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Abstract

Entity retrieval is an important part of information retrieval, and a large
number of search queries are entity oriented. This thesis focuses on per-
forming entity retrieval using an entity annotated corpus. For this purpose
we index the ClueWeb12 corpora, and use the FACC1 to create an index
of documents that are linked to entities. We adapt the document centric
expert retrieval model (a.k.a. Model 2) to entity retrieval and provide the
results for three different test collections. The results show that Model 2
achieves a varying score depending on the test collection. The best scores
are achieved for the REWQ ClueWeb dataset, with Model 2 achieving MAP
score of 0.2637 and P@10 score of 0.3676. A detailed discussion and analysis
of the datasets, and the model are presented in the thesis.



Sammendrag

Entitetsgjenfinning er en viktig del av informasjonsgjenfinning, og et stort
antall søk p̊a søkemotorer er orientert rundt entiteter. Denne oppgaven un-
dersøker mulighetene for entitetsgjenfinning p̊a entitet annotert korpus. For
å oppn̊a dette vil vi indeksere ClueWeb12 korpus, og bruke FACC1 til å lage
en indeks av dokumentene som er lenket til entiteter. Relatert forskning ble
vurdert, og eksisterende testsamlinger ble brukt i eksperimentene. I denne
oppgaven, vil vi tilpasse en ekspertgjenfinningsmodel, Model 2, og evaluere
modellen for tre forskjellige testsamlinger. Model 2 oppn̊adde en variende
score avhengig av testsamlingen. Den beste scoren ble oppn̊add for REWQ
ClueWeb datasettet, hvor Model 2 fikk en MAP score p̊a 0.2637 og en P@10
score p̊a 0.3676. En detaljert diskusjon og analyse ble utført av datasettene,
og modellen som ble brukt.
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Chapter 1

Introduction

The Internet has quickly become the primary source for information regard-
ing most topics. According to Bounie and Gille [7] the world generated 14.7
exabytes of new information in 2008. The enormous amounts of data being
produced is growing for each year. Information Retrieval (IR) is a broad
term that can be defined as the activity of obtaining information from an in-
formation source. In the context of computer science, the common approach
is a user that states an information need, and the IR system provides the
user with the requested information. Manning et al. [25] defined information
retrieval as:

“Information Retrieval (IR) is finding material (usually docu-
ments) of an unstructured nature (usually text) that satisfies an
information need from within large collections (usually stored on
computers).”

Information retrieval is used by hundreds of millions of people every day.
People use Web search engines, that employ information retrieval, several
times a day. The classic approach to information retrieval in Web search
engines is that the user provides a query, and the system returns a ranked
list of documents. Figure 1.1 shows a simplified approach to a Web search
engine.

One difficult task with the Web is the amount of new information gen-
erated each year. It is estimated that 90 % of the data in the world has
been created in the past two years1. This makes it increasingly difficult for

1http://www-01.ibm.com/software/data/bigdata/what-is-big-data.html
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Figure 1.1: Simplified flow in a Web search engine

the user to filter out irrelevant or unwanted data. Information need is also
dependent on the specific user, e.g. the same query from two different users
can give different satisfaction. Semantic search attempts to tackle this task
by understanding user intent and the context of the query. The goal is to
find the actual answers that meet the user’s information need, by combining
text and structure.

Entities are unique objects or things. Examples of entities can be a
person, a location, a service, etc. Figure 1.2 shows an entity that is returned
when entering the query string “Brad Pitt” in Google 2.

Figure 1.2: Example of an entity

2https://www.google.com/?q=Brad+Pitt
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Search for entities makes up a large portion of all Web search queries.
Lin et al. [24] collected a frequency-weighted query sample of 200 queries,
and examined each query to determine if it contains an entity. Queries were
divided into six groups:

• Contains an entity

• Contains an entity and refiner words

• Contains an entity category (e.g., “car battery”)

• Contains an entity category and refiner words

• Contains a website entity (URL or website name)

• All other queries

To illustrate what constitutes a refiner word, we can look at the example
query “download PDF”. In this query, “download” is the refiner word and
“PDF” is the entity.

Figure 1.3 shows the distribution of the Web search queries. 43 % of
the queries contain an entity, 14 % contain an entity category, 28 % contain
a website name or url, and 15 % do not contain any entity. An important
assessment that can be made about the distribution, is that users know what
they are looking for, but not where to find the information. This is where
entity retrieval plays an important role in semantic search.

Entities play a central role in information retrieval, and have seen an
increase in attention from the research community. Linked Data is essential
for semantic search and entity retrieval. Knowledge bases as DBpedia3 and
Freebase4 are used to link documents or queries to entities.

The important role of entities in IR is a huge motivation for continued
research into entity retrieval. In this thesis we will take a further look at
entity retrieval. Information retrieval is an important asset that people use
every day, and there are clearly optimizations that can be done to achieve
better results to queries. Entity retrieval is also gaining traction in the public
domain. Services like Siri, Google Now and Wolfram Alpha are examples of
commercial usages of entity linking and entity retrieval.

3http://wiki.dbpedia.org/
4https://www.freebase.com/
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Figure 1.3: Distribution of Web search queries [24]

1.1 Context

This thesis is part of Faegheh Hasibi and Krisztian Balog’s current work in
the field of entity-oriented search, which includes entity retrieval and entity
linking. Table 1.1 shows the context for the thesis. Hasibi and Balog have
already implemented generative models using DBpedia as the data source.
We will implement generative models using an annotated corpus as the data
source.

Data Source Model
Generative Discriminative

KB DBpedia [5], [42] -
Annotated Corpus this thesis [36]

Table 1.1: Overview of context
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1.2 Project Goals

The problem that we want to address in this thesis is how to perform entity
retrieval on annotated corpus using generative models. To achieve this we
want to develop a system that is able to preprocess the ClueWeb corpus [34],
and replace entity mentions in ClueWeb with the corresponding annotations
from FACC [15]. The system will then index the preprocessed data. We
will also implement Model 2 from the “Formal Models for Expert Finding in
Enterprise Corpora” paper [5], and evaluate the results.

The problem can be divided into four main tasks.

1. Preprocess ClueWeb data

2. Index the preprocessed data

3. Implement Model 2 from the “Formal Models for Expert Finding in
Enterprise Corpora” paper

4. Evaluate Model 2, and compare it to some baselines

The input to the first task will be both the ClueWeb dataset and the
FACC dataset. After the index is created, and the models are implemented,
we will use the queries from the DBpedia entity test collection [4], REWQ
Robust04 and REWQ ClueWeb12 [36] test collections as the input. The
system will perform entity retrieval using Model 2 on the queries, and the
output will be a ranked list of entities.

1.3 Thesis Outline

The thesis is organized as follows:

• Chapter 1: Introduction to the thesis and project goals.

• Chapter 2: Introduces the background theory and literature review of
the thesis.

• Chapter 3: Describes in detail our approach to the problem.

• Chapter 4: Presents details on the implementation of the system.
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• Chapter 5: Presents the results, evaluation and a discussion of the
results obtained.

• Chapter 6: The final conclusion of the thesis, and recommendations for
future work.
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Chapter 2

Background

This chapter will provide the background information needed to understand
the thesis. The following topics will be introduced and explained: informa-
tion retrieval, entity linking, entity retrieval and language models.

2.1 Retrieval Model

In information retrieval, there are a variety of different models that can
be used to accomplish your task. The models can be divided into three
different categories: set-theoretic models, algebraic models and probabilistic
models [1]. Set-theoretic models represents documents as a set of words
or phrases. Boolean model is a well-known set-theoretic model. Algebraic
models represents documents and queries as vectors, matrices or tuples. An
example of an algebraic model is the vector space models, which represents
documents and queries as vectors. The last category is probabilistic models,
where a user’s information needs are translated into query representations,
and documents are converted into document representations. Probabilistic
models try to estimate the probability of a document being relevant to an
information need. Language models are a type of probabilistic models [25].

2.1.1 Language Model

Language models originally came from probabilistic models developed for
automatic speech recognition systems, where the goal was to predict the
next term based on the terms already spoken [35]. The approach of applying
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language models to ad-hoc document retrieval was proposed by Ponte and
Croft [32] in 1998. Since then, there have been proposed many variations to
the LM approach.

A language model is a probability distribution of a sequence of words.
Given a sequence, the language model will assign a probability to the whole
sequence. When used in information retrieval, each document d is used
to estimate a language model. The model is then used to calculate the
probability of any word sequence. This is used to rank documents according
to their probability of generating the query q, i.e. P (d|q). There are three
common steps for retrieval based on LM:

1. Infer a LM for each document

2. Estimate the probability of generating the query according to each of
the language models

3. Rank the documents according to the probabilities

An important issue with language models is smoothing, where you adjust
the probability of terms to compensate for data sparseness. Smoothing in
models is used to avoid zero probabilities, and as a part of the term weight
component. There are a wide number of approaches to smoothing probability
distributions, however we will focus on two approaches, Jelinek-Mercer and
Dirichlet [41].

Standard language model approach:

P (d|q) =
P (q|d)P (d)

P (q)
∝ P (q|d)P (d) (2.1)

P (d) is the probability of the document being relevant to any query.
P (q|d) is the query likelihood, i.e. the probability that a query q is produced
by document d.

P (q|d) =
∏
t∈q

P (t|θd)n(t,q) (2.2)

P (t|θd) = (1− λ) · P (t|d) + λP (t|C) (2.3)

n(t, q) is the number of times term t appears in query q.
P (t|d) estimates a multinominal probability distribution from the text.

14



P (t|C) smooths the distribution by using probability from the entire collec-
tion.
λ is the smoothing parameter.

Figure 2.1 depicts how the document language model is calculated. The
first square is a document, and the colored circles are different terms. A
multinomial probability is estimated based on the terms in the document,
and is then smoothed by using probability from the entire collection. This
gives us the final box with the probability distribution of the term.

Figure 2.1: Document language model

Ogilvie and Callan [31] present a paper that investigates combining doc-
ument representations for known-item search. Known-item search is an im-
portant task where the user knows about a particular document, but not
the location of the document. The paper experimented with two different
approaches, a mixture-based language model and meta-search algorithms.
Equation 2.4 shows the mixture-based language model that is proposed in
the paper.

P (w|θD) =
k∑

i=1

λiP (w|θD(i)) (2.4)
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k is the number of language models, D(i) is the document’s ith presentation,
and λi is the weight of the model θD(i) . The probability distribution of each
model θD(i) is estimated by taking a linear interpolation of the maximum
likelihood estimate of the text observed in the ith document representation,
and a collection language model is estimated from all the document repre-
sentations of the same type in the collection.

The authors came to the conclusion that the best meta-search algorithms
did not perform as well as the mixture-based language model. We will im-
plement language models and this paper supports the notion that language
models are a good approach to entity retrieval.

2.2 Entity Linking

Entity linking is the process of recognizing entity mentions in a text, and
linking them to a reference in a knowledge base [21]. The entities are usually
gathered from a knowledge base, e.g. Wikipedia or Freebase. Entity linking
provides the text with a context, which makes it possible to understand the
text. We differentiate between entity linking where the text are documents
or queries. Figure 2.2 shows an example text with entities being linked to
a knowledge base. In this example we have used Freebase as the knowledge
base, and we can see that “Brad Pitt”, “Actor”, and “Golden Globe Award”
have been linked to entities in Freebase.

16



Figure 2.2: Example of entity linking

2.2.1 Entity Linking in Documents

The Wikify! System [28] is one of the earliest approaches of entity linking
in documents. The system identifies the important concepts in an input
document, and automatically links the concepts found to the corresponding
Wikipedia articles. The concept detection is done by extracting all n-grams
that match Wikipedia concepts and filtering them. The entity disambigua-
tion is accomplished by a combination of knowledge-based and feature-based
learning approaches. The evaluation of the system showed that automatic
annotations are reliable, and almost indistinguishable from manual annota-
tions.

17



Milne and Witten [29] proposes a machine learning approach to entity
linking in documents, with Wikipedia as the knowledge base. The link de-
tector and disambiguator used in the system, provides recall and precision of
almost 75 %. Wikipedia was used as a training set. The approach was tested
on new documents from a different text corpus, and the results indicated
that the algorithm works on other text corpora than Wikipedia.

The research in entity linking in documents proves that automatic anno-
tations are reliable. It is also evident that it is possible to perform entity
linking on documents from other sources than Wikipedia.

2.2.2 Entity Linking in Queries

Hasibi et al. [21] presents a paper where they discuss entity linking in queries.
Two major tasks are discussed, which are semantic mapping and interpreta-
tion finding. There is an important distinction between the tasks. Semantic
mapping is used to give users suggestions that could benefit navigation or
contextualization. Interpretation finding is used to find semantically related
entities mentioned in a query, and return several sets if the query has multiple
interpretations. An interpretation is defined as a set of entities. This paper
provided us with domain understanding of entity linking, and the difference
between semantic mapping and interpretation finding.

Meij et al. [26] proposed an approach to adding semantics to microblog
posts, and automatically link the tweets to corresponding Wikipedia arti-
cles. The paper proposes a novel method based on machine learning, and
also shows that recently proposed approaches for semantic linking does not
perform well on microblog posts.

While this research provides us with knowledge on entity linking, our
research will be focused on entity retrieval and use a different knowledge
base than Wikipedia. It was still useful to gather valuable information on
entity linking, and the issues with heterogeneous datasets.

The Entity Recognition and Disambiguation (ERD) challenge [8] main
goal was to promote research in recognition and disambiguation of entities
in unstructured text. The task is that given an input text and a knowledge
base, the system should recognize entity mentions in the input text, and link
them to entities in the knowledge base. The challenge included two tracks,
one long-text track for documents, and one short-text track for Web search
queries. The challenge requested the output from the short-text track to be
a set of valid entity linking interpretations of the query. The ERD challenge

18



garnered a lot of attention, and 27 teams submitted final results. We will
present some of the approaches to the challenge.

Hasibi et al. [20] proposed an approach that uses a three-stage pipeline,
where the system first detect candidate entities, score the entities, and finally
finds the interpretation sets for the input query. The focus for the first
stage, candidate detection, is to obtain high recall. This is accomplished
by generating all n-grams of the query, and performing lexical matching
between n-grams and entity names. The second stage, entity scoring, was
accomplished by scoring the identified candidate entities using a learning-
to-rank approach. Two datasets were used as the ground truth, the query
annotations from the ERD challenge [8] and the Yahoo! webscope dataset
1. After getting a score for each candidate entity, the last stage involves
finding all the valid interpretations of the query. The paper proposed a
greedy algorithm for the interpretation finding, which takes a list of ranked
entities as the input, and outputs zero or more interpretation sets associated
with the query.

Chiu et al. [10] presented a system, NTUNLP, for both tracks in the
challenge. The NTUNLP team was the winner of the first prize in the ERD
challenge 2014 for the short track. This was accomplished by first creating an
alias dictionary with the surface forms of Freebase IDs. The query text was
then scanned from left to right with string matching between the dictionary
and the substrings of the query. Inappropriate surface forms were eliminated
using a stop word list based on the commonness of the words. Finally, the
system was integrated with TAGME [16] and Wikipedia article titles were
used to improve the system performance. NTUNLP did not handle multiple
interpretations, but only generated the top interpretation.

Cornolti et al. [11] presented a paper where they propose the SMAPH
system, which uses a pipeline of four main steps. First, search results are
fetched from a search engine given the query to be annotated. Then search
result snippets are parsed by looking at the bold parts of the search snippets
to identify candidate mentions. Following is the candidate generation step,
where candidate entities are generated from the Wikipedia pages occurring
in the search results, and from an existing annotator. The last step is prun-
ing, which is implemented by using a binary SVM classifier to decide which
entities to keep or discard.

The TAGME system [16] is used in both the NTUNLP and SMAPH sys-

1http://webscope.sandbox.yahoo.com/
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tems. The TAGME system takes plain-text and annotates it with hyperlinks
to Wikipedia pages. TAGME is able to annotate short-texts such as search-
engine results, tweets, etc. Hasibi et al. [22] tested the reproducibility of the
TAGME system, and showed that TAGME could in fact be extended to the
task of entity linking in queries.

2.3 Entity Retrieval

Entity retrieval is a way to address information needs that are better an-
swered by returning specific objects, also called entities, instead of just any
type of document. Entity search is the most popular type of Web search [33],
and has attracted interest in the research community.

Figure 2.3 shows an example of entity retrieval used in a commercial
search engine. The query input in Google is “museums in amsterdam”. The
entities in this query is “museums” and “amsterdam”. The search engine
interprets the query, and understands based on the entities that the informa-
tion need is museums located in Amsterdam. As can be seen in Figure 2.3,
a list of museums located in Amsterdam is returned as the top result.

Figure 2.3: Example of entity retrieval

Zhiltsov et al. [42] proposes a novel retrieval model that incorporates term
dependencies into structured document retrieval, and use it in the task of
Entity Retrieval in the Web of Data (ERWD). The proposed model, FSDM,
replaces a single document language model, with a mixture of language mod-
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els for each document field. The model is an extension of the dependence
model, with respect to multi-fielded entity descriptions.

Balog et al. [5] paper on “Formal Models for Expert Finding in Enterprise
Corpora” introduces two general models for expert finding. Expert finding is
similar to entity retrieval. Experts are another type of entities, with the same
qualities. The two different approaches were compared in the evaluation.
The paper found that Model 2 performs better than Model 1 in almost all
measures. The measures used in the paper is Mean average precision, R-
precision, mean reciprocal rank, precision@10 and precision@20.

This paper provided us with Model 2, which proved to have excellent
performance compared to other unsupervised techniques. Model 2 will be
implemented and used in this research paper. Balog et al. [5] used TREC
Enterprise corpora to evaluate the models. However we want to evaluate the
model on the ClueWeb12 dataset with the corresponding Freebase annota-
tions.

There has been an effort to create test collections for entity retrieval.
Vries et al. [39] created a test collection for entity retrieval in Wikipedia.
The goal is to evaluate how well systems are able to rank entities based on
a query. The track consists of triples of type <category, query, entity>.
“category” specifies the type of entities, “query” contains the information
need, and “entity” contains a list of example entities. A new version of the
INEX-XER track was made available in 2009, using the new Wikipedia 2009
XML data, based on a Wikipedia dump taken in 2008 [14].

Balog et al. [2] presented the TREC 2010 entity track, which was another
effort to create a test collection for entity retrieval. However, the TREC
entity track uses a different corpora than the INEX-XER track. ClueWeb
is used as the knowledge base. Entities are represented by their homepages,
and the homepage URL is used as the unique identifier. Wikipedia pages
were not accepted as entity homepages, which also makes the test collection
different from the INEX-XER track. The main task was that given an input
in free text consisting of an entity, the type of the target entity or location,
and the relation. Then the output should be homepages of related entities,
and optionally the name of the entity.

Balog et al. [3] presented a few changes to the TREC 2010 entity track.
The TREC 2011 entity track’s main change is the usage of the Sindice-2011
corpus, a semantic Web crawl, instead of the BTC-2009 collection that was
used in the 2010 entity track. The reasons given for this change is that
the new corpus is a larger and more representative linked open data (LOD)
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crawl, and that examples are not mapped manually to LOD, but rather given
as ClueWeb document identifiers. A new pilot task was introduced, REF-
LOD, which wanted to explore the differences between ranking Web data and
semantic Web data. REF-LOD is very similar to the main task in the TREC
2010 entity track, with the difference being that results should be identified
by their LOD URIs instead of their homepages.

Balog and Neumayer [4] presented another test collection for entity search
based on the DBpedia knowledge base. The test collection is explored in more
detail in Chapter 2.4.3.

2.4 Data

We will be using five datasets for this thesis. The first is the ClueWeb
dataset that contains English Web pages. The second dataset is the Freebase
Annotations of the ClueWeb Corpora (FACC), which contains annotations
of the ClueWeb dataset. The three remaining datasets are test collections,
namely the DBpedia entity test collection, REWQ Robust04 and REWQ
ClueWeb12.

2.4.1 ClueWeb

The ClueWeb12 dataset [34] consists of 733,019,372 English Web pages. The
pages have been collected between February 10, 2012 and May 10, 2012. Most
of the documents were collected by using the Internet’s Archive Heritrix
Web crawler 2. The crawlers were configured to capture page text, css,
html, javascript, images, and http response header. Multimedia files, i.e.
audio and video files, were left out of the crawling. The documents were
then processed by a series of requirements. The documents that did not
pass the requirements were removed. The requirements included removing
non-English documents, documents from domains that appear to contain
adult content, and documents larger than 10 megabytes. The dataset was
then divided into segments of approximately 50 million documents, and each
segment was divided into warc files that are approximately 1 GB in size
uncompressed. WARC is an archive format specified to contain different
digital resources in the same archive 3. Each WARC file consists of a series

2https://webarchive.jira.com/wiki/display/Heritrix
3http://www.digitalpreservation.gov/formats/fdd/fdd000236.shtml
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of records, that have a WARC-TREC-ID as the document identifier.

Size compressed 5.54 TB
Size uncompressed 27.3 TB

Number of WARC files 33,447
Number of documents 733,019,372

Table 2.1: Statistics for ClueWeb12

We will be using the ClueWeb12 B13 dataset, which is a 7 % uniform
sample of the full dataset. ClueWeb12 B13 was created by taking every 14th
document from each of the WARC files in the complete dataset. Table 2.4.1
and Table 2.4.1 show the statistics for the datasets.

Size compressed 389 GB
Size uncompressed 1.95 TB

Number of WARC files 33,447
Number of documents 52,343,021

Table 2.2: Statistics for ClueWeb12 B13

Preprocessing ClueWeb
The ARSC team [30] indexed the Category “B” subset of the ClueWeb09
collection , using a divide and conquer method, across the separate ClueWeb
subsets for 1, 2 and 3-grams . The ClueWeb data was preprocessed to remove
HTML-tags, since Lucene only processes plain text documents. Markup lan-
guages must be removed before indexing. The preprocessing of the ClueWeb
data took approximately 1705 CPU hours to compute. The paper states that
the team utilized several systems to accomplish the work. The processing
of the ClueWeb dataset and Lucene indexing, was computed using ARSC’s
“Midnight”. “Midnight” is a supercomputer cluster with 2312 processors
and a peak performance of 12.8 teraflops. A teraflop is a measure of a com-
puter’s speed, and can be expressed as a trillion floating point operations per
second. Midnight consists of 358 “small” nodes, with two dual-core Opteron
processors, and 55 “large” nodes with eight dual-core Opteron processors.
Nodes provide 4 GB of memory per processor core.

Multiple jobs, each with multiple Lucene threads, were needed to com-
plete the indexing. The paper used index merging, which takes multiple
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indexes and merges them into one index. The indexer was multithreaded,
and created a set of indexes in parallel during the program’s run. The indexes
were then merged into a single final index.

The research paper provides us with knowledge about ClueWeb prepro-
cessing. It is time-consuming, and computationally expensive to preprocess
the dataset. We will be working on a newer version of the ClueWeb col-
lection, namely the ClueWeb12 collection. The dataset is larger, which has
to be taken into consideration when comparing the findings of the ARSC
team. The research also made us aware of the importance of parallelizing
the preprocessing and indexing.

2.4.2 FACC1

The FACC1, Freebase Annotations of the ClueWeb Corpora v1, [15] consists
of annotations of the ClueWeb12 dataset. Researchers at Google were re-
sponsible for annotating the ClueWeb12 dataset, and made the annotations
publicly available. The annotations are stored with the extension tsv, tab
separated values.

Table 2.3 shows an excerpt from a FACC file. The first column is the
WARC-TREC-ID, which is unique for each annotation. The second column
is the original encoding, that was used to find the annotation. The third
column is the entity mention that has been detected in the ClueWeb data.
The fourth and fifth columns are the beginning and end byte offsets for
the entity mention. This is where the entity mention is located in the given
ClueWeb record. The beginning byte offset’s zero location is at the beginning
of the HTTP header. The sixth and seventh columns are two confidence
levels. However, they are calculated differently. The first confidence level is
the posterior probability of an entity given both the mention and the context
of the mention. The second confidence level is the posterior probability given
just the context of the mention, excluding the mention string. Finally, the
last column is the Freebase identifier for the entity mention. The Freebase
identifier can be used to look up the entity mention in Freebase, just prepend
each ID with “http://www.freebase.com”.
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WARC ID Encoding Entity Begin End Confidence Confidence Freebase ID
clueweb12-
0000tw-
00-
00000

UTF-8 Flash
Player

12770 12782 1.000000 0.024096 /m/05qh6g

clueweb12-
0000tw-
00-
00001

UTF-8 Flash
Player

12815 12827 1.000000 0.024096 /m/05qh6g

clueweb12-
0000tw-
00-
00002

UTF-8 Flash
Player

12848 12860 1.000000 0.024096 /m/05qh6g

clueweb12-
0000tw-
00-
00003

UTF-8 Flash
Player

12912 12924 1.000000 0.024096 /m/05qh6g

Table 2.3: Excerpt from FACC file 0000tw.anns.tsv

2.4.3 DBpedia Entity Test Collection

Balog and Neumayer [4] presents a paper that develops an entity search test
collection based on the DBpedia knowledge base. The collection is made
publicly available, and consists of 485 queries, and corresponding relevance
judgements. The paper presented baseline results and showed limitations of
methods based on language models and BM25.

This research paper provides us with an entity test collection based on
DBpedia. The test collection will be used in the experiments and evaluation
of the models implemented in this paper. However, the test collection uses
DBpedia as a knowledge base, while we will be using Freebase. This will
require some modifications to be made to the test collection before taking it
into use.

The test collection consists of two text files, queries.txt and qrels.txt.
The first text file contains the 485 queries, which have been collected from
different sources.

• 100 queries from the INEX 2012 Linked Data track

• 55 queries from the INEX 2009 Entity Ranking track

• 140 queries from the Question Answering over Linked Data Challenge
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• 130 queries from the entity search task of the 2010 and 2011 Semantic
Search Challenge

• 43 queries from the list search task of the 2011 Semantic Search Chal-
lenge

• 17 queries from the TREC 2009 Entity track

The qrels text file contains the relevance judgements for the queries. Table
2.4 shows an excerpt from the queries text file,and table 2.5 shows an excerpt
of relevance judgements for the queries.

INEX LD-20120111 vietnam war movie
INEX LD-20120112 vietnam war facts

Table 2.4: Excerpt from queries.txt

INEX LD-20120111 <dbpedia:War film>
INEX LD-20120111 <dbpedia:Platoon (film)>
INEX LD-20120112 <dbpedia:Vietnam during World War I>
INEX LD-20120112 <dbpedia:Vietnam War casualties>

Table 2.5: Excerpt from qrels.txt

2.4.4 Ranking Entities for Web Queries (REWQ) dataset

Schuhmacher et al. [36] present a paper that proposes two datasets for eval-
uating entity ranking for Web queries. The paper studies queries from the
document retrieval benchmarks: TREC Robust04 dataset, and TREC Web
13/14 dataset.

The relevance judgements for the datasets are created by using a docu-
ment retrieval system to collect the top results. For the Robust04 dataset,
an entity-aware document retrieval method, EQFE [13], was used to retrieve
the top results for a query. Entity links are used to produce the document
ranking, and they are created with KBBridge [12]. The queries are gath-
ered from the TREC Robust Track ’04. The top 25 performing queries of
the EQFE system on the dataset are chosen and the top 19 documents for
each query are collected. For each query the 50 entities with the highest

26



mention frequency were picked. The final dataset consists of 1250 relevance
judgements.

The second dataset created to benchmark entity ranking is based on the
TREC Web 13/14 dataset, with the ClueWeb12 corpus. The dataset uses
FACC1 for the entity annotations. FACC1 is described in Chapter 2.4.2.
22 queries were randomly picked from the TREC Web 2013/2014 dataset.
The Sequential Dependency Model (SDM, [27]) is used to retrieve the top
20 documents. The final dataset consists of all entities per query. However,
entities that occurs less than three times are filtered out.

A learning-to-rank approach was used where different features are stud-
ied that use documents, entity mentions, and knowledge base entities. Two
learning-to rank methods were used in the paper, namely the Ranking Sup-
port Vector Machine (SVM, [23]), and an algorithm to optimize an under-
lying retrieval metric directly, which has been implemented in the RankLib
package 4.

4http://people.cs.umass.edu/ vdang/ranklib.html
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Chapter 3

Entity Retrieval Approach

This chapter contains the models that will be implemented, compared and
evaluated. Language model will be used as the baseline method, which the
other implementations will use for comparison of the evaluation measures.

3.1 Indexing

The first step in our approach is to create the index. We want to create
an index for the ClueWeb B13 collection. Before the index can be created,
we preprocess the data by removing HTML and markup tags from each
document. The index will be created with three fields of different types.
Table 3.1 shows the three field names and corresponding types.

Field name Field type
ID ID
contents TEXT TVP
contents annotated TEXT NTVP

Table 3.1: Field names and field types for the index

The different field types contain different properties. ID is indexed, stored
and tokenized. TEXT TVP is stored, indexed and tokenized with term vec-
tors and positions. TEXT NTVP is not stored, but it is indexed and to-
kenized with term vectors and positions. The “ID” field will contain the
unique document identifiers, which is the WARC-TREC-ID for each record
in the WARC files in the ClueWeb B13 collection. The WARC ID is also used
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in the FACC collection to denote the relationship between a warc record and
an annotation. The “contents” field is used for the content of the documents.
The content will first be preprocessed by stripping away HTML and markup
tags, and stop words will be removed. The last field, “contents annotated”,
and the only field that is not stored, will also contain the contents of the
documents. However, in the “contents annotated” field, the annotations in
the documents are replaced with the FACC identifier.

Instead of running a single indexing procedure for the whole collection, we
will index each subfolder of the ClueWeb collection separately. The ClueWeb
collection consists of 20 sub-folders. The reason for indexing each subfolder is
that it makes it easier to parallelize the indexing. We can initiate several runs
simultaneously. After the subfolders are indexed, we will merge the indexes
to create one final index with the whole Clueweb B13 collection indexed.

In Figure 3.1 we can see an illustration of the indexing procedure for
the whole collection. Multiple instances of the system is run for different
subfolders of ClueWeb. After the indexes are created, they are given as
input to the merge indexer who produces the final merged index.
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Figure 3.1: Illustration of the indexing procedure

3.2 Retrieval Models

In this section, we will introduce Model 1 and Model 2 from Balog et al.
[5], and explain why Model 2 was chosen to be implemented. Model 1 and
Model 2 are both used for expert finding in enterprise corpora in [5]. Expert
finding is similar to entity retrieval, since experts are just another type of
entities. We will implement Model 2, and compare it to the baselines using
evaluation measures.
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For Model 1 and Model 2 we need to estimate the probability that a docu-
ment d is associated with entity e. The associations a(d, e) have already been
made available for each document and entity. They are found in the FACC
dataset, which we will use when implementing the system. We distinguish
between two different ways of estimating the probabilities of the associations.
The document-centric perspective is to estimate the probability p(d|e). This
is expressed as:

p(d|e) =
a(d, e)∑

d′∈D a(d′, e)
(3.1)

D is the set of documents, in our case this are the documents from the
ClueWeb dataset that the FACC has annotated. If we use p(d|e) to rank
documents, the top documents will be the ones that the entity e are strongest
associated with.

The second way to estimate the association between documents d and
entities e, is the candidate-centric perspective. The probability we want to
estimate here is p(e|d) and is expressed as:

p(e|d) =
a(d, e)∑

e′∈E a(d, e′)
(3.2)

E is the set of possible entities. The candidate-centric perspective is different
from the document-centric perspective, since here we will find the entity that
made the biggest contribution to the document d.

3.2.1 Model 1

An entity in this model is represented by a multinomial probability distri-
bution over the terms, P (t|e). Model 1 uses smoothing, since P (t|e) may
contain zero probabilities. An entity model θe is inferred for each entity. The
probability of a term given the entity model is P (t|θe). n(t, q) is the num-
ber of times t occurs in q. If the number is greater than zero, that means
that the query is represented by a set of terms. θe is the entity model. The
query likelihood is calculated by taking the product across all the terms in
the query:

P (q|θe) =
∏
t∈q

P (t|θe)n(t,q) (3.3)
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P (t|θe) is constructed by taking a linear interpolation of the background
model P (t), and the smoothed estimate:

P (t|θe) = (1− λ) · P (t|e) + λP (t) (3.4)

P (t|e) is calculated by taking the product of the maximum likelihood esti-
mate of the term in a document, and the document-entity association. This
is calculated for all the documents, which gives an estimate of P (t|e). Using
a document-centric perspective, this can be expressed as:

P (t|e) =
∑
d

P (t|d)P (d|e) (3.5)

or by using a candidate-centric perspective:

P (t|e) =
∑
d

P (t|d)P (e|d) (3.6)

The final Model 1 is then:

P (q|θe) =
∏
t∈q

[(1− λ)(
∑
d

P (t|d)P (d|e)) + λP (t)]n(t,q) (3.7)

Model 1 uses all the term information from all the documents associated
with the entity, and uses this to construct the entity’s language model. The
entity model is then used to score each query, which is how likely the entity
would produce a certain query.

3.2.2 Model 2

The probability of P (q|e) is computed by assuming conditional independence
between the query and the entity.

By taking the sum of all documents, we obtain P (q|e). There are two
ways to express this, the document-centric way and the candidate-centric
way.

Document-centric:

P (q|e) =
∑
d

P (q|d)P (d|e) (3.8)
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Candidate-centric:

P (q|e) =
∑
d

P (q|d)P (e|d) (3.9)

P (d|e) is the probability of a document given an entity, and P (e|d) is the
probability of an entity given a document.

P (q|d) is the query likelihood, which is the probability of a query given
the document. This is estimated by:∏

t∈q

P (t|θd)n(t,q) (3.10)

The final Model 2 is:

P (q|e) =
∑
d

[[
∏
t∈q

((1− λ)P (t|d) + λP (t))]n(t,q)]f(d, e), (3.11)

f(d, e) is P (d|e) or P (e|d) depending on if a document-centric or candidate-
centric perspective is used.

The process of the model can be simplified to:

1. Given a collection of documents, determine a set of relevant documents
Dq by ranking them according to the query, and calculating P (q|d)

2. Examine each document in Dq, and look at the entities associated with
the document

3. Calculate P (d|e) or P (e|d) for each document

4. Finally calculate P (q|e) by taking the sum for all documents of P (q|d) ·
P (d|e)

Model 2 differs from Model 1 because an entity model is not directly
created. Model 1 creates an entity model as a textual representation of the
entity, and uses the representation to assess how probable the entity is to
produce the given query. This is quite different from Model 2, where the
documents act as a separator between the query and the entity. Another
difference between the models is that Model 2 can be implemented on top of
a standard document index, while Model 1 requires a separate entity-term
index to be created and maintained. Model 2 was chosen for implementation,
since it outperforms Model 1 on nearly all the measures [5].
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Chapter 4

Implementation of System

This chapter will give a detailed explanation of the implementation of the
system. The goal of the system is to perform entity retrieval on an anno-
tated corpus, using language model and Model 2. The input of the system
will be a set of queries, and the output should be a ranked list of entities. To
achieve the project goals, we need to implement a system that preprocesses
the ClueWeb data and creates a Lucene index of the preprocessed data. The
index will later be used to evaluate the models and other baselines. There
were several challenges with preprocessing the dataset due to heterogeneous
data. The data consists of Web documents, which can be in different encod-
ings and contains page text, css, xml, html, javascript and images. The size
of the ClueWeb data made some optimizations necessary to get a reasonable
execution time.

The pipeline of the system is demonstrated in Figure 4.1. Input is given
to the preprocessor, which then cleans the data, and replaces the entity
mentions with annotations. The cleaned data is given to the indexer, which
creates the Lucene index.
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Figure 4.1: Pipeline of the System

4.1 Preprocessing of ClueWeb12

The first step in the system is to preprocess the data. This is divided into
two tasks

1. Finding the entity mentions in the ClueWeb data, and replacing them
with the entities.

2. Cleaning up the ClueWeb data by converting the files to plain text.

The non-trivial task is the first task. Finding the entity mentions with the
given offsets requires a system, that has to clean the entity mentions found
and the annotations. There are also numerous edge-cases, that makes the
task more difficult. The WARC files in the ClueWeb dataset contains records
with several different encodings. The data is collected from Web pages, which
contains HTML, CSS and JavaScript. They are all considered noise in the
context of the preprocessing. We want to remove all the tags, and only keep
the plain text.

We need to group each WARC file with its corresponding FACC1 file
containing the annotations. Each record in a WARC file has a document
identifier (WARC-TREC-ID). Table 2.3 from the FACC file shows that each
annotation is also stored with a WARC-TREC-ID. The data is traversed,
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using the document identifier to find the annotations in the records. The byte
offsets from the FACC1 are used to find the entity mentions. To make sure
we have found the correct entity mention with the byte offsets, we compare
the found entity mention with the entity mention in the annotation. The
found entity mention is then replaced with the Freebase identifier. After the
entity mentions are replaced, we clean the whole text and continue to the
next record.

Figure 4.2 shows an excerpt of the preprocessing of record clueweb12-
0000tw-00-00013 in the warc file 0000tw-00. Two copies of the content of the
warc file is created, one with entities replaced in the content, and another
with just the cleaned content. The cleaned text and the entity replaced text
are both needed for the index. We can see in Figure 4.2 that the cleaning
process removes everything contained in the script tag, and also removes the
HTML tag, but keeps the content inside the HTML tag.
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Figure 4.2: Excerpt of the preprocessing of the warc file 0000tw-00

4.1.1 Replacement of Entities

The first step was to find the entity mentions in the ClueWeb collection, and
replace them with the Freebase IDs. This was achieved by going through all
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the FACC files for each WARC file, and locating the annotations. The FACC
file containing the annotations, contained the byte offsets to each annotation.
The byte offsets were used to find the entity mention. We also compared the
found entity mention with the entity mention from FACC, to make sure we
found the correct entity mention.

After a match was found for an annotation, the bytes containing the
annotation was added to a list, annotation bytes. The annotations (Freebase
IDs) were added to a dictionary with the start positions of the byte offsets as
the keys. After all matches for a record were found, a replacement content
was created, which contains the record with all the entity mentions replaced
with annotations. The method for doing the replacements:

r ep lacement content = bytearray ( )
f o r pos , byte in enumerate ( r e co rd cont en t ) :

i f pos not in annotat i on byte s :
r ep lacement content . append ( byte )

e l s e :
i f pos in a n n o t a t i o n l i s t :

r ep lacement content+= a n n o t a t i o n l i s t [ pos ]
r e turn rep lacement content

This method is run for each record that contains annotations. record content
contains the original record from the WARC file. The next step in the system
after the replacements is the cleaning of both the original record, and the
replacement record.

4.1.2 Cleaning the Data

The cleaning process is divided into several steps:

1. Decode the text
The documents in the warc files are encoded in many different encod-
ings. The text needs to be decoded, and placed in a bytearray. The
annotation’s byte offsets are used to locate the entity mentions.

2. Strip HTML tags, JavaScript and CSS
Lucene only accepts plain text files. It can not parse HTML documents.
We also only need the title and contents of the documents, the rest
is considered noise. A HTML parser is used to remove HTML-tags,
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JavaScript and CSS from the text, but keep the content intact. E.g,
the following text: “<title>An Example Page <title>”, would produce
this output, “An Example Page”, after this step is completed.

3. Resolve HTML-entities
HTML has some reserved characters that are replaced with character
entities. The character entities are used to display reserved characters
in HTML. This needs to be resolved, because we want the characters
that the HTML-entities represent. Python’s built-in HTML Parser has
an undocumented method for resolving entities that was used. An
example of an entity is “&amp”, which will be resolved to “&”. It is
important that the entities are resolved, when we compare the entity
mentions to the FACC, which is written in plain text.

4. Replace multiple white spaces and remove punctuation
This is just a simple cleanup step to keep the text short, and remove
unnecessary characters.

5. Transliterate an Unicode object into an ASCII string
Some of the annotations contain non-Roman text. The annotations
needs to be transliterated when comparing the entity mentions in the
FACC to ClueWeb.

6. Remove HTTP header
The HTTP header is not needed for the Lucene index, so it is removed
in the preprocessing phase. The byte offsets in the annotations are
calculated from the zero location of the HTTP header. Therefore we
wait until the entity mentions are found and replaced, before removing
the header.

All this steps are performed when cleaning the data, and they are also used
when comparing the entity found in the ClueWeb data, with the entity men-
tion in the FACC data.
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4.1.3 Challenges

The preprocessing proved to be more challenging than what the researcher
assumed. Several different problems were found while implementing and test-
ing the preprocessor. Most of the challenges are connected to the first task,
finding and replacing entity mentions, which is described in Chapter 4.1.1.
The challenges are described and solutions are proposed in the following
paragraphs.

Encoding
There were several problems with the encoding. The original encoding in the
FACC are not always correct. If the document is decoded with the wrong
encoding, some of the bytes will not be recognized. This will either give an
error, or replacement characters will be used, depending on the type of flag
used when decoding. To further illustrate this problem we will use a real case,
from the record clueweb12-0505wb-25-04144 in the 0505wb-25 warc file. In
the meta tag, the charset is set gb2312, which is a character set for Chinese
characters. Table 4.1.3 shows an excerpt from the FACC file, that illustrates
the issue.

clueweb12-0505wb-25-04144 UTF-8 Xizhimen 16914 16922 /m/03sv1y

Table 4.1: Excerpt from 0505wb-25.anns.tsv

The second column is the encoding that was used to process the entry
when creating the annotations. A different encoding was used, and this is
true for several of the annotations. A simple solution would be to use the
same encoding as the one provided in the FACC data. However, we want
the data cleaned, and need to use the correct encoding to get readable text.
The problem this introduces is that the byte offsets, for the entity mention,
have been set using the encoding from the excerpt. This means that when
we decode the clueweb12-0505wb-25-04144 with the correct encoding, we will
get a different amount of bytes. That makes it difficult to find the correct
entity mention, and replace it.

The solution to this was to first try the FACC encoding, and then try with
the different common encodings, “UTF-8”, “ISO-8859-1”, and “windows-
1252”. Additionally cchardet [9], a python library for detecting encoding of
text, is used in the worst-case scenario when no match is found with the
common encodings. The reason for not using detection as the first option, is
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that detecting the encoding is time consuming. There is also no guarantee
that the detected encoding is the actual encoding of the document, it is
merely an educated guess made by the library.

Tags
HTML-tags had to be removed from the documents. This was done using
Beautiful Soup 4 1, which is a python library for pulling text from HTML files.
LXML 2 was used as the HTML-processor. The reason for using Beautiful
Soup was that it is easy to use, and also provided methods for stripping
away script and style-tags. HTMLParser was first used, since it is a part of
native Python, but the performance is worse than LXML, and additionally
HTMLParser was not able to remove all the different tags.

Byte Order Mark
The entity mentions found were in some cases wrong. This was caused by
the fact that some of the records in the WARC files contain a byte order
mark (BOM). BOM is a set of bytes at the start of the text stream, that
is used to signal which encoding the document is in [40]. The set of bytes
represent the unicode code point U+FEFF. When decoding the document in
python with UTF-8 encoding, you get a unicode string with BOM. The byte
offsets for the annotations were found with the BOM ignored. This caused a
problem were in some cases, the byte offsets found the wrong entity mention,
because of the added bytes from the BOM. It was a simple problem to fix
when discovered. Python has a codec called “utf-8-sig” in its list of codecs
[17]. The “utf-8-sig” codec removes the BOM when decoding a text. We
added the codec to the list of possible encodings.

ASCII representation
Step 5 of the preprocessing steps, the transliteration of Unicode objects
into ASCII strings, introduced some challenges. In some cases, when try-
ing to match the entity mention in FACC to ClueWeb, the characters in the
ClueWeb document could not be represented with ASCII. The found entity
in ClueWeb could contain a unicode character, that is not in the first 127
ASCII characters. This made it difficult to match the entity mention with
FACC. The solution to Step 5 was to use a Python library called unidecode

1https://www.crummy.com/software/BeautifulSoup/
2http://lxml.de/
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[37] that tries to transliterate Unicode to ASCII. Unfortunately it is hardly
perfect, and after testing the system on the ClueWeb12 data there were sev-
eral cases, where the library did not manage to transliterate the characters.
However, This happened in a fairly low amount of cases, and always with
the same characters. A quick solution was to add an ad-hoc method, that
checked for those specific characters, and transliterated them. An excerpt of
the method:

f o r cha rac t e r in t ex t :
i f cha rac t e r == u ’\ u03bc ’ :

cha rac t e r = ’u ’
e l i f cha rac t e r == u ’\ u03f5 ’ :

cha rac t e r = ’ e ’

The unicode characters “\u03bc” and “\u03f5” is instead represented by the
characters “u” and “e”, which ASCII knows how to represent.

Unicode Replacement Characters
The last problem was the most challenging one. As mentioned earlier, FACC1
did not always use the correct encoding when finding the annotations. This
proposed a challenge when working with Asian encodings in ClueWeb doc-
uments. When decoding a text in Python, a replacement flag can be set,
that tells the decoder to use replacement characters if it not able to decode
some of the text. However, when using the correct encoding stated in the
ClueWeb document, the byte offsets would find the wrong entity mention.
This is related to FACC1 using the wrong encoding to find some of the entity
mentions, so the number of bytes of the decoded text is different.

The problem with using the same encoding as stated in FACC1, is that
Python 2.7 does not conform with the Unicode 5.2.0 standard, regarding
the replacement characters. An issue was raised in the Python bug tracker
and resolved [38]. Unfortunately this issue was fixed only for Python 3.4
and Python 3.3, but not for Python 2.7, which is the Python version the
researcher is using. The researcher is assuming that the researchers at Google
used Java, or another language that conforms with the Unicode standard, to
decode the ClueWeb document. The challenge occurred when the ClueWeb
document had one of the following encodings: EUC KR, SHIFT JIS, BIG5,
GB18030, ISO-8859-9. The documents with those encodings were few, and
the entity mention were always located with the same number of bytes from
the byte offsets.
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Since all options were exhausted, and time-constraints had to be consid-
ered, a solution was proposed. We would add a set number to the byte offsets,
whenever the problematic encodings were encountered. This proved to give
the correct location for the entity mention. This was thoroughly tested on
the troublesome documents, to see that the entity mentions were correctly
replaced with the Freebase identifiers.

4.2 Indexer

4.2.1 Lucene

Lucene3 is a high-performance full-text search engine library written in Java.
It is available as an Open Source Software under the Apache License. There
are several implementations of Lucene written in other languages than Java.

PyLucene4, a GCJ-compiled version of Java Lucene integrated with Python,
is used for indexing the ClueWeb12 collection. PyLucene is a Python wrap-
per, that embeds a Java VM with Lucene into a Python process. This makes
it possible to use the Lucene library in Python.

4.2.2 Indexing Process

The goal of the indexer is to create a Lucene index, that will be used to
evaluate the models. We want to create the index with three fields:

• WARC-TREC ID

• Cleaned text with entity mentions replaced with Freebase Identifiers

• Cleaned text

The preprocessed data is collected in a list, and each document in the list
is added to the index with the three fields specified. The text is added to
contents with field name, field value and field type. The contents are then
added to the index as a Lucene document. A document in Lucene, is a set
of fields with a name and a value. The field, WARC-TREC ID, is the unique
identifier we store for each document in Lucene.

3https://lucene.apache.org/core/
4http://lucene.apache.org/pylucene/
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The indexer creates a Lucene index for each subfolder in the ClueWeb
collection. This was done instead of creating one single big index, to make
it possible to parallelize the indexing process. It is also helpful in case of
errors in the index. The troublesome subfolders can be re-indexed, instead
of indexing the whole collection. After the indexes have been created, they
are merged by the merge indexer. Lucene has a method called “addIndexes”
that makes it possible to merge several indexes into one single index.

4.2.3 Testing the Index

We had three requirements to the index that had to be tested thoroughly,
before we could be sure that the index was created successfully.

1. Check that the correct entity mentions are replaced with the correct
Freebase IDs

2. Check the number of documents in the index, and compare it to the
WARC files

3. Number of terms should match in the fields “contents” and “con-
tents annotated”

Requirement 1 was checked manually by using Luke 5, a GUI tool for Lucene.
Luke makes it possible to open an index, browse the documents, field con-
tents, and much more. The way we tested the requirement was by opening
a sample of documents, then retrieving the term vectors for the field “con-
tents”, and the field “contents annotated”. The term vectors contains the
terms, location and number of occurrences. This was used to compare the
number of occurrences of the Freebase IDs, with the original FACC files.

Requirement 2 showed that the Warc library had some limitations on its
ability to read all records in a WARC file. In several cases, it was unable
to read the last few records in some of the WARC files. This was solved
by making a new method to read warc records, that overwrites the original
method from the Warc library. The problem with gzip WARC files not being
properly read has been raised on the github page for the library 6.

Requirement 3 was checked in a similar fashion as the first requirement.
We used the term vectors again to compare the number of terms in the

5https://github.com/DmitryKey/luke
6https://github.com/internetarchive/warc/issues/21
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fields “contents” and “contents annotated”. It is important that the term
vectors match. To illustrate it better, we will use an example. Let us assume
that FACC annotated “HIV” once in a given document, then the number of
occurrences in “contents annotated” for that document would be:
“HIV” occurrences in “contents” − “HIV” entity mentions.

Figure 4.3 shows a screenshot of the Luke GUI, with the term vectors
for the field, “contents annotated”, for the document clueweb12-0104wb-67-
14747. This is how requirement 1 and requirement 2 was checked through
Luke, by copying the term vectors to the clipboard, and then comparing the
term vectors for “contents” and “contents annotated”.

Figure 4.3: Luke GUI for Lucene
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4.3 Scorer

The last part of the system was the implementation of a module that scores
and retrieves documents. Model 2 was implemented as the scorer. The model
is explained in detail in Chapter 3.2.2. The scorer takes a list of queries as
the input, and the path to a Lucene index directory. The output is written
in TREC format, to make it possible to evaluate the results against relevance
judgements. The scorer calculates p(q|e) for the given queries and entities.

To avoid having to score each document in the index for each query, which
would be computationally expensive, we will use Lucene to retrieve the top n
documents from the collection for each query. n is a parameter that has to be
specified before running the scorer. The query likelihood p(q|d) is calculated
for the top n documents using a standard language modeling approach. Dq is
the list of top n documents with p(q|d) scores calculated for each document.

p(e|d), the likelihood of the entity given the document, is calculated using
equation 18 from Balog et al. [6]. The implementation of Model 2 is depicted
in Algorithm 4.1:
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for each query q :
t op n docs = Lucene . s c o r e (q , n)
Dq = language model . s c o r e (q , top n docs )
for each document d , p(q|d) in Dq :

for each e n t i t y a s s o c i a t e d with document d :

p(e|d) = N(e,d)∑
e′ n(e

′,d
· log |D|

|d′:n(e,d′)>0|
i f p(e|d) > 0 :

p(q|e)+ = p(q|d) · p(e|d)

Algorithm 4.1: Model 2 implementation

4.4 Optimization

The ClueWeb B13 collection consists of 33 447 warc files, with a compressed
size of 389 GB, and an uncompressed size of 1,95 TB. Since the collection
is very large, it was necessary to look at ways to optimize the system. The
preprocessing of the whole collection is a CPU-expensive task, considering
all the steps that have to be executed.

The preprocessing had to be parallelized as it was a bottleneck. To achieve
parallelization in Python, it is necessary to use the built-in multiprocessing
module to fork multiple processes that execute in parallel. Python threads
provide I/O interleaving, but are executed in serial due to the global inter-
preter lock. GIL is a lock that prevents two or more native threads in Python
from executing Python bytecodes simultaneously. This lock is necessary due
to CPython’s memory management not being thread-safe [18]. CPython is
the implementation of Python used in this project.

The multiprocessing module creates a pool of workers, with a python
function called map, that allows us to map arguments to a function. The
problem with map is that it does not support multiple arguments. In Python
3.3 multiple arguments for map is implemented in a function called starmap,
but unfortunately this is not available for Python 2.7. However, there are
libraries available through pypi, the Python package index, that implements
the same functionality for Python 2.7. This was implemented, and made
it possible to use multiple processors to read and preprocess the ClueWeb
collection.

47



Parallelizing the indexing process introduced some challenges. It is only
possible to have one IndexWriter on a directory, since the Lucene IndexWriter
creates a write lock on the directory. The goal was to use several processors
to add documents to the index, since the add document method in Lucene
is thread-safe. The first challenge was that the multiprocessing module in
Python needs to be able to pickle the objects used. Pickling in Python is
another word for serializing. Pickling is the process where a Python object
is translated into a byte stream. The pickling module was unable to pickle
the Lucene IndexWriter.

Instead of spending to much time trying to parallelize the indexer, we
decided to run the system in several instances. In that way, the preprocessing
is parallelized by the number of processors specified, and the indexing is
running in parallel depending on how many instances of the system that is
currently running.

4.5 Technical Details

This section will contain the technical details of the system, and the time
needed for the different processes.

The system was run on Svein Erik Bratsberg’s computer, mersey3, at
NTNU. Table 4.2 shows the hardware specifications of the computer.

Memory 4 * 8GB DIMM DDR3 Synchronous 1600 MHz
Hard Disk Seagate Desktop HDD ST2000DM001-1CH1, 64MB Cache SATA 6.0Gb/s
Processor Intel Core i7-4779 CPU @ 3.40 G, 16 cores

Table 4.2: Hardware specifications of mersey3

The required run-time of preprocessing ClueWeb B13 and indexing the
preprocessed data is approximately 8 days. The size of ClueWeb B13 com-
pressed is 389 GB, and uncompressed is 1.95 TB. However, the system is
able to read the WARC files compressed, therefore it is not necessary to de-
compress the files before running the preprocessing and indexing. The FACC
dataset is 449 GB, therefore it is necessary to have at least 838 GB storage
available for the datasets. The Lucene index created by the system after
preprocessing and replacing entity mentions is approximately 422 GB. Since
we first index each subfolder of ClueWeb B13, before merging the indexes,
it is necessary to have enough storage for the individual subfolders, and also
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the final merged index. The indexing procedure requires around 844 GB
available storage.

The required time to run the Model 2 scorer for all the queries (485) in
the DBpedia entity test collection, when scoring the top 1000 documents for
each query, is approximately 490 minutes.

4.6 System Description

Figure 4.4 illustrates a simple view of the finished system. The implemen-
tation of the system is publicly available at https://github.com/Tino92/

tino-thesis. The following is a description of the modules and classes in
the system.

clueweb facc preprocessor
The clueweb facc preprocessor module contains two classes, Annotation and
WarcEntry. The Annotation class is used to store and parse annotations.
The WarcEntry class contains all the methods related to a warc file, to be
able to replace annotations and clean the records.

indexer
The indexer module contains only one class. The class is named Indexer.
The indexer has a main method that takes in arguments for the input path of
ClueWeb and FACC, the output path of the Lucene index, and the number
of processes that should run the system. It is responsible for reading and
indexing files. The replacement and cleaning of entities are delegated to the
WarcEntry.

merge indexer
The merge indexer is made as a separate module with its own main method.
It takes in arguments for the index directory, and the output directory of the
merged index. The module was made separate, instead of just as a method
in the indexer, since it is not specific to the ClueWeb or FACC datasets. It
can be used separately if Lucene indexes needs to be merged.

clueweb facc scorer
This module contains the implementation of Model 2. The module consists
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of one class, Model2, which handles loading queries, the Lucene index, and
the associations. It also contains a method for scoring all the queries.

Figure 4.4: Class diagram of the system
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Chapter 5

Results and Discussion

This chapter will describe the evaluation methods that were used, and present
the results that were produced from the experiments. The results will be
analysed.

5.1 Test Collections

The evaluation were performed on three different test collections from differ-
ent sources. This section contains the details to each test collection.

DBpedia Entity Test Collection [4]
In our experimental setup we preprocessed the ClueWeb B13 collection, and
created a Lucene index. The test collection used for the experiments is pub-
licly available [4]. The queries and the corresponding relevance judgements
from the test collection, have been collected from six different entity retrieval
evaluation campaigns. The total number of queries is 485. The test collection
is described in more detail in Chapter 2.4.3.

Retrieval results are obtained for the following query sets:

• INEX-LD: Covers named entity queries, type queries, relation queries,
and attribute queries, (e.g. “vietnam war movie”, “List of films from
the surrealist category”).

• SemSearch ES: Consists of mainly named entity queries, (e.g. “ben
franklin”, “carl lewis”).
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• ListSearch: Combines three query sets (INEX-XER, SemSearch LS,
TREC Entity), which primarily consists of type queries (e.g. “Hugo
awarded best novels”, “films shot in Venice”).

• QALD-2: Contains natural language questions of 4 different types:
e.g., entity: “Who developed Skype?”, type: “Give me all companies
in Munich.”, attribute: “Which awards did WikiLeaks win?”, relation:
“Who is the husband of Amanda Palmer?”.

Table 5.1 shows the statistics of the query sets used:

Query set Number of queries Query types
INEX-LD 100 entity, type, attribute, relation
SemSearch ES 130 entity
ListSearch 115 type
QALD-2 140 entity, type, attribute, relation

Table 5.1: Statistics of the queries [42]

The knowledge base used for the test collection is DBpedia1. We want to
use Freebase [19] instead, since the ClueWeb annotations are using Freebase.
Therefore a script was created that take a qrels file and Freebase links as in-
put, and creates a new qrels file with Freebase entities replacing the DBpedia
entities. The Freebase links consists of links between DBpedia and Freebase
entities.

However, Freebase does not contain all the entities in DBpedia. Hence,
The qrels file with Freebase entities do not contain all the relevance judge-
ments from the original qrels file. The DBpedia entities that do not have
corresponding Freebase entities were excluded from the original qrels file,
and also for the run files for the models from Balog and Neumayer [4]. The
new run files and qrels file, which excludes the DBpedia entities not found
in Freebase, were run with TrecEval to create new evaluation results.

REWQ Robust [36]
The document collection used for this test collection is the TREC Disk4+5.
The queries are collected from the TREC Robust Track ’04. There are a
total of 25 queries, with 50 relevance judgements per query, which makes a
total of 1250 relevance judgements.

1http://wiki.dbpedia.org/
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REWQ ClueWeb [36]
The document collection for this test collection is the ClueWeb12 dataset,
which we used to create the Lucene index. The queries are collected from
the TREC Web Track ’13/14.

Table 5.2 shows some sample queries, with some of the corresponding
relevance judgements for both of the collections.

Dataset Query Relevance Judgements
Robust04 poliomyelitis and post polio Centers for Disease Control and Prevention, China,
Robust04 killer bee attacks Africa, Africanized bee, Agriculture, Nevada
ClueWeb12 rules of golf 8 Simple Rules, Golf, History of golf, Rules of golf
ClueWeb12 what is madagascar known for Africa, Madagascar dry deciduous forests

Table 5.2: Excerpt from REWQ Robust04 and REWQ ClueWeb12

5.2 Evaluation

TREC2 is an evaluation campaign that focuses on different information re-
trieval research areas. It is co-sponsored by the National Institute of Stan-
dards and Technology (NIST) and the Intelligence Advanced Research Projects
Activity (IARPA). The goal of TREC is to support and encourage research
in IR by providing the infrastructure for evaluation of IR systems. This in-
cludes providing sample corpora, queries and tools to benchmark retrieval
systems.

We used one of the resources provided by TREC, specifically a bench-
mark tool named TrecEval. It is a text utility that evaluates the effiency of
information retrieval systems, and allows evaluation of TREC results. The
input arguments that TrecEval accepts are the ground truth, in our case this
is the qrels file which has been mentiond in Chapter 2.4.3, and the results
from running our system.

The ground truth has to follow the format in Table 5.3.

query-number Q0 document-id relevance

Table 5.3: Ground truth format for TrecEval

The results obtained from the experiments has to be in the format shown
in Table 5.4

2http://trec.nist.gov/
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query-number Q0 document-id rank score run-id

Table 5.4: Results format for TrecEval

The evaluation measures we used are different for each dataset. REWQ
Robust04 and REWQ ClueWeb12 uses the same measures, namely MAP,
P@10, NDCG and NDCG@10. The measures are calculated by TrecEval.
The qrels for REWQ Robust04 and REWQ ClueWeb12 uses multiple levels of
relevance, therefore they use NDCG, normalized discounted cumulative gain.
NDCG uses graded relevance as a measure of gain, which is accumulated
by starting at the top of the ranking, and reducing the gain for the lower
ranks. This takes into consideration that ideal ranking should first return the
documents with the highest relevance level. MAP, mean average precision,
is the mean of the average precision for each query. P@10, precision at 10
documents, is the precision score after 10 documents have been retrieved.
Precision is a score that is calculated by dividing the relevant documents
retrieved with all the retrieved documents. The reason for using P@10 is
that it is a useful measure for Web search engines, since users expect to find
the relevant results on the first search results page.

For the DBpedia entity test collection we used MAP, P@10, P@20 and
b-pref. NDCG is not used, since the qrels only contain binary relevance.
P@20 is the precision score after 20 documents have been retrieved. b-pref
is a measure designed to consider whether relevant documents are ranked
above irrelevant ones.

5.3 Results

The results for the test collections are presented in this section. MAP, P@10,
P@20 and b-pref measures for the DBpedia test collection are presented
in Table 5.5. The results are categorised for the query sets described in
Chapter 5.1, and finally results for all the queries combined are presented.
The baselines are presented in the first five rows, which are provided from
the DBpedia entity test collection paper [4]. The last row for each query set
are the results achieved from running the implementation of Model 2.
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Method SemSearch ES
MAP P@10 P@20 b-pref

LM [4] 0.3329 0.2372 0.1682 0.6852
BM25 [4] 0.3452 0.2419 0.1655 0.6935
MLM-tc [4] 0.3747 0.2643 0.1829 0.7178
BM25F-tc [4] 0.3534 0.2504 0.1674 0.7001
PRMS [4] 0.3542 0.2434 0.1686 0.6936
Model 2 0.1475 0.1217 0.0771 0.3421

ListSearch
MAP P@10 P@20 b-pref

LM [4] 0.1700 0.2235 0.1739 0.4031
BM25 [4] 0.1786 0.2383 0.1865 0.4202
MLM-tc [4] 0.1641 0.2104 0.1661 0.3979
BM25F-tc [4] 0.1711 0.2278 0.1791 0.4081
PRMS [4] 0.1923 0.2504 0.2057 0.4179
Model 2 0.0677 0.1122 0.0983 0.3123

INEX-LD
MAP P@10 P@20 b-pref

LM [4] 0.1082 0.2180 0.1800 0.3058
BM25 [4] 0.1274 0.2350 0.1935 0.3304
MLM-tc [4] 0.1076 0.2170 0.1835 0.2998
BM25F-tc [4] 0.1267 0.2410 0.1885 0.3255
PRMS [4] 0.0965 0.1950 0.1570 0.2808
Model 2 0.0374 0.1030 0.0725 0.1583

QALD-2
MAP P@10 P@20 b-pref

LM [4] 0.1141 0.0568 0.0442 0.2360
BM25 [4] 0.1276 0.0719 0.0547 0.3149
MLM-tc [4] 0.1051 0.0532 0.0414 0.2421
BM25F-tc [4] 0.1121 0.0683 0.0525 0.2956
PRMS [4] 0.1120 0.0727 0.0536 0.2633
Model 2 0.0678 0.0371 0.0321 0.4074

All queries
MAP P@10 P@20 b-pref

LM [4] 0.1846 0.1781 0.1363 0.4102
BM25 [4] 0.1978 0.1907 0.1444 0.4443
MLM-tc [4] 0.1917 0.1810 0.1383 0.4182
BM25F-tc [4] 0.1936 0.1907 0.1415 0.4366
PRMS [4] 0.1926 0.1859 0.1419 0.4187
Model 2 DBpedia v3.7 Freebase links 0.0863 0.0952 0.0714 0.3302
Model 2 DBpedia v3.9 Freebase links 0.0903 0.0975 0.0731 0.3397

Table 5.5: Evaluation measures for DBpedia entity test collection
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The results for Model 2 are low compared to all the baselines for all the
query sets. Model 2 has lower scores for the different evaluation measures.
We decided to evaluate Model 2 on different datasets, to further analyse the
reason for the low results.

In Table 5.6, the results for REWQ Robust04 and ClueWeb12 datasets are
presented. Two methods are presented, Model 2 that we implemented, and
RankLib from Schuhmacher et al. [36]. RankLib3 is a library of learning-
to rank algorithms. The coordinate ascent algorithm as implemented in
RankLib is used.

Method REWQ Robust04
MAP P@10 ndcg ndcg@10

Model 2 0.0645 0.2640 0.2468 0.2838
RankLib [36] 0.936 0.817

REWQ ClueWeb12
Model 2 0.2637 0.3676 0.4674 0.4738
RankLib [36] 0.328 0.572 0.710

Table 5.6: Evaluation measures for REWQ Robust04 and Cluweb12 datasets

The results demonstrate that the datasets that the test collections are
based on, are highly influential on the evaluation measures. The REWQ
ClueWeb12 dataset, which uses FACC1 for entity annotations, gave the best
results for Model 2, with MAP score of 0.2637 and P@10 score of 0.3676.
The lowest results were achieved for the DBpedia test collection, with a to-
tal MAP score of 0.0903 and P@10 score of 0.0975 for all the queries. The
NDCG and NDCG@10 scores were only calculated for the REWQ datasets,
and also here the scores are higher for ClueWeb12 compared to Robust04.
ClueWeb12 achieves higher NDCG scores with a NDCG score of 0.4674
and NDCG@10 score of 0.4738, compared to Robust04 with NDCG score
of 0.2468 and NDCG@10 score of 0.2838.

It is apparent how big the difference is between the results for REWQ
ClueWeb12 and DBpedia test collection. We argue that the low results for
the DBpedia test collection can be explained with the relevance judgements
being created from DBpedia, and some of them not having any entry in the
FACC collection. The high results for REWQ ClueWeb12 can be attributed

3http://people.cs.umass.edu/ vdang/ranklib.html

56



to the fact that the document collection used is ClueWeb12 with FACC,
which is the same collection we used to create our index.

5.4 Analysis

In this section, we analyse different aspects of the results. The results for the
DBpedia test collection were lower than all the baselines, and were thoroughly
examined in the analysis. We also discuss the differences in results for the
datasets.

Analysis of recall for DBpedia entity test collection
We decided to evaluate Model 2 for top 100, 1000 and 10000 documents. We
used the measures: Recall, MAP and P@10. Recall is the fraction of relevant
documents that are retrieved. The entities that are not retrieved from the
top documents, will not be scored by the model.

In Table 5.7, we have run Model 2 for the top 100, 1000 and 10000
documents for each query. Recall, MAP and P@10 shows an increase from
top 100 to top 1000 documents. However, this is not the case for the top 1000
and top 10000 documents. Similarly MAP and P@10 have not improved by
increasing top-n documents to 10000.

The results suggest that increasing the number of relevant documents,
can improve entity retrieval performance until a certain point (i.e n=1000).
After that, the number of relevant entities and consequently the MAP and
Precision are not improved. We attribute this to the fact that the ClueWeb
collection provide different context for the entities than DBpedia, and this
can be another evidence that the entity retrieval performance can be highly
dependent on the corpus entities are extracted from.

top n documents Recall MAP P@10
100 0.1101 0.0824 0.0893
1000 0.1245 0.0903 0.0975
10000 0.1253 0.0902 0.0942

Table 5.7: Recall for top n documents when retrieving all entities associated
with the documents.
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Analysis of query subsets for DBpedia test collection
There are some differences in the evaluation measures for each query set.
The query sets are of varying difficulty, which the baselines clearly show.
SemSearch ES gives the highest MAP and P@10, followed by ListSearch,
INEX-LD and finally QALD-2. SemSearch ES consists of mainly named
entity queries, (e.g. “ben franklin”), which are easier to rank since the entities
are named in the query. This demonstrates that named entity queries are
easier to retrieve for Model 2, and also for the baselines. P@10 and P@20
is fairly similar for SemSearch ES, ListSearch and INEX-LD, while it has
a much lower score for QALD-2. This could be explained by the fact that
QALD-2 contains natural language questions. It is apparent from the results
that QALD-2 is the most difficult query set for the different models.

The problem is that Model 2 has a lower score for all the query sets com-
pared to the baselines. Model 2 follows the same trend as the baselines, with
a lower score for relation or attribute queries, and a higher score for named
entity queries. P@10 is approximately 50 % lower for Model 2 compared
to MLM-tc for SemSearch ES, ListSearch and INEX-LD. For the query set
QALD-2, P@10 is 30 % lower for Model 2 compared to MLM-tc. b-pref is
actually higher for Model 2 for the query set QALD-2, compared to the base-
lines. The final score for b-pref for all the queries for Model 2 is 19 % lower,
than the b-pref score of MLM-tc. This is a much lower difference, than the
difference between Model 2 and MLM-tc for the other measures.

Since Model 2 follows the same trend as the baselines for the retrieval
scores, it points to the dataset being the deciding factor that could explain
the low results achieved for Model 2.

Comparison of Model 2 and MLM-tc for sample queries
We performed an error analysis by comparing Model 2 with MLM-tc. It is
a meaningful comparision, since MLM-tc is also based on language model.
For each of the query sets, two queries are picked, and the number of rele-
vant entities retrieved is compared for both models. Equation 2.4 shows the
formula for MLM.

The approach we used to Model 2 is the candidate-centric approach,
where we calculate P (q|e). This is accomplished by first retrieving the top N
documents based on the query likelihood, P (q|d), which is calculated using
the standard language model approach. This has already been implemented
and is a well-known model. The focus of this discussion is on how P (e|d)
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is calculated in Model 2. The query and entity are separated in the model,
using the document as the common connection between the query and entity
probabilities. From Model 2 we can expect that the score will increase based
on how many times an entity is mentioned in the relevant documents.

Table 5.8 presents the results from running Model 2 and MLM-tc on two
sample queries for each query set. This was performed to determine differ-
ences in the models and the querysets. num rel is the number of relevance
judgements for the query, and num rel ret is the number of relevance judge-
ments that were retrieved. There are some differences apparent in the table.
MLM-tc has a higher retrieval than Model 2 on most of the queries. We can
see that Model 2 is able to retrieve at least one relevant entity for all the
queries, the primary problem is being able to retrieve all the relevant entities.

Model 2 MLM-tc
Query sets Query num rel num rel ret num rel ret

INEX-LD
vietnam war movie 52 4 19
John Lennon Yoko Ono album Starting Over 8 0 7

SemSearch ES
el salvador 24 5 12
university of phoenix 5 4 3

ListSearch
toy train manufacturers that are still in business 39 2 19
Organizations that award Nobel prizes. 8 6 2

QALD-2
Who is the governor of Texas? 1 1 1
Give me all films produced by Hal Roach. 504 1 88

Table 5.8: Evaluation of Model 2 and MLM-tc for sample queries from each
query set
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Chapter 6

Conclusion & Future Work

6.1 Conclusion

The goal of the thesis is to perform entity retrieval on entity annotated
corpus. To achieve that goal we need to develop a system that is able to
preprocess the ClueWeb corpus, and replace entity mentions in ClueWeb
with the corresponding annotations from FACC. The system should also
index the preprocessed data, and finally Model 2 should be implemented
and evaluated. Entity retrieval was successfully performed on the annotated
corpus, and Model 2 was implemented and tested on three different test
collections, DBpedia entity test collection, REWQ ClueWeb12 and REWQ
Robust04.

The contribution of this thesis is the system that were made to prepro-
cess and index the ClueWeb corpus, and the results from the experiments.
The results were presented and discussed in detail. This thesis has shown
that the results of Model 2 is very dependent on the test collection used.
Model 2 is able to achieve decent results when using the REWQ ClueWeb12
dataset, where the mean average precision is comparable to the learning-to-
rank method RankLib, which has a slightly higher score. We showed that
Model 2 achieved lower scores than the baselines for the DBpedia entity test
collection. We argued that this is partly caused by the test collection being
made for DBpedia, while we are using FACC for our index.

We can conclude that the project goals of this thesis were fulfilled. We
have successfully performed entity retrieval, using Model 2, on the entity
annotated corpus. Model 2 has been evaluated on three different test collec-
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tions, and compared to several baselines. With the highest results for Model
2 achieved for REWQ ClueWeb12, giving MAP score of 0.2637, P@10 score
of 0.3676, NDCG score of 0.4674 and NDCG@10 score of 0.4738.

6.2 Future Work

We have suggested some future work that became apparent during the work
on the thesis.

• Testing the other expert retrieval model (i.e. Model 1) for the same
test collections.

• Improving the cleaning and indexing execution time by looking at op-
timization measures.

• Indexing the whole ClueWeb12 dataset, instead of the ClueWeb12 B13
dataset which is a 7 % uniform sample. A larger dataset could affect
the results, and would be meaningful to compare with the results from
this thesis.
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