
Investigating Design Debt in
Safety-Critical Systems: A Case Study

Shahariar Kabir Bhuiyan

Master of Science in Computer Science

Supervisor: Carl-Fredrik Sørensen, IDI

Department of Computer and Information Science

Submission date: June 2016

Norwegian University of Science and Technology

Abstract
Software is contributing a substantial part of new functionality and innovation in safety-
critical systems. These systems put a huge demand on software reliability, because a
minor error can produce failure of a complete system. The evolution of software requires
continuous development and maintenance. With size and complexity of safety-critical
software growing as time goes, additional challenges arises, including implicit assump-
tions of technical debt. Technical debt refers to the sum of compromises that are made in
software development and maintenance to meet a short-term business goal. For example,
implementing a sub-optimal solution in a software to meet a deadline. Design debt is an
instance of technical debt. As software systems evolve, their design tend to decay over
time, which leads to design debt accumulation. Consequently, software design becomes
more difficult to maintain. Therefore, the developers need to understand the reason for
design debt accumulation so they can take proactive steps that may potentially reduce the
debt in the future.

The main goal of this thesis is to empirically investigate design debt in safety-critical
systems. The goal is reflected in our attempt to answer the following research questions:

RQ1: How can design debt be identified?
RQ2: What kind of design debt can be found in safety-critical systems?
RQ3: What are the effects of design debt?
RQ4: How to pay design debt?

A case study has been conducted to answer the research questions. The case study in-
volves an analysis of a safety-critical system developed by Autronica Fire and Security
AS. The system is written in C/C++. We have used object-oriented metrics to identify
classes that are most likely to pose problems for the system. Quantitative data were col-
lected and analyzed using descriptive statistics. A set of thresholds for the metrics were
derived to identify classes that have higher metric values than its threshold values. In
addition, automatic static analysis tools were applied to detect code smells.

This work contributes mainly to improvement in software metrics and software quality.
The stated contributions of this work are:

C1: Empirical knowledge about design debt identification in safety-critical systems by
object-oriented metric analysis and code smell detection.

C1.1: A set of threshold values for object-oriented metrics.
C2: Empirical knowledge about the different types of design debt in safety-critical sys-
tems.
C3: Empirical knowledge about the effects of having design debt in safety-critical sys-
tems.
C4: Empirical knowledge about paying design debt.

i

Sammendrag
Programvare bidrar en vesentlig del i utvikling av ny funksjonalitet og innovasjon i
sikkerhetskritiske systemer. Slike systemer er avhengig av programvarens pålitelighet,
siden en liten feil kan medføre svikt i et helt system system. Evolusjon av programvare
krever kontinuerlig utvikling og vedlikehold. Nye utfodringer oppstår ettersom størrelsen
og kompleksiteten til sikkerhetskritiske programvare vokser. Dette inkluderer implisitte
forutsetninger om teknisk gjeld. Teknisk gjeld oppstår når man i utviklingsarbeidet vel-
ger suboptimale måter å løse problemer på. Dette kan skyldes kortsikte mål, som det å
møte en tidsfrist. Design gjeld er en instans av teknisk gjeld. Designet til et system har
en tendens til å råte over tid ettersom et programvaresystem utvikler seg. Dette fører til
en akkumulering av design gjeld, noe som gjør det utfordrende å vedlikeholde program-
varets design. Utviklere er dermed nødt til å forstå hvorfor design gjeld akkumulerer slik
at de kan ta gradvise steg for å redusere gjelden.

Hovedmålet med oppgaven er å undersøke design gjeld i sikkerhetshetskritiske systemer.
Målet med oppgaven er reflektert i vår forsøk på å svare på følgende forskningsspørsmål:

FS1: Hvordan kan design gjeld identifiseres?
FS2: Hva slags typer design gjeld finnes i sikkerhetskritiske systemer?
FS3: Hva slags virkinger har design gjeld?
FS4: Hvordan kan design gjeld betales?

Et case studie har blitt gjennomført i et forsøk på å svare på forskningsspørsmålene. Case
studiet involverer en analyse av et sikkerhetskritisk system utviklet av Autronica Fire and
Security AS. Systemet er utviklet i programmeringsspråket C/C++. Vi har brukt objekt-
orienterte metrikker for å identifisere klasser som mest sannsynlig vil skape problemer
for systemet. Kvantitative data har blitt samlet ved hjelp av verktøy, og analysert ved
hjelp av deskriptiv statistikk. Et sett med grenseverdier har blitt utledet for identifisering
av klasser med større metrikkverdier enn dens grenseverdier. Vi har også benyttet oss av
verktøy for identifisering av ”code smell”.

Resultatene fra case studiet bidrar hovedsakelig til forbedring av programvaremetrikker
og programvarekvalitet. Bidragene for dette arbeidet er som følger:

B1: Empirisk kunnskap om identifikasjon av design gjeld i sikkerhetskritiske systemer
ved hjelp av av objekt-orienterte metrikker og ”code smell” analyse.

B1.1: Et sett med grenseverdier for objekt-orienterte metrikker.
B2: Empirisk kunnskap om uliker typer av design gjeld i sikkerhetskritiske systemer.
B3: Empirisk kunnskap om virkningene til design gjeld i sikkerhetskritiske systemer.
B4: Empirisk kunnskap om betaling av design gjeld.

iii

Preface
This thesis was written as a part of my MSc degree at Norwegian University of Sci-
ence and Technology (NTNU). It was written in the spring of 2016 at the Department of
Computer and Information Science (IDI), NTNU, Trondheim.

This thesis is an extension of the work done in the specialization project - ”Managing
Technical Debt in Embedded Systems” that was carried out by the same author in the fall
of 2015. The supervisor for both projects was Carl-Fredrik Sørensen.

Trondheim, June 10, 2016

v

Acknowledgements
This work has been supervised by Carl-Fredrik Sørensen at the Norwegian Univserity of
Science and Technology (NTNU). I would like to express my sincere thanks to him for
giving me the opportunity to work on this exciting project and for his invaluable guidance
throughout the process. Without his time and invaluable feedback, this work would not
have been complete.

I would like to show my gratitude to Ingar Kulbrandstad from Autronica for providing
the case study. I would also like to thank Øyvind Teig from Autronica for helpful proof-
reading and grammar correction during the final phases of this thesis.

Lastly, I would like to thank my family and friends that have supported me all the way
throughout my studies.

vii

CONTENTS

Abstract i

Sammendrag iii

Preface v

Acknowledgements vii

Table of Contents x

List of Tables xi

List of Figures xiii

Abbreviations xv

1 Introduction 1
1.1 Motivation . 1
1.2 Research Context . 2
1.3 Research Design and Questions . 3
1.4 Contribution . 3
1.5 Thesis Structure . 4

2 State-of-the-Art 5
2.1 Technical Debt . 5

2.1.1 Definitions of Technical Debt 6
2.1.2 Classification of Technical Debt 7
2.1.3 Causes and Effects of Technical Debt 7
2.1.4 Identification of Technical Debt 9

ix

2.1.5 Strategies and Practices for Managing Technical Debt 13
2.2 Design Debt . 14
2.3 Software Quality . 15
2.4 Object-Oriented Metrics . 15
2.5 Software Evolution and Maintenance 16
2.6 Software Reuse . 17
2.7 Refactoring . 17
2.8 Embedded Systems . 18

2.8.1 Safety-Critical Systems . 19

3 Research Methodology 21
3.1 Research Methods in Software Engineering 21
3.2 Choice of Research Method in this Thesis 22

3.2.1 Case Study Method . 22
3.3 Case Context . 23
3.4 Research Process . 24

3.4.1 Determine and Define the Research Questions 24
3.4.2 Select the Cases and Determine Data Gathering and Analysis

Techniques . 25
3.4.3 Prepare To Collect Data . 26
3.4.4 Data Collection . 27
3.4.5 Evaluate and Analyze the Data 29
3.4.6 Prepare the Report . 30

3.5 Summary of the Research Design . 30

4 Results 31
4.1 Object-Oriented Metrics in Project ”Firmus” 31

4.1.1 Obect-Oritented Metrics in System Components 36
4.2 Identification of Code Smells using Automatic Static Analysis Tools . . 53

5 Discussion 57
5.1 Analysis of Object-Oriented Metrics by Applying Threshold Values . . 57
5.2 Research Evaluation . 62
5.3 Threats To Validity . 67

5.3.1 Internal Validity . 67
5.3.2 External Validity . 67
5.3.3 Conclusion Validity . 67

6 Conclusion 69
6.1 Future Work . 70

Referances 71

x

LIST OF TABLES

2.1 Types of TD . 8
2.2 Code Smell Taxonomy . 12
2.3 Software quality attributes, criteria, and description (ISO/IEC 9126) . . 20

3.1 System Metrics for Project ”Firmus” 24
3.2 Research Questions . 25

4.1 OO-metrics and descriptive statistics for Project ”Firmus” 32
4.2 OO-metrics and descriptive statistics for Component A 37
4.3 OO-metrics and descriptive statistics for Component B 39
4.4 OO-metrics and descriptive statistics for Component C 41
4.5 OO-metrics and descriptive statistics for Component Ex 43
4.6 OO-metrics and descriptive statistics for Component G 45
4.7 OO-metrics and descriptive statistics for Component L 47
4.8 OO-metrics and descriptive statistics for Component N 49
4.9 OO-metrics and descriptive statistics for Component P 51
4.10 OO-metrics and descriptive statistics for Component S 53
4.11 Number of Code Smells detected . 54
4.12 Duplicated Code in Project ”Firmus” 54
4.13 Speculative Generality in Project ”Firmus” 55
4.14 Dead Code in Project ”Firmus” . 55

5.1 Thresholds for OO-software metrics 58
5.2 Connection between contributions, and research questions 62

xi

LIST OF FIGURES

2.1 Fowler’s TD Quadrant . 6
2.2 TD Landscape . 7

4.1 Frequency chart of the LCOM metric 33
4.2 Frequency chart of the CBO metric . 33
4.3 Frequency chart of the DIT metric . 34
4.4 Frequency chart of the NOC metric . 34
4.5 Frequency chart of the RFC metric . 35
4.6 Frequency chart of the WMC metric 36
4.7 Frequency distribution of OO-metrics in Component A 38
4.8 Frequency distribution of OO-metrics in Component B 40
4.9 Frequency distribution of OO-metrics in Component C 42
4.10 Frequency distribution of OO-metrics in Component Ex 44
4.11 Frequency distribution of OO-metrics in Component G 46
4.12 Frequency distribution of OO-metrics in Component L 48
4.13 Frequency distribution of OO-metrics in Component N 50
4.14 Frequency distribution of OO-metrics in Component P 52

xiii

Abbreviations

ASA = Automatic Static Analysis
CBO = Coupling Between Objects
CC = Cyclomatic Complexity
DD = Design Debt
DIT = Depth in Inheritance Tree
LCOM = Lack of Cohesion in Methods
NIM = Number of Instance Methods
NIV = Number of Instance Variables
NOC = Number Of Children
OO = Object-Oriented
RFC = Response For Class
TD = Technical Debt
WMC = Weighted Methods per Class

xv

CHAPTER 1

INTRODUCTION

This chapter provides an introduction to this masters thesis. We begin with outlining
the motivation for this research. Then a brief description of the research context and the
research questions is presented. Lastly, we present the thesis outline.

1.1 Motivation

Successful embedded systems continuously evolve in response to external demands for
new functionality and bug fixes [1]. Evolution occurs as software changes over time.
One consequence of such evolution is an increase of issues in design, development, and
maintainability [2]. Software code often ends up not contributing to the mission of the
original intended software architecture or design.

The main challenge with software evolution is the Technical Debt (TD) that is not paid
by the organization during software development and maintenance. TD addresses the
debt that software developers accumulate by taking shortcuts in development in order to
meet the organizations business goals. For example, a deadline may lead developers to
create ”non-optimal” solutions to deliver on time. As TD keeps accumulating, software
systems may potentially become unmanageable and eventually unusable. Even more
resources have to be spent during software maintenance on paying off the interest, i.e., the
cost of having the debt. According to Gartner [3], the cost of dealing with TD threatens
to grow to $1 trillion globally by 2015. That is the double of the amount of TD in
2010. Furthermore, many embedded systems are getting interconnected within existing
Internet infrastructure, known as the Internet of Things. Such devices are threatened by
security issues. For example, Matthew Garret got access to the electronic equipment in

1

Chapter 1. Introduction

every hotel room in a hotel located in London1. These equipments were connected to a
network. Additionally, two research discovered the possibility to start a Tesla Model S
using a laptop2.

Several studies have classified the metaphor of TD into different types of debt that are
associated with the different phases of software development [4–9]. Design Debt (DD) is
an instance of TD. DD accumulates when compromises are made in the software design.
Software design plays a significant role in the development of large systems [10]. Unlike
code-level debt, DD usually has more significant consequences on software evolution by
making the system more complex and harder to maintain over time [11, 12]. The quality
of the software is very important, and without it, there will be more system failures that
may lead to accidents. This is even more crucial for the case of safety-critical software,
which failure can endanger human lives.

1.2 Research Context

This master thesis builds upon our previous study ”Managing TD in Embedded Systems”
[13], a prestudy that was carried out in the fall of 2015. The written assignment for the
specialization project had the following definition:

Managing TD in embedded systems
”This task is related to management of software in embedded systems, as well
as evolution of such software over time. Embedded systems have often a long
lifetime and it is thus important to find out best practices and tools for this man-
agement since it is necessary to cope with architectural and design decisions
which were made perharps decades ago, as well as clearly find out how present
decisions may affect future maintenance and operation. This is called TD since
all decisions will have a future cost related to them. Such decisions are often
not documented, the people that made the software is not available 10-20 years
after the implementation, the Internet of Things make all kind of embedded
systems accessible from the Internet and thus posing security threats.

The project may take different directions based on the students interests and
motivation. Industrial companies are very interested in this topic, so it is pos-
sible to study industrial systems, both past and current., make suggestions and
implement them, make tools, make processes, make best practice etc.”

In our previous research, we did a pre-study on the field of TD in embedded systems.
We investigated the reasons for organizations to incur TD, and the different strategies
for managing it. Research data was collected by conducting semi-structured interviews.
After completing the study, we had a desire to look into a more narrow field of the concept

1The Internet of dangerous, broken things: http://www.zdnet.com/article/the-insecurity-of-the-internet-of-
things/

2Researchers Hacked a Model S, But Tesla’s Already Released a Patch:
http://www.wired.com/2015/08/researchers-hacked-model-s-teslas-already/

2

1.3 Research Design and Questions

TD by conducting a deeper case study for our upcoming master thesis. A big interest was
to study an industrial system.

The work in our master thesis has been done in collaboration with Autronica Fire and Se-
curity AS, a global provider of safety solutions, including fire safety equipment, marine
safety monitoring, and surveillance equipment. Their main office is located in Trond-
heim, one of the largest cities in Norway. We have performed a deeper study on one of
the company’s fire detection systems software for approximately six weeks. The case
study explored their source code to investigate DD.

1.3 Research Design and Questions

Being able to identify DD helps the software engineering field to get one step closer on
solving the problems that are faced by the software industry today. The goal of the re-
search is to investigate DD in safety-critical systems. DD is a problem for many software
projects today. Although DD is recognized in many studies, there is lack of focus on DD
in safety-critical systems.

The relevant research methods in software engineering can be survey, design and cre-
ation, case study, experimentation, action research, and ethnography [14]. In this study,
a literature review and case study have been used to answer our research questions. Lit-
erature review was a part of the pre-study. It has been used to get familiar with the term
DD and to define the research questions. Case studies are empirical methods used to
investigate a single entity or phenomenon within a specific time space [15], which fits
our desire to study an industrial system. Case studies can be both qualitative and quan-
titative [14, 16]. The research process we have chosen to adopt in this study follows
the principles of the six steps defined by Soy [17]: Determine and Define The Research
Questions, Select the Cases and Determine Data Gathering and Analysis Techniques,
Prepare to Collect Data, Data Collection, Evaluate and Analyze Data, and Prepare the
Report.

The main research questions investigated in this thesis are:

• RQ1: How can DD be identified?

• RQ2: What kind of DD can be found in safety-critical systems?

• RQ3: What are the effects of DD?

• RQ4: How to pay DD?

1.4 Contribution

This work contributes mainly to improvement in software metrics and software quality.
The stated contributions of this work are:

3

Chapter 1. Introduction

C1: Empirical knowledge about design debt identification in safety-critical systems by
object-oriented metric analysis and code smell detection.

C1.1: A set of threshold values for object-oriented metrics.
C2: Empirical knowledge about the different types of design debt in safety-critical sys-
tems.
C3: Empirical knowledge about the effects of having design debt in safety-critical sys-
tems.
C4: Empirical knowledge about paying design debt.

1.5 Thesis Structure

The thesis is structured into several chapters with sections and subsections. The outline
of the thesis is as follows:

• Chapter 1: Introduction contains a brief and general introduction to the study
and the motivation behind it.

• Chapter 2: State-of-the-Art provides a state-of-the-art within the field of TD,
DD, embedded systems, software quality, software maintenance, object-oriented
metrics, refactoring, and software reuse.

• Chapter 3: Research Method explores the research context, research method,
and the procedures that was used behind the method. We discuss the software that
have been used for the study, and the approach for data collection and analysis.

• Chapter 4: Results presents the results from the case study.

• Chapter 5: Discussion contains a summarized look at the findings from the case
study, and connects it to the research questions. An evaluation of the research is
also given in this chapter.

• Chapter 6: Conclusion contains a summary of the contributions and provides a
conclusion. Additionally, in outlines possible routes for future research.

4

CHAPTER 2

STATE-OF-THE-ART

This chapter presents the relevant state-of-the-art for this thesis. Section 2.1 presents the
metaphor of TD, while Section 2.2 presents the term DD. Section 2.3 looks into the topic
of software quality. Section 2.4 presents the topic of object-oriented metrics. Section 2.5
presents software evolution and maintenance. Section 2.6 takes a closer look at software
reuse. Section 2.7 presents refactoring. Lastly, Section 2.8 will take a closer look at
embedded- and safety-critical systems.

2.1 Technical Debt

The metaphor of TD was first introduced by Ward Cunningham in 1992 to communicate
technical problems with non-technical stakeholders [18]. To deliver business function-
ality as quick as possible, ’quick and dirty’ decisions are often made. Such decisions
may have short-term value, but they could affect future development and maintenance
activities negatively. Cunningham was the first one who drew the comparison between
technical complexity and financial debt in a 1992 experience report [18]:

“Shipping first time code is like going into debt. A little debt speeds up
the development as long as it is paid back promptly with a rewrite... The
danger occurs when the debt is not repaid. Every minute spent on not-quite-
right code counts as interest on that debt. Entire engineering organizations
can be brought to a stand-still under the debt load of an unconsolidated
implementation, object-oriented or otherwise.” - Ward Cunningham, 1992.

The concept refers to the financial world where going into debt means repaying the loan
with interest [19]. Like financial debt, TD accrues interest over time. Interest is defined
as the extra effort that has to be dedicated in the future development in order to modify

5

Chapter 2. State-of-the-Art

the part of the software that contains TD [4, 20, 21]. Unmanaged TD can cause projects
to face significant technical and financial problems, which ultimately leads to increased
maintenance and evolution costs [22].

2.1.1 Definitions of Technical Debt

Several researchers have attempted to give us a clear picture of what TD is [10, 23,
24]. Fowler [23] presented a TD quadrant which consists of two dimensions: reck-
less/prudent and deliberate/inadvertent [23]. The TD quadrant in Figure 2.1 shows four
types of TD: Reckless/Deliberate, Reckless/Inadvertent, Prudent/Deliberate, and Pru-
dent/Inadvertent. Reckless/Deliberate debt is usually incurred when technical decisions
are taken intentionally without any plans on how to address the problem in the future. A
team might know about good design practices, but they still choose to implement ’quick
and dirty’ solutions because they think they cannot afford the time required to write clean
code. The second type is Reckless/Inadvertent. It is incurred when best practices for code
and design are being ignored, ultimately leading to a big mess of ”spaghetti code”. Pru-
dent/Deliberate debt occurs when the value of implementing a ‘quick and dirty’ solution
is worth the cost of incurring the debt to meet a short-term goal. The team are fully aware
of the consequences, and have a plan on how to address the problem in the future. Lastly,
we have Prudent/Inadvertent debt. This type of debt accumulates when a team realizes
that the design of a valuable software could have been better after delivery. A software
development process is as much as learning as it is coding.

Figure 2.1: Fowler’s TD Quadrant

McConnell [24] classified TD as intentional and unintentional debt. Intentional debt is

6

2.1 Technical Debt

described as debt that is incurred deliberately. For example, an organization makes a
strategic decision that aims to reach a certain objective by taking a shortcut they are fully
aware of. Intentional debt can further be viewed as ”short-term” and ”long-term debt” [5,
25]. Short-term debt is usually incurred reactively, for tactical reasons. Long-term debt
is usually incurred pro-actively, for strategic reasons. Unintentional debt is described as
debt that is incurred inadvertently due to lack of knowledge or experience. For example, a
junior software developer may write low quality code that does not conform with standard
coding standard due to low experience.

Krutchen et al. [10] presented a TD landscape for organizing TD. They distinguished
visible elements such as new functionality to add or defects to fix, and the invisible
elements that are only visible to software developers. On the left side of Figure 2.2, TD
affects evolvability of the system, while on the right side, TD mainly affects software
maintainability.

Figure 2.2: TD Landscape

2.1.2 Classification of Technical Debt

TD can accumulate in many different ways, and therefore it is important to distinguish
the various types of TD. Several studies [4–9] have identified several subcategories of TD
based on its association with traditional software life-cycle phases; architectural debt,
code debt, defect debt, design debt (DD), documentation debt, infrastructure debt, re-
quirements debt, and test debt. Table 2.1 lists the different subcategories of TD.

2.1.3 Causes and Effects of Technical Debt

Several researchers have investigated the reasons for projects to incur TD. Klinger et
al. [21] conducted an industrial case study at IBM where four technical architects with
different backgrounds were interviewed. The goal of their study was to examine how de-
cisions to incur debt were taken, and the extent to which the debt provided leverage [21].
The study revealed that the company failed to assess the impact of intentionally incur-
ring debt on projects. Decisions regarding TD were rarely quantified. The study also

7

Chapter 2. State-of-the-Art

Table 2.1: Types of TD

Subcategory Definition
Architectural debt [4–6] Architectural decisions that make compromises in some

of the quality attributes, such as modifiability.
Code debt [4, 6, 7] Poorly written code that violates best coding practices

and guidelines, such as code duplication.
Defect debt [4, 7] Defect, failures, or bugs in the software.
Design debt (DD) [4, 6, 8] Technical shortcuts that are taken in design.
Documentation debt [4, 6, 9] Refers to insufficient, incomplete, or outdated documen-

tation in any aspect of software development.
Infrastructure debt [4, 5, 7] Refers to sub-optimal configuration of development-

related processes, technologies, and supporting tools. An
example is lack of continuous integration.

Requirements debt [4, 9] Refers to the requirements that are not fully implemented,
or the distance between actual requirements and imple-
mented requirements.

Test debt [4, 6, 9] Refers to shortcuts taken in testing. An example is lack
of unit tests, and integration tests.

revealed big organizational gaps among the business, operational, and technical stake-
holders. When the project team felt pressure from the different stakeholders, TD deci-
sions were made without quantifications of possible impacts.

Lim et al. [26] pointed out that TD is not always the result of poor developer disciplines,
or sloppy programming. It can also include intentional decisions to trade off competing
concerns during business pressure. They explained that TD can be used in short-term
to capture market share and to collect customers feedback early. In the long-term, TD
tended to be negative. The trade-offs included increased complexity, reduced perfor-
mance, low maintainability, and fragile code. This led to bad customer satisfaction and
extra working hours. In many cases, the short-term benefits of TD outweighed the future
costs.

Guo et al. [27] studied the effects of TD by tracking a single delayed maintenance task
in a real software project throughout its life-cycle, and simulated how managing TD can
impact the project result. Their results show that a delay in the maintenance task would
have tripled the cost if it had been done later.

Siebra et al. [28] carried out an industrial case study where they analyzed documents,
emails, and code files. Additionally, they interviewed multiple developers and project
managers. Their case study revealed that TD were mainly taken by strategic decisions.
Furthermore, they pointed out that the use of a unique specialist could lead the develop-
ment team to solutions that the specialist wanted and believe were correct, leading the
team to incur debt. Their study also revealed that TD can both increase and decrease the
amount of working hours.

Zazworka et al. [29] studied the effects of God Class code smell and TD on software
quality. God Class is an example of bad coding, and therefore includes a possibility for
refactoring [8]. The results indicated that God Class code smell required more mainte-

8

2.1 Technical Debt

nance effort including bug fixing and changes to software that are considered as a cost
to software project. In other words, if developers desire higher software quality, then TD
needs to be addressed closely in the development process.

Buschmann [30] explained three different stories of the TD effects. In the first case,
TD accumulated in a software platform had grew to a point where development, testing,
and maintenance costs started to increase dramatically. Additionally, the software com-
ponents were hardly usable. In the second case, developers started to use shortcuts to
increase the development speed. This resulted in significant performance issues because
an improper software modularization reflected organizational structures instead of the
system domains. It ended up turning into economic consequences. In the last case, an
existing software product experienced an increase in maintenance cost due to an archi-
tectural erosion. However, management analyzed that re-engineering the whole software
would cost more than doing nothing. They decided not to do address the debt because it
was cheaper from a business point-of-view.

Codabux et al. [5] carried out an industrial case study where the topic was agile develop-
ment focusing on TD. They observed and interviewed developers to understand how TD
is characterized, addressed and prioritized, and how decisions led to TD. Two subcate-
gories of TD were commonly described in this case study; infrastructure and automation
debt.

These studies indicate that causes and effects of TD are not always caused by technical
reasons. TD can be the result of intentional decisions made by the different stakehold-
ers. Incurring TD may have short-term positive effects such as time-to-market benefits.
However, by not paying down TD can result economic consequences, or quality issues in
the long-run. The allowance of TD can facilitate product development for a period, but
decreases the product maintainability in the long-term. However, there are some times
where short-term benefits overweight long-term costs [27].

2.1.4 Identification of Technical Debt

TD accumulation may cause an increase in maintenance and evolution costs. At worst, it
may even cancel out projects. The first step towards managing TD is to properly identify
and visualize TD items.

According to Zazworka et al. [31], there are four main techniques for identifying TD in
source code: modularity violations, design patterns and grime buildup, code smells, and
automatic static analysis issues (ASA).

Modularity Violation

Software modularity determines software quality in terms of evolveability, changeability,
and maintainability [32], and the essence is to allow modules to evolve independently.
However, in reality, two software components may change together though belonging
to distinct modules, due to unwanted side effects caused by ’quick and dirty’ solutions

9

Chapter 2. State-of-the-Art

[31, 33]. This causes a violation in the software designed modular structure, which is
called a modularity violation. Wong et al. [33] identified 231 modularity violations from
490 modification requests in their experiment using Hadoop. 152 of the 490 identified
violations were confirmed by the fact that they were either addressed in later versions of
Hadoop, or recognized as problems by the developers. In addition, they identified 399
modularity violation from 3458 modification request of Eclipse JDT [33]. Among these
violations, 161 were confirmed. Zazworka et al. [31] revealed that the average number of
modularity violations per class in release 0.2.0 to release 0.14.0 of Hadoop ranged from
0.04 to 0.11. They identified 8 modularity violations in the first release of Hadoop and 37
in the last one. In addition, they revealed that modularity violations are strongly related
to classes with high defect- and change-proneness.

Design Pattern and Grime Buildup

Patterns are known to be general solutions to recurrent design problems. They are com-
monly used to improve maintainability, flexibility, and architecture design of software
systems by reducing the number of defects and faults. Twenty-three design patterns
are widely used in software development. They are classified into three types of pat-
terns [34]: creational, behavioral, and structural. Creational design patterns are all
about class instantiation. This pattern can be divided into class-creation patterns and
object-creational patterns. Creational patterns include patterns such as Abstract Fac-
tory, Builder, Factory Method, Object Pool, Prototype, and Singleton [34]. Structural
design patterns are all about Class and Object composition. They include patterns such
as Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Private Class Data, and
Proxy [34]. Lastly, Behavioral design patterns are all about class’s objects communi-
cation, and are concerned with communication between objects. Behavioral patterns in-
clude patterns such as Chain of Responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Null Object, Observer, State, Strategy, Template Method, and Visitor [34].

Software continuously evolve in response to external demands for new functionality. One
consequence of such evolution is software design decay. Izurieta et al. [12] define decay
as the deterioration of the internal structure of system designs. Design pattern decay is
defined as deterioration of the structural integrity of a design pattern realization. As a
pattern realization evolves, its structure and behavior tend to deviate from its original
intent. Changes in the code base could potentially lead to code ending up outside the
pattern. This is known as design grime, non-pattern related code [12]. Moreover, design
patterns can also rot, when changes break the structural and functional integrity of a
pattern [12]. Izurieta et al. [35] examined the extent to which software designs actually
decay, rot, and accumulate grime in three open-source systems. They found no evidence
of design patterns rot, but they found evidence of pattern decay due to grime. Izurieta et
al. [36] also studied the consequences of grime buildup on testability of general purpose
design patterns. Their result show that as systems age, the growth of grime and the
appearance of anti-patterns increase testing requirements.

10

2.1 Technical Debt

Code Smell

Some forms of TD accumulate over time in the form of source code [31]. Fowler et
al. [37] describe the concept of code smells as choices in Object-Oriented (OO) systems
that do not comply with the principles of good OO-design and programming practices.
Code smell indicates that parts of the design that is inappropriate and that it can be im-
proved. Code smells are usually removed by performing one or more refactoring [37].
For instance, one such smell is Long Method, a method with too many lines of code. This
type of code smell can be refactored by Extract Method, by reducing the length of the
method body [37].

Mäntylä et al. [38] proposed a taxonomy based on the criteria on code smells defined
by Fowler et al. [37]. The taxonomy categories code smells into seven groups of prob-
lems: bloaters, OO-abusers, change preventers, dispensables, encapsulators, couplers,
and others. The first class, Bloaters, represent large pieces of code that cannot be ef-
fectively handled. OO-abusers are related to cases where a solution does not exploit the
the possibilities of OO-design. Change preventers refer to code structure that consider-
ably hinder the modification of software. Dispensables represent code structure with no
value. Encapsulators deal with data communication mechanism or encapsulation. Cou-
plers refer to classes with high coupling. The last group of code smell problem is Other,
which refer to code smells that do not fit into any of the other categories. This includes
”Incomplete Library Class” and ”Comments”. Table 2.2 lists all the code smells that are
presented by Fowler et al. [37].

Several studies have been conducted to investigate the relationship between code smell
and change-proneness of classes in OO source code. A study by Olbrich et al. [39]
showed that that different phases during evolution of code smells could be identified,
and classes infected with code smells have a higher change frequency; such classes seem
to need more maintenance than non-infected classes. Khomh et al. [40] investigated
if classes with code smells are more change-prone than classes without smells. After
studying 9 releases of Azureus and 13 releases of Eclispe, their findings show that classes
with code smells are more change-prone than others.

Multiple approaches have been proposed for identifying code smells, ranging from man-
ual approaches to automatic. Manual detection of code smells can be done by code
inspections [41]. Travassos et al. [41] present a set of reading techniques that gives
specific and practical guidance for identifying defects in OO-design. However, Mari-
nescu [42] argue that manual code inspection can be time expensive, unrepeatable, and
non-scalable. In addition, it is often unclear what exactly to search for when inspecting
code [43]. Mäntylä [38] revealed more issues regarding manual inspection of code. He
states that manual code inspection is hard to conduct due to conflicting perceptions of
code smells among the developers, which could cause a lack of uniformity in the smell
evaluation.

Automatic approaches for identifying code smells reduce the effort of browsing through
large amounts of code during code inspection processes. Ciupke [43] propose an ap-
proach for detecting code smells in OO-systems. In this approach, code smells to be

11

Chapter 2. State-of-the-Art

Table 2.2: Code Smell Taxonomy

Code Smell Group
Long Method Bloaters
Large Class Bloaters
Primitive Obsession Bloaters
Long Parameter List Bloaters
Data Clumps Bloaters
Switch Statements OO-Abusers
Temporary Field OO-Abusers
Refused Bequest OO-Abusers
Alternative Classes with Different Interfaces OO-Abusers
Parallel Inheritance Hierarchies OO-Abusers
Divergent Change Change Preventers
Shotgun Surgery Change Preventers
Lazy Class Dispensables
Data Class Dispensables
Duplicated Code Dispensables
Speculative Generality Dispensables
Message Chains Encapsulators
Middle Man Encapsulators
Feature Envy Couplers
Inappropriate Intimacy Couplers
Comments Other
Incomplete Library Class Other

12

2.1 Technical Debt

identified are specified as a query. The result of a queries is a piece of design specifying
the location of the code smell in the source code. This approach was applied to sev-
eral case studies, both in academical and industrial context. Their findings revealed that
code smell detection can be automated to a large degree, and that the technique can be
effectively applied to real-world code.

Another method for automatic detection of code smells is done by using metrics. Mari-
nescu [42] proposed a general metric-based approach to identify code smells. Instead
of a purely manual approach, the use code metrics were proposed for detecting design
flaws in OO-systems. This approach were later refined, with the introduction of detec-
tion strategies [44]. Based on their case study, the precision of automatic detection of
code smells is reported to be 70%. Furthermore, a study by Schumacher et al. [45] in-
vestigated how human elicitation of TD by detecting god class code smells compares to
automatic approaches by using a detection strategy for god classes. Their findings show
that humans are able to detect code smells in an effective way if provided with a suitable
process. Moreover, the findings revealed that the automatic approach yield high recall
and precision in this context.

Automatic Static Analysis Issues

The identification of software design and code issues can be done with ASA code tools.
ASA tools look for violations of recommend programming practices on source code
line level that might cause faults or degrade some parts of software quality [31]. Tools
are able to alert software developers of potential problems in the source code, and they
may suggest refactoring solutions to avoid future problems. Several tools for detecting
code and design issues have been proposed in the literature [46]. These tools have been
applied by several researchers [31, 46–48], and the overall finding is that a small set of
automatic static analysis issues are related to defects in the software. However, the set of
issues depends on the context and type of software analyzed. Despite the fact that a tool
indicates a potential problem in the source code, it takes human judgment to determine
if something could be problematic down the road.

2.1.5 Strategies and Practices for Managing Technical Debt

Managing TD compromises the actions of identifying the debt and making decisions
about which debt that should be repaid [8, 10, 37]. There are three high-level steps that
are required to manage TD [49]: Increasing awareness of TD, detecting and repaying TD,
and prevent accumulation of TD. Increasing awareness of TD is the first step towards TD
management. This includes awareness of the concept of TD, its different forms, the im-
pact of TD, and the factors that contribute to TD. Awareness will help an organization
taking the right decisions to achieve their goals. The second step is detecting and repay-
ing TD. This step is focused on determining the extent of TD in the software. Identifying
specific instances of debt and their impact can help us to prepare a plan to recover from
the debt. The final step, prevent accumulation of TD, ensures that TD does not increase

13

Chapter 2. State-of-the-Art

and remains manageable in the future. Best practices such as refactoring, re-engineering,
and testing is necessary to manage the debt [5]. This step also involves collaboration
between all stakeholders to collectively track and monitor the debt. For example, us-
ing a backlog during release and iteration planning to list debt-related tasks [10]. Guo
et al. [20] suggest the use of a portfolio for TD management. This approach collects
TD items to a ”TD List”, which could be used to pay TD based on its cost and value.
Tools may also be used for TD management. SonarQube is an open source application
for quality management [50]. It can assess the debt in a software project by performing
automatic static code analysis. Each automatic static analysis issue is assigned a score
based on how much work it requires to fix that error. The analysis gives the total sum of
TD for the entire product.

2.2 Design Debt

DD is one of the instances of TD [4, 6, 8]. It is concerned with the design aspects of
TD. DD includes design smells and violations of design rules [49]. Design smells are
certain structures in the design that indicate violation of fundamental design principles
and negatively impact design quality [49]. A possible symptom of DD is when code
structures drift away from good OO-design principles [29]. There are various reasons
for software projects to run into DD. For example, a common OO-design principle tells
that a class should have a single purpose and should not implement many functions of
the system. A class that tries to accomplish too many purposes is known as God Class
code smell. As we have mentioned earlier, code smells are an example of design flaws
in OO-design, which may potentially lead to maintainability issues in future evolution of
the software system [39].

Suryanarayana et al. [49] present six common causes of DD: violation of design prin-
ciples, inappropriate use of patterns, language limitations, procedural thinking in OO-
paradigm, viscosity, and non-adherence to best practices and processes. Design princi-
ples provide guidance to designers in creating high quality software. Violation of design
principles are manifested as smells. For example, code smells are symptoms of design vi-
olations in the source code. Inappropriate use of patterns is related to the use of patterns
without fully understanding the context. In some cases, misuse of a design pattern may
potentially lead to an antipattern. Language limitations is related to deficiencies in pro-
gramming languages. Procedural thinking in OO-paradigm is related to using procedu-
ral programming techniques in OO-paradigm. For example, using imperative names for
classes, functional decomposition, and missing polymorphism with explicit type checks
results in design smells in an OO-context. One of the reasons to use hacks instead of
adopting a systematic process to achieve a particular requirement is Viscosity. There are
two types of Viscosity: ”software” and environment ”viscosity”. ”Software viscosity”
refers to the increased effort that must be encountered when the correct solutions is be-
ing applied to a problem [49]. ”Envrionment viscosity” refers to the resistance offered
by the software development environment that must be overcome to follow good prac-
tices [49]. Lastly, Non-adherence to practices and processes is related to best practices

14

2.3 Software Quality

and processes that are not followed correctly or completely.

2.3 Software Quality

According to the IEEE Standard Glossary of Software Engineering Terminology [51],
the quality of a software is defined as 1) the degree to which a system, component, or
process meets specified requirements, and 2) the degree to which a system, component,
or process meets customer or user needs or expectations. ISO/IEC 9126:2001 offer a
valuable conceptual framework for software quality, where a distinction between quality
in use, external quality, and internal quality is made [52]. Quality in use refers to the
users view of system quality. External quality reflects the dynamic aspect of a software
application, and is subdivided into six quality attributes. Internal quality refers to the
criteria of each quality attribute. Software quality can be measured by using a product
quality model. ISO/IEC 9126:2001 classifies software quality in a structured set of six
quality attributes [52]. Bass et al. [53] describe these characteristics as software quality
attributes. Table 2.3 presents the ISO/IEC 9126:2001 quality model, with the quality
attributes, and their criteria.

2.4 Object-Oriented Metrics

OO-metrics have been proposed as a quality indicator for OO-software systems. There
are three traditional metrics that are widely used, and are well understood by researchers
and practitioners [54]. These metrics are: Cyclomatic Complexity (CC), Size, and Com-
ment Percentage. CC evaluates the complexity of an algorithm in a method. It is rec-
ommended that the CC for a method should be below 10 [54]. Size of a method is used
to evaluate the understandability of the code. Size is measured in many different ways,
including all physical lines of code, lines of statements, and number of blank lines. Com-
ment percentage measures the number of comments in percent by counting total number
of comments divided on total lines of code minus number of blank lines.

Chidamber and Kemerer [55] proposed a set of six software metrics to identify certain
design traits of a software component. These metrics are: Weighted Methods per Class
(WMC), Depth of Inheritance Tree (DIT), Number of Children (NOC), Lack of Cohe-
sion in Methods (LCOM), Coupling Between Objects (CBO), and Response For a Class
(RFC). The WMC is used to count the number of methods in a class, or to count the of
sum of complexities of all methods in a class. The complexity of a method is measured
by the CC. This metric measures understandability, maintainability, and reusability [54].
The DIT metric measures the maximum number of steps from a class node to the root in
the inheritance hierarchy. The deeper a class is withing the hierarchy, the greater number
of methods it is likely to inherit, making it more complex to predict its behavior [54].
DIT metric is related to efficiency, reusability, understandability, and testability [54].
NOC metric measures the number of subclasses of a class in a hierarchy. The greater
number of children may be an indication of misuse of subclasses, or improper parent

15

Chapter 2. State-of-the-Art

abstraction. This metric evaluates efficiency, reusability, and testability [54]. The LCOM
is used to measure the lack of cohesion in methods of a class. It measures the dissim-
ilarity of methods in a class by looking at the instance variables or attributes used by
the methods. High cohesion indicates good subdivision, while low cohesion increase
the complexity of a class. This metric measures efficiency and reusability [54]. The
CBO metric counts the number of other classes to which a class is coupled. Excessive
coupling is detrimental to modular design and prevents reuse [54]. Larger number of
coupled objects indicates higher sensitivity to changes in other parts of the design. CBO
evaluates efficiency and reusability [54]. The RFC metric counts the total number of
methods in a class that can be invoked in a response to a message sent to an object. This
metric includes all methods accessible within the class hierarchy. RFC metric evaluates
understandability, maintainability, and testability [54]. Basili et al. [56] investigated Chi-
damber and Kemerer’s suite of metrics. Their result claim that several of Chidamber
and Kemerer’s OO-metrics appear to be useful to predict fault-prone classes during early
phases of the software life-cycle. Similarly, Li et al. [57] conclude that OO-metrics are
able to predict maintenance effort.

2.5 Software Evolution and Maintenance

Increasingly, more and more software developers are employed to maintain and evolve
existing systems instead of developing new systems from scratch [58]. Lehman [59]
introduced the study of software evolution. Software evolution is a process that usually
takes place when the initial development of a software project is done and was successful
[60]. The goal of software evolution is to incorporate new user requirements in the
application, and adapt it to the existing application. Software evolution is important
because it takes up to 85-90% of organizational software costs [58]. In addition, software
evolution is important because technology tend to change rapidly.

Software maintenance is defined as modifications of a software after delivery to correct
faults, ti improve performance or other attributes, or to adapt the product to a modified
environment [61]. Maintenance can be classified into four types [60,61]: adaptive main-
tenance, perfective maintenance, corrective maintenance, and preventive maintenance.
Adaptive maintenance is the modification of a software product performed after delivery
to keep the computer program usable in a changed or changing environment. Perfective
maintenance is the modification of a software product after delivery to improve per-
formance and maintainability. Corrective maintenance is the reactive modification of a
software product performed after delivery to correct discovered faults. Lastly, Preven-
tive maintenance is the maintenance performed for the purpose of preventing problems
before they occur.

Van Vliet [62] states that the real maintenance activity is corrective maintenance. 50% of
the total software maintenance is spent on perfective, 25% on adaptive maintenance, and
4% on preventive maintenance. This reveals that 21% of the total maintenance activity
is corrective maintenance, the ’real’ maintenance [62]. This has not changed since the
1980s when Lientz and and Swanson conducted a study on software maintenance [63].

16

2.6 Software Reuse

The study points out that most severe maintenance problems were caused by poor doc-
umentation, demands from users for changes, poor meeting scheduled, and problems
training new hires.

2.6 Software Reuse

Software reuse is the process of creating software systems from existing software rather
than building software systems from scratch [64,65]. There are many various techniques
that can be used to achieve software reuse: abstraction, compositional reuse, generative
reuse, and generation vs. composition [66]. Compositional reuse is based on the idea
of reusable components. It supports bottom-up development of systems where low-level
components are available. Compositional reuse is also known as ad-hoc reuse or indi-
vidual reuse. Generative reuse is based on the reuse of a generation process. It is often
domain-specific, and is concerned with artifacts such as requirements, designs, and sub-
systems [67]. Generative reuse is also known as systematic reuse [67]. Generation vs.
composition is a combined approach.

There are several ”assets” from a software project that can be reused, including archi-
tectures, source code, data, designs, documentation, estimates, human interfaces, plans,
requirements, and test cases [65].

The most common benefits of software reuse are quality improvement and effort reduc-
tion. Software reuse includes lower costs, shorter development time, higher quality of
reusable components, and higher productivity [68, 69]. The quality of the software in-
creases every time an asset is reused, because errors are discovered more frequently, thus
making it easier to keep the artifact more stable [66]. However, software reuse may cause
problems as well. A case study on selected feature from self-driving miniature car devel-
opment revealed that reuse of legacy, third party, or open-source code, was one of the root
causes of TD accumulation [70]. Furthermore, Morisio et al. [71] identified three main
causes of failures associated with software reuse: not introducing reuse-specific pro-
cesses, not modifying non-reuse processes, and not considering human factors. These
causes were combined with lack of commitment by top management. Organizations
attempting to implement generative reuse face both technical and non-technical prob-
lems [72]. Technical problems includes challenges with tools, standards and technology.
Non-technical problems include the human factor, cultural issues, economical issues, and
organizational issues.

2.7 Refactoring

Fowler defined refactoring as a process of changing the software system in such way that
it does not alter the external behavior of the code yet improves its internal structure [37].
Refactoring increases the code readability and maintainability by cleaning up code in a
way such that changes of defects is reduced [37]. Refactoring is an act of improving the

17

Chapter 2. State-of-the-Art

design and quality of an existing system [62]. It is believed that refactoring improves
software quality and developer productivity by making it easier to understand and main-
tain software source code [73]. According to Opdyke [74], refactoring can be categorized
into low-level and high-level refactoring. Low-level refactoring is related to changing a
program entity, such as renaming a member variable. High-level refactoring is usually
a sequence of low-level refactorings, such as defining an abstract superclass. In addi-
tion, Opdyke presents twenty-six low-level refactorings and three high-level refactorings.
Fowler et al. [37] have summarized the work of Opdyke by cataloging his refactorings
along with many other refactoring techniques that have been collected over the years.
Refactoring can be applied to three types of software artifacts: programs, designs, and
software requirements. Programs include refactoring at source code or program level.
For example, Extract Method [37] is a refactoring technique that can be applied at this
level. Designs include refactoring at design level, for example in the form of UML mod-
els. Design pattern is an example of an artifact at this level. Lastly, software requirements
include refactoring at the level of requirements specification. For example, decomposing
requirements into a structure of viewpoints.

2.8 Embedded Systems

The IEEE Standard Glossary of Software Engineering Terminologies define embedded
system as a computer system that is part of a larger system and performs some of the
requirements of that system; for example, a computer system used in aircraft or rapid
transit system [51]. Embedded systems are special-purpose computer systems designed
to perform certain dedicated functions under certain constraints. According to Koop-
man [75], there are four types of embedded systems: general computing, control systems,
signal processing, and communication and networking. The various types of embedded
systems share common requirements such as: real-time requirements, resource consump-
tion, dependability, and life-cycle properties [76]. Embedded systems are supposed to be
failure-free [77], but these requirements may hinder embedded systems to deliver reliable
service given a disturbance to its services [78].

Software constitutes only one part in embedded systems. Embedded software is defined
as software part of a larger system which performs some of the requirements of that
system [51]. Developing embedded software has proven to be difficult [79, 80]. Em-
bedded software not only have to meet the functional requirements of ”what”, but also
the non-functionality or ”quality” requirements expected of them [80]. Non-functional
requirements have come to be referred to as software quality attributes. Ebert et al. [79]
state that quality of software in embedded systems is difficult to measure. Most behaviors
for embedded systems are related to run-time quality attributes, depending on the system
domain. For instance, reliability and safety qualities are important in the automotive do-
main [81], while performance and reliability is important in mission critical systems [82].
Other quality attributes such as maintainability and usability, are often compromised in
favor of run-time quality attributes.

18

2.8 Embedded Systems

2.8.1 Safety-Critical Systems

Safety-critical systems are those systems whose failure could result in loss of life, sig-
nificant property damage, or damage to the environment [83]. These systems put a huge
demand on software reliability, because a minor error in safety-critical software can pro-
duce failure of a complete system [79,81,82]. Consider the role of safety-critical systems
is often critical, the importance of managing software quality is therefore necessary to
deliver software in a useful, safe, and reliable way. Given the lack of focus on non-
functional requirements, the amount of TD in safety-critical systems grow continuously.
Insufficient requirements and testing are two major cost drivers in embedded software
development [1, 79]. 40% of all software defects results from insufficient requirements,
especially non-functional requirements [1, 79, 84]. Testing code consumes up to 40%
of development resources. In addition, testing may potentially require 15-50% of total
project duration [79].

19

Chapter 2. State-of-the-Art

Table 2.3: Software quality attributes, criteria, and description (ISO/IEC 9126)

Quality Attribute Criteria Description
Functionality Systems ability to do work for

which it was intended.
Suitability
Accuracy
Interoperability
Security
Compliance

Reliability Systems ability to keep operating
over time under certain conditions.

Maturity
Fault Tolerance
Recoverability
Compliance

Usability Systems ability to be understood,
learned, and used by others.

Understandability
Learnability
Operability
Attractiveness
Compliance

Efficiency Systems ability to provide appro-
priate performance relative to the
amount of resources used under
stated conditions.

Time behaviour
Resource utilization
Compliance

Maintainability Systems ability to be modified in
the future.

Analyzeability
Changeability
Stability
Testability
Compliance

Portability Systems ability to be transferred
from one environment to another.

Adaptability
Installability
Co-existence
Replaceability
Compliance

20

CHAPTER 3

RESEARCH METHODOLOGY

The nature of this thesis makes it suitable as an empirical research. To answer the re-
search questions that was stated in Section 1.3, Chapter 1, an empirical research needs
to be carried out in order to collect some data. This chapter provides a brief introduction
to research methods in software engineering, and describes the research conducted in
the thesis. Section 3.1 describes the relevant research methods in software engineering.
Section 3.2 describes the research method that was chosen for this study. Section 3.4
presents the research process we have followed throughout this thesis.

3.1 Research Methods in Software Engineering

This section presents the relevant research methods applied in software engineering re-
search.

Research is believed to be the most effective way of coming to know what is happening in
the world [16]. Empirical software engineering is a field of research based on empirical
studies to derive knowledge from an actual experience rather than from theory or belief
[85]. Empirical studies can be explanatory, descriptive, or exploratory [15].

There are two types of research paradigms that have different approaches to empirical
studies [15]; the qualitative, and the quantitative paradigm. Qualitative research is con-
cerned with studying objects in their natural setting [15]. It is based on non-numeric
data found in sources as interview tapes, documents, or developers’ model. Quantita-
tive research is concerned with quantifying a relationship or to compare two or more
groups [15]. It is based on collecting numerical data.

To perform research in software, it may be necessary to understand the different research

21

Chapter 3. Research Methodology

strategies that are available in software engineering. Oates [14] presents six different
research strategies; survey, design and creation, case study, experimentation, action re-
search, and ethnography.

Survey focuses on collection data from a sample of individuals through their responses to
questions. The primary means of gathering qualitative or quantitative data are interviews
or questionnaires. The results are then analyzed using patterns to derive descriptive,
exploratory, and explanatory conclusions.

Design and creation focuses on developing new IT products, or artifacts. It can be a
computer-based system, new model, or a new method.

Case study focuses on monitoring one single ’thing’; an organization, a project, an infor-
mation system, or a software developer. The goal is to obtain rich, and detailed data.

Experimentation are normally done in laboratory environment, which provides a high
level of control. The goal is to investigate cause and effect relationships, testing hypothe-
ses, and to prove or disprove the link between a factor and an observed outcome.

Action research focuses on solving a real-world problem while reflecting on the learning
outcomes.

Ethnography is used to understand culture and ways of seeing of a particular group of
people. The researcher spends time in the field by participating rather than observing.

3.2 Choice of Research Method in this Thesis

The main purpose of this research project is to gain an understanding about the nature of
TD in software design, and its potential sources in safety-critical system software in order
to improve the management of software evolution. Based on the research questions stated
in Chapter 1, we have applied the case study approach to our research as it fits our desire
to study an industrial system. Case studies provide both quantitative and qualitative
information about the system [14], depending on the approach the case study is taking.

3.2.1 Case Study Method

Case study is an empirical method to investigate a single phenomenon within a specific
time space in real-life context [15]. Case studies excels at bringing an understanding
of why or how certain phenomena occur or to add strength to what is already known
through previous research [15, 17]. Runeson et al. [86] suggests case study as the most
appropriate research method to use when exploring how a problem behaves in a real life
context. In addition, they conclude that case study is suitable for software engineering
research. There has been suggested systematic approaches for organizing and conducting
a research successfully [17, 86]. According to Yin [87], a research design is an action
plan from getting ”here” to ”there”, where ”here” is defined as the initial set of questions
answered, and ”there” is some set of conclusions about these questions. Moreover, a

22

3.3 Case Context

research design can be seen as a blueprint of research, dealing with at least four problems:
what questions to study, what data are relevant, what data to collect, and how to analyze
the results [87]. Soy [17] proposed six steps that can be used when carrying out a case
study:

1. Determine and Define the Research Questions: The first step involves establish-
ing a research focus by forming questions about the problem to the studied. The
researcher can refer to the research focus and questions over the course of study.

2. Select the Cases and Determine Data Gathering and Analysis Techniques: The
second step involves determining what approaches to use in selecting single or
multiple real-life cases cases to examine, and which instruments and data gathering
approaches to use. (whom we want to study, the case, cases, sample. and how we
want to study it, design).

3. Prepare to Collect Data: The third step involves a systematic organization of the
data to be analyzed. This is to prevent the researcher from being overwhelmed by
the amount of data and to prevent the researcher from losing sight of the research
focus and questions.

4. Collect Data in the Field: This step involves collecting, categorizing, and storing
multiple sources of data systematically so it can be referenced and sorted. This
makes the data readily available for subsequent reinterpretation.

5. Evaluate and Analyze the Data: The fifth step involves examining the raw data in
order to find any connections between the research object and the outcomes with
reference to the original research questions.

6. Prepare the Report: In the final step, the researcher report the data by transforming
the problem into one that can be understood. The goal of the written report is to
allow the reader to understand, question, and examine the study.

3.3 Case Context

We have chosen to study an industrial system by conducting a case study. The conducted
case study took place at Autronica Fire and Security AS. Autronica is a leading innovator,
manufacturer, and supplier of fire safety equipment and marine safety monitoring and
surveillance equipment. Their headquarter is based in Trondheim, Norway. AutroSafe, a
high-end distributed fire alarm system, is one of the products they offer. The product was
first released around year 2000, and has been on sale since. The software of the product
is mainly based of C/C++ source files. Project ”Firmus” is the project name for the next
generation AutroSafe. ”Firmus” is a Latin word, which in English means: solid, firm,
strong, steadfast, steady, stable, reliable, and powerful. The goal with Project ”Firmus”
is to adopt newer technologies and technology standards that are used today. We had
the opportunity to conduct our case study on Project ”Firmus”. This project is still in
the development phase. The goal of this research is to identify DD before it potentially
creates more maintenance effort in the future. The software architecture of the Project

23

Chapter 3. Research Methodology

Table 3.1: System Metrics for Project ”Firmus”

Project ”Firmus”
Lines 88465
Lines of Code 49287
Lines of Comments 23017
Components 13
Files 461
Number of Classes 339

”Firmus” is component-based, where the different source files are divided into different
components. The system consists of 13 components, and 461 source code files in total.
Test files are found inside each component. To ensure reuse of source code, the company
have developed a library that is used by this system and other systems. However, we have
decided not to include library files in our analysis because we believe that the libraries
can be seen as a case itself.. Table 3.1 summarizes the system metrics, which includes
the test files.

3.4 Research Process

A research process provides a systematic approach on how to fulfill the goal of a research.
We have chosen to follow the principles of the six steps defined by Soy [17] in this study:
1) Determine and Define The Research Questions, 2) Select the Cases and Determine
Data Gathering and Analysis Techniques, 3) Prepare to Collect Data, 4) Data Collection,
5) Evaluate and Analyze Data, and 6) Prepare the Report.

3.4.1 Determine and Define the Research Questions

The first step of this study is to define the research goal, and the research questions. In
our previous research [13], we stated that we are interested in getting a deeper insight
into the field of TD by studying an industrial system. There are many subcategories of
TD (See Table 2.1. In this study, we have chosen to investigate DD in safety-critical
systems.

An analysis of the state-of-the-art was carried out to determine what prior studies have
determine about the topic of DD. The goal with the analysis is to determine and define
the research questions. Google Scholar, ACM Digital Library, Scopus, and IEEE Xplore
Digitar Library were tremendously used during the analysis to find research papers that
are relevant for our thesis. The literature review showed that there have been very lit-
tle prior research on DD in safety-critical systems. Research questions were defined
based on the results from our literature review. We have defined four research questions,
RQ1-4, which we have summarized in Table 3.2. These research questions will be our
primarily driving force through this research.

24

3.4 Research Process

Table 3.2: Research Questions

RQ1 How can DD be identified?
RQ2 What are the effects of DD?
RQ3 What kind of DD can be found in safety-critical systems?
RQ4 How to pay DD?

3.4.2 Select the Cases and Determine Data Gathering and Analysis
Techniques

A representative context had be chosen to analyze and investigate the research questions.
We have chosen to conduct an exploratory and descriptive case study in real-life context
to obtain knowledge about the problem to be studied. Several e-mails were sent out to
organizations within the embedded industry. After a few weeks, we managed to get in
touch with Autronica Fire and Security. The case study took place at their main office
in Trondheim for approximately six weeks. A brief description of Autronica can be
found in Section 3.3. We were provided with a workspace and multiple data sources,
including access to the software’s source code, issue for the project, system requirements,
and documentation for system design and code. Data were mainly extracted from these
sources.

The first step is to find the structural code and design attributes of the software system.
OO-metrics can be used to assess the quality of the software. Therefore, design attributes
can be identified by measuring the OO-metrics. Furthermore, as we mentioned in Section
2.2, code smell detection can be used to identify design violations in the source code. A
part of the literature review was to get familiar with existing tools that has been used to
address similar problems. There is a wide set of tools which enables software metrics
measurement and automatic static analysis of code. Some of the tools are open-source,
while other contain strict licensing. However, a few of the commercial tools provide
license for academical purposes. We will only focus on the tools providing measurement
for C/C++. We have listed the tools used in this thesis below.

Doxygen [88] is a free software for generating documentation from annotated C++ sources.
Doxygen has the ability to generate documentation in HTML or in Latex. Since the doc-
umentation is extracted from the source code, it is easier to keep the documentation up to
date. In addition, Doxygen can be configured to extract the code structure from undocu-
mented sources files, which makes it possible to visualize the relations between various
elements in the software. Doxygen is used by the company to keep the documentation up-
to-date, and was therefore used in this project to learn about the system and to visualize
the system.

ArgoUML [89] is an open source UML modeling tool that includes support for all stan-
dard UML 1.4 diagrams. It features reverse engineering of C++ projects by reading C++
source files and generate and UML model and diagrams. ArgoUML was primarily used
to reverse-engineer the source code to extract class diagrams.

Enterprise Architect [90] is an UML modeling tool. It has the ability to produce UML

25

Chapter 3. Research Methodology

diagrams from code. This tool was used to create class diagrams for each component,
allowing us to identify possible code smells, such as Large Class and Long Method code
smell. Enterprise Architect is a commercial software, but they offer a 30-day trial version
of the software. The reason we used this was because ArgoUML was not fully able to
reverse-engineer the source code.

SonarQube [50] is an open source platform for quality management of software code. It
has the ability to monitor different types of TD. It supports multiple languages through
plugins, including Java, C/C++, JavaScript, and PHP. A downside with SonarQube is
that some of the plugins requires a commercial license, and that some features included
are not applicable for C++. This tool was used to detect code smells in Project ”Firmus”.

Understand for C++ [91] is a code static analysis tool. It supports dozen of languages,
including Java, C/C++, Fortran and Python. Understand for C++ can help developers an-
alyze, measure, visualize, and maintain source code. It includes many features, including
dependency graph visualization of code, and various metrics about the code (e.g., CBO).

CppDepend [92] is a commercial tool for analyzing source code in C/C++. It allow us to
measure code quality metrics, including multiple code smells.

CppCheck [93] is an open-source static analysis tool for C/C++ source code. It is able to
detect bugs in code that compilers normally do not detect. For example, it may tell us the
number of uninitialized variables, or warn us about unused code.

CppClean [94] is another open-source static analysis tool for C/C++ source code. Among
many functionalities, this tool supports finding unnecessary ’#includes’ in header files.

CCCC [95] is able to measure source code related metrics. It is able to measure some of
the metrics defined by Chidamber and Kemerer [55]. We have used this tool to measure
software metrics, and the results has been compared to the results from Understand for
C++.

3.4.3 Prepare To Collect Data

Preparing for data collection is the third step of this case study. Doxygen is used by the
company to generate and keep system documentation up-to-date. We spent some time
analyzing the system documentation to get familiar with the system. Doxygen also has
the ability to generate various diagrams, including inheritance diagrams, and dependency
graphs. However, a downside with Doxygen is that it does not allow us to interact with
the diagrams. Doxygen allows us to specify depth of the graphs that are being generated,
but output can be very large, hence we had some troubles understanding the graphs.
Furthermore, Doxygen can generate a dependency graph for each file in a component, but
it does does not provide full dependency graphs for a component. There are many tools
that offers reverse engineering of C/C++ source code, so we decided to try out a few of
them, including ArgoUML, Enterprise Architect, and Understand for C++. Understand
for C++, CppClean, CppDepend, and CppCheck will be used to extract design problems
at code level by analyzing the source code.

26

3.4 Research Process

A Word document and an Excel spreadsheet were created to keep track of the extracted
data so we can review it later for analysis.

Software Metrics Selection

Various software metrics exist for system measurement. Unfortunately, there are no well
known standardized set of software metrics aimed to measure safety-critical systems.
Choosing the right metrics for measuring safety-critical software is preferable because
this kind of software is responsible for many things, such as human lives. To enchance
quality in software systems, OO-metrics were established. They measure characteristics
of OO-systems in a way to improve them. Many aspects have been defined to improve
the quality of code using these metrics. We have mainly used the metric suite defined
by Chidamber and Kemerer [55]. This suite of metrics is widely cited and has been
used by many researchers, and their metrics suite is the deepest research in OO-metrics
investigation . For example, Rosenberg et al. [96] applied this set of metric in evaluation
of many NASA projects. The projects were written in both C++ and Java. In addition
to Chidamber and Kemerer’s metrics, we have measured two additional metrics, one
counting the number of instance methods, and the other counting the number of instance
variables. The following metrics have been measured in this study by using Understand
for C++:

LCOM: Calculates what percentage of class methods use a given class instance variable.
A lower percentage means higher cohesion between class data and methods.

DIT: Measures the longest path from a given class to the root class in the inheritance
hierarchy.

CBO: Measures number of other classes that are coupled to a particular class. The desir-
able value is lower.

NOC: Measures number of subclasses from a given class.

RFC: It is the sum of number of methods that can potentially be executed in response to
a message by an object of a class.

NIM: Measures number of instance methods in a class, which is methods that are acces-
sible through an object of that class.

NIV: Measures number of instance variables in a class, that is, variables that are only
accessible through an object of that class. Instance variables are used to measure LCOM
of a class.

WMC: This metrics sums the CC of a class by counting the CC for each method.

3.4.4 Data Collection

The fourth step of the research process is to execute the plan that was created in step three.
During the case study, data is collected from two different sources by using multiple tools

27

Chapter 3. Research Methodology

to improve the reliability of the study. The first source of design flaws can be found by
code smell detection in source code. Table 2.2 in Section 2.1.4, Chapter 2, summarizes
the code smells that are presented by Fowler et al. [37]. By using ASA tools, we were able
to identify multiple code smells in the system. Most of the code smells were manually
verified by inspecting the class and dependency diagrams for the class in which code
smell exists. For instance, Duplicated Code code smell were identified using SonarQube.
We inspected each file with duplicated code to verify the results. Another example of
a code smell we identified is the Long Method code smell. Long Method code smell
was identified using CppDepend and Understand for C++. The results were verified by
reverse engineering the source code to generate UML class diagrams. At first, we used
the built-in functionality in Doxygen to generate the class diagrams. However, Doxygen
was not able to provide full class diagrams. Therefore, we had too look for other options.
We came across ArgoUML, an open source alternative to generate UML diagrams by
reverse engineering C/C++ code. After comparing some of the results with snippets
from Doxygen class diagrams, we noticed that ArgoUML failed to reverse engineer parts
of code that contains classes, and their corresponding relations to other classes. This
led us to look for commercial software. Using Understand for C++ and Enterprise
Architect, we were able to extract the class diagrams for the system by using their built-
in reverse engineering functionality. Enterprise Architect allowed us to interact with the
class diagram. In addition, it was able to create a class diagram for each component,
which made the navigation much easier compared to Understand for C++. UML class
diagrams were used to verify Large Class code smell and Long Method code smell.

The second source of design flaw identification is to measure the OO-metrics for the
system. OO-metrics are used to manage, predict, and improve the quality of a software
product [97] by finding classes with large metric values. Understand C++ was used
for measuring all the metrics values of the system. The reason we chose to use this
tool is because it provides wide set of metrics to be measured. In addition, Scitools, the
developers behind Understand C++, offer a 15 days trial for academical purposes. The
metrics for C++ are divided into four groups: file, class, project, and method. We have
mainly focused on extracting class metrics, which includes LCOM, DIT, CBO, NIV, NIM,
NOC, RFC, and WMC. In our measurements, we decided to exclude the test classes as
they may potentially affect the metrics in both positive and negative way.

After analyzing our project, we had the opportunity to extract the measured OO-metrics
in HTML format. However, we wished to export the tables to Microsoft Excel 2016 and
Google Spreadsheet in order organize the data, and perform some calculations. We had
to create a script that converts the HTML tables to Microsoft Excel 2016 tables. After col-
lecting and sorting the experimental data, descriptive statistics may be used to describe
and graphically present interesting aspects of the data set. Descriptive statistics deal with
presentation and numerical processing of a data set [15]. The goal with descriptive statis-
tics is to get a feeing for how the data set is distributed, and may be used to understand
the nature of the data and identify abnormal or false data points.

The HTML tables were imported to both Microsoft Excel 2016 and Google Spreadsheet.
After metrics extraction, descriptive statistics were computed for the whole project and
for each component using various formulas in Google Spreadsheet. These statistics aims

28

3.4 Research Process

to give a measure of the value of the metrics for all the classes, which we can use to
identify classes with weak metric values. In addition, graphs were created using Google
Spreadsheet and Microsoft Excel 2016 to visualize the data.

The descriptive statistics that we have measured are:

• Minimum: The minimum value of a metric.
Google spreadsheet formula: MIN(value1; [value2; ...])

• Maximum: The maximum value of a metric.
Google spreadsheet formula: MAX(value1; [value2; ...])

• Sample Mean: The mean of the metric, that is, the average value of a metrics. It
can be used to measure the center of the data.
Google spreadsheet formula: AVERAGE(value1; [value2; ...])

• Mean: Represents the middle value of a data set. It is calculated by sorting the
samples in ascending order and picking the middle sample [15].
Google spreadsheet formula: MEDIAN(value1; [value2; ...])

• Standard Deviation: A measure of how spread out the numbers are. Higher values
indicates greater spread.
Google spreadsheet formula: STDEV(value1; [value2; ...])

• Kurtosis: A measure of whether the data set have a peak or not. A positive kurtosis
value indicates peaked data distribution, while negative value indicate flat data
distribution.
Google spreadsheet formula: KURT(value1; [value2; ...])

• Skewness: A measure which gives information about the symmetry of data distri-
bution. Normal distribution has a skewness equal zero. Positive skewness value
indicate longer right tail with sample mean placed on the right side of the peak
value. Negative skewness value indicate longer left tail with sample mean placed
on the left side of the peak value.
Google spreadsheet formula: SKEW(value1; [value2; ...])

Code smell data were collected using automatic static analysis tools. CppDepend, Cpp-
Clean, CppCheck, SonarQube, and Understand for C++ were mainly used to detect the
code smells. In addition, we have manually verified some of the detected code smells in
order to determine whether the hits are false negative or false positive. For example, to
verify Long Method code smell, we manually inspected the class in which the method is
located.

3.4.5 Evaluate and Analyze the Data

In the fifth step of the case study, we examined the data that was collected in the fourth
step. Although OO-metrics are well-known, there is still a discussion about identifying
their threshold and usage [98]. In the previous step, we collected data for multiple OO-
metrics. The data can be used to measure the software quality from different points of

29

Chapter 3. Research Methodology

views, search for potential problems in the source code, and identify possible candidates
in which inspection may potentially be needed. However, the usage of OO-metrics alone
do not tell us which classes have acceptable metric values, and which classes need an
inspection. In addition to OO-metric measurement, we also need to determine when the
metric values represent a positive characteristic, and when the values becomes some sort
of warning sign for possible unwanted aspect of the software. The boundaries between
two sets of values are known as thresholds [99]. Our goal with the analysis part is to
identify the classes with metric values above a defined threshold.

Threshold values were identified using statistical information method [100]. For each
metric, we used descriptive statistics, the sample mean and the standard deviation, to
derive its threshold values. There are three different threshold values we identified. The
first value corresponds with the sample mean and represents the most typical value in the
data set. The second value is calculated as the sum of the sample mean and the standard
deviation. It represents high values of the metric, but acceptable in some cases. The
last value is the second value multiplied with 1.5 [100]. It represents extreme values and
should not be present in the data set.

3.4.6 Prepare the Report

Lastly, the methods conducted in this research will be reported through this thesis. This
involves all the steps that we have gone through this research. The report also includes
findings from the literature review, and how they are related to our findings from the
case study. Lastly, the report conclusion summarizes our contributions, and points out
suggestions for further research, so that other researchers may apply these techniques in
some other context to determine whether findings are similar to our research or not.

3.5 Summary of the Research Design

The research questions described in Subsection 3.4.1 were answered using the case study
methodology and a literature review. The literature review helped us getting familiar with
the topic of area, and to identify the tools needed to mine necessary data. A case study
was conducted in collaboration with Autronica Fire and Security AS, where we analyzed
a safety-critical system to investigate DD by using software tools. DD were identified by
capturing OO-metrics for classes, and by applying threshold on them to find classes with
larger metric values. In addition, code smells were extracted from the source code.

30

CHAPTER 4

RESULTS

This chapter presents the results of this study. We have evaluated the design and software
quality of the system by measuring OO-metrics in software classes, and by identifying
code smells in the system. Section 4.1 presents the OO-metrics we have measured for
Project ”Firmus”. In Subsection 4.1.1, we present the OO-metrics for each component
in Project ”Firmus”. Section 4.2 summarizes the code smells we have detected using
automatic static analysis tools.

4.1 Object-Oriented Metrics in Project ”Firmus”

The metrics that have been used to measure the quality of the code is mostly based on the
work of Chidamber and Kemerer. [55]. The following metrics were measured: WMC,
DIT, NOC, LCOM, RFC, and CBO. In addition to these metrics, we have measured NIV,
and NIM in each class. A short description of each metric is provided in Section 3.4.
We present their descriptive statistics which includes the minimum, maximum, median,
sample mean, standard deviation, kurtosis, and skewness values for the whole system.
In addition to metrics for Project ”Firmus”, we present descriptive statistics for each
component in the system.

A total of 317 files were analyzed. These files contains 226 classes, and 31204 lines
of code, excluding the test files. Table 4.1 presents descriptive statistics for class level
metrics for the whole project.

LCOM: A class is cohesive if its LCOM value is low. In this analysis, LCOM is mea-
sured in percent. Our data revealed that LCOM value lies between a range from 0 to 100,
indicating that there are classes with high and low cohesion. Figure 4.1 shows the fre-
quency distribution of LCOM values. There are 74 classes with LCOM value of 0. These

31

Chapter 4. Results

Table 4.1: OO-metrics and descriptive statistics for Project ”Firmus”

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 0 100 55 42.711 32.961 -1.501 -0.274
DIT 0 4 1 1.066 1.069 -0.676 0.647
CBO 0 30 5 6.178 5.162 2.093 1.214
NOC 0 20 0 0.467 1.866 61.606 7.064
RFC 0 115 10 15.991 8.769 9.279 2.936
NIM 0 48 7 8.458 7.006 8.117 2.515
NIV 0 18 1 2.195 2.828 5.131 2.003
WMC 0 325 10 20.293 31.934 41.063 5.314

classes have high cohesion. However, 118 classes have a value of LCOM larger than 50.
Among them, 7 classes have a value of LCOM larger than 90, whereas 2 classes have a
LCOM value of 100. Kurtosis and skewness values tell us that the normal distribution
is almost perfectly symmetrical. Classes with low cohesion increase the complexity of
the software, and may therefore increase the likelihood of errors during development.
It is necessary to split one class to two or more classes to make them more cohesive to
improve the class design.

CBO: In general, higher values of CBO indicate fault prone classes. Our analysis show
that 194 classes have a value of CBO less than 10, and that 4 classes have a value larger
than 20. The maximum value of CBO is 30. This class is an example of a class that is
hard to understand, harder to reuse, and more difficult to maintain.

DIT: DIT value appears to be generally low in the captured statistics. A class with
DIT value of 0 is the root in a class hierarchy. Figure 4.3 shows that 89 classes have
a DIT value of 0, and 65 classes have a DIT value of 1. The median value suggests
that most classes tend to be close to the root in the inheritance hierarachy. DIT metric
can be used to determine whether the design is top heavy or bottom heavy [55]. A
design is top heavy if there are too many classes near the root, and bottom heavy if most
classes are near the bottom of the hierarchy. The system appears to be top heavy by
observing the empirical data of DIT, which indicates that there may be lack of reuse
through inheritance. Classes with a DIT value of 2 and 3 indicates higher degree of reuse
through inheritance. Widentified 70 classes in total with DIT value of 2 and 3. The
maximum value of DIT is 4. These values show that inheritance is used in most of the
classes to an optimal level. However, there may be some possibilities for improvements
for classes with DIT value of 0.

NOC: NOC metric measures the number of subclasses of a class. The median value
of NOC show that most half of the classes has no immediate children, which indicates
that inheritance may not be used enough. According to the Figure 4.4, approximately
86% of the classes seem to have no subclasses, hence affecting the normal distribution
due to a high value of kurtosis. In addition, the skewness value indicate that long tail is
on the positive side of the peak (i.e., on the right side). Furthermore, the max value of
NOC is 20, which may indicate a misuse of subclassing. Classes with high NOC value
are difficult to modify, and they usually require more testing because of the effects on
changes on all the children.

32

4.1 Object-Oriented Metrics in Project ”Firmus”

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

N
o

. C
la

ss
es

LCOM

LCOM

Threshold

Figure 4.1: Frequency chart of the LCOM metric

0

20

40

60

80

100

120

0 5 10 15 20 25 30 35

N
o

. C
la

ss
es

CBO

CBO

Threshold

Figure 4.2: Frequency chart of the CBO metric

33

Chapter 4. Results

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6

N
o

. C
la

ss
es

DIT

DIT

Threshold

Figure 4.3: Frequency chart of the DIT metric

0

20

40

60

80

100

120

140

160

180

200

0 2 4 6 8 10 12 14 16 18 20 22

N
o

. C
la

ss
es

NOC

NOC

Threshold

Figure 4.4: Frequency chart of the NOC metric

34

4.1 Object-Oriented Metrics in Project ”Firmus”

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 10 20 30 40 50 60 70 80 90 100 110 120 130

N
o

. C
la

ss
es

RFC

RFC

Threshold

Figure 4.5: Frequency chart of the RFC metric

RFC: Classes with large RFC tend to be complex and have decreased understandability.
Testing classes with large RFC is more complicated. The RFC statistics reveal that ma-
jority of the classes have a RFC of less than 20. There are only 22 classes with a value
of RFC larger than 30, where 2 of them have a value larger than 100. The maximum
value of RFC in this system is 115. A suggestion would be to inspect classes with higher
values of RFC.

WMC: We observe that majority of the classes have a value of WMC less than 10 by
examining Figure 4.6. More precisely, 123 classes has a value of WMC less than 10.
Moreover, 5 classes have a value of WMC larger than 100. The maximum value of WMC
is set to 325.

NIM and NIV: The NIM and NIV metrics report the number instance methods and in-
stance variables in a class. Our analysis show that most classes are small. The sample
mean of NIV tells us that each class has an average of 2 instance variables. The maxi-
mum value of NIV is 18, indicating that there is at least one class that contains 18 instance
variables. The sample mean of NIM show us that each class has an average of 8 instance
methods. More precisely, there are 170 classes with value of NIM less than 10. The
maximum value of NIM is 48, which indicates that there is at least one class contains 48
methods.

35

Chapter 4. Results

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

N
o

. C
la

ss
es

WMC

WMC

Threshold

Figure 4.6: Frequency chart of the WMC metric

4.1.1 Obect-Oritented Metrics in System Components

In the previous Section, we measured the OO-metrics for the whole project. However,
Project ”Firmus” consists of 13 components. Descripive statistics in Table 4.1 reveal
statistics for class level metrics in Project ”Firmus”, but it does not say anything about the
class level metrics in the different components. Therefore, we have calculated descriptive
statics for each component that contains at least one class.

Component A

Component A contains 53 files. Among these files, we identified 37 classes and 5427
lines of code. Figure 4.7 presents the frequency distribution of the measured OO-metrics.
Table 4.2 presents common descriptive statistics of the metric distribution.

The DIT values indicate that inheritance hierarchies is somehow flat. Classes with flat
inheritance hierarchy usually hints that reuse through inheritance is not used. There are
8 classes with flat inheritance hierarchy. Rest of the classes inherit for at least one class.
The max value captured show that some classes have deep hierarchy. Higher values for
DIT indicates higher degree of reuse, but as trade off, it may potentially increase the
complexity of the class. Moreover, the results indicate that most classes only have a few
subclasses. We identified 29 classes with no children. Moreover, we idenfied a class with

36

4.1 Object-Oriented Metrics in Project ”Firmus”

Table 4.2: OO-metrics and descriptive statistics for Component A

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 0 94 62 46.405 34.321 -1.477 -0.472
DIT 0 4 2 1.567 1.167 -0.707 0.270
CBO 0 30 6 6.758 6.639 4.00 1.766
NOC 0 8 0 0.758 1.706 8.508 2.743
RFC 6 115 38 43.649 31.515 -0.708 0.559
NIM 4 40 10 13.135 8.891 3.674 1.991
NIV 0 12 1 2.270 2.969 3.694 1.917
WMC 3 194 19 31.081 36.554 10.362 2.821

a NOC value of 8.

The results show that 32.4% (i.e., 12 classes) of all classes in Component A are strongly
cohesive, which implies that more than half of the classes show lack of cohesion. We
notice that two classes has LCOM values larger than 90 by examining Figure 4.7. These
classes indicate loose class structures. The kurtosis value of LCOM is negative, so we
can consider LCOM having a flat distribution, which can be seen Figure 4.7.

Most classes have small CBO values, indicating that they are self-contained. However,
the frequency distribution shows that few of the classes are strongly coupled. There is
one class in component B with a CBO value of 29. This class may potentially be fault-
prone class. Additionally, this class may affect its reusability and maintainability. This
particular class has LCOM value of 62, WMC value of 95, and RFC value of 25, hence
being a possible Large Class code smell.

The results show that each class have at least two methods. More than half of the classes
have low RFC values, which indicates greater polymorphism. However, there are few
classes in this component that has larger values of RFC. The maximum RFC value is
115, and classes with high RFC are usually difficult to maintain and test.

The values of WMC rangs from 3 to 194. The median value indicate that at least 50%
of the classes have a cyclomatic complexity of 17 or less. However, the sample mean is
revealed to be larger than the median value. This implies that there are few classes with
large values of WMC, which is evident by inspecting the standard deviation value.

There are few classes with large values of NIV. At least 50% of the classes have one
instance variable or less. The largest number of instance variables in a class is 12. This
may potentially imply that the system does not apply information hiding principle ap-
propriately for this class. The same class have its LCOM value at 90, which indicates
that most variables are not shared across the member functions. Furthermore, each class
is revealed to have at least four instance methods. At least 50% of the classes have 10
instance methods or less. This means that rest of the classes have more than 10 instance
methods, which indicates that classes may potentially provide several services to other
classes. This could be the reason behind large values of LCOM. The maximum value of
NIM captured is 40. There are two classes with NIM value of 40, one having a WMC
value of 194 and the other having a WMC value of 72. Both classes have a LCOM value
larger than 90. This class may potentially be a Large Class.

37

C
hapter4.R

esults
6/5/2016 al.xls - Google Regneark

https://docs.google.com/spreadsheets/d/1diBNllEpVoP9wxoK85h05VFWF1J4bEffg-4q1SGCsg4/edit#gid=282654957 1/2

al.xls
Fil Rediger Visning Sett inn Format Data Verktøy Tillegg Hjelp Alle endringer er lagret i Disk

kr % 123

Arial 10

Class

LCOM

DIT

CBO

NOC

RFC

NIM

NIV

WMC

0 40 80 120 160 200
0

5

10

15

20

25

30

Metric Value

N
o.
 C
la
ss
es

al.xls
Kommentarer Del

shahariar.b@gmail.com

Figure 4.7: Frequency distribution of OO-metrics in Component A

38

4.1 Object-Oriented Metrics in Project ”Firmus”

Table 4.3: OO-metrics and descriptive statistics for Component B

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 22 91 66 63.348 15.916 1.179 -0.761
DIT 0 1 1 0.609 0.499 -1.950 -0.477
CBO 1 21 5 6.13 4.799 2.653 1.350
NOC 0 1 0 0.087 0.288 8.605 3.140
RFC 6 48 9 14.217 11.977 2.867 1.831
NIM 6 48 9 13.434 10.974 3.822 1.986
NIV 1 10 2 3 2.504 2.51 1.711
WMC 3 325 19 35.826 66.796 17.288 3.964

Component B

We identified 23 classes in Component B. These classes are spread across 42 files, which
in total contains 3905 lines of code. Figure 4.8 presents a frequency chart of the OO-
metric results for Component B. Table 4.3 presents descriptive statistics of the analyzed
metrics.

The values of LCOM in Component B range from 22 to 91, which indicates that none
of the classes in Component B are strongly cohesive. There are only two classes with
LCOM values below 50, both having low values in terms of complexity, method count,
coupled objects, and instance variables. The WMC metric values range from 3 to 325.
We decided to examine the class with max value of WMC. This class has a LCOM value
of 74, and a CBO value of 10. Its RFC value is 44, while NIM is 36. This class has no
subclasses, but it does inherit methods and variables from one superclass. This class is
revealed to be the most complex class in the system in terms of cyclomatic complexity.
Moreover, there are 8 classes in this component with a LCOM value of 66. We did notice
that 4 of these classes has identical DIT, CBO, RFC, NIM, NIV, and WMC values by
examining the metrics of the metrics for these classes. Manual inspection of the classes
did not reveal any duplicated code. In terms of refactoring, we do think that all these
classes need the same effort.

39

C
hapter4.R

esults
6/5/2016 blc.xls - Google Regneark

https://docs.google.com/spreadsheets/d/1lmYMEzHbIRZGy4oWuW4YShlxjBPqFm-lxUBfUIX_xA4/edit#gid=544603292 1/2

blc.xls
Fil Rediger Visning Sett inn Format Data Verktøy Tillegg Hjelp Alle endringer er lagret i Disk

kr % 123

Arial 10

LCOM

DIT

CBO

NOC

RFC

NIM

NIV

WMC

20 60 100 140 180 220 260 300
0

5

10

15

20

25

Metric Value

N
o.
 C
la
ss
es

blc.xls
Kommentarer Del

shahariar.b@gmail.com

Figure 4.8: Frequency distribution of OO-metrics in Component B

40

4.1 Object-Oriented Metrics in Project ”Firmus”

Table 4.4: OO-metrics and descriptive statistics for Component C

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 0 89 61 54.8 22.139 1.015 -1.089
DIT 0 1 0 0.1 0.308 7.037 2.888
CBO 1 19 4.5 6.5 5.587 -0.045 1.030
NOC 0 1 0 0.05 0.223 20 4.472
RFC 3 26 8.5 10.3 5.741 1.825 1.363
NIM 3 26 8.5 9.85 5.153 3.967 1.626
NIV 0 9 2 3.15 3.013 -0.217 1.084
WMC 3 106 12.5 27.65 30.975 1.472 1.544

Component C

Our analysis show that component C contains 29 files, 20 classes, and 4792 lines of code.
We present the descriptive statistics for component C in Table 4.4, and the frequency
distribution of the metrics in Figure 4.9.

LCOM values of Component C range from 0 to 89. The median value reveal that more
than half of the classes have LCOM value of 60 or more, indicating possibilities for
design improvements by splitting up the classes. DIT and NOC metric values is very
low, implying that inheritance may potentially not be used enough. Moreover, CBO
values range from 1 to 19. Each class has a CBO value of 5 in average. One of the
classes have a CBO value of 19. This class prevents reuse due to its modular design.
Strong coupling complicates a system since a class is harder to understand and modify.
The WMC metric values range from 3 to 106. The median value suggests that complexity
in this component is well managed for most classes. However, we identified one class
with a WMC value of 106. This particular class has a LCOM value of 63, and is coupled to
18 other objects. RFC, and NIM values of this class is set to 26, which are the maximum
values that we analyzed for the corresponding metrics. All these values are an indication
of a possible fault-prone and complex class. In addition, this class may potentially be
affected by the Large Class code smell.

Component D

Our analysis show that Component D consists of 13 files and 1647 lines of code. Among
these files, we were only able to identify one class. This class has LCOM value of 68.
Furthermore, our results show a DIT value of 1 for this class, and a NOC value of 0. The
CBO value is set to 10. The values of RFC, and NIM have a value of 8. Moreover, the
class has one instance variable. The sum of complexity in this class is 17.

41

C
hapter4.R

esults
6/5/2016 conf.xls - Google Regneark

https://docs.google.com/spreadsheets/d/1F_4IsH879ZYf1EdI7BO_qSQNRrLJLGuCeAaJj4at7zU/edit#gid=460775721 1/2

conf.xls
Fil Rediger Visning Sett inn Format Data Verktøy Tillegg Hjelp Alle endringer er lagret i Disk

kr % 123

Arial 10

Class

LCOM

DIT

CBO

NOC

RFC

NIM

NIV

WMC

0 25 50 75 100
0

5

10

15

20

Metric Value

N
o.
 C
la
ss
es

conf.xls
Kommentarer Del

shahariar.b@gmail.com

Figure 4.9: Frequency distribution of OO-metrics in Component C

42

4.1 Object-Oriented Metrics in Project ”Firmus”

Component En

Similar to Component D, our analysis identified only one class among 3 files and 367
lines of code in Component En. The metrics are very similar to Component D metrics.
The class has a LCOM value of 62, indicating that the class may potentially have low
cohesion in some of the methods. However, compared to Component D, this class is
only coupled to one object. The sum of complexity of methods in this class is 15.

Table 4.5: OO-metrics and descriptive statistics for Component Ex

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 0 100 0 26.302 33.082 -0.971 0.756
DIT 0 3 2 1.581 1.121 -1.313 -0.234
CBO 0 16 4 5.314 4.459 -0.511 0.783
NOC 0 20 0 0.744 2.736 32.072 5.338
RFC 0 28 8 10.279 6.030 0.800 0.87
NIM 0 22 3 4.907 3.846 4.082 1.785
NIV 0 10 0 1.209 2.098 5.887 2.415
WMC 0 41 7 8.744 8.117 3.91 1.882

Component Ex

Our analysis found 48 files in Component Ex. These files consist of 4089 lines of code,
and among these, we identified 86 classes. 38% of the number of classes of the system
are located in this component. Table 4.5 presents the descriptive statistics for Component
Ex, while Figure 4.10 presents the frequency distribution of the measured metrics.

Despite the fact that at least 50% of the classes have high cohesion, there are still many
classes that show lack of cohesion. Our results show that there are 22 classes with LCOM
value larger than 50, whereas 6 classes have a LCOM value of 80 or more. There are 2
classes with LCOM value of 100. Moreover, the average cyclomatic complexity of the
classes have a value of 8.744, while the median has a value of 7. These values imply that
most classes may have more polymorphism and less complexity. Figure 4.10 shows that
there are only one 8 classes with value of WMC larger than 20, whereas the maximum
value is 41. These values indicate that the complexity is well managed to this point. We
observe that only 7 classes are self-contained by examining the CBO values. Rest of the
classes are coupled to other objects. The majority of the classes has a CBO value of 5
or less. There is only one class with CBO value of 16, indicating that this class may
potentially be difficult to understand and maintain.

43

C
hapter4.R

esults
6/5/2016 excom.xls - Google Regneark

https://docs.google.com/spreadsheets/d/1s2kUYVPcuqk_Vr40KwameQjwzIzaXafI9KqT3dBjc7A/edit#gid=1291853753 1/2

excom.xls
Fil Rediger Visning Sett inn Format Data Verktøy Tillegg Hjelp Lagrer ...

kr % 123

Arial 10

LCOM

DIT

CBO

NOC

RFC

NIM

NIV

WMC

0 15 30 45 60 75 90 105
0

8

16

24

32

40

48

56

64

72

Metric Value

N
o.
 C
la
ss
es

excom.xls
Kommentarer Del

shahariar.b@gmail.com

Figure 4.10: Frequency distribution of OO-metrics in Component Ex

44

4.1 Object-Oriented Metrics in Project ”Firmus”

Table 4.6: OO-metrics and descriptive statistics for Component G

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 0 94 60 50.25 31.236 -0.767 -0.794
DIT 0 2 1 0.625 0.609 -0.582 0.399
CBO 0 23 5.5 6.312 4.987 1.898 1.152
NOC 0 2 0 0.25 0.622 4.231 2.357
RFC 2 30 9 10.187 6.382 2.178 1.356
NIM 0 29 7 8.437 5.459 5.669 1.745
NIV 0 18 2 3.062 3.926 5.983 2.225
WMC 1 123 12 19.437 24.794 9.572 2.824

Component G

Component G consists of 59 files. These files include 3701 lines of code and 32 classes.
Descriptive statistics for Component G are summarized in Table 4.6, and its frequency
distribution of metrics are presented in Figure 4.11.

Overall, the statistics indicate that there are some accumulated DD in this component.
The values of LCOM range from 0 to 94, whereas 8 classes have a LCOM value of
0. However, values of LCOM for rest of the classes are larger than 50. Moreover, the
statistics show that at least 16 classes have a DIT value of larger than 0, which indicates
a higher degree of reuse. There are 5 classes with subclasses in this component. The
WMC metric values in this component range from 1 to 123, where only class has a value
of WMC larger than 100. We decided to examine the class with WMC value of 123. The
metric of that class reveal a LCOM value of 92, CBO value of 22, RFC value of 30, NIM
value of 9, and NIV value of 18. These values show that this class is probably influenced
by the Large Class code smell, and is a candidate for inspection and possible refactoring.

45

C
hapter4.R

esults
6/5/2016 guri.xls - Google Regneark

https://docs.google.com/spreadsheets/d/1VIDDixAkJOH4pgWHge2h-veByXv5LfbmxxoWROHHHzs/edit#gid=197145053 1/2

guri.xls
Fil Rediger Visning Sett inn Format Data Verktøy Tillegg Hjelp Alle endringer er lagret i Disk

kr % 123

Arial 10

LCOM

DIT

CBO

NOC

RFC

NIM

NIV

WMC

0 20 40 60 80 100 120 140
0

6

12

18

24

30

Metric Value

N
o.
 C
la
ss
es

guri.xls
Kommentarer Del

shahariar.b@gmail.com

Figure 4.11: Frequency distribution of OO-metrics in Component G

46

4.1 Object-Oriented Metrics in Project ”Firmus”

Table 4.7: OO-metrics and descriptive statistics for Component L

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 0 80 68 50.857 35.130 -0.908 -1.135
DIT 0 1 1 0.571 0.534 -2.8 -0.374
CBO 1 14 6 6.714 4.609 -0.712 0.327
NOC 0 0 0 0 0 N/A N/A
RFC 5 12 9 8.571 2.936 -2.012 -0.239
NIM 3 12 9 8.286 3.402 -1.221 -0.555
NIV 0 5 1 1.571 2.070 -0.535 1.120
WMC 4 42 11 19.571 14.524 -1.521 0.577

Component L

Component L consists of 16 files, 849 lines of code. Among these, we identified 7
classes. Figure 4.12 presents the frequency distribution of the metrics, while Table 4.7
presents the descriptive statistics for this component. The values of LCOM range from
0 to 80. There are only 2 classes with LCOM value at 0. However, rest of the classes
are showing lack of cohesion. These classes are candidates for inspection, and might
eventually be split up into multiple classes. Moreover, 4 classes have a DIT value of 1.
WMC metric values range from 4 to 42. There are only 2 classes with WMC values larger
than 30.

47

C
hapter4.R

esults
6/5/2016 log.xls - Google Regneark

https://docs.google.com/spreadsheets/d/1m8-E4YM3HYLWFU_4J3gN9O1Q26CJhNHDnbYA82e5oL0/edit#gid=1550950502 1/2

log.xls
Fil Rediger Visning Sett inn Format Data Verktøy Tillegg Hjelp Alle endringer er lagret i Disk

kr % 123

Arial 10

LCOM

DIT

CBO

NOC

RFC

NIM

NIV

WMC

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

Metric Value

N
o.
 C
la
ss
es

log.xls
Kommentarer Del

shahariar.b@gmail.com

Figure 4.12: Frequency distribution of OO-metrics in Component L

48

4.1 Object-Oriented Metrics in Project ”Firmus”

Table 4.8: OO-metrics and descriptive statistics for Component N

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 0 79 70.5 54.5 33.899 -0.083 -1.378
DIT 0 1 0 0.25 0.463 0 1.440
CBO 3 19 12.5 11.5 4.536 1.941 -0.410
NOC 0 1 0 0.125 0.353 8 2.828
RFC 6 32 9 11.625 8.568 6.227 2.413
NIM 6 21 8.5 9.75 5.036 3.976 1.896
NIV 0 8 5.5 4.375 3.068 -1.142 -0.630
WMC 4 125 32 40.375 36.707 5.172 2.092

Component N

Component N consists of 17 files. There are 1839 lines of code spread across these files.
We were able to identfy 8 classes in this component. Descriptive statistics for Component
N are presented in Table 4.8, while the frequency distribution of the metrics are presented
in Figure 4.13.

LCOM metric values range from 0 to 79. The median value shows that more than half of
the classes has LCOM value of 70 or more, indicating that classes in this component can
potentially be split into more classes to increase the cohesion of each class. By taking a
closer look at Figure 4.13, we identified two classes with LCOM values interval from 75
to 80. More precisely, one class has LCOM value of 78 while the other class has LCOM
value of 79. We decided to examine the class with LCOM value of 79, and identified that
this class has WMC value of 125, RFC value of 32, CBO value of 19, and NIM value of
21. These values tells us that this class may be affected by Large Class code smell.

49

C
hapter4.R

esults
6/5/2016 netw.xls - Google Regneark

https://docs.google.com/spreadsheets/d/1as7h2VVvgr9PhdjF7g4VWUwEuZn3KGgMNp_HK0s7eCY/edit#gid=603947794 1/2

netw.xls
Fil Rediger Visning Sett inn Format Data Verktøy Tillegg Hjelp Alle endringer er lagret i Disk

kr % 123

Arial 10

Class

LCOM

DIT

CBO

NOC

RFC

NIM

NIV

WMC

0 30 60 90 120
0

2

4

6

8

Metric Value

N
o.
 C
la
ss
es

netw.xls
Kommentarer Del

shahariar.b@gmail.com

Figure 4.13: Frequency distribution of OO-metrics in Component N

50

4.1 Object-Oriented Metrics in Project ”Firmus”

Table 4.9: OO-metrics and descriptive statistics for Component P

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 0 81 63 57.25 25.409 4.625 -1.987
DIT 0 1 0 0.25 0.463 0 1.440
CBO 0 13 6 6 4.472 -0.645 0.255
NOC 0 1 0 0.125 0.353 8 2.828
RFC 2 14 6.5 7.375 3.502 1.523 0.647
NIM 2 13 6.5 6.875 3.044 2.986 0.765
NIV 0 6 3.5 3.125 2.031 -0.886 -0.223
WMC 1 47 8 15.75 15.809 -1.037 1.350

Component P

The descriptive statistics calculated for Component P are presented in Table 4.9. The
frequency distribution of the metrics are presented in Figure 4.14. We identified 12 files
in Component P, consisting of 12 files, 722 lines of code, and 8 classes.

LCOM values in Component P range from 0 to 81. A median value shows the level of
cohesiveness in the system. In this context, the median value shows that more than half of
the classes have large LCOM values, implying that these classes are improperly designed
and should be split up to make them more cohesive. We identified three classes with
values of LCOM larger than 70. The DIT results range from 0 to 1, implying that most
classes have flat inheritance hierarchies. There are only 2 classes having a DIT value of
1. Despite the fact that 6 of the classes have DIT metric of 0, they alone may not tell us if
classes are part of an inheritance tree or if they are root classes. By examining the NOC
results, we see that only one class has a NOC value of 1. Six classes have both NOC and
DIT values of zero, indicating that they are not part of an inheritance hierarchy. CBO
values ranges from 0 to 12, with a mean and median of 5.5. WMC values range from 1
to 47.

51

C
hapter4.R

esults
6/5/2016 proc.xls - Google Regneark

https://docs.google.com/spreadsheets/d/1ae4kdJYB-W_MOcQ_CfV2XD4A7WISlPeKkKV8MJA-BdE/edit#gid=773801053 1/2

proc.xls
Fil Rediger Visning Sett inn Format Data Verktøy Tillegg Hjelp Alle endringer er lagret i Disk

kr % 123

Arial 10

LCOM

DIT

CBO

NOC

RFC

NIM

NIV

WMC

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

Metric Value

N
o.
 C
la
ss
es

proc.xls
Kommentarer Del

shahariar.b@gmail.com

Figure 4.14: Frequency distribution of OO-metrics in Component P

52

4.2 Identification of Code Smells using Automatic Static Analysis Tools

Table 4.10: OO-metrics and descriptive statistics for Component S

Metric Min Max Median Sample Mean Standard Deviation Kurtosis Skewness
LCOM 33 50 41.5 41.5 12.021 N/A N/A
DIT 0 1 0.5 0.5 0.707 N/A N/A
CBO 3 7 5 5 2.829 N/A N/A
NOC 0 0 0 0 0 N/A N/A
RFC 6 9 7.5 7.5 2.121 N/A N/A
NOM 6 9 7.5 7.5 2.121 N/A N/A
NIM 6 9 7.5 7.5 2.121 N/A N/A
NIV 1 1 1 1 0 N/A N/A
WMC 6 19 12.5 12.5 9.192 N/A N/A

Component S

Table 4.10 presents the descriptive statistics for Component S. Component S contains 4
files, which consists of 223 lines of code and 2 classes. The LCOM values show that
there are possibilities to improve the design of this component by splitting up methods
that does not share fields with each other to separate classes. Moreover, the results point
out that none of the classes has any subclasses. However, the results reveal that one of the
classes inherits methods and variables from a superclass. Moreover, WMC metric values
indicate that the classes have less complexity and greater polymorphism.

Component W

Component W contains only one file. This file consists of 69 lines of code, and one class.
DIT and NOC values of 0 indicates that this class does not inherit from a superclass, or
has any subclasses. The results reports a CBO value of 4, implying that this class is not
tightly coupled with other objects. There are only 2 instance variables in this class, and
6 methods, in which all are instance methods. LCOM value of this class is 58, indicating
that some instance variables are not shared across the member functions. WMC value of
this class is set to 8.

4.2 Identification of Code Smells using Automatic Static
Analysis Tools

Code smells are used to find problematic classes. As we explained in Chapter 2, one
of the ways to identify DD is to look at the number of code smell in the source code.
Code smells are an indicator of software design flaws in OO-systems that can decrease
software maintainability which may lead to issues in further evolution of the system [39].
The analysis of code smells in the system is based on ASA tools. We investigated each
tool that we could use in this project, and evaluated the smells they were able to detect.
Table 4.11 describes the number of code smells that were identified using ASA tools.

53

Chapter 4. Results

Table 4.11: Number of Code Smells detected

Code Smell Detected
Long Method 10
Long Parameter List 15
Duplicated Code Approximately 5%

of the source code.
Speculative Generality 1153
Dead Code 151

Duplicated Code

Duplicated Code is found by looking for pieces of code that appears at multiple places in
the source code, both internally in a file or in another file. A piece of code is considered
duplicated if the piece of code contains at least 10 lines of code and occurs at multiple
places in the source code. Table 4.11 shows the number of duplicated code found by
SonarQube, expressed as a percentage value. The results show that roughly 5% of the
source code contains duplicated code including the test files. This corresponds to ap-
proximately 4395 lines of code, affecting 39 files across the system. We identified that
roughly 54% of the duplicated code is located in Component A. The other duplicated
lines are spread across Component B, N, P, C, D, L, Ex, S, and G. Table 4.12 summarizes
duplicated lines in the different components. The first column contains the name of the
components, while the second column summarizes number of files affected by duplicated
code and the number of duplicated lines among these files.

Table 4.12: Duplicated Code in Project ”Firmus”

Component Information
Component A 12 files, 2400 LOC
Component B 6 files, 366 LOC
Component C 3 files, 284 LOC
Component D 2 files, 80 LOC
Component Ex 4 files, 305 LOC
Component G 4 files, 311 LOC
Component L 1 file, 30 LOC
Component N 3 files, 301 LOC
Component P 2 files, 124 LOC
Component S 2 files, 194 LOC

Long Method

Understand for C++ considers a Long Method as code smell if lines of code in method
exceeds 200 lines. We identified 10 long methods, spread across six different files. 7 of
10 long methods are located in the test files.

54

4.2 Identification of Code Smells using Automatic Static Analysis Tools

Long Parameter List

Long Parameter List code smell is detected by comparing the total number of parameters
in a method against a fixed threshold. The maximum number of parameters allowed
in a method using CppDepend is set to 5. This means that 6 or more parameters in
a method are considered as code smell. The results from CppDepend report 15 hits
of Long Parameter List code smell, where 3 hits are considered as critical. A Long
Parameter List is considered as critical when total of parameters in a method is higher
than 8. The largest number of parameters in a method we identified was 12. These results
were verified manually by examining the class diagrams for the corresponding methods.

Speculative Generality

Speculative Generality is detected by detecting unused classes, methods, fields, or pa-
rameters. Table 4.13 summarizes Speculative Generality code smell that were identified
through a code analysis using Understand for C++. The results are divided into the
categories unused methods, unused local variables, and unused static globals.

Table 4.13: Speculative Generality in Project ”Firmus”

Category Hits
Unused Methods 794
Unused Local Variables 346
Unused Static Globals 13

Dead Code

Fowler and Beck [101] do not classify Dead Code as code smell. However, Dead Code
should be classified as a code smell, as it is a quite common problem as it hinders code
comprehension and makes the current program structure less obvious [38]. We examined
three types of Dead Code code smell in Project ”Firmus”: ”Commented Out” Code,
Unreachable Code, and Unnecessary Includes in Header Files. In total, we found 151 hits
of Dead Code code smell by using Understand for C++, and CppCheck, and CppClean.
The results are summarized in Table 4.14.

Table 4.14: Dead Code in Project ”Firmus”

Category Hits
”Commented Out” Code 67
Unreachable Code 10
Unnecessary Includes in Header Files 74

55

CHAPTER 5

DISCUSSION

This thesis has investigated DD in safety-critical systems. Section 5.1 analyzes the OO-
metrics from Chapter 4 by applying a set of threshold values to uncover possible insecure
parts of the code. Section 5.2 evaluates the research by answering the research questions.
Section 5.3 discusses the validity of the results.

5.1 Analysis of Object-Oriented Metrics by Applying Thresh-
old Values

Software metrics measurement in OO-software is important in terms of quality manage-
ment [98, 99], as software metrics can be used as predictors of fault-prone classes in
OO-systems [56]. A study by Basili et. al [56] assessed Chidamber and Kemerers [55]
suite of OO-metrics as predictors of fault-prone classes. Their results implied that OO-
metrics appear to be useful to predict class fault-proneness during early phases in the
software life-cycle. However, it is hard to assess the quality of a software with single
OO-metrics.

A metric is meaningless without its threshold values. According to Tarcisio [98], soft-
ware metrics are not effectively used in software industry due to the fact that for the
majority of metrics, thresholds are not defined. Threshold is defined as values used to set
ranges of desirable and undesirable metric values for measured software [99]. Knowing
thresholds for metrics allow us to assess the quality of a software, and we may be able to
identify where in a design errors are likely to occur. Lanza et al. [100] present two ways
to identify major sources for threshold values; statistical information (i.e., thresholds that
are based on statistical measurements), and general accepted semantics (i.e., thresholds
that are based on information which is considered common).

57

Chapter 5. Discussion

We identified the following thresholds for the individual metrics using their descriptive
statistics from Table 4.1. The goal with applying threshold values to the metrics is to
identify the classes with major design violations. Threshold values have been identified
using statistical information [100]. For each metric, we have used the the sample mean
and standard deviation from Table 4.1. There are three different threshold values that can
be calculated: low/good, high/typical, and extreme/bad. Low/good value corresponds
with the mean, and represents the most typical value in the data set [102]. Another way to
calculate low/good is by subtracting the standard deviation from the sample mean [100].
However, the standard deviation in the data set may be larger than the sample mean,
which leads to negative threshold values. This is why we have chosen to use the median
value. High/typical value is the sum of the sample mean and the standard deviation.
Classes with high/typical values are acceptable, but they should be inspected if possible.
Extreme/bad value is simply the second threshold value multiplied with 1.5 [100]. It is
considered as extreme, and should not be included in the data set.

Table 5.1 presents the metrics and their threshold values. The table includes threshold
values that has been proposed by other researchers for the selected metrics. Despite
the fact we were able to derive threshold values, our study should still be viewed as
evaluation of one software system. Although our techniques can be applied to other
kinds of safety-critical software, it is necessary to review that our threshold represent
only local data. For general usage, it is recommended to compare our threshold with the
the threshold defined by other researchers.

Table 5.1: Thresholds for OO-software metrics

Metric Observed
Value

Low High Extreme Recommended
Value

LCOM 100 42 75 112.5 (100+) 72.5 [98]
DIT 4 1 2 3+ 4 [98], 5 [96, 103,

104]
CBO 30 6 11 17+ 5 [96, 104], 14 [105,

106]
NOC 20 0 2 4+ 3 [98], 5 [104], 10

[103]
RFC 115 15 34 51+ 50 [96, 103]
NIM 48 8 15 23+ N/A
NIV 18 2 5 7+ N/A
WMC 325 19 51 76+ 34 [98], 40 [96], 50

[106]

Depth in Inheritance Tree

DIT indicates how deep a class is in the inheritance tree. Classes with higher value of
DIT are associated with higher defects [107]. It is evident that a deep inheritance makes
software maintenance more difficult [108]. Moreover, higher degree of DIT indicate a
trade-off between increased complexity and increase reuseability. A low median value
indicates that at least 50% of the classes tend to be close to the root in the inheritance

58

5.1 Analysis of Object-Oriented Metrics by Applying Threshold Values

hierarchy by following Chidamber and Kemerer’s [55] guide to interpreting DIT metric
using descriptive statistics. A low median value had a typical value of 1 and 3 in their
study. However, if the majority of DIT values are below 2, it may represent a poor
exploitation of the advantages of OO-design and inheritance, because a DIT value of 2
and 3 indicates higher degree of reuse.

Figure 4.3 in Chapter 4 show that approximately 39% of the classes have a DIT value
of 0, while 26.7% of the classes have a DIT value of 1. These classes are considered
to be close to the root in the inheritance tree, and there may be a probability of not
exploiting the advantages of OO-methodologies. Classes with high values of DIT have
shown to be very significant in identifying fault-prone classes [56,109]. We have derived
the following threshold values for the DIT metric: a low/good value of 1, a high/typical
value of 2, and an extreme/bad value of 3. We observe that at least 26.7% of the classes
satisfies good value by applying these thresholds. However, the extreme/bad value of 3
does not comply with the median value of 3, which is considered as a good value [55].
Therefore, we have chosen to apply the recommended max value of 5. As shown in
Figure 4.3, there are no classes with a DIT value of 5 or more. However, there are two
classes with DIT value of 4. Both classes have high values of RFC, indicating that they
may need an inspection. Furthermore, these results do indicate that reuse opportunities
through inheritance is limited and perhaps compromised in favor of comprehensibility of
the overall architecture. On the other hand, low values of DIT suggest that appropriate
design preferences are being followed by the company [107].

Number Of Children

NOC measures the number of children a class has. The greater number of children a
class has, the greater potential of reuse, since inheritance is a form of reuse. However,
large values of NOC indicate a misuse of subclassing [56]. Moreover, classes may re-
quire more testing. Our results reveal a NOC median value is 0 (See Table 4.1). The
distribution of NOC metrics in Figure 4.4 shows that approximately 86.5% of all classes
have no children. In addition, Figure 4.4 show that a small number of classes have many
immediate subclasses. Both Chidamber and Kemerer [55] and Basili et al. [56] have
observed the similar median values for NOC metric in their respective studies. These
values suggest that designer may not be fully exploiting the advantages of inheritance as
a basis for designing classes. Lack of communication could be another reason between
class designers, which may hinder developers to reuse.

The following threshold values for NOC metric were derived from its descriptive statis-
tics in Table 4.1: a low/good value of 0, a high/typical value of 2, and an extreme/bad
value 4. These values can be compared to threshold values identified by Filo et al. [98].
The difference is that they classify extreme/bad value as 4. According to Figure 4.4,
91.2% of the classes are classified as low/good, 5.2% of the classes are classified as
high/typical, and 3.6% of the classes are classified as extreme/bad. Classes classified
as extreme/bad are an indication of classes that may be hard to understand and main-
tain, and are potential candidates for inspection. However, similar to DIT metric values,
extreme/bad values indicate limitation in reuse opportunities in favor of comprehensibil-

59

Chapter 5. Discussion

ity of the overall architecture. This suggest that appropriate design preferences for the
system are probably being followed.

Lack of Cohesion in Methods

LCOM is related to the counting of methods using common attributes in a class. As
mentioned, smaller values of LCOM represent cohesive and independent classes, which
is desirable since it promotes encapsulation. Larger values of LCOM increase the com-
plexity of the class, hence increasing the likelihood of errors during the development
process. Our derived threshold values for LCOM metric reveal a low/good value of 42, a
high/typical value of 75, and an extreme/bad value of 112.5. However, as we see in Fig-
ure 4.1, there are no classes with LCOM value larger than 100. This result is influenced
by the special shape of the data from LCOM metric. The recommended threshold value
for LCOM is 72.5. This value is similar to our definition of high/typical. We chose to
apply the recommended threshold value for LCOM metric. We identified 41 classes with
larger LCOM than 72.5, which we have illustrated in Figure 4.1. Our data reveal that
LCOM values seem to increase with the size of classes. Most classes with a high value
of LCOM revealed to have large number of methods. These methods indicate higher dis-
parateness in the functionality provided by the class. Chidamber and Kemererer [55] and
Basili et al. [56] state that classes with large values of LCOM could be more error prone,
and more difficult to test. A refactoring option would be to split the classes into two or
more classes that are more well defined in terms of behavior. Moreover, LCOM metric
can be used by the developers to keep track of whether the cohesion principle is adhered.

Coupling Between Object classes

CBO refers to the number couplings between object classes. Higher values of CBO
indicate the extent of lack of reuse potential of a class, and that more effort may be
required to maintain and test the class. Classes with higher values of CBO are associated
with higher defects [107]. According to Chidamber and Kemererer [55], a low median
had a typical value of 0, while a high median had a value of 9. A median value of
0 suggests that at least half of the classes are self-contained and do not refer to other
classes. Furthermore, Basili et al. [56] state that CBO appears to be useful to predict
class fault-proneness.

Table 4.1 reveal a CBO median value of 5, indicating that at least 50% of the classes refer
to 5 or less object classes. The CBO value is generally less for most classes. Therefore,
these classes are easy to understand, reuse, and maintain. However, we did notice that
some of the classes with low CBO value had higher values in the other metrics, such as
WMC and LCOM.

Threshold values for the CBO metric were derived, and the following values were iden-
tified: a low/good value of 6, a high/typical value of 11, and an extreme/bad value of 17
or more. Chidamber and Kemerer [55] classified a median value of 9 as high, which is
similar to the recommended values in Table 5.1. Therefore, we have chosen to apply our

60

5.1 Analysis of Object-Oriented Metrics by Applying Threshold Values

derived high/typical threshold value of 11 on the CBO metric results. Figure 4.2 reveal
that 11.3% of all classes have a coupling of 11 or more. CBO should be kept to a min-
imum in order to promote encapsulation and modularity for a class. Classes with large
values of CBO are more sensitive to changes in other parts of the design, which affects
the systems maintainability, reusability, and testability. Furthermore, the CBO metric can
be used as a way to track whether the class hierarchy is losing its integrity, and whether
different parts of the system are developing unnecessary relations between classes.

Response For Class

RFC is defined as the total number of methods that can be executed in response to a
message to a class. This count includes all methods available in the class hierarchy.
Large values of RFC makes testing and debugging more complicated since it requires a
greater level of understanding on the part of the tester [55]. In addition, large values of
RFC may increase the complexity of the class. It can be hard to predict the behavior of the
class since it requires a deep understanding of the potential interactions that the objects
of the class have with the rest of the system, hence affecting the classes’ testability.
Our analysis reveal that most classes are able to invoke a small number of methods.
According to Figure 4.5, 74.2% of the classes have a RFC value of less than 15.

The following threshold values were derived for the RFC metric: a low/good value of
15, a high/typical value of 34, and an extreme/bad value of 51 or more. The extreme/bad
value is very similar to the recommended max value, although it is acceptable to have a
RFC up to 100 [103]. However, it is recommended that a class does not have RFC value
larger than 50. We applied the threshold value on Project ”Firmus”, and identified 17
classes with a RFC value larger than 50. One of the classes have its RFC at 115. Research
point out that RFC has been found to be highly correlated with WMC and CBO [55]. Our
results reveal that RFC is not correlated with either WMC or CBO. For example, the class
with RFC value of 115 had a CBO value of 2 and WMC value of 22. However, its DIT
value is 4 and may explain that the large values of RFC comes from inherited methods.
We identified the same pattern with the class with RFC of 109. This particular class has
a CBO value of 3 and a WMC value of 10. However, its DIT value is 4. This observation
indicates that RFC is associated with DIT. Moreover, RFC values tend to be low because
there are a number of classes that have no parents.

Weighted Methods per Class

WMC refers to the sum of complexity in each method. A greater value of WMC indicates
a complex class. WMC is usually affected by the number of methods in a class, but
there may be some cases where some methods may have low complexity while other
methods have high complexity. Table 4.1 reports a median value of 10 and sample mean
value of 19.707 on WMC metric. The results are quite similar to what Chidamber and
Kemerer [55] and Basili et al. [56] measured in their respective studies. Another aspect
of WMC data is the similarity of the frequency distribution of the metric values in both

61

Chapter 5. Discussion

of their and our study. In Figure 4.6, we notice that approximately 60% of all classes
have a WMC value of less than 10. This suggest that most classes have a small number
of methods. The following threshold values were derived for WMC metric: a low/good
value of 19, high/typical value of 51, and an extreme/bad value of 76. According to
Table 5.1, the recommended max value are ranging between 30-50, which is close to
our high/typical value. Therefore, it seems like this value is more appropriate to use to
identify classes with high values of WMC. We applied the threshold, and identified 7.4%
(i.e., 17 classes) with a WMC value larger than 51. One of the classes has a WMC value of
325, which indicates that time and effort to develop and maintain this class may be high.
The same class have 44 methods and a CBO value of 10. A class with many methods are
most likely to be application specific, hence reducing its reuse potential. Moreover, an
increase in number of methods is associated with an increase in defects [107]. Another
class with a WMC value of 194 reveal to have 40 methods. This suggest that classes with
more methods tend to have higher complexity, which indicates an increase in defects. In
such cases, maintenance effort increase drastically. The 17 classes with large value of
WMC are primary candidate classes in which code inspection and potentially refactoring
is needed.

5.2 Research Evaluation

This thesis is focused on identifying DD in safety-critical systems. In particular, we were
able to identify DD by applying thresholds on OO-metrics, and by detecting code smells.
The software design was analyzed using a suite of OO-metrics proposed by Chidamber
and Kemererer. The result does indicate that embedded software developers accumulate
TD, despite the fact that they cannot contain any errors [79, 81, 82]. However, it seems
like the accumulated TD is manageable. An important aspect when delivering a product
is to make sure the product is stable and reliable. According to our results, we can
now answer the research questions that were stated in Chapter 1. Table 5.2 show the
connection between our contributions, and research questions.

Table 5.2: Connection between contributions, and research questions

Contributions Description Research Questions
C1 Empirical knowledge about design debt

identification in safety-critical systems by
OO-metric analysis and code smell detec-
tion.

RQ1

C1.1 A set of threshold values for the OO-
metrics. See Table 5.1.

RQ1

C2 Empirical knowledge about the different
types of DD in safety-critical systems.

RQ2

C3 Empirical knowledge about the effects of
having DD in safety-critical systems.

RQ3

C4 Empirical knowledge about paying DD. RQ4

62

5.2 Research Evaluation

RQ1: How can DD be identified?

The first research question is related to the techniques we have used to identify DD
in this research. Automatic static code analysis, and OO-metrics measurements using
Chidamber and Kemerer’s suite of metrics have proven to be useful in the context of DD
identification. We were able to collect a large amount of measurements that characterize
the software by using various tools. Tools that have been used through this research
are Doxygen, Understand for C++, SonarQube, CCCC, CppCheck, CppDepend, and
Enterprise Architect.

Code smells are an example of design flaws that can degrade maintainability of source
code, which implies that code smells can be used as an indicator to identify fault-prone
files in the system. Moreover, code smells are an indication of refactoring possibilities
in code base. We have been able to identify Duplicated Code, Long Method, Long Pa-
rameter List, Speculative Generality, Dead Code, and Large Classes code smells in our
analysis. Duplicated Code was identified using SonarQube. SonarQube analyzed the
entire source code base, and identified similar code blocks that had an appearance in
multiple places. Long Method, Speculative Generality, and Dead Code were identified
using CppDepend, Understand for C++, and CCCC. Long Parameter List code smell
were detected using CppDepend and confirmed using Enterprise Architect.

Another approach to assess the software quality is based on OO-metrics [48]. OO-are
able to predict maintenance effort more than traditional metrics can [57] by identifying
design flaws, and defect-prone, change-prone, and fault-prone classes [56]. In addition,
OO-metrics may potentially affect the quality attributes of a system. For example, large
values of WMC will affect a system’s maintainability and reusability [54]. OO-metrics
are calculated over data that are extracted from the systems source code. Chidamber and
Kemerer’s suite of metrics have been applied in empirical investigations of OO-systems
by multiple researchers, including Basili et al. [56], Chidamber and Kemerer [55], Okike
[110], and Bakar et al. [111]. We have applied this suite of OO-metrics to discover
potential fault-prone classes.

Understand for C++ is an integrated development environment that enables static code
analysis through visualization, documentation, and metric tools. The software is capable
of analyzing projects with multiple lines. An academical license tool was provided to
us, and the tool was used in our case study to compute software metrics. Every file file
in the system were analyzed, and metrics are then extracted from these files. The tool
has been used by researchers. Understand for C++ have been proven to be useful for
code analysis. Malhotra et al. [112] calculated threshold values of OO-metrics by using
statistical models. Understand for C++ was used to extract relevant metric data from one
of the systems. Furthermore, Codabux et al. [48] extracted class-level metrics for defect-
and change-prone classes using Understand for C++.

Threshold values were derived in this study to assist us on identifying classes with design
flaws. Threshold can be defined as the upper bound value value for a metric. A metric
value with a greater than its upper bound threshold value can be considered as problem-
atic, while a metric value lower than its upper bound threshold value can be considered

63

Chapter 5. Discussion

as acceptable. Both metric values and threshold values can be compared in design phase
of software development to identify the metrics whose value is bigger than its threshold.
Results from our study suggests that refactoring can be applied to classes with larger met-
ric value than its threshold. In other words, we were able to predict possible fault-prone
classes by applying metric threshold. For instance, a class with a WMC value larger than
its threshold value indicate high complexity. Fault-prone classes should be used as early
quality indicators, and actions should be take based on extent of the problem. For exam-
ple, the project team may choose to redesign the entire class to achieve the desired metric
value.

RQ2: What are the effects of DD?

The second research question is related to the consequences of having design flaws in
safety-critical software. OO-metrics have proven to be indicators of problems in software
design. Classes with larger metric values than its threshold values may affect the quality
attributes of a system. Our analysis reported multiple classes in which following metric
values were larger than its threshold values; CBO, RFC, WMC, LCOM, CBO, and NOC.

Classes with large values of WMC are likely to be more application specific, hence af-
fecting the software’s understandability, reusability, flexibility, and maintainability qual-
ity attributes [113, 114]. Moreover, classes with large values of RFC may be harder to
understand and test, which also affects the software’s understandability, testability, main-
tainability [113]. In addition, RFC may affect system’s functionality and reusability as
objects communicates by message passing [114]. LCOM measures the cohesion of a
system. Lack of cohesion in a class increases the classe’s complexity, which may lead
to errors during development. This metric affects the systems efficiency, reusability, and
understandability [113, 114]. Large values CBO complicates a system, since a module is
harder to understand, change, reuse, and maintain due to its excessive coupling with other
classes. CBO evaluates the systems understandability, extendability, efficiency, reusabil-
ity, testability, and maintainability of a class [113,114]. DIT and NOC metric are related
to inheritance which enables reuse. Large values of DIT indicates deep hierarchy which
constitutes greater design complexity. Deep hierarchy enhances the potential reuse of
inherited methods but in trade-off, complexity will increase which affects other quality
attributes. DIT metric evaluates efficiency, reusability, understandability, and testabil-
ity [113] of a software. DIT metric may also be related to flexibility, extendability, ef-
fectiveness, and functionality [114]. Furthermore, NOC primarily evaluates efficiency,
testability, and resuability of a system [113], but it may also influence flexibility, under-
standability, extendability, and effectiveness of a system [114].

Code smells are manifestations of design flaws that can have negative influence on soft-
ware quality. Although the results did not investigate the effects of the identified code
smells on the system studied, we have reviewed the consequences of code smell that other
researchers have discovered. Sjoberg et al. [115] investigated the relationship between
12 different code smells and maintenance effort. Their result show that none of these
code smells were associated with more maintenance effort. Similarly, Hall et al. [116]
state that some smells indicate fault-prone code in some circumstances but that the effect

64

5.2 Research Evaluation

these smells have on faults and software maintainability is small. Lindsay et al. [117]
state that not all Large Class code smell are bad, some of them could be explained by
decisions that perhaps are not entirely under the control of the developer. For example, a
choice of particular design pattern may lead to this smell. On the other hand, both Li et
al. [118] and Dhillon et al. [119] state that bad smells are positively associated with in-
creased error rate in software projects. Furthermore, Olbrich et al. [120] proved that God
Class code smell have a negative effect on software quality in terms of change frequency,
change size, and number of weighted defects. Khomh et al. [40] provided evidence that
classes with specific code smells are more subject to change than others.

These articles state that certain types of code smells can have minimal effects, while
other types of code smells can have greater effects on the quality attributes of a system.
For example, God Class code smell will create more maintenance effort than Dead Code
code smell will. To determine the actual effects of having code smells, the file and class
metric in which the code smells are located should be measured and an action should be
based on those results.

RQ3: What kind of DD can be found in embedded systems?

The third research question is related to our results from the case study. We were able
to identify fault-prone classes by applying threshold on the derived OO-metrics, and
code smells using automatic static analysis code tools during our case study. We have
been able to identify Duplicated Code, Dead Code, Speculative Generality, and Long
Method as the most common code smells in general. Furthermore, OO-metrics were
useful for investigating each individual class and the software in general. For example,
we identified possible Large Class code smell my examining the metrics. These smells
indicate possible fault-prone classes.

RQ4: How to pay DD?

The last research question is related to the management of DD. A common approach to
keep DD from growing, or to pay back DD, is to conduct refactoring and re-engineering.
Codabux et al. [5] mention that refactoring is a common way to manage and ultimately
get rid of TD. In addition, refactoring seem improve important internal measures for
reusability of OO-classes [121]. Without refactoring, the design of the program will
decay over time.

Our results show that 5% of the source code, including the test files, contain duplicated
code. Removing duplicated code will reduce the number of lines of code by default.
Some duplicated code were found in the same class, while other were spread across
multiple classes. Therefore, they must be handled differently. In most cases during our
data collection, the same block of code occurred in the same file or class. If the same code
of block exists in two different methods of the same class, Extract Method refactoring
technique should be applied. This technique creates a new method, which can be invoked
from both methods that contained duplicated code [37]. In addition, we identified some

65

Chapter 5. Discussion

cases where the same block of code occurred in different classes in the system. For
example, two identical files were identified in both Component S and B. If that is the
case, then Extract Class refactoring technique should be applied. This technique creates
a new class, superclass, or a subclass, which can be reused by both of the components
with duplicated code. However, if the method is a critical part of one class, then the
method should be invoked by the other class.

Moreover, we identified 10 Long Method code smells. Extract Method can be applied to
shorten a method. This technique finds parts the method that seem to go nicely together,
and creates a new method [37]. In some cases, a method may have lots of parameters
and eventually temporary variables. If the method has lots of temporary variables to hold
the result of an expression, then Replace Temp with Query refactoring technique should
be applied [37]. Replace Temp with Query extracts the expression into a method, and all
references to the temporary variables will be replaced with the expression. Moreover, this
will allow us to reuse the new method in other methods. A method with long parameter
list can be slimmed down with Introduce Parameter Object and Preserve Whole Object
[37].

Furthermore, we were able to identify 15 methods with the Long Parameter List code
smell. Three of the methods were listed as critical. As mentioned in the paragraph
above, Long Parameter List can be slimmed down with Introducted Parameter Object,
and Preserve Whole Object. Introduce Parameter Object should be used when a group of
parameters naturally go together, while Presever Whole Object should be applied when a
whole object can be sent as parameter in a method call rather than several values from an
object. In addition, Replace Parameter with Method refactoring technique can be applied
when you can get the data in one parameter by making a request of an object you already
know about [37].

Our results reveal 1153 hits of Speculative Generality code smell, including unused meth-
ods, local variables, and static globals. Fowler et al. [37] suggest that unused variables
and static globals should simply be deleted. Refactoring unused methods can be done by
either removing them, or by applying Inline Method refactoring technique if a method
body is more obvious than the method itself. Inline Method will replace calls to the
method with the method content and delete the method.

The last code smell we identified is Dead Code. This smell includes ”commented out”
code, unreachable code, and unnecessary ”#includes in header files”. The quickest way
to conduct refactoring on Dead Code code smell is to delete unused code and unneeded
files. Notice that this will reduce the number of lines of code.

To summarize, DD can be paid by conducting necessary refactoring. We believe that
refactoring will keep the software quality stable, which ultimately mitigates DD issues.
However, it is worth noticing that refactoring not necessary is the solution to pay DD.
There may be some cases where refactoring is unlikely to reduce fault-proneness in
classes, and may increase fault-proneness in a class instead [116]. This phenomenon
affects some of the OO-metrics. A consideration should be taken where both metrics
and other classes affected by the refactoring are involved. For example, refactoring code
smells like Long Method and Duplicated Code may increase the number of methods and

66

5.3 Threats To Validity

coupling. Code smells should be manged by prioritizing the most critical smells. If the
goal is to maintain and improve a certain metric value, then remove the smell that allows
to improve this metric. Furthermore, we do believe that improving the software metrics
and other work practices may be better more beneficial than refactoring code smells to
reduce the maintenance effort.

5.3 Threats To Validity

Validity is related to how much the results can be trusted [15]. We consider threats to the
external, internal, and conclusion validity of this study.

5.3.1 Internal Validity

Interval validity is the degree to which we can conclude that the dependent variable is
accounted for by the independent variable [15]. In other words, it concerns any factors
that could have influenced our study results without the researcher’s knowledge. The
internal validity threats can be sorted into three categories [15]: single group threats,
multiple group threats, and social threats. Single group threats apply to experiments
with single groups, which is relevant in our case. One factor is instrumentation, that
is, the effect caused by the artifacts used for experiment execution [15]. We have used
multiple tools to analyze the system. In some cases, these tools may result false positives,
which may affect our results.

Another factor that may reduce the internal validity is the selection of subjects from a
larger group [15]. We found our subject for the case study after being recommended by
others. The internal validity would have been stronger if the subjects had been selected
using random sampling.

5.3.2 External Validity

External validity refers to the degree to which the results from our study can be gen-
eralized to industrial practice [15]. This study has used one commercial system within
a single application domain, so the threat to external validity increases. That said, we
cannot generalize the results to other safety-critical systems, both open-source and com-
mercial. More studies need to be conducted on different systems, both commercial and
open-source, to compare with the results obtained in this thesis.

5.3.3 Conclusion Validity

Conclusion validity refers to the degree in which correct conclusion can be drawn from
the relationship between treatment and the outcome [15]. One important issue here was

67

Chapter 5. Discussion

the sample size of the experiment. This study has only studied one commercial system,
so the statistical power is very low. This is something we are aware of, and therefore
more deeper studies need to be performed to confirm if our results have a more general
applicability. Another threat may potentially be ”Fishing and error rate”. Searching or
”fishing” for a specific result is a threat [15], since the researchers may influence the
result by looking for a specific outcome. We do not think that we have influenced the
results. Reliability of measures may be another threat. Running the tools twice gave
us the same results. However, it is not guaranteed that the outcome would be same if
another tool had been applied. Another potential problem can be the lack of experience
on conducing case studies.

68

CHAPTER 6

CONCLUSION

DD is an instance of TD which describes the problem of increasing complexity of soft-
ware design, and deterioration of its maintainability. DD is recognized to be a major
problem for many software projects today. As the debt increases, more time will be
spent on maintaining the system which means that the software development process and
software evolution will become less effective. This will delay other development pro-
cesses, such as releasing new features. Being able to measure and monitor the quality
of software design will help the development team to understand the current situation of
having DD by making the debt visible. Once the problems are visible, suitable actions
may potentially be performed, which includes refactoring and eventually re-engineering.

However, TD is not always a bad thing to take. Organizations can use debt as a powerful
tool to meet their business goals. For example, an organization may potentially gain edge
over the competition in the market. It is necessary for organizations to have a strategy
plan that includes practices and tools that decreases DD and the overall TD. Øyvind
Teig [122] defines the term technical deposit as a concept in programming that reflects
the less development work that arises when coding is done by applying the best overall
long term solution instead of coding that is easy to implement. The term is the opposite
of TD, and it could potentially be used in terms of paying back TD.

This thesis presents the result of a case study that has been conducted in real-life context
in collaboration with Autronica Fire and Security AS. The purpose of the study was to
investigate DD in safety-critical systems. OO-metrics were measured, and descriptive
statistics were computed to analyze and interpret the data. In addition, a set of threshold
value were derived to identify classes that are most likely to pose problems for a sys-
tem. Moreover, automatic static analysis tools were applied to detect code smells in the
system. We do believe that these data provide enough information for the project team
as a basis for further inspection. It is up to the team to determine the criticality of these
classes to make the final determinitation.

69

Chapter 6. Conclusion

The work contributes maintly to improvement in software metrics and software quality.
The stated contributions of this work are:

C1: Empirical knowledge about design debt identification in safety-critical systems by
object-oriented metric analysis and code smell detection.

C1.1: A set of threshold values for object-oriented metrics.
C2: Empirical knowledge about the different types of design debt in safety-critical sys-
tems.
C3: Empirical knowledge about the effects of having design debt in safety-critical sys-
tems.
C4: Empirical knowledge about paying design debt.

6.1 Future Work

Based on the results from this thesis, we outline some possibilities for future research.

• We have mainly focused on measuring Chidamber and Kemerer’s suite of OO-
metrics in this research. A possibility for future research would be to measure
other software metrics that have been suggested by other researchers.

• This study has analyzed the final release of a system. Another possibility would
be a case study to analyze multiple releases of a system over time. Comparing the
evolution of software metrics, and code smells could be interesting to see if there
are any classes that need more attention than others.

• Implementation of an open-source tool that are able to detect code smells in safety-
critical systems and suggest possible refactoring options could be a possibility.

• Izurieta et al. [12,35,36] have studied design patterns, design decay, design grime,
and design rot on multiple OO-systems. However, there are no research on the
study of design decay in safety-critical systems. It could be interesting to study
design patterns, design decay, design grime, and design rot in safety-critical sys-
tems.

• We have derived a set of OO-metric thresholds in this research, but they cannot be
generalized to other safety-critical systems. A possibility for future research wpiød
be to derive threshold values from multiple systems to generelize the threshold to
other systems. The systems could be commercial and open-source.

• Another possibility could be to study on the differences between metric thresh-
olds measured in this study and data from a system with at least some degree of
similarity.

• Safety-critical systems usually have concurrency in the form of communication
tasks and threading. Investigating design debt from a process-oriented could be a
possibility for future research.

70

BIBLIOGRAPHY

[1] B. Graaf, M. Lormans, and H. Toetenel, “Embedded software engineering: the
state of the practice,” Software, IEEE, vol. 20, no. 6, pp. 61–69, 2003.

[2] P. Ray, R. Laupers, and G. Ascheid, “Compose: A composite embedded software
synthesis approach,” in Innovations in Information Technology (IIT), 2015 11th
International Conference on, pp. 29–34, Nov 2015.

[3] A. Kyte, “Gartner estimates global it debt to be 500 billion dollars this year, with
potential to grow to 1 trillion dollars by 2015.” http://www.gartner.com/
newsroom/id/1439513, 2010.

[4] Z. Li, P. Avgeriou, and P. Liang, “A systematic mapping study on technical debt
and its management,” Journal of Systems and Software, vol. 101, pp. 193–220,
2015.

[5] Z. Codabux and B. Williams, “Managing technical debt: An industrial case study,”
in Proceedings of the 4th International Workshop on Managing Technical Debt,
MTD ’13, (Piscataway, NJ, USA), pp. 8–15, IEEE Press, 2013.

[6] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim, A. Mac-
Cormack, R. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K. Sullivan, and N. Zaz-
worka, “Managing technical debt in software-reliant systems,” in Proceedings of
the FSE/SDP Workshop on Future of Software Engineering Research, FoSER ’10,
(New York, NY, USA), pp. 47–52, ACM, 2010.

[7] E. Tom, A. Aurum, and R. Vidgen, “An exploration of technical debt,” Journal of
Systems and Software, vol. 86, no. 6, pp. 1498–1516, 2013.

[8] N. Zazworka, C. Seaman, and F. Shull, “Prioritizing design debt investment op-
portunities,” in Proceedings of the 2Nd Workshop on Managing Technical Debt,
MTD ’11, (New York, NY, USA), pp. 39–42, ACM, 2011.

71

http://www.gartner.com/newsroom/id/1439513
http://www.gartner.com/newsroom/id/1439513

BIBLIOGRAPHY

[9] N. Zazworka, R. O. Spı́nola, A. Vetro’, F. Shull, and C. Seaman, “A case study
on effectively identifying technical debt,” in Proceedings of the 17th International
Conference on Evaluation and Assessment in Software Engineering, EASE ’13,
(New York, NY, USA), pp. 42–47, ACM, 2013.

[10] P. Kruchten, R. Nord, and I. Ozkaya, “Technical debt: From metaphor to theory
and practice,” Software, IEEE, vol. 29, pp. 18–21, Nov 2012.

[11] R. Mo, J. Garcia, Y. Cai, and N. Medvidovic, “Mapping architectural decay in-
stances to dependency models,” in Proceedings of the 4th International Workshop
on Managing Technical Debt, pp. 39–46, IEEE Press, 2013.

[12] C. Izurieta and J. M. Bieman, “How software designs decay: A pilot study of
pattern evolution,” in Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on, pp. 449–451, IEEE, 2007.

[13] S. K. Bhuiyan, “Managing technical debt in embedded systems,” 2015.

[14] B. J. Oates, Researching Information Systems and Computing. Sage Publications
Ltd., 2006.

[15] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén,
Experimentation in Software Engineering: An Introduction. Norwell, MA, USA:
Kluwer Academic Publishers, 2000.

[16] M. Bassey, “Case study research,” Educational Research in Practice, pp. 111–123,
2003.

[17] S. K. Soy, “The case study as a research method.” https://www.ischool.
utexas.edu/˜ssoy/usesusers/l391d1b.htm, 1997.

[18] W. Cunningham, “The wycash portfolio management system,” SIGPLAN OOPS
Mess., vol. 4, pp. 29–30, Dec. 1992.

[19] E. Allman, “Managing technical debt,” Commun. ACM, vol. 55, pp. 50–55, May
2012.

[20] Y. Guo and C. Seaman, “A portfolio approach to technical debt management,” in
Proceedings of the 2Nd Workshop on Managing Technical Debt, MTD ’11, (New
York, NY, USA), pp. 31–34, ACM, 2011.

[21] T. Klinger, P. Tarr, P. Wagstrom, and C. Williams, “An enterprise perspective on
technical debt,” in Proceedings of the 2Nd Workshop on Managing Technical Debt,
MTD ’11, (New York, NY, USA), pp. 35–38, ACM, 2011.

[22] R. L. Nord, I. Ozkaya, P. Kruchten, and M. Gonzalez-Rojas, “In search of a met-
ric for managing architectural technical debt,” in Software Architecture (WICSA)
and European Conference on Software Architecture (ECSA), 2012 Joint Working
IEEE/IFIP Conference on, pp. 91–100, IEEE, 2012.

[23] M. Fowler, “Technical Debt Quadrant.” http://martinfowler.com/
bliki/TechnicalDebtQuadrant.html, 2009.

72

https://www.ischool.utexas.edu/~ssoy/usesusers/l391d1b.htm
https://www.ischool.utexas.edu/~ssoy/usesusers/l391d1b.htm
 http://martinfowler.com/bliki/TechnicalDebtQuadrant.html
 http://martinfowler.com/bliki/TechnicalDebtQuadrant.html

BIBLIOGRAPHY

[24] S. McConnell, “Technical debt.” http://www.construx.com/10x_
Software_Development/Technical_Debt/, 2007.

[25] S. McConnell, “Managing technical debt.” http://2013.
icse-conferences.org/documents/publicity/
MTD-WS-McConnell-slides.pdf, 2007. [Online; accessed 03-May-
2016].

[26] E. Lim, N. Taksande, and C. Seaman, “A balancing act: What software practi-
tioners have to say about technical debt,” Software, IEEE, vol. 29, pp. 22–27, Nov
2012.

[27] Y. Guo, C. Seaman, R. Gomes, A. Cavalcanti, G. Tonin, F. Q. Da Silva, A. L.
Santos, and C. Siebra, “Tracking technical debt—an exploratory case study,” in
Software Maintenance (ICSM), 2011 27th IEEE International Conference on,
pp. 528–531, IEEE, 2011.

[28] C. S. A. Siebra, G. S. Tonin, F. Q. Silva, R. G. Oliveira, A. L. Junior, R. C.
Miranda, and A. L. Santos, “Managing technical debt in practice: An industrial
report,” in Proceedings of the ACM-IEEE International Symposium on Empiri-
cal Software Engineering and Measurement, ESEM ’12, (New York, NY, USA),
pp. 247–250, ACM, 2012.

[29] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating the impact of
design debt on software quality,” in Proceedings of the 2nd Workshop on Manag-
ing Technical Debt, pp. 17–23, ACM, 2011.

[30] F. Buschmann, “To pay or not to pay technical debt,” Software, IEEE, vol. 28,
no. 6, pp. 29–31, 2011.

[31] N. Zazworka, C. Izurieta, S. Wong, Y. Cai, C. Seaman, F. Shull, et al., “Compar-
ing four approaches for technical debt identification,” Software Quality Journal,
vol. 22, no. 3, pp. 403–426, 2014.

[32] S. Huynh and Y. Cai, “An evolutionary approach to software modularity analysis,”
in Proceedings of the First International Workshop on Assessment of Contempo-
rary Modularization Techniques, p. 6, IEEE Computer Society, 2007.

[33] S. Wong, Y. Cai, M. Kim, and M. Dalton, “Detecting software modularity vio-
lations,” in Proceedings of the 33rd International Conference on Software Engi-
neering, pp. 411–420, ACM, 2011.

[34] SourceMaking, “Design patterns.” https://sourcemaking.com/
design_patterns. (Accessed on 06/07/2016).

[35] C. Izurieta and J. M. Bieman, “A multiple case study of design pattern decay,
grime, and rot in evolving software systems,” Software Quality Journal, vol. 21,
no. 2, pp. 289–323, 2013.

73

 http://www.construx.com/10x_Software_Development/Technical_Debt/
 http://www.construx.com/10x_Software_Development/Technical_Debt/
http://2013.icse-conferences.org/documents/publicity/MTD-WS-McConnell-slides.pdf
http://2013.icse-conferences.org/documents/publicity/MTD-WS-McConnell-slides.pdf
http://2013.icse-conferences.org/documents/publicity/MTD-WS-McConnell-slides.pdf
https://sourcemaking.com/design_patterns
https://sourcemaking.com/design_patterns

BIBLIOGRAPHY

[36] C. Izurieta and J. M. Bieman, “Testing consequences of grime buildup in object
oriented design patterns,” in Software Testing, Verification, and Validation, 2008
1st International Conference on, pp. 171–179, IEEE, 2008.

[37] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, “Refactoring: Improv-
ing the design of existing programs,” 1999.

[38] M. Mäntylä, J. Vanhanen, and C. Lassenius, “A taxonomy and an initial empir-
ical study of bad smells in code,” in Software Maintenance, 2003. ICSM 2003.
Proceedings. International Conference on, pp. 381–384, IEEE, 2003.

[39] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka, “The evolution and impact of
code smells: A case study of two open source systems,” in Proceedings of the 2009
3rd international symposium on empirical software engineering and measurement,
pp. 390–400, IEEE Computer Society, 2009.

[40] F. Khomh, M. D. Penta, and Y.-G. Gueheneuc, “An exploratory study of the im-
pact of code smells on software change-proneness,” in Reverse Engineering, 2009.
WCRE’09. 16th Working Conference on, pp. 75–84, IEEE, 2009.

[41] G. Travassos, F. Shull, M. Fredericks, and V. R. Basili, “Detecting defects in
object-oriented designs: using reading techniques to increase software quality,”
in ACM Sigplan Notices, vol. 34, pp. 47–56, ACM, 1999.

[42] R. Marinescu, “Detecting design flaws via metrics in object-oriented systems,” in
Technology of Object-Oriented Languages and Systems, 2001. TOOLS 39. 39th
International Conference and Exhibition on, pp. 173–182, IEEE, 2001.

[43] O. Ciupke, “Automatic detection of design problems in object-oriented reengineer-
ing,” in Technology of Object-Oriented Languages and Systems, 1999. TOOLS 30
Proceedings, pp. 18–32, IEEE, 1999.

[44] R. Marinescu, “Detection strategies: Metrics-based rules for detecting design
flaws,” in Software Maintenance, 2004. Proceedings. 20th IEEE International
Conference on, pp. 350–359, IEEE, 2004.

[45] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and M. Shaw, “Building empir-
ical support for automated code smell detection,” in Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software Engineering and Measure-
ment, p. 8, ACM, 2010.

[46] N. Rutar, C. B. Almazan, and J. S. Foster, “A comparison of bug finding tools for
java,” in Software Reliability Engineering, 2004. ISSRE 2004. 15th International
Symposium on, pp. 245–256, IEEE, 2004.

[47] T. Copeland, “Pmd applied,” 2005.

[48] Z. Codabux and B. J. Williams, “Technical debt prioritization using predictive
analytics,” in Proceedings of the 38th International Conference on Software Engi-
neering Companion, pp. 704–706, ACM, 2016.

74

BIBLIOGRAPHY

[49] G. Suryanarayana, G. Samarthyam, and T. Sharma, Refactoring for Software De-
sign Smells: Managing Technical Debt. Morgan Kaufmann, 2014.

[50] S. SonarSource, “Sonarqube,” tech. rep., Technical report, last update: June, 2013.

[51] J. Radatz, A. Geraci, and F. Katki, “IEEE Standard Glossary of Software Engi-
neering Terminology,” IEEE Std, vol. 610121990, no. 121990, p. 3, 1990.

[52] ISO/IEC, ISO/IEC 9126. Software engineering – Product quality. ISO/IEC, 2001.

[53] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice. Addison-
Wesley Professional, 3rd ed., 2012.

[54] G. Quenel and H. Lövdahl, “Object oriented software quality models,” membres.
multimania. fr/gquenel/site/files/doc/OOSoftQualMod. pdf.

[55] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented design,”
Software Engineering, IEEE Transactions on, vol. 20, no. 6, pp. 476–493, 1994.

[56] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-oriented de-
sign metrics as quality indicators,” Software Engineering, IEEE Transactions on,
vol. 22, no. 10, pp. 751–761, 1996.

[57] W. Li and S. Henry, “Object-oriented metrics that predict maintainability,” Journal
of systems and software, vol. 23, no. 2, pp. 111–122, 1993.

[58] I. Sommerville, Software Engineering (9th Edition). Pearson Addison Wesley,
2011.

[59] M. M. Lehman, “Programs, life cycles, and laws of software evolution,” Proceed-
ings of the IEEE, vol. 68, no. 9, pp. 1060–1076, 1980.

[60] K. H. Bennett and V. T. Rajlich, “Software maintenance and evolution: A
roadmap,” in Proceedings of the Conference on The Future of Software Engineer-
ing, ICSE ’00, (New York, NY, USA), pp. 73–87, ACM, 2000.

[61] “IEEE Standard for Software Maintenance,” IEEE Std 1219-1998, 1998.

[62] H. v. Vliet, Software Engineering: Principles and Practice. Wiley Publishing,
3rd ed., 2008.

[63] B. P. Lientz and E. B. Swanson, “Software maintenance management: a study of
the maintenance of computer application software in 487 data processing organi-
zations,” 1980.

[64] C. W. Krueger, “Software reuse,” ACM Computing Surveys (CSUR), vol. 24, no. 2,
pp. 131–183, 1992.

[65] W. Frakes and C. Terry, “Software reuse: metrics and models,” ACM Computing
Surveys (CSUR), vol. 28, no. 2, pp. 415–435, 1996.

[66] J. Sametinger, Software engineering with reusable components. Springer Science
& Business Media, 1997.

75

BIBLIOGRAPHY

[67] W. Frakes, “Systematic software reuse: a paradigm shift,” in Software Reuse: Ad-
vances in Software Reusability, 1994. Proceedings., Third International Confer-
ence on, pp. 2–3, IEEE, 1994.

[68] O. P. N. Slyngstad, A. Gupta, R. Conradi, P. Mohagheghi, H. Rønneberg, and
E. Landre, “An empirical study of developers views on software reuse in statoil
asa,” in Proceedings of the 2006 ACM/IEEE International Symposium on Empiri-
cal Software Engineering, ISESE ’06, (New York, NY, USA), pp. 242–251, ACM,
2006.

[69] W. C. Lim, “Effects of reuse on quality, productivity, and economics,” Software,
IEEE, vol. 11, no. 5, pp. 23–30, 1994.

[70] M. Al Mamun, C. Berger, and J. Hansson, “Explicating, understanding, and man-
aging technical debt from self-driving miniature car projects,” in Managing Tech-
nical Debt (MTD), 2014 Sixth International Workshop on, pp. 11–18, Sept 2014.

[71] M. Morisio, M. Ezran, and C. Tully, “Success and failure factors in software
reuse,” Software Engineering, IEEE Transactions on, vol. 28, pp. 340–357, Apr
2002.

[72] W. B. Frakes and S. Isoda, “Success factors of systematic reuse,” Software, IEEE,
vol. 11, no. 5, pp. 14–19, 1994.

[73] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactoring chal-
lenges and benefits,” in Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, (New York,
NY, USA), pp. 50:1–50:11, ACM, 2012.

[74] W. F. Opdyke, Refactoring object-oriented frameworks. PhD thesis, University of
Illinois at Urbana-Champaign, 1992.

[75] P. Koopman, “Embedded systems in the real world,” Course Material: Depend-
able Embedded Systems, 1999.

[76] I. Crnkovic, “Component-based approach for embedded systems,” in Ninth Inter-
national Workshop on Component-Oriented Programming (WCOP), 2004.

[77] Z. You, “The reliability analysis of embedded systems,” in Information Science
and Cloud Computing Companion (ISCC-C), 2013 International Conference on,
pp. 458–462, IEEE, 2013.

[78] S. Patil and L. Kapaleshwari, “Embedded software-issues and challenges,” tech.
rep., SAE Technical Paper, 2009.

[79] C. Ebert and C. Jones, “Embedded software: Facts, figures, and future,” Computer,
no. 4, pp. 42–52, 2009.

[80] T. Sherman, “Quality attributes for embedded systems,” in Advances in Computer
and Information Sciences and Engineering, pp. 536–539, Springer, 2008.

76

BIBLIOGRAPHY

[81] A. Pretschner, M. Broy, I. H. Kruger, and T. Stauner, “Software engineering for au-
tomotive systems: A roadmap,” in 2007 Future of Software Engineering, pp. 55–
71, IEEE Computer Society, 2007.

[82] J. J. Trienekens, R. J. Kusters, and D. C. Brussel, “Quality specification and metri-
cation, results from a case-study in a mission-critical software domain,” Software
Quality Journal, vol. 18, no. 4, pp. 469–490, 2010.

[83] J. C. Knight, “Safety critical systems: challenges and directions,” in Software
Engineering, 2002. ICSE 2002. Proceedings of the 24rd International Conference
on, pp. 547–550, IEEE, 2002.

[84] H. Washizaki, Y. Kobayashi, H. Watanabe, E. Nakajima, Y. Hagiwara, K. Hiran-
abe, and K. Fukuda, “Quality evaluation of embedded software in robot software
design contest,” Progress in Informatics, vol. 5, pp. 35–47, 2007.

[85] M. A. B. Sarfraz Nawaz Brohi, “Empirical research methods for software
engineering.” http://www.slideshare.net/sarfraznawaz/
empirical-research-methods-for-software-engineering,
2001.

[86] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical Softw. Engg., vol. 14, pp. 131–164,
Apr. 2009.

[87] R. K. Yin, “Case stydt research: Design and methods. volume 5,” 2003.

[88] Doxygen, “Doxygen.” http://www.stack.nl/˜dimitri/doxygen/.
(Accessed on 06/04/2016).

[89] Tigris.org, “Welcome to argouml.” http://argouml.tigris.org/, 2001.
(Accessed on 06/01/2016).

[90] S. Systems, “The ultimate design & build platform.” http://www.
sparxsystems.com.au/. (Accessed on 06/03/2016).

[91] Scitools, “Understand.” https://scitools.com/. (Accessed on
06/03/2016).

[92] CppDepend, “Cppdepend :: C/c++ static analysis and code quality tool.” http:
//www.cppdepend.com/. (Accessed on 06/03/2016).

[93] CppCheck, “Cppcheck - a tool for static c/c++ code analysis.” http://
cppcheck.sourceforge.net/. (Accessed on 06/03/2016).

[94] CppClean, “cppclean.” https://github.com/myint/cppclean. (Ac-
cessed on 06/03/2016).

[95] T. Littlefair, “Cccc - c and c++ code counter.” https://scitools.com/.
(Accessed on 06/03/2016).

[96] L. Rosenberg, R. Stapko, and A. Gallo, “Risk-based object oriented testing,” 24th
SWE, 1999.

77

http://www.slideshare.net/sarfraznawaz/empirical-research-methods-for-software-engineering
http://www.slideshare.net/sarfraznawaz/empirical-research-methods-for-software-engineering
http://www.stack.nl/~dimitri/doxygen/
 http://argouml.tigris.org/
http://www.sparxsystems.com.au/
http://www.sparxsystems.com.au/
https://scitools.com/
http://www.cppdepend.com/
http://www.cppdepend.com/
http://cppcheck.sourceforge.net/
http://cppcheck.sourceforge.net/
https://github.com/myint/cppclean
https://scitools.com/

BIBLIOGRAPHY

[97] D. Rodriguez and R. Harrison, “An overview of object-oriented design metrics,”
2001.

[98] T. G. Filo, M. A. Bigonha, and K. A. Ferrira, “A catalogue of thresholds for object-
oriented software metrics,” 2015.

[99] K. A. Ferreira, M. A. Bigonha, R. S. Bigonha, L. F. Mendes, and H. C. Almeida,
“Identifying thresholds for object-oriented software metrics,” Journal of Systems
and Software, vol. 85, no. 2, pp. 244–257, 2012.

[100] M. Lanza and R. Marinescu, Object-oriented metrics in practice: using software
metrics to characterize, evaluate, and improve the design of object-oriented sys-
tems. Springer Science & Business Media, 2007.

[101] Refactoring: Improving the Design of Existing Code. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1999.

[102] Š. Cais and P. Pı́cha, “Identifying software metrics thresholds for safety critical
system,” 2014.

[103] A. Brooks, “Metrics overview.” http://staff.unak.is/andy/
StaticAnalysis0809/metrics/overview.html.

[104] Objecteering, “Objecteering metrics user guide.” http://support.
objecteering.com/objecteering6.1/help/us/metrics/toc.
htm. (Accessed on 06/01/2016).

[105] H. A. Sahraoui, R. Godin, and T. Miceli, “Can metrics help to bridge the gap
between the improvement of oo design quality and its automation?,” in Soft-
ware Maintenance, 2000. Proceedings. International Conference on, pp. 154–162,
IEEE, 2000.

[106] PHPDepend, “Software metrics supported by phpdepend.” https://
pdepend.org/documentation/software-metrics/index.html.
(Accessed on 06/01/2016).

[107] R. Subramanyam and M. S. Krishnan, “Empirical analysis of ck metrics for object-
oriented design complexity: Implications for software defects,” Software Engi-
neering, IEEE Transactions on, vol. 29, no. 4, pp. 297–310, 2003.

[108] J. Daly, A. Brooks, J. Miller, M. Roper, and M. Wood, “Evaluating inheritance
depth on the maintainability of object-oriented software,” Empirical Software En-
gineering, vol. 1, no. 2, pp. 109–132, 1996.

[109] K. El Emam, W. Melo, and J. C. Machado, “The prediction of faulty classes using
object-oriented design metrics,” Journal of Systems and Software, vol. 56, no. 1,
pp. 63–75, 2001.

[110] E. Okike, “A pedagogical evaluation and discussion about the lack of cohesion in
method (lcom) metric using field experiment,” arXiv preprint arXiv:1004.3277,
2010.

78

http://staff.unak.is/andy/StaticAnalysis0809/metrics/overview.html
http://staff.unak.is/andy/StaticAnalysis0809/metrics/overview.html
http://support.objecteering.com/objecteering6.1/help/us/metrics/toc.htm
http://support.objecteering.com/objecteering6.1/help/us/metrics/toc.htm
http://support.objecteering.com/objecteering6.1/help/us/metrics/toc.htm
https://pdepend.org/documentation/software-metrics/index.html
https://pdepend.org/documentation/software-metrics/index.html

BIBLIOGRAPHY

[111] A. A. Bakar and N. Sham, “The analysis of object-oriented metrics in c++ pro-
grams,” Lecture Notes on Software Engineering, vol. 4, no. 1, pp. 48–52, 2014.

[112] R. Malhotra and A. J. Bansal, “Fault prediction considering threshold effects of
object-oriented metrics,” Expert Systems, vol. 32, no. 2, pp. 203–219, 2015.

[113] L. H. Rosenberg, “Applying and interpreting object-oriented metrics,” 1998.

[114] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design
quality assessment,” Software Engineering, IEEE Transactions on, vol. 28, no. 1,
pp. 4–17, 2002.

[115] D. I. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus, and T. Dyba, “Quantify-
ing the effect of code smells on maintenance effort,” Software Engineering, IEEE
Transactions on, vol. 39, no. 8, pp. 1144–1156, 2013.

[116] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some code smells have a signifi-
cant but small effect on faults,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 23, no. 4, p. 33, 2014.

[117] J. Lindsay, J. Noble, and E. Tempero, “Does size matter?: a preliminary investi-
gation of the consequences of powerlaws in software,” in Proceedings of the 2010
ICSE Workshop on Emerging Trends in Software Metrics, pp. 16–23, ACM, 2010.

[118] W. Li and R. Shatnawi, “An empirical study of the bad smells and class error
probability in the post-release object-oriented system evolution,” Journal of sys-
tems and software, vol. 80, no. 7, pp. 1120–1128, 2007.

[119] P. K. Dhillon and G. Sidhu, “Can software faults be analyzed using bad code
smells?: An empirical study,” International Journal of Scientific and Research
Publications, vol. 2, no. 10, pp. 1–7, 2012.

[120] S. M. Olbrich, D. S. Cruze, and D. I. Sjøberg, “Are all code smells harmful?
a study of god classes and brain classes in the evolution of three open source
systems,” in Software Maintenance (ICSM), 2010 IEEE International Conference
on, pp. 1–10, IEEE, 2010.

[121] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, “Does refactoring improve
reusability?,” in Reuse of Off-the-Shelf Components, pp. 287–297, Springer, 2006.

[122] O. Teig, “Technical dept vs. technical deposit.” http:
//www.teigfam.net/oyvind/home/technology/
126-technical-dept-vs-technical-deposit/. (Accessed on
06/10/2016).

79

http://www.teigfam.net/oyvind/home/technology/126-technical-dept-vs-technical-deposit/
http://www.teigfam.net/oyvind/home/technology/126-technical-dept-vs-technical-deposit/
http://www.teigfam.net/oyvind/home/technology/126-technical-dept-vs-technical-deposit/

	Abstract
	Sammendrag
	Preface
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Motivation
	Research Context
	Research Design and Questions
	Contribution
	Thesis Structure

	State-of-the-Art
	Technical Debt
	Definitions of Technical Debt
	Classification of Technical Debt
	Causes and Effects of Technical Debt
	Identification of Technical Debt
	Strategies and Practices for Managing Technical Debt

	Design Debt
	Software Quality
	Object-Oriented Metrics
	Software Evolution and Maintenance
	Software Reuse
	Refactoring
	Embedded Systems
	Safety-Critical Systems

	Research Methodology
	Research Methods in Software Engineering
	Choice of Research Method in this Thesis
	Case Study Method

	Case Context
	Research Process
	Determine and Define the Research Questions
	Select the Cases and Determine Data Gathering and Analysis Techniques
	Prepare To Collect Data
	Data Collection
	Evaluate and Analyze the Data
	Prepare the Report

	Summary of the Research Design

	Results
	Object-Oriented Metrics in Project "Firmus"
	Obect-Oritented Metrics in System Components

	Identification of Code Smells using Automatic Static Analysis Tools

	Discussion
	Analysis of Object-Oriented Metrics by Applying Threshold Values
	Research Evaluation
	Threats To Validity
	Internal Validity
	External Validity
	Conclusion Validity

	Conclusion
	Future Work

	Referances

