, R. (2011). Android smartphone: Battery saving ser-

vice. In Research and Innovation in Information Systems (ICRIIS), 2011 International

Conference on, pages 1–4. IEEE.

http://www.pcmag.com/encyclopedia/term/52987/toolkit
http://www.pcmag.com/encyclopedia/term/52987/toolkit
http://www.openmhealth.org/3-painful-lessons-learned-building-with-healthkit/
http://www.openmhealth.org/3-painful-lessons-learned-building-with-healthkit/
https://www.reddit.com/r/Android/comments/3aa2f3/having_problems_with_google_fit_dont_expect_a_fix/
https://www.reddit.com/r/Android/comments/3aa2f3/having_problems_with_google_fit_dont_expect_a_fix/
http://www.ianwaring.com/2014/06/05/an-initial-dive-into-apples-new-health-app-and-healthkit-api/
http://www.ianwaring.com/2014/06/05/an-initial-dive-into-apples-new-health-app-and-healthkit-api/

134 BIBLIOGRAPHY

Appendix A

Acronyms

API Application programming interface

App(s) Application(s)

BG-app(s) Blood Glucose application(s)

GUI Graphical User Interface

HIPAA Health Insurance Portability and Accountability Act

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IoT Internet of things

Jar Java Archive

Js Javascript

JSON JavaScript Object Notation

mHealth Mobile Health

NoSQL Not only Structured Query Language

NTNU Norwegian University of Science and Technology

135

136 APPENDIX A. ACRONYMS

OODB Object-oriented Database

OS Operative System

PH-app(s) Patient-Hospital application(s)

PwC PricewaterhouseCoopers AS

REST Representational State Transfer

RQ Research Question

SDH Samsung Digital Health

SDK Software Development Kit

TDT Subject prefix for Computer science classes at NTNU

UI User Interface

USD United States Dollars

UUID Universal Unique Identifier

WHO World Health Organization

XML Extensible Markup Language

Appendix B

Access to generated Data

In order to be as open as possible regarding our research, data generated from the ob-

servation study through observation, interviews and questionnaires can be accessed

using the URL displayed below.

URL: http://bit.ly/thesisDataTR

137

138 APPENDIX B. ACCESS TO GENERATED DATA

Appendix C

End User Issues

The use of health platforms is currently in the start phase and as a result, there are

some issues and problems experienced by the users. In the following section, the issues

with the platforms from end user’s point of view will be addressed. The user reviews of

each of the platform’s application[3, 1, 10] will be evaluated to shed light on what kind

of issues that end users are experiencing when using the application. These problems

are crucial for the developers to keep in mind when they develop applications with the

toolkits. There were three main categories of issues that the users were experiencing,

which included: data accuracy and synchronization, battery drain and the number of

third-party applications that are supported by the different platforms.

C.1 Accuracy and Synchronization

According to reviews and forum posts[3, 1, 10], the first group of issues users experience

are related to data accuracy and synchronization problems. Some of the equipment

used for tracking seems not to be accurate enough. For example, some users write in

their reviews that smartwatches and smartphones are not accurate enough when track-

ing step count and distance. Sensors tracking health-related data should be accurate

because inaccurate sensors lead to unsatisfied users. Blog posts and articles question

the accuracy of both wearable trackers and smartphone trackers for fitness data[38, 22].

In the research, they are mainly concerned with step count, which is a metric for fitness

139

140 APPENDIX C. END USER ISSUES

tracking. The user has no option to validate the step count sensor data, but as long as

the data has small deviations from the actual value, it will still be useful for the user. The

demand for accuracy is higher in the health sector than with fitness, for example if hos-

pitals were provided inaccurate metrics and sensor data it might lead to a misdiagnosis

and potentially fatal consequences. Therefore are accurate sensors that interconnect

with the mHealth platforms crucial to the success of these platforms. Partnerships with

hardware providers are essential in developing accurate sensors, and mHealth platform

providers need to realize the importance of this area to get accurate sensors and hard-

ware that delivers measurements with a low degree of uncertainty.

According to posts in the forums and reviews[3, 1, 10], some data that is tracked with

different devices tend to be lost when synchronizing the different devices. Lost data is

an important issue because the applications need to be accurate to attract users. One

example is the synchronization between the smartwatch and smartphone with Google

Fit, where steps recorded on the watch tend to be lost. Readings from the phone seem to

be preferred over readings from the smartwatch[26, 52, 5]. The synchronization prob-

lem has been there since Google Fit was released in October 2014. If one goes for a run

carrying only the smartwatch, the steps might be lost when the watch is resynchronized

with the phone after the run. Google are currently working on the problem, but there

exists an opinion that there’s not put enough resources into fixing the bug[5]. This may

again lead to fewer and more unsatisfied users of Google Fit. Another example is when

several users lost all or some of their historical data after an update of the S Health ap-

plication. This problem shows that users are very interested in keeping their historical

data in a safe place and always have access to the data.

C.2 Battery Drain

Another problem several users are experiencing is that the automatic tracking function

of the three applications discussed drains much battery power of their smartphones.

The application has a built-in automatic tracker of position and steps. The position

tracking is highly dependent on the utilization of GPS-signals from the phone. GPS

signals are very power consuming for the phone[56]. The different platform providers

C.3. THIRD-PARTY CONNECTIVITY 141

are constantly working on improving the applications to maximize the utilization of the

GPS signals. They are working towards reduced and more efficient usage of GPS data.

C.3 Third-party Connectivity

As earlier discussed, many applications are opening up for the possibility of integration

with the different platforms. There are still some third-party applications lack support,

and some of the users complained about it in their reviews, e.g. the lack of support for

integration with FitBit which is the case for all three applications. For example, if a user

has a FitBit for tracking fitness data, the applications would be useless because they are

not compatible with each other. The obvious solution would be to provide integration

with the various platforms that lack support. The problem is that the other devices have

a competing solution, and the competitors will not give up their solutions. The solution

to it all could be a universal exchange protocol for fitness data, which makes all devices

compatible with all platforms.

142 APPENDIX C. END USER ISSUES

Appendix D

Questionnaires

Below are the PDF versions of the questionnaires used in data gathering process of the

thesis

143

5/28/2016 Empirical Evaluation of Commercial Health Toolkits(Observation)

https://docs.google.com/forms/d/1cH_0EmQxI4Ajh7hUcrE5wVDRyUpylHqbeD0mHb-wlgQ/edit 1/2

Empirical Evaluation of Commercial Health
Toolkits(Observation)
Questionnaire to be filled out post­development

* Required

1. How do you feel about your ability to become familiar with the toolkit? *
Mark only one oval.

 Delighted

 Pleased

 Mostly satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

2. How do you feel about the overall development experience? *
Mark only one oval.

 Delighted

 Pleased

 Mostly satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

3. How do you feel about the programming experience? *
Mark only one oval.

 Delighted

 Pleased

 Mostly satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

144 APPENDIX D. QUESTIONNAIRES

D.1 Observation Study Questionnaire

5/28/2016 Empirical Evaluation of Commercial Health Toolkits(Observation)

https://docs.google.com/forms/d/1cH_0EmQxI4Ajh7hUcrE5wVDRyUpylHqbeD0mHb-wlgQ/edit 2/2

Powered by

4. How do you feel about the structure of the documentation? *
Mark only one oval.

 Delighted

 Pleased

 Mostly satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

5. How do you feel about the descriptiveness of the documentation? *
Mark only one oval.

 Delighted

 Pleased

 Mostly satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

6. Would you consider using the toolkit in further work? *
Mark only one oval.

 Yes

 Maybe

 No

5/28/2016 Empirical Evaluation of Commercial Health Toolkits

https://docs.google.com/forms/d/1PZjexdvok53rr31faLehIiuPkY1D4zYhL_BniTQyJY8/edit 1/7

Empirical Evaluation of Commercial Health
Toolkits
Questionnaire for developers with experience

* Required

1. Do you have any previous development experience with Apple HealthKit? *
Mark only one oval.

 Yes

 No Skip to question 10.

Apple HealthKit

2. How do you feel about the overall development experience? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

3. How do you feel about your ability to become familiar with with the toolkit? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

146 APPENDIX D. QUESTIONNAIRES

D.2 Experienced Developers Questionnaire

5/28/2016 Empirical Evaluation of Commercial Health Toolkits

https://docs.google.com/forms/d/1PZjexdvok53rr31faLehIiuPkY1D4zYhL_BniTQyJY8/edit 2/7

4. How do you feel about the programming experience? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

5. How do you feel about the structure of the documentation? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

6. How do you feel about the descriptiveness of the documentation? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

7. Did the Toolkit increase your efficiency when creating a product? *
Mark only one oval.

 Yes

 No

8. IF found efficient, in what way did it increase your efficiency?

5/28/2016 Empirical Evaluation of Commercial Health Toolkits

https://docs.google.com/forms/d/1PZjexdvok53rr31faLehIiuPkY1D4zYhL_BniTQyJY8/edit 3/7

9. How would you describe the Toolkit's effect on development creativity? *

Google Fit

10. Do you have any previous development experience with Google Fit? *
Mark only one oval.

 Yes

 No Skip to question 19.

Google Fit

11. How do you feel about the overall development experience? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

12. How do you feel about your ability to become familiar with with the toolkit? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

5/28/2016 Empirical Evaluation of Commercial Health Toolkits

https://docs.google.com/forms/d/1PZjexdvok53rr31faLehIiuPkY1D4zYhL_BniTQyJY8/edit 4/7

13. How do you feel about the programming experience? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

14. How do you feel about the structure of the documentation? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

15. How do you feel about the descriptiveness of the documentation? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

16. Did the Toolkit increase your efficiency when creating a product? *
Mark only one oval.

 Yes

 No

17. IF found efficient, in what way did it increase your efficiency?

5/28/2016 Empirical Evaluation of Commercial Health Toolkits

https://docs.google.com/forms/d/1PZjexdvok53rr31faLehIiuPkY1D4zYhL_BniTQyJY8/edit 5/7

18. How would you describe the Toolkit's effect on development creativity? *

Samsung Digital Health

19. Do you have any previous development experience with Samsung Digital Health? *
Mark only one oval.

 Yes

 No Stop filling out this form.

Samsung Digital Health

20. How do you feel about the overall development experience? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

21. How do you feel about your ability to become familiar with with the toolkit? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

5/28/2016 Empirical Evaluation of Commercial Health Toolkits

https://docs.google.com/forms/d/1PZjexdvok53rr31faLehIiuPkY1D4zYhL_BniTQyJY8/edit 6/7

22. How do you feel about the programming experience? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

23. How do you feel about the structure of the documentation? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

24. How do you feel about the descriptiveness of the documentation? *
Mark only one oval.

 Delighted

 Pleased

 Mostly Satisfied

 Mixed

 Mostly dissatisfied

 Unhappy

 Terrible

25. Did the Toolkit increase your efficiency when creating a product? *
Mark only one oval.

 Yes

 No

26. IF found efficient, in what way did it increase your efficiency?

5/28/2016 Empirical Evaluation of Commercial Health Toolkits

https://docs.google.com/forms/d/1PZjexdvok53rr31faLehIiuPkY1D4zYhL_BniTQyJY8/edit 7/7

Powered by

27. How would you describe the Toolkit's effect on development creativity? *

Appendix E

Consent Form

In order to be able to use sound and video recordings for the observation study, the

participants had to fill in consent forms. Below is the PDF of the consent form used for

the thesis.

153

Consent

I want to take part in the observation study Petter Astrup, Erik Gunnar Jansen and Nemanja
Aksic conduct for their his master's thesis. As a test user, I have the right to stop the test at
any time without justification. I'm anonymous, and my personal information will not be
published or used in any other context. I have the right to demand the video deleted.

There will be recordings of sound and screen interaction. I agree that these recordings may
be used for analysis and I waive my all rights to the recordings.

Place / Date

Signature

154 APPENDIX E. CONSENT FORM

E.1 Consent Form

	Preface
	Acknowledgment
	Abstract
	Introduction
	Problem Description and Motivation
	Research Questions
	Scope and Contributions
	Structure of the Report

	Background and Previous Work
	Background
	Software Toolkits
	mHealth Toolkits

	Previous Work

	Methodology
	Conceptual Framework
	Research Strategy
	Data Generation Methods
	Documents
	Observations
	Questionnaires
	Interviews
	Example System Development

	Data Analysis
	Qualitative Data Analysis
	Quantitative Data Analysis

	Analysis of mHealth Toolkits Documents
	Google Fit
	Technical Architecture
	Data Structure and Storage
	Actor Network
	Application Development Process

	Apple Health
	Technical Architecture
	Data structure
	Actor Network
	Application Development Process

	Samsung Digital Health
	Technical Architecture
	Data Structure
	Actor Network
	Application Development Process

	Findings

	Development of Example System with mHealth Toolkits
	Architectural Rationale
	System Description
	Blood Glucose Application
	Patient-Hospital Application
	Backend

	Development Metrics
	Findings
	Qualitative Data Findings - Apple HealthKit
	Qualitative Data Findings - Samsung Digital Health
	Quantitative Data Findings - Apple HealthKit & SDH

	mHealth Toolkits Observation Study
	Observations
	Questionnaires
	Interviews
	Metrics
	Observations
	Questionnaires

	Findings
	Qualitative Data Findings
	Quantitative Data Findings - Apple HealthKit & SDH

	Questionnaire with Experienced Developers
	Description
	Process and Participation
	Findings

	Summary of Findings
	Discussion
	Discussion of Findings
	Chapter 4 Discussion
	Chapter 5 Discussion
	Chapter 6 Discussion
	Chapter 7 Discussion

	Research Questions
	Research Question 1
	Research Question 2
	Research Question 3
	Research Question 4

	Research limitations

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Acronyms
	Access to generated Data
	End User Issues
	Accuracy and Synchronization
	Battery Drain
	Third-party Connectivity

	Questionnaires
	Observation Study Questionnaire
	Experienced Developers Questionnaire

	Consent Form
	Consent Form

