
Traffic Policing in Dynamic Military
Networks Using Software Defined
Networking

Hans Fredrik Skappel

Master of Telematics - Communication Networks and Networked Services

Supervisor: Øivind Kure, ITEM

Department of Telematics

Submission date: June 2016

Norwegian University of Science and Technology

Title: Traffic Policing in Dynamic Military Networks Using Soft-
ware Defined Networking

Student: Hans Fredrik Skappel
Problem description

Software Defined Networking (SDN) is an approach to computer networking where
the control plane and the forwarding plane is separated, and the control plane can
manage multiple forwarding plane entities, located on multiple network nodes. SDN
has received lots of interest and momentum in the last few years, where it is identified
to offer more flexibility and control for the network administrators. OpenFlow (OF)
is a protocol which is a part of the SDN suite, used for communicating between the
control plane and the forwarding plane. Military networks have a strong focus on
robustness and network utilization. These networks are dynamic in nature, where link
capacities vary; both in time and per-link characteristics. Traffic in such networks
must, therefore, be controlled in order adapt to present traffic and network conditions
and while sufficient resources are available, traffic may be admitted. However, when
there has been a change in the network, admitted traffic must be redirected and
alternatively pre-empted in the case of insufficient resources.

Objective: The objective of this thesis is to explore SDN approaches on how to police
traffic in networks, where both traffic, topology, and resources change.

Methodology: The candidate needs to identify how policing can be enforced in
military networks, and show how SDN can be used as a tool for controlling traffic
in dynamic environments. The candidate should also implement a proof of concept
testbed utilizing SDN and OF for traffic control and policing.

Responsible professor: Øivind Kure, ITEM/UNIK
Supervisor: Lars Landmark, FFI/UNIK
Supervisor: Mariann Hauge, FFI

i

Abstract

This thesis looks at how Software Defined Networking (SDN) can be
used to provide traffic engineering and to police traffic in an Operational
Military Network (OMN). SDN is a concept where the control plane is
separated from the forwarding plane, and the control plane is capable of
controlling forwarding plane elements located on multiple network nodes
using the OpenFlow protocol. Specifically, we have discussed the problems
in OMNs, and possible SDN approaches to mitigate the challenges. Based
on the findings, we have designed, developed and validated an SDN
implementation capable of obtaining dynamic topology information and
to enforce user-defined policies in order provide traffic engineering for
flows, resources, and topology.

Sammendrag

Denne masteroppgaven ser på hvordan Software Defined Networking
(SDN) kan brukes til å utføre trafikkstyring og til å avgrense trafikk i et
Operasjonelt Militært Nettverk. SDN er et konsept hvor kontrollplanet er
adskilt fra videresendingplanet, og kontrollplanet er i stand til å styre ele-
menter av videresendingsplan utplassert på flere nettverksnoder, ved hjelp
av OpenFlow-protokollen. Spesifikt har vi diskutert problemene i OMNs
og mulige tilnærminger med SDN for å mitigere utfordringene. Basert på
funnene har vi designet, utviklet og validert en SDN implementasjon med
evnene til å innhente dynamisk topologi-informasjon og til å håndheve
brukerdefinerte regelsett for utøve trafikkstyring for trafikkstrømmer,
ressurser og topologi.

Preface

This study serves as the master thesis in fulfillment of the authors Master
of Science degree in Telematics - Communication Networks and Networked
Services at the Norwegian University of Science and Technology (NTNU).

I would especially like to thank my supervisor Dr. L Landmark for helpful
and thorough supervision throughout the project period. I would also
like to thank Dr. M. Hauge and Professor Ø. Kure for ideas and inputs
to my work.

Hans Fredrik Skappel
Trondheim, Norway
June, 2016

Contents

List of Figures xiii

List of Tables xv

List of Algorithms xvii

List of Acronyms xix

1 Introduction 3
1.1 Motivation . 4
1.2 Derived Problem Description . 5
1.3 Outline . 5

2 Background 7
2.1 Software Defined Networking . 7
2.2 OpenFlow . 10
2.3 Military Networks . 14
2.4 Traffic Engineering . 16
2.5 Policing . 16
2.6 Policies . 17
2.7 Quality of Service . 18
2.8 Topology Abstraction . 19

3 SDN in Military Networks 21
3.1 Motivation . 21
3.2 Challenges in Military Networks . 21
3.3 Coping with Challenges . 23
3.4 Designing SDN for Military Networks 23
3.5 Policy Enforcement in SDN . 27

4 Design 31
4.1 Background . 31
4.2 Network Properties Resolved by the Use of SDN 32

ix

4.2.1 Flow Priority . 32
4.2.2 Flow Requirements . 32
4.2.3 Network Utilization . 32
4.2.4 Smart Forwarding . 33

4.3 Chosen Implementation Design . 33
4.3.1 Objectives . 34

5 Implementation 37
5.1 Introduction . 37

5.1.1 Choice of SDN Framework 37
5.1.2 Ryu . 38
5.1.3 Mininet . 40
5.1.4 Open vSwitch . 40

5.2 The Laboratory Implementation . 41
5.2.1 Network Emulation in Mininet 42
5.2.2 Ryu . 43

5.3 Policy Enforcement Application . 44
5.3.1 Logical Policy Design . 47
5.3.2 Policy Matching . 48
5.3.3 Policy Enforcement Design 49

6 Validation 51
6.1 Details . 51

6.1.1 Network Topology . 51
6.1.2 Policies Used in the Validation 52

6.2 Priority and Traffic Utilization . 53
6.2.1 Summary . 58

6.3 Traffic Classes . 58
6.3.1 Summary . 59

6.4 Network Dynamics . 59
6.4.1 Summary . 61

6.5 Monitoring . 61
6.5.1 Summary . 64

6.6 Policy Management . 64
6.6.1 Summary . 66

7 Experiences from the Implementation 67
7.1 Enforcing Policies . 67
7.2 ARP Broadcasts . 68
7.3 Consistency . 69
7.4 Flushing . 71
7.5 QoS . 71

7.6 Traffic Loading . 73
7.7 Open vSwitch Update . 75
7.8 Link Capacity . 76
7.9 Traffic Classes . 77
7.10 Summary of the Laboratory Work 78

8 Discussion 81

9 Conclusion 89
9.1 Future Work . 90

References 91

Appendices
A Mininet Topology Source Code 95

B SDL Symbols 99

List of Figures

2.1 SDN controller . 8
2.2 SDN as overlay network . 10
2.3 OpenFlow . 11
2.4 Flow table lookup . 13
2.5 A three-level military network topology [41] 15
2.6 Abstraction layers [6] . 19

3.1 SDN and traditional networks combined 24
3.2 Policy vs Flow Rules . 28
3.3 Three approaches to policy enforcement in SDN 29

5.1 Ryu architecture [24] . 39
5.2 Testbed structure . 42
5.3 Policy storage . 47
5.4 Matching and sorting policies . 48
5.5 Policy enforcement process . 49

6.1 Mininet topology used in the tests . 52
6.2 No policy found . 54
6.3 Policy found . 55
6.4 Policy deleted . 56
6.5 Traffic loading applied to flow . 57
6.6 Weighted group rule . 57
6.7 Best capacity path taken . 58
6.8 Lowest capacity path taken . 59
6.9 Chosen path for new incoming flow . 59
6.10 Chosen path for re-forwarded flow . 60
6.11 Flow re-forwarded once more . 60
6.12 Link disconnecting while flow using it 60
6.13 Denied flow . 62
6.14 Approved flow . 62
6.15 Exceeding the link capacity . 63

xiii

6.16 The policy with highest priority is chosen (policy007) 65
6.17 Iterating through the policies . 66
6.18 Approved policy . 66

7.1 Legacy vs SDN ARP forwarding . 69
7.2 Example of the capacity update process 70
7.3 Adding policies beyond capability limitations 73
7.4 Traffic using different paths with the same group rule 75
7.5 Packets after 10 runs with iperf . 76

8.1 Inputs which the application adapts to 84
8.2 Divided responsibilities . 84

List of Tables

2.1 Group table entry [15] . 12
2.2 Flow table entry [15] . 12

4.1 Design requirements . 35

5.1 Open-source SDN frameworks . 38
5.2 Software versions used in the implementation. 41
5.3 Policy match conditions . 45
5.4 Policy actions. 46

6.1 Tools used . 51
6.2 Hosts . 53
6.3 Switches . 53
6.4 Link speeds . 53

7.1 Implementation results . 79

8.1 Summary of results from validation in Section 6.5 81
8.2 Summary of results from validation in Section 6.2 82

xv

List of Algorithms

2.1 Flow rule installation using POX controller. 13
2.2 Policy structure when using conditional statements. 18
5.1 Event listener for incoming packets in Ryu syntax. 40
7.1 Capacity test of non-strict policies 71
7.2 Queue generation . 72
7.3 Random generation of link bandwidth 76
7.4 Generation of policing limits . 77
7.5 Finding weighted paths . 77

xvii

List of Acronyms

API Application Programming Interface.
ARP Address Resolution Protocol.

CLI Command Line Interface.

DPID Data Path Identifier.
DTN Deployable Tactical Network.

GUI Graphical User Interface.

IDE Integrated Development Environment.
IP Internet Protocol.
ISP Internet Service Provider.

LAN Local Area Network.
LLDP Link Layer Discovery Protocol.

MAC Media Access Control.
MTN Mobile Tactical Network.

OF OpenFlow.
OMN Operational Military Network.
OVS Open vSwitch.
OVSDB Open vSwitch Database Management Protocol.

PBR Policy-Based-Routing.

xix

LIST OF TABLES 1

PDP Policy Decision Point.

QoS Quality of Service.

SDL Specification and Description Language.
SDN Software Defined Networking.
SMCN Strategic Military Core Network.
SNMP Simple Network Management Protocol.
STP Spanning Tree Protocol.

TCP Transmission Control Protocol.
TLS Transport Layer Security.

UDP User Datagram Protocol.

VM Virtual Machine.

WAN Wide Area Network.

Chapter1Introduction

An Operational Military Network (OMN) is a network used for military purposes
and needs, and can be characterized by having strict requirements for availability
and performance. OMNs are used in operations where the network conditions may
experience variations, both in forms of resources, topology, and traffic. The key
element in maintaining a sustainable quality of the network is to perform traffic
engineering and policing in a way that utilizes the network resources in the best
possible manner, and so that high priority traffic has sufficient capacity. This,
however, can be challenging to manage in complex networks where the need for
functionality forces different technologies to cooperate.

Software Defined Networking (SDN) is the term where the control plane is decoupled
from the forwarding plane and placed in a controller [22]. An SDN controller
can manage the forwarding tables located on multiple SDN switches by using the
OpenFlow (OF) protocol. In later years, there has been an increasing movement
towards software-defined approaches in general, where SDN is the software-defined
approach to networking. SDN is believed to offer flexibility and new opportunities
of programming the network for the administrators. Instead of being dependent
upon using several vendor-specific technologies, the administrators can develop their
platform with features and functions uniquely customized for the network.

3

4 1. INTRODUCTION

1.1 Motivation

OMNs are networks used for communication in military operations on a worldwide
scale. The networks design and structure may vary from nation to nation, but
they essentially share the common factor that significant parts of the transferred
information may be of high importance for the operations. Some of these networks
should be deployable in operational areas, which includes countries lacking proper
network and power infrastructures, such as Afghanistan, of which implies that the
networks can not be dependent on having unlimited capacity. The probability of
resource limitations in the networks, are therefore present, and may in worst case
affect the operation. Communication between dynamic units out in the field is mainly
radio [41]. In other words, the risk of delay, loss and disconnection are high, which
overall implies that the networks have many vulnerable factors. Despite this, it is
essential that these networks are fully sustainable during ongoing operations, even
though the network resources may vary or be limited. High requirements for network
utilization and traffic control, to ensure utilizing the resources in the network in the
best possible way without causing restrictions to ongoing operations.

Using the SDN technology in an OMN may advantageously achieve flexible and
new ways of ensuring network utilization, based on documentation about SDN and
previous work in [30]. The motivation for this thesis would be to look at SDN as a
tool for traffic policing and traffic engineering in OMNs. It is of interest to explore
approaches and capabilities by using SDN, and to discuss the findings.

1.2. DERIVED PROBLEM DESCRIPTION 5

1.2 Derived Problem Description

Based on the problem description earlier presented, the derived problem description
is stated as following:

How can SDN be used for traffic policing in an Operational Military Network? A
laboratory SDN application should be designed, developed and validated to show how
traffic engineering and policing can be conducted using capabilities from the SDN
suite.

1.3 Outline

The thesis is structured as follows:

– Chapter 1 is an introduction to, and motivation for, this thesis.

– Chapter 2 presents relevant background information on the subject.

– Chapter 3 is a discussion of SDN in Military Networks and approaches to
traffic engineering, based on presented information from Chapter 2.

– Chapter 4 will present design requirements and decisions for the laboratory
implementation.

– Chapter 5 presents background and technical information about laboratory
implementation.

– Chapter 6 is a validation of the SDN application in various scenarios.

– Chapter 7 will present practical solutions and experiences gathered through
the implementation work.

– Chapter 8 is a discussion of the total work, based on background information,
gained experience and validation results.

– Chapter 9 contains the thesis conclusions and further work.

Chapter2Background

This chapter will provide the theory which is a part of the scope of the laboratory
implementation. The implementation includes an SDN controller with the use of OF
1.3. Background information regarding Operational Military Networks is presented
to give the reader an overview of important characteristics and aspects which are
essential in these networks. An introduction to features included in the traffic
engineering context is also presented. Parts of the background are obtained from
previous work in [30].

2.1 Software Defined Networking

SDN is a network architecture where the control plane1 and the forwarding plane2

are physically separated and where the control plane controls several devices [11]. In
regular legacy routing, both planes are typically located on the same device, which
makes the device (i.e., a router) self-depended and capable of making its decisions.
Following this, having the control plane embedded within the device can introduce
challenges in forms of management. An example is to handle software updates or
configurations related to the control plane of the device. Due to the embedded control
plane and/or by using equipment from several vendors, it may be times where the
management needs to be done separately on each device, either in forms of remote
connection or by physical presence. This is a job that could be time demanding in a
large networks. SDN mitigates these challenges by having a single or a few control
plane entities which interact and manages several switches remotely, thus simplifying
network configuration, updates, and customization. Instead of updating all control
plane devices, it may only be necessary to update the controller.

In SDN, the control plane is placed in a controller, usually centralized, which has
secure encrypted connections (mainly Transport Layer Security (TLS) [15]) with the

1The collection of functions responsible for controlling one or more network devices [18].
2The collection of resources across all network devices responsible for forwarding traffic [18].

7

8 2. BACKGROUND

Figure 2.1: SDN controller

corresponding switches. SDN is a concept, and does not specify how to communicate
with the network devices, but the most used protocol is OF. The SDN concept is
illustrated in Figure 2.1, where the red dotted lines illustrate the secure links which
the controller uses to communicate with the switches, described in details in Section
2.2. The lines connecting the switches are links used for network traffic.

SDN is an overlay architecture, meaning that it is dependable of having an underlying
technology to work. To boot up an SDN network, the technology is reliable of having
a logical link with Transmission Control Protocol (TCP) / Internet Protocol (IP)
connectivity between the switches and the controller. SDN is independent of what
kind of technology the logical link may exist of; whether it is a physical link or
a path with several routers does not matter. Firstly when the controller and the
switches establish the connection, then a transition to using SDN can be executed.
The traffic will, nonetheless, still be transported by the underlying nodes throughout
the period. The controller will only see the SDN switches from its viewpoint as
Figure 2.2 illustrates, where the flows are physically forwarded through a path with
three legacy routers, but the controller only sees the logical link. This viewpoint also
applies to the management links connecting the controller with the SDN switches.
[17]

SDN introduces the expression flows, which is a flexible way of forwarding streams of
packets based on various properties from the header. Legacy routing relies entirely on
the destination IP address, while in SDN, forwarding decisions can be performed based
on many other properties such as protocol, type of service, port, or combinations of
these. A forwarding condition can apply to many streams of packets; thus, a flow.
An example of this is to forward User Datagram Protocol (UDP) traffic one way

2.1. SOFTWARE DEFINED NETWORKING 9

while TCP traffic another way, independent of source or destination addresses. This
indicates that TCP traffic and UDP traffic are two different flows.

The SDN controller is typically the only entity with a state in a traditional SDN
network. The SDN switches are dumb in the sense that they must be instructed by
the controller what to do. All forwarding devices within an SDN environment are
commonly referred to as switches or SDN- or OF-switches; there are no routers. The
actual routing takes place within the controller application, where the application
will find a suitable path in the network, and then install flow table entries3 on the
switches along the path so the flows can be forwarded correctly. All switches possess
a flow table, which is where the controller can install flow table entries which instruct
the switch where to forward the flows. Forwarding is performed by the switches,
based on inspecting their flow tables when incoming packets arrive. If the switch
finds a match in the flow table, the packet will be forwarded according to the flow rule
action. If an incoming packet does not match with any flow rules in the flow table,
then it will traditionally be forwarded to the controller. In this way, the controller is
always notified when new incoming packets arrive in the network.

Forwarding rules can be inserted either in a proactive or a reactive manner. When
using a proactive approach, the rules are installed on the switches before packets
arrive. The reactive approach install rules on the switches as the packets arrive
the network: when the packet enters the network for the first time, it will not have
a match with any flow rules, and therefore will be forwarded to the controller for
processing. There is also a possibility to combine these approaches to make a hybrid
solution.

The SDN controllers typically have two interfaces which are called the northbound
and the southbound interface [22]. The northbound interface is an interface between
the application plane4 and the control plane, while the southbound interface is
defined as the interface between the control plane and the forwarding plane, which is
where the OF protocol is used. Applications at the application plane communicate
through the northbound interface and is software that utilizes underlying services
to perform a function [18], thus being the plane where end users will program the
controller to manage the network entities5. The applications use functionality from
the southbound interface to communicate with the switches, such as example various
OF methods to fetch switch statistics. Some controllers may also have a third
interface called the east-west interface, which multiple control plane entities uses for
communication between them.

3Flow table entries are also addressed as flow rules in this thesis.
4The collection of applications and services that program network behavior [18].
5In the rest of this thesis (unless specified otherwise), referring to the controller also includes

the application that manages the controller.

10 2. BACKGROUND

Figure 2.2: SDN as overlay network

As today, there exists a variety of SDN controller frameworks for developing SDN
applications. The revolution with such frameworks is the open access to the control
plane, by which the network resources can be programmed and customized to perfec-
tion without being limited by using vendor specific software or protocols. Instead,
the applications can use the controller’s southbound interface to manage several
switches, of which contributes to ease the management by ensuring configuration
consistency.

2.2 OpenFlow

There have been several types of research on programmable networks throughout
history, whereby the subject has received more attention and momentum since the
release of OF [11]. OF is the first standardized communication interface defined
between the control and the forwarding layers of an SDN architecture [16], previously
pointed out as the southbound interface. The OF protocol includes the necessary
features and messages to use a controller to manage the forwarding plane within
an SDN environment. To use OF, it must support both sides of the southbound
interface, meaning both by the SDN controller framework and the switches. Figure 2.3
illustrates the OF communication between a controller and a switch. The controller
and switch communicate through the secure channel, while the controller can modify
the flow and group tables entries within the switch.

The secure channel from the controller to each switch is also known as the OpenFlow
channel and is used by the OF protocol to exchange management traffic. The

2.2. OPENFLOW 11

Figure 2.3: OpenFlow

channel can be both in-band6 and out-band7, meaning it necessary does not need
a physically separated connection with the controller, the only requirement is that
it should provide TCP/ IP connectivity [15]. Due to SDN and OF is an overlay
technology, it would imply that there needs to be legacy IP routing enabled at the
bottom to forward the management traffic between the switch and the controller
[21]. At boot-up of an OF network (enabling the SDN overlay), the switches must
be user-configured to know the IP address of the controller before the establishment
of the connection. The management traffic is not processed by the OF pipeline8,
and is usually communicated through a physical out-band management port. If TLS
encryption is applied, the communicating parties need to exchange certificates, and
this must be user-configured as well. When the OF establish the connection, the
switch and the controller exchanges OFPT HELLO messages [14], where the version
field set to the highest OF version supported by the sender. If successful, the OF
connection proceeds and the controller can start instructing the switch using the
highest protocol supported by the mutual entities. [15]

For the administrator, OF is mainly used to access the forwarding plane of the
connected switches to install forwarding rules. Each switch has flow tables and group

6Management traffic using the same connection as regular traffic.
7Management traffic using a separate connection.
8The OF pipeline is the matching of the packet against flow and group tables.

12 2. BACKGROUND

tables which can be populated and modified by the controller. OF uses the concept
of flows to identify network traffic based on predefined match rules that can be
statically or dynamically programmed by the SDN control software [16]. A flow rule
consists of match conditions and actions, which provides a forwarding policy for a
particular flow. The flow table also keeps track of statistics by counting the number
of packets and bytes associated with a flow, as well as a counter which keeps track of
the time since the flow rules were used [15].

Groups are abstractions which are used to represent a set of ports as a single entity
for forwarding packets, such as splitting traffic. Each group is composed of a set
action buckets, whereby every bucket contains a set of actions to be applied before
forwarding to the port(s). Action buckets can also forward to other groups, enabling
to chain groups together. The chaining of tables can also be applied to regular flow
tables, to offer flexibility to the packet processing pipeline. As the packet traverse
through the pipeline, a packet is matched and processed in the first table, and may
be matched and processed in other tables. Table 2.1 and 2.2 displays the various
fields of which a group entry and a flow entry exists of.

Table 2.1: Group table entry [15]

Group ID Group Type Counters Action Buckets

When a packet arrives at an OF switch, the switch will look for a flow rule which
matches parameters from the packet. By matching with the flow rule, the switch
will forward the packet according to the instruction defined in the flow rule. If the
packet does not match with any flow table entry, then the packet will either be sent
to the controller or be discarded, depending on the network configuration. In the
legacy version of OF, the default action is to forward the packet to the controller
over the OF channel [23]. The controller will then be able to process the packet,
which ensures that the controller will always get the packets in scenarios where the
switches do not know where to forward them. When incoming packets arrive into
the network, and they match with a flow rule, they will be forwarded by the switches
without notifying the controller. Figure 2.4 illustrates the forwarding based on flow
table lookups: if the flow matches with a flow rule condition, then the flow rule
executes the corresponding action. The packet will be forwarded to the controller if
the packet does not match with any rule.

Table 2.2: Flow table entry [15]

Match Conditions Priority Counters Timeouts Cookie Instructions

Packets sent to the controller can be processed on the control plane. The controller
will typically inspect the packet and takes a forwarding decision based on its knowledge

2.2. OPENFLOW 13

Figure 2.4: Flow table lookup

of the network topology. The controller will then install flow table entries to the
switches along the path, and the switches will then forward the packets. An example
of an OF flow rule installation is illustrated in code sequence 2.1. The code sequence
defines Rule 2 in Figure 2.4. The sequence instructs the controller to send an OF
Flow Modification Message9 [13] to a switch with a match condition and an action:
the switch will forward packets with protocol number 17 (UDP) out port 2. The last
line in the code snippet sends the message to the switch, ensuring that the switch
installs the flow rule.

Code sequence 2.1 Flow rule installation using POX controller.

msg = of.ofp_flow_mod()
msg.match.nw_proto = 17
msg.actions.append(of.ofp_action_output(port=2))
event.connection.send(msg)

9OF Flow Modification is an instruction used to modify or to install flow rules on a switch.

14 2. BACKGROUND

2.3 Military Networks

Military networks share the same functions as civilian networks, but the difference
lays in the network’s purpose, by which the military network serves a military
purpose, where it follows various other considerations. A large-scale civilian network
(e.g., Internet Service Provider (ISP) network) typically has a static infrastructure
with a lot of capacity, while the military networks are characterized by having
a more dynamic nature due to the use of heterogeneous bearers because of their
functions (i.e., deployment requirements). Where the civilian networks use fiber, the
military networks may need to use radio link or satellite, which introduces capability
limitations as well as a higher probability of errors and variances.

Operational Military Networks varies from small national Local Area Networks (LANs)
to bigger Wide Area Networks (WANs) shared with several nations. Therefore, it
is hard to give a clear definition of what an OMN is. OMNs can carry classified
information that is critical, and it is essential that the availability remains high at all
times [34]. In military operations, the networks can be used to exchange orders and
operational decisions, in which requires immediate responses and actions. In these
situations, the network needs to be functional, and the network resources should
have the necessary capabilities to transfer the information across the network.

The conventional OMN characteristics are the requirements for flexibility and robust-
ness [38]. A significant difference between a military and a civilian network could
be the potential threat from attacks, whereby the OMNs, in general, should be able
to resist or survive attacks, both in forms of physical attacks on infrastructure and
cyber-related attacks. Physical assault, e.g., bombing a fiber link, could tear down
the network and paralyze an entire operation. Notwithstanding, the network should
work in dynamic and fast changing environments, by reacting and adapting to sudden
infrastructure or capability changes. To cope with these changes, a strategy would
be to implement traffic engineering mechanisms of which adjust traffic and resources
accordingly.

A significant proportion of the traffic in OMNs may typically exist of traffic of higher
importance than other. Consequently, are service differentiation and Quality of
Service (QoS) important attributes in an OMN, to prohibit the high priority traffic
to suffer. In a network with limited capabilities and high exposure to variances,
there must be mechanisms implemented to ensure that the prioritized traffic gets
free resources [41]. This is where an OMN differ from civilian networks, because
there is usually not an opportunity to buy more capacity if the network is already
deployed in a military operation. For example, it is not possible to achieve the same
bandwidth capabilities as a fiber link if the operation is limited to using satellite
communication because of its remote deployment. The emphasis is to utilize the

2.3. MILITARY NETWORKS 15

Figure 2.5: A three-level military network topology [41]

accessible network resources in a smart way.

As previously presented, there is no standardized definition of what a military network
is, and the military networks will most likely differ from nation to nation. This thesis
defines three main types of OMNs. The networks are connected but serve different
functions in an operation. Figure 2.5 illustrates the connection of the three networks.

There are Strategic Military Core Network (SMCN) which have similarities to
traditional private carrier backbone networks. The SMCN is deployed in the country
of the military nation and has the primary function to be the national backbone
to connect national forces and other civilian departments [31]. A SMCN typically
cover large geographical areas, due to that the national military is nationwide.
The core infrastructure typically consists of several separated networks which carry
different national classifications, due to security regulations. This network is usually
more static than the other OMNs, due to it being the core network using a fixed
infrastructure. The network is assembled by using various transmission bearers,
such as fiber, radio links, and satellite to interconnect to other remotely deployed
networks [41]. The networks may also be overlay networks built on top of a civilian
core network.

The Deployable Tactical Network (DTN) is the network which is deployed as a

16 2. BACKGROUND

part of international or national operations. It will typically be an interconnected
network where allies communicate with each other in the mission area [31]. The
purpose of the network will be to provide local connectivity at the operational site
by serving as the local temporary backbone network with connections to Mobile
Tactical Network (MTN) and SMCN. A coalition network often is composed of a
heterogeneous structure, due to various transmission bearers and equipment. However,
the network may be considered as stable because the placement of its core elements
is essentially inside the military camps. Due to the networks remote deployment,
the communication with the SMCN may be via satellite link or tunneled using the
country’s infrastructure.

The Mobile Tactical Network can be defined as the network used in mission operations
outside of the camp. An MTN is characterized by existing of mobile nodes, in an
environment which is dynamic and where the communication is mostly based on
radios [41]. The network resources are limited regarding power, resources, range
and delay because the network entities can vary from small hand-held devices to
vehicle-mounted solutions. Seeing that the military units are constantly moving,
the ability for ad-hoc routing [8] and relaying traffic may be present to cover the
communication area. Significant parts of the data are real-time based, (i.e. audio and
video) due to the purpose of the MTN is to serve as a transmission bearer between
units in ongoing operations.

2.4 Traffic Engineering

Traffic engineering is defined as that aspect of network engineering dealing with
the issue of performance evaluation and performance optimization of operational IP
networks [2]. It addresses the challenges concerning efficiently allocation resources
which are beneficial for the users, and can be performed automatically or through
manual intervention. Traffic engineering use methods such as admitting, abstraction,
blocking, re-routing, queuing, preempting, policing or shaping, which are different
ways to adjust and customize the network traffic according to desired behavior. One
of the most important features performed in networking is routing of the traffic. As
a result; one of the most distinctive functions conducted by traffic engineering is the
control and optimization of the routing function, to steer traffic through the network
in the most efficient manner [2].

2.5 Policing

Policing is a feature which ensures that traffic does not exceed certain threshold
limits. Policing of a stream is when the traffic controlling entity starts dropping or
discarding packets from the stream to bring stream into compliance with a traffic

2.6. POLICIES 17

profile [3]. The threshold limits can either be predefined by the administrators or
dynamically defined based on feedback from the network.

Policing can be used to prevent the networks from suffering. If the transmitting
traffic (i.e., UDP) exceeds the network’s maximum capacity, it will lead to network
congestion and possibly send particular network devices into fault state, but policing
can prevent this from happening. There is also a possibility to police only parts of
the traffic or specific flows, which can be necessary for networks where certain traffic
has priority. In SDN setting, the controller may appear as the natural entity to take
the role as the traffic controlling entity. However, the policing rules can be installed
at the switches by the controller, and be enforced by the switches when the traffic
arrives [39].

2.6 Policies

Policies can be considered as a part of the traffic engineering context. A network
policy can be defined as a set of policy rules which are managed by the administrator,
used to control the resources10 in a network [32]. The network will provide services
about the defined policies, which essentially means that policies define the network
behavior. The network behavior is the relationship between the clients or services
using the network resources and the network elements that provide the resources.

A policy will typically consist of one or several conditions and corresponding actions
as Code sequence 2.2 presents. Actions are linked to either meeting or not meeting a
set of match conditions defined in the policy. In other words, a policy specifies what
action(s) must be taken when meeting a set of associated conditions [32].

There are two ways to trigger a policy, which is either statically or dynamically. Static
policies apply to a fixed set of actions in a predetermined way according to a set of
predefined parameters that determine how to use the policy [33]. Therefore, static
policies state how to use the resources, independent of the dynamic feedback from
the network. An example of a static policy is to deny access to network resources for
a particular IP address.

Dynamic policies are triggered when needed, based on a changing condition. For
instance packet loss or congestion. The key element in a dynamic policy is to obtain
network parameters, of which the policy can use as an input. Verifying of the dynamic
policies are continuous, so whenever there is a change, it can be verified against the
policy. About obtaining dynamic data, it is necessary monitoring mechanisms which
passively listens or actively requests for network information.

10A physical or virtual component available within a system [18].

18 2. BACKGROUND

The policy applies to different levels. Examples are user level, where a particular
node or user is affected by the policy, or service level where an individual service is
impacted. A policy can be very specific, meaning that it can be applied to a single
level, but can also be broad and include elements from many levels. In this manner,
match conditions can be customized and narrowed down. There are also variations
on how the policies are applied; a policy can, for instance, be strict or preferring. An
example of a strict policy is to deny access to new connections in a congested path,
while a preferring policy is to try to find the least congested path.

Code sequence 2.2 Policy structure when using conditional statements.

IF <condition n>... AND <condition n+1 >
THEN <action m>... AND <action m+1>

Routing based on network policies can be referred to as Policy-Based-Routing (PBR)
[5] in legacy routing. Routing based on policy implies that the packet is checked
against a list where the policies are placed. If the packet corresponds to a particular
flow, then it will be routed according to the action defined in the policy, thus
overriding the normal routing procedures [17]. SDN have similarities with PBR on
forwarding level, due to the use of flow rules which instructs the switches where to
forward the traffic by using various parameters from the packet. It is, however, up
to the developers of the SDN application to make the policy environment to check
incoming traffic against a policy list.

Policies in general, are ways of expressing the rules of the network, which can be
used to define desired network behavior by administrators. Without being able to set
rules and manage the network, the general network performance will probably suffer
when exposed to variances. Using policies enables the administrators to specify how
to use the policies, how the policies are triggered, and at which level to apply the
policy [32].

2.7 Quality of Service

Quality of Service is the collective term for mechanisms that are used by the service
provider to prioritize traffic, control bandwidth and control network latency [40].
QoS has similarities with traffic engineering, but focus on the achieved service quality,
the ability to provide different quality and to guarantee certain levels of performance
to the flows.

QoS can be used to provide traffic priority to particular flows based on various
parameters from the packet. For example to ensure that an individual service always
has the required bandwidth, and or does not exceed the maximum error rate. In an

2.8. TOPOLOGY ABSTRACTION 19

Figure 2.6: Abstraction layers [6]

SDN environment, QoS can be achieved by implementing various traffic engineering
mechanisms, such as resource reservation, policing and queuing.

2.8 Topology Abstraction

Topology Abstraction is a way of manipulating top layers abstract view of the
network [29] and is used to separate concerns in network environments. It is not
necessarily a good thing to work directly on the physical network topology, due to the
low-level complexity. By introducing different topology layers, they can concentrate
on individual tasks, rather than a big process performing every task. For example,
software programmers rather use Java [20] to develop their projects rather than of
low-level languages. Instead, they compile the Java code into low-level instructions,
and the same thing applies to networking.

The Internet architecture is layered according to the TCP/IP model [1], where the
different layers forward the traffic based on various factors which vary from each
layer. Examples are the link-layer which does forwarding from link to link based on
Media Access Control (MAC) addresses, while the network-layer uses IP addresses to

20 2. BACKGROUND

route packets on paths composed of several links. By introducing abstraction layers,
they can all serve a different purpose, while interacting with each other. The layers
will have a different understanding of how the network components are assembled.

Figure 2.6 illustrates a topology abstraction with several layers using an SDN
approach. The top layer express the desired network behavior based on an offered a
virtual network view from the lower layer. The upper layer does not need to know
what kinds of actions are taken on the lower level, which can be regarded as a way
of hiding unnecessary information. The virtual layer is built on the global network
view, while the network operating system (SDN controller) controls the switches.
Therefore, the different layers serve a different function, while combined makes the
system complete. The advantages of this approach are to separate responsibility, hide
complexity and to speed up processing by letting the layers work simultaneously.

The essence is that topology abstractions can apply to different things in the network,
such as to abstract routes, links, switches, functionality, and management. Especially
considering SDN, topology abstractions becomes important due to the open access
to the control plane. The developers would need to create functionality working
on global level all the way down to low-level; from generating paths, to controlling
where to steer the flows on a port-level basis. It would be beneficial to automate this
process and place functionality in separate modules and to let other modules (using
different topology abstractions) use their functionality. Such as various topology
modules that expresses virtual paths based on abstracted views of the topology, while
a low-level module uses the inputs to installs the flow rules on port or link basis.
Extensive information regarding approaches to topology abstractions in SDN are
found in [29].

Chapter3SDN in Military Networks

This chapter is a discussion where earlier presented background information from
Software Defined Networking and OpenFlow is merged with the Operational Military
Networks requirements and characteristics. The goal of the discussion is to identify
if SDN can fulfill the military demands by performing traffic engineering.

3.1 Motivation

Operational Military Networks are complex with high requirements to performance,
availability and survivability. Primary legacy routing is not always the efficient
way, and these networks are dependent on traffic engineering to fulfill requirements.
In addition to the requirements are the vulnerable factors which also needs to be
taken into consideration, because the networks can be exposed to a variety of events
and incidents which may not occur in civilian networks. The combination of strict
requirements to performance and availability, combined with the exposed weaknesses
makes these networks unique. That said, SDN is believed to offer sound ways of
doing traffic engineering; mainly due to the administrators opportunity to program
the network resources to fit the individual network.

However, will traffic engineering with SDN be the answer to the challenges the
Operational Military Networks are facing, and to what extent would it be realizable
to deploy?

3.2 Challenges in Military Networks

As previously pointed out, it is the combination of high requirements and the exposure
that makes the different OMNs complicated. There are various network factors which
may affect the OMNs availability and performance, and an assortment of factors is
listed below.

21

22 3. SDN IN MILITARY NETWORKS

– Capacity limitations. Due to using heterogeneous wireless bearers, the
bandwidth will most likely vary and have limitations.

– Delay. Limited bearers, such as satellite, introduce long delays. Traffic may
also be relayed or repeated if military units are far away from each other.

– Jitter and noise. Jitter and noise will impact the networks used in dynamic
operations. Terrain and weather will affect the signal.

– Signal strength will vary as a result of moving units and may in cases lead
to temporary disconnections or an increased error rate.

– Component failure. The network equipment can fail due to the exposure to
extreme weather conditions because of the geographical operation area. Battery
powered equipment may be drained and go offline. The risk of potential enemy
attacks is present in both physical and cyber domain.

The various OMNs are more or less exposed to variances where the listed factors
are influenced in some way, but the three networks will experience differences. The
Strategic Military Core Network is less affected by variations and limited resources,
and it is most likely the satellite communication interfaces towards the other networks
which are the weakest links regarding limitations and weaknesses. The network is
more of a static network with minor changes, although heterogeneous bearers will
ensure variances regarding bandwidth and performance. Failures occurring in this
network are exceptions.

In Mobile Tactical Networks, failures and variances are not exceptions, but they are
instead more or less expected because of the network’s structure. This network is
heavily influenced by a changing topology, due to the use of mobile nodes and wireless
bearers. The devices are in practice located with dynamically moving military units,
such as radios used for voice communication between the groups. Nodes can be
widely spread, and it may be necessary to relay traffic between them to communicate
with a particular station, thus the expose of delay and variances.

The Deployable Tactical Network is more vulnerable to limitations than the SMCN,
but not as much as the MTN. The DTN plays the role as the intermediate strategic
network backbone within the operational area. Due to the network’s remote and
temporary deployment, a significant use of wireless bearers is implied, with interfaces
to both SMCN and MTN, which leads to that the network also has to deal with
the weaknesses that accompany these interfaces. The network’s role stresses the
requirement for availability, due to it is serving as the gateway into the base for
MTNs, whereby a possible purpose would be to provide additional military support
in critical operational situations [41].

3.3. COPING WITH CHALLENGES 23

The presented information indicates that all the Operational Military Networks this
thesis define, are facing challenges when it comes to their requirements and the
exposed weaknesses. Although, their structure, purpose and usage separates them
and ensures that they are facing different challenges.

3.3 Coping with Challenges

Traffic engineering becomes necessary to be able to cope with the challenges of which
the various OMNs are facing, by utilizing and controlling the network resources in
the best way possible. As earlier stressed, the network resources within a military
network, especially regarding MTNs can be limited, due to using it in field operations.
The topology includes the usage of mobile nodes, and is therefore dynamic in the
sense of nodes come and go. If a sandstorm occurs in the operation area, it could
tear down the wireless network communication by affecting the signal strength as
well as the jitter and noise, leading to an immense error rate. If a military vehicle
drives on the other side of a mountain, it may result in blocking of the radio signal,
leading to a temporary disconnection, thus the dynamic factor. The point being
that the network exposed to several weaknesses, which stresses the need for robust
mechanisms which can withstand and make adjustments when the events occur.

To mitigate the limited resources in remotely deployed networks, there is usually
not a realistic approach to only increase capacity. Instead, the emphasis should also
be to utilize resources. A solution to the problem would be to implement policies,
which are used to link conditions with instructions to define behavior in various
situations. This implies that it is of high importance that policies are of a dynamic
character because the policy should trigger on changing conditions. The primary
objective would be to generate the best outcome based on the attributes of which are
considered essential for a particular flow, service or network itself. In some scenarios,
the delay may be the most important quality, sometimes bandwidth, depending on
the circumstances.

The key element in conducting traffic engineering in such network environments will,
thus, be to strengthen the ability to cope with the changes and dynamically occurring
incidents. This would require continuously monitoring of the topology as well as the
flowing traffic within the network. A non-working operational network can in worst
case have fatal consequences when used in operations, which, again, emphasizes the
difference between a civilian network and a military network.

3.4 Designing SDN for Military Networks

An implementation of SDN would require changes to the military network design.
OF switches would replace legacy routers and switches, and also to move away from a

24 3. SDN IN MILITARY NETWORKS

decentralized control plane to a centralized controller. Nevertheless, it is a possibility
use SDN in only parts of the networks; it is not necessary to change everything. Most
importantly, end-clients will not notify the difference between a legacy network and
an SDN network, since the modification will only influence the forwarding nodes in
the network.

The placement of the SDN controller is essential to achieve the desired traffic control.
The controller should not be controlling too many entities because this will generate
a lot of traffic and processing at the controller. Bandwidth can be a limitation
in the OMNs, and it is of interests to send as minimum management traffic as
possible without causing restrictions. In large-scale networks, a solution could be
to use multiple controllers which only control a portion of the entire network or
subnets. Regarding possible SDN designs, there are several studies on the topic, and
a thorough review for military networks is documented in [35]. The essence being
that when the networks grow, it may be necessary to use several controllers to divide
areas of responsibility while exchanging information with each other, thus require a
scalable design.

By implementing SDN, the network must achieve just as good or better security
than the today’s networks. The SDN controller is the single-point of entry when new
packets arrive as well as the central controlling network entity, which makes it one
of the most important nodes in the network. The controller is an attractive target
for a potential enemy, but also vulnerable to occurring link failures. In a traditional
simple SDN network, the controller will in addition be the single-point of failure,
but this can be mitigated by implementing fail-over solutions by installing backup
controllers, or legacy routing procedures take over if the controller is disconnected
[37].

Figure 3.1: SDN and traditional networks combined

Figure 3.1 illustrates a network existing of SDN and legacy subnetworks. This
implies that SDN can be deployed only to the networks where it is beneficial to
implement SDN, or to subparts of the networks. Legacy routing combined with

3.4. DESIGNING SDN FOR MILITARY NETWORKS 25

traffic engineering can be good enough in most situations, and many times even a
better solution because of autonomous routers and the decentralized control plane.
The key element is that SDN must be designed differently based the challenges and
requirements of which the network is exposed to. SDN does not solve every network
problem and is also facing many of the same problems that exist in traditional legacy
networks. This thesis addresses the following as the most important design factors
regarding SDN:

– Management Connection: must be in place for the controller to instruct the
switches. Limitations and variances of this connection must be considered. A
centralized control plane only appears as a robust approach when management
links are stable. The design must include backup strategies such as redundant
controllers or functionality to perform changeovers to legacy routing. The
placement of the controller and the communication between controllers are also
parts of this context.

– Controller Processing: an extensive network with a significant amount of
traffic, nodes, and variances will affect the processing needed by the controller.
The network must be designed, so the load on the controller is acceptable, but
also scalable if the network should grow over time. To include comprehensive
functionality and detailed control (i.e. traffic engineering features) into the
application will probably require the controller to do more processing and keep
more state about the network.

The essence is to identify where SDN can be used and where it has its significant
benefits regarding the presented OMNs. Based on earlier presented background
information, it is possible to discuss the networks requirements and characteristics
with SDN:

SDN in SMCNs emerges as a sound way of doing forwarding of traffic, because of the
network is static in nature and transports various traffic, of which advantageously
could be sorted into flows. The amount of traffic and the network size emerges as
the determine factors when designing the network because there will most likely be
necessary to include multiple controllers to the design. The static structure ensures
that management links are robust, so a centralized SDN design emerges as a good
option.

SDN in MTNs appears as a good match by looking at requirements and traffic related
challenges. Variances in resources and topology are expected, and the network’s
structure includes limitations in forms of capacity, so it would be beneficial to have the
flexibility of program the network resources for utilizing purposes. On the other hand,
connectivity variances are addressed as a major challenge concerning management,

26 3. SDN IN MILITARY NETWORKS

because of all the issues that follow the disconnection of the SDN controller. When a
disconnection of a management link occurs, it could be necessary to swap over to
legacy routing approaches, but constantly disconnecting management links would
then lead to regular changeovers, which is not efficient in the long run1. The network
may end up with using legacy routing more than SDN. There might also be issues
with long delays because of the possible use of relayed management traffic, which
can introduce additional drawbacks. Possible designs could be to use one controller
per switch, or a clustering approach where the controller only control a small share
of the network, where the switches in this share are located physically close to the
controller.

SDN in DTNs stands out as a potential approach based on the previously presented
background information. DTNs introduces capacity limitations, and variations
in topology and traffic will influence the network. The networks also have strict
requirements for availability and performance, due to its important responsibilities
and tasks in the operation. The DTN is a semi-static network, but with dynamic
factors, whereby it is not as heavily influenced by changes and limitations as the
MTN, but more than the SMCN. By focusing on the parts of the network where the
need for traffic engineering is present, it would be a great advantage to be able to
program the network resources to do specific packet handling. A traditional SDN
approach with a centralized controller with responsibility for a particular share of
the network could emerge as a possible strategy.

It appears as SDN can be implemented in all of the networks, but the design would
likely vary to fit the different networks. The networks share the same essential
requirements, while their characteristics differ more. That said, all the networks
would require secure and robust designs regarding of management links controller
processing. SMCN is just slightly affected by changes and limitations, so the use
of SDN would mainly focus on the forwarding, but would offer flexible ways of
separating traffic into flows. The use of SDN in core networks is well documented
and already in use by large enterprises, such as Google’s B4 [19]. MTNs represents
the opposite case, where the variations can be extreme, and the resources are limited.
The changes would most likely cause severe problems for the management of this
network, so this would need high requirements to the design. Especially considering
that the use of multiple SDN controllers would add significant complexity to the
design and development process. DTN is the intermediate network, where limitations
and variances are present, but not as extreme as in MTNs and not as low as in
SMCNs. The network complexity and required functionality would likely correlate
with the exposed variances. Regarding functionality, it is, therefore, likely to state

1If management traffic with one switch goes down, then the controller should also instruct all
the other switches in the network to go over to using legacy routing in order to prohibit potential
loops.

3.5. POLICY ENFORCEMENT IN SDN 27

that the MTN would require the most, SMCN the least, while the DTN would be
placed in the middle.

3.5 Policy Enforcement in SDN

Enforcing policies to the network emerges as a potential solution to solve some
of the previously stated challenges regarding OMNs. Especially, considering the
requirements of high priority traffic. By introducing policies it is possible to specify
them to match with individual flows to perform a function. This section is a review
of approaches to policy enforcement in SDN.

This thesis defines a separation between policies and flow rules. The distinction
between a static policy and a flow table entry is not significant, because both parts
are based on similar principles by using match conditions and corresponding actions.
The main difference is that policies are defined at user-level to express the network
behavior on a high-level basis. Flow rules, on the other hand, are how the actual
forwarding is enforced on forwarding-level in an SDN environment. Flow rules are
the standardized flow table entries of which the controller uses OF to instruct the
switch how to forward the traffic. The flow table entries are straightforward, by only
performing simple actions by matching with the rule, while a user-defined policy can
be more complex and involve a set of measures of which should be conducted. To
summarize; the user states the desired flow behavior in a policy, while the flow rule
forwards the flows. The key element in performing policy enforcement would be to
link policies and flow rules together, so the policy instructions are executed by the
flow rules.

The administrator may define a policy which states that UDP traffic should use
a particular path in the network, while the flow rules enforce this on the SDN
forwarding plane by instructing the switch where to send the UDP traffic. While the
administrator defines the behavior in a policy; the flow rules must be present at each
switch along the path. One policy will, thus, likely be converted to multiple flow rules.
Figure 3.2 illustrates the process where a user defines a policy which is compiled and
dispatched into three flow rules along route X. The distinction between policies and
flow rules becomes clearer when introducing dynamic policies, because this would
require the controller to modify flow rules actively to cope with the changes due
to them being static. Instead, if the policy states that UDP traffic should always
be using the least trafficked path; then the controller would need to monitor the
paths and modify/install flow rules on the switches accordingly. The dynamic policy
trigger would then be located within the controller.

How policies are created and used within an SDN environment is up to the developers
of the SDN application, and there are numbers of possible approaches. The essence

28 3. SDN IN MILITARY NETWORKS

Figure 3.2: Policy vs Flow Rules

is that SDN gives the developers a set of tools to work with so they can design their
customized environment. For this reason, there is really no definition on how to
execute policy enforcement. Nevertheless, to specify policies, it emerges as necessary
to have an interface where the administrators can specify policies that will be executed
in the network somehow. Examples of some approaches are:

– User-interface for specifying flow rules directly to the switches on SDN for-
warding level. For example a Graphical User Interface (GUI) or a policy list
where the administrators can directly create and define flow rules while the
environment is running or at boot-up. This approach limits the policies to the
capabilities of which the flow rules offers, and would in practice work similar
to static routing, but with with a larger set of match conditions. There is no
distinction between a policy and a flow rule using this approach, and all policies
would be of a static character. Regarding Figure 3.2; by using this method the
user would have to define all three flow rules manually.

– User-interface to a custom developed policy environment within the application
which translates the policies into the flow- and group rules. The administrators
develop their policy structure/syntax and the functionality to compile them

3.5. POLICY ENFORCEMENT IN SDN 29

Figure 3.3: Three approaches to policy enforcement in SDN

into OF flow rules, and install these rules to the switches. By using this
approach, the application would be more involved in the process by doing the
work towards the SDN forwarding plane, while the user only works on the
policy interface offered by the application. This approach would work as shown
in Figure 3.2; the user defines a policy and the controller handles the rest.

– Similar to the previous custom approach, but to use third-party modules
designed for policy enforcement instead of creating the environment from
scratch. An example is Pyretic [28], which can be included in the applications
code. Pyretic includes policy features (such as a policy syntax), and Pyretic
can both convey policies into flow rules and also dispatch the rules to the nodes
in the network.

Figure 3.3 illustrates the different approaches. In the figure, the SDN application
provides an interface for the administrator to specify policies. The end-result on
SDN forwarding-level basis will be flow and group rules, but how the actual policy
environment is designed and implemented will vary. When using a flow rule interface,
the flow rule becomes the policy, and the administrator must define individual flow
rules to every switch along the path. The two other approaches work similarly by

30 3. SDN IN MILITARY NETWORKS

having a separate policy structure/language and uses the SDN application to compile
the policies into flow rules and to dispatch these rules to the network.

Pyretic is an example of a platform that offers standardized ways of creating policies
in SDN. Pyretic is a programming platform, which can be included in the SDN
applications code, of which enables the creation of modular software such as to make
sophisticated policies. Pyretic encourages programmers to focus on how to specify
a network policy at a high level of abstraction, rather than how to implement it
using low-level OF mechanisms, of which can be a complicated job in a large-scale
network with many policies. Pyretic simplifies the policy management by compiling
the policies into OF flow rules, and by dispatching the rules to the network, while
the administrators only care about the policies on a high-level scale. [28]

In practice, the controller works like a white-list firewall, where only the traffic
that corresponds to the flow rules can traverse through the network. Otherwise,
the packet will be forwarded to the controller for processing, of which makes the
controller the ideal place to perform policy enforcement. When a packet arrives the
controller, it would appear natural to enforce policy checks against the packet to find
possible matches, of which the application will pay attention to when generating a
path. The controller can push rules to the switches both in proactive and reactive
manners. Once the rules are installed on the switches, then the incoming packets will
be checked against these rules and forwarded accordingly. To realize dynamic policy
enforcement, the controller can modify the static flow rules accordingly by using
dynamic inputs from monitoring the network. OF messages can be used to request
statistics from the switches, such as flow table information to obtain information
about the flows. OF is based on a request-response exchange procedure between the
controller and the switches and, as a consequence to this, is this an exchange which
has to be done regularly to receive the latest updates.

Chapter4Design

This chapter looks into possible designs for the SDN implementation regarding the
associated requirements and challenges of which the Operational Military Networks
are facing.

4.1 Background

The goal with the laboratory implementation is to look at how traffic engineering
and policing can be solved using capabilities from the SDN suite within a dynamic
military network environment. A general design specifies what is desired to perform
in the laboratory implementation.

Overall, based on this thesis scope and previous discussion, emerges the Deployable
Tactical Network as a network which could benefit greatly from the capabilities
which SDN has to offer. The DTN is characterized as rather static, but because of
its remote deployment and its purpose it has high requirements for traffic, and is
also exposed to limiting factors and changes, thus underlines the dynamic factor.
The need for adjusting the traffic and utilizing the resources is of great interest.
The laboratory implementation is, thus, narrowed down to a primary focus on a
military network which share similar characteristics with a DTN. The argument for
this approach is that SDN in core networks, such as networks similar to SMCNs are
already well documented and tested. The MTNs appears to require a great deal of
functionality to handle the management in extreme conditions, and emerges as a
too extensive topic for the given time period for this thesis. That said, the decided
implementation would also be relevant for the MTN and the SMCN, due to the
distinction in requirements and critical networks properties is not significant.

An assortment of important network properties is presented in section 4.2. The
central elements of the design are the topology, resources, and traffic whereby it is of
interest to link these features to SDN.

31

32 4. DESIGN

4.2 Network Properties Resolved by the Use of SDN

There are several scenarios and network properties which could be of interest to
examine by implementing SDN. An assortment is presented in this section, where all
features and properties relate to Operational Military Networks.

4.2.1 Flow Priority

The transmitted traffic within OMNs may have different priorities. The prioritized
traffic should always be able to reach the destination at the other end if the connection
is alive. Due to possible network capacity limitations, there must be trade-offs when
the need for capacity is higher than what the network can offer. Prioritizing of traffic
is, therefore, a mitigation strategy to ensure that the highest priority traffic is sent
and received across the network and that the lower priority traffic has to give way.

An SDN controller can be programmed to handle traffic differently and assign priority
to the flows. This can be realized either by using the priority field in the flow rules or
by maintaining state about the policy priority. The advantage of using flow rules is
the flexible way of forwarding packets based on various parameters from the packet,
for instance, to filter out UDP traffic.

4.2.2 Flow Requirements

Particular flows may need certain requirements, such as bandwidth, delay, minimum
error rate and so on. If a flow carries an important video stream, then it is of interest
to forward the traffic down a path which supports the capacity requirements. To
ensure that the flow maintains its requirements in the future, reservations would be
necessary to prohibit other traffic streams to occupy resources on the same route
(QoS).

Since the SDN controller is the Policy Decision Point, it can be developed to have full
control of the incoming flows to the network. By programming the controller to obtain
topology knowledge, it is possible to take forwarding decisions based on its knowledge
about the flow and map this to the topology. Knowledge about particular flows must
be predefined, such for example the flows minimum bandwidth requirements. The
controller would also need store flow reservations in a database and maintain state.

4.2.3 Network Utilization

The network or parts of the network could fail if it is too heavy loaded regarding traffic.
Traffic engineering mechanisms which can police the traffic should be implemented
to avoid such scenarios. It is also advantageously that the traffic is spread across the

4.3. CHOSEN IMPLEMENTATION DESIGN 33

network to prevent congestions on individual links. Regular flushing of the network
could be beneficial to free resources and ensure a certain dynamic to the network.

The OF protocol has functionality which can be used to utilize the networks. For
example by using group rules, the traffic can be split to several paths. Flow rules
have timers which can be used to remove unused flow rules. Particular OF switches
support traffic policing features which the controller can use to enforce traffic policing.

4.2.4 Smart Forwarding

A military network should be able to cope with changes, such as to detect and to
make adjustments when connections break down. It is of high importance to try
to find new paths to the destination if a link goes down. Re-routing is an essential
ability which the network must perform in a prompt manner. Another interesting
element to routing is to enforce randomness to avoid predictable flowing paths, which
could be a mitigation strategy against potential eavesdroppers.

By obtaining topology knowledge, the controller can be programmed to discover
alternative ways when links go down, as well use random generation algorithms
to choose paths when incoming flows arrive the network. The controller could be
developed to maintain state about previously chosen paths.

4.3 Chosen Implementation Design

Policy enforcement emerges as a good solution to implement the desired features
presented in this chapter. This would let the administrators state desired behavior
in policies as an approach to traffic engineering. To take decisions about particular
flows, knowledge about flows on beforehand is necessary, such as importance and
individual needs and properties. The common factor for the previously presented
properties is the dynamic factor such as changes and occurring network events, of
which requires monitoring mechanisms to make adjustments. The received topology
information can be used together with dynamic policies to ensure adjustments of the
network according to desired behavior.

Based on the earlier presented approaches to policy enforcement, it emerges as the
custom policy approach is a beneficial approach because of the flexibility it brings.
The approach will also give the developer more low-level control because of the
ability to design the platform from scratch. For management purposes, it would be
easier to define a single policy and to let the application do the compiling and the
dispatching of the flow rules, instead of using a flow rule interface where all flow
rules manually must be defined for each switch along the path. For this reason, a

34 4. DESIGN

custom policy enforcement platform will be developed without including third-party
policy automation to the code.

The chosen simulated network will have characteristics similar to the DTN, and the
generic requirements of military networks. Following this, the design is limited to:

– Use of a single SDN controller

– Stable management links

– Variable traffic links

– Bandwidth limitations

– Unicast traffic

The application will be developed to perform dynamic policy enforcement using
a reactive approach. Due to each flow may have different needs and properties,
the controller should build up the forwarding gradually until the network capacity
is filled up. When the network capacity is exceeding, the controller must initiate
countermeasures, such as to prioritize the most relevant traffic as well as execute
traffic policing to prevent congestion.

4.3.1 Objectives

The objective will be to develop an SDN dynamic policy enforcement platform
capable of performing traffic engineering based on predefined policies and monitoring,
in a simulated military network environment. Table 4.1 presents the summarization
of the main requirements for the implementation.

4.3. CHOSEN IMPLEMENTATION DESIGN 35

Table 4.1: Design requirements

Requirement Description
Flow priority The platform should support prioritizing of individual

flows, which are predefined by the administrators.
Resource reserva-
tion

Flows which may have strict requirements for re-
sources should be offered resource guarantees (QoS).

Resource utilization The network environment should always strive to
utilize the resources in the best possible manner,
based on traffic and network capacity.

Randomness The flows should be offered unpredictable paths to
mitigate potential eavesdropping and to ensure a
certain dynamic to the network.

Re-forwarding When topology changes occur, the network should
re-forward the influenced flows.

Monitoring The controller should be able to obtain topology and
traffic information from the forwarding nodes.

Traffic policing When necessary, traffic policing must be conducted
to control the network and the flows.

Topology Abstrac-
tion

To ease the flow and resource management, topology
abstractions should be implemented.

Management The platform should support sound ways of managing
resources and traffic for the administrators.

Chapter5Implementation

This chapter presents the practical laboratory work. Essential parts of the developed
SDN application are described to give the reader an understanding of how the platform
operates. This chapter begins with an introduction of the necessary information
regarding the technology and features used in the implementation.

5.1 Introduction

5.1.1 Choice of SDN Framework

It is essential to choose the controller best to conduct the application. There are
various open-source SDN controllers on the Internet. Table 5.1 shows the alternative
validated open-source controllers.

An essential requirement is that the SDN framework must support the features and
network properties which are to be evaluated in the implementation. To conduct
traffic loading, the controller must support OF version 1.1 or higher because they
include group tables. The legacy OF version does not have group tables or the
support for multiple flow tables on one switch. It would be preferable to use a
framework which supports the newest version as possible.

After validating the different controllers, Ryu was chosen as the framework for
the laboratory implementation. Some of the validated controllers have not been
updated in years, while Ryu is regularly updated. Ryu supports all versions of OF.
Thus, the necessary features to implement a traffic engineering platform in SDN.
An advantage with Ryu is that the controller has many existing modules which can
be used together with customized applications. Ryu is also well documented, and
there exist many examples on the Internet which can contribute to simplifying the
development process.

37

38 5. IMPLEMENTATION

Table 5.1: Open-source SDN frameworks

Controller Description
NOX The first OF controller developed, used as basis for many

subsequent implementations [17]. Based on C++ language.
POX Python version of NOX. Popular controller among academics

to explore SDN.
OpenDayLight Java based SDN framework with support for OF. Open-

DayLight is a collaboration project with members from big
enterprises such as Cisco, Juniper and Citrix [26].

Beacon A high performance OF controller developed in 2010. Widely
used for teaching and research in academia [10]. Written in
Java.

Ryu A Python based SDN controller framework with OF support
and with a variety of software components, making it easy for
developers to create new network management applications
[9].

FloodLight An open community SDN project. The framework is based
on the Beacon controller and a large support community
with contributors to the development project. Written in
Java. [12]

ONOS A new upcoming SDN platform developed by a community
excising of 50 partners and collaborators. Written in Java.
[25]

5.1.2 Ryu

Ryu is a component based SDN framework, developed in Python. Ryu is the
Japanese word for flow. Ryu provides software components with well-defined interfaces
which make it easy for developers to create new network management and control
applications. One of the strengths of Ryu is that it supports multiple southbound
protocols for managing network devices, and Ryu supports all the released versions
of OF, where version 1.5 is the latest version. The framework includes a controller,
of which can run customized Ryu applications. An advantage of the Ryu framework
is that it contains modules which can be included in customized code, avoiding the
need of developing an application from scratch. [9]

Figure 5.1 presents the Ryu framework and its main elements. Ryu supports many
libraries, ranging from support for multiple southbound protocols to various packet
processing operations. The OF protocol is one of the supported southbound protocols,
and the framework also includes an internal OF controller. The controller is the
entity which manages the switches and events. The Ryu-manager is the main

5.1. INTRODUCTION 39

Figure 5.1: Ryu architecture [24]

executable, and when running, it creates a listener in which can connect to the OF
switches. The App-manager is the essential component for all Ryu applications, due
to all applications inherit functionality from the App-manager’s RyuApp class. The
core-process component in the architecture includes event management, messaging,
in-memory state management, etc. The top layer illustrated in the architecture is
the northbound Application Programming Interface (API), where supported plug-ins
can communicate with Ryu’s OF operations. [24]

The essential element is the Ryu applications, which is where the control logic and
behavior is defined. The Ryu application bases its operations on event handlers, where
the network events are passed up to be processed by the application. Code sequence
5.1 gives an example of such an event listener. In this snipped it is assumed that
functionality inherits from the App-manager. By importing two libraries included
with the Ryu framework, event and packet processing is possible. The event listener
will be triggered every time an OF switch forwards a packet to the controller1. The
administrator develops the packet processing behavior.

1Which is every time an incoming flow does not match with any rule.

40 5. IMPLEMENTATION

Code sequence 5.1 Event listener for incoming packets in Ryu syntax.

from ryu.controller import ofp_event
from ryu.lib.packet import packet

@set_ev_cls(ofp_event.EventOFPPacketIn, MAIN_DISPATCHER)
def packet_in_handler(self, ev):

msg = ev.msg
pkt = packet.Packet(msg.data)
#Do handling of packet

5.1.3 Mininet

Mininet is a network emulator based on Python, which runs on a regular computer,
used to simulate physical network behavior. A Mininet host behaves and operates as
a real computer, making it possible to customize and run regular programs2. Packets
sent to the network are processed by virtual Ethernet interfaces, but operates in the
same way as physical interfaces, making it ideal for network simulation. [36]

Mininet supports both legacy switches and an assortment OF switches and provides
the opportunity to link external OF controllers to the emulated network, such as
the Ryu controller. Mininet can be used to simulate different network topologies or
network scenarios. A link can be configured with various properties such as speed,
jitter, delay, and loss. It is possible to simulate changing network environments by
including Python loops and conditions in the topology script.

Mininet has a GUI called MiniEdit which can be used to design visual network
topologies [36]. It also has a Command Line Interface (CLI) directly towards
the network nodes, which can be used to execute commands, apply rules or show
information about the network nodes, while the network emulation is running. The
commands can, for example, be used to generate traffic in the network or dump
flow table information from the OF switches. As of today, the latest supported OF
version in Mininet is 1.3.

5.1.4 Open vSwitch

One of the supported OF switches in Mininet is the Open vSwitch (OVS). OVS is a
well known open-source implementation of a distributed virtual multilayer switch. It
is designed to enable network automation through programmatic extension, while
still supporting standard management interfaces and protocols such as OF.

2For example Wireshark to perform traffic analysis

5.2. THE LABORATORY IMPLEMENTATION 41

Table 5.2: Software versions used in the implementation.

Software Description
Ryu 4.1 SDN framework.
VirtualBox 5.0.2 Virtual software used to run Mininet.
Mininet 2.2.1 Network topology environment.
Open vSwitch 2.5 Virtual multilayer switch with OF support.
Python 2.7.6 Programming language.
Pycharm 5.0.4 Python Integrated Development Environment (IDE).
Linux Mint 17.3 Host OS
Ubuntu 14.04 Virtual Machine 1

In an OVS implementation, a database server and a switch daemon3 are used. To
manage these components, OVS introduces Open vSwitch Database Management
Protocol (OVSDB), which manages logical OF datapaths4. Controllers use OF to
install flow state in switches, while OVSDB manages the switch itself. An OVS
instance can support multiple logical bridges, where there is at least one OF controller
for each bridge. [27]

The OVSDB management interface is used to perform management and configuration
operations on the OVS instance. Examples of usage are to manage tables, queues
and statistics. OVS has various tools included which is capable of doing several of
the same functions as the OF protocol, for example, to clean flow tables. However,
OVSDB does not perform per-flow operations, leaving those instead to OF.

5.2 The Laboratory Implementation

The laboratory implementation is structured as illustrated in Figure 5.2. The Ryu
framework is designed to run on the host computer with a TCP connection to the
emulated Mininet network topology5. The controller and the network are placed on
different hosts to make the simulation most realistic. The figure illustrates where
the various technology is positioned to conduct the lab, whereby Table 5.2 lists the
details about software versions.

3A daemon that manages and controls any number of OVS switches on the local machine.
4Datapath and Bridge are another terms for a switch.
5The figure is an overview of a Mininet network. The topology used in the implementation is

described later.

42 5. IMPLEMENTATION

Figure 5.2: Testbed structure

5.2.1 Network Emulation in Mininet

The chosen network emulator was Mininet, due to it emerges as a robust platform to
simulate customized military network environments. Following is a short overview of
the most important commands used in the testbed implementation.

To run a customized Mininet topology:

$ sudo mn --custom military_network_topology.py

Within the customized topology, the necessary settings must be defined. This includes
creation and configuring of nodes with IP addresses, hostnames, and Data Path
Identifier (DPID) addresses6. In this case, will Mininet create an OVS switch.

s1 = net.addSwitch(’s1’, cls = OVSKernelSwitch, dpid = ’1’)
h1 = net.addHost(’h1’, cls = Host, ip = ’10.10.10.101’, defaultRoute = None)

Defining and configuring of links between nodes with various network properties:
6DPIDs are used to identify switches.

5.2. THE LABORATORY IMPLEMENTATION 43

net.addLink(h1, s1, bw = 10, delay = ’5ms’, loss = 5)

The IP address of the controller must be configured to establish the connection with
the switches. Since the controller is running separated from the Mininet Virtual
Machine (VM), it must be configured as remote:

c0 = net.addController(name = ’c0’, controller = RemoteController,
ip = ’129.241.208.193’,protocol = ’tcp’, port = 6633)

Mininet CLI

The Mininet CLI is used to run commands on the OVS switches, and is a necessary
feature for diagnostics. Two tools that are useful is ovs-vsctl, which is a high-level
interfaces to the OVS database, and ovs-ofctl which is used for switch administration.

To configure a switch (s1) with OF 1.3:

ovs-vsctl set bridge s1 protocols = OpenFlow13

Dump flow and group tables for a switch:

sudo ovs-ofctl -O OpenFlow13 dump-flows s1
sudo ovs-ofctl -O OpenFlow13 dump-groups s1

5.2.2 Ryu

As earlier presented, Ryu’s primary executable is the Ryu-manager and is used to
run the applications. The following command starts the application script:

$./ryu-manager sdn_app.py --observe-links

–observe-links is added to the command to observe the link events as output from
Ryu-manager. By issuing the start-up command, the controller will become visible
for the switches, of which will lead to the discovery procedure and the establishment
of the OF channel, presented in Section 2.2.

44 5. IMPLEMENTATION

5.3 Policy Enforcement Application

This section will present important information about the application, to give the
users of the application a better understanding of the essential operations and how
to use the application. The source code is published together with this thesis.

The policy enforcement platform provides a simplified policy list7, where policies of
which should be applied to flows are specified. Each policy exists of match conditions,
actions and a priority. The policy list loads at start-up of the controller, and incoming
flows will be checked against this list. Flows will only run this check when forwarded
to the controller, thus is when no flow rules exist on the switches8.

Below is an example of the policy structure. For this example, the policy will be
executed when the hosts source IP address is equal to the address specified in the
policy.

policy001 = policy_manager.Policy()
policy001.match(ip_src="10.10.10.102")
policy001.action(bandwidth_requirement=5)
policy001.priority(4)

Match conditions are defined to map a policy with a particular flow. The policy
requires at least one match condition to work. Parameters from the packet are tested
against the policy list, and the application will fetch the policies which match with the
packet’s parameters. The policy list is applied to one direction of the flow, meaning
that when a host 1 (h1) initiates a connection to host 2 (h2), the policy-check will
run twice, one time for h1-h2 and one for h2-h1. This provides the opportunity to
enforce different policies for each direction of the flow: the packets from h1 to h2
can travel on a different path than the response from h2 to h1. Table 5.3 lists the
optional policy match conditions.

The policies are defined to do actions to the incoming flows. Table 5.4 lists possible
policy actions. A policy can be configured to have many actions, which ensures
customized of flows on a granular level. On the other hand, there are also conflicting
actions, such as including blocking and bandwidth requirements to the same policy.
Nevertheless, this should be rather obvious by the administrator.

Each policy is configured to have priority. The priority defines which policy is most
important. The priority ranges from 1 to 20, where 1 is the highest priority. When a
new incoming flow arrives, the policy enforcement application will find the matching

7The file: policy_inputs.py
8This is at first-entry of the flow, or after a flow timeout or flow deletion.

5.3. POLICY ENFORCEMENT APPLICATION 45

Table 5.3: Policy match conditions

Match condition Values Descripion
ip_dst IP address (string) Destination IP address
ip_src IP address (string) Source IP address
protocol Protocol number (integer) The packets protocol
eth_dst Ethernet address (string) Destination MAC address
eth_src Ethernet address (string) Source MAC address
eth_type Ethernet type number (in-

teger)
The Ethernet type

policies and sort them according to the priority. The top priority policies will be
enforced first, and may lead to the lower policies not being enforced. Instead, the
administrator should include multiple actions in one policy instead of many policies
for the same flow with one action each. If a policy does not have any priority
predefined, the application will construct a priority based on the number of match
conditions the policy possesses. This indicates that the most specific policies will get
the highest priority if the administrator does not define any priority.

Flow priority is the primary factor for the application, and it is of particular impor-
tance when the network is starting to reach its maximum capability limits. When
reaching the congestion point, the application will have to make adjustments, both
taking the network resources and the traffic in consideration. Low priority flows will
need to give away to high priority traffic, and this priority is rooted in the policy
priorities9.

9The flow gets its priority from the policy which it has a match with.

46 5. IMPLEMENTATION

Table 5.4: Policy actions.

Action Values Description
bandwidth_requirement 1-9999X The minimum required bandwidth for

the flow in Mbit/s. The specified re-
quirement will be reserved by the appli-
cation for the particular flow through-
out the period where the flow is active.
The requirement is strict, meaning an
absolute requirement (QoS).

bandwidth_requirement
_nonstrict

True/False This property should be applied to the
policy if the bandwidth requirement is
preferring (and not the absolute mini-
mum). Non-strict policies can handle
lower bandwidths, but will strive to
achieve the requirement.

allow_load _balance True/False This setting will allow or deny the par-
ticular flow to be traffic loaded (split
traffic onto multiple paths). A feature
used by the flow in situations where
it is necessary to split the traffic to
achieve the bandwidth requirement.

random_routing True/False Needs to be set to true to choose a
random flow path and to re-forward
the flow randomly.

block True/False Needs to be set to true to block a par-
ticular flow.

traffic_class 1-3 Network resources are classified in sep-
arate traffic class pools, based on their
bandwidth capabilities. This setting
defines which pool the flow should use.
Traffic class 1 is the best class, while 3
is the poorest.

5.3. POLICY ENFORCEMENT APPLICATION 47

5.3.1 Logical Policy Design

Figure 5.3 illustrates the logical design of the forwarding decision process when
incoming flows arrive the controller. The administrators define policies in an interface,
whereby a policy list stores the policies. When incoming flows reach the controller,
the application will read the policy list to check packet parameters against match
conditions.

When a policy is enforced and used in the network, it is copied10 to another list called
running policies. This list saves the enforced policies, so the controller keeps the
state of every running policy on each path in the network. The forwarding decision
process will also inspect this list if it is necessary to remove a policy to make room
for a higher priority policy. Despite this, it is important to note that the figure only
displays the policy process; the controllers monitored view of the topology and traffic
influences the forwarding decision process.

Figure 5.3: Policy storage

10It is copied, but additional parameters are added, such as chosen path.

48 5. IMPLEMENTATION

5.3.2 Policy Matching

Technically, all policies are created as individual objects, by which a policy contains
match conditions, actions and a priority. When a new flow arrives at the controller,
the various parameters (ref. Table 5.3) will be extracted from the packet and tested
according to the procedure illustrated in Figure 5.411. Since multiple policies may
match with an incoming flow, it is necessary to separate them with priorities to be
able to decide which policy to enforce. After fetching the matching policies, a list
saves them and sorts policies by priority.

Figure 5.4: Matching and sorting policies

11The figure is drawn in Specification and Description Language (SDL) [4], where the symbols
are explained in Appendix B.

5.3. POLICY ENFORCEMENT APPLICATION 49

5.3.3 Policy Enforcement Design

Figure 5.5 displays the overall policy enforcement process. The process is composed
of several procedures which serve different purposes. The figure shows the overall
process and the procedure calls, of which is calling the external procedures, such as
the policy_match procedure which is earlier illustrated in Figure 5.4.

Figure 5.5: Policy enforcement process

When a packet arrives the controller, the application will perform the policy matching
procedure (policy_match) as earlier described. The controller will start enforcing the
policy with the highest priority first, and it will continue down in the list until the
network accepts the policy, thus being the network_check procedure. If the highest
policy is approved, then only this policy will be enforced. If it is not accepted then
the next policy in line will be enforced, and so on.

Once the policy is accepted, the application will then compile the policy into flow
rules, where it will configure the MAC source and destination addresses of the
communicating entities as match conditions for the flow rules. The flow rules are
always compiled in this manner, independent of the match condition stated in the
policy, and it makes a flow rule unique for each flow direction for a particular pair of
nodes. The application uses obtained topology knowledge to locate the nodes and to
compute a suitable path, whereby the controller iterates over the switches along the
path and dispatches/installs the corresponding flow rules.

Chapter6Validation

This chapter is about the testing of the developed policy enforcement application,
to see the enforcement of policies and the utilizing of resources when changes and
events occur. This section is presented as a chain of activities using a single topology,
but where policies are defined based on military assumptions and requirements.

6.1 Details

The main objective of the testing of the different scenarios is to see how the policy
enforcement application operates and how it utilizes dynamic policies in changing
conditions. Table 6.1 lists the commands used to generate traffic and conduct analysis
in the testbed.

Table 6.1: Tools used

Tool Description
ping Measure liveness and delay
iperf Used to generate traffic and do measurements
ovs-ofctl Dump flow and group table information.
tcpdump Traffic analysis

6.1.1 Network Topology

The Mininet network environment used in this validation is illustrated in Figure 6.1,
and the Mininet script is attached in Appendix A. All nodes within the network
share the same properties and capabilities, but the links vary in bandwidth capacity,
as listed in Table 6.4. The same topology will be used throughout the validation
phase, but links may be disconnected. When this is the case, then it is stated in the
introduction to the scenario.

51

52 6. VALIDATION

Figure 6.1: Mininet topology used in the tests

The network topology used represents a simplified network where several clients are
connected. A client does not necessary need to be a computer, but rather a device
with an IP address, such as example a tunnel interface or a traffic encryption device.
The essence is, however, to forward the traffic generated from the end-nodes within
the network using SDN capabilities. Table 6.2 and 6.3 list the adresses of hosts and
nodes.

6.1.2 Policies Used in the Validation

The policies applied in this testbed are all defined on beforehand in the policy list.
That said, each policy is presented as the scenarios go on. The essential policy
properties are previously explained in Table 5.3 (match conditions) and Table 5.4
(policy actions).

6.2. PRIORITY AND TRAFFIC UTILIZATION 53

Table 6.2: Hosts

Host IP address
h1 10.10.10.101
h2 10.10.10.102
h3 10.10.10.103
h4 10.10.10.104
h5 10.10.10.105
h6 10.10.10.106
h7 10.10.10.107
h8 10.10.10.108

Table 6.3: Switches

Switch Dpid
s1 1
s2 2
s3 3
s4 4

Table 6.4: Link speeds

Link Capacity
s1 - s2 2 Mbit/s
s1 - s3 2 Mbit/s
s1 - s4 4 Mbit/s
s2 - s4 2 Mbit/s
s3 - s4 2 Mbit/s

6.2 Priority and Traffic Utilization

Firstly, we define a policy for h1 because the traffic from this computer requires
a bandwidth of 3 Mbit/s to achieve satisfying quality. We specify that the traffic
can be split on multiple paths if necessary to achieve its bandwidth requirements.
The priority is 5, which indicates that the priority is fairly high. This results in the
following policy, which is added to the policy list:

policy001 = policy_manager.Policy()
policy001.match(ip_src="10.10.10.101")
policy001.action(bandwidth_requirement=3, allow_load_balance=True)
policy001.priority(5)

When pinging from h1 to h5, illustrated in Figure 6.2 and 6.3:

Explanation of Figure 6.2: h1 pings h5 for the first time, of which initiates
an Address Resolution Protocol (ARP) broadcast procedure by the application to
locate h5. When h5 receives this request, it will respond to h1. The application
only performs policy enforcement when it has location knowledge about source and

54 6. VALIDATION

Figure 6.2: No policy found

destination, so in practice is the response back from h5 to h1 the first flow which
is handled by the policy enforcement procedure. However, the flow does not match
with any policies. As a result, a standard path without any resource reservation
will be generated using traffic class 31. Traffic class 3 indicates the poorest capacity
paths, and this is due to flows without any policy have the lowest priority in the
network.

1The algorithm is described in Section 7.9

6.2. PRIORITY AND TRAFFIC UTILIZATION 55

Figure 6.3: Policy found

Explanation of Figure 6.3: After the response from h5, then h1 knows the MAC
to h5, and will start transmitting regular ping requests. The application handles the
first ping-request and finds a match with the policy. The controller ends up installing
this direction of the flow differently from the first, due to the policy forces the flow
to use a link which supports the policy bandwidth requirement. After installing the
flow, the link capacity is updated, whereby only 1 Mbit/s is left for other flows to
use.

We want to initiate a new connection between h2 and h6, where the bandwidth
requirement and priority is higher than the previous policy. We define a new policy
and start pinging from h2, illustrated in Figure 6.4.

policy002 = policy_manager.Policy()
policy002.match(ip_src="10.10.10.102")
policy002.action(bandwidth_requirement=4)
policy002.priority(4)

56 6. VALIDATION

Figure 6.4: Policy deleted

Explanation of Figure 6.4: The controller matches the incoming flow with pol-
icy002, but discovers that it is unable to achieve its bandwidth requirements, and
is therefore forced to look for alternatives. Policy002 is strict, meaning that the
bandwidth requirement is absolute. Traffic loading of the flow is also not allowed.
The controller is given no opportunities in this situation but look for policies with a
lower priority, and try to remove them to free resources. The controller finds the
former flow with the lower priority and deletes it so the new flow can use this path.

After enforcing policy002, we initiate a new ping from h1 to h5 (policy001):

6.2. PRIORITY AND TRAFFIC UTILIZATION 57

Figure 6.5: Traffic loading applied to flow

Explanation of Figure 6.5: Due to that policy002 forced the application to delete
the flow that was using policy001 means that there is there are no flow rules for h1
and h5 on the switches anymore. In other words, if h1 tries to ping h5, the packet
will be forwarded to the controller for re-processing.

Since policy001 is defined to allow traffic loading, the flow is permitted to be split into
two different paths. This ensures that the flow achieves its bandwidth requirement by
using portions of bandwidth capacity from each path. Figure 6.6 shows the created
rule on s1.

Figure 6.6: Weighted group rule

58 6. VALIDATION

6.2.1 Summary

The first incoming flow (policy001) takes the path s1-s4, due to it is the only link
which has the capacity of which the policy requires. The application always strives to
use paths that fulfills the bandwidth requirement, and only splits traffic if necessary.
When the next flow (policy002) arrives the network, the first flow will be deleted
due to it having a lower priority, because the new flow is forced use path s1-s4. By
the removal of policy001, the flow must be re-processed by the application when it
arrives the network after deletion, of which the application finds it necessary to split
the traffic into two paths to achieve the required bandwidth. The final result for
policy001 (with a bandwidth requirement of 3 Mbit/s) is reserving 2 Mbit/s on path
s1-s2-s4 and 1 Mbit/s on path s1-s3-s4.

6.3 Traffic Classes

We assume that the previous policies have timed out. We want to make some
adjustments to existing policies. We have noticed that the minimum bandwidth for
h1 is actually 2 Mbit/s, instead of 3 Mbit/s as originally proposed in Section 6.2.

H1 is transmitting real-time traffic (video) with the absolute minimum requirement
of 2 Mbit/s, but transmitting at a higher rate will ensure a higher video quality.
We still want to define the flow’s bandwidth requirement as 2 Mbit/s to free link
resources which other flows can use, but we will try to avoid using 2 Mbit/s links as
far as possible so the flow can use the additional free capacity when available. To do
so, we add traffic class 1 to the policy, and Figure 6.7 displays the results.

policy001 = policy_manager.Policy()
policy001.match(ip_src="10.10.10.101")
policy001.action(bandwidth_requirement=2,
allow_load_balance=True, traffic_class=1)
policy001.priority(5)

Figure 6.7: Best capacity path taken

Explanation of Figure 6.7 and 6.8: We observe that by using traffic class 1, the
application will install the flow on path s1-s4, whereby the link still has remaining

6.4. NETWORK DYNAMICS 59

capacity left after the flow added to the link. As long as no other flows reserve this
capacity, it is free to be used by the flow. By changing the traffic class to 3 the
opposite happens, and the application installs the flow using the path with the lowest
bandwidth capacity.

Figure 6.8: Lowest capacity path taken

6.3.1 Summary

The SDN application is supposed to work autonomously, by taking the best path based
on its calculations. Despite this fact, traffic classes can be used by the administrators
to influence the application to take specific paths to some extent. The scenario
shows that the controller generates different paths for the same flow (using same
requirements) only by changing the traffic class.

6.4 Network Dynamics

We assume that the previous policies have timed out. We want to initiate a new
connection between h3 and h7. The flow does not need much bandwidth, but the
transmitted data is of high interest for potential enemies. Consequently, we add
randomness to the policy to prohibit predictable paths, as shown below:

policy003 = policy_manager.Policy()
policy003.match(ip_src="10.10.10.103")
policy003.action(bandwidth_requirement=2, random_routing=True)
policy003.priority(3)

Figure 6.9: Chosen path for new incoming flow

60 6. VALIDATION

Figure 6.10: Chosen path for re-forwarded flow

Figure 6.11: Flow re-forwarded once more

Explanation of Figure 6.9, 6.10, and 6.11: The figures shows the paths used
over a time period. When the flow rules exceed the hard-timeout limit, the controller
knows that the flow is still active, but needs to be randomly re-forwarded.

The SDN application is also aware of link failures and ensures that the flows are
re-forwarded when disconnections occur, as Figure 6.12 illustrates; where the link
between s3 and s4 is disconnected while the flow is using the path.

Figure 6.12: Link disconnecting while flow using it

Explanation of Figure 6.12: The controller detects the disconnected link and
rapidly re-forwards the flow using another path. The disconnected link is excluded
from the random forwarding pool until it becomes active again.

6.5. MONITORING 61

6.4.1 Summary

Based on a predefined period, the application will perform re-forwarding of flows
when reaching the time threshold. The application uses a random path algorithm
to generate a new path which achieves the bandwidth requirements, but where the
application excludes the last used path from the calculation.

When a link in use is disconnected, then the application is notified, whereby it will
iterate over the policies which use paths which includes the broken link. Following
this, the controller will then remove all the flow rules for these corresponding flows, of
which will result in a re-processing by the controller where it will generate alternative
paths for the flows.

6.5 Monitoring

This scenario is a continuation of the scenario presented in the previous section, and
policy003 is still active on path s1-s2-s4. In this situation, the link between s1 and
s4 has also been disconnected, leaving only one path (via s1-s2-s4) open across the
network.

We create a new policy saying UDP traffic should get a bandwidth requirement of 1
Mbit/s, independent of which host is transmitting. We do this because we know real-
time traffic in forms of UDP has higher priority than TCP for this network. However,
the requirement is set to non-strict, so that the flows can handle a temporary lower
bandwidth than the specified requirement. We start a UDP session between h4 and
h8 with the following policy added to the policy list:

policy004 = policy_manager.Policy()
policy004.match(protocol=17)
policy004.action(bandwidth_requirement=1,

bandwidth_requirement_nonstrict=True)
policy004.priority(4)

Explanation of Figure 6.13: In this scenario there is a challenge. h3 (using
policy003) has reserved 2 Mbit/s on the path, leaving 0 Mbit/s left for h4, which is
below the UDP requirement. Policy003 also has the highest priority. The UDP policy
is defined as non-strict, meaning the flow can accept lower bandwidths than 1 Mbit/s
for an arbitrarily period. The SDN application takes decisions depending on how
much of the physical link in use by monitoring the ongoing traffic. In this scenario,
the application denies the flow access to the network, because the monitored traffic
is too high.

62 6. VALIDATION

Figure 6.13: Denied flow

On the other hand, if the link is idle the following happens:

Figure 6.14: Approved flow

Explanation of Figure 6.14: The controller monitors the average traffic from h3,
and do approvals if the average traffic is below certain security thresholds. In this
case, the flow is added to the path because the traversing traffic is little.

Most importantly, when adding the flow to the link, what will happen if h3 starts
transmitting again, in a manner that exceeds the links capacity? Figure 6.15 displays
the process2 , where h3 starts transmitting at a rate of 1.5 Mbit/s and h4 in 1 Mbit/s,
which is 0.5 Mbit/s more than the link capacity.

Explanation of Figure 6.15: The figure displays that the traffic is policed to the
links maximum bandwidth limit, but only h4-h8 experience loss, while h3-h7 is not
affected.

When installing flow rules, the controller pushes strict policies and non-strict policies
in different QoS queues at the switches. When reaching the links maximum capacity
limits, the switches will start policing of the flows. Strict policies use a queue with

2Commands used to generate traffic: H3: perf -c 10.10.10.107 -u -b 1.5M -t 100. H4: iperf -c
10.10.10.108 -u -b 1M -t 100.

6.5. MONITORING 63

Figure 6.15: Exceeding the link capacity

a higher requirement than the non-strict ones, therefore, will the non-strict queue
always have to give way for the strict queue, which leads to packet drops while the
strict queue is unaffected.

64 6. VALIDATION

6.5.1 Summary

The first example shows a flow which is denied access to the network, because the
path is fully reserved, and the actual traffic (obtained by monitoring the flowing
traffic) on the path is using significant parts of the bandwidth. The application is
using an algorithm3 to estimate how much capacity which will be in use if the new
flow is added, by computing average bandwidth on the path and average bandwidth
per flow. In the first example, the controller is considering the path to be full, while
the second example is approved, because even tough the link is fully reserved the
actual traffic is close to none. The result is that the flow is allowed to use the link.

On the other hand, it is not scalable to add flows to to fully reserved paths, just
because the flows are not utilizing their reserved bandwidth on an average basis. The
point of using bandwidth requirements is to achieve QoS for the particular flows, but
again, we also want to utilize the network as much as possible. The third example is
testing of such a scenario: we have added flows with a higher aggregated bandwidth
requirement than the link capacity. We start transmitting higher load than the link
capacity which results in that the temporarily added flows are policed, while the
first policies reserved on the link still achieve their bandwidth requirement (ensuring
QoS).

6.6 Policy Management

To validate the management properties of the application, we want to test some of
the facing challenges. Many administrators would in practice most likely manage
the policy application, and there could be instances where policies are conflicting
with each other. We want to test how the controller chooses a policy when defining
multiple policies with corresponding match conditions. We add new policies with
the IP address of h1 as match condition with different priorities, and issue a ping to
another host in the network.

policy005.match(ip_src="10.10.10.101")
policy005.action(bandwidth_requirement=5, traffic_class=1)
policy005.priority(5)

policy006.match(ip_src="10.10.10.101")
policy006.action(bandwidth_requirement=9)
policy006.priority(4)

policy007.match(ip_src="10.10.10.101")

3The algorithms is presented in Section 7.5

6.6. POLICY MANAGEMENT 65

policy007.action(bandwidth_requirement=3, random_routing=True)
policy007.priority(3)

policy008.match(ip_src="10.10.10.101")
policy008.action(bandwidth_requirement=4, allow_load_balance=True)
policy008.priority(4)

Figure 6.16: The policy with highest priority is chosen (policy007)

Explanation of Figure 6.16: The application will match the flow with all of the
policies. The application will then sort the policies according to their priorities, and
then execute the highest prioritized policy while throwing the other ones.

However, what happens if the policies have the same priority? We change all the
policies to use 4 as priority and issue a ping request.

Explanation of Figure 6.17 and 6.18: The application is unable to sort the
policies correctly since they all share the same priority, thus starts arbitrary with
one policy and test it against the network. The application will iterate through
all policies until it finds an approved one, then install it. Figure 6.17 shows that
the application tries to install policy005, but the policy is denied because of its
requirements. The next policy in line is policy007, and it is approved and installed.

66 6. VALIDATION

Figure 6.17: Iterating through the policies

Figure 6.18: Approved policy

6.6.1 Summary

In this scenario, we have many policies which apply to the same flow, but the
controller executes the policy with the highest priority. In practice, the controller
picks up every policy and stores them in a list sorted by priority, where enforcing
the highest ones first. For the next scenario, the controller will iterate through the
policies until it finds a policy of which is approved by the network.

Chapter7Experiences from the
Implementation

This chapter is based on knowledge gained from the laboratory implementation.
Represented are different scenarios, challenges, and practical solutions.

7.1 Enforcing Policies

We chose to compile policies into flow rules where the match conditions in the policy
may differ from the match conditions in the flow rules. The match conditions in the
policies can vary while the flow rules are always installed on the switches using the
combination of MAC source and destination address. The reason for this approach
is to make the rules unique per direction of a flow, to force all flows to be processed
by the controller because the application installs rules by the reactive approach. We
underline our design decision by an example.

Let us say we have many specific policies in our policy list, but we want to add a
wide one (with the lowest priority) saying that UDP traffic should use a distinct
path in the network. The main thought behind this is that every UDP flow of which
does not match with the other specified policies then should be matched with this
policy, due to it has a very low priority. By converting this policy into a wide flow
rule where the match condition is set to the UDP, then all incoming UDP flows will
have a match with this rule independent of other parameters.

The flow rule becomes a problem when the controller installs the rule before the other
rules due to it being so wide. The UDP flows will always end up being forwarded by
the switches, even though the application possesses higher priority policies for the
incoming flows of which is waiting to be enforced. The switches will never forward
the flows to the controller for processing because of the match with the flow rule.
The remaining policies, will therefore never be applied as long as the UDP flow rule
is active.

On the other hand, we acknowledge weaknesses with our approach, by only using

67

68 7. EXPERIENCES FROM THE IMPLEMENTATION

the MAC source and destination as match conditions. By using this method, the
application only allows one policy to work for a flow direction for a particular
communication pair. Let us use the same example where UDP traffic should use a
particular path in the network. A particular flow enters the network and is processed
by the controller and matches with the UDP condition. The application then compiles
the policy to flow rules where the match condition is the combination of MAC source
and destination in the flow rule. This will allow all other flows to be processed by
the controller because of no one will match with that particular flow rule. More
importantly, they will be enforced by the same policy by the controller, but at the
SDN forwarding plane; the communication pairs are matched on a unique basis.
However, if the original communication pair suddenly switches over to TCP traffic,
they will still have a match with the installed flow rules. This is due to that the
protocol does not have any significance for the match conditions in the flow rules
because they will contain using the same MAC addresses. The developed application
uses flow rule timeouts (flushing) as a semi-mitigation to this problem, to ensure
that flow rules are fresh and to let the application regularly process the flows.

Instead, we could have mitigated this better by including a third match criterion
(example protocol) in the match condition additional to the source and destination
MAC addresses. If this were the case, then the flow would have been forwarded to
the controller for processing when changing to TCP traffic, because of no matching
flow rules. The key element when using a reactive approach is to narrow the rules
down, so that the flows does not match with extensive match conditions, in a way
that prohibits the flows from being processed by the controller.

7.2 ARP Broadcasts

In legacy switching, ARP broadcasts are used to discover entities in the network, but
this can lead to problems in topologies containing loops. To avoid broadcast loops, a
protocol called Spanning Tree Protocol (STP) [7] is used to build a topology tree
with branches to every switch without loops. Ryu has a module for STP which can
be included in custom made code, but we wanted the controller to be independent
of this module. By using the controllers capabilities to obtain topology information
about links, we were able to create a type of topology abstraction to forward ARP
broadcasts without causing loops in the network.

Figure 7.1 illustrates the ARP process. The function abstracts the links connected
between switches, and only let the remaining links be visible for the application.
Instead of broadcasting the packets from switch to switch, the controller iterates
over all the switches that still has a visible link (if the switch still has a link after
the logical link removal, then we assume that it has a host connected to it). The
application then instructs the switch to create a new ARP request containing the

7.3. CONSISTENCY 69

Figure 7.1: Legacy vs SDN ARP forwarding

same properties as the request that the controller got in, and then forwards the
request out the remaining links. The advantage of this solution is it generates low
traffic on the network, by removing broadcast from switch to switch. The abstraction
is a many-to-one approach, where all the switches in the network are viewed as one
big switch because the intermediate switch-links are abstracted, and only the links
connected to hosts are used to transmit the ARP request.

7.3 Consistency

One of the main challenges in the laboratory implementation was to keep state
about ongoing flows and policies. To enforce resource reservations, the controller
is dependable of saving and updating its resource pool when installing the flows.
The reservations are not stored in the switches but only by the controller. The
reservations must, thus, be updated when flow rules times out on the switches to
maintain consistency between the applications view of the reservations (state of
resource pool) and the actual reservations (flow rules). We solved this by introducing
a flag in every flow rule:

flags=ofproto_v1_3.OFPFF_SEND_FLOW_REM

70 7. EXPERIENCES FROM THE IMPLEMENTATION

Figure 7.2: Example of the capacity update process

This flag gives notice to the controller when a flow rule times out. The controller will
use this to update the resource pool. Figure 7.2 illustrates a simplified SDL process
diagram of the procedure: The controller listens for incoming flows with bandwidth
requirements or flow rule timeouts, and updates its resource pool accordingly. A flow
rule timeout indicates that the policy is no longer running on the network. Despite
this, the policy is also removed from the running policies-list (ref 5.3.1) when timing
out.

Using this approach introduces potential weaknesses. Link failures or congestion
could cause problems in scenarios where the controller does not get the updates from
the switches: the controller may think the link is fully utilized even though the flow
rules, in reality, has timed out. A mitigation strategy could be to perform regular
flushing of the whole system and build it up again in a reactive manner.

7.4. FLUSHING 71

7.4 Flushing

We also use the timeout-flag to ensure that the network is regularly flushed and
utilized to the maximum. The flag is triggered both at idle-timeout and at hard-
timeout. Where the idle-timeout is triggered when the flow is unused for a given
period and ensures that the flow rule is deleted without the need of help from the
controller, and is a network utilization strategy by freeing unused reserved resources.

Hard-timeouts, on the other hand, are used to ensure freshness to the flows. If new
links are discovered and added to the network topology, the desire is to use these
additional links to utilize the network. The application does not perform instant
re-forwarding when this occur, but because of the implemented hard-timeouts, the
flows are forced through a re-processing by the application when the hard-timeout
is triggered. The re-processing uses the newly updated topology as input to path
calculation. The SDN application uses hard-timeouts as a basis for performing the
regular random routing of flows if this is specified in the policy.

7.5 QoS

We wanted to utilize the network as much as possible, but to fulfill QoS requirements,
the controller can not add more policies to the link if the aggregated policy bandwidth
requirements are equal to the links maximum capacity. Even though the traversing
traffic may be a lot lower than the reserved requirements; we must consider busy
hours1 where the link is fully utilized.

In contrast, we wanted to utilize the link when there is no busy hour. To do so, we
introduce monitoring, QoS queues, and non-strict policies. The non-strict property
must be applied to the policy to state that the flow tolerates a lower requirement that
what is specified in the policy, thus stating that it does not need QoS. Monitoring is
used to find out how much traffic is traversing down the different paths2, and adds
the input to an algorithm that calculates the moving average for each path and each
flow. When a non-strict policy added, it will need to pass the following test to use
the link temporary:

Code sequence 7.1 Capacity test of non-strict policies

capacity = full_path - (average_path + average_flow)
if capacity >= full_path/2 and capacity >= req:

1Busy hour refers to the period where the network traffic load is at maximum.
2Monitoring is performed by regularly inspecting sent and received packets on ports.

72 7. EXPERIENCES FROM THE IMPLEMENTATION

The test takes the average traffic flowing on the path added together with the average
traffic per flow (represents the expected traffic by adding a new flow), and checks if
less than 50% of the realistic3 path capacity is in use by adding the new flow, and
as well that the realistic capacity is higher that the actual policy requirement. The
checks are performed to ensure that the link has a buffer so that the risk of link
congestion after adding in the new flow is low.

Additional to this, the temporary flow is placed in a QoS queue with lower requirement
than the strict policies. We define queues by the following instructions:

Code sequence 7.2 Queue generation

sudo ovs-vsctl set port s1-eth1 qos=@defaultqos -- --id=@defaultqos
create qos type=linux-htb other-config:max-rate=link_bandwidth
queues=0=@q0,1=@q1 --
"--id=@q0 create queue other-config:min-rate=link_bandwidth -- " \
"--id=@q1 create queue other-config:min-rate=0"

q0 has min-rate set to the links maximum bandwidth capacity while q1 has no
minimum limit. The result in Figure 6.15 showed that q1 were policed while q0 was
unaffected when the aggregated transmitted traffic exceeded the links bandwidth
capacity. By installing ingress port policing and placement of flows in different queues
we can ensure QoS to particular flows. There are additional approaches of ensuring
QoS with queues, such as to place flows in individual queues with different maximum
rate; this will also ensure policing of traffic.

Figure 7.3 displays the overall process: The controller adds the extra flow which is
exceeding the paths capacity, due to the monitored traffic is significantly lower than
the reservations. By computations, the controller believes that the extra added flow
will achieve its requirements on an average basis, but it can not guarantee QoS for
that particular flow.

Flows without any matching policies will always be placed in q1, so they have to
give away to the strict policies.

3The realistic capacity is the monitored available capacity

7.6. TRAFFIC LOADING 73

Figure 7.3: Adding policies beyond capability limitations

7.6 Traffic Loading

Group rules are used for splitting traffic in scenarios where the flow needs to be
load balanced to achieve the policy bandwidth requirement. The controller iterates
over the paths and calculates how much of the bandwidth the flow shall seize, for
example, 1 Mbit/s from path X and 2 Mbit/s from path Y, while combined satisfying
a bandwidth requirement of 3 Mbit/s. By introducing weights, we can adjust the
traffic to flow according to the seized link capacities. The thought behind this feature
was to perform load balancing to ongoing traffic by using multiple ports at the
same time. However, we experienced that the traffic loading feature did not work as
expected.

It turns out that group rules (using the SELECT option with weights [15]) do not

74 7. EXPERIENCES FROM THE IMPLEMENTATION

have the ability to use multiple ports to forward selected parts of the traffic at once4,
they rather switch between using the individual ports based on a switch-computed
selection algorithm. When testing the traffic loading function we experienced that
when initiating the traffic generation with iperf, the group rule will use the weight
to choose a port. In spite of this, once the port is selected, the switch will use the
port for the entire transmission period. It emerges as the port used is based on
a timer, and if the transmitting traffic is continuous, the same port will be used
throughout the session, and never use both ports simultaneously for the session. On
the other hand, Figure 7.4 displays that the switch can use multiple ports to send
various session traffic. By using two remote connections to h1, and by generating
ping and iperf traffic to h5, we see that s1 forwards the traffic via different ports by
the group rule. The ping-traffic uses path s1-s2-s4 while iperf traffic uses s1-s3-s4.
The timestamps in the figure show that traffic loading is happening simultaneously.

As a result of the group rule limitation, the bandwidth reservation in Section 6.2 is
invalid. For this particular scenario, we used the traffic loading feature on s1 to split
an incoming flow of 3 Mbit/s down into 1 Mbit/s on port 3 and 2 Mbit/s on port 4.
The goal was to retain the same throughput in as out, by using multiple ports to
achieve an aggregated bandwidth of 3 Mbit/s for a particular flow. Instead, if h1
starts transmitting a session at 3 Mbit/s, the traffic will only use one of the ports
(based on weighting), and therefore be policed according to that particular links
capacity. For the validated scenario, this would imply QoS for maximum 2 Mbit/s
via port 4, whereby the remaining 1 Mbit/s is either unused or must be used by
another session. We have yet to identify opportunities of splitting particular parts of
the same session by using multiple active ports in SDN or technical documentation
about the switch-computed selection algorithm used in the group rules.

On the other hand, apart from being used with bandwidth reservations, the feature
is an efficient way, in the long run, to ensure utilizing of the links with SDN. Figure
7.5 shows the result on s1 port basis5 after 10 runs with iperf6. The loaded traffic
(tx_packets) will slowly converge to the relative weights in the group rule.

4For example, to load balance an incoming flow onto multiple outgoing ports to retain the same
throughput.

5Command used on s1: sudo ovs-ofctl -O OpenFlow13 dump-ports s1.
6Command used on h1: iperf -c 10.10.10.105 -tcp -t 5.

7.7. OPEN VSWITCH UPDATE 75

Figure 7.4: Traffic using different paths with the same group rule

7.7 Open vSwitch Update

The original version of Open vSwitch does not support group tables (which is included
in the Mininet VM), so we had to update it to perform traffic loading. We discovered
that the new version of OVS does not forward packets to the controller by default,
so to get packets to the controller it is necessary to push out wildcard flow rules in a

76 7. EXPERIENCES FROM THE IMPLEMENTATION

Figure 7.5: Packets after 10 runs with iperf

proactive7 manner at boot-up of the network. This was realized by a low-priority rule
that instructs the switches to forward all types of traffic to the controller. We noted
that this approach could be challenging when conducting full flushing of the network,
due to the risk of removing this flow rule. Removing the rule will lead to that the
switch will disregard all new incoming packets, which was originally intended to be
forwarded to the controller.

7.8 Link Capacity

We found no way of gathering the link speed without creating a capacity test function
at the controller to measure link each links bandwidth. In Mininet, the OVS switches
ports appears to be configured to be 10 Gb, and we did not manage to change this
speed. To let the controller reserve resources in forms of bandwidth, it is dependable
of knowing the link bandwidth. We solved this in the simulations by generating a
random bandwidth8 and update the controller with this, followed by pushing out
policing rules to the switches with the same bandwidth limit as policing threshold.
This approach ensures that the there is a consistency of the controller’s view of
the link capacity and the actual link capacity, but it is only an approach useful for
simulation purposes. Code sequence 7.3 and 7.4 show the pseudo code for applying
these bandwidth limits.

Update the controllers state9:

Code sequence 7.3 Random generation of link bandwidth

linkspeed = random.randint(1,10)
link_bandwidths[link.src.dpid][link.src.port_no] = linkspeed

In reality, the most efficient way would likely be to monitor dropped packets since
the relationship between the port speed and the actual link capacity is not always

7Proactive is before packets are sent/received at the switch.
8The validation chapter used fixed link capacities, and not random.
9The process is repeated for every link. link_bandwidths[link.src.dpid][link.src.port_no] repre-

sents a unique link.

7.9. TRAFFIC CLASSES 77

Code sequence 7.4 Generation of policing limits

link_bw = (link_bandwidths[link.src.dpid][link.src.port_no]*1000)
sudo ovs-vsctl set Interface %s ingress_policing_rate=%s"
% (port.name,link_bw)

consistent. When the packets start dropping, we know that we are reaching the
links maximum capacity limit, and then we could update the controller to use this
capacity as the maximum limit in the resource reservation pool.

7.9 Traffic Classes

The controller divides subparts of the topology into traffic classes. The algorithm
is based on multiplying the weakest link (regarding bandwidth) with the average
link bandwidth on the path. The bandwidths used in the calculation are the links
maximum bandwidth, not the remaining bandwidth after resource reservation.

Code sequence 7.5 Finding weighted paths

for path in paths:
....
weighted = weakest_link*(path_bw/(len(path)-2))
weighted_paths.append([weighted, path])

The algorithm executes for every possible path which the flow can travel to reach the
destination. In the end, the list is sorted and divided into classes. Class 1 represents
top 25%, class 3 is bottom 25%, while class 2 is the remaining. The weakest link is
ergo the most determinate factor in the division of classes.

The main thoughts about introducing traffic classes are to give the administrators
the ability to influence the path decision process to some extent. It can be beneficial
to avoid using the lower capacity paths if the flows achieve better quality (e.g., video
stream) by using more bandwidth than its absolute minimum requirement stated
in the policy. By including traffic class 1 to the policy, we can be sure that the
application will use the best path regarding bandwidth capacity. We can also imagine
that paths with a significantly higher bandwidth than other will consist of fiber/cable
instead of wireless bearers, which may imply fewer topology variances because of the
static structure.

78 7. EXPERIENCES FROM THE IMPLEMENTATION

7.10 Summary of the Laboratory Work

We previously defined an assortment of requirements of which the SDN application
should be able to perform. Table 7.1 summarizes how implementation solved the
various requirements.

We chose to focus on bandwidth as the network property of importance in this
implementation. From early on we experienced that combining policies is a very
complex task, especially when conditions, actions, priorities and number of policies
increases. The primary challenge is that the policies will end up affecting each other,
and we need to implement smart ways of doing trade-offs which are advantageous for
the affected parts. We solved this in the application by always using the policy priority
as the determining factor in cases where the flow matches with multiple policies or
when it is necessary to remove policies to make way for others. Policies with lower
priorities will always have to give away to the higher ones. We also introduced policy
checks, to ensure that an enforced policy is approved by the network before installing
the policy.

We chose to develop the policy enforcement platform from scratch, and we did not
include Pyretic in the controller code, which in hindsight could have eased the policy
enforcement process or made it better. As of now, the approach that compiles policies
into flow rules limits the communicating pairs to use one policy per flow direction.
We see potential benefits of using standardized platforms to develop such a policy
environment, seeing that it would remove much of the complexity for the developers,
such as conveying policies to flow rules and the dispatching of the rules.

The simplified network is an approach to simulate a network with characteristics
similar to the DTN. On the other hand, we believe the traffic engineering functionality
of which the application conducts on the network would be beneficial use in all of the
OMNs. The design might need to be changed, but some of the essential requirements
are generic, and applies to particular features performed in this implementation.

7.10. SUMMARY OF THE LABORATORY WORK 79

Table 7.1: Implementation results

Requirement Implementation result
Flow priority Solved by linking flows to policies with priorities. Poli-

cies with lower priorities will always give way to higher
ones. When two or more policies match with the same
flow, the application chooses the policy with the high-
est priority. Higher priority policies can also ensure
removal of flows with lower priorities to free resources.

Resource reserva-
tion

Bandwidth reservations can be made per flow. The
controller keeps the state of the reservations, and main-
tains the requirement by placing the flow in QoS queues
at the switches.

Resource utiliza-
tion

The controller utilizes the network resources by allowing
non-strict flows to utilize paths with filled bandwidth
reservations if the average monitored traffic is low. Idle-
timeout removes inactive flow rules. Hard-timeout pro-
vides freshness. Traffic loading is also contributing to
the network utilization but turned out to be inoperable
for providing QoS.

Randomness The application offer randomness for path calculation
and when hard-timeout is triggered. The application
keeps state about the previously chosen path, whereby
it is excluded from the path generation pool, ensuring
choosing a new path.

Re-forwarding The application performs re-forwarding when links are
disconnected and at hard-timeout of flow rules. Re-
forwarding is in practice the deletion of the particular
flow rules to force the flow to be reactively be processed
by the controller.

Monitoring The controller monitors the flowing traffic on the various
paths to calculate average traffic per path and per-flow.
Topology knowledge is achieved by monitoring links
and switches.

Traffic policing The switches perform policing at port-level. Policing
limits are set to the links bandwidth capacity and the
controller proactively installs these at boot-up.

Topology Ab-
straction

The SDN application uses topology abstractions to
filter out switches and links from its logical ”forwarding
pool” if they do not support the requirements specified
in the policies. After filtering, the application will try
to find a path based on the remaining resources in
the forwarding pool. The ARP process uses a similar
approach.

Management Management is realized by enforcing policies with an
interface where the administrators can specify the poli-
cies. Limited to defining the policies before booting up
the application.

Chapter8Discussion

This chapter is a discussion of the problems this thesis addresses. It covers a review
of the results from the validation phase, where we discuss decisions, the development
process, and potential improvements. A higher level discussion follows where we use
the completed work to appeal to the thesis problem description.

Results from the validation show that the controller can take independent decisions
which will vary according to what the policies state, combined its view of the network
topology. Most importantly, this is one of the goals with traffic engineering; to adapt
and to control the flows within a network based on the relationship between the
topology, resources, and traffic. The developed controller application will always
strive to achieve the best utilization seen from its view.

One of the goals with the validation is to present the capabilities which SDN has to
offer. One of the best examples which illustrates the strength of traffic policing with
SDN from the validation is shown in table 8.1. In the example, the hosts started
transmitting more than the link was capable of sending. We introduced policing
of the ingress traffic on the link, as well used service differentiation to police only
certain parts of the traffic. This is an essential feature which the network could
benefit greatly from using. By placing the high-priority military traffic in a QoS
queue with higher requirements than other queues will lead to that, the policing is
conducted at the other queues first.

Table 8.1: Summary of results from validation in Section 6.5

Action Result
Flow 3 starts transmitting UDP traffic at 1.5 Mbit/s 0 % loss
Flow 4 starts transmitting UDP traffic at 1.0 Mbit/s 43 % loss

When the high-priority military traffic adds up, and the aggregated flows are exceeding
a links capacity limitations, it is necessary to do further handling, which Table 8.2

81

82 8. DISCUSSION

displays. When filling the total capacity, it is of greater importance to allocate
resources for the flows with the highest priority than the lower ones. The result
would be the deletion and denial of the low priority flows. It is important to note
that this only happens in situations where the network is reaching its maximum
limitations.

Table 8.2: Summary of results from validation in Section 6.2

Action Result
Flow 1 with match on policy001 in Path 1-4 taken
Flow 2 with match on policy002 in Removes Flow 1. Path 1-4 taken
Flow 1 enters the network again Traffic loading using path 1-2-4 and 1-3-4

We did manage to fulfill all the requirements of the controller to some extent,
and we believe that SDN delivers features which can contribute to a beneficial
way of performing traffic engineering and policing in OMNs. We especially stress
the controllers ability to cope with changes and variations, essentially in forms
of topology changes (e.g., disconnecting links), resource changes (e.g., various link
bandwidths) and traffic (e.g., flows with different needs and priorities). Since we knew
on beforehand about the important features and properties of the network, we were
able to take this into consideration when developing the application. We noticed the
advantage by gradually being able to add features and adjusting the application as we
went along, which is likely not possible when using the legacy equipment because we
are dependable on the features included in the vendors software. When the controller
retains topology knowledge, it emerges as the natural managing point in the network,
and it also has the powers and the rights to instruct the forwarding devices to do
what it wants. In contrast to legacy routing where particular management tasks can
be centralized but the routers is essentially autonomous.

The design is, therefore, essential in SDN, due to new opportunities to place the
control plane (controller) in various places in the network. This opens doors to a
new world for network design compared to legacy network layouts which are limited
by the embedded control plane in each device. It is possible to include multiple
SDN controllers to the network design, and this approach would likely be required
for the OMNs due to the networks characteristics and requirements. The testbed
structure used a centralized approach, but we argue that in environments with
extreme management link variances (such as MTNs) it can be beneficial to add more
controllers to the design; moving towards a decentralized control plane approach.
However, the various designs will also have different issues to solve, such as how the
controllers should communicate, what information should be exchanged and when to
synchronize. SDN must be designed to fit the network, followed by developing the
controller(s) to fit the design.

83

The key element in the implementation is the use of network policies. We chose to
enforce policies using a reactive approach, by which makes the flows dependent on
being processed by the controller at first-entry. An advantage of this approach is
that the controller gets knowledge about every flow in the network. Therefore, the
controller can reserve bandwidth with certainty that a flow is in use. The stated
policies are stored by the controller and are only enforced when needed to, thus is
when the flow becomes active. The SDN application uses the policies as a labeling
function: by matching a flow with a policy, it retains the flow’s requirements. It is
then up to the application to fulfill these demands, to compiling the policy action(s)
into flow rules, and the dispatching of these. Due to the reactive approach, it was
necessary to make the flow rules unique, so it is not possible for unprocessed flows
to match with these rules. The essence of the development process was to make
the linking between a user-interface where policies are defined, and the flow rules
which forward the actual flows. Being based on the same principles; by using match
conditions and actions, it would appear as natural to use the same match conditions in
the flow rules as in the policy. This is, however, dependent on the policy enforcement
design, and a reactive enforcement approach would most likely require compiling of
wide policy conditions into narrow rules, such as this implementation shows.

Regarding traffic engineering in OMNs, there is a variety of inputs to adapt to,
and the inputs used in the implementation are illustrated in Figure 8.1. Policies
and topology are knowledge of which the SDN application obtains at boot-up of
the network and enables the application to start installing particular rules before
traffic is sent and received in the network. As the traffic enters the network, the
controller must continuously monitor network status to detect changes in forms
of traffic volume, topology events and ongoing policies, and use this as input to
its traffic engineering calculations. Path decisions will, thus, depend on several
factors, where the key element is performing dynamically adjustments. To monitor
traffic, the controller regularly sends OF requests to the switches, and the controller
performs computations based on their responses. This monitoring approach worked
well in the testbed, but we acknowledge that this method does not scale well in
large-scale networks, which emphasizes the importance of a robust network design
when the networks grow. A network with hundreds of switches will generate a lot of
management traffic by using such a request-response method.

The reactive approach lets the SDN application perform traffic engineering in a white-
list manner, by ensuring that the traffic is approved before it is allowed to access
the network. This is a beneficial way of preventing the network from congestion,
but it is also necessary with conditional policing to cope with changes in traffic
volume. OVS comes with a variety of features, of which can be utilized to achieve
service differentiation, such as by combining ingress port policing and QoS queues
as performed in the lab. The developed SDN application installs these features

84 8. DISCUSSION

Figure 8.1: Inputs which the application adapts to

proactively based on topology knowledge gained at boot-up of the network, while
placing the traffic in the various queues in a reactive manner as traffic arrives the
network. The switch will start policing traffic when reaching the defined policing
thresholds. The OVS switches can police traffic on port basis and also at queue basis
by stating a maximum transfer limit for individual queues. Both approaches appear
as robust policing methods.

Figure 8.2: Divided responsibilities

Figure 8.2 illustrates the divided responsibilities in the SDN implementation. By
inspecting the figure, we can see that all the features we have applied to the application
(traffic loading, randomness, re-forwarding, bandwidth reservation, etc.) are a part
of the forwarding decisions context. Meaning in essence, that most of the developed
application is for forwarding the traffic in efficient manners. All the other things
the application performs are really about obtaining inputs to be able to take the

85

correct decisions. Due to the switches does not have the ability to make decisions, the
application also manages these, such as installing policing limits and the QoS queues.
Once installing these features, the application does not need to monitor or control
them anymore; the responsibility is at this moment outsourced to the switches.

To police traffic at links would imply, that to some extent, there need to be policing
features which the SDN switches must support. Otherwise, the controller would need
to do all the job, both in forms of monitoring and the regular deletion/modification of
flow rules to adjust traffic. A job that would be a tremendous for a single controller,
and the approach would not scale well as the network grows. Especially considering
the management traffic it would generate, which is not a good match the limited
bandwidth capacities which the OMNs may have. Instead, we find it very effective to
let the switches have this responsibility; the controller states the policing thresholds
while the switches enforce them. We have also found that traffic engineering using
the OF protocol emerges as not sufficient enough alone, being based on management
of the forwarding plane and not the administration of the switch itself. In contrast,
by combining OF and OVSDB, we get access to a variety of features of which emerges
as adequate for performing traffic policing. Besides, we also have the possibility to
include other types of management protocols into the application such as Link Layer
Discovery Protocol (LLDP) and Simple Network Management Protocol (SNMP), to
achieve an even greater control. The asset of an SDN application is that it is possible
to include smart elements from various protocols, of which can be sewn together to
make powerful functionality.

Controller processing and state correlate with the number of features, nodes, traffic
and rules which the controller manages. We earlier stress the fact that flow rules
should be narrowed down when installing flow rules using a reactive approach. The
challenge with this strategy is the processing, the number of rules and the state this
will generate as the networks expand. Especially by looking at how the developed SDN
application keeps state about every running policy on each path due to maintaining a
consistency of the bandwidth reservations. The application maintains a detailed state
about every individual flow, and this approach does not scale well in the long run. In
a large-scale network, it is necessary to cut down on the details and use wider rules
and policies to keep the controllers state at an acceptable level. Instead of installing
every flow reactively, a possible approach would be to enforce the policy instantly
once the administrator defines it. By giving the particular policy a higher flow rule
priority, we can rest assured of the flows are forwarded by this rule instead of the
wider ones. However, by moving away from a reactive approach, the controller will
no longer have full control of incoming traffic, which can be problematic regarding
resource reservations and network utilizing. When enforcing a policy proactively
with a bandwidth requirement, but no flows are using the policy on the forwarding
plane, then it is a waste of reserved capacity.

86 8. DISCUSSION

Errors or misconfiguration in the SDN application may influence the whole network,
and we have experienced these situations numerous of times in the laboratory
implementation. The SDN application plays the most important role within the SDN
network, and all forwarding devices rely on the controller, which makes the controller
and the connection to the controller exposed. In contrast, the controller is also
dependent on the feedback from switches to maintain consistency regarding state and
view. Failures and lost data over the management links may lead to inconsistency
between the controller’s view of the topology and the actual topology. In the
testbed, we only look at changes regarding data traffic and excluded management
link variances. In a realistic SDN setting, the OF channel (management link) would
probably use the same physical links as the regular traffic, thus, would suffer from
the same variations. For example; a centralized SDN controller in the MTN may
appear as inconvenient due to high expected management link variances. Therefore,
the network should be designed and developed, so the facing challenges are mitigated
in best manner. In contrast, we have documented sound capabilities of performing
traffic engineering with centralized SDN approach utilizing stable management links.

To summarize, we believe that a centralized SDN solution is well suited for environ-
ments where the management links are stable, but where end-clients or dedicated
traffic links rather cause the topology variations. We argue with this because the
network resources are very dependent on management by the SDN application, and
the application is dependent on the feedback from the switches. That said, man-
agement variances does not exclude the use of SDN, but set higher requirements
for the design. Overall, SDN shows robust capabilities of forwarding traffic based
on various policy conditions and offers great flexibility for the developers because
of the possibility to program the control plane. In addition, flexibility also applies
to the network design due to the great possibilities of placing the controller(s) on
various locations in the network. This becomes particularly important when network
complexity (variations, requirements, traffic volume, the number of nodes, etc.) adds
up. Ergo, the SDN application can be designed and developed to fit a particular
network environment, based on requirements and obvious challenges. The SDN suite
includes, but is not limited to, the OF protocol, of which the application uses to
control the forwarding plane on the switches. Despite this, at times, it would appear
as necessary to include other protocols to the application to offer features beyond OF,
such as OVSDB which we used in the testbed to enforce flow policing and QoS. We
think that it is beneficial to outsource some features to the switches, in a way that
keeps the generated management traffic and controller processing to the minimum.

Overall, we are satisfied with our implementation and the carried out results. We are,
however, aware of that the application developed in this thesis has many imperfections
and is still far from being a complete solution. The implementation is proof that
we can conduct traffic engineering and policing by using SDN in a simplified and

87

simulated military network environment, whereby using the experience gained, and
results as a basis for the discussion on the topic.

Chapter9Conclusion

In this thesis, we have shown that Software Defined Networking can be used for
traffic engineering and policing in an Operational Military Network. The problem
this thesis addressed was to look at how SDN can be utilized as a tool for traffic
engineering and policing in an OMN. OMNs are complex networks due to the high
network requirements combined with significant exposure to resource limitations and
variances.

This thesis describes requirements and challenges which the different OMNs are
facing, and we point out beneficial solving of these with the use of SDN. The various
OMNs have different characteristics and structure, and we have found that these
factors have a great impact in how the SDN architecture should be designed. This
thesis addresses the management links and the controller processing as the major
determining design factors.

Enforcing policies is a way of performing traffic engineering, and we propose designs
for how policy enforcement can be conducted using an SDN framework, whereby
choosing a custom policy approach for the laboratory implementation.

Based on our findings, we have designed and developed an SDN application which
manages a simulated OMN. The application has been validated in scenarios where
policies, topology, traffic and resources vary. We have shown by utilizing SDN
capabilities, that the controller can monitor the network, and use this input together
with predefined policies to prioritize, police, ensure QoS, and dynamically adjust the
flows. We find it beneficial to let the switches police traffic on port or queue basis.

Based on findings during the work with this thesis, we conclude that SDN for traffic
control and policing in networks exposed to limitations and traffic link variations,
such as in OMNs, appears as a valuable approach due to offered capabilities and
flexibility in the design and development process. However, SDN does not solve every
network problem and face many challenges in the same way as traditional networks.

89

90 9. CONCLUSION

9.1 Future Work

Due to the SDN overlay, management traffic may use the same links as the regular
traffic. Following this, we have found that more research is beneficial on this topic to
identify if SDN is still a solid approach by taking management traffic variances in
consideration. It may also be helpful to document other approaches of performing
policy enforcement using SDN, such as third-party platforms as Pyretic.

List of topics which could have been of interest to research:

– Implement an Operational Military Network with SDN where management
links are suffering from variances. Test various approaches to controller design
within the network.

– Implement an Operational Military Network by including Pyretic to the appli-
cations code to explore the advantages of this policy approach.

References

[1] Mohammed M Alani. Tcp/ip model. In Guide to OSI and TCP/IP models, pages
19–50. Springer, 2014.

[2] D. Awduche, A. Chiu, A. Elwalid, I. Widjaja, and X. Xiao. Overview and
principles of internet traffic engineering. RFC 3272, RFC Editor, May 2002.

[3] Steven Blake, David L. Black, Mark A. Carlson, Elwyn Davies, Zheng Wang, and
Walter Weiss. An architecture for differentiated services. RFC 2475, RFC Editor,
December 1998. http://www.rfc-editor.org/rfc/rfc2475.txt.

[4] Rolv Bræk. SDL basics. Computer Networks and ISDN Systems, 28(12):1585–1602,
1996.

[5] H.W. Braun. Models of policy based routing. RFC 1104, RFC Editor, June 1989.

[6] Marco Cello. Software defined networking (sdn). Talk at IEIIT – Consiglio
Nazionale delle Ricerche, March 2014.

[7] Cisco. Understanding rapid spanning tree protocol (802.1w). Technical Report
24062, October 2006.

[8] T. Clausen and P. Jacquet. Optimized link state routing protocol (olsr). RFC
3626, RFC Editor, October 2003. http://www.rfc-editor.org/rfc/rfc3626.txt.

[9] Ryu SDN Framework Community. What’s ryu? http://osrg.github.io/ryu/.
Accessed: 2016-04-25.

[10] David Erickson. The beacon openflow controller. In Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined networking. ACM,
2013.

[11] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: an intellec-
tual history of programmable networks. ACM SIGCOMM Computer Communi-
cation Review, 44(2), 2014.

[12] Project Floodlight. Floodlight. http://www.projectfloodlight.org/floodlight/.
Accessed: 2016-05-16.

91

http://www.rfc-editor.org/rfc/rfc2475.txt
http://www.rfc-editor.org/rfc/rfc3626.txt
http://osrg.github.io/ryu/
http://www.projectfloodlight.org/floodlight/

92 REFERENCES

[13] Flowgrammable. Flowmod. http://flowgrammable.org/sdn/openflow/
message-layer/flowmod/. Accessed: 2016-04-19.

[14] Flowgrammable. Hello. http://flowgrammable.org/sdn/openflow/message-layer/
hello/. Accessed: 2016-04-20.

[15] Open Networking Foundation. Openflow switch specification version 1.3.0. 2012.

[16] Open Networking Foundation. Software-defined networking: The new norm for
networks. White paper, Open Networking Foundation, 2012.

[17] Paul Goransson and Chuck Black. Software Defined Networks: A Comprehensive
Approach. Elsevier, 2014.

[18] E. Haleplidis, K. Pentikousis, S. Denazis, J. Hadi Salim, D. Meyer, and
O. Koufopavlou. Software-defined networking (sdn): Layers and architecture
terminology. RFC 7426, RFC Editor, January 2015. http://www.rfc-editor.org/
rfc/rfc7426.txt.

[19] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. B4:
Experience with a globally-deployed software defined wan. In ACM SIGCOMM
Computer Communication Review, volume 43. ACM, 2013.

[20] Java. About. https://java.com/en/about/. Accessed: 2016-04-21.

[21] Jaxenter. The SDN evolution: Out-of-band is where it’s at. https://jaxenter.com/
the-software-defined-networking-evolution-out-of-band-is-where-its-at-121834.
html. Accessed: 2016-04-20.

[22] Diego Kreutz, Fernando MV Ramos, P Esteves Verissimo, Christian Es-
teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined net-
working: A comprehensive survey. proceedings of the IEEE, 103(1), 2015.

[23] Madhusanka Liyanage, Andrei Gurtov, and Mika Ylianttila. Software Defined
Mobile Networks (SDMN): Beyond LTE Network Architecture. John Wiley &
Sons, 2015.

[24] The Newstack. SDN Series Part Four: Ryu, a Rich-Featured Open
Source SDN Controller Supported by NTT Labs. http://thenewstack.io/
sdn-series-part-iv-ryu-a-rich-featured-open-source-sdn-controller-supported-by-ntt-labs/.
Accessed: 2016-04-25.

[25] ONOS. About. http://onosproject.org/. Accessed: 2016-05-16.

[26] OpenDaylight. https://www.opendaylight.org/. Accessed: 2016-04-26.

[27] B. Pfaff and B. Davie. The open vswitch database management protocol. RFC
7047, RFC Editor, December 2013. http://www.rfc-editor.org/rfc/rfc7047.txt.

http://flowgrammable.org/sdn/openflow/message-layer/flowmod/
http://flowgrammable.org/sdn/openflow/message-layer/flowmod/
http://flowgrammable.org/sdn/openflow/message-layer/hello/
http://flowgrammable.org/sdn/openflow/message-layer/hello/
http://www.rfc-editor.org/rfc/rfc7426.txt
http://www.rfc-editor.org/rfc/rfc7426.txt
https://java.com/en/about/
https://jaxenter.com/the-software-defined-networking-evolution-out-of-band-is-where-its-at-121834.html
https://jaxenter.com/the-software-defined-networking-evolution-out-of-band-is-where-its-at-121834.html
https://jaxenter.com/the-software-defined-networking-evolution-out-of-band-is-where-its-at-121834.html
http://thenewstack.io/sdn-series-part-iv-ryu-a-rich-featured-open-source-sdn-controller-supported-by-ntt-labs/
http://thenewstack.io/sdn-series-part-iv-ryu-a-rich-featured-open-source-sdn-controller-supported-by-ntt-labs/
http://onosproject.org/
https://www.opendaylight.org/
http://www.rfc-editor.org/rfc/rfc7047.txt

REFERENCES 93

[28] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, and David
Walker. Modular SDN programming with Pyretic. Technical Report of USENIX,
2013.

[29] Joshua Reich, Christopher Monsanto, Nate Foster, Jennifer Rexford, David
Walker, and Princeton Cornell. Composing software defined networks. In Proceed-
ings of the USENIX Symposium on Networked Systems Design and Implementation
(NSDI). Citeseer, 2013.

[30] Hans Fredrik Skappel. Software defined networking for policy enforcement in
military networks. Specialization project, Norwegian University of Science and
Technology, December 2015.

[31] Rune Linchausen Skar. Systemdynamisk tilnærming for risikoanalyse av transfor-
masjonen til nettverksbasert forsvar. pages 62–64, 2006.

[32] Gary N Stone, Bert Lundy, and Geoffrey G Xie. Network policy languages: a
survey and a new approach. Network, IEEE, 15(1), 2001.

[33] John Strassner and E Ellesson. Terminology for describing network policy and
services. draft-strassner-policy-terms-02. txt, 1999.

[34] Erik Sørensen. Evaluating software defined networking for use in military networks.
Specialization project, Norwegian University of Science and Technology, January
2014.

[35] Erik Sørensen. Sdn used for policy enforcement in a federated military network.
Master thesis, Norwegian University of Science and Technology, June 2014.

[36] Mininet Team. Introduction to mininet. https://github.com/mininet/mininet/
wiki/Introduction-to-Mininet. Accessed: 2016-06-04.

[37] Olivier Tilmans and Stefano Vissicchio. Igp-as-a-backup for robust sdn networks.
In Network and Service Management (CNSM), 2014 10th International Conference
on, pages 127–135. IEEE, 2014.

[38] D Vassis, A Tsakrikadakis, K Panagiotopoulos, G Kormentzas, D Vergados, and
F Lazarakis. Building robust military networks using advanced software tools.
2002.

[39] Open vSwich. Rate-limiting vm traffic using qos policing. http://openvswitch.
org/support/config-cookbooks/qos-rate-limiting/. Accessed: 2016-06-12.

[40] A. Westerinen, J. Schnizlein, J. Strassner, M. Scherling, B. Quinn, S. Herzog,
A. Huynh, M. Carlson, J. Perry, and S. Waldbusser. Terminology for policy-based
management. RFC 3198, RFC Editor, November 2001.

[41] Øivind Kure and Ingvild Sorteberg. Network architecture for network centric
warfare operations. FFI Report 01561, 2004.

https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
http://openvswitch.org/support/config-cookbooks/qos-rate-limiting/
http://openvswitch.org/support/config-cookbooks/qos-rate-limiting/

AppendixAMininet Topology Source Code

1 #!/usr/bin/python
2

3 from mininet.net import Mininet
4 from mininet.node import Controller, RemoteController, OVSController
5 from mininet.node import CPULimitedHost, Host, Node
6 from mininet.node import OVSKernelSwitch, UserSwitch
7 from mininet.node import IVSSwitch
8 from mininet.cli import CLI
9 from mininet.log import setLogLevel, info

10 from mininet.link import TCLink, Intf
11 from subprocess import call
12

13 def myNetwork():
14

15 net = Mininet(topo=None,
16 build=False,
17 ipBase=’10.0.0.0/8’)
18

19 info(’*** Adding controller\n’)
20 c0=net.addController(name=’c0’,
21 controller=RemoteController,
22 ip=’10.10.10.126’,
23 protocol=’tcp’,
24 port=6633)
25

26 info(’*** Add switches\n’)
27 s3 = net.addSwitch(’s3’, cls=OVSKernelSwitch, dpid=’3’)
28 s2 = net.addSwitch(’s2’, cls=OVSKernelSwitch, dpid=’2’)
29 s4 = net.addSwitch(’s4’, cls=OVSKernelSwitch, dpid=’4’)

95

96 A. MININET TOPOLOGY SOURCE CODE

30 s1 = net.addSwitch(’s1’, cls=OVSKernelSwitch, dpid=’1’)
31

32 info(’*** Add hosts\n’)
33 h5 = net.addHost(’h5’, cls=Host, ip=’10.10.10.105’,

defaultRoute=None)↪→

34 h8 = net.addHost(’h8’, cls=Host, ip=’10.10.10.108’,
defaultRoute=None)↪→

35 h4 = net.addHost(’h4’, cls=Host, ip=’10.10.10.104’,
defaultRoute=None)↪→

36 h3 = net.addHost(’h3’, cls=Host, ip=’10.10.10.103’,
defaultRoute=None)↪→

37 h1 = net.addHost(’h1’, cls=Host, ip=’10.10.10.101’,
defaultRoute=None)↪→

38 h6 = net.addHost(’h6’, cls=Host, ip=’10.10.10.106’,
defaultRoute=None)↪→

39 h2 = net.addHost(’h2’, cls=Host, ip=’10.10.10.102’,
defaultRoute=None)↪→

40 h7 = net.addHost(’h7’, cls=Host, ip=’10.10.10.107’,
defaultRoute=None)↪→

41

42 info(’*** Add links\n’)
43 net.addLink(s4, s2)
44 net.addLink(h1, s1)
45 net.addLink(h2, s1)
46 net.addLink(s1, s3)
47 net.addLink(s1, s2)
48 net.addLink(s3, s4)
49 net.addLink(s1, s4)
50 net.addLink(s4, h5)
51 net.addLink(s4, h6)
52 net.addLink(s4, h7)
53 net.addLink(s4, h8)
54 net.addLink(h3, s1)
55 net.addLink(h4, s1)
56

57 info(’*** Starting network\n’)
58 net.build()
59 info(’*** Starting controllers\n’)
60 for controller in net.controllers:
61 controller.start()
62

97

63 info(’*** Starting switches\n’)
64 net.get(’s3’).start([c0])
65 net.get(’s2’).start([c0])
66 net.get(’s4’).start([c0])
67 net.get(’s1’).start([c0])
68

69 info(’*** Post configure switches and hosts\n’)
70 s3.cmd(’ifconfig s3 10.10.10.3’)
71 s2.cmd(’ifconfig s2 10.10.10.2’)
72 s4.cmd(’ifconfig s4 10.10.10.4’)
73 s1.cmd(’ifconfig s1 10.10.10.1’)
74

75 CLI(net)
76 net.stop()
77

78 if __name__ == ’__main__’:
79 setLogLevel(’info’)
80 myNetwork()

AppendixBSDL Symbols

99

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Motivation
	Derived Problem Description
	Outline

	Background
	Software Defined Networking
	OpenFlow
	Military Networks
	Traffic Engineering
	Policing
	Policies
	Quality of Service
	Topology Abstraction

	SDN in Military Networks
	Motivation
	Challenges in Military Networks
	Coping with Challenges
	Designing SDN for Military Networks
	Policy Enforcement in SDN

	Design
	Background
	Network Properties Resolved by the Use of SDN
	Flow Priority
	Flow Requirements
	Network Utilization
	Smart Forwarding

	Chosen Implementation Design
	Objectives

	Implementation
	Introduction
	Choice of SDN Framework
	Ryu
	Mininet
	Open vSwitch

	The Laboratory Implementation
	Network Emulation in Mininet
	Ryu

	Policy Enforcement Application
	Logical Policy Design
	Policy Matching
	Policy Enforcement Design

	Validation
	Details
	Network Topology
	Policies Used in the Validation

	Priority and Traffic Utilization
	Summary

	Traffic Classes
	Summary

	Network Dynamics
	Summary

	Monitoring
	Summary

	Policy Management
	Summary

	Experiences from the Implementation
	Enforcing Policies
	ARP Broadcasts
	Consistency
	Flushing
	QoS
	Traffic Loading
	Open vSwitch Update
	Link Capacity
	Traffic Classes
	Summary of the Laboratory Work

	Discussion
	Conclusion
	Future Work

	References
	Mininet Topology Source Code
	SDL Symbols

