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Abstract

OpenFlow is a widely used protocol in Software Defined Networking
(SDN). Transport layer security (TLS) is used for communication security
between the SDN controller and each of the OpenFlow switches. How-
ever, OpenFlow does not provide any cryptographic security through
OpenFlow.

This thesis explores the possibility of adding encryption to the datap-
ath that can be controlled from a Software Defined Networking (SDN)
controller. A virtual testbed is created using Pox, Open vSwitch (OVS),
and Virtualbox. In the virtual testbed, different encryption concepts
are tried out, and related performance testing is performed. Then, the
solution is ported to a physical network consisting of a computer, two
Raspberry Pi devices, and a router. A replay attack was tested on Generic
Routing Encapsulation (GRE) and Internet Protocol Security (IPsec).
The performance overhead from encryption and Pre Shared Key (PSK)
renewal was evaluated. Some leaking traffic was discovered when changing
PSK. Different ways of changing the PSK were tried out and evaluated.
The best solution turned out to be adding new tunnel endpoints with a
new PSK.





Sammendrag

OpenFlow er en protokoll som er mye brukt i SDN. Transport Layer
Security (TLS) blir brukt i kommunikasjonen mellom SDN kontrolle-
ren og OpenFlow switchene, men trafikken mellom switchene har ingen
kryptografisk sikkerhet gjennom OpenFlow.

Denne oppgaven ser på muligheten for å legge til kryptering av data-
trafikk i SDN som kan kontrolleres av kontrolleren. Et virtuelt testmiljø
ble bygget ved bruk av Pox, OVS og Virtualbox. I det virtuelle miljøet ble
krypteringskonsepter testet ut, og ytelsesmåling. Så ble oppsettet flyttet
over på et fysisk nettverk bestående av en computer, to Raspberry Pi
enheter og en ruter. Et ’replay attack’ ble testet på både GRE og IPsec.
Ytelses målinger relatert til kryptering og PSK utskiftninger ble utført.
Ved utskiftning av PSK ble det funnet sårbarheter. Noe trafikk lekker ut
under utskiftning av PSK. Forskjellige metoder for å skifte ut PSK på
ble testet og evaluert. Den beste løsningen var å legge til en ny port med
en ny PSK.
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Chapter1Introduction

1.1 Motivation

Securing data is crucial when sending it over a network. Not only to provide privacy
but also for security and availability purposes. Securing data traffic is mainly
achieved through encryption and isolation. When data is sent over an unsecured or
uncontrolled network the data can only be secured with encryption. Data sent over
a controlled network can be secured by segmentation and isolation. An example is
Virtual Local Area Network (VLAN)s and Demilitarized Zone (DMZ).

With the introduction of SDN, a centralized controller can control the data flow
on switches in the network. Today it is used for controlling the traffic management.
However, this concept could also be applied to the handling of security. Although,
when it comes to the security opportunities this provides, it has not yet been employed.
As in many other cases, the security aspects have been looked past. Additionally,
in OpenFlow (OpenFlow), an SDN protocol, the never versions enforce a less strict
security policy. Using a cryptographically secure connection between the controller
and switches was mandatory in OpenFlow1. However, in OpenFlow1.4 this became
optional[ofsc][Sam15]. Additionally, there is no functionality to ensure that the traffic
between the switches is encrypted.

Ensuring that data is encrypted in a data center or internal network might not be
necessary as it is secured by isolation. However, as the SDN is evolving and being used
outside of small controlled networks encryption will become a necessity. OVS and
Cisco switches both support encryption tunnels. However, to my knowledge, there
is no open source platform that supports a centralized controller that dynamically
controls the security parameters along with changes in the data flow. To my knowledge
there is no research on what opportunities this enables, and how it works on physical
devices like a network router. There are several cases where this type of system
would be interesting:

1



2 1. INTRODUCTION

– If one were to use SDN over a wireless network; It would no longer be possible
to physically isolate the traffic, and therefore encryption will be paramount.

– When you have multiple networks that are physically separated. An example
of this could be a research network that needs to share information across
countries. In this case, the traffic has to pass through open networks, and it
would be desirable to ensure that all traffic leaving your controlled network
would be encrypted.
There is an argument that these problems can be solved by using end-to-end
encryption, with solutions like Virtual Private Network (VPN) and TLS. Yet
there are cases where this would not be sufficient:

– The problem with this is that it puts requirements on the ’end-equipment’
to support the latest secure cryptography. We put more and more devices
and technology online. With smaller devices the encryption becomes more
expensive.

– The case might also be that the encryption the hardware supports is deprecated
but you still need a backward compatible system to talk with it without having
to rebuild the whole system.

– End-to-end encryption can provide authenticity and confidentiality, but not
availability. If using an unprotected GRE tunneling protocol that uses sequence
numbers, it is possible to inject arbitrary sequence numbers and launch a Denial
of Service (DOS) attack.

– You introduce a smaller attack surface. The probability of configuration errors
will decrease as this can be handled in one place.

– As technology gets more complex, the danger of bugs also increases. An
example is wireless routers. They are known for having security vulnerabilities
[CR08]. Patching bugs require the users to update their software which is also
known not to be done enough. Adding encryption to the network cloud be, if
not an alternative, at least an addition to end-to-end encryption.

– Lastly, you have the human factor. No matter how secure you system is, it
is always vulnerable to weak passwords, and social engineering. By adding
encryption to the network the only human factor would be the system engineer.

1.1.1 Scope and Objectives

The overall goal of this thesis is to explore how existing open source SDN technology
can be used to extend an SDN framework to handle a centralized control of encryption.
The scope of this project is to focus on the datapath performance and security, and
the communication between OVS and the controller.



1.1. MOTIVATION 3

1.1.2 Objectives

– The first part will consist of exploring SDN, how it works and how encryption
can be dynamically deployed.

– As this is a relatively new subject, the next focus is on implementing the solution
consisting of: exploring what configurations are possible, what technology to
use, verifying that it works, and test the performance.

– The final part consists of implementing it on a physical network and evaluate
the security and performance.

1.1.3 Methodology

The methodology in this work has mainly consisted of experimentation and reading.
In the beginning, there was a steep learning curve as both SDN and networking in
Linux were new subjects to me. There were no tutorials and little information about
the underlying mechanisms. Most of the discoveries were done by looking through
the source code. After successfully getting to a solution, much of the experiments
conducted were based on the result in the previous experiments.

1.1.4 Contribution

To my knowledge, only one other paper has looked at on encryption of the datapath
in SDNs [GK14]. The hope is that the work presented here can be built on to create
a full-worthy cryptographically secured SDN. Much of this thesis has consisted of
using existing software in new ways, resulting in the discovery of bugs that were
reported. The wireless Raspberry Pi performance experiments with encapsulation
protocols in conjunction with OpenFlow has as far as I know not been performed
before.

1.1.5 Clarifications

Some word used in this paper need some clarification, as they have a specific meaning
here that might be different from what they ordinarily would mean.

– When referring to a switch I mean a Linux device with network connectivity
running OVS. OVS can make its hosts device become a remotely controllable
software switch.

– A port is an OpenFlow port. This is either a physical interface, or a virtual
interface created by OVS.
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– When referring to a tunnel, I mean two ports that function as endpoints on an
encapsulation tunnel.

– Key is only referring to a number that is used for separating tunnels. The key
that is used for encryption and decryption is referred to as PSK.

– Gre tunnel using IPsec (IPsec_GRE) means a GRE tunnel that uses IPsec to
encrypt the payload.

– gre-between-gre and ipsec-between-ipsec: means an IPsec/GRE tunnel connect-
ing each switch.

– gre-in-gre and ipsec-in-ipsec: means packets in an IPsec/ GRE tunnel encapsu-
lated in another IPsec/ GRE tunnel. As discussed in 3.2.4.



Chapter2Background

2.1 SDN

SDN is an architecture where the control plane is decoupled from the forwarding plane,
allowing for an abstraction of the underlying infrastructure from the application point
of view. The components in SDN consist of a controller and switches, see Figure 2.1.
The controller can manage the forwarding plane on the switches in the network. This
centralized control allows the controller to have a global view of the network and
create customized flow paths, which adds functionality to the network[onf]. This
increased control is useful for security, congestion control, load balancing and more
effective utilization of the network resources. Another goal with SDN is to use open
standards and be vendor neutral.

To get a clear understanding of SDN, we can compare it to how a traditional
network works. A traditional network will consist of routers and switches. Packet
routes are decided by using a routing table and routing protocol. A router will be
connected to two interfaces or more, and the routing table will be used to select
which interface to forward the packet to. The routing protocol is what is used to
create the routing table. The routing table is what that decides how the packet
is forwarded. If each router in Figure 2.1 implemented Open Shortest Path First
(OSPF), the traffic from H1 to H2 would go from s1 to s3. However, with SDN, we
could tell the switches to send the traffic through s1 - s2 - s4 - s3, or s1 - s2
- s3. The case could be that the link speed through s1 - s2 - s3 would be a lot
faster, or that s1 - s3 is heavily congested, or that the information was sensitive,
and s1 - s2 - s3 were the only secure lines. More on SDN can be found at [ope].

2.2 OpenFlow

In SDN a communication protocol is used to send messages between a switch and a
controller. This communication protocol is used to configure the forwarding plane
on the switches and pass information to the controller. In this thesis, I will use

5
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In_port Port that the packet arrives on
dl_src 802.3 MAC
dl_dst 802.3 MAC
dl_vlan 802.1Q ID
dl_type 802.3 EtherType
nw_proto IPv4 Protocol
nw_src IPv4 Source
nw_dst IPv4 Destination
tp_src TCP/UDP Source Port
tp_dst TCP/UDP Destination Port

Table 2.1: Used OpenFlow match fields

OpenFlow. OpenFlow is increasingly being used in production systems. Cisco, HP,
and Juniper are offering OpenFlow support, and Google uses it in their datacenter
backbone network[ofab].

A switch that uses OpenFlow forwards packets based on flow tables. The flow
tables consist of matching rules and corresponding actions. The matching rules are
used to decide what fieldvalues that should be used to determine appropriate action.
A complete list of fields used for matching can be found at [ofsd]. Table2.1 shows
the matching rules I have utilized in this thesis.

Note that In_Port is the OpenFlow port. Matching rules can rely on multiple
fields and use wildcarding. Together with the matching rules follow the action rules.
These can change a packet header or output port. As with the matching rules these
can be chained so that multiple operations can be applied to a packet. A complete
list of actions can be found at [ofaa]. If the packet does not match any entries in
the flow table, it is sent to the controller. Then the controller can decide what to
do with the packet and send out an OpenFlow rule to the switch so the subsequent
packets will follow the same pattern.

There are two typical ways the controller installs OpenFlow rules. Reactive and
proactive. Reactive means that the switch does a table lookup to see if the packet
matches any of the OpenFlow rules. If not, it sends that packet to the controller
that then decides what OpenFlow rules to install on the switch. Proactive, on the
other hand, is that the controller populates the flow tables in the switch before the
relevant packet enters. The matching OpenFlow rules can be either static or they
can have a hard or idle timeout. Hard timeout means that the OpenFlow rule will
expire after a given amount of time. Idle timeout means that the OpenFlow rule will
expire if it not used for a given amount of time.
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The channel between the controller and switches can and should be secured. For
OpenFlowV1 using TLS for the communication was mandatory. However, for the
newer specifications, this is not required. Also according to [ofv] most vendors have
skipped the TLS implementation, and OVS is the only one with full TLS support.
The OpenFlow protocol does not provide any specification for encryption of the
communication between the switches. I will attempt to use the SDN framework with
OpenFlow to explore this feature.

2.2.1 Paramiko

’Paramiko is a Python (2.6+, 3.3+) implementation of the SSHv2 protocol [1],
providing both client and server functionality. While it leverages a Python C extension
for low-level cryptography (Cryptography), Paramiko itself is a pure Python interface
around SSH networking concepts [parb].’

I use Paramiko to configure the OVS from the controller. Basically, I execute
terminal commands over Secure Shell (SSH). There is, as I became aware of later,
an Open vSwitch Database Management Protocol (OVSDB) that supposedly can
be used to configure the OVS configuration remotely. In hindsight, it cloud have
been a useful tool, and is suggested in my future work. However, as shown in 5.2.9,
some additional commands are needed to ensure security. These could not have been
executed with OVSDB. Additionally, SSH commands can be used on any switch that
can install an sshserver and has an Command Line Interface (CLI).

The code I used is the following, and can be found in the appendix:

# Create ssh o b j e c t
ssh = paramiko . SSHClient ( )
# To accept unknown Hostkeys
ssh . set_missing_host_key_policy ( paramiko . AutoAddPolicy ( ) )
# connect inng to the hos t t h i s would be equ va l en t to w r i t i n g :
# ssh <Username>@<IP address>
# <User password>
ssh . connect(<IP address >, username=<Username >,
password=<User password >)

# Executes the command on the hos t .
# s t in , the command t h a t i s sent
# out , the output form e xecu t ing the command
# Err , error message
s t in , out , e r r = ssh . exec_command(<command>)

# I f an error occurred , t h i s would be shown in the err o b j e c t
# So I check i f err conta ins a message
if( e r r . read ( ) ) : print ’ [ exec_ssh_command ( e r r o r ) ] %s ! ! ! ! ! ! ! !
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Error ’%( e r r . r e a d l i n e s ( ) )

# Close the ssh connect ion
ssh . c l o s e ( )

Figure 2.1: Example SDN architecture

2.3 Mininet

Mininet is a network emulator that allows building virtual networks[mina]. In this
thesis, I have used a Mininet image running on a VM in Virtualbox. Mininet has
built-in OpenFlow and OVS support, in addition to a Wireshark that can filter and
display the OpenFlow packets in human readable language. For testing and exploring
SDN Mininet was initially used. However, due to the way tunneling works in OVS,
Mininet was not suitable to use in this thesis. The reason is that all the switches are
on the host machines loopback interface, and OVS tunnels use the hosts network
stack to send the packets. This caused some confusion as to why the setup did not
work. As a result, I changed over to just use OVS and separate VMs in Virtualbox.

2.4 Generic Routing Encapsulation (GRE)

GRE is a tunneling protocol that encapsulates packets over IP networks[gre]. It works
similarly to VPN in the sense that it creates a point-to-point connection. Packets
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that are being sent over the GRE tunnel are encapsulated at the tunnel entry-point
with new headers. The GRE packet has the form: Delivery Header, GRE Header,
and Payload packet. Every hop between the endpoints only use the added headers
for routing and forwarding. At the endpoint, the encapsulating header is removed,
and the original packet is routed from there on. GRE is often used for securing the
transport of packets through a public network together with VPN, or to create a
bridge between separated networks. It is important to know that GRE in itself does
not provide any encryption of the encapsulated data. It can provide a checksum for
the GRE header, and the payload. But this needs to be specified. [gre].

Figure 2.2: GRE model

2.5 Ipsec

To provide the encryption of data traffic I will focus on IPsec. IPsec is a protocol
suite used for encryption and authentication of IP packets. The protocol works
on the network layer (L3) and is end-to-end. Consequently, all traffic is encrypted,
independent of protocol and traffic type, allowing transparent data encryption in the
sense that the end client does not know about it. This makes it a good way to secure
legacy systems that don’t support encryption.

IPsec has two modes of operation. Tunnel mode and transport mode. In transport
mode the only the payload that is encrypted, resulting in the packet being handled
as it normally would. An Authentication Header (AH) can be used to secure the
packet header. However, this puts a restriction on the network as any changes made
to the header would invalidate the packet. You could disable the AH, but then you
leave yourself vulnerable to replay attack [ipsa].
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Consequentially tunnel mode is the better choice for IPsec in SDN. When using
tunnel mode, the whole packet including headers is encrypted and then encapsulated
into a new packet see Figure 2.3. The encapsulation will hopefully let the packet be
handled like any other packet in the SDN.

Figure 2.3: IPsec encapsulation

There are two important databases used in IPsec. Security Association Database
(SAD) and Security Policy Database (SPD). In short the security policy is used to
decide when to use IPsec encryption, and the security association is used to decide
how to do the encryption. To establish a Security Association (SA) a keying daemon
can be used. OVS uses racoon. Racoon uses Internet Key Exchange (IKE) to set up
the SA. More about IPsec and IKE can be found here [ipsb]

2.6 Open vSwitch

OVS is a virtual switch that is OpenFlow enabled, meaning that it can be accessed
by a remote OpenFlow controller that can configure the OpenFlow settings on the
switch [ovsa]. OVS also has built in various tunneling protocols including gre_ipsec
which I use in this thesis. The reasons for choosing OVS as OpenFlow switch are:

– Open source, and works well in virtualized environments

– Compatible with most linux-based environments

– Easily deployable.

– Widely used in SDN research

– Supports encrypted OpenFlow ports.

– Supports encrypted OpenFlow controller channel.

2.6.1 IPsec in Open Vswitch

A full list of OVS supported tunneling protocols can be found here [ovsb]. The
relevant ones in this thesis are ipsec_gre and gre. These also have an equivalent
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64-bit key version called gre64 and ipsec_gre64. This key, however, is only used
for administration purposes to differentiate tunnels, and must not be confused with
the PSK used for encryption [rfc]. Each endpoint of the tunnel must be uniquely
identifiable to work. The key field is for this purpose. It is useful if you want to
logically separate traffic that goes over the same GRE tunnel. The same counts for
the IPsec_GRE tunnel. The ipsec_gre tunnel supports both PSK and certificate for
encryption. In this thesis I will focus on the use of PSK for encryption. A full list of
the configuration options for IPsec in OVS can be found here [ovsb].

2.6.2 Traffic Routing with OVS

When using OVS on a host, it affects how the host handles traffic. An OVS consist
of bridges and ports connected to those bridges. A port can be thought of as an
interface except that a port can contain multiple interfaces. These ports are what
is being referred to as OpenFlow ports. The interfaces that belong to a port can
be virtual or physical. Adding a physical port to OVS will affect all traffic passing
through that interface. It is important to realize how OVS handles the traffic to be
able to do the correct configurations.

Physical interface

When adding a physical interface to an OVS port, all the incoming traffic on that
interface is handled by OVS. Including Address Resolution Protocol (ARP) messages.
What this means is that unless specified in the OpenFlow rules on that switch, the
switch will not respond to ARP requests, but instead send it to the controller. This
can lead to confusion when attaching interfaces to OVS, because hosts will experience
connectivity loss. It can be resolved by adding the action=NORMAL, which will let
the OVS act as a layer 2 switch. However, if you want layer 3 connectivity, you will
need to set this up with the controller.

When forwarding a packet between two physical interfaces, none of the packet
headers are changed unless specified. This can cause some problems when using the
ARP protocol. As seen in Figure 2.4 Host2 will automatically forward the ARP
request to Host3, who will answer the request. However, it will not be seen on any
of the devices, because it is sent to MAC: AA which is on another network. Even
setting the Host 2 to change the source MAC address before sending it to Host 3
will not work, because it only affects the Ethernet header and not the MAC address
in the ARP request, which is the one Host3 will use for its reply. This can be seen in
Figure 2.6. Therefore, all ARP messages should either be reactively handled by the
controller or proactively when setting up the connection.

Assuming that each host knows each others correct MAC address, they also
need to change the destination MAC address when forwarding packets. This has
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Figure 2.4: Arp discovery with interfaces connected to Ovs

Figure 2.5: Ping problem when physical interfaces are connected to OVS

to be specified in the OpenFlow rules. As shown in Figure 2.5 Host 3 will not
receive the packets sent by Host 2, if it still has Host 2s MAC address, because
it only listens for packets with destination MAC dd. The target MAC can be
changed in the OpenFlow actions. Note that the OpenFlow output port needs
to be the last action set. Anything set after output will not be added. The com-
mand to change destination MAC address would be: sudo ovs-ofctl add-flow
in_port=<in_of_port_nr>,actions=mod_dl_dst:<mac-address>,output:<out_of_port_nr>
. In Figure 2.7 the OVS on Host 2 has installed the necessary OpenFlow rules for
handling the MAC addresses, and can sucessfully forward the packets.

OVS GRE

The scenarios presented above, are all related to OVS using the physical ports on the
host. The upside of using the physical interface in OVS is that we have full control
over everything that is sent through. It also adds complexity to our configuration.
When using the GRE and IPsec_GRE tunnels in OVS, we are using virtual interfaces.
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Figure 2.6: Wireshark capture that shows that the responder will respond to the
address in the ARP packet, and not the OVS port that forwarded it

Figure 2.7: OVS is installed on Host 2, and controls eth2 and eth3. It uses the
forwarding rules shown in Host 2, which modify the MAC addresses correctly.

These are added to our switch in the same way as the physical ones. However, they
are virtual and only used by OVS. This means that after OVS sends the packet out
on the virtual interface, the packet is forwarded using the hosts IP stack. Thus,
other traffic not in the SDN, like control traffic, is unaffected when using virtual
interfaces. Additionally, OVS does not need to handle MAC addresses in this case.
This is handled by the hosts IP stack. However, the host is required to have the
tunnel endpoint in its routing table. If it does not, it will silently drop the packets.
When using virtual interfaces with OVS one does not need to change the headers,
because this will be handled as normal by the hosts IP stack. The physical port that
has the next step for an GRE tunnel can not be attached to the OVS. The reason is
that the physical port is taken over by OVS and does therefore not belong to the
hosts IP stack anymore. Figure 2.8 shows how OVS handles the GRE forwarding.

Ovs commands

In this thesis, administration of the OVS is done with ovs-vsctl, and ovs-ofctl.
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Figure 2.8: GRE IPsec tunnel example. The inner yellow box in Host2 and Host3
are the ports seen by OVS. The inner white boxes on Host2 and Host3 are the
Openflow-rules used by OVS

ovs-ofctl, presumably short for Open vSwitch - OpenFlow Control, is a com-
mand line tool that is used for monitoring and managing the OpenFlow protocol
part of OVS. It can do everything that the OpenFlow controller can, and is useful
when debugging and troubleshooting. The full manual for ovs-ofclt can be found
here [ovsc].

These are the most useful commands that were used:

ovs-ofctl add-flow and ovs-ofctl mod-flows

Used for adding and modifying flows directly on the switch. This is a great tool
when an OpenFlow rule is not working correctly, and you need to modify it. The
problem with using Pox is that it is made to react on events, meaning that in a test
setting you need to reset the controller to apply a new configurations. This can be
time-consuming, and sometimes you do not want to reset every switch in the network.

ovs-ofctl dump-flows <ovs-name>
gives you all the information about the flows installed on the switch. It is especially
useful that it shows how many packets have been sent over each OpenFlow rule,
making it easy to find out where the traffic is stopping when packet are not being
forwarded. Additionally, it is useful to check for conflicting OpenFlow rules, and
whether old OpenFlow rules were successfully removed.
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ovs-ofclt show <ovs-name> displays the OpenFlow ports on the switch. The
reason this was useful was that in OVS v 2.0.2 adding a port that was incorrectly
configured, would not give any error message. Additionally, the ovs-vsctl show
showed that the port was added, causing some confusion when setups were not
working. The only way to detect that it was incorrectly configured, was to use
ovs-ofclt show command and check if the port had a OpenFlow port number.
If not, that indicated that the port was not actually added. OVS 2.0.2 is the
version that is used in Mininet 2.2.1, which was used in the beginning of this
thesis. In OVS v 2.3.1 this issue is fixed, so adding an incorrectly configured
port will result in the message ovs-vsctl: Error detected while setting up
<portname>. See ovs-vswichd log for details

ovs-vsctl, presumably short for Open vSwitch - virtual switch Control, is used
for configuring the switch itself. It queries and applies changes to the Open vSwitch
configuration database. All the configurations that were not OpenFlow configurations
were done with ovs-vsctl. After installing OVS you can make the device work as
an SDN switch with these three commands:

– ovs-vsctl add-br <bridge name > is used to add a bridge to OVS. All
ports that you want to connect need to be on the same bridge.

– ovs-vsctl set-controller <bridge name > <tcp | ssl > <ip address >
: <port> is used to connect the created bridge to a controller. When it
is connected, the controller can communicate with the switch through the
OpenFlow protocol.

– ovs-vsctl add-port <bridge name> <port name> is used to add ports to
the switch. If you want to add a physical interface, you just use the name of
that interface as port-name. If you want to add a virtual interface you can
give it any name. However, you need to create the virtual interface and set it
to the desired port. For instance: ovs-vsctl set Interface <port name >
type=< gre > options:remote_ip=<ip address>

2.7 Iperf

To measure performance, I used Iperf. Iperf is a tool used to measure the maximum
bandwidth in an IP network [ipeb]. The version used was 2.0.5. It is installed
by running sudo apt-get install iperf. It works by setting up a server on one
device and a client on another other. It supports both User Datagram Protocol
(UDP) and Transmission Control Protocol (TCP). In this thesis, I use TCP. Setting
up the client and server is done in one line in a bash. The server is listening on a
specified port. The client just has to specify the port and IP number for the server.
More information about Iperf can be found here [ipeb].
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Figure 2.9: Output when running ping

2.8 Ping

To measure the latency I used ping. Ping is used for testing reachability and
round-trip-time. It works by sending out ICMP packets. The sender sends out
an ECHO_REQUEST and the target responds with an ECHO_RESPONSE. The
packet contains an IP header, ICMP header, a time value, and then some pad bytes.
The output from running the ping command can be seen in Figure 2.9. As seen min
is the minimum, and max is the maximum. avg is the average time, which can
be verified by summing up the times shown in Figure 2.9 and dividing by seven. I
was unsuccessful in finding any documentation on what mdev was. Thus, I did the
calculations using the numbers in Figure 2.9 on https://www.easycalculation.com/
statistics/standard-deviation.php. The conclusion is that mdev is the population
standard deviation. Indicating the spread of scores in a sample. More information
about ping can be found here [pin].

2.9 MTU

Maximum transmission unit (MTU) is the largest data unit that can be passed on
a network layer. MTU is usually used when referring to packet size in TCP. The
size is specified in bytes and is typically 1500 in IP networks [cis]. The upside with
increasing the MTU is less overhead per data. However, the MTU might differ
between systems. Too large packets will lead to a retransmission or fragmentation.

2.10 Debugging

When setting up an SDN it will most likely be necessary with some debugging.
The tools that I used were Wireshark, the ovs-ofctl command line tool, and the
Pox controller. Wireshark was convenient because I most of the time used VMs.

https://www.easycalculation.com/statistics/standard-deviation.php
https://www.easycalculation.com/statistics/standard-deviation.php
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However, when using clients that only have a command line interface, or are dis-
tributed remotely, it is possible to use SSH with X11 forwarding. This allows you
to run the graphical interface of a program running on a remote host, on your local
computer. X11 forwarding is achieved by simply adding an -X, when establishing
the ssh connection:

ssh <user>@<ip address> -X

2.11 Wireshark

Wireshark is an open-source network protocol analyzer. It is widely used as a tool
for troubleshooting, education, and network analysis. It displays what packets are
being transmitted over each interface in an easily readable way. It was useful to see
which interfaces that were sending and receiving traffic. Note that you need to run
Wireshark as superuser for this to work. When opening Wireshark and pressing Ctrl
+ I you can see the packet activity on all interfaces as seen in Figure 2.10. This is
very helpful when checking that forwarding rules are working, and the correct MAC
addresses are used.

2.12 SDN controller

The SDN controller is written in software to control the connected switches, using
a communication protocol like OpenFlow. This way the controller is not hardware
dependent. The only restrictions are made by the programming language. Today
you have controllers written in Java, Python, and Ruby. As I will illustrate in this
thesis, you can easily extend the controllers functionality by using existing modules
for the chosen language. I use the Pox controller. The reasons for choosing Pox was
that it is considered easy to learn, is aimed towards research and education, python
based, and there are good tutorials and examples. There are three functions that are
especially important when it comes to setup and troubleshooting. All the controller
realted code can be found at https://github.com/Steffb/MstThesis/tree/master/Pox.

launch

Launch is the first function that is called when you start the controller. I use this to
run the static setup that creates the virtual port and adds the relevant ports to the
OVS.

https://github.com/Steffb/MstThesis/tree/master/Pox
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Figure 2.10: Wireshark showing activity on all interfaces

_handle_ConnectionUp

Handle connectionUp is called every time a switch is connecting to the controller. It
takes in an event object that contains a connection object. The connection object is
an association for the controller to communicate with the switch. I use this function
to handle the individual OpenFlow configurations on each switch. All proactive
OpenFlowrules should be handled within _handle_ConnectionUp.

_handle_PacketIn

_handle_packetIn is triggered when the switch receives an OpenFlow packet_in
message. This happens when the packet does not match any OpenFlow rules on the
switch. This way the controller can work in a reactive way by creating new rules to
network changes. It is also a useful way to check whether the OpenFlow rules were
successfully applied on the switch. If an OpenFlow rule was not applied in a switch.
That switch will send the packet to the controller. In my setup, the controller prints
out the package and which switch it was sent from, for debugging purposes. This
gives a good picture of where the network is failing to forward the packet. If you
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want to create a controller that installs the OpenFlow rules reactively this should be
handled _handle_packetIn

2.13 Top

Top is a Linux and Unix command that displays the running processes, and the
processing power being managed by the kernel in real-time. Top can be run solarix
mode and irix mode. Solarix mode gives the CPU usage divided by the amount of
CPU cores. In irix mode it will not divide the CPU usage on the total amount of
CPUs. Thus, when saying that it uses 100% CPU on the Raspberry Pi that has a
quad-core processor, in irix mode, this means 25% of the total available CPU [top].

2.14 xfrm

Xfrm is an IP framework for the Linux kernel that handles the encryption of packets.
It is used to implement IPsec. It handles the SAD and SPD. In this thesis, xfrm is
used to set the security policy to stop unencrypted traffic from leaving a host.

ksoftirqd/0

ksoftirq (kernel software interrupt request) is a process that was observed using a
lot of CPU power when IPsec was used with high traffic throughput. Handling of
interrupt requests is outside the scope of this thesis. What is important to know is
that ksoftirqd indicates that the machine is under a heavy workload. ’ksoftirqd is
a per-cpu kernel thread that runs when the machine is under heavy soft-interrupt
load. Soft interrupts are normally serviced on return from a hard interrupt, but it’s
possible for soft interrupts to be triggered more quickly than they can be serviced. If
a soft interrupt is triggered for a second time while soft interrupts are being handled,
the ksoftirq daemon is triggered to handle the soft interrupts in process context.
If ksoftirqd is taking more than a tiny percentage of CPU time, this indicates the
machine is under heavy soft interrupt load’[ksob].

’An interrupt is simply a signal that the hardware can send when it wants the
processor’s attention’ [ksoa].

Softirq handles processing that is almost as important as hardware interrupts.
The ksoftirqd is triggered when the load is too high and it is necessary to take time
from user processes.
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2.15 Network namespace

To be able to run traffic on a host through OVS network namespacing was used.
From the Linux manual: ’ A network namespace is logically another copy of the
network stack, with its own routes, firewall rules, and network devices. By default, a
process inherits its network namespace from its parent. Initially, all the processes
share the same default network namespace from the init process’ [net]. What this
means is that you can run processes in an isolated virtual network within one host.
If you create a namespace and type ifconfig you will not see any interfaces. You
can then create a tap, give it an IP address and add it to the namespace. If you then
type ifconfig you would see tap appear. All processes executed in that namespace
will then only be able to see and interact with tap.

2.16 Related Work

The security research in SDN is mostly concerned with the management of the
OpenFlow rules. Regarding the OpenFlow rules, there are two approaches. The first,
focuses on how the added network control can enhance security. One example is
using unpredictable IP mutations to thwart scanning of host IPs [JASD12]. Another,
is creating a framework that provides security monitoring for cloud networks based
on SDN [SG12]. The second approach is that the added control opens up for new
vulnerabilities [KKS13], and look at ways to prevent these. An example is Fortnox
[PSY+12].

One of the reasons for choosing my problem description was that there is very little
research that look at datapath encryption in SDN. The security aspects regarding
encryption in SDN are mostly focusing on the communication between the switch
and the controller [Sam15]. This is not the focus of this thesis. However, in [GK14]
by Prasad Gorja and Rakesh Kurapati, a methodology is proposed to extend the
OVS functionality to L4-L7 services to OpenFlow. Looking at ways to modify the
OVS source code to extend the functionality to support load balancing, firewall, and
IPsec. This is a step towards enabling OpenFlow datapath encryption.
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3.1 Setup

To experiment with SDN I needed a testbed. As discussed in the introduction I
started out with Mininet but discovered that it did not provide the functionality
that I needed. As mentioned earlier, the problem with Mininet is that all the virtual
switches are on the same loopback interface. Therefore, they can not communicate
through GRE tunnels, additionally, when adding a GRE tunnel, it does not show
up in Mininet. Thus, after some testing, I realized, that Mininet in itself was not
sufficient.

I used Virtualbox to set up a virtual network. See Figure 3.1. Each of the
squares with bold lining represents a VM. The connecting tubes between the machines
represent the network connection between them. The network connection was created
using Virtualbox’ ’Internal Network’ option. The double arrowed red line represents
the connection between the VMs and the host computer running Virtualbox, using
the Virtualbox ’Host-only Adapter’ option. Additional information about the VMs
used can be seen in 3.1, and more about Virtualbox networking can be found at
[vbo]. The SDN controller was running on the host machine on port 3365.

Creating an SDN-enabled switch

Installing OVS with IPsec support on a supported Linux device can be achieved in
three lines. All you need to do is to run these commands:

# This installs the open vSwtich
sudo apt-get install openvswitch-switch

# Enables the vSwitch to use IPsec
sudo apt-get install openvswitch-ipsec

21



22 3. LAB

Figure 3.1: Lab setup. The inner gray boxes display the interfaces connected to the
network; the name, IP address, and mac address. A fullsize figure can also be found
at https://github.com/Steffb/MstThesis/blob/master/Lab.png

Name OS Software RAM CPU OVS-version
Host Ubuntu 14.04.1 - 64 bit Pox 11951 MB 8 –
R1 Ubuntu 15.10 - 64 bit Open vSwitch 1024 MB 1 2.3.1
R2 Ubuntu 15.10 - 64 bit Open vSwitch 1024 MB 1 2.3.1
Endc1 Ubuntu 15.10 - 64 bit Open vSwitch 1024 MB 1 2.3.1
Endc2 Ubuntu 15.10 - 64 bit Open vSwitch 1024 MB 1 2.3.1
C1 Ubuntu 14.04 - 64 bit Mininet, Open vSwitch 1024 MB 1 2.0.2
C2 Ubuntu 14.04 - 64 bit Mininet, Open vSwitch 1024 MB 1 2.0.2

Table 3.1: Specifications of the VMs that were used. C1 and C2 are Mininet VMs
downloaded from [minb]. The reason for setting up this many VMs was to test if it
was possible to use IPsec encapsulation on packets that were already encapsulated
using IPsec.

https://github.com/Steffb/MstThesis/blob/master/Lab.png
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# IPsec Internet Key exchange daemon
sudo apt-get install racoon

Other dependencies that are already installed in Ubuntu can be found here [ipsc].

3.2 Discoveries

The first part of this thesis consisted of experimenting with OVS in the virtual
environment. Mainly, figuring out how it worked, and discovering what possibilities
there were for adding dynamic encryption. Additionally, some issues with OVS were
found.

3.2.1 DPID

In OpenFlow the Datapath Identifier (DPID) is supposed to be a unique number
that is used to identify each switch in the controller. However, to quote the Stanford
Pox Wiki :

"A DPID is 64 bits. The spec claims the lower 48 bits are intended to be the
switch’s Ethernet address. ... But in implementations, this is not always true because
the OpenFlow control channel often may originate from one of several interfaces and
it’ll use whatever Ethernet address goes with it. In practice, its pretty arbitrary,
and often user-configurable independent of any Ethernet address. It’s probably a
decent idea to always just treat it as an opaque value which should be unique. If
a vendor happens to base it on some particular Ethernet address, treat that as an
implementation detail for how they achieve uniqueness and not as there being any
sort of real relationship between the two. To give a more concrete answer: with
Open vSwitch, it defaults to the Ethernet address of the switch’s "local" port with
the top 16 bits zeroed (this Ethernet address being generated at random when last I
checked) [pox]".

I experienced that some of the OVS’ alternated between two DPIDs, depending
on what interfaces they had connected to them. I suspect this is because of the
switching between physical and virtual interfaces. As mentioned earlier, the OVS
process takes over the control of the physical interface when the interface is added
to OVS. What I think is happening is that it then uses the MAC the new interface,
to generate the DPID. Therefore, the IP and MAC, which is also sent in the first
packet from the switch to the controller when it connects, should be used to identify
the switch.
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3.2.2 Dynamic tunnels

When setting up, and taking down virtual tunnels, the interfaces are given OpenFlow
port numbers. These port numbers are only used as reference numbers within
OpenFlow when adding/modifying OpenFlow rules and has nothing to do with the
ports belonging to the IP address. Adding/removing ports will result in a new port
number each time, to ensure that a new port will not interfere with old OpenFlow
rules. However, this can be confusing when adding and removing IPsec tunnels. That
is why I made:

def get_portnr_from_name ( connect ion . f e a t u r e s . ports , ’ eth3 ’ ) :
for port in p o r t _ l i s t :
if( in_port == port . name ) :
return port . port_no

Connection is the object that is the controllers reference to the switch. This way I
could give logical names to the port, and reference them by name. The function can
be found in the Appendix.

Additionally, I discovered that the OpenFlow rules were not removed when the
corresponding out-port was removed. This is something one should be aware of when
adding and removing ports. For instance, if a port is set to forward all traffic from
MAC address xx, then later that port is deleted, and another port is added that
is set to forward all traffic. The result would be that all packets from xx would be
dropped because OpenFlow selects the most precise match to decide the next action.
Therefore, if removing a port from the switch, the OpenFlow rules that have that
port as the output should also be removed. ovs-vsctl del-flows <portname>,
does this.

3.2.3 Secure router

One of the interesting things to test out was whether or not it is possible for an
SDN switch to forward traffic already encrypted by another SDN switch. This is
interesting because it would allow you to use a switch in your SDN without worrying
about it leaking any data in the case that it would be compromised.

As seen in Figure 3.2 the whole packet is encrypted, including VLAN tag and
bridge key. What is not encrypted is the source and destination MAC and IP. I
wanted to test if it still would be possible to control the traffic flow based on the
MAC and IP address. Then test if it would be possible to modify those fields and
still transport the packet successfully.

What I did was creating an IPsec tunnel from R1 to endc1 through C1 in
Figure 3.1. Secondly, I added eth1 and eth3 on C1 to the OVS. Note that OVS on
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C1 does not decrypt the traffic in the tunnel, it only manages traffic between eth1
and eth3. Thus C1 only sees an encrypted packet from R1 to endc1.

Initially, ’C1’ had no OpenFlow rules applied, so the packets were stopping at
’C1’. Then, I applied a rule to forward traffic with an unused mac address. Finally, I
added the OpenFlow rule to forward traffic with source MAC of ’endc1’, resulting in
the packets being successfully forwarded. The same procedure was done with the IP
address of ’endc1’.

Figure 3.2: IPsec packet captured between C1 and C2

3.2.4 GRE in GRE

An interesting concept when it comes to securing the data traffic is IP-in-IP, which
means encapsulating an IP packet in another IP packet. This is a concept used
in GRE tunneling. What separates GRE from IP-in-IP is that GRE adds a GRE
header. What I wanted to test was the possibility of encapsulating an already
GRE encapsulated packet. Successfully doing this would allow for multiple layers of
encryption when using the ipsec_gre option. Allowing network separation that is
not just separated by VLAN tags, but also by encryption. In Figure 3.1 C1 does not
need to worry about whether R1 is encrypting the traffic, and R1 does not need to
worry about whether C1 encrypts its traffic when forwarding it.

GRE

In this experiment, I used the same setup as shown in Figure 3.1. The tunnels that
were set up were set up from C1 to C2 and from R1 to R2. Then I created a host
h1 on C1 with IP 10.0.0.1, and a host h2 on C2 with IP 10.0.0.2, using Mininet.
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Then I tried to ping h2 from h1. This experiment was successful. The flow dumps
showed that the traffic was going through R1 and R2. Figure 3.3 shows a packet
captured from between R1 and R2: The ICMP packet packed(Yellow), in a GRE
packet between C1 and C2 (green), and again encapsulated in another GRE packet
between R1 and R2 (blue).

Figure 3.3: Captured GRE encapsulated packet within a GRE encapsulated packet

IPsec

Knowing that the principle worked, I went on to try this with IPsec tunnels. This also
worked. What was a little confusing was the time it took to establish a connection.
The Internet Security Association and Key Management Protocol (ISAKMP) between
two endpoints does not start until there is traffic passing through, resulting in a
delay before the data will be passed on. When using IPsec in IPsec this has to be
done twice before the communication starts. This resulted in up to 15 seconds delay
before traffic started flowing. To verify that the traffic was encapsulated twice I used
Wireshark and ovs-ofctl. With ovs-ofctl I could verify that the IPsec_GRE
port was used. With Wireshark, I could verify that the packets were encrypted.
Figure 3.2 shows the packet that was captured between C1 and R1. Note that in
the blue square you can see that the IPsec packet is larger than the double GRE
encapsulated packet in Figure 3.3. All packets shown are ping request and replies.

Figure 3.4 shows the packet captured between R1 and R2. The only way to see
that this is encapsulated twice it by looking at the size in the blue square. You can
also see that it is the Encapsulating Security Protocol (ESP) method of IPsec that is
used.

ARP Connection

The challenge with getting the double encapsulation to work. Was that in C1 the
output port can not be controlled by OpenFlow because the output port needs to
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Figure 3.4: IPsec packet captured between R1 and R2

be the virtual IPsec/GRE port, and that has to be sent over the hosts IP stack,
resulting in c1 sending out an ARP broadcast for 192.168.2.6, the endpoint of the
tunnel. This would be received on the eth1 port of R1. However, if it is setup as a
simple forwarding port, the ARP broadcast will be sent to the second GRE tunnel
out-port. It turns out that the GRE tunnels will not encapsulate nor decapsulate
packets unless it knows the next step MAC address, and so the packet will be lost.
This is why the routing and ARP entries need to be added proactively. In this case,
C1 would need C2 in its routing table, and the MAC address of as the next hop.
Therefore, the ARP entries have to be added proactively for double encapsulation to
work.

MTU

MTU became a problem when running a test with ping, and is something that should
be considered when using encapsulation protocols. As can be seen in the blue squares
in figure Figure 3.2 and Figure 3.4, encapsulating a packet with IPsec_GRE adds 640
bits(80 bytes), and encapsulating a packet in GRE adds 304 bits (38 bytes) as can
be seen in Figure 3.3. It became a problem when running ping testing with packets
size set to 1400 bytes, and when running Iperf. It worked when having GRE tunnels
between each switch. However, it did not work when encapsulating a GRE tunnel in
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another GRE tunnel. The maximum packet size that worked with a double GRE
tunnel was 1396 bytes. When using one GRE tunnel at a time, the max packet size
was 1434 bytes. Added packet size needs to be considered when using encapsulation.
Especially, if using encapsulation multiple times. The end-nodes need to consider
this when setting the Maximum Segment Size (MSS) size.

’The MSS defines the maximum amount of data that a host is willing to accept
in a single TCP/IP datagram. The MSS value is sent as a TCP header option only
in TCP SYN segments. Each side of a TCP connection reports its MSS value to the
other side. The sending host is required to limit the size of data in a single TCP
segment to a value less than or equal to the MSS reported by the receiving host’ [cis]

3.2.5 Verifying changes

During these tests I have used Wireshark and manual packet inspection to verify that
the packets being sent are encrypted. However, in a bigger network manual packet in-
spection would be inefficient. The ’paramiko.SSHClient().exec_command(’command’)
raises SSHException: if the server fails to execute the command’ [para], which can
be handeld at the controller. Additionally, with OpenFlow the controller can query
the switch to see what OpenFlow configurations that are in use [ofsa].

3.2.6 Using keys

When setting up multiple tunnels, it is important to use keys. Not the PSK but the
key used for separating tunnels. The reason this is important is that if OVS has two
tunnel endpoints that match the incoming packet, OVS will just drop the packet.
This is also true even though one port is using IPsec and another is using GRE. If they
are not separated by a key, or IP address, the packets will be dropped. The way to set
a key to a port can be seen below. In this case, the tunnel key is 4. This will require
that the key on both ends of the tunnel is set to 4. It is also possible to distinct keys by
using a remote and local key. ovs-vsctl add-port bridge2 ipsec_port – set
interface ipsec_port type=ipsec_gre options:remote_ip=129.241.205.110
options:psk=password123 options:key=4

3.2.7 Port Name

Apparently the port name can only be 15 characters long, which should be considered
when choosing a naming convention. A problem that occurred was a miss-match
when looking up port names. Using the port name ipsec_gre-rasp1-r1 shows up
as ipsec_gre-r2-ra in OpenFlow. Furthermore, if you want to delete or modify
the port you have to reference it by its full name. Therefore, port names should not
be longer than 15 characters.
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3.2.8 Racoon

You need to run sudo racoon to make IPsec work with OVS. As far as I have seen,
this is not documented anywhere. The command must be run after every start up.
If not, the IPsec_GRE tunnels will not work, without giving any reason. The way I
discovered it was by looking at the system log and seeing that the ISAKMP did not
complete. I ran sudo racoon to check what options I had and discovered that IPsec
connection started working.

3.2.9 Securing traffic to the Host

OVS is available for Ubuntu, Debian, and Fedora [ovsa]. If the host also supports
namespacing, it is possible to remotely control that traffic is secured all the way
to the host machine. By only allowing processes that require network connectivity
to run withing the namespace, it is possible to force all the traffic to go through
OVS while keeping it transparent to the user. This is illustrated in the setup I used
here Figure 4.1. The processes only see the tap1 interface, so changes done in the
ovs-bridge will not be visible. This could be useful in a office wireless network. One
could use this to secure the wireless connection to the Access Point (AP) without
having to give out a PSK to persons. It could also be certificate based, and the PSK
could be changed remotely without user interaction.
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After doing configuration testing and discovering what was possible, I went on to test
the performance. Latency and throughput is interesting to test because there is no
point in having a secure network if it degrades the performance to an unacceptable
level. Latency and throughput was tested. To quickly freshen up the difference
between them: latency is the time it takes for a bit to travel from a to b, and
throughput is how much data that can be sent from a to b per time. While running
these experiments I also used Top, to monitor the CPU usage. I used the same setup
as in Figure 3.1. In all performance results shown here the ISAKMP was already
negotiated before running the tests.

4.1 Latency

The latency testing was done with the command: sudo ping 192.168.7.2 -s 1300
-c 10000 -f. -s 1300 sets the packet size to 1300 byte. As discussed earlier, this
is close to the maxium packetsize that can be encapsulated in IPsec twice without
fragmentation. -c 1000 means sending 1000 packets, and -f means flood. About
flood : ’... If interval is not given, it sets interval to zero and outputs packets as
fast as they come back or one hundred times per second, whichever is more. Only the
super-user may use this option with zero interval’ [pin]. The results can be seen in
Table 4.1. All the values are given in Milliseconds.

As we can see from Table 4.1, IPsec does introduce some latency and has a greater
deviation. Also interesting is that whether the GRE tunnel is encapsulating once or
twice has little effect.

4.2 Throughput

To test the throughput I used iperf. The commands used were: iperf -c 192.168.7.2
-t 60 -M 1300 and iperf -s. -c stands for client, 192.168.7.2 is the IP address
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Setup min avg max mdev time
gre-between-gre 0.103 1.587 16.407 1.150 18879
ipsec-between-ipsec 0.255 1.743 21.738 1.412 20630
greingre 0.192 1.537 13.004 1.103 18582
ipsecinipsec 0.302 1.986 15.011 1.424 23754

Table 4.1: Latency when ping flooding

Setup Transfer Time Bandwidth
gre-between-gre 1.51 GByte 60 s 215 Mbits/sec
ipsec-between-ipsec 649 MByte 60 s 90.7 Mbits/sec
greingre 1.58 GByte 60 s 227 Mbits/sec
ipsecinipsec 802 MByte 60 s 112 Mbits/sec

Table 4.2: Throughput

of the server side running iperf, -t 60 tells the client to send traffic for 60 seconds,
-M 1300 tells it to used MSS of 1300 byte. iperf -s means acting as the server side.
’The MSS is usually the MTU - 40 bytes for the TCP/IP header. For Ethernet, the
MSS is 1460 bytes (1500 byte MTU).’ [ipea]

Table 4.2 shows the results of the tests. We see that the added GRE encapsulation
actually has a better throughput than just one layer of GRE encapsulation. We also
see that IPsec decreases the throughput with over 50%.

CPU usage

Performing the ping test the CPU usage did not go above 2.3 %. When running the
throughput test on the IPsec tunnels between C1 and C2, R1 and R2 constantly used
between 20 - 30 % and was not affected by the direction of the traffic. The CPU usage
was the same on ipsec-in-ipsec and ipsec-between-ipsec. Thus, whether is was
doing encrypt then decrypt or just encrypt did not make any difference, indicating
that the R1 and R2 machines were not the performance bottleneck.

What was interesting was that when running the iperf loadtest the CPU usage
was different depending on which way the packets were sent. It changed depending
on traffic direction. This happened both when using IPsec and normal GRE. It seems
to require greater CPU power to do decapsulation.
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4.3 Raspberry Pi

The original idea was to transform a wireless router to an SDN switch. However,
there were some compatibility issues when adding the OpenFlow support on the
openWRT firmware. Secondly, after discovering that OVS is compatible with Ubuntu
mate (an operating system that runs on Raspberry Pi) using a Raspberry Pi became
a better solution. A Raspberry Pi is cheaper than a router with equal processing
power, and OpenFlow enabling it is easier than on openWRT.

4.3.1 Setup

In this part, I used the Raspberry Pi 3, Model B, 1 GB RAM. Full specification
can be found here [ras]. It was running Ubuntu mate 15.10.3 32-bit version with
OVS version 2.4.0. The steps to install Open vSwitch on a Raspberry Pi running
Ubuntu mate are the same as shown in 3.1. The Raspberry Pi has a High-Definition
Multimedia Interface (HDMI) port so it can be connected to a screen. However,
when using them as a network switch it is more convenient to use SSH. To use SSH
you need to install openssh-server and openssh-client by running: sudo apt-get
install openssh-server openssh-client.

Access Point

As an AP i used a Linksys EA2700, more information can be found here [rou]. The
AP used Wi-Fi Protected Access (WPA)2 with PSK Itemize2016 to avoid other
clients from connecting to the network and add noise to the results. Linksys EA2700
supports 802.11 b/g/n. I used the 2.4 MegaHertz (mHz) band, with channel selection
set to automatic. The Raspberry Pi uses 802.11n. So the theoretical maximum
throughput is 54 Mbits/s.

4.4 Performance

The next step was to connect my virtual environment on my host computer to the
physical network with the Raspberry Pi. Using C1 and C2 as hosts, and connecting
R1 and R2 as switches to my physical network. Therefore, R1 and R2 needed a bridge
to the physical network. I did this by using the bridged-adapter in Virtualbox to
bridge the wireless network interface to a virtual interface at R1 and R2. However,
since the internal network is using internal IP addresses it is necessary to add an
ARP and route entry, to tell it to forward the traffic through the newly added bridge.
If connecting a VM in Virtualbox to a Dynamic Host Configuration Protocol (DHCP)
router you also need to do some manual changes in the network configuration. In
Ubuntu Linux, this is done in /etc/network/interfaces. The interface that is
bridged to the wireless interface needs to be set to use DHCP. This is done by



34 4. PERFORMANCE

Table 4.3: Latency between C1 and C2 through a Raspberry Pi

Setup min avg max mdev time
gre-between-gre 2.827 15.745 735.427 51.470 90213
gre-between-gre 3.587 19.527 415.197 36.830 90515
gre-between-gre 2.240 9.655 161.186 13.119 12.272
ipsec-between-ipsec 2.545 13.598 634.938 38.371 84852
ipsec-between-ipsec 3.130 13.097 658.111 13.119 85874

Table 4.4: Throughput between C1 and C2 through a Raspberry Pi

Setup Transfer Time Bandwidth
gre-between-gre 11.9 MBytes 60 sec 1.53 Mbits/sec
gre-between-gre 21.1 MBytes 60 sec 2.73 Mbits/sec
ipsec-between-ipsec 18.4 MBytes 60 sec 2.55 Mbits/sec
ipsec-between-ipsec 21.5 MBytes 60 sec 2.26 Mbits/sec

changing:
auto <interface name>
iface <inteface name> inet static.
To:
auto <interface name>
iface <inteface name> inet dhcp.
Also, the promiscuous mode in the network preferences in Virtualbox needs to be
set to ’Allow all’. If not, the VM will be able to ping the Raspberry Pi but not the
other way around. The results of the performance tests can be seen in Table 4.3 and
Table 4.4.

MAC addresses

What threw me off a bit was that when connecting the VMs to the real network, was
that the traffic had to go through the physical network card on the host machine,
therefore all traffic that is going through that network card needs to set the mac of
the physical wireless card as its MAC source / destination, and not the internal MAC.
This would be handled automatically by the ARP protocol, but it is something you
need to be aware of when adding ARP entries proactively.

Results

The reason I have added multiple entries in Table 4.4 and Table 4.3 is to illus-
trate that the results were very inconsistent. Looking at latency, we can see that
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gre-between-gre has a inconsistent average latency. Similarly, when we look at the
throughput, the results vary a lot. There could be multiple reasons:

– A factor could be the wireless card on the host machine. Even though the
traffic is generated and received on different VMs, they are on the same host
machine, and travel through the same wireless card. I have not control over
how Virtualbox handles the network connection to a physical port

– It could be the wireless cards on the Raspberry Pi that has unstable perfor-
mance.

– The network is in infrastructure mode which means that all the traffic is going
through the AP

– Finally, it could be noise from other wireless networks in the area. Even
microwaves can create noise on the 2.4 gHz band and affect wireless signals.

New Setup

To eliminate factors that could limit performance besides the Raspberry Pi and
wireless signal, I switched to a different setup that just sent traffic between the
Raspberry Pi devices. This was done by using network namespacing and creating a
namespace on each of them. Then creating an internal interface connected to that
namespace. Finally, I used OVS to connect that internal interface to a GRE port
that used the hosts IP stack to connect to the other Raspberry Pi. This way I could
connect a ’physical’ port in the namespace to the OVS and connect it to a tunnel
without giving OVS the control of the IP stack. The setup is shown in Figure 4.1.
The commands used to achieve this are shown in Figure 4.2

Figure 4.1: Two Raspberry Pi devices communicating through an internal interface
in a network namespace connected to OVS
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Figure 4.2: Script to set up a network namespace connected to the outside through
OVS

I went on to create an isolated network to remove noise from the Internet by using
a router that supported Network Address Translation (NAT). The only traffic over
the wireless interface on the Raspberry Pi devices was the traffic that I generated.
Then the throughput and latency experiments were performed. Note that in this
case the Raspberry Pi was either encrypting or decrypting. Not both as in Table 4.4.

Network noise

The Android app ’Wi-Fi Analyzer’ showed that the other networks were running
on most of the available channels as can be seen in Figure 4.3. I tried switching
to channel three which supposedly was least used. This still resulted in a 18.9
ms standard deviation over 10000 packets when pinging between the Raspberry Pi
devices, indicating that there was signal noise. Therefore, as a final attempt to get
some valid results I tried to re-run the experiments during nighttime. This way there
would be minimal disturbance from other wireless units running. The networks were
still active, the difference was that fewer people were using them. The results are
shown in Table 4.5 and Table 4.6.
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Figure 4.3: Showing the signal strength on the different channels

Setup min avg max mdev total time % Increase from normal
normal 2.108 4.064 101.746 5.246 37889ms 0
gre-tunnel 3.438 4.810 42.043 1.927 34450ms 18.36
ipsec-tunnel 3.763 5.231 37.821 1.646 54550ms 28.72

Table 4.5: The latency performmance between two Raspberry Pi devices over a
wireless network. Performed late at night to reduce noise

Setup Transfer total time Bandwidth % Decrease from normal
normal 146 MBytes 60.1 sec 20.5 Mbits/sec 0
gre 137 MBytes 60.0 sec 19.2 Mbits/sec 6.34
ipsec 86.8 MBytes 60.2 sec 12.1 Mbits/sec 40.98

Table 4.6: The throughput performance between two Raspberry Pi devices over a
wireless network. Performed late at night to reduce noise.

4.4.1 On wired network

Sending traffic over Wi-Fi is usually done on the connection end-point on the client
side. When forwarding traffic over long distances or with high throughput, a wired
connection is preferred, as it can provide higher speeds. Therefore, the same latency
and throughput tests were also performed on a wired network. This was done by
attaching the two Raspberry Pi devices directly to the AP with a Category (CAT) 5
twisted pair cable. The results can be seen in Table 4.7 and Table 4.8.
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Setup Transfer total time Bandwidth % decrease from normal
normal 669 MBytes 60.0 sec 93.5 Mbits/sec 0
gre 651 MBytes 60.0 sec 91.0 Mbits/sec 2.67
ipsec 601 MBytes 60.0 sec 83.9 Mbits/sec 10.27
ipsec 2 threads 605 MBytes 60.1 sec 84.6 Mbits/sec 9.52
ipsec 4 threads 606 MBytes 60.2 sec 84.2 Mbits/sec 9.95

Table 4.7: Throughput wired network

Setup min avg max mdev total time % increase from normal
normal 0.842 0.860 1.417 0.044 9441ms 0
gre-tunnel 0.871 0.911 2.724 0.031 10064ms 5.93
ipsec-tunnel 1.252 1.404 5.220 0.124 ms 18639ms 63.26

Table 4.8: Latency On wired network. Performed late with less noise.

CPU usage

What was interesting to observe was that running iperf on a wired connection resulted
in iperf using 21-21 % CPU, and the other processes using less than 5%. When
running iperf over the IPsec tunnel, ksoftirqd/0 on the sender side used 57% CPU
and maxed out on the receiver side. This was similar to what was observed in the
virtual environment. The total CPU is shown in Figure 4.5

Raspberry Pi has an Arm quad-core processor, which means that it has four
CPUs. Looking at Figure 4.4 we see that switching to the Solaris mode, that only one
thread is used when iperf is running with four threads, meaning that the Raspberry
Pi would have a potential for more throughput with IPsec if all four cores were
utilized because we saw the CPU becoming a limiting factor in IPsec.
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Figure 4.4: Screenshot of top in Solaris mode. Show that Raspberry Pi is not using
multithreading on the server side. The client is running iperf with four threads.

Figure 4.5: Shows the available CPU on the sender and receiver side when using
IPsec. The green line is the Raspberry Pi device that sends and encrypts the traffic.
The red line is the Raspberry Pi device that receives and decrypts the traffic. It
illustrates that the receiver has less available CPU power.
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This chapter contains the security related experiments with OVS. These experiments
were run on the Raspberry Pi setup shown in Figure 4.1, with the controller running
on the host machine described in Table 3.1. After discovering that a Raspberry Pi
devices could be a wireless SDN switch, running the experiment on them was more
interesting than using Virtualbox, because it would be comparable to a physical SDN
network. It is important to separate these experiments from the ones in chapter 3
because they run on a different operative system, different hardware and a different
OVS version.

5.1 Replay attack

I wanted to verify that the IPsec encryption in OVS actually provided protection
against a replay attack. A replay attack is where data is maliciously delayed or
repeated. This is an attack that is possible just by eavesdropping on the traffic being
sent. An example would be if somebody sent a system command over an encrypted
channel. If there is no replay protection an attacker could just eavesdrop and resend
the same packet and the same configuration would be applied. Typical ways to
protect against this are by the use of session tokens and timestamps.

To simulate a replay attack I used tcpdump, tcpreplay and Wireshark. First,
I tried it on the normal GRE tunnel. Starting with running ping between the the
Raspberry Pi devices over a GRE tunnel while running tcpdump with: sudo tcpdump
dst 129.241.205.101 -w capture_file. This command allowed me to capture
all packets with destination IP of 129.241.205.101 (the receiver of the ping requests)
and write it to a file called capture file. Then I stopped the pinging and ran:

tcpreplay –intf1=wlan0 capture_file replays the packets in capture_file
on interface wlan0. wlan0 is the wireless interface on the Raspberry Pi.

Running Wireshark on the remote host that was pinged (129.241.205.101), I could
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Figure 5.1: Showing a replay attack on the GRE tunnel. The packets up until 3794
are ordinary packets, and the subsequent are replayed with tcpreplay. This can be
seen by looking at the sequence number in the second column from the right

Figure 5.2: Showing an unsuccessful replay attack on the IPsec tunnel. The packets
up until 7663 are ordinary packets, and the subsequent are replayed with tcpreplay.
129.241.205.101 stops responding to the packets at 7663.

see that the ping requests were coming in and the host was responding to them, as
can be seen in Figure 5.1. The next step was to test the IPsec tunnel. Repeating the
same procedure as with the GRE tunnel. However, it did not work. The receiver did
not respond to the packets being sent, as can be seen in Figure 5.2.

5.2 Change PSK

Part of this thesis was to look at how dynamic PSK distribution can be achieved.
Different approaches were tried, and the results are given below.

5.2.1 Renew PSK on interface

The first approach consisted of changing the PSK option value on each of the endpoint
interfaces of the tunnel. This was done by running the command: ovs-vsctl
set Interface <Port name> options:psk=<new PSK>, where <Port name> is an
existing IPsec_GRE port. This lead to some interesting results. For one, the traffic
stopped, and the time it took for the communication to resume varied greatly as can
be seen in Figure 5.3.
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Figure 5.3: Shows time it took from changing the PSK until the traffic could resume.
The x-axis is time in seconds and the y-axis is the amount of times it happened.

Figure 5.4: A leaked ICMP packet when changing PSK

The measurement of the time it took to resume traffic flow was performed by
running: ping 10.0.0.2 -D which gives the UNIX time of each ICMP packet.
Then using the script ’change_key’ to change the PSK on both sides of the tunnel.
Finally, going through the ping log and registering all the time gaps greater than
one second.

Even more interesting was that when changing the PSK some packets were leaked.
This can be seen in Figure 5.4. During this experiment, I had Wireshark running
and noticed that every time the PSKs were changed, one ICMP packet was leaking.
When inspecting the packet it looks like it is just using the normal GRE option. See
Figure 5.5. Even the tunnel key can be seen. This is a very serious bug and should
be fixed before considering using IPsec. I am currently in a dialog with the primary
author of the IPsec code in Open vSwitch. More about this in Future work.
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Figure 5.5: A leaked ICMP packet. Under Generic Routing Encapsulation in line
four from the top, the key field shows the hex value of the key used in the IPsec
tunnel. This proves that the leaked packet originates from the IPsec tunnel.

5.2.2 Deleting ports

The next method to renew the PSK is by using multiple IPsec ports and adding new
ports with a different PSK. This was tested by adding two IPsec ports with different
PSK and using the forwarding rule NORMAL. Then manually deleting the used
port with the command: ovs-vsctl del-port <port-name>. NORMAL makes the
OVS act as a normal bridge [ofsb]. The default is to use the first port that matches
the OpenFlow rule. The result was that the traffic stopped. The switch was still
forwarding the traffic. However, the packets were not encrypted. It switched to use
GRE without IPsec. By inspecting the packets I could see that it had the tunnel
key of the second port, meaning that it had successfully changed to use the second
port, yet it did not use IPsec even though that was specified. Figure 5.6 shows the
information given in the console while the packets are sent out unencrypted. Some
further testing showed that it also happened when using specific OpenFlow rules.
What was a bigger problem was that deleting a port not in use, had the same effect
on the other IPsec ports on the switch. All ports on the OVS stopped using IPsec.
This is reported to the OVS security team and is being looked into. It only happens
on the tunnels having the same remote IP as the port being deleted. The reason the
communication stops is that the IPsec port on the receiver side only accepts traffic
encrypted with the correct PSK.



5.2. CHANGE PSK 45

Figure 5.6: This is the information that ovs-vsctl show provides when OVS is
sending out unencrypted packets.

Virtual environment

Observing the problems with the PSK changing in Figure 5.4 and Figure 5.7, I wanted
to check if this might be a hardware problem. Thus, I repeated the experiment
between endc1 and c1 in the virtual network setup seen in Figure 3.1. The result
was the same as on the Raspberry Pi devices. Deleting an IPsec port resulted in
the subsequent packet on the other IPsec ports not being encrypted. The whole
Wireshark capture can be seen in the Experiments/changing_key folder on Github
[git]. This is a serious problem and should definitely be further investigated. It only
happens when the port is an IPsec port with the same destination IP as the port
being used. I suspected that the problem could be with racoon, the keying(PSK)
daemon used. However, restarting racoon by running racoon-tool restart did not
solve the problem. This leads me to think that it has something to do with the OVS
implementation of racoon.

5.2.3 PSK not changing

One time, during testing of setup time for different PSKs. The PSK renewal started
failing. The traffic stopped for approximately 60 seconds to do the PSK negotiation
as normal. Then subsequent PSK changes did not cause any stop in the traffic. This
seemed strange compared to the earlier experiments that showed the PSK negotiation
using typically either 5 or 60 seconds. Suspecting something was wrong I turned
on Wireshark to see what packets were being sent. Wireshark did not show any
ISAKMP packets being sent whenever the PSK changed. Suspecting that the new
PSKs were not applied, I changed the PSK on one side of the tunnel to something
random. The traffic was still going through the tunnel. Thus, it turns out that the
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Figure 5.7: Showing the sender constantly leaking packets after the port was deleted

new IPsec PSK was not being applied. Screenshot is shown in Figure 5.8. However,
every time I changed the PSK an ICMP packet still leaked out. The rest of the
packets were still encrypted. I have added the log-files and packet captures cap-
ture in the /Experiments/experiment/Raspberry/ipsectunnels/ipsec_psk_bug
folder on Github [git]. The command used to renew the PSK was ovs-vsctl set
Interface ipsec_gre options:psk=<New PSK>

5.2.4 Adding ports

Adding ports does not seem to affect the encryption. This was tested by establishing
an IPsec tunnel, and running traffic through it. Then adding another IPsec port
and set OVS to use the newly added port. It worked. Flow-dumps showed traffic
using the new port, and it did not have to renegotiate the ISAKMP, which is a huge
advantage from a performance perspective. As we have seen, removing or editing
the ports does not work well with IPsec in OVS. Thus, the best way to renew the
PSK is to dynamically add new IPsec tunnels between the endpoints and use flow
modification to change which port is being used for transporting traffic. This leads
to two questions. How many IPsec tunnels is it possible to have, and how do multiple
tunnels affect the performance.

Finding the maximum amount of available ports was done using add_tunnel.py,
which creates a new port every 10 seconds and applies OpenFlow rules to use the
newly added port. Each time it increases a counter that is used in the port-name,
tunnel key, and the tunnel PSK, to ensure that all tunnels are different. A new
endpoint can therefore not communicate with an old. Ping was ran while the script
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Figure 5.8: A screen capture, showing the PSK not being applied. The top terminal
shows ping traffic going between the two switches, and the two other terminals are
from the switches and displays them having different PSKs
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added the ports to verify that the tunnel was usable. I was able to add 420 ports
and still successfully ping between the hosts. The reason for stopping at 420 was
based on time. Thus, 420 can be considered a lower bound. However, the ports are
not working if the host is restarted. When using three ports they are unaffected by a
restart.

5.2.5 Adding ports performance

The next thing tested was whether having multiple IPsec tunnels affected performance.
This experiment was also conducted by running add_tunnel.py, which adds a new
IPsec tunnel every 10 seconds and adds OpenFlow rules that force the switches to
use the new tunnel. While this script was running, I ran Iperf between the hosts to
measure throughput. The results can be seen in Table 5.1 and Table 5.2. The script
was stopped at 300 ports because there was no tendency of the traffic being affected.

Setup Transfer total time Bandwidth
300 open IPsec ports 104 MBytes 60.1 sec 14.5 Mbits/sec
Normal 137 MBytes 60.1 sec 19.1 Mbits/sec

Table 5.1: Throughput over a wireless connection with 300 open IPsec ports.

Setup min avg max mdev total time
300 open IPsec ports 3.805 5.890 78.253 2.868 63279ms
Normal 3.206 5.050 67.820 2.516 51421ms

Table 5.2: Latency over a wireless connection with 300 open IPsec ports.

As can be seen in Table 5.2, having 300 open IPsec ports did not have a negative
effect on the throughput or latency when compared with to Table 4.5 and Table 4.6.
The normal entry in Table 5.2 is testing just between the Raspberry Pi devices
without going through OVS.

Since wireless traffic did not seem to haven an effect, the same test was performed
over a wired connection. add_tunnel_improved.py was ran while running an Iperf
throughput test over a wired connection. The connection between the controller and
the Raspberry was wireless but on the same AP. Here something interesting happened.
While adding ports the wireless connection from the controller to the Raspberry Pi
devices broke. The experiment was performed three times and it happened when
adding port number 37,41, and 36. Two times the error in Figure 5.10 occurred, and
one time the error shown in Figure 5.9.
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Figure 5.9: Error message that stopped add_tunnel_improved.py while adding
IPsec port number 36

Figure 5.10: Error message that stopped add_tunnel_improved.py while adding
IPsec port number 37 and 41

5.2.6 Adding ports overhead

After establishing that adding ports with IPsec is a good way to renew the PSK it is
interesting to see how adding ports affect the performance. It would be desirable to
be able to renew the PSK without having to do it ahead of time. Therefore, I ran
add_tunnel.py while running Iperf on each side of the connection. The results over
Ethernet can be seen in Figure 5.11 and over Wi-Fi in Figure 5.12.

As seen in Figure 5.11 and Figure 5.12, adding a port did affect the through-
put significantly. You can clearly see drops when the new port is being added.
add_tunnel.py is supposed to add a tunnel every five seconds but as can be seen
in Figure 5.13, adding a tunnel takes more time when the switch is also forwarding
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Figure 5.11: The graph shows the throughput on an OVS over Ethernet, when ports
are being changed.

Figure 5.12: This shows how adding a port and changing the OpenFlow rules to used
that port effects the throughput over Wi-Fi.
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Figure 5.13: The graph shows the time it takes to add a port and change the flow on
a switch that is forwarding the traffic.

traffic.

5.2.7 PSK change performance

The next thing to test was throughput when switching ports. To do this the script
port_switcher.py was used. port_switcher.py adds a new OpenFlow rule to
switch to an already added IPsec port every 5 seconds. The results can be seen
in Figure 5.14. Here we see that changing the port does not affect the throughput
nearly as much.

5.2.8 Improved method

From Figure 5.12 and Figure 5.14 we observe that switching between tunnels does
not nearly have the same impact on the throughput as adding a tunnel and changing
tunnel. From Figure 5.13 we can observe that performing changes on the switch
typically takes between 7 and 11 seconds. The add_tunnel.py adds a port on switch
one and tells it to use the new port. Then it does the same on switch two. Observing
the graphs above, we see that this is an inefficient way to do it. During the time
the controller adds a port and new flow entry on the second switch all traffic will
be lost. Therefore, I changed the code to add_tunnel_improved.py which adds the
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new port on both switches before changing the OpenFlow rules. The result are shown
in Figure 5.15.

Figure 5.14: The graph shows the throughput over Wi-Fi on an OVS when ports are
being changed.

As seen in Figure 5.15 the changes made in add_tunne_improved.py made a
huge difference in throughput. The reason I did not pay attention to the order the
commands were executed in the beginning, was that executing an ssh command took
less than a second when there is no traffic on the switch.

5.2.9 Solution

After discovering the security issues with the PSK renewal I notified the security
team at OVS, and got the following reply:

’ .. I think that the solution to the first problem you reported would be IPsec
shunt policy. Basically a low priority IPsec drop policy added by:

ip xfrm policy add src 0.0.0.0/0 dst 0.0.0.0/0 proto gre dir out action block
priority 2147999999
Can you try it out and let me know what you think? Though this IPsec policy needs
refinement so that "type=gre" tunnels could still get through. Perhaps we could
match against skb_mark where it would be set to 1 for IPsec case.’

This worked. No packet leaked. The problem with this xfrm rule is that you are
unable to send traffic that does not use IPsec.
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Figure 5.15: The red graph shows the throughput over Ethernet on an OVS when
used ports are being switched after they are added on both switches. The green
graph is added for reference to shows the throughput over IPsec when ports are not
being changed or switched. Ports are being changed every 5 seconds.

5.2.10 Encryption policy

Looking at the original xfrm poliy in Figure 5.16 and Figure 5.17 it seems to be
that the policy is based only on IP address. This explains why deleting an IPsec
port with remote destination IP x would stop all other traffic from being encrypted.
Consequently, this would also mean that an OVS could not have a GRE tunnel and
IPsec tunnel open to the same remote IP address at the same time. This assumption
was tested by sending traffic between the two Raspberry Pi devices over an IPsec
tunnel. Then adding a GRE tunnel, and adding OpenFlow rules to only use the
GRE port. The result was connections loss. In Wireshark it was observed that only
ESP packets were being transmitted. When deleting the IPsec port the GRE tunnel
started working again. The opposite order was also tested: Using GRE, then IPsec,
and finally GRE. The result was that switching back to GRE did not work until the
IPsec port was deleted.

5.2.11 Verifying changes

As seen earlier, OVS does not always behave as according to the configurations.
Therefore, I did some tests to verify that the ports added actually were used. I also
used dump-flows to verify that the correct OpenFlow rules were being used. This
can be seen in Figure 5.18. Additionally, I tried changing the key on the receiver side
to verify that packets with an incorrect key are not accepted. The result was that the
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Figure 5.16: The original xfrm policy when creating an IPsec tunnel to 192.168.1.121

Figure 5.17: The xfrm policy when using a GREtunnel to 192.168.1.121

packets were not accepted by the receiver. Therefore, I conclude that dynamically
adding new ports is a good way to renew the PSK being used.
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Figure 5.18: The result of dump-flows after adding ports while sending traffic. Each
line shows an OpenFlow rule. In the blue rectangle, you can see the amount of
packets sent over each OpenFlow rule. In the red, you can see the idle time, which
means: seconds since last packet was sent over it. The green rectangle shows what
port the packet should be forwarded to when matching on an in port. Port 1 is
connected to the host. The third line from the bottom shows that the traffic sent
from the host is forwarded to port 33 which is the IPsec port used at that time.
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OpenFlow rule modification

From the experiments performed in chapter 5.2 it is shown that the best way to
renew a PSK is by creating new IPsec tunnels and then modify the flows to use
that tunnel. This can be done manually from the controller over SSH. In these
experiments, the OpenFlow rules were installed proactively. Installing OpenFlow
rules reactively would add significant overhead because the switch would have to
pause traffic when querying the controller for the updated OpenFlow rule and then
wait for the controller to add the new port. As seen in Figure 5.13 this could take
between 6 and 13 seconds when under heavy traffic load.

Improved Security

As discussed in the introduction OVS takes over the IP stack when adding a physical
interface. This limits the possibility to do multiple encapsulations in one switch.
However, it has a benefit from a security point of view. It can be used to deal
with ARP spoofing. When the physical interfaces are connected to OVS there are
two ways to handle the ARP. The first option is just ignoring it and proactively
sending the ARP entries to the switch, which would make ARP spoofing impossible.
The second option is to handle incoming ARP packets in the controller. In this
case, you would in principle be vulnerable to ARP spoofing. However, since you
can programmatically control how to handle the packets, you could implement an
intrusion detection system to detect malicious behavior.

Channel Noise

The experiments testing throughput and latency performed on the Raspberry Pi
devices in 4.4, show that signal noise had a significant impact on both the throughput
and latency. The noise was likely caused by other Wi-Fi networks running on
overlapping networks. Running the experiments at nighttime gave more accurate
and stable results, indicating that traffic generated by the devices connected to the
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other networks affects the performance. Using a Universal Serial Bus (USB) Wi-Fi
dongle on the Raspberry Pi could have improved the achieved throughput. Either
way, the results illustrate a lower bound for achievable performance with a wireless
IPsec tunnel on a Raspberry Pi.

Infrastructure Mode

The AP I used was working in Infrastructure mode, which means that all the traffic
has to go through the AP. However, when I ran Wireshark to listen to the traffic, it
shows that the packets are sent to the IP and MAC destination of the receiver, and
not the AP. This could mislead some to think that the devices are communicating
through Peer-to-Peer mode when they are not.

In Table 4.3 and Table 4.4 we saw that the traffic running from a computer
through two Raspberry Pi devices resulted in bad performance. The reason is most
likely that the traffic had to go through the AP between each external interface. The
results also illustrate the importance of repeating experiments on wireless traffic. Due
to the nature of a wireless network, many uncontrolled factors can affect the results.
Uncritically running only a few tests on each setup could, as shown in Table 4.3, have
lead to the erroneous assumption that IPsec had a lower latency than GRE. Also, we
saw that the population standard deviation was much greater than in the wireless
experiments in Table 4.5 experiments. This could indicate that there is spread in the
results, likely caused by something not working properly.

Physical Limitations

Comparing the throughput over a wired network in Table 4.7 with the throughput
in the virtual network in Table 4.2, we see that IPsec has a greater effect on the
throughput in the virtual environment. When comparing the throughput in GRE,
we see that the throughput is more than doubled in the virtual environment even
though it goes through three tunnels as opposed to one in the setup used in Table 4.7.
This could indicate that the limiting factor could be the AP or the physical cable
and not the encapsulation in itself.

Comparing Table 4.7 with Table 4.6 we see that both encapsulation and IPsec
has a significantly larger effect on throughput on a wireless network compared to
wired. GRE decreases throughput with 6.3% on a wireless network compared to
2.67% over a wired network. IPsec decreases throughput with 10.27% on a wired
network compared to 40.98% on a wireless. Yet, it has to be taken into consideration
that this is a 750 ,- NOK device, and it is not specialized to work as a router or
switch.
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Latency

Comparing the wireless latency in Table 4.5 with the wired latency in Table 4.8, we
see that both encapsulation and encryption affects the latency more on the wireless
network. However, looking at mdev we see that the population standard deviation
also is much greater over wireless. Additionally, the average times measured on the
wireless network are within the mdev of normal. Thus, in my test environment,
GRE and IPsec did not have a significant impact on latency. Most likely because
there were uncontrolled factors that affected the results more. On the wired network,
we clearly see that IPsec adds latency. GRE also does, but only 5.93% compared to
the 63.26% with IPsec.

Wired Throughput

It became clear from observing top that CPU was the bottleneck when using IPsec
on a wired network. What has to be taken into consideration is that each of the
Raspberry Pi devices were not just forwarding the traffic but also generating and
receiving the traffic. On a quad core processor, the maximum usage on one core will
be shown as 25% in top in Solarix mode, as discussed in the introduction. Figure 4.4
shows that ksoftirqd is maxing out the CPU on one core, and yet the total used
CPU was 32 %. It is reasonable to think that using threading would increase the
throughput with IPsec, and that the performance seen in Table 4.7 is comparable to
what could be expected from a single core unit.

Uneven CPU

Both in the virtual environment, and on the Raspberry Pi devices it was observed
that the receiving side uses more CPU power than the sender side. In the virtual
environment, it was noticeable when using GRE, and when using IPsec. However, on
the Raspberry Pi it was only noticeable with IPsec. When we look at the throughput
in Table 4.2 versus Table 4.6 it seems that other factors limited the throughput before
the CPU became relevant in IPsec. Why receiving traffic is more costly I was unable
to figure out. However, it should be considered when designing a network, to avoid
unnecessary bottlenecks. Iperf used more CPU on the server side, although as seen
in Figure 4.4 it was running on a different core. Additionally, the R2 (decapsulating/
decrypting side) used more CPU than R1 in the virtual environment, and both were
just forwarding the packets.

Secure Switch

Looking at how we can prevent a switch from accessing the sent data, we saw that
the switch can still control how it forwards data that is already encrypted in an
IPsec tunnel. ESP used in IPsec in OVS does not do any integrity check on the outer
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header, so the packet can be routed through a network that changes the MAC and
IP headers, allowing a certain amount of SDN control in that you can still customize
your forwarding rules based on the IP and MAC address. If you have packet on a
subnet, you could treat the most significant bits in the IP address as a VLAN tag by
changing it and creating customized forwarding rules for that part of the address.
However, this does not solve the problem with a switch generating malicious traffic
because the header is still not integrity checked. Therefore, the best way to secure a
switch is to have IPsec tunnels between each switch, and use a double IPsec tunnel,
meaning encapsulating a packet twice, if you want to make sure that the switch can
not read the data.

Pox and Python

Pox is written in Python. Python uses an interpreter and is a relatively slow language.
This should be taken into consideration when looking at the overhead added by
the operations performed in the controller. However, this has not been a part of
the scope in this thesis. Additionally, the OpenFlow operations carried out by the
controller have been relatively simple.

Pox is considered a good controller for learning and research. However, when
working with a real network I would recommend trying out other controllers, like
Floodlight. It runs on Java which is faster than Python. Also, when adding the
IPsec handling to the controller, the workload will increase. Then, a faster language
could have an impact on performance. Finally, I would recommend using a controller
platform that provides a Graphical User Interface (GUI), which will make the
configuration on the controller faster and easier.

IP in IP

As we saw in Table 4.2 and Table 4.1, double encapsulation does add significant
overhead to both latency and throughput. The interesting thing, however, is that the
double encapsulation had a different effect on latency and throughput. The latency
was smaller when using a tunnel between each host, but the throughput was greater.
Increasing throughput when doing a double encapsulation makes sense because less
encryption and decryption operations are done in the double encapsulation:
ipsec-between-ipsec: C1 encrypts, R1 decrypts and then encrypts, the same with
R2 and C2 finally decrypts.
ipsec- in - ipsec : C1 encrypts, R1 encypts, R2 decrypts, C2 decrypts.
R1 and R2 need to do respectively one extra decryption and encryption in ipsec-
between-ipsec. Why this does not lead to a higher latency, is still unclear. Although
looking at Table 4.1 we see that the difference in average time is 0.243 milliseconds.
With both tests having a standard deviation of 1.1 milliseconds the difference is to
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small to be considered relevant in a test lasting for less than 30 seconds. To further
investigate if there is a difference, a longer test should be performed.

Security Policy

The security issue shown in 5.2.1 regarding unencrypted packets leaking is a serious
problem. The xfrm configuration did solve the problem but limits the switch only to
use IPsec. What this also shows, is that OVS needs more security auditing. There
might very well be more undiscovered vulnerabilities.

The problem with removing IPsec on all switches when one port with the same
remote IP is removed shown in 5.2.2 illustrate a second important point. OVS is
not designed with the purpose of changing PSK and having multiple tunnels to the
same IP address. We saw in 5.2.10 that the xfrm policy only allows one policy per
IP address, putting a limitation on OVS to either having only encrypted traffic or
only encapsulated traffic.

IPsec in IPsec

Using IPsec in IPsec would also allow for switches to encrypt all its traffic without
having to check if the packet is already encrypted, which would save CPU power
and decrease latency. Also, as opposed to just forwarding an IPsec tunnel, switches
could use all the fields used in SDN without having access to the packet data. A
switch could decrypt the outer IPsec layer, then use and modify those headers, before
encrypting it with IPsec again, and forwarding it.

Additionally, this could be useful if the encrypted data is so valuable that it
is desired to encrypt the data as a shared secret. A scenario where this could be
applicable is in a military setting or a financial institution. Trusting one person with
the encryption of the traffic sent over a public network could be a risk. Encrypting
it twice with different (presumably) PSKs, set by two switches handled by different
people, would require both to be compromised in order to decrypt the traffic. Finally,
this principle could be applied to cope with hardware failure.

Lastly, it can work as a countermeasure against a malicious switch. Routers are
known to contain bugs [CR08], and malicious switches in SDN can potentially take
down large parts of a network by either dropping packets or sending them to the
wrong destination [KF15]. With IPsec in IPsec, a malicious switch would not be able
to do anything with the originally sent packet. Secondly, switching PSK in adjacent
switches would prevent it from successfully sending any traffic.
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In this thesis, I have illustrated that it is fully possible to create an SDN that can
dynamically set up encryption to separate dynamic virtual networks by extending an
SDN controller. I have shown that OVS can be used as an OpenFlow switch that
also encrypts the traffic using IPsec with a PSK distributed by the SDN controller.
In a virtual environment, it has been shown that OVS can encrypt a packet multiple
times using different PSK, and also what is required to make this work. The
biggest challenge is the handling of the IP stack in combination with the virtual
tunnels controlled by OVS. Also, the MTU has to be considered, as encryption and
encapsulation increase the packet size.

Using Raspberry Pi devices, the double packet encapsulation was performed
in conjunction with a virtual environment. Dynamic use of encryption and PSK
distribution was tested on a wireless network between two Raspberry Pi devices.
Additionally, the performance and security aspects have been tested. The results
show that using encryption does affect the throughput and that there are security
issues that should be considered. Different methods for changing the PSK have been
tested out from a security perspective and showed that adding new port first, then
changing the OpenFlow rule is the best way to achieve this. Additionally, it has been
demonstrated that if you change the PSK used on a port, it pauses all traffic going
through any port on the switch until the ISAKMP is completed. It has been shown
that deleting an IPsec port, stops encryption of all tunnels with the same remote
IP address. Changing PSK by reconfiguring the interface was shown to leak some
packets during the transmission. This was also tested in a virtual environment, to
verify that it was not a hardware issue. Countermeasures using xfrm were shown
to stop all unencrypted packets from leaving the host. A simple replay attack was
tested on the GRE and IPsec tunnels. The GRE tunnel was vulnerable, but the
IPsec tunnel was not. Some bugs in the OVS were discovered and reported. It was
shown that OVS does not always apply the configuration, even if the console says it
does.
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Using SSH with Paramiko worked well to perform remote commands including
PSK exchanges, except when adding over 36 IPsec ports while running a heavy traffic
load over a wired network. Some framework needed to be built up to integrate the
SSH commands with the SDN controller.

This thesis concludes that OVS has the potential to be used as a secure SDN
switch. Although, there is still some security aspects that needs to be fixed before
OVS can be considered secure. In the meantime, some additional configurations can
be used to patch the problem.
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7.1 Future Work

7.1.1 Native support of datapath encryption

For this thesis, I have used a separate SSH connection between the controller and
switch to manage the configurations of the GRE and IPsec_GRE tunnels. However,
it should be possible to use the existing secured OpenFlow connection between the
switch and controller to handle this communication as well. This would make it
easier to extend the controller-switch configuration possibilities and a step towards
dynamic encryption of SDN.

OpenFlow only handles messages and configurations related to the data forwarding
plane. A suggestion for future work would be to extend the OpenFlow protocol to
manage the SAD and SPD between the switches. An argument against OpenFlow
handling is that it would be switch specific, and therefore different for each switch
software. However, as shown in this thesis, it is possible to create a framework that
handles the security of the data plane with Pox and OVS. Thus, it could be possible to
integrate OVS control into OpenFlow. Open vSwitch is an open source virtual switch
licensed under the open source Apache 2.0 license. Doing this would require one to
modify the OpenFlow, OVS, and Pox source code. Note that any other controller
software could be used. If OVS is chosen as switch software, it would be useful to look
at ways to integrate OVSDB. Creating an SDN architecture that enforces datapath
encryption would be helpful because it would enable a free SDN architecture that
could securely be deployed in wireless and uncontrolled environments. Making this
an integrated easily configurable setting would help increase the security and work
against the tendency seen where encryption is becoming optional to enable easier
configuration.

7.1.2 Improving documentation

There is room for improvement when it comes to documenting the configuration
of open vSwitch. There is a configuration cookbook for setting up GRE tunnels
with OVS but when it comes to IPsec tunnels, there is only the ’Open_vSwitch
database schema’ [ovsb]. Because of this, the process of getting the IPsec tunnels
to work consisted of trail and error. I discovered by chance that you need to run
the command sudo racoon before adding the IPsec tunnels in order for them to
work, and I have yet to find this documented anywhere. It hit me that, there, in
general was little documentation on the setup related to IPsec_GRE, compared to
the other tunneling protocols. If we want to motivate people to secure their network,
it is paramount that we make it easy to configure. Additionally, documentation and
information about how OVS works under the hood would have helped a lot.
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7.1.3 Fix bugs

The bugs in OVS that were discussed in Chapter 5 that definitely should be fixed.
As mentioned, I have sent one bug report that can be found here: http://comments.
gmane.org/gmane.linux.network.openvswitch.general/12771. The security issues were
sent to security@openvswitch.org and are not publicly listed. The issues with the
encryption in the IPsec tunnels in OVS are being looked into by the security team.
The current mail thread can be seen in the appendix.

7.1.4 Hack OVS routing

As I have mentioned in this thesis, OVS takes over the control of the interfaces, but
still relies on the hosts IP stack for tunneling. This created some challenges in the
setup and limitations regarding what a single OVS can do. I would suggest as future
work to look further into how the internal forwarding in OVS works to see if there are
alternative methods, or hacks that can affect how OVS forwards the traffic. What
would be interesting is to enable a single OVS instance to do both forwarding on the
hosts physical interfaces, and at the same time use those interfaces for GRE tunnels.
I would suggest looking at ways to use namespacing to solve this.

7.1.5 Additional testing

There are many scenarios regarding SDN and IPsec that could and should be
researched. The performance tests could be run on the 5 Giga hertz band to see if
that would give any improvements. There were some varying results when adding
ports over ssh. There seemed to be some issues when adding multiple ports over SSH
without a pause between the SSH commands. Adding PSK on ports without deleting
them could be a potential point for DOS attacks. Using an old PSK could be used
to force the switch to decrypt the traffic and therefore using significant CPU power.

http://comments.gmane.org/gmane.linux.network.openvswitch.general/12771
http://comments.gmane.org/gmane.linux.network.openvswitch.general/12771
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https://mail.google.com/mail/u/0/?ui=2&ik=156d51c717&view=pt&q=ovs&qs=true&search=query&th=154e99bcd6fd5970&sim… 1/3

Steffen Birkeland <steffenf.birkeland@gmail.com>

Re: [ovssecurity] Ipsec_gre leaking 
6 eposter

Jesse Gross <jesse@kernel.org> 25. mai 2016 kl. 22.23
Til: Steffen Fredrik Birkeland <steffefb@stud.ntnu.no>
Kopi: "security@openvswitch.org" <security@openvswitch.org>

On Tue, May 24, 2016 at 2:15 AM, Steffen Fredrik Birkeland 
<steffefb@stud.ntnu.no> wrote: 
> Hi, 
> 
> 
> I am currently working with open vswitch for my master thesis and I have 
> discovered some problems with the Ipsec_gre tunnelling option in vswitch. 

Thank you for the report. We will do an analysis and get back to you 
if we need more information or with proposed resolutions. 

Jesse Gross <jesse@kernel.org> 27. mai 2016 kl. 22.13
Til: Steffen Fredrik Birkeland <steffefb@stud.ntnu.no>, Ansis Atteka <aatteka@vmware.com>
Kopi: "security@openvswitch.org" <security@openvswitch.org>

On Tue, May 24, 2016 at 2:15 AM, Steffen Fredrik Birkeland 
<steffefb@stud.ntnu.no> wrote: 
> Hi, 
> 
> 
> I am currently working with open vswitch for my master thesis and I have 
> discovered some problems with the Ipsec_gre tunnelling option in vswitch. 
> 
> 
> 1. If you change the psk used the switch will leak a packet during the 
> process. 
> 
> I ping through the tunnel while changing the key, and one packet always gets 
> through unencrypted. 
> 
> 
> I use the command: 
> 
> ovsvsctl set interface <portname> options:psk=<new psk > to do this. 
> 
> 
> 2.  when multiple Ipsec_gre tunnels on a vswitch changing the psk on one 
> port will also pause the traffic on the other ports until the ISAKMP 
> completes. 
> 
> 
> 3. If I have mulitple Ipsec_gre tunnels deleting one of them will result in 
> the other stopping using ipsec, and just becoming a normal gre tunnel. 
> 
> 
> 
> I don't know if thees are known issues, I can provide pcap and log files if 
> this is interesting. 
> 
> I use ovsvsctl (Open vSwitch) 2.4.0 

Steffen, thanks again for reporting the issue. We've been 
investigating the problems that you've described and also discussing 
the appropriate actions for any releases. 

Ansis is the primary author of the IPsec code in Open vSwitch and has 
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https://mail.google.com/mail/u/0/?ui=2&ik=156d51c717&view=pt&q=ovs&qs=true&search=query&th=154e99bcd6fd5970&sim… 2/3

been working on possible solutions. He has a couple follow up 
questions for you, so I've added him to this thread. 

Steffen Birkeland <Steffefb@stud.ntnu.no> 29. mai 2016 kl. 22.35
Til: Jesse Gross <jesse@kernel.org>
Kopi: Ansis Atteka <aatteka@vmware.com>, "security@openvswitch.org" <security@openvswitch.org>

Ok, 
I am happy to help!

Steffen
[Sitert tekst skjult]

Ansis Atteka <aatteka@vmware.com> 29. mai 2016 kl. 23.08
Til: Steffen Birkeland <Steffefb@stud.ntnu.no>, Jesse Gross <jesse@kernel.org>
Kopi: "security@openvswitch.org" <security@openvswitch.org>

Hi Steffen, 

Thanks for reporting this issue. 

I think that the solution to the first problem you reported would be IPsec shunt policy. Basically a
low priority IPsec drop policy added by: 

# ip xfrm policy add src 0.0.0.0/0 dst 0.0.0.0/0 proto gre dir out action block priority 2147999999  

Can you try it out and let me know what you think? Though this IPsec policy needs refinement
so that "type=gre" tunnels could still get through. Perhaps we could match against skb_mark
where it would be set to 1 for IPsec case. 

Regarding third issue. I wasn't able to reproduce it with a simple "ovsvsctl delport ipsec_gre0"
command. Could you provide exact commands that you used to set up tunnels and then delete
them? 

Thanks, 

Ansis 

From: Steffen Birkeland <Steffefb@stud.ntnu.no> 
Sent: Sunday, May 29, 2016 1:35 PM 
To: Jesse Gross 
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8.1 add_tunnel.py

import paramiko

import time

class s s h I n f o :
def __init__(self , ip_address , user , password , ID_name) :
self . u se r = user
self . ip_address = ip_address
self . ID_name = ID_name
self . password = password

name_to_sshInfo = {
’ p1 ’ : s s h I n f o ( ’ 1 9 2 . 1 6 8 . 1 . 1 4 6 ’ , ’ rasp1 ’ , ’ r e v e r s e ’ , ’ rasp1 ’ ) ,
’ p2 ’ : s s h I n f o ( ’ 1 9 2 . 1 6 8 . 1 . 1 2 2 ’ , ’ rasp2 ’ , ’ r e v e r s e ’ , ’ rasp2 ’ )
}

def exec_ssh_command ( s shIn fo , command) :
ssh = paramiko . SSHClient ( )
ssh . set_missing_host_key_policy ( paramiko . AutoAddPolicy ( ) )
ssh . connect ( s s h I n f o . ip_address , username=s s h I n f o . user ,

password=s s h I n f o . password )
if(command[:3]== ’ ovs ’ ) : command= ’ sudo ’+command
st in , out , e r r = ssh . exec_command (command)
#p r i n t ’ [ exec_ssh_command ( in ) ] %s ’%(command)
#p r i n t ’ [ exec_ssh_command ( out ) ] %s ’%( out . r e a d l i n e s () )

#d i s p l a y _ a t t r ( out )
#d i s p l a y _ a t t r ( err )
if( e r r . read ( ) ) : print ’ [ exec_ssh_command ( e r r o r ) ] %s

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
Error ’%( e r r . r e a d l i n e s ( ) )

ssh . c l o s e ( )

exec_ssh_command ( name_to_sshInfo [ ’ p1 ’ ] , ’ ovs−v s c t l add−br foo ;
ovs−v s c t l add−port foo tap −− s e t i n t e r f a c e tap type=i n t e r n a l ; ip
netns add ns1 ; ip l i n k s e t tap netns ns1 ; ip netns exec ns1
i f c o n f i g tap up ; ip netns exec ns1 i f c o n f i g tap i n e t 1 1 . 0 . 0 . 1 ;
ip netns exec ns1 bash ’ )

exec_ssh_command ( name_to_sshInfo [ ’ p2 ’ ] , ’ ovs−v s c t l add−br foo ;
ovs−v s c t l add−port foo tap −− s e t i n t e r f a c e tap type=i n t e r n a l ; ip
netns add ns2 ; ip l i n k s e t tap netns ns2 ; ip netns exec ns2
i f c o n f i g tap up ; ip netns exec ns2 i f c o n f i g tap i n e t 1 1 . 0 . 0 . 2 ;
ip netns exec ns2 bash ’ )

for i in range(6 ,1100) :
newkey= ’ secretKey ’+str( i )
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newPort= ’ i p s ec P o r t ’+str( i )
unixtime= str( time . time ( ) )
print ’%s : Change keys to %s ’%(unixtime , newkey )
exec_ssh_command ( name_to_sshInfo [ ’ p1 ’ ] , ’ ovs−v s c t l add−port

foo ’+newPort+’ −− s e t i n t e r f a c e ’+newPort+’
type=ipsec_gre opt ions : remote_ip =192.168 .1 .121
opt ions : key=’+str( i )+’ opt ions : psk=%s ’%(newkey ) )

exec_ssh_command ( name_to_sshInfo [ ’ p1 ’ ] , ’ ovs−o f c t l add−f l ow
foo in_port =1, a c t i o n s : output=’+str( i ) )

exec_ssh_command ( name_to_sshInfo [ ’ p1 ’ ] , ’ ovs−o f c t l add−f l ow
foo in_port=’+str( i )+’ , a c t i o n s : output=1 ’ )

exec_ssh_command ( name_to_sshInfo [ ’ p2 ’ ] , ’ ovs−v s c t l add−port
foo ’+newPort+’ −− s e t i n t e r f a c e ’+newPort+’
type=ipsec_gre opt ions : remote_ip =192.168 .1 .143
opt ions : key=’+str( i )+’ opt ions : psk=%s ’%(newkey ) )

exec_ssh_command ( name_to_sshInfo [ ’ p2 ’ ] , ’ ovs−o f c t l add−f l ow
foo in_port =1, a c t i o n s : output=’+str( i ) )

exec_ssh_command ( name_to_sshInfo [ ’ p2 ’ ] , ’ ovs−o f c t l add−f l ow
foo in_port=’+str( i )+’ , a c t i o n s : output=1 ’ )

print ’%s : S u c s e s s f u l l y changed keys ’%(unixtime )
time . s l e e p (5 )
#raw_input (" Press Enter to add tunne l . . . " )

print ’ Done ’

8.2 add_tunnel_improved.py

import paramiko

import time

class s s h I n f o :
def __init__(self , ip_address , user , password , ID_name) :
self . u se r = user
self . ip_address = ip_address
self . ID_name = ID_name
self . password = password

exec_ssh_command ( name_to_sshInfo [ ’ p1 ’ ] , ’ ovs−v s c t l add−br foo ;
ovs−v s c t l add−port foo tap −− s e t i n t e r f a c e tap type=i n t e r n a l ; ip
netns add ns1 ; ip l i n k s e t tap netns ns1 ; ip netns exec ns1
i f c o n f i g tap up ; ip netns exec ns1 i f c o n f i g tap i n e t 1 1 . 0 . 0 . 1 ;
ip netns exec ns1 bash ’ )
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exec_ssh_command ( name_to_sshInfo [ ’ p2 ’ ] , ’ ovs−v s c t l add−br foo ;
ovs−v s c t l add−port foo tap −− s e t i n t e r f a c e tap type=i n t e r n a l ; ip
netns add ns2 ; ip l i n k s e t tap netns ns2 ; ip netns exec ns2
i f c o n f i g tap up ; ip netns exec ns2 i f c o n f i g tap i n e t 1 1 . 0 . 0 . 2 ;
ip netns exec ns2 bash ’ )

for i in range(2 ,1100) :
newkey= ’ secretKey ’+str( i )
newPort= ’ i p s ec P or t ’+str( i )
unixtime= str( time . time ( ) )
print ’%s : Change keys to %s ’%(unixtime , newkey )
exec_ssh_command ( name_to_sshInfo [ ’ p1 ’ ] , ’ ovs−v s c t l add−port

foo ’+newPort+’ −− s e t i n t e r f a c e ’+newPort+’
type=ipsec_gre opt ions : remote_ip =192.168 .1 .121
opt ions : key=’+str( i )+’ opt ions : psk=%s ’%(newkey ) )

exec_ssh_command ( name_to_sshInfo [ ’ p2 ’ ] , ’ ovs−v s c t l add−port
foo ’+newPort+’ −− s e t i n t e r f a c e ’+newPort+’
type=ipsec_gre opt ions : remote_ip =192.168 .1 .143
opt ions : key=’+str( i )+’ opt ions : psk=%s ’%(newkey ) )

exec_ssh_command ( name_to_sshInfo [ ’ p1 ’ ] , ’ ovs−o f c t l add−f l ow
foo in_port =1, a c t i o n s : output=’+str( i ) )

exec_ssh_command ( name_to_sshInfo [ ’ p1 ’ ] , ’ ovs−o f c t l add−f l ow
foo in_port=’+str( i )+’ , a c t i o n s : output=1 ’ )

exec_ssh_command ( name_to_sshInfo [ ’ p2 ’ ] , ’ ovs−o f c t l add−f l ow
foo in_port =1, a c t i o n s : output=’+str( i ) )

exec_ssh_command ( name_to_sshInfo [ ’ p2 ’ ] , ’ ovs−o f c t l add−f l ow
foo in_port=’+str( i )+’ , a c t i o n s : output=1 ’ )

print ’%s : S u c s e s s f u l l y changed keys ’%(unixtime )
time . s l e e p (5 )
#raw_input (" Press Enter to add tunne l . . . " )

print ’ Done ’

8.3 mycontroller.py

This is the controller code. Most of the functions are loaded from helper_functions
which 500 lines of code. It can be found here https://github.com/Steffb/MstThesis/
blob/master/Pox/helper_functions.py

https://github.com/Steffb/MstThesis/blob/master/Pox/helper_functions.py
https://github.com/Steffb/MstThesis/blob/master/Pox/helper_functions.py
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from he lpe r_funct i ons import ∗

l og = core . getLogger ( )

# This i s the main c o n t r o l l e r t h a t s e t s up the s w i t c h e s
# The commented out f u n c t i o n s are s p e c i f i c exeperiment se tup t h a t can

be found in h e l p e r f u n c t i o n s .

# This a c t s as a frame f o r s e t t i n g up the swi tches , a l l the code
a c t u a l l y doing the opera t ions are in he lper_func t ions . py

_flood_delay = 0

class LearningSwitch (object) :
" " " This c l a s s r e p r e s e n t s an swi tch ins tance " " "

def __init__ (self , connect ion , t ransparent ) :
# Switch we ’ l l be adding L2 l e a r n i n g swi tch c a p a b i l i t i e s to
self . connect ion = connect ion
self . t ransparent = transparent
try :

connec t i ons [ dpid_to_name [ connect ion . dpid ] ]= connect ion

except :
print ’ Unable to add the connect ion f o r %d ’%(connect ion . dpid )
for p in connect ion . f e a t u r e s . por t s :
print ’The HW_addr i s : ’+str(p . hw_addr)

#Exp 1
#connect_gre_tunnels ( connect ion )

#Exp 2
#connect_gre_in_gre ( connect ion )

#Exp 3
#connect_ipsec_gre_tunnels ( connect ion )

#Exp 4
#ipsec_connect_gre_in_gre ( connect ion )

#Exp 5
#rasp_connect_gre_tunnels ( connect ion )

#Exp 6
#rasp_connect_ipsec_gre_tunnels ( connect ion )
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if( connect ion . dpid in dpid_to_name . keys ( ) and
dpid_to_name [ connect ion . dpid ] == ’ p1 ’ ) :

if( connect ion . dpid in dpid_to_name . keys ( ) and
dpid_to_name [ connect ion . dpid ] == ’ p2 ’ ) :

if( connect ion . dpid in dpid_to_name . keys ( ) and
dpid_to_name [ connect ion . dpid ] == ’R1 ’ ) :

pass
if( connect ion . dpid in dpid_to_name . keys ( ) and

dpid_to_name [ connect ion . dpid ] == ’R2 ’ ) :

pass
if( connect ion . dpid in dpid_to_name . keys ( ) and

dpid_to_name [ connect ion . dpid ] == ’R3 ’ ) :
pass

if( connect ion . dpid in dpid_to_name . keys ( ) and
dpid_to_name [ connect ion . dpid ] == ’C1 ’ ) :

pass

if( connect ion . dpid in dpid_to_name . keys ( ) and
dpid_to_name [ connect ion . dpid ] == ’C2 ’ ) :

pass

#create_f low ( connection , in_port , out_port ) :

# Our t a b l e
self . macToPort = {}

# We want to hear PacketIn messages , so we l i s t e n
# to the connect ion
connect ion . addL i s t ene r s (self)

# We j u s t use t h i s to know when to l o g a h e l p f u l message
self . hold_down_expired = _flood_delay == 0

#l o g . debug (" I n i t i a l i z i n g LearningSwitch , t ransparent=%s " ,
# s t r (self . t ransparent ) )

def _handle_PacketIn (self , event ) :
# Triggered when swi tch doesn ’ t have a matching f l o w r u l e
print ’ [ packet_in ] from ’+dpid_to_name [ event . dpid ]
packet = event . parsed
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print ’ [ packet_in ] content : \ n ’+str( packet )

connect ion= event . connect ion

class l 2_ l ea rn ing (object) :
" " "
Waits f o r OpenFlow s w i t c h e s to connect and makes them l e a r n i n g

s w i t c h e s .
This i s the running o b j e c t

_handle_connection i s running once f o r each swi tch connect ing

" " "
def __init__ (self , t ransparent ) :

core . openf low . addL i s t ene r s (self)
self . t ransparent = transparent

def _handle_ConnectionUp (self , event ) :

l og . debug ( " Connection %s " % ( event . connect ion , ) )
LearningSwitch ( event . connect ion , self . t ransparent )

try :
print dpid_to_name [ event . dpid ]+ ’ connected ’

except :
print str( event . dpid )+ ’ was i s not in l o c a l d i c t ’

def launch ( t ransparent=False , hold_down=_flood_delay ) :
" " "
S t a r t s an L2 l e a r n i n g swi tch .
" " "
#THis needs to run when endc1 and endc2 are connect ing !
print ’ Not connect ing endc1 and endc2 ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ’
#connect_ends ()

print ’ not adding arp and route to rasps ’
#connect_raspberr ies ( )

#exp1 c r e a t e s gre tunne l s between c1 , c2 , r1 , r2
#gre_between_al l ( )
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#exp2
#gre_in_gre ()

#exp3
#ipsec_gre_between_al l ( )

#exp4
#ipsec_gre_in_gre ()

#exp5
#rasp_gre_between_all ( )

#exp6
#rasp_ipsec_gre_between_al l ( )

#exp7
#rasp_to_rasp_double_tunnel ( )

#exp8
#rasp_to_rasp_veri fy_ipsec ()

try :
global _flood_delay
_flood_delay = int(str( hold_down ) , 10)
a s s e r t _flood_delay >= 0

except :
raise RuntimeError ( " Expected hold−down to be a number " )

print ’ running core ’
core . reg i s te rNew ( l2_learn ing , str_to_bool ( t ransparent ) )


	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Scope and Objectives
	Objectives
	Methodology
	Contribution
	Clarifications


	Background
	SDN
	OpenFlow
	Paramiko

	Mininet
	Generic Routing Encapsulation (GRE)
	Ipsec
	Open vSwitch
	IPsec in Open Vswitch
	Traffic Routing with ovs

	Iperf
	Ping
	MTU
	Debugging
	Wireshark
	SDN controller
	Top
	xfrm
	Network namespace
	Related Work

	Lab
	Setup
	Discoveries
	DPID
	Dynamic tunnels
	Secure router
	GRE in GRE
	Verifying changes
	Using keys
	Port Name
	Racoon
	Securing traffic to the Host


	Performance 
	Latency
	Throughput
	Raspberry Pi
	Setup

	Performance
	On wired network


	Security on Raspberry Pi
	Replay attack
	Change PSK
	Renew psk on interface
	Deleting ports
	PSK not changing
	Adding ports
	Adding ports performance
	Adding ports overhead
	PSK change performance
	Improved method
	Solution
	Encryption policy
	Verifying changes


	Discussion
	Conclusion
	Future Work
	Native support of datapath encryption
	Improving documentation 
	Fix bugs
	Hack OVS routing
	Additional testing


	References
	Appendix
	add_tunnel.py
	add_tunnel_improved.py
	mycontroller.py


