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Abstract

As the volume of available data created from social media grows,
creating value out of this information becomes an interesting
challenge. This work presents an approach to identify a users
country of origin from just looking at a single tweet. The ap-
proach focuses on using only metadata, while disregarding the
actual content of the tweet. This work also looks at the scala-
bility of the approach using Naive Bayes algorithm. The exper-
iments concludes that using metadata to predict a user geolo-
cation is a viable approach that scales to a stable accuracy with
increasing data size.
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Sammendrag

Ettersom volumet av tilgjengelige data som genereres fra sosiale
medier vokser, blir det å skape verdier ut av denne informasjo-
nen en interessant utfordring. Dette arbeidet presenterer et sys-
tem til å identifisere en brukers hjemlandet fra bare å se på en
enkelt tweet. Systemet fokuserer på å bare bruke metadata, men
ser bort fra det faktiske innholdet i tweeten. Dette arbeidet ser
også på skalerbarhet av tilnærming ved hjelp av Naive Bayes al-
goritme. Forsøkene konkluderer at bruk av metadata for å forutsi
en brukers geolocation er en funksjonell tilnærming som skalerer
til en stabil nøyaktighet med økende datastørrelse.
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Chapter 1

Introduction

This chapter contains the motivation and relevance for this the-
sis together with an introduction to the problem and research
question.

1.1 Motivation

As a growing number of people worldwide connect to the in-
ternet, more and more people find their way onto social media
services such as Twitter, Facebook, Youtube and Snapchat. The
amount of data we collectively produce each day is enormous,
and the potential value in this data is huge. Using this data is
called social media mining, where the aim is to take the data
and turn it into information. The information is then analyzed
and with the result that information is turned into knowledge.
Turning data into knowledge is the ultimate goal of the data pro-
duced in social media.

Sometimes we wish we could know as much as possible of
someones footprint. In the case of emergencies, online adver-
tising or localized search results, we want to be able to know the
geographical user location to perform such tasks efficiently. A
journalist sorting tweets related to an event might want to be
able to differentiate which tweets are local to the event and which
tweets are not. When doing opinion mining for a topic it could

3



4 CHAPTER 1. INTRODUCTION

be necessary to sort by country, state or city. In the world of ad-
vertising, it is valuable to be able to adjust to a users true loca-
tion to be able to serve relevant content, or look for potential
customers.

Looking into user geolocation also touches relevant topics of
today like privacy and internet surveillance. The data left by our
interactions on the internet can be used to track and monitor
us. Studying how we can be tracked online can help people who
wish to remain anonymous, as knowledge about surveillance
can help us to take the necessary steps to hide our identity.

The main motivation behind this thesis is to create a system
with the ability to predict a single tweets origin country by us-
ing the metadata from that tweet. Much work done with tweet
geolocation builds a model where many tweets from a user is an-
alyzed to be able to predict the location. However this approach
has two main weaknesses: A user with very few tweets is almost
impossible to accurately classify. Additionally, language models
are not the perfect fit for a platform such as social media. First
of all, the tweet itself does not contain a lot of information, be-
ing only 140 characters long. Secondly, social media moves at a
swift pace, what people post and tweet about changes rapidly.
When a big event happens, like the Olympics, Twitter will have
tweets from the whole world talking about the Olympics. Only
a few of those users are actually located at the true location of
the Olympics. Similar observations can be done for many other
events that have a temporal feature to them. Language models
rely on methods that build on past knowledge that can quickly
become irrelevant as what we tweet about changes together with
headline news. In this paper, the metadata surrounding the tweet
will be the focus of analysis to see if location can be inferred
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without looking at what the user actually tweeted about. Then
it should be possible to take a new tweet and by looking at the
metadata we can predict the most likely country of that tweet,
without having to gather many tweets from the same user.

1.2 Problem Definition

In this thesis, the problem of correctly classifying a tweets origin
country from the tweets metadata will be attempted. Building
on previous research within the field, a system will be built that
can predict a tweets origin country using a machine learning al-
gorithm

1.3 Contributions

The result of the work and research done in this thesis is a pre-
diction model capable of classifying single tweets using tweet
metadata. The approach will also show scalability as it main-
tains its performance when it is tested by a larger dataset. It is
then evaluated and compared with other state of the art classi-
fiers. While this method achieves a lower accuracy it has util-
ity in that it can predict for single tweets compared to having to
gather several tweets from a user before predicting accurately.

1.4 Research Questions

The following research questions will be answered in this thesis:

RQ1 What different features and techniques are commonly
used when predicting a users geolocation?

RQ2 Is it possible to perform user geolocation prediction us-
ing only the associated metadata?
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RQ3 How does the performance of the machine learning al-
gorithm perform with increasing data size?

1.5 Report Outline

Following is a short list explaining the focus of each of the fol-
lowing chapters.

Chapter 2 introduces the landscape of this thesis, as well as
theory and relevant technologies used to solve the research ques-
tions.

Chapter 3 looks at related work in geolocation of twitter users
as well as work in similar fields.

Chapter 4 gives a detailed explanation of the two datasets used
to perform analysis.

Chapter 5 contains the feature analysis together with an ex-
planation of how the predictor system was setup.

Chapter 6 contains the results of the experiments and discuss
their implication. Following future avenues of work is looked at.

Chapter 7 gives the conclusion to the thesis.



Chapter 2

Preliminaries

This chapter firstly contains a brief introduction of social media
and twitter. Then it presents the technologies used together with
general information about machine learning with Naive Bayes
Classifier (NBC).

2.1 Social Media

Social media is a term for a huge field of different tools and ap-
plications that allows users to create, share and exchange infor-
mation. In general, social media services normally have the fol-
lowing features: It is a Web 2.0 application that allows users to
create a profile and connect with other users by developing their
social network and it allows for sharing of user made content be-
tween users through posts or messages (Wikipedia, 2016).
[TODO se på ref]

Some of the biggest social media sites today are Facebook,
WhatsApp, QQ, Instagram and Twitter. These applications have
had a huge impact on today’s society as they are part of the com-
munication between billions of people. Privacy rights advocates
warn users about how the information on social media can be
gathered. Information is captured without the user’s knowledge
or consent through tracking and third party applications.

Social media mining is the process of using social media data
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gathered to perform a variety of task such as modeling, analyz-
ing or mine patterns. It is a huge research field encompassing
areas such as community structures in social networks, senti-
ment analysis, spam detection and much more.

2.2 Twitter

Twitter is an online social networking service that enables users
to send and read short 140-character messages, commonly re-
ferred to as "tweets". Twitter is ranked as the 10th most popu-
lar website in the world by Alexa rank as of January 2016 (Alexa,
2016). Registered users can both read and post tweets, while un-
registered users can only read them. It is possible to use twit-
ter through the website interface, mobile device applications or
even through SMS. The service has around 320 million active
users posting around 400 million tweets per day (@Twitter, 2016).

Twitter allows for several ways to access tweets. First, we have
the Twitter Search API, where we can query tweets that have oc-
cured. The data available is limited by Twitter’s rate limits. An in-
dividual user can only retrieve the last 3200 tweets, regardless of
query criteria. The Search API is further limited by the amount
of requests you can make in a certain time window, about 180
requests in a 15 minute period. Obviously this method is not a
therefore not a viable option for gathering millions of tweets.

Secondly there is the Streaming API. Unlike Twitter’s Search
API where we are polling from tweets that have already hap-
pened, the Twitter’s Streaming API is a push of data as tweets
happen in near real-time. Using a set of criteria, like a keyword,
username or location, tweets that match gets pushed to the user
who sets up the query. However the Streaming API only allows
for a 1% retrieval of all the tweets produced on twitter at a given
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time. Once the number of tweets matching the given parameters
would return more than 1%, Twitter begins to sample the data
returned to the user. The exact method Twitter uses to sample
this data is currently unknown. To overcome this 1% limitation,
there is Twitter Firehose, which is very similar to the Streaming
API. The difference is that the Twitter Firehose guarantees deliv-
ery of 100% of the tweets that match the user-specified criteria,
but using this service costs a lot of money. Firehose also requires
a lot of resources to handle all the incoming data. The Twitter
Streaming API is sufficient for light analytics or statistical anal-
ysis, while Twitter Firehose should be used when it is vital that
every tweet is gathered. For example as a security measure when
for example professional sports teams play in a big arena or by a
local police jurisdiction in monitoring an area.

So what is really the difference between the Streaming API
and Firehose? Morstatter et al. (2013) investigates this closely by
comparing Firehouse and the Streaming API using common sta-
tistical metrics as well as metrics that allow us to compare top-
ics, networks and locations of tweets. What they found is that as
the number of tweets matching the set of parameters increase,
the coverage is reduced. One way to mitigate this is to set more
restrictive parameters. This way they could extract more pre-
cise data from the Streaming API. Furthermore they discovered
that the difference in the top n hashtags in a dataset is well es-
timated when n is large but is often misleading when n is small.
They found strong indications that the Streaming API has some
bias in the way it provides data to the user. When comparing
the top n hashtags in sampled datasets to the Streaming API the
sampled data exhibited very high positive correlations with the
Firehose dataset while the Streaming API performed very poorly.
This is a strong indication of a bias when selecting data for the
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Streaming API. The larger the coverage of the Streaming API, the
more accurate the topical analysis.

When Morstatter et al. (2013) looked at geotagged tweets from
both sources they found that the Streaming API almost returns
the complete set of the geotagged tweets. They attributed this to
the geographic boundary box. The number of geotagged tweets
is very small, around 1%. They conclude that researchers that
use geographic boundary boxes should be confident they work
with an almost complete set of Twitter data when sampling the
data this way.

2.2.1 The Tweet

The twitter stream is a structured JSON stream of tweets acces-
sible using the REST architectural style. Each tweet is returned
containing a rich JSON tree that provides a lot of information
in addition to the contents of the tweet. When looking at the
JSON of a tweet it usually contains about 50-60 lines of actual
JSON. A single tweet has information about the tweet itself, such
as when it was created, how many times it has been retweeted,
the unique ID, the text, the geographical information etc. Fur-
thermore the JSON data contains a lot of information about the
user who sent the tweet, about 35 lines of JSON. A detailed ex-
planation of the structure is shown figure ??. Some of the JSON
attributes are designed for the twitter platform, and are not very
helpful for most types of analysis. These fields should be re-
moved before further analysis to avoid unnecessary overhead
when dealing with the tweets.

A tweet contains a lot more than the 140 character limit when
downloaded from the stream as a JSON payload provided by Twit-
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ter. While the tweet itself is normally sized around 200 bytes, the
additional data contained in the JSON file makes the size of a
single tweet object come in at 2400 bytes, or about 12 times as
large. This is because the twitter stream has many JSON fields
for both the tweet and the user behind the tweet contained in
the JSON of the tweet. Some of these are used inside the Twitter
environment by applications, while some of the other fields can
be very useful for data mining purposes.

2.3 Classification

Classification refers to the task of assigning labels to objects. Cat-
egorization would be another term for this task. In spam detec-
tion, we use classification to assign an incoming email to one of
two labels, "spam" or "not spam". To do this, we could have a
learning algorithm train on a training data, then use this knowl-
edge to correctly assign "spam" or "not spam" to new incoming
emails.

Training data is a set of already classified data. This is of-
ten done manually beforehand. In the case of spam emails, a
dataset containing lots of email where they are all labeled either
"spam" or "not spam" would be used to train an algorithm to
recognize unique features of the two different labels, and use
these when facing new emails.

When building the classifier system we use test and training
sets to help build a good system with high performance. The
classifier trains on the training data, and then uses that to at-
tempt to classify the test data, another set where the correct an-
swer is known, but hidden from the classifier. Normally a per-
centage split or k-fold cross-validation is used on the training
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data to separate the data into test and training.

In percentage split we simply split the training data into two
heaps, for example 40% training and 60% testing. This is a very
simple approach but has a small drawback because the test and
training set is not independent. The k-fold cross validation tries
to address this by splitting the test data several times ensuring
that all items are used for testing exactly once and the same num-
ber of times in training. Splitting training data into ten equal
parts would see us use one part for test and the rest for training.
Repeat this ten times, each time with a new part for testing. The
results are then finally averaged to get the final result.

2.4 Naive Bayes

NBC is a basic technique to construct a classifier that can achieve
strong results. It is one of the most efficient and effective in-
ductive generative learning algorithms used in machine learn-
ing. It builds a vector of features where it assumes all features
are independent. Naive Bayes classifiers can be trained very ef-
fectively through supervised learning, often using the maximum
likelihood approach. Assuming that all the features are inde-
pendent is in most cases a gross simplification, but despite this
it has been shown that the NBC still work quite well in many
complex real-world situations. In the paper "The Optimality of
Naive Bayes" Zhang (2004) explains in more detail how the Naive
Bayes approach can achieve such strong results despite its over-
simplified assumptions.

In the Naive Bayes classifier the instance to be classified can
be presented by a vector x with n features in 2.1

x = (x1, ..., xn) (2.1)
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p(Ck |x1, ..., xn) (2.2)

p(Ck |x) = (p(Ck)•p(x|Ck)

p(x)
(2.3)

CM AP = argmax
c∈C

p(Ck |x) (2.4)

CM AP = argmax
c∈C

(p(Ck)•p(x|Ck)

p(x)
(2.5)

CM AP = argmax
c∈C

(p(Ck)•p(x|Ck) (2.6)

CN B = argmax
c∈C

(p(Ck) Π
x∈X

p(xi |Ck) (2.7)

This translates to 2.2 where k is the number of possible classes.
If the number of features n grow large, it becomes problematic
to use probability tables, therefore the equation is rewritten to
Bayes’ theorem, as seen in 2.3. This equation is further simpli-
fied when we treat the denominator as a constant, and remove it
from our calculations. This is used in the classifier by obtaining
the maximum a posteriori probability estimate (MAP), or CM AP .
This is shown in 2.6. We can remove the denominator as the
class that maximizes the equation in 2.5 would also maximize it
in 2.6 because the denominator is the same for all the different
classes we compare. For Naive Bayes this simplifies to 2.7 when
assuming independence between features.

Knowing what features to include, and which to omit is no
simple task when it comes to using the Naive Bayes Method.
There comes a point when to many features reduces the per-
formance of the algorithm due to noise. Poor features with lit-
tle value are counted equal to strong features, and if to many
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weak features are added it will actually reduce the performance
of NBC. When this happens it is necessary to experiment with
the features to see what will yield the best result.

Naive Bayes was chosen because of its simplicity, but also be-
cause it has been shown to work on very large datasets. In "Scal-
able sentiment classification for Big Data analysis using Naïve
Bayes Classifier", Liu et al. (2013) showed that NBC is able to
scale up and analyze the sentiment of millions of movie reviews
with a stable accuracy. Exactly which algorithms perform well
with large datasets is not well documented, but researching this
is outside the scope of this paper.

2.5 Apache Spark

Apache Spark (Spark) is an open source general cluster comput-
ing system currently being developed by Apache Software Foun-
dation. It was originally developed in 2009 at UC Berkeley’s AM-
PLab, where it was open sourced in 2010 as an Apache project.
Spark aims to give a comprehensive and unified framework that
fulfills big data processing requirements with a variety of data
types. Machine learning is supported in Spark and it is an im-
portant piece of the puzzle when it comes to mining and ana-
lyzing Big Data.

Spark requires a cluster manager, which is usually a backend
GUI or a command-line software, and a distributed storage sys-
tem. Spark supports a wide variety of distributed storage sys-
tems, including Hadoop Distributed File System (HDFS), Cas-
sandra, Amazon S3, Kudu, Openstack Swift or you can imple-
ment a custom solution. Spark also supports pseudo distributed
local mode, where distributed storage is not required and local
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Figure 2.1: The Spark stack

Figure 2.2: Comparing runtime when using data in memory

storage is used instead. This is useful for testing and develop-
ment purposes. Spark can therefore be run on a single machine
with one executor per core.

Spark boasts great speed compared to Hadoop MapReduce,
running up to a 100x faster in memory, or 10x faster on disk.
It is also easy to use as it supports development in Java, Scala,
Python and R. Spark supports over 80 high-level operators that
make it easy to build parallel applications using interactive shells.
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Chapter 3

Related Work

This chapter will present some of the related work analyzed within
the field of user geolocation prediction and other closely related
areas.

3.1 Background

There has been much research aiming to predict a users geolo-
cation. Accurate geolocation is for example the key driver for
location specific services such as localized search, where Wang
et al. (2005) looked to find a query’s dominant location by using
Location Indicative Words (LIW) in the search text. Using LIW is
a common approach used to find a users geolocation on Twitter.
In Australia, they use Twitter to monitor for potential wildfires
in near real time, helping to prevent spreading and saving lives
(Power et al.).

Identifying a Twitter user’s real location is non-trivial, mainly
because of the lack of reliable geographical information. In the
location field users can declare their location by writing what-
ever they want, and using this field trivially has been shown to be
ineffective (Hecht et al., 2011). Furthermore Hecht et al. (2011)
also showed that the country or even state could in most cases
be determined easily with decent accuracy from just the con-
tents of a users tweet. However they noted that their model could

17
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benefit by inclusion of user metadata. This approach was used
mostly for English tweets, but others have used language mod-
els on all languages with some success, however fine tuning the
approach for specific languages are needed, especially those us-
ing different letters (Han et al., 2014).

In "You are where you tweet: a content-based approach to
geo-locating twitter users" Cheng et al. (2010) collected tweets
of users and used LIW with k-means algorithm to place users
on a city level accuracy. They found that after collecting 100s
of tweets of a single user they could accurately place most users
(51%) within 100 miles of their actual location. The method went
beyond simply using Named Entity Recognition (NER), as it tried
to exploit words known to be primarily used in particular re-
gions as well as mentioning locations in the tweets. This ap-
proach relied only on the content of the tweet, and did not uti-
lize IP information or external knowledge bases. Using IP ad-
dresses to get the location of a user has been shown to achieve
around 90% accuracy (Padmanabhan and Subramanian, 2001),
however such methods are not applicable to Twitter and other
social media sites where such information is not available through
the public API’s. While maybe Twitter itself has access to this in-
formation, any third party looking to use data from Twitter will
have to use other sources to identify the geolocation of a user or
tweet, for example the the content of the tweet or metadata in-
formation.

However the main disadvantage with using NER and LIW is
when trying to classify user with few or only one tweet. Tweets
are only 140 characters long, and many tweets will simply not
contain any information that will help us determine the geolo-
cation. Also another problem is that language and dialects are
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constantly evolving, and slangwords or even foreign languages
and emojis are difficult challenges for language models to tackle
and properly reflect. Knowing that melbo is short for Melbourne
or that barteby is a nickname for Trondheim is not trivial to solve.
Language models also suffer from the temporal nature of tweets.
Work done by Priedhorsky et al. (2014) found that after four months
they had an additional 6% error to their predictions. They spec-
ulated that this was mostly due to n-grams relating to current
events quickly becoming irrelevant.

Some have therefore sought to integrate other sources of in-
formation like temporal features. Li et al. (2011) created a point
of interest tag of a tweet based on the content of the tweet as
well as the time of posting. Others have tried to include friend-
ship relations. Backstrom et al. (2010) argue that geography and
social relationships are inextricably intertwined. The people we
interact with the most are often people that live near us, and this
he argue is also reflected in the online world. However building
such a network on Twitter might prove difficult as the API used
in this paper only gives us a limited amount of tweets and not
the full stream, building such a complex social graph of a Twit-
ter user would maybe be impossible. And while on Facebook a
user is expected to connect and interact with their friends and
family, this is not necessarily the case on Twitter. Many users
follow and interact with people due to their interests in various
topics such as politics, news or sports.

Another approach to exploit the geographical properties of
words is to use a uniform grid overlaid on the earth. A set of
pseudo-documents is created within a given grid cell by con-
catenating the documents within it. Then a location for a test
document is chosen by its most similar pseudo-document. This
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approach have been improved by Roller et al. (2012) to use adap-
tive grids where each grid cell contains approximately the same
amount of documents. Urban grid cells would have a lot more
documents than rural cells which would make correctly classi-
fying documents to these cells almost impossible. The adaptive
grid outperformed the uniform grid on large Twitter corpus.

Roller et al. (2012) also experimented with using non-geotagged
tweets where the location of a user could be inferred from geo-
tagged tweets in its training data, but was unable to see if this
improved accuracy. Han et al. (2014) investigated the utility of
using non-geotagged tweets and found that accuracy improved
when incorporating non-geotagged data into their test and train-
ing set. User geolocation predictions’ ultimate goal is to reliably
predict the locations of users where the location is unknown.
Han et al. (2014) argue that by using non-geotagged tweets from
users where there is also geotagged tweets would better repre-
sent the overall datastream from Twitter, as non-geotagged data
would be able to be sent from a wider range of devices. They
did not look at the difference between users that have both non-
geotagged and geotagged and users who have only non-geotagged,
because it is difficult to known the true location for users that
only have non-geotagged data.

3.1.1 Summary

Most of the work done on predicting user geolocation on Twit-
ter is based on analyzing the content of user tweets to find ge-
ographical information located in the language used. Very few
have used the included metadata, and those who did only use it
as support and have not done a thorough analysis of the embed-
ded features found in the tweet JSON file. Also the method used
generally gather many tweets from a user before trying to pre-
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dict their location. However in many cases this approach is not
good enough if you only have one or very few tweets of a user.
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Chapter 4

Meet the Data

In this chapter we will look closer at the two datasets used for
geolocation prediction in this paper, Dataset 1 and Dataset 2.

4.1 Dataset 1

The first twitter dataset is simply called Dataset 1, the smaller
of the two datasets used. All initial testing was performed on
Dataset 1 before moving on to Dataset 2. In 4.1 we can see Dataset
1 contains 2.613.661 tweets. It is gathered from Twitter using
the Streaming API over 5 days from October 03.2015 to October
08.2015. It was set up to gather all tweets matching the criteria of
having a geolocation within a bounding box consisting of Cen-
tral Asia and Western Asia, as can be seen in 4.6. In 4.6 and C.1
the tweets are represented by the red squares. Each square is the
bounding box of a single tweet. Notice how the tweets bounding
boxes have varying sizes, the smallest bounding boxes covering
no more than a few streets in a city, while the biggest bounding
boxes are seen covering entire countries.

To create the visualization shown in 4.6 we needed to extract
the geolocation contained inside each tweet. To do this a cus-
tom python filter was made to extract the coordinates as seen
in B.4. However the output of this filtering is not compatible
with google.maps. A combination of Python code and scripting

23
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in notepad++ was needed to change the format. The JavaScript
code used to generate the map can be seen in B.2

Figure 4.1: Distribution of source applications in Dataset 1

Table Size Number of tweets
Dataset 1 433.302 KB 2.613.661
Dataset 2 3.917.847 KB 23.304.498

Table 4.1: Table showing the two datasets

The tweets that have the largest bounding boxes which en-
velops entire countries have been filtered out to avoid cluttering
the final representation of the tweets. Furthermore, the figure
4.6 is only a sample of the full set. It was built by extracting
the bounding box from 23000 tweets, where about 800 got fil-
tered out. Showing all the tweets is not impossible, but it would
be very computationally expensive to represent all 2.6 million
tweet with the JavaScript code used to make it. In any case, fig-
ure 4.6 serves as a nice way to visualize the dataset. We can also
observe that not all countries have tweets in them even though
they are within the bounding box set up in the Streaming API
to gather tweets. The exact reason for this is unknown, but one
could speculate it is because of filtering or internet censorship.
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Only China and Iran have banned Twitter in their countries, but
it is known that a lot of people manage to use twitter in China
Bamman and Smith (2012), but whether you can send exact GPS
locations in these countries is unknown.

1 "PK", "Sat Oct 03 15:48:13 +0000 2015", "<a href=\"http://twitter.com\"
rel=\"nofollow\">Twitter Web Client</a>", 650336561041686528, "und", "Karachi",
"en",

2 "TH", "Sat Oct 03 15:48:13 +0000 2015", "<a href=\"http://twitter.com\"
rel=\"nofollow\">Twitter Web Client</a>", 650336561549066240, "en", "Bangkok",
"en",

3 "SA", "Sat Oct 03 15:48:13 +0000 2015", "<a
href=\"http://twitter.com/download/iphone\" rel=\"nofollow\">Twitter for
iPhone</a>", 650336561750478848, "ar", null, "en",

4 "KW", "Sat Oct 03 15:48:13 +0000 2015", "<a
href=\"http://twitter.com/download/android\" rel=\"nofollow\">Twitter for
Android</a>", 650336561347760128, "en", null, "en",

5 "UA", "Sat Oct 03 15:48:13 +0000 2015", "<a href=\"http://instagram.com\"
rel=\"nofollow\">Instagram</a>", 650336562098520065, "en", "Kyiv", "en",

Listing 4.1: Result of the filtering

At first the tweets contained a lot of unnecessary information.
An example of just a single tweet can be seen in B.1. After fil-
tering the raw JSON stream, the tweets were left with just a few
fields that were to be used for analysis. This can be seen in 4.1.
First there is the country code field, which is extracted from the
place(country_code) in the JSON file. This field is automatically
filled in by Twitter based on the bounding box of the tweet. The
country code is later used as the ground truth for training the
algorithm. Next is the creation date of the tweet, down to the
second. The next field after that is the source field, followed by
the automatically detected tweet language, then timezone and
lastly the application language.

In figure 4.1, 4.2 and 4.3 different feature distributions of Dataset
1 can be seen. Exact numbers can be found in the appendix,
D.1 and D.3 The source of the tweets is dominated by Android
and iPhone, with Foursquare and Instagram right behind. The
first two are simply people using the twitter application on ei-
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Figure 4.2: Machine detection of tweet language

Figure 4.3: Interface language of users sending tweets

ther an Android or an iPhone. Instagram and Foursquare are
two mobile applications. Instagram is used to share pictures,
and modern phones automatically includes GPS coordinates in
the Exchangeable Image File (EXIF) along with device informa-
tion and timestamp. When connecting Instagram with Twitter,
this information is then automatically included unless you tell
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the application not to. Foursquare is a very popular location
search application, that provides users with recommendations
when traveling new places based on what they preferred in the
past. When people "check-in" their location is shared on Twitter
by tagging the place they went to, even if the user does not nor-
mally share their location through tweets.

In 4.2 the different languages in the tweets, detected automat-
ically by Twitter, are shown. Dataset 1 have 6 major language
features. The biggest features are Thai (th), Russian (ru), Indone-
sian (in), English (en), Arabic (ar) and undefined (und). For a
complete list of all the language abbreviations see ISO-639. Un-
defined are all the tweets where Twitters algorithm fails to detect
a language. A tweet containing a link, or just emojis would be a
typical tweet that is difficult to assign a language.

4.2 Dataset 2

Dataset 2 is a lot larger than Dataset 1, containing over 23 mil-
lion tweets. It is also arguably more interesting than Dataset
1, because it contains tweets from the entire world instead of
from a limited part of the world. It is a combination of 4 dif-
ferent bounding boxes catching tweets over Eastern Asia, North
and South America, Europa and Africa, and Western and Central
Asia.

In 4.4 and 4.2 some of the different features are visualized.
For completed data-tables on them see D.2 and D.4. The largest
language in Dataset 2 is by far English with about 36% of all
tweets. The other major languages with over 5% coverage are
Spanish (es), Indonesian (in), Japanese (ja) and Portuguese (pt).
The number of undefined tweets is about the same at 7%. The
source distribution is pretty similar to Dataset 1.
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Figure 4.4: Machine detection of tweet language in Dataset 1

Figure 4.5: Distribution of source applications in Dataset 1

4.2.1 Filtering the Datasets

Before we can begin any form of analyzing we need to filter the
dataset so that it becomes easier to work with. Since a tweet is
plain JSON, we can use python with the JSON library to easily
select which JSON-fields we want to extract from each individ-
ual tweet. This allows us to create a simple way to filter out the



4.2. DATASET 2 29

fields we are interested in quickly, and it also drastically reduces
the size of the dataset. After this first filtering our Dataset 1 is
now only 0.41 GB, down from 7GB

However to use the data in our statistical analysis we need to
represent it differently, we therefore run our now filtered data
through another filter to convert it into a suitable format for our
machine learning algorithm. Here we have to make decisions in
how we filter the different features of each tweet and how best
to represent them. In B.7 we can see how the filter will have to
look through a giant table to find the correct match for the fifth
element. Once it finds a match it will convert the timezone into
a series of 0’s and a single 1 representing the timezone as a fea-
ture. Once filtered the result can be viewed in B.8. The first in-
teger represents the class, which is the country. It has also been
filtered in a similar way to the code in B.7.

So now a single tweet has been reduced to a very compact
string of integers that can be utilized in the ApacheSpark Ma-
chinelearing NBC library. We create seperate files for every fea-
ture and combinations of features for later use. The dataset con-
taining the filtered time-zone data is 0.14GB, which is under 2%
of the original size.
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Figure 4.6: View of geo-tweets in Dataset 1



Chapter 5

Building the prediction system

This chapter will show the evaluation of the features as well as
introducing the prediction system built to find user geolocation.

5.1 Feature Selection

Selecting which features that would be interesting required some
additional analysis. In B.3 we can see the code used to filter.
There are about 50 possible features that can be extracted from
a tweet, but most of these do not have any significant informa-
tion (profile_text_color for example). Features that have geo-
graphical information tied to them are of highest priority. Two
types of language features as well as the two types of time zone
features "time zone" and "UTC-offset" have geographical infor-
mation bound in them. However the two language features are
slightly different, while the time zone and UTC-offset are simi-
lar, except for UTC-offset having slightly less information as two
similar timed time-zones would give the same UTC-offset. The
language directly connects the user to an area because languages
follow country borders for the most part, except for English. The
time-zone feature also connects the user to a country in many
cases, as there exists many time zones for each offset.

Secondly temporal features could be interesting, as tweeting
frequency are known to follow a daily pattern, and this could
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help to guess where the tweet is from statistically. For example
Portuguese is tweeted in both Brazil and Portugal, but since the
countries are in different time zones the countries would have
different peak hours. This feature could help us if the time zone
field is empty.

Many social media services allow the user to write their loca-
tion. Such data is known to be unstructured and ad hoc. A study
from 2012 showed that 34% of users did not provide real location
information Hecht et al. (2011). And even though many users
provided a location, they used slang and abbreviations, making
the task to correctly identify a users location through such a field
non-trivial. Some users might also want to hide their true lo-
cation, and might even purposefully provide wrong information
where possible. Therefore the location field provided by the user
was not used, as many have already tested it’s usefulness for ge-
olocation on Twitter.

Other features that potentially could have information are a
users friends, who they are following, and who follows them.
This information could help build a bigger picture around a user,
but it is not available directly from the Twitter stream. There-
fore these types of features are not possible with the restrictions
of this experiment. Other features that change between users
but are just random and not considered relevant are features like
friends count, amount of followers etc. In table 5.1 the features
are evaluated based on predicted temporal information.

5.1.1 Evaluating the Features

Creation time would follow the day and night cycle, as there are
certain times during the day where users tweet more. Users tweet
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Feature Predicted Iinformation
Creation time Low

Source Low
Tweet language High
User language Medium

Time zone High
UTC offset Medium

Table 5.1: Table showing the features extracted

more during the day than night, especially during morning and
evening. Sorting this feature by the hour seems most natural.
However the biggest country in a given time-zone would domi-
nate this feature and would not help solve that many cases that
other features could tackle better. The source feature is the de-
vice used to create the tweet. There are many options for a user
when tweeting, as they could tweet from their phone (android/i-
Phone/windows) or from their PC or using third-party applica-
tions. This is all represented in the source field. This field is ex-
pected to be dominated by a few actors and therefore not really
going to help much in determining the location of the user, how-
ever lesser known applications might be popular in only a few
countries, which in turn can help with the prediction.

The tweet language is a machine detected field that Twitter
provides for us. Twitter uses an unknown algorithm to detect the
language the user wrote in the tweet. This field is very helpful as
most languages follow country boundaries. English will still be
a big problem though as most tweets are in English. User lan-
guage is the language in the source application used by the user.
If someone were to use the Twitter application with Norwegian
as the interface language, this would show up in this field. As
with tweet language this field will be very useful when it gives a
language other than English. Most users will however use an ap-
plication in the default language, and not all languages are even
supported. Therefore it is expected this feature will have even
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more English hits than the tweet language. Time zone provides
the time zone used on the device sending the tweet. Most users
have a default time zone provided through their internet con-
nection, which will give a strong indication to where the user is
located when sending the tweet. UTC offset gives us some of the
information already given in time zone, without the ability to
differentiate between countries in the same time zone. Poten-
tially useful, but not needed if time zone is extracted.

5.1.2 Choosing the Features

The features were picked for their uniqueness and potential. UTC
offset and time zone were similar so time zone got picked. Both
language features were interesting, so they were also picked. Source
was arguably a very low potential feature, but since it shows no
overlap with other features it was included. The creation time
feature was not included because its potential information was
low, and it somewhat overlaps with the time zone feature. In
table 5.2 the features are listed together with their dimension
numbers.

Feature Dimensions
Source 13

Tweet language 70
User language 70

Time zone 24

Table 5.2: Table showing the features chosen and the number of dimensions of each feature

5.1.3 Representing the Features

The time zone field is somewhat similar to the user interface
language as it contains a lot of time zones. In Dataset 2 there
was over 420 different time zones found, however some of them
are duplicates with slightly different ways of representing the
time zone, "Kuwait" or "Asia/Kuwait". If used correctly, this field
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should be very useful to determine the users origin country. We
considered two different approaches, either each time zone is
treated as a unique feature, or the world is separated into 24
parts and have the different time zones grouped together based
on UTC offset. The first method is undoubtedly the best, but
would result in a very large feature.

When choosing how to represent the features there were two
considerations: Potential value and size of feature. In hindsight
UTC offset could have been used instead, but once the setup
for time-zone was done there was no need to go back and ex-
tract the other. Both the language features were used used in
a similar manner where each unique language was a separate
feature. The source feature the 12 biggest features got its own
feature while the rest was gather in a ’other’ field. See table D.1
to table D.5 for an overview of these features.

5.1.4 Analyzing the Dataset

After the dataset had been filtered and was ready to be analyzed
we loaded the dataset into apache spark. The NBC was chosen
because of its simplicity and the fact that it had been shown to
work well on very large datasets before (Liu et al., 2013). NBC
was included in the source code in Spark, and only small modi-
fications was needed to make it run with our dataset. Once run-
ning, the dataset is converted into RDD’s and the driver program
of Spark runs the NBC. Spark was used so that it would be easy
to perform the analysis on even larger sets of data in the future
if needed. Since Naive Bayes is relatively fast to run, the analysis
took no more than a couple of hours to run on the biggest set
with all the features included.
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Chapter 6

Experiments and results

In this chapter the different experiments will be presented as
well as their results. Then the results are evaluated and discussed.

6.1 Experiment Setup

The tests were run on a single laptop using Apache Spark MLlib,
with a training and test data split randomly 60/40 regardless of
data size. Each run on a specific setup was repeated 5 times to
avoid outlier results. Since the data was written sequentially it
was important that the training/test data was randomly split to
avoid heavy bias.

6.1.1 Testing: Scalability

Initial testing was on the Dataset 1 to see the effectiveness of the
different features when run on variable data sizes. The data was
split in different number of tweets: 30000, 0.5M, 1M, 1.5M 2.0M,
and 2.6 M were all tested. This tested the scalability of the NBC
on the dataset, as well as possible overfitting problems with the
chosen testing regime. Figure 6.1 shows the result of this test.
The tweet language feature performs the best, while the source
feature the worst, just barely improving the baseline. The fea-
tures perform best at the lowest data size, but the result are sta-
ble once the set grows larger.
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Figure 6.1: Single Features compared vs baseline

6.1.2 Testing: Combined Features

Next the combination of features needed to be tested, again on
different number of tweets, to see how accuracy would scale.
This test was also performed on Dataset 1. In 6.2 the results of
this combination can be seen. The best combination was using
all four features together, achieving a stable 76-75% accuracy.
The features again perform slightly better when the dataset is
small, and stabilizes as the dataset size increases.

6.1.3 Testing: The Large Dataset

Confident that the features scaled with the data size, the fea-
tures needed to be tested on Dataset 2. Trials were run on the
combination of all features, and the single features alone. Since
it took a lot longer to run the algorithm on 23.3 million tweets
these simulations were run only three times. For a more detailed
rundown of these tests see table D.5. Results can be viewed in
6.3 where the Dataset 2 results are compared to Dataset 1 re-
sults. The results were very similar to Dataset 1, even perform-
ing slightly better since the baseline was lower. Differences can
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Figure 6.2: Combined feature accuracy in Dataset 1

be seen in the source feature where Dataset 2 performed worse,
while the application language feature performed better in Dataset
2.

Figure 6.3: Table showing Dataset 2 results on 23.3 million tweets compared to Dataset 1
results

6.2 Evaluation and discussion

The results demonstrates the power of metadata, achieving high
accuracy on a large dataset with a relatively easy machine learn-
ing algorithm. Our results compared with more advanced meth-
ods (table 6.1 show that there is still more that can be done to
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achieve higher accuracy. It was difficult to compare the results
to a lot of other papers because they either only focused on ge-
olocating users in USA or they did not mention their country ac-
curacy in the results.

6.2.1 Scalability

Why does the feature accuracy score the highest on a low num-
ber of data then fall slightly before stabilizing? There could be
several factors influencing this. Firstly, the 30000 test sample
is split into 60/40% training/testing. Liu et al. (2013) showed
that when datasets become small the training data are not big
enough for the model to learn enough knowledge about each
class. In their experiment they saw the same initial rise in ac-
curacy before stabilizing as the dataset grew large. Another fac-
tor could be overfitting. When the dataset grow large, smaller
classes never gets selected as a possible candidate because of
the bigger classes dominating the smaller.

6.2.2 Improvements & Future Work

What could have been done better to improve accuracy? As pre-
viously mentioned, some of the features are not implemented
to their full potential. The time zone feature is implemented in
a grid fashion, dividing the earth into 24 different grids. Using
this feature more precisely letting each time zone be represented
should see an increase in accuracy from this feature.

Twitter returns a lot of undefined results for their language de-
tection field. It might be that the Twitter algorithm is conserva-
tive in its estimates wanting a high precision while sacrificing
recall. Looking into improving this feature would help a lot to
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achieve higher accuracy.

Doing a proper feature analysis of the remaining untested meta-
data could help increase accuracy. The creation time, feature
was not tested in the experiments. Another feature that could be
looked at is the location field, where the user can write anything.

Author Country Accuracy Baseline Accuracy
Dataset 2 76,59% 21,40%

Han et al. (2014) 93,30% 60,00%
Hecht et al. (2011) 72,71% 25,00%

Table 6.1: Table comparing result of different papers geolocation user country

Another thing that should be explored is the effect of elimi-
nating more than one tweet per user in the datasets. This would
remove some of the bias in the current results due to the pos-
sibility of many tweets from one user affecting the results. At
the same time, it would be possible to compare the metafields
of each user and look for differences within the same user. If
the user has varying metadata then it could be a traveling user.
These users could then be removed to potentially get more pre-
cise results.

Han et al. (2014) found that splitting the data to create language-
partitioned models for geolocation have shown improvements.
Creating a separate classifier for each language would then cre-
ate even stronger results, which is desirable. This approach is
the one-against-many scheme where we begin with say "Class
A" and "all else". The result from "all else" is returned to the al-
gorithm for a new classification into "Class B", and so on.

It would be interesting to look at discriminative models com-
pared to generative models. Discriminative models might per-
form better than the generative model, because the number of
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Author Time Zone Language Baseline
Dataset 2 41,02% 59,03% 21,40%

Han et al. (2014) 56.5% 77.2% 60,00%

Table 6.2: Table showing the result of testing on Dataset 2

features are still relatively few compared to the amount of train-
ing data available. Ng and Jordan (2001) showed that while ini-
tially generative models such as naive Bayes perform better, as
the number of training examples increases the discriminative
logistic regression algorithms perform better.

Another case is the inclusion of non-geotagged data. The anal-
ysis done here is only using geotagged tweets. This has some
obvious flaws, because this leaves out a range of devices that
can tweet, but does not have a GPS. Is the data between geo-
tagged and non-geotagged similar? The goal of this technology
is to classify tweets that do not have a geolocation. It would be
important to analyze for this. Han et al. (2014) did some exper-
iments on the differences between the two datasets but the re-
sults were inconclusive as to whether there was a significant dif-
ference, so this would be an important issue to look further into
for accurate geolocation prediction.



Chapter 7

Summary and Conclusions

7.1 Summary and Conclusions

In this paper the task of finding a Twitter user’s geolocation from
one tweet has been explored. The users geolocation have been
predicted by extracting metadata features from the tweets gath-
ered from Twitter using the Streaming API. The generative model
of NBC was used on a dataset consisting of 23.3 million tweets
spanning the entire world. The classifier’s accuracy stabilized as
the dataset grew in size. It eventually predicted a country ac-
curacy of 76.57%. Compared to more advanced classifiers the
metadata approach achieves a lower accuracy, but the approach
is certainly viable. It can predict tweets without having to gather
several tweets from a user, which is something most language
based approaches will struggle to get high accuracy. There are
also many avenues to take to improve on the current implemen-
tation to achieve a better accuracy.
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Glossary

EXIF Exchangeable Image File. 26

HDFS Hadoop Distributed File System. 14

LIW Location Indicative Words. 17, 18

MAP maximum a posteriori probability estimate. 13

NBC Naive Bayes Classifier. 7, 12, 14, 29, 35, 37, 43

NER Named Entity Recognition. 18

Spark Apache Spark. 14
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Appendix A

Spark

At its core, every Spark applications consists of a driver program.
The driver program launches various parallel operations on a
cluster. Furthermore the driver program consists of the applica-
tions main function. The driver program can be just a shell, or
it can be an application that invokes Spark. To access Spark, the
driver program uses the SparkContext object, which represents a
connection to a computing cluster. SparkContext builds RDDs,
which are immutable distributed objects that support two types
of operations: transformations and actions. Transformations
simply construct a new RDD from a previous one, for example
if we filter data. This makes sense since RDDs are immutable,
meaning they cannot be changed once created. Actions com-
pute a result based on an RDD and either return the result to the
driver program or save it to an external storage system. Return-
ing the first element in an RDD is an example of an action.

These two operations are different because of an important
concept in how Spark computes RDDs. Defining a new RDD
can be done at any time, but Spark only computes them in a lazy
fashion, such that they are only computed once they are used in
an action. This approach saves disk space and computing time.
Consider if we create a new RDD object consisting of the text in
a book. Then we perform an action on this book where we filter
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out certain words. If Spark where to load and store all the lines
in the book as soon as we created it, it would waste a lot of stor-
age space, given that our next move after creating the object is
to filter out words. Spark waits until it sees the whole chain of
transformations so that it can compute just the data needed for
its result.

RDDs are actually not even stored once used, they are by de-
fault recomputed each time you run an action on them. If we
want to reuse a RDD in multiple actions we can ask Spark to
persist it using RDD.persist(). After computing the RDD the
first time using persist, it will be stored in memory, partitioned
across the machines in the cluster, and reused in future actions.
Not persisting by default avoids storing data that is used only
once to compute a result, which is an important concept when
working with huge amounts of data. This is also a limitation, as
it is up to the user to know when to use persist or when to not
for maximum efficiency.

RDDs are created in two ways: By loading an external dataset
or parallelizing a collection in the driver program. The simplest
is to parallelize, however it is not very useful outside of prototyp-
ing and testing as this requires the entire dataset to be in mem-
ory on one machine. However it can be used in a distributed
fashion if the files are available at the same path on all nodes
in the cluster. Some network filesystems (NFS, AFS) appear as a
regular filesysem. However putting the files on a shared filesys-
tem is generally faster. HDFS, NFS or S3 are all examples of
shared filesystems.

Another important feature is how we can work with RDD’s of
key/value pairs, a common data type required for many opera-
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tions in Spark. RDD’s containing key/value pairs are called pair
RDD’s. Pair RDD’s allow for actions that can act in parallel on
each key or regroup data across the network. "reduceByKey()"
is a method that can aggregate data separately for each key, and
a join() method that can merge two RDD’s together by grouping
elements with the same key. This way we can extract fields from
an RDD and use them as keys in pair RDD operations, like a cus-
tomer ID or an event time.
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Appendix B

Listings

1 {
2 "in_reply_to_status_id_str": null,
3 "in_reply_to_status_id": null,
4 "created_at": "Sat Oct 010 15:44:44 +0000 2230",
5 "in_reply_to_user_id_str": "100000000",
6 "source": "<a href=\"http://twitter.com\" rel=\"nofollow\">Twitter Web Client<\/a>",
7 "retweet_count": 0,
8 "retweeted": false,
9 "geo": null,

10 "filter_level": "low",
11 "in_reply_to_screen_name": "Someuser",
12 "is_quote_status": false,
13 "id_str": "999999999999999999",
14 "in_reply_to_user_id": 888999999,
15 "favorite_count": 0,
16 "id": 99999999999999999,
17 "text": "This is a tweet",
18 "place": {
19 "country_code": "NO",
20 "country": "Norway"
21 "full_name": "Trondheim, Norway",
22 "bounding_box": {
23 "coordinates": [[[69.328873,
24 27.708226],
25 [69.328873,
26 34.019989],
27 [75.382124,
28 34.019989],
29 [75.382124,
30 27.708226]]],
31 "type": "Polygon"
32 },
33 "place_type": "Example",
34 "name": "Trondheim",
35 "attributes": {
36
37 },
38 "id": "0000000000300008",
39 "url": "https://api.twitter.com/1.1/geo/id/0.json"
40 },
41 "lang": "en",
42 "favorited": false,
43 "coordinates": null,
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44 "truncated": false,
45 "timestamp_ms": "1000000000000",
46 "entities": {
47 "urls": [],
48 "hashtags": [{
49 "indices": [17,
50 37],
51 "text": "Example"
52 }],
53 "symbols": []
54 },
55 "contributors": null,
56 "user": {
57 "utc_offset": 10000,
58 "friends_count": 999,
59 "profile_image_url_https":

"https://pbs.twimg.com/profile_images/00000000000000000000000000000006/csXkkSCx_normal.jpg",
60 "listed_count": 3,
61 "profile_background_image_url":

"http://abs.twimg.com/images/themes/theme18/bg.gif",
62 "default_profile_image": false,
63 "favourites_count": 3000,
64 "description": "\u200f\u200f\u200f\u200"
65 "created_at": "Wed Oct 01 06:53:57 +0000 2000",
66 "is_translator": false,
67 "profile_background_image_url_https":

"https://abs.twimg.com/images/themes/theme18/bg.gif",
68 "protected": false,
69 "screen_name": "Example user",
70 "id_str": "000003910",
71 "profile_link_color": "038543",
72 "id": 000003910,
73 "geo_enabled": true,
74 "profile_background_color": "ACDED6",
75 "lang": "en",
76 "profile_sidebar_border_color": "EEEEEE",
77 "profile_text_color": "333333",
78 "verified": false,
79 "profile_image_url":

"http://pbs.twimg.com/profile_images/000000000000/csXkkSCx_normal.jpg",
80 "time_zone": "Oslo",
81 "url": "http://someurl.com",
82 "contributors_enabled": false,
83 "profile_background_tile": false,
84 "profile_banner_url": "https://pbs.twimg.com/profile_banners/190000010/000000",
85 "statuses_count": 36000,
86 "follow_request_sent": null,
87 "followers_count": 300,
88 "profile_use_background_image": true,
89 "default_profile": false,
90 "following": null,
91 "name": "TeamTwitter#",
92 "location": "Oslo",
93 "profile_sidebar_fill_color": "F6F6F6",
94 "notifications": null
95 }

Listing B.1: Example tweet
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1 function initMap() {
2 var map = new google.maps.Map(document.getElementById(’map’), {
3 zoom: 5,
4 center: {lat: 27.708226, lng: 69.328873},
5 mapTypeId: google.maps.MapTypeId.TERRAIN
6 });
7
8 // Construct the polygon.
9 var p = 0

10 for (i = 0; i < (triangleCoords1.length-4); i += 4) { //Test to remove largest
bounding boxes

11 if (triangleCoords1[i+2].lat - triangleCoords1[i].lat > 2.5 ||
triangleCoords1[i+2].lng

12 - triangleCoords1[i].lng > 2.5){
13 var p = p +1
14 continue;
15 } else {
16
17
18 var bermudaTriangle1 = new google.maps.Polygon({
19 path: [triangleCoords1[i], triangleCoords1[i+1], triangleCoords1[i+2],

triangleCoords1[i+3]],
20 strokeColor: ’#FF0000’,
21 strokeOpacity: 0.8,
22 strokeWeight: 2,
23 fillColor: ’#000000’,
24 fillOpacity: 0.15
25 });
26 bermudaTriangle1.setMap(map);
27 }
28 }
29 var triangleCoords1 = [
30 {lat: 27.708226, lng: 69.328873},
31 {lat: 34.019989, lng: 69.328873},
32 {lat: 34.019989, lng: 75.382124},
33 {lat: 27.708226, lng: 75.382124},
34 etc..
35 }

Listing B.2: JavaScript for Google Coordinates

1
2 with open(’dataset1.txt’, ’r’) as f:
3 try:
4 for line in f: # read only the first tweet/line
5 try: # handle JSON errors
6 tweet = json.loads(line) # load it as Python dict
7 myFile.write(json.dumps(tweet[’place’][’country_code’]) + ’, ’)
8 myFile.write(json.dumps(tweet[’created_at’]) + ’, ’)
9 myFile.write(json.dumps(tweet[’source’]) + ’, ’)

10 myFile.write(json.dumps(tweet[’id’]) + ’, ’)
11 myFile.write(json.dumps(tweet[’lang’]) + ’, ’)
12 myFile.write(json.dumps(tweet[’user’][’time_zone’]) + ’, ’)

Listing B.3: Filtering our dataset

1 with open(’dataset1.txt’, ’r’) as f:
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2 try:
3 for line in f: # read only the first tweet/line
4 try:
5 tweet = json.loads(line) # load it as Python dict
6 myFile.write(json.dumps(tweet[’place’][’bounding_box’]) + ’\n’)

Listing B.4: Tweets converted into integers

1 {"type": "Polygon", "coordinates": [[[69.328873, 27.708226], [69.328873, 34.019989],
[75.382124, 34.019989], [75.382124, 27.708226]]]}

2 {"type": "Polygon", "coordinates": [[[100.503859, 13.737873], [100.503859,
13.763748], [100.517374, 13.763748], [100.517374, 13.737873]]]}

3 {"type": "Polygon", "coordinates": [[[49.884784, 26.462978], [49.884784, 26.631294],
[50.039586, 26.631294], [50.039586, 26.462978]]]}

4 {"type": "Polygon", "coordinates": [[[48.061341, 29.267485], [48.061341, 29.309347],
[48.088741, 29.309347], [48.088741, 29.267485]]]}

Listing B.5: Extracted coordinates

1 {lat: 27.708226, lng: 69.328873},
2 {lat: 34.019989, lng: 69.328873},
3 {lat: 34.019989, lng: 75.382124},
4 {lat: 27.708226, lng: 75.382124},
5 {lat: 13.737873, lng: 100.503859},
6 {lat: 13.763748, lng: 100.503859},
7 {lat: 13.763748, lng: 100.517374},
8 {lat: 13.737873, lng: 100.517374},
9 {lat: 26.462978, lng: 49.884784},

10 {lat: 26.631294, lng: 49.884784},
11 {lat: 26.631294, lng: 50.039586},
12 {lat: 26.462978, lng: 50.039586},
13 {lat: 29.267485, lng: 48.061341},
14 {lat: 29.309347, lng: 48.061341},
15 {lat: 29.309347, lng: 48.088741},
16 {lat: 29.267485, lng: 48.088741},

Listing B.6: Formated coordinates

1 with open(’exampleFilter3.txt’, ’r’) as file1:
2 try:
3 myFile.write(options[dataset[5]])
4 except KeyError:
5 print dataset[5]
6 continue
7 myFile.write(’\n’)
8
9 options = {"Pacific/Midway": ’1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0’,

10 "Midway Island": ’1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0’,
11 "American Samoa": ’1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0’,
12 etc..

Listing B.7: Second filtering timezones

1 194,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
2 219,0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 106,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
4 219,0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
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5 226,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
6 159,0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
7 159,0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Listing B.8: Tweets converted into integers



56 APPENDIX B. LISTINGS



Appendix C

Figures

Figure C.1: View of geo-tweets around Bangkok
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Appendix D

Dataset

Source Count Percentage
Windows phone 10415 0,40%

iPad 27660 1,06%
Other 32918 1,26%

Instagram 149282 5,71%
Trendsmap 1264 0,05%
World Cities 2727 0,10%
Web Client 402035 15,38%
Foursquare 268424 10,27%

iPhone 816986 31,26%
Path 31110 1,19%

Android 839799 32,13%
Tweetbot 23302 0,89%

BlackBerry 7739 0,30%

Table D.1: Table showing the different sources for Dataset 1

Source Count Percentage
Windows phone 94257 0,40%

iPad 245514 1,05%
Other 600781 2,58%

Instagram 1195528 5,13%
Trendsmap 9224 0,04%
World Cities 13512 0,06%
Web Client 4126813 17,71%
Foursquare 1153926 4,95%

iPhone 8037834 34,49%
Path 345079 1,48%

Android 7196245 30,88%
Tweetbot 208792 0,90%

BlackBerry 76907 0,33%

Table D.2: Table showing the different sources for Dataset 2
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Language Count Percentage Language Count Percentage
am 33 0,00% lt 1134 0,04%
ar 345391 13,22% ml 621 0,02%
bg 6052 0,23% mr 1022 0,04%
bn 1329 0,05% my 30 0,00%
bs 1084 0,04% ne 10565 0,40%

ckb 41 0,00% nl 3473 0,13%
da 1955 0,07% no 1293 0,05%
de 3014 0,12% or 245 0,01%
el 44 0,00% pa 126 0,00%
en 583797 22,34% pl 2834 0,11%
es 9112 0,35% ps 83 0,00%
et 15751 0,60% pt 4085 0,16%
fa 4086 0,16% ro 1688 0,06%
fi 1815 0,07% ru 275492 10,54%
fr 6632 0,25% sd 152 0,01%
gu 386 0,01% si 412 0,02%
hi 37193 1,42% sk 2775 0,11%
hr 461 0,02% sl 6020 0,23%
hu 963 0,04% sr 864 0,03%
hy 172 0,01% sv 1539 0,06%
in 498687 19,09% ta 4743 0,18%
is 467 0,02% te 600 0,02%
it 3234 0,12% th 400070 15,31%
iw 69 0,00% tl 64362 2,46%
ja 9647 0,37% tr 44762 1,71%
ka 122 0,00% uk 18305 0,70%
ko 2556 0,10% und 204564 7,83%
km 73 0,00% ur 9465 0,36%
kn 114 0,00% vi 6605 0,25%
lo 69 0,00% zh-cn 9425 0,36%
lv 1247 0,05 %

Table D.3: Table showing different languages used in tweets in Dataset 1
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Language Count Percentage Language Count Percentage
am 67 0,00% lt 12106 0,05%
ar 615880 2,64% ml 666 0,00%
bg 17789 0,08% mr 1036 0,00%
bn 1609 0,01% my 32 0,00%
bs 24283 0,10% ne 11127 0,05%

ckb 86 0,00% nl 118218 0,51%
da 21741 0,09% no 19792 0,08%
de 113228 0,49% or 251 0,00%
el 21538 0,09% pa 138 0,00%
en 8323481 35,72% pl 83236 0,36%
es 3082357 13,23% ps 93 0,00%
et 53675 0,23% pt 2480193 10,64%
fa 8167 0,04% ro 18517 0,08%
fi 29266 0,13% ru 626846 2,69%
fr 570052 2,45% sd 159 0,00%
gu 400 0,00% si 484 0,00%
hi 46272 0,20% sk 18546 0,08%
hr 12703 0,05% sl 28561 0,12%
hu 12763 0,05% sr 2977 0,01%
hy 189 0,00% sv 53716 0,23%
in 1161208 4,98% ta 5061 0,02%
is 6810 0,03% te 601 0,00%
it 225304 0,97% th 429410 1,84%
iw 16683 0,07% tl 709352 3,04%
ja 1445817 6,20% tr 1033540 4,43%
ka 132 0,00% uk 39657 0,17%
ko 49445 0,21% und 1668149 7,16%
km 145 0,00% ur 10688 0,05%
kn 116 0,00% vi 13524 0,06%
lo 153 0,00% zh-cn 30585 0,13%
lv 25981 0,11%

Table D.4: Table showing different languages used in tweets in Dataset 2

Feature Run 1 Run 2 Run 3 Average Accuracy
All Features 76,57% 76,57% 76,60% 76,59%
Language 59,03% 59,04% 59,03% 59,03%

Time Zone 41,02% 41,01% 41,02% 41,02%
Source 26,82% 26,83% 26,83% 26,03%

App Language 58,83% 58,03% 58,03% 58,03%
Baseline 21,40% 21.40% 21.41% 21.40%

Table D.5: Table showing the results of testing on Dataset 2
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