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Abstract

The use of mobile internet is increasing as the service becomes faster
and more reliable. It is not only used by smartphones and tablets, but
also regular computers are connected. With the increase in usage comes
the need for an increased security. Companies have over the last 15
years been aware of Domain Name System (DNS) tunneling as means to
perform data exfiltration and Command and Control (C&C) attacks in
their networks. Before that DNS tunnels were used to access the internet
at cafés and hotels without having to pay for it.

Mobile devices today contain more and more data which might be sensitive
for both the user and his company and DNS tunnels are already in use on
mobile devices to avoid paying for internet data usage. If history repeats
itself, as it often does, will DNS tunnels soon be used to exfiltrate data
from mobile devices without anyone noticing. This is what this study
is trying to prevent. The study tries to find a viable machine learning
classifier for detecting DNS tunnels.

Machine learning is a great tool to find statistical properties of datasets,
and as DNS tunnels are irregularities should its properties be different.
The K-means classifier, a cluster classifier, and the One-Class SVM
(OCSVM) classifier, an outlier detector, are studied and tested in this
study.

The data was planned to be gathered using the opensource software
openGGSN. Using much time trying to set it up, did this plan have to
change. The data was then gathered with Wireshark. It captured DNS
traffic generated from four Virtual Machines (VMs) where one was using
a DNS tunnel. At first the DNS tunnel stood for over 50% of the data
collected, so it had to be reduced to be more representing of a larger
network. The data was reformatted by merging the request and response
in one line so the classifier could use those features together.

The precision, recall and F-score of the classifiers were tested on different
initiation parameters and features. For the K-means the results started
bad and neither changing the parameters nor features helped the results.
The OCSVM has multiple kernels which were tested and the poly kernel
looked very good on the first test. When changing the nu parameter
and the features, did the results of the poly kernel change drastically for
the worse. The Radial Basis Function (RBF) kernel kept a quite high
score specifically on the recall of the outliers and the precision on the



inliers. More tests were executed using the RBF kernel changing both the
gamma and the nu parameters, which are the most sensitive parameters
for the kernel. Which in the end resulted in a 96% F-score where only
the precision on outliers was under 90% which means the models largest
weakness is a few false positive.



Sammendrag

Bruken av mobilt internett gker fort nar tjenesten blir raskere og mer
stabil. Den blir ikke bare brukt av smarttelefoner og nettbrett, men ogsa
vanlig datamaskiner er koblet til. Med den gkte bruken blir sikkerheten
viktigere og viktigere. Bedrifter har de siste 15 &rene visst om bruken av
Domain Name System (DNS) tunneller til & laste ned sensitiv data og
utfore kontroll og kommander (K&K) angrep pa deres private nettverk.
Fgr DNS tunneller ble brukt til det, ble det brukt av personer som ville
bruke internett gratis pa hoteller og kaféer.

Mobile enheter inneholder i dag mer og mer informasjon som kan veere
sensitiv for bade brukeren og bedriften hvis den kommer péa avveie. DNS
tunneller er allerede tilgjengelig som applikasjoner pa mobile enheter for
a slippe og betale for data bruken. Hvis historien gjentar seg selv, noe den
ofte gjgr, vil DNS tunneller snart bli brukt for & laste ned data fra mobile
enheter uten at noen legger merke til det. Det er hva denne studien vil
prgve & hindre. Studien vil prgve a finne en levedyktig maskin lserings
metode for a detektere DNS tunneller.

Maskin leering er en god metode for & finne statistiske egenskaper av
et datasett. Siden DNS tunneller er unormal bruk vil de ha annerledes
statistiske egenskaper en vanlig DNS trafikk. K-means, en klynge klassi-
fiserer, og One-Class SVM (OCSVM), utligger detektor, metodene ble
studert og testet i denne studien.

Det var fgrst planlagt a4 bruke gratis programvaren openGGSN for &
samle inn data. Det viste seg & vaere tidkrevende og vanskelig & fa satt
ordentlig opp, s& den planen méatte endres. Dataen ble derfor samlet inn
med Wireshark. Den fanget opp DNS trafikken generert av fire virituelle
maskiner (VM) der en av de brukte en DNS tunnel. DNS tunnelen stod
for over 50% av dataen i starten, s mengden ble redusert for & kunne
representere en mengde i et stgrre nettverk. Dataen ble deretter formatert
ved & sl& sammen spgrsmaél og svar til en linje s metodene kunne bruke
verdiene sammen.

Presisjonen, tilbakekallingen og F-poengsummen av metodene ble testet
med forskjellige initierings parametere og verdier fra datasettet. K-means
metoden sine fgrste resultater var ikke noe bra, og verken endringer av
parameterene eller verdiene i datasettet hjalp. OCSVM metoden hadde
flere kjerner som ble testet og poly kjernen sa ut til & vaere veldig bra
ved forste test. P4 de neste testene ble nu parameteren og verdier fra



datasettet endret, noe som farte til at poly kjernen fikk darlige resultater.
Radial Basis Function (RBF) kjernen gjorde det stabilt bra gjennom
alle testene, spesielt pa tilbakekallingen av utliggere. Det ble utfort flere
tester pa RBF kjernen hvor bdde gamma og nu parameterene, som er
de mest essensielle for kjernen, ble endret. Resultatet til slutt var at
F-poengsummen var 96% og presisjonen av utliggere var det svakeste pa
87%, noe som betyr at den far noen falske positive utliggere.
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Introduction

1.1 Motivation

Mobile networks are expanding in usage and capacity and devices connected to them
are working more and more like regular computers. This makes them able to use
Domain Name System (DNS) tunnels to avoid paying for their services similar to
how people used it on computers years ago. It is important to try to get ahead of
the technology by finding out how to detect DNS tunnels on the mobile network,
before the use becomes truly malicious.

Most of the people today have smartphones and tablets to connected to a mobile
network, and they have more and more data stored on them. This data can be
sensitive for both the user and his company so it is important that it can not be
exfiltrated without anyone knowing. As companies tries to keep their private internal
network safe from data exfiltration and Command and Control (C&C) attack, they
do not think of the information employees has on their mobile devices. With this
evolution of the devices and the mobile network does the possibility of data exfiltrate
from a device on a mobile network increase.

The evolution of 4G mobile networks and also 5G, which is expected to provide
extreme local coverage and capacity, will outperform regular home networks. This
evolution will bring more data traffic into the mobile network. This fact combined
with the situation where the mobile terminals holds more private and sensitive, or
business restricted data than ever before, brings the security issue to a higher focus
level.

The safest way to detect a DNS tunnel is to perform Deep Packet Inspection (DPI)
which is a time consuming effort and on a mobile network, which cover over millions
of people, almost impossible. There has to exist a better way and machine learning
might be a good alternative. There are studies which have shown that the statistical
properties of a DNS tunnel differ from regular DNS traffic and that is where machine
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learning excels.

1.2 Objectives

The main objective for this study is to find a way to detect DNS tunnels using
machine learning. Machine learning is a great tool for statistical analysis and finding
patterns, since DNS tunneling is not the regular use of DNS it should stand out from
a pattern based on regular DNS traffic. To find out if it is possible the following
objectives were set:

— Find different types of machine learning classifiers which is used for anomaly
detection, cluster detection or categorization problems

— Gather data and reformat it so the classifiers can be trained and tested.

— Test the classifiers with different initiation parameters and different features
from the dataset.

1.3 Limitations

This study has some limitations. It was not possible to use data gathered from a
live network as we would not know if a DNS tunnel would have been used. Running
an experiment on a live network to test a model or implement a program with the
model was not possible either. The data gathered and used in the experiment is not
from a mobile network, but it is good enough for this study.

1.4 Outline

Chapter 2 In this chapter will it be explained how DNS is built up and how it
works. It also explains which weaknesses it has which are taken advantages of when
performing DNS tunneling. The structure of mobile network is explained and related
work are talked about.

Chapter 3 This chapter describes machine learning and the SciKit-learn library
in Python, which was used in the experiment. The classifier models and measure
techniques used in the experiment are explained in this chapter.

Chapter 4 The set up, data gathering and the results of the experiments are
presented in this chapter.

Chapter 5 This chapter concludes the thesis and discusses future work.
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Appendix A This appendix contain a snippet of the comma-separated values (csv)
file as it were directly from Wireshark

Appendix B Here is a snippet of the reformatted csv file.

Appendix C The script used to reformat the csv file and divide it into training
sets and testing sets are in this appendix.

Appendix D This appendix contain the prediction program used in the experiment
to train and test the models.

Appendix E In this appendix are tables containing some of the test results.






Background

To understand how to detect a tunnel, is the understanding of how DNS and DNS
tunnels works very important. It is also good to know how the mobile networks work
and what makes it different from a regular private network.

2.1 DNS

Since the introduction of the internet has connecting names with Internet Protocol
(IP)-addresses been an important part. It is much easier to remember a name than
four numbers between 0 and 255. It started out as a txt file called HOST . TXT stored in
the core of the internet. As the number of domains and users grew started the system
to encounter problems [MD88]. In the 1980s did the work start on a standardisation
of a new system to replace the HOST.TXT. The new system became the start of the
DNS.

Today DNS is one of the most important backbone components of the internet. It
makes users able to use domain names instead of IP-addresses when browsing the
internet, sending e-mail or any other interaction with the internet. The DNS will
look up the domain name and translate it into an IP-address, e.g. ntnu.no. will
be translated to 129.241.56.116 which the network needs to route requests and
packages back and forth.

DNS is a hierarchy of servers all around the world, which makes it able to maintain
fast response time as the number of domains and user grows. Each server either has
the response or sends the request to the next server which is lower in the hierarchy.
The request is passed on through the hierarchy until it reaches the Authoritative
Name Server (ANS) for the domain name requested. It is only ANS nodes who
have the information required to response to a request. A domain name consists of
multiple domain name labels which is separated by a "." and when requested is the
lookup resolved from right to left.
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Figure 2.1: Early nodes of the DNS hierarchy tree [Moc87b]

The domain name achilles.mit.edu. indicates a path from the root node, which the
first "." from the right indicates, to the node, ANS, which contains the information
about the domain name. In Figure 2.1 can this path be seen. The achilles node
only contains the information about the domain name achilles.mit.edu.. Each
label in a domain name represents a domain level. MIL., EDU. and ARPA. are the
Top Level Domain Names (TLDs) in Figure 2.1, the next label, MIT.EDU., is called
second level and so on going down the hierarchy tree. Most ANS nodes are located
either at the second or third domain level. When the structure is visualised, as in
Figure 2.1, is a leaf node an ANS.

When a request is sent, e.g. www.example.com. will it first be sent to a root node,
which looks up the the TLD com.. The root node then sends the request along
the correct TLD node which looks up the node for example.com.. As the ANS for
example.com. does this node have the complete knowledge of this domain. It look
up the Resource Record (RR) for www.example.com. and sends it as a response
directly to the user who sent the request. This process is visualized in Figure 2.2. It
is only the ANS nodes which have this information and therefore are able to make
the response

The RRs stored in the ANS follows a standard [Moc83] containing the following
six fields:

— NAME - the domain name of who this record are related to.
— TYPE - what type of record this is.

— CLASS — define the class of the record, usually IN for internet.
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Figure 2.2: DNS lookup process [VH12]

— TTL — an integer which says how long the record should be cached by the
server receiving the response. If this field is 0 should the RR only be used in
this transaction and not be cached.

— RDLENGTH - Specifies the length of the payload in number of octets.

— RDATA - the payload of the record. The format and length varies depending
on the TYPE and CLASS of the RR.

The TYPE of a RR has many different uses and therefore different restrictions, which
makes some of them easier and better to exploit. The A and the AAAA TYPE are
domain names to IP-address RRs, ipv4 and ipv6 respectively. They are the far most
used RR TYPE as they constitute 63-73% of regular DNS traffic [RDSC*12]. An A
RR has strict rules for what the RDATA can contain, this is also true for an AAAA
RR. The CNAME RR is used to correct the domain name if entered a little wrong,
e.g. www usually is not a part of the domain name. A request sent for www.ntnu.no
receives both a CNAME response and an A response. This is seen in Figure 2.3. CNAME
responses constitutes 20-30% of regular DNS traffic [RDSC*12]. The RDATA field has
some more possibilities in a CNAME response compared to an A and AAAA. 1-2% of
regular DNS traffic is generated by TXT RRs [RDSC*12]. This type of RR is used
to store descriptive text on an ANS [Moc87a]. The RDATA field is therefore very
limitless and can contain character strings. A NULL RR was created as a place holder
for experimental extensions [Moc87a]. The RDATA of this type of RR can contain
anything. It is still marked by Internet Assigned Numbers Authority (IANA) as
experimental [ian].

The Time to live (TTL) field is an important field both for regular DNS use and for
the tunnels. With the numbers of users on the internet, sites has multiple servers
at different IP-addresses. Setting the TTL field to a low integer forces the users to
request a new RR more often making it easier to load balance between the servers.
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;3 QUESTION SECTION:
swww .ntnu.no.

;1 ANSWER SECTION:
wew . ntnu.no. 60 CNAME  semper26.itea.ntnu.no.
semper26.itea.ntnu.no. 467 A 129.241.56.116

Figure 2.3: Response when running the command dig www.ntnu.no

With that in mind the TTL should not be too low forcing the user to do a DNS
lookup for every request as that would overload the ANS.

2.2 DNS Tunneling

DNS tunneling started out as a tool to exploit pay-for-service networks at hotels
and cafés. It was set up to provide IP-over-DNS which function similar to a Virtual
Private Network (VPN). DNS lookup was not a part of the paid service so when a
client just sent DNS requests would it be able to access the internet without paying.
The user had to set up an ANS with IP-over-DNS software or use a service with
ready servers. It is required to control a real domain and have a server with static
public IP to set up DNS tunnel server [iod].

DNS tunneling has later been used to perform data exfiltration and C&C attacks,
making the attack harder to spot. By using a DNS tunnel for a C&C attack the
victim’s computer has to send out DNS requests regularly since a DNS response, which
would contain the commands, can not be sent to a client without a corresponding
request. This creates a large amount of traffic which makes a DNS tunnel more
visible. It is therefore one of the downfalls of a DNS tunnel.

The way a tunnel works is that a client computer sends a DNS request of a controlled
domain e.g. GET.vg.no.evilcorp.com. With the hierarchy of the system and how a
DNS lookup is performed will this request always reach the same ANS. The ANS of
evilcorp.com has DNS tunneling software installed, so it will understand that all the
labels to the left of evilcorp.com are a command. It will in this example find the web
page of vg.no and send as much of the page as possible in the RDATA field of the
response. The client then sends a new request GET.part2.vg.no.evilcorp.com and the
response contains a new part of the web page. This goes on until the whole page is
downloaded by the client. The requests and responses are hashed so it is not possible
to know exactly what the requests and responses sent are. The difference between a
regular and malicious can be seen in Figure 2.4, where Figure 2.4b and Figure 2.4d
are malicious request and response respectively and Figure 2.4a and Figure 2.4c are
regular request and response respectively.

The TYPE of a RR has some important properties based on their regular use which
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Transaction ID: @8x21cl
» Flags: 0x0100 Standard query
Questions: 1
Answer RRs: @
Authority RRs: @
Additional RRs: @
~ Queries

Transaction ID: @x31fe
» Flags: ©x0100 Standard query
Questions: 1
Answer RRs: ©
Authority RRs: @
Additional RRs: ©

'E“f“:ns_ O — ~ 839D2663851188269-50067-1-e.tg74.na2.in: type NULL, class IN
ulalls BT Ly Name: 839D2663851188269-50067-1-€.tg74.na2.in
Name: vg.no

Type: NULL (Null resource record)

Type: A (Host address) Class: IN (8x@001)

Class: IN (6x0001)

(a) Regular DNS request (b) Malicious DNS request
[Time: ©.812157000 seconds]
Transaction ID: 0x3lfe
» Flags: 0x8180 Standard query response, No error

Questions: 1 [Time: ©.048738008 seconds]
Answer RRs: 2 Transaction ID: 8x21cl
Authority RRs: 3 » Flags: ©x8180 Standard query response, No error
Additional RRs: 6 Questions: 1
» Queries Answer RRs: 1
~ Answviers Authority RRs: 1
wvg.no: type A, class IN, addr 195.88.55.16 Additional RRs: 1
Name: vg.no ~ Queries
Type: A (Host address) ~ 039D2663851188269-50067-1-e.tg74.na2.in: type NULL, class IN
Class: IN (0x0001) Name: ©39D2663851188269-50067-1-e.tg74.na2.in
Time to live: 9 minutes, 45 seconds Type: NULL (Null resource record)
Data length: 4 Class: IN (0x0e01)
Addr: 195.88.55.16 (195.88.55.16) ~ Answers
wvg.no: type A, class IN, addr 195.88.54.16 ~ 039D2663851188269-50067-1-e.tg74.na2.in: type NULL, class IN
Name: vg.no Mame: ©39D2663851188269-50067-1-e.tg74.na2.in
Type: A (Host address) Type: NULL (Null resource record)
Class: IN (0x0001) Class: IN (0x00081)
Time to live: 9 minutes, 45 seconds Time to live: © seconds
Data length: 4 Data length: 7
Addr: 195.88.54.16 (195.88.54.16) Data
» Authoritative nameservers b Authoritative nameservers
» Additional records » Additional records
(c¢) Regular DNS response (d) Malicious DNS response

Figure 2.4: Screen dump from Whireshark of regular and malicious DNS packets

makes some of them suitable for DNS tunneling and others impossible to use. The
RDATA field of an A type RR has to contain an ordinary 32 bit internet address only
using 4 octets, while it has no restriction other than a maximum size of 65,535 octets
in a NULL type RR [Moc83]. This means it is possible to send a much larger message
containing every possible character as the payload in a NULL type RR, which makes
it much more suitable for DNS tunneling. The RDATA field in a TXT record type can
also hold any character string, with little limitation to size, which also makes this
suitable for malicious use.

Each domain name label has a limit of 63 characters, and the total length of a domain
name can not exceed 255 characters. This limits the amount of data a client can
send per request, making the stream of data up, from client to server, quite slow.
The downstream on the other hand can be faster as the payload can be quite large,
as mentioned earlier. The problem here is that normal DNS traffic is transferred
over User Datagram Protocol (UDP) on which it is a limit of 512 bytes per packet
[Far13]. DNS can use Transmission Control Protocol (TCP) on payloads larger than
512 bytes, but this will stand out and be easily detectable. Even so has speeds of
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110 KB/s with delays down to 150 ms been measured when tunneling TCP packets
in a DNS tunnels [vLCLO08]. At that speed were the DNS traffic up 2000% compared
to normal, which is an indication of how to detect the tunnels.

2.3 Mobile Network

In the mobile network goes all internet traffic through the Gateway GPRS Support
Node (GGSN). This is also where the DNS is resolved in the network. When a
connection is established is the packages tunnelled through the mobile network in
GPRS Tunnelling Protocol (GTP) tunnels from the Serving GPRS Support Node
(SGSN) to the GGSN before it is routed as regular internet traffic. In a mobile
network is it normal to have multiple GGSNs, but they are mainly for redundancy
not for traffic management [run]. All of the data traffic goes through one GGSN.
This means that the data traffic for millions of users go through one GGSN. Going
through all that traffic looking for a DNS tunnel is almost like looking for a needle
in a haystack. Even though DNS tunnels generate a large amount of traffic, will it

not be very noticeable since so few do it.

RAN

Figure 2.5: Cellular network structure for 3G

2.4 Related Work

Detecting DNS tunnels has been studied more and more since the early 2000s with
different results. No fully functioning software or algorithm is yet available. In 2012
Rasmussen said 'most enterprises are wide-open to real attacks via this little-known
vector’ and ’there is little to no protection against them on most networks’ [ras].
This is still a reality.
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There are studies comparing different applications and methods to detect the tunnels,
and the results seems to be quite similar. The main way to detect a DNS tunnel is
with payload analysis, DPI [Farl3, dnsa], which is slow and therefore not a great
solution on a large network. DNS tunneling software are also being updated and new
ones are created faster than the detection researches are able to find a good way to
detect them. When using DPI is it possible to to detect a tunnel by looking at the
type of record sent. Regular DNS traffic consist mostly of A, AAAA or CNAME,
while tunnels wants to get maximum out of the packets and therefore use NULL or
TXT [dnsa, dnsb] which allows larger and less structured RDATA.

The size of the a packet is also a way of detecting a tunnels as malicious use would
want to maximise the load and therefore extend the label. It will try to use up to 63
characters per domain name label and the total domain name as close to the limit of
255 characters [Far13, dnsa, dnsb]. Following this, it is recommended to do a DPI of
all packets where the domain name requests are longer than 52 characters [Farl3].
The DPI can be combined with character frequency analysis to detect tunnels [BG10].






Machine Learning

3.1 The Basics

When analysing large sets of data, machine learning is a great tool. It is algorithms
which are trained to find patterns in datasets and categorizes them. There exists
lots of different algorithms which serves different purposes and are specialized to
solve different problems. These algorithms are called classifiers and are the base
of a machine learning model. A model has to be trained and tested on datasets
before they can be put into use. This is done either with or without labeled data,
supervised or unsupervised respectively, indicating the correct category of the entry.
If the model passes the tests with acceptable results is it ready to be put into use, if
not must either the parameters of the model be changed or a different classifier has
to be used.

Machine learning is not the same as Artificial Intelligence (AI). Where AT continuously
learn over time, is a machine learning model set after it has been trained. If the
model has to be updated, must a new model be trained with new parameters or with
a new classifier algorithm.

3.2 SciKit-Learn

SciKit-Learn is a library for Python which contains functions to create machine
learning classifiers and support for training and testing them. It contains a large
selection of classifier models, where only the initial parameters have to be set. The
library also contains functions to measure how well the models work. With the
preference of coding in Python and some research, was this library chosen for this
study. Python is not the fastest language when compiled, but for this study the time
to run a test was not an issue. The main SciKit-learn modules used in this study
is the classifiers One-Class SVM (OCSVM) and K-means and the metrics class to
measure the results.

13
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3.2.1 Classifiers
One Class SVM

Support Vector Machine (SVM) is a term used for multiple methods of machine
learning. They are binary algorithms meaning their result is either in or out, used in
classification and outlier detection. When used in classification will it say that the
data is either in a category or not, and then traverse through the categories until
either one fit or there are no more. The training is performed on both positive and
negative examples, but the OCSVM extension made it possible to only use positive
data in the training process [MY02].

The OCSVM is of great use in novelty detection where training is performed on a
dataset only containing positive examples. It creates a boundary based on this data
and when receiving new data sees if these are within those boundaries when predicting.
In SciKit-learn OCSVM is implemented to run unsupervised, but with the knowledge
that the dataset for training contains only, or at least mostly, positive data. It labels
the data with 1 or -1 for positive (inlier) or negative (outlier) respectively [out].
The OCSVM requires a kernel when initialized, and SciKit-learn has implemented
four which are reay to be used. Those are linear, polynomial, Radial Basis Function
(RBF) and sigmoid. It is also possible to use custom kernels, but it is not used in
this study see [svm] for more information.

Algorithm 3.1 Algorithms used by the different kernels in OCSVM [svin]
Linear = (z,z’)
Polynomial = (y(z,z') +r)?
RBF = exp(—v|z —2'|?)
Sigmoid = (tanh(y{z,z') + 1))

In algorithm 3.1 are the algorithms used by the different kernels. The ~ is set by
the parameter gamma, the d by degree and the r by coef0 when the kernels are
initiated. Setting these for the kernel linear will have no effect. The default value
of degree is 3, coef0 is 0.0 and gamma is ’auto’, which means 1/n__features where
n_features is the number of features in the dataset. The gamma value marks the
area around a support vector which should be interpreted as part of the vector. If
the value is low will a large area around the vector be used, and a high almost no
extra area. This is a sensitive parameter and can have a large impact on the result.
The parameters degree and coefQ does not effect the results as much. One parameter
they all use are the nu parameter which indicates a upper bound on the percentage
of training errors and a lower bound of support vectors used. The default value is
0.5 which means that the model is finished training if it has used atleast 50% of the
support vectors and the training errors are under 50%.
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K-Means

K-means is an algorithm used to categorize data in n clusters. It works in three
steps:

1. Choose an initial centroid for each cluster.
2. Assign each sample to the nearest centroid.

3. Create new centroid with the value calculated from the mean of all samples to
their nearest centroid.

The algorithm loops between point 2 and 3 until the distance between the new and
the old centroid is lower than a given value. This value is given as a parameter called
tol, which default is 0.0001. The init parameter of K-means is how the initial
centroids is set. SciKit-learn has programmed two methods, k-means++ and random,
which could be used, or the user can enter an ndarray [kmeb]. The k-means++ is
an algorithm which tries to choose the the initial centroids in such a way that the
convergence is sped up. Random simply chooses n points from the data at random
to be the initial centroids, where n is the number of clusters. If a custom ndarray
is used must it contain n points which are in the same space as the data, meaning
it has to have the same number of features as the dataset used. With a class in
SciKit-learn called decomposition are there functions which could help create good
points for a K-means model to start. No matter how your point are initialized with
enough time will the algorithm converge, at least to a local minimum.

The distance from each point to their assigned centroid are called inertia, or within-
cluster sum-of-squares. Even though it is how the algorithm test it self to see how
good the result is, is the metric in itself not very good. It is known that zero is the
optimal value, but it is not normalized. In high-dimensional, multiple feature, spaces
is it almost impossible to get the inertia to zero [kmeal.

3.2.2 Metrics

The metrics class in SciKit-Learn contains many functions to evaluate classifiers.
Different classifiers are measured based on different criteria. For a outlier and
categorization classification are the normal way to determine the success of a classifier
by measuring precision, recall and F-score. The precision of a classifier determine
the percentage of the elements selected are true positives and the recall determines
the percentage of the relevant elements was selected. This is explained in Figure 3.1.

The F-score measurement is derived from both precision and recall and gives a result
which better represents the overall character of the classifier. The closer to 1 the
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Relevant elements

False negative True negative
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Figure 3.1: Venn diagram explaining precision and recall

F-score value is indicates that both precision and recall are high, and the classifier
is working well [VH12]. How to calculate the precision, the recall and F-score in
algorithm 3.2.

Algorithm 3.2 The algorithms for calculating precision, recall and F-score

.. ___True positives __ Selcted elements N Relevant elements
Precision = s cied elements Selected elements
recall = True positives __ Selected elements N Relevant elements
~ Relevant elements ~— Relevant elements

_ Precision x Recall
F=2x Precision + Recall




Experiment

4.1 Setup

To gather data for testing the machine learning models, was the plan to use OpenG-
GSN from Osmocom [ope]. This is an opensource software developed as a part of a
complete opensource mobile network. The distribution of OpenGGSN also contains
a sgsnemu program which is used to emulate a SGSN setting up a GTP tunnel to
the GGSN. This program has earlier been used to improve the security of the core
mobile network [Dim07] and in a man-in-the-middle attack setting up a fake Base
Transceiver Station (BTS) connected to the internet [PP11]. Using OpenGGSN
therefore seemed like good idea, but setting it up would turn out to be a real problem.
The software is poorly documented, and we were not able to get the connection
between the GGSN and the SGSN software to work properly. The best way to
set it up seemed to be as part of a complete mobile network setup [bscb], which
require hardware not available for this thesis. Other problems with this are that BTS
hardware is required to be registered to the public Groupe Spécial Mobile (GSM)
frequency spectrum. It also requires the use of special Subscriber Identity Module
(SIM) cards [bsca]. The plan of how to gather data had to be revised and a new
solution had to be found.

The new solution was to gather data using Oracle VirtualBox and Wireshark. Four
Virtual Machines (VMs) were created, one running Android 4.4 and the three others
running Ubuntu 14.04. On the Android VM was a DNS tunneling application called
Slow DNS installed. The DNS tunnel was established on the Android before browsing
the internet and the others browsed the internet regularly. The data was then
gathered by Wireshark capturing all the DNS traffic these VMs generated.

4.2 Reformatting

The DNS packets were filtered out in Wireshark and saved as a csv file, a snippet of
this can be seen in appendix A. Each line in the csv file contained the meta data for

17
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Time Source Destination Protocol LengthUp LengthDown Info Label

0.021829999999997796  192.168.1.60  192.168.1.1 ~ DNS 89 276 Standard query 0x0cf7 A safebrowsing-cache.google.com 1
Standard query Ox3a8c¢ NULL 149N2546851188122-246-
109-MHoQF3dk88nOvvCbaPdyeLvknsPKAAAAdgAbh.

0.5176109999999987 192.168.1.14  192.168.1.1  DNS 209 274 wWKADQAMgAOAAOAGQALAAWAGAAJAA0AFgAX -1
AAgABgAHABQAFQAEAAUAEgATA. AEAAgADAAS
ie.tgl6.m7q.in

Table 4.1: A line with regular DNS traffic and one with malicious traffic

one packet, with the features:

— No. — Packet number since the start of the capture.
— Time — Time elapsed since the capture started.

— Source — The source IP-address of the packet.

Destination — The destination IP-address of the packet.
— Protocol — What kind of protocol does the packet belong to.
— Length — The size of the packet.

— Info — A description of the content of the packet.

The raw data had to be reformatted to be used for the machine learning mod-
els. To do this a python script were used, see appendix C. It went through the
csv file to find the response to each request and creating a new csv file. The
features in the new file was Time, Source, Destination, Protocol, LengthUp,
LengthDown, Info, Label. The Time feature now was the time between the request
and response, not the time since the capture started. LengthUp was the size of the
request and LengthDown the size of the response. The feature Label was 1 or -1 for
regular or malicious packet respectively. Table 4.1 shows how two lines of the new
csv file looks like, one line with regular DNS traffic and one with malicious traffic.
Reformatting the files by combining the request and response packets reduced the
number of entries with 50%, making the new file easier to use and understand. A
snippet of the reformatted csv file is in appendix B.

Reducing the number of malicious DNS packets was necessary to be more represen-
tative of the real world. Without any reduction of the malicious packets, did they
accounted for over 50% of all the DNS traffic. This was in a small environment only
consisting of four users, while in a normal mobile network can it be millions of users
connected to one GGSN as mentioned in section 2.3. Without reducing would the
dataset represent that one in four mobile devices used DNS tunnels. The amount of
malicious packets were therefore reduced down to 7% of the data set. Reducing the
number of malicious packets lower would result in too few packets for the testing of
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the models. The total dataset consisted of 1,124 malicious data entries and 13,690
regular data entries, a total of 14,814.

To be able to test the models had the dataset to be divided into pairs of training and
testing sets. Models based on the OCSVM classifier should be trained on dataset
only containing "good" data, meaning data that should be categorized as inliers [out].
So for training and testing OCSVM a training set containing around 75% of the
"good" data was created and testing set containing the remaining 25% and all of the
malicious data. K-means on the other hand needs data of both categories to be able
to find a centroid for each of them. So for that model was a test set containing 75%
of the malicious and 75% of the good data created, and a training set containing the
remaining 25% of both types of data created.

4.3 Results

4.3.1 One-Class SVM

Testing the model is done by letting the model predict if the input is an inlier or
an outlier. The results of these predictions are compared to an array containing the
true label of each input with a function called classification_report from the
metrics class. This functions calculates the precision, recall and F-score for each
model. In this test is the precision how many percent of the predicted outliers was
True positives and the recall is how many percent of outliers were predicted as
outliers. The f1-score is a way of measuring a total based on the precision and
recall, mentioned in section 3.2.2. The test program is seen in appendix D. Previous
test has revealed that these models tends to work better on scaled data, so all the
tests were executed with scaled data. The data was scaled with a function scale
from the class preprocessing in SciKit-learn.

OCSVM has multiple kernels, and each kernel different parameters which affect the
results of the model. So the first test was executed with each kernel with all other
parameters at default. This was to decide which should be focused on. Each model
was trained on the same set of data, which contains 75% of the good data, and then
tested on the dataset containing all the malicious data and the remaining 25% of the
good data.

Table 4.2 shows the results of the test and it is clear to see that the poly kernel had
great results. More tests were executed changing the features used and the parameter
nu of the models. Only changing the nu is because this is the only parameter that
effects every kernel, see section 3.2.1. In appendix E is some of the results from these
tests. After these tests did the kernel RBF show the best results. The RBF got a total
f1-score of 0.93, with some small changes to the nu parameter. On the other hand
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precision recall fl-score support
Kernel = rbf Outlier 0.40 1.00  0.57 1124
Inlier 1.00 0.51 0.67 3394
avg / total | 0.85 0.63  0.65 4518
Kernel = sigmoid  Outlier 0.25 1.00  0.40 1124
Inlier 0.00 0.00  0.00 3394
avg / total | 0.06 0.25  0.10 4518
Kernel = linear Outlier 0.24 0.94 0.38 1124
Inlier 0.57 0.03  0.05 3394
avg / total | 0.49 025 0.14 4518
Kernel = poly Outlier 0.86 0.94 0.90 1124
Inlier 0.98 0.95 0.96 3394
avg / total | 0.95 0.95 0.95 4518

Table 4.2: Classification report for OCSVM with different kernels and default
parameters using the features LengthUp, and LengthDown from the dataset.

precision recall fl-score support
outliers 0.87 0.98 0.92 1124
inliers 0.99 0.95 097 3428
avg / total | 0.96 0.96  0.96 4552

Table 4.3: Classification report for OCSVM with the RBF kernel, nu=0.05 and
gamma=0.01. The features used was LengthUp and LengthDown

did the results for the poly kernel become worse when the parameter and features
were change. This lead to more tests on the RBF kernel, to see if it could surpass
the 95% fl-score that the poly kernel got with default parameters.

The parameters nu and gamma have the most effect on the results of the RBF kernel,
see section 3.2.1. More tests were executed, changing these parameters up and down.
Some of the test results are in appendix E. The final result was a fl-score of 96%
shown in table 4.3, with nu set to 0.05 and gamma set to 0.01. The recall on outliers
had suffered a little compared to some of the previous tests, but the precision of the
outliers was much higher than on any other test executed with the RBF kernel. This
shows how much the parameters has to say when configuring a machine learning
model.

The model with RBF kernel can be represented as a graph which is shown in
Figure 4.1. Each dot in the figure is a data entry. The white ones are from the
training set and green and red are from the test set, where green is inliers and red
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Figure 4.1: Graph presenting all data points used both in the training phase and
testing phase and the decision function the OCSVM created with RBF as kernel,
nu=0.05 and gamma=0.01

are outliers. Inside the red circle is the area the model defines as inlier area. This
figure shows that malicious data has some points near and inside the area, which
means that some malicious data has properties quite similar to regular DNS traffic.
There are also regular DNS traffic quite far out from the learned area, meaning there
are irregularities in regular traffic.

4.3.2 K-Means

The K-means classifier was also tested for which it is three main different initiation
methods, either k-means++, random or by using an ndarray, see section 3.2.1. The
ndarray used in the testing is the result of a Principal Component Analysis (PCA)
decomposition. That is a function which creates an array containing the most
significant singular vectors of the data [pca]. K-means needs to have elements of
both categories when training, so the data is not the same as for OCSVM although
it is from the same main dataset.

The result of the initial test, where the data used was scaled similar to the tests of
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precision recall fl-score support
init = ndarray Outlier 0.14 0.99 0.24 286
Inlier 1.00 0.48  0.65 3441
avg / total | 0.93 0.52 0.62 3727
init = k-means++  Outlier 0.14 0.99 0.25 286
Inlier 1.00 0.50  0.66 3441
avg / total | 0.93 0.53  0.63 3727
init = random Outlier 0.00 0.01 0.00 286
Inlier 0.86 0.50 0.64 3441
avg / total | 0.79 0.47  0.59 3727

Table 4.4: Classification report for K-means models with different init values, using
the features LengthUp, and LengthDown from the dataset.

OCSVM, is shown in table 4.4. All the initiation methods have a quite even total
fl-score, but looking at each line reveals a weakness in that measurement. With
init set to random is the model almost not able to predict any outlier, with recall
at 1% and both precision and fl-score at 0%.

More tests were executed and some of the results are located appendix E. The models
were trained and tested with unscaled data, different features and different number of
features. The best results had a fl-score total of 100%, but then one of the features
was the source IP-address and in this dataset only one source were used to produce
DNS tunneling data.

The models with k-means++ and random initiation has one more parameter which
is interesting to look at which is the n_init. This is a parameter which states how
many times the model shall set the initial centroids. If 10 the models runs 10 times
with different initial centroids for each time and then returns the model where the
inertia is lowest. With the ndarray is this not possible since a value for the initial
centroids are given and can not be change between initiations, the n_init is therefore
always 1. It drastically increased the time it took to test, but the changes did not
help the result.



Conclusion

5.1 Summary

The purpose of this study was to see if it was possible to make good detection program
for detection of DNS tunnels in mobile networks based on machine learning. The
data was suppose to be gathered from a GGSN using openGGSN. Unfortunately we
were not able to get the openGGSN to run properly. The data was instead gathered
using Oracle VirtualBox to run VMs in and Wireshark to capture the DNS traffic.
This data is comparable to data captured from a GGSN.

The results show that the OCSVM classifier is supreme compared to the K-means
for this problem. K-means is a cluster classifier and works best when the clusters
are even. It did manage to sort out the uneven clusters, but only when given the
data had clear indication. The problem is that the data it will be used on does not
have labels or is only sent by one user. There are cluster classifiers which are more
versatile and works better on uneven clusters. Some of those were tested in this
study, but they did not support the size of the dataset used. As this is a small scale
test, they would not be able to work in a real mobile network.

OCSVM gave great results with the poly kernel with default parameters, and with
the RBF kernel with both gamma and nu parameters changed. As the poly kernel
only seemed to work with the default parameters and with two features from the
dataset, does it seem to be quite unstable and might not be the best to use in a real
network. The RBF kernel had a recall of close to 100% on the outliers in nearly
all the tests, which means it was able to categorize all the outliers correct. This is
important for a detection program to be able to do. The weakness of the model was
the precision of outliers and recall of inliers, which means it produced some false
positives. By working with the initiation parameter of the model it was possible to
get the number of false positives down, which resulted in a good model to base an
implementation on.
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This study shows that it is possible to use machine learning to detect DNS tunnels.
The best and most versatile solution is the OCSVM classifying algorithm with the
RBF kernel which is a model used for novelty and outlier detection. The feature time
which was the time between request and response did not seem to do much as the
results with and without it was equal to each other. Length of the requested domain
name is directly connected to the the size of both request and response. The results
did not change when this feature was used or not. The features which gave the best
results was the size of the request and response, which therefore is recommended for
future studies.

5.2 Future Work

The results of this study has been good, and detecting DNS tunnels in the mobile
network will only become more important as the amount of devices connected
increases. Since this study was not able to use data from openGGSN, would a study
based on data gathered from a GGSN be interesting to look at. It will be of specific
interest to evaluate whether data is similar enough to simply copy the model set up
or if the parameters have to change or different features have to be used. The model
also needs to be tested on a larger dataset. This study was not able to produce a
large enough dataset to really represent a mobile network regarding the number of
users. To drop the percentage of malicious DNS traffic to a representing amount
would result in a too small amount of data to be able to run tests.

Further areas of studies is to use this model to create a program which flags traffic
assumed to be malicious and test it in live traffic. This could be done in small scale
initially, by setting up a private BTS. This should be followed up with a large scale
test where the program runs in a live mobile network.

It is also interesting to study if this model could be used in detecting DNS tunnels
in smaller networks as well, e.g. a company network.

The most important to study further is how this model will work on a larger dataset.
The dataset used in this study contained only 14814 entries, which is a bit small.
Specifically when representing a mobile network where the number of users are in
the millions, and the number of malicious users are only in the hundreds.
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[N

Original csv file

"No.","Time"," Source"," Destination"," Protocol","Length","

ll1"

ll2||

ll3||

ll4||

115"

ll6"

n 7"

Info"

,"0.000000000","192.168.1.1","192.168.1.14" ,"DNS" ,"164","
Standard query response Oxee9f NULL 039D2546851188122
—52087—1—e.tgl6.nf5.in"
,"0.052876000","192.168.1.1","192.168.1.14" ,"DNS","365","
Standard query response OxeaOe NULL 156N2546851188122
—191-116—MImis7wFip533GTGFqPSt809SJuQM6AAAAPWA .
AAAD6RQAANEnIQABABmpZrBedTqzZEGSV7gG78dIRNG7VpJ2AEAHJ90s
AAAE. BCAo0ABIIj3NOTTgieie. tgl6 .po0.in"
,"0.054648000","192.168.1.14","192.168.1.1" ,"DNS" ,"214","
Standard query 0x4861 NULL 154N2546851188122—194—114—
MAQEEXmefdhsgs4msVILOJKHTWOTAAAAQgAAA .
AD6RQAANEnKQABABmpXrBedTqzZEGSV7gG78d9RIWTVpJ2AEAHIIMwA
AAEBC. AoABhph3N(0TTgieie. tgl6.qv4.in"
,"0.062105000","192.168.1.14","192.168.1.1" ,"DNS" ,"99" "
Standard query Oxdaa7 NULL 039D2546851188122—52088—1—c¢.
tgl6.gbh.in"

,"0.070010000","192.168.1.1","192.168.1.14" ,"DNS" ,"242" "
Standard query response 0xc889 NULL 117N2546851188122
—193—79—MIRD67x1lksXPs3bJnT2Y Lipt2wlk2AAAAQQADh .

soF AwQBBAIEAwMBAwIDAwWIBAgICAwEBM3QAAAieie. tgl16.11v.in"
,"0.093659000","192.168.1.1","192.168.1.14" ,"DNS","279" "
Standard query response 0x4861 NULL 154N2546851188122
—194—114—MAgEEXmefdhsq54msVI1LOJKHTWOTAAAAQgAAA .
AD6RQAANEnKQABABmpXrBedTqzZEGSV7gG78d9RIWTVpJ2AEAHIIMwA
AAEBC. AoABhph3N(0TTgieie. tgl6.qv4.in"
,"0.102736000","192.168.1.1","192.168.1.14" ,"DNS" ,"164","
Standard query response Oxdaa7 NULL 039D2546851188122
—52088—1—e.tgl6.g6h.in"

27




28 A. ORIGINAL CSV FILE

"8","0.138089000","192.168.1.14","192.168.1.1" ,"DNS" ,"176","
Standard query 0x4d88 NULL 116N2546851188122—196—78—
MAYouN36sEoPIm180Vm6dvKSfArSAAAARAAbhs . 4
FAwQBBAIEAwMBAwWIDAwIBAgICAWEBM3QAAAieie. tg16 .mm4. in "

"9" "0.162943000","192.168.1.14","192.168.1.1" ,"DNS","99" "
Standard query 0xb452 NULL 039D2546851188122—52089—1—ce.
tgl6.06x.1in"

"10","0.176664000","192.168.1.1","192.168.1.14" ,"DNS
","241" " Standard query response 0x4d88 NULL 116
N2546851188122—196—78—
MAYouN36sEoPIm180Vm6dvKSfAr8SAAAARAAbhs . 4
FAwQBBAIEAwWMBAwWIDAwWIBAgICAwEBM3QAAAieie. tg16 .mm4. in "

"11","0.201363000","192.168.1.1","192.168.1.14" ,"DNS
","164" " Standard query response 0xb452 NULL 039
D2546851188122—-52089—1—e . tgl6.06x.in"

50 "12","0.264901000","192.168.1.14","192.168.1.1" ,"DNS" ,"99" "

Standard query 0xb23a NULL 039D2546851188122—52090—1—e .
tgl6.8uy.in"
"13","0.303419000","192.168.1.1","192.168.1.14" ,"DNS
""164" " Standard query response 0xb23a NULL 039
D2546851188122—-52090—1—¢.tgl6.8uy.in"
"14","0.365518000","192.168.1.14","192.168.1.1" ,"DNS" ,"99" '
Standard query 0x777e NULL 039D2546851188122—52091—1—e.
tgl6.z84 .in"
"15",'0.404028000","192.168.1.1","192.168.1.14" ,"DNS
","164" " Standard query response 0x777e NULL 039
D2546851188122—-52091—1—e.tgl6.2z84.in"
"16","0.465739000","192.168.1.14","192.168.1.1" ,"DNS","99" '
Standard query 0xdb98 NULL 039D2546851188122—52092—1—e.
tg16.88j.in"
"17","0.473949000","192.168.1.14","192.168.1.1" ,"DNS
"U"177" " Standard query 0x0eOd NULL 117N2546851188122
—198—79—MMXStyCGLvtxKdj5juASaRoZiiuVaAAAARgADh .
tIFAwQBBAIEAwMBAwIDAwWIBAgICAWEBM3QAAAieie. tg16 . g6h . in"
"18",'0.504310000","192.168.1.1","192.168.1.14" ,"DNS
","164" ,"Standard query response 0xdb98 NULL 039
D2546851188122—-52092—1—¢.tgl6.88j.in"
"19","0.512515000","192.168.1.1","192.168.1.14" ,"DNS
""242" "Standard query response 0x0e0d NULL 117
N2546851188122 —198—79—
MMXStyCGLvtxKdj5juASaRoZiiuVaAAAARgAbh .




29

tIFAwWQBBAIEAwMBAWIDAwIBAgICAWEBM3QAAAieie. tgl6 . g6h . in"
"20","0.566344000","192.168.1.14","192.168.1.1" ,"DNS" ,"99" "
Standard query 0x2288 NULL 039D2546851188122—52093—1—c¢.
tgl6.bn3.in"
"21","0.604844000","192.168.1.1","192.168.1.14" ,"DNS
""164" " Standard query response 0x2288 NULL 039
D2546851188122—-52093—1—e.tgl6.bn3.in"
"22"."0.678283000","192.168.1.14","192.168.1.1" ,"DNS","99" '
Standard query 0xf902 NULL 039D2546851188122—52094—1—e.
tgl6.qv4.in"
"23","0.716718000","192.168.1.1","192.168.1.14" ,"DNS
","164" )" Standard query response 0xf902 NULL 039
D2546851188122—-52094—1—e.tgl6.qv4.in"
"24" "0.765526000","192.168.1.14","192.168.1.1" ,"DNS" ,"75" "
Standard query Oxbc4c A mail.google.com"

1 "25" "0.789699000","192.168.1.14" ,"192.168.1.1" ,"DNS","99" ,"

Standard query 0x3a7a NULL 039D2546851188122—52095—1—e.

tgl6.na2.in"
"26","0.799816000","192.168.1.1","192.168.1.14" ,"DNS

""254" "Standard query response Oxbcdc CNAME googlemail

.1.google.com A 216.58.209.101"
"31","0.828771000","192.168.1.1","192.168.1.14" ,"DNS

","164" )" Standard query response 0x3a7a NULL 039

D2546851188122—-52095—1—e.tgl6.na2.in"
"46","0.901398000","192.168.1.14","192.168.1.1" ,"DNS" ,"99" "

Standard query Oxded7 NULL 039D2546851188122—52096—1—e.

tgl6 .mmd. in"
"47"."0.939638000","192.168.1.1","192.168.1.14" ,"DNS

","164" " Standard query response Oxded7 NULL 039

D2546851188122—-52096—1—e . tgl6 .mm4. in"
"48","1.012849000","192.168.1.14","192.168.1.1" ,"DNS" ,"99" "

Standard query 0x9b25 NULL 039D2546851188122—52097—1—¢.

tgl6.nf5.in"
"49","1.051220000","192.168.1.1","192.168.1.14" ,"DNS

","164" " Standard query response 0x9b25 NULL 039

D2546851188122—-52097—1—e . tgl6 .nf5.in"

3 "60","1.124293000","192.168.1.14","192.168.1.1" ,"DNS" ,"99","

Standard query 0x6lcd NULL 039D2546851188122—52098—1—c¢.

tgl6.gbh.in"
"61","1.141586000","192.168.1.14","192.168.1.1","DNS

","178" ,"Standard query Ox6efe NULL 118N2546851188122




30 A. ORIGINAL CSV FILE

—200—80—MGMqCPzHzH3MisoaUCldDiisXAusxaAAAASAAD.
htYFAwQBBAIEAwWMBAwIDAwIBAgICAwEBM3QAA Aieie. tg16 .8uy. in"

50 "63","1.162566000" ,"192.168.1.1","192.168.1.14" ,"DNS

","164" )" Standard query response 0x6lcd NULL 039
D2546851188122—-52098—1—e . tgl6.g6h.in"
"64","1.179858000","192.168.1.1","192.168.1.14" ,"DNS
","243" )" Standard query response Ox6efe NULL 118
N2546851188122 —200—80—
MGMqCPzHzH3MisoaUCldDiisXAusxaAAAASAAD.
htYFAwQBBAIEAwMBAwWIDAwIBAgICAwWEBM3QAAAieie. tg16 .8 uy . in"
"65","1.235769000","192.168.1.14","192.168.1.1" ,"DNS","99","
Standard query 0x82b5 NULL 039D2546851188122—52099—1—¢.
tgl6.06x.1in"

appendixCSV/Unformatted.csv




N

Reformatted csv file

Time, Source , Destination , Protocol ,LengthUp , LengthDown , Info ,
Label
0.039723000000000175,192.168.1.14,192.168.1.1,DNS,99,164 ,
Standard query 0x82b5 NULL 039D2546851188122—52099—1—e.
tgl6.06x.in ,1
0.6289750000000003,192.168.1.14,192.168.1.1,DNS,99,164
Standard query Oxeade NULL 039D2546851188122—52105—1—e.
tgl6 .mm4. in ,1
0.19516800000000023,192.168.1.14,192.168.1.1,DNS,99,164
Standard query O0x0Oac4 NULL 039D2546851188122—52109—1—ce.
tgl6.8uy.in,1
0.03853699999999982,192.168.1.14,192.168.1.1,DNS,99,164
Standard query 0x1891 NULL 039D2546851188122—-52113—1—e.
tgl6.na2.in,1
0.04226600000000058,192.168.1.14,192.168.1.1,DNS,99,164 ,
Standard query 0xdd58 NULL 039D2546851188122—52129—1—e.
tgl6.2z84 .in,1
0.03849400000000003,192.168.1.14,192.168.1.1,DNS,99,164
Standard query 0Ox4cOa NULL 039D2546851188122—52136—1—c¢.
tgl6.gbh.in ,1
0.04511599999999927,192.168.1.14,192.168.1.1,DNS,176,241 ,
Standard query Oxdlc2 NULL 116N2546851188122—208—78—
MFaWhRUf5x00Q4W4gjin5YulOu6h1AAAAUAADt . 4
FAwQBBAIEAwMBAwWIDAwWIBAgICAWEBM3QAAAieie. tg16 . jk0 .in ,1
0.15343900000000055,192.168.1.14,192.168.1.1,DNS,99,164 ,
Standard query Oxaf46 NULL 039D2546851188122—52147—1—e.
tgl6.06x.in,1
0.10595200000000027,192.168.1.60,192.168.1.1 ,DNS,76,290,
Standard query 0xb0d0 A start.ubuntu.com,0

31
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32 B. REFORMATTED CSV FILE

0.06520400000000137,192.168.1.14,192.168.1.1 ,DNS,99,164,

Standard query 0x609e NULL 039D2546851188122—52226—1—e.
tgl6.nf5.in 1

.07212200000000024,192.168.1.60,192.168.1.1 ,DNS,75,136,

Standard query 0xb947 AAAA help.ubuntu.com,0

.10674400000000261,192.168.1.60,192.168.1.1,DNS,74,135,

Standard query Oxcc73 AAAA www.ubuntu.com,0

.03871700000000189,192.168.1.14,192.168.1.1,DNS,99,164,

Standard query Oxdeb5 NULL 039D2546851188122—52255—1—e.
tgl6.gbh.in 1

.181477000000001,192.168.1.14,192.168.1.1,DNS,99,164 ,

Standard query Ox4aea NULL 039D2546851188122 —52259—1—c.
tg16.88j .in,1

.0046719999999993,192.168.1.14,192.168.1.1,DNS,99,164,

Standard query 0x472e NULL 039D2546851188122—52261—1—e.
tgl6.qv4d.in,1

.02504199999999912,192.168.1.60,192.168.1.1 ,DNS,89,288,

Standard query 0x0107 AAAA safebrowsing—cache.google.com
,0

.5029949999999985,192.168.1.60,192.168.1.1,DNS,92,216,

Standard query 0x9al9 AAAA tiles —cloudfront.cdn.mozilla.
net ,0

.7623779999999982,192.168.1.14,192.168.1.1,DNS,99,164 ,

Standard query 0x520c NULL 039D2546851188122—52281—1—¢.
tgl6.na2.in,1

.6643119999999989,192.168.1.60,192.168.1.1 ,DNS,89 ,288,

Standard query 0x5340 AAAA safebrowsing—cache.google.com
,0

.03858100000000064,192.168.1.14,192.168.1.1,DNS,99,164

Standard query 0x4375 NULL 039D2546851188122—52290—1—ce.
tgl6.na2.in,1

.4454049999999974,192.168.1.60,192.168.1.1 ,DNS,65,302,

Standard query 0x7d48 A vg.no,0

.2326769999999989,192.168.1.60,192.168.1.1 ,DNS,83,535,

Standard query 0xb2c6 A self—repair.mozilla.org 0

.04418099999999825,192.168.1.14,192.168.1.1 ,DNS,99,164 ,

Standard query 0x5546 NULL 039D2546851188122—52314—1—e.
tgl6.nf5.in 1

.04268599999999978 ,192.168.1.14,192.168.1.1 ,DNS,225,290,

Standard query Oxf7aa NULL 165N2546851188122—267—125—
MPisaTIis47isxrkWipyJcWipyRiiIMfCXAAAA .




.03876799999999747,192.168.1.14,192.168.1.1 ,DNS,212,277,

.3299039999999991,192.168.1.60,192.168.1.1,DNS,87,417,
.3512919999999973,192.168.1.60,192.168.1.1,DNS,87,205,
.03485900000000086,192.168.1.60,192.168.1.1 ,DNS,74,309,
.11150499999999752,192.168.1.60,192.168.1.1 ,DNS,74,267,
.15580900000000142,192.168.1.60,192.168.1.1,DNS,69,302,
.18039399999999972,192.168.1.60,192.168.1.1 ,DNS,72,305,
.20447300000000013,192.168.1.60,192.168.1.1,DNS,68,315,
.20224599999999882,192.168.1.60,192.168.1.1 ,DNS,75,296 ,
.8581210000000006,192.168.1.60,192.168.1.1,DNS,72,186,
7742599999999982,192.168.1.60,192.168.1.1,DNS,76,138,

.28958199999999934,192.168.1.14,192.168.1.1 ,DNS,99,164,

33

AiiwAAAAD6RQAANND3QABABIiHIrBedTpBM7ILULgBQOwipnfbpHY UGAEA
.istfBAAAEBCA0ABnfoXViiGRwieie. tgl6.7vv.in ,1

Standard query Oxd5bc NULL 152N2546851188122—279—112—
MPLiiwqer31FJLk4dHFVWGaD1locoQZAAAAlwAD.

HJ

hwlveG1lsO3EIMC45LGItY WdIL3d1YnAsKii8qO3EIMC44DQpVc2VyLUFnZ W5

.00iiBNb3ppbGwie. tgl6.vb0.in ,1

Standard query Oxbcc9 A shavar.services.mozilla.com,0
Standard query 0x04b8 AAAA shavar.services.mozilla.com,0
Standard query 0x21f2 A acdn.adnxs.com,0

Standard query 0x4536 A pixel.glimr.io,0

Standard query Ox8baa AAAA api.vg.no,0

Standard query 0x0Odab AAAA static.vg.no,0

Standard query 0x2d23 AAAA 1.vgc.no,0

Standard query 0x83a4 A click.vgnett.no,0

Standard query 0Oxc70e AAAA ib.adnxs.com,0

Standard query 0x62e7 AAAA logcl89.xiti.com,0

Standard query Oxffll NULL 039D2546851188122—52392—1—e¢.
tgl6.2z84 .in,1

appendixCSV /Formatted.csv






Reformatting program

import csv
import numpy as np

def openfile(filename):
all = []
containsPacketNumber = False
with open(filename, ’rb’) as readfile:
spamreader = csv.reader (readfile , delimiter=",",
quotechar="\"")
for line in spamreader:
if line[0] = "No.":
containsPacketNumber = True
if containsPacketNumber = True:
line .pop (0)
if line[3] = "DNS":
all .append(line)
else:
if line[3] = '"DNS":
all .append(line)
return all

;| def reformatCsv (filename):

Reformat the c¢sv file by combining the query and the
response
and finding the time between them.

all = openfile (filename)

35




36 C. REFORMATTING PROGRAM

L

29 querylD =
30 counter = 0

31 with open(’csv/reformatDNS 3vm XL.csv’, ’'wb’) as
writefile:

32 spamwriter = csv.writer (writefile , delimiter=",",
quotechar="\"")

for line in all:

34 if ".14" in line[1l] or ".58" in line[l] or ".59"
in line[1] or ".60" in line[1]:

35 info = line [5]

36 infoArr = info.split ()

37 queryID = infoArr [2]

38 for line2 in all[counter:]:

39 if queryID in line2[5] and line[l] =
line2 [2]:

40 line [0] = float (line2 [0]) — float (
line [0])

11 line.insert (5, line2[4])

12 if ".14" in line[1] and "NULL" not
in line[—1]:

43 pass

5 else:

16 spamwriter . writerow (line)
17 break

48 counter += 1

50 def reduceMalDns(filename):

52 Removes, at random, half of the malicious DNS requests
and responses .

53 Takes in a reformatted csv file

54 e

55 all = openfile (filename)

56 queryID = ""

57 counter = 0

58 with open(’csv/reformatDNS_3vm_small WithLables.csv’, °’

wb’) as writefile:
59 spamwriter = csv.writer (writefile , delimiter=",",
quotechar="\"")

60 for line in all:
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61 if ".14" in line[1]:

62 if np.random.randint (0,2) = 1:
63 spamwriter . writerow (line)
64 else:

65 pass

66 else:

67 spamwriter . writerow (line)

72| def addLabel (filename):

74 Adds a lable, 1, to the malicious DNS traffic, and 0 to
regular traffic

75 Takes in a reformatted csv file

76 e

77 all = openfile (filename)

78 with open(’csv/reformatDNS_3vm_ XL_WithLables.csv’, ’wb’)
as writefile:

79 spamwriter = csv.writer (writefile , delimiter=",",
quotechar="\"")

80 for line in all:

81 if ".14" in line[1]:

82 line .append(—1)

83 spamwriter . writerow (line)

84 else:

85 line .append (1)

86 spamwriter . writerow (line)

88

so| def trainAndTestSet (filename):

90 e

91 Divides the csv file in two, one training set and one
test set.

92 e

93 all = openfile (filename)

94 testarray = []

95 trainarray = []

96 for line in all:

97 if ".14" in line [1]:




98

99

100

101

102

105

106

107

108

109

110

111

113

38 C. REFORMATTING PROGRAM

if np.random.randint (0,4) =— 0:
testarray .append(line)

else:
trainarray .append(line)

else:

if np.random.randint (0, 4) = 0:
testarray .append(line)

else:
trainarray .append(line)

with open(’csv/

reformatDNS_3vm_ small WithLables__addedRegDNS_ testSet.csv’

, 'wb’) as writetest:
testwriter = csv.writer (writetest , delimiter=",",
quotechar="\"")
for line in testarray:
testwriter . writerow (line)

with open(’csv/

reformatDNS_ 3vm_ small WithLables_ addedRegDNS_ trainSet. csv

>, 'wb’) as writetrain:

trainwriter = csv.writer (writetrain , delimiter=","
quotechar="\"")
for line in trainarray:

trainwriter . writerow (line)

#addLabel (’csv /reformatDNS_ LargeV6.csv ')
#trainAndTestSet (’csv /reformatDNS_LargeV6_WithLables. csv )
#reformatCsv (’csv /3VM__SlowDNS_ xxlarge. csv )

2|#addLabel (’ ¢sv /reformatDNS_3vm_XL.csv ')

trainAndTestSet (’csv/
reformatDNS_3vm_ small WithLables_ addedRegDNS_ fix.csv )

)

/home/tk/PycharmProjects/MachineLearning/reduceDNS2.py




Prediction program

from sklearn import svm

import csv

from sklearn import metrics

import numpy as np

5| from sklearn.preprocessing import scale

with open(’csv/
reformatDNS_3vm_ small WithLables addedRegDNS_mallast.csv’
, 'rb’) as csvfile:

spamreader = csv.reader (csvfile ; delimiter=",",
quotechar="1")
temp = []
templabel = []
for row in spamreader:
one = float (row[4])
two = float (row[5])

temp . append ([one, two])
templabel .append (int (row[—1]))

7/ X2 = np.array (temp)
;| X = scale (X2)

outlier = []
inlier = []
temptrue = []
for i, line in enumerate(X):
if templabel[i] = 1:
outlier .append(line)
temptrue.append(—1)
else:

if np.random.randint (0, 4) = O0:

39




40 D. PREDICTION PROGRAM

outlier .append(line)

temptrue .append (1)
else:

inlier .append(line)

;) X_train = np.array(inlier)

5| X_test = np.array(outlier)

y_true = np.array (temptrue)

clf = svm.OneClassSVM ( kernel="rbf")

clf . fit (X__train)

y_pred_test = clf.predict (X__test)

print "Kernel = " + clf.kernel, metrics.
classification_report (y_true, y_pred_test)

s clf = svm.OneClassSVM (kernel="sigmoid")

clf . fit (X__train)

5| y_pred_test = clf.predict (X_test)

print "Kernel = " + clf.kernel, metrics.
classification_report (y_true, y_pred_test)

clf = svmm.OneClassSVM (kernel="linear")

clf . fit (X__train)

y_pred_test = clf.predict (X_test)

print "Kernel = " + clf.kernel, metrics.
classification_report (y_true, y_pred_test)

clf = svin.OneClassSVM (kernel="poly")

clf . fit (X__train)

y_pred_test = clf.predict (X _test)

print "Kernel = " + clf.kernel, metrics.
classification_report (y_true, y_pred_test)

/home/tk/PycharmProjects/MachineLearning/predictionV2.py




Test results

precision recall fl-score support
Kernel = rbf Outlier 0.40 1.00  0.57 1124
Inlier 1.00 0.51 0.67 3466
avg / total | 0.85 0.63  0.65 4590
Kernel = sigmoid  Outlier 0.25 1.00 0.40 1124
Inlier 0.00 0.00  0.00 3466
avg / total | 0.06 0.25  0.10 4590
Kernel = linear Outlier 0.41 0.20 0.27 1124
Inlier 0.77 0.91 0.84 3466
avg / total | 0.69 0.73  0.70 4590
Kernel = poly Outlier 0.03 0.07  0.05 1124
Inlier 0.55 037 0.44 3466
avg / total | 0.42 0.30  0.35 4590

Table E.1: Classification report for OCSVM with different kernels and default
parameters using the features LengthUp, LengthDown and Time from the dataset.
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precision recall fl-score support
Kernel = rbf Outlier 0.76 1.00 0.86 1124
Inlier 1.00 0.90  0.95 3466
avg / total | 0.94 092 093 4590
Kernel = sigmoid  Outlier 0.24 1.00 0.39 1124
Inlier 0.0 0.00  0.00 3466
avg / total | 0.06 0.24  0.10 4590
Kernel = linear Outlier 0.01 0.01 0.01 1124
Inlier 0.57 0.43  0.49 3466
avg / total | 0.43 0.33  0.37 4590
Kernel = poly Outlier 0.04 0.08 0.05 1124
Inlier 0.57 0.40 047 3466
avg / total | 0.44 032 0.37 4590

Table E.2: Classification report for OCSVM with different kernels and default
parameters except nu which was set to 0.1, using the features LengthUp, LengthDown
and Time from the dataset.

precision recall fl-score support
Kernel = rbf Outlier 0.77 1.00 0.87 1124
Inlier 1.00 0.90  0.95 3466
avg / total | 0.94 0.93 0.93 4590
Kernel = sigmoid  Outlier 0.25 1.00 0.40 1124
Inlier 0.0 0.00  0.00 3466
avg / total | 0.06 0.25  0.10 4590
Kernel = linear Outlier 0.32 1.00 0.48 1124
Inlier 1.00 0.30  0.46 3466
avg / total | 0.83 0.47  0.46 4590
Kernel = poly Outlier 0.24 0.94 0.38 1124
Inlier 0.62 0.03  0.06 3466
avg / total | 0.53 026 0.14 4590

Table E.3: Classification report for OCSVM with different kernels and default
parameters except nu which was set to 0.1, using the features LengthUp and Length-
Down from the dataset.
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precision recall fl-score support
gamma = 0.001 Outlier 0.77 1.00 0.87 1124
Inlier 1.00 0.90 0.95 3466
avg / total | 0.94 092 0.93 4590
gamma = 0.01  Outlier 0.77 1.00 0.87 1124
Inlier 1.00 0.90 0.95 3466
avg / total | 0.94 092 093 4590
gamma = 0.1 Outlier 0.76 1.00 0.87 1124
Inlier 1.00 0.90 0.95 3466
avg / total | 0.94 092 093 4590
gamma = 1 Outlier 0.74 1.00 0.85 1124
Inlier 1.00 0.88 0.94 3466
avg / total | 0.93 091 092 4590

Table E.4: Classification report for OCSVM with different kernels and default
parameters except nu which was set to 0.1 and gamma which change from 0.001 to 1,
using the features LengthUp and LengthDown from the dataset.

precision recall fl-score support
nu = 0.001 Outlier 0.93 0.06 0.11 1124
Inlier 0.76 1.00 0.86 3466
avg / total | 0.80 0.76  0.68 4590
nu = 0.01 Outlier 0.72 0.06 0.11 1124
Inlier 0.76 0.99 0.86 3466
avg / total | 0.75 0.76  0.67 4590
nu= 0.1 Outlier 0.78 1.00 0.8 1124
Inlier 1.00 0.91 0.95 3466
avg / total | 0.95 0.93 0.93 4590
nu=0.99  Outlier 0.25 1.00 0.40 1124
Inlier 1.00 0.01 0.02 3466
avg / total | 0.81 026 0.12 4590

Table E.5: Classification report for OCSVM with different kernels and default
parameters except nu which change from 0.001 to 0.99 and gamma which was set to
0.01, using the features LengthUp and LengthDown from the dataset.
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precision recall fl-score support
init = ndarray Outlier 0.00 0.01 0.00 286
Inlier 0.86 0.50  0.64 3441
avg / total | 0.93 0.52  0.62 3727
init = k-means++  Outlier 0.00 0.00 0.00 286
Inlier 0.18 0.02  0.03 3441
avg / total | 0.17 0.02 0.03 3727
init = random Outlier 0.00 0.00 0.00 286
Inlier 0.18 0.02  0.03 3441
avg / total | 0.17 0.02 0.03 3727

Table E.6: Classification report for K-means models with different init values,
using the features LengthUp, LengthDown, Time and length of domain name in Info
from the dataset. The data is scaled.

precision recall fl-score support
init = ndarray Outlier 0.13 0.96 0.22 286
Inlier 0.99 0.45  0.62 3441
avg / total | 0.93 0.49  0.59 3727
init = k-means++  Outlier 0.01 0.05 0.01 286
Inlier 0.87 0.52  0.65 3441
avg / total | 0.81 0.49  0.61 3727
init = random Outlier 0.13 0.95 0.23 286
Inlier 0.99 0.48  0.64 3441
avg / total | 0.93 0.51 0.61 3727

Table E.7: Classification report for K-means models with different init values,
using the features LengthUp, LengthDown, Time and length of domain name in Info
from the dataset. The data is not scaled.
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precision recall fl-score support
init = ndarray Outlier 0.12 0.94 0.22 286
Inlier 0.99 0.45 0.62 3441
avg / total | 0.92 0.49  0.59 3727
init = k-means++  Outlier 0.01 0.06 0.02 286
Inlier 0.87 0.53  0.66 3441
avg / total | 0.81 0.49  0.61 3727
init = random Outlier 0.13 0.94 0.23 286
Inlier 0.99 0.47  0.64 3441
avg / total | 0.92 0.51  0.61 3727

Table E.8: Classification report for K-means models with different init values,
using the features LengthDown, Time and length of domain name in Info from the
dataset. The data is not scaled.
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