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Preface

This master thesis constitutes the course TMA4905 Statistics for the Industrial Mathe-
matics study program at NTNU. The focus of this thesis is to study how surrogate based
optimisation can be used to identify favourable operation and maintenance strategies for
offshore wind farms. The thesis builds upon the specialisation project TMA4500 Indus-
triell Mathematics performed by the author the autumn of 2015. Parts of the project was
presented as a poster at the EERA deepwind conference in Trondheim in January 2016.

The work related to the thesis was performed by the author during the spring of 2016.
I would like to express my sincere gratitude to my supervisor Jo Eidsvik at NTNU, for
inspiring discussions and continuous feedback. I am very grateful to my co-supervisor
Iver Bakken Sperstad at Sintef Energy for introducing me to the offshore wind energy
industry and for providing helpful suggestions.
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Summary

Reducing the operation and maintenance (O&M) cost of offshore wind farms is essential
in order to reduce the associated cost of energy. Simulation models enable us to evaluate
the expected cost and the amount of electricity produced for different O&M strategies.
Such strategies are characterised by decision variables such as the available vessel fleet,
location of harbour, charting policies or others. The set of all possible strategies is a high
dimensional space, and since the simulations are time consuming we can only explore
small parts of it. We are restricted to find optimal solutions to sub problems, without
knowing if these local solutions are close to the global optimal solution.

In this thesis, a surrogate model based on Artificial Neural Networks are used to more ef-
ficiently explore the input space. The overall goal is to find O&M strategies that are close
to the global optimal solution. The model is fitted to the available input-output relations
generated by the simulation model. If the surrogate model is an accurate representation of
the simulation model, the choice of decision variables that optimizes the surrogate model
should give good suggestions to O&M strategies. The next input for simulation is per-
formed for strategies with high surrogate prediction and/or high related uncertainty. Such
balance between exploitation and exploration is used to aid the search towards the global
optimal solution.

The surrogate based optimisation approach is demonstrated on a relevant decision prob-
lem from the offshore wind industry. The identified strategies are most likely close to the
(unknown) global optimal strategy. They can be used to gain knowledge of which strate-
gies are favourable, and the surrogat model’s predictions and corresponding uncertainties
enables efficient comparison of different strategies.
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Sammendrag

Kostnader tilknyttet drift- og vedlikeholdsoperasjoner utgjør en stor andel av kostnadene
for offshore vindparker. Reduksjon av slike kostnader er essensielt for å gjøre energikilden
mer konkurransedyktig. Strategier for hvordan drift- og vedlikeholdsoperasjoner utføres
kan karakteriseres av beslutningvariabler som flåtesammensetning, lokasjon for havn, ru-
tiner for chartering av fartøy eller andre. Simuleringsmodeller kan benyttes for å evaluere
kostnad og mengde produsert energi for ulike strategier. Rommet av mulige strategier
er høydimensjonalt, og da hver enkelt simulering er relativt tidkrevende, er det ofte bare
mulig å utforske en liten del av det. Det er derfor vanskelig å vite om man har identifisert
den strategien som gir mest gunstig simuleringsresultat, eller om det finnes andre som er
vesentlig bedre

I denne oppgavene brukes en approksimasjon av simuleringsmodellen, kalt surrogatmod-
ell, for å mer effektivt utforske løsningsrommet. Det overordnede målet er å finne strate-
gier som maksimerer simuleringsmodellen. Surrogatmodellen benytter kunstige nevrale
nettverk og tidligere simuleringer for å beskrive sammenhengen mellom beslutningvari-
ablene og simuleringsresultat. Hvis surrogatmodellen representerer denne relasjon presist,
vil strategiene som maksimerer surrogatmodellen representere gode strategier. Den neste
simuleringen utføres for strategier der surrogatmodellen predikerer gunstig simuleringsre-
sultat eller høy grad av usikkerhet. Slik balanse mellom utnyttelse og utforskning blir
brukt til å styre søket etter den globalt beste strategien.

Den surrogatbaserte fremgangsmåten for optimering anvendes på et relevant beslutningsprob-
lem fra offshore vindkraft industrien. Strategiene som identifiseres er trolig omtrentlig
like gode som den (ukjente) optimale strategien. Disse kan gi kunnskap om hvilke strate-
gier som er gunstige, og surrogatmodellens prediksjoner med tilhørende usikkerhet kan
benyttes for effektiv sammenligning.
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Chapter 1
Introduction

Many problems and physical phenomena are difficult to analyse by physical experimenta-
tion. The experiments are either time consuming, costly, prohibited or restricted in other
ways. Facing such problems there are many advantages of utilising a simulation model,
also called computer code, see for example Banks (1998). In this project, the problem
of finding cost-effective operation and maintenance (O&M) strategies for offshore wind
farms is studied. The cost of energy for wind farms is often higher than alternative energy
sources. In order to decrease the cost of energy for a wind farm, the produced amount of
energy has to increase or the total life cycle cost must decrease. The O&M cost constitutes
about one third (Shafiee, 2015) of the overall cost, so reducing this cost is essential in order
to reduce the cost of energy.

Finding good O&M strategies is a complex problem: the strategies involve many de-
cisions that interact and develop over time. In addition, there are inherent uncertainties for
several aspects that affect the O&M strategies. Typically decision problems may be

• location of the wind farm

• fleet mix

• number of technicians stationed at a nearby harbour

From the mentioned examples it is obvious that the different decision problems are interre-
lated, e.g. a wind farm with rough weather may favor robust vessels, while O&M tasks on
a wind farm with calm weather may favour vessels with high speed. The optimal solution
to each sub decision problem could be found by introducing some criteria of optimality,
e.g. choose

• a location with calm climate, preferably nearby shore

• a fleet mix that ensures high availability, without exceeding a given budget

• a work force that ensures good utilisation of the fleet
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The optimality criteria may differ for each sub problem and for each stakeholder. In this
project, the focus is on the long-term goals of minimising the total O&M cost and max-
imising the produced amount of electricity.

Failures of different types tend to occur for the turbines at a wind farm. Such failures
may cause the turbines to stop, and some may require technicians assessing the turbine.
The fixed and variable cost for vessels that can transport personnel, or are used otherwise
to perform the maintenance tasks, represents one of the key challenges of reducing the
O&M cost.

There have been developed several simulation models for offshore wind farms. An
extensive review and comparison of some of them can be found in Hofmann (2011) and
Dinwoodie et al. (2015) respectively. In this project, the NOWIcob (Norwegian offshore
wind power life cycle cost and benefit model) simulation model is used. Each simulation
is characterised by a set of input parameters and variables that fully describe the wind farm
and all aspects of the O&M strategies.

Knowledge of the relation between input variables and output can be obtained by
performing simulations for different inputs. However, these simulations can be time-
consuming as well as having a high number of input variables. It is often possible to
explore only a subset of all possible configurations of input variables. In many cases, it
is of interest to identify inputs that (approximately) optimise the output without excessive
evaluations of the simulation model. This can be achieved by surrogate based optimisa-
tion. Such methodology utilise a simplified model of the simulation model, called sur-
rogate model, in the search for the global optimiser. The surrogate model can be used
to predict the output for different input. Based on the predictions, the next point(s) for
simulation is selected, and the information from these simulation are used to update the
surrogate model, and the process is repeated.

In this project, we study how a surrogate model based on artificial neural networks
(ANNs) can be used to optimise the output of a simulation model. The rationale for using
ANNs are their universal predictive power, they can be applied for different input and out-
put types and the seamless transition when adding or removing input or output variables.
The latter ability is practical when considering O&M strategies, since there are many pos-
sible decision problems that can be studied. Thus it is of interest that the surrogate model
can be used across a range of sub problems, instead of being specialised to solve a specific
type of problems.

Efficient surrogate model optimisation is sensitive to the balance between exploration
and exploitation when selecting the next input for simulation. In this project, common
criteria as probability of improvement, expected improvement and the upper confidence
bound are studied. The simulation model under consideration is independent of other sim-
ulations. Thus, in order to utilise parallel processing, we propose methods for selecting
several points between each update of the surrogate model. These points can be evalu-
ated simultaneously, and therefore reduce the overall time consumption used to identify
(approximate) optimisers of the simulation model.

An outline of the report is given in the following. In Chapter 2 ANNs and their us-
ability as surrogate model is studied. Concepts related to fitting ANNs are discussed in
sections 2.2 and 2.3. In Chapter 3 sequential methods for optimisation of the simulation
model is studied. These methods utilise the surrogate model and an infill function to se-

2



lect the next point(s) for simulation. Common infill functions requires a measure of the
uncertainty of the surrogate model, which is quantified by using aggregated bootstraping
(Bagging) introduced in Section 2.4. In section 3.4 methods for selecting several input
points simultaneously is proposed and demonstrated on a synthetic example. In Section
4.1 the NOWIcob simulation model is introduced, and a decision problem related to O&M
strategies is introduced in Section 4.2. The surrogate based optimisation method is tested
on three instances of this problem. The performance of the method and the identified op-
timal strategies is assessed in Section 5. In Chapter 6 discussion of the surrogate based
optimisation method’s performance and suggestions for further work is presented.
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Chapter 2
Artificial neural networks

This chapter will introduce surrogate models based on artificial neural networks (ANNs)
and related tools for fitting and validating these models. ANNs is a large class of models
that are inspired by biological neural networks. ANNs have been used within many ap-
plication for classification, forecasting or approximation of an unknown function. ANNs
used for image recognition, speech recognition, or other complex problems, may have hun-
dreds of millions of adjustable model parameters (LeCun et al., 2015). In this project, the
class of ANNs considered is limited to two layer feed forward neural networks (FFNN).
This architecture is among the simplest and most widely used, and such networks may fit
any continuous function arbitrarily well. See for example Cybenko (1989) for a proof.

ANNs have been utilised within a variety of applications, for example to forecast water
resource variables (flow, rainfall, pH, and more) for a variety of locations (Maier and
Dandy, 2000) and to predict the future behaviour (position, speed and course) of naval
vessels (Zissis et al., 2015). They have also been applied for recognition of handwritten
digits (Knerr et al., 1992) and steering autonomous vehicles (Pomerleau, 1989). Other
examples can be found in Hadsell et al. (2009); Mirowski et al. (2009); Bekirev et al.
(2015)

In section 2.1 a graphical representation of ANNs is presented, and the mathematical
relation between input x and output f (x;θ) for a two layer FFNN is explained. The back-
propagation (BP) algorithm for updating the model parameters θ is derived in section 2.2.
The process of determining the model parameters is referred to as training or fitting an
ANN.

Models based on the Gaussian Process (GP) are commonly used in surrogate based
optimisation, see for example Storlie et al. (2013); Gramacy and Lee (2009). The GP is
analytical tractable and gives a measure of prediction uncertainty, which may explain its
widespread use. The rationale for using ANNs is the seamless transition when adding
or removing input and output variables of different types. GP models with several out-
put variables may require cumbersome implementation and specification of covariance
structures, see for example Álvarez and Lawrence (2011); Osborne et al. (2008), whereas
ANNs can be fitted in a more automatic manner with well-studied procedures as the BP
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algorithm. For a thorough survey of other alternatives for surrogate models we refer to
Shan and Wang (2010).

The complexity and flexibility of an ANN depends on the network architecture. Since
the underlying functional relation f true (x) is unknown, the architecture should be flexible
enough to model a broad class of functions. However, a very flexible network may be
prone to overfitting. In Section 2.3, regularisation techniques to address this problem are
studied. The effect of such techniques and the choice of network architecture are studied
on synthetic data in section 2.3.4.

A surrogate model f(x) based on ANNs can be used to approximate f true(x). It is in
many cases interesting to assess the uncertainty of the predictions f(x). A method called
bagging, discussed in section 2.4, can be utilized to form more stable predictions f(x) and
quantify the model uncertainty. The uncertainty measure is useful when selecting the next
point(s) for simulation, and is therefore an essential aspect of the adaptive optimisation
process proposed in Chapter 3.

2.1 Underlying model
In this section, basic graph theory is used to formalise the graphical representation of
ANNs. The corresponding model equations are derived for the two layer FFNN. Notation
that are used frequently is defined in the following. Let

D = {
(
xi,yi

)
}ni=1 = {

(
xi, f true

(
xi
))
}ni=1 (2.1)

denote a set of n input-output realisations of the underlying function f true (x). It is as-
sumed that the input and output have P and K components, i.e. xi = (x1, . . . , xP )T and
yi = (y1, . . . , yK)T . Let f (x;θ) = (f1(x;θ), . . . , fK(x;θ)) denote the surrogate model
prediction for the F model parameters θ = (θ1, . . . , θF ). The shorthand notation f (x) is
used as well.

An ANN can be represented as a weighted directed graph with vertices and edges. The
vertices are connected by edges with weights that represent the strength of the connections.
The vertices are grouped into three types: input, computing or output vertices. The input
vertices represent the input x, and the information is passed and processed by the edges to
the computing vertices, until it reaches the output vertices f (x;θ).

Definition 2.1.1. (Architecture) Networks with the same architecture have the same di-
rected graph and vertex functions but possibly with different weights.

The direction of the edges describes the way the information is passed. The input
vertices has no incoming edges. The output layer represents the output f (x;θ) obtained
by presenting the network with an input x.

Definition 2.1.2. (Feed forward neural network) The architecture of a feed forward neural
network is defined by a directed acyclic graph and a choice of vertex functions.

For a directed acyclic graph, the computing vertices V may be grouped in different lay-
ers L0, . . . , LH+1. Layer L0 and LH+1 contains the input and output vertices respectively.
The layers are arranged such that the vertices contained in layer Li only have incoming
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Figure 2.1: Illustration of a two layer feedforward network.

edges from layers Lj where j < i. The layers {Li}; i = 1, . . . ,H are commonly referred
to as hidden layers since the values of the vertices in these layers are of no direct interest.
They are only used in the process of computing the output f (x;θ).

A special case of the FFNN is the multilayer perceptron (MLP). For such networks,
the edges to the vertices in Li come only from vertices in layer Li−1. The proceeding
results and discussion is related to MLP with one hidden layer. Some of the result may
be extended to more complex networks. See for example Fine et al. (1999) for a more
detailed discussion of ANNs and different architectures. Figure 2.1 shows a graphical
representation of the vertices and edges for the architecture under consideration.

The vertices z1, . . . , zQ in the hidden layer are commonly referred to as derived fea-
tures of the input x. A linear combination of the input is passed to each of the Q derived
features. At these computing vertices, the information from the inward edges is trans-
formed by function σ(·) called activation function. Thus, the q’th derived feature may be
written as

zq = σ(α0,q + αTq x), q = 1, . . . , Q, (2.2)

where the scalars α0,1, . . . , α0,Q and the vectors αTq = (αq,1, . . . , αq,P ) represent bias and
weight terms for the q’th linear transformation. These weights and biases are contained
in the set of model parameters θ = (θ1, . . . , θF ). The function σ(·) represents a possible
non-linear transformation of the linear combinations of the input.

Definition 2.1.3. (Sigmoid functions) A sigmoid function is a bounded differentiable real

7
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Figure 2.2: The sigmoid function σ(st) as a function of t for s = 1 (red), s = 0.5 (dotted blue)
and s = 10 (dotted yellow). For the latter value of s the sigmoid function is approximately the hard
limit function. The above figure is adopted from a similar illustration in Hastie et al. (2009).

function that is defined for all real input values and that has a positive derivative every-
where (Han and Moraga, 1995).

Sigmoid functions are commonly used as activation function in neural networks. These
functions may be recognised by their ”S-shaped” form. Examples of sigmoidal functions
and their properties may be found in Menon et al. (1996). A particularly popular sigmoidal
function is defined as

σ (t) =
1

1 + e−t
, (2.3)

and is displayed graphically in Figure 2.3. For very small arguments, the function σ() is
approximately linear, and for large input it approaches the hard limit function.

The derived features z = (z1, . . . , zQ)T , represented by the vertices in the hidden
layer, are connected to the output layer with edges. The k’th output can be expressed as

fk(x;θ) = gk(β0,k + βTk z), k = 1, . . . ,K, (2.4)

where the scalars β0,1, . . . , β0,K and the vectors βk = (βk,1, . . . , βk,Q)T represents bias
terms and linear transformations of the derived features z. These parameters are part of
the set of model parameters θ. The k’th output of the network can be expressed explicitly
in terms of the input x, the functions σ(), g1(), . . . , gK() and the model parameters θ.

In this section, it was assumed that the model parameters θ were known. However,
these parameters are seldom known a priori. In the proceeding section, a popular and effi-
cient procedure for updating the weights θ is derived for the particular network considered
in this section.
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Algorithm 1 Backpropagation algorithm

Obtain Dn = {
(
x1,y1

)
, . . . , (xn,yn)}

Initialise θ0

Iteration r = 0
repeat

Compute output f(xi;θr) for i = 1, . . . , N
Compute loss (error) L(θr)
Compute gain ∆θ

Update parameters θr+1 = θr + ∆θ

r = r + 1
until Stopping criterion met
return θr+1 . Model parameters

2.2 Backpropagation algorithm
The backpropagation algorithm (BP) is widely used to fit ANNs. In each iteration, the
algorithm uses a set of input and output relations D = {

(
xi,yi

)
}ni=1 to update the model

parameters θ. The updates depend on the choice of an error function and which numerical
optimisation method is used to minimise this function. In the following, a description
of central steps of the algorithm is provided. In section 2.2.1 and 2.2.2, two alternative
numerical optimisation methods are described.

Let L(D;θ) denote an loss (error) function that measures the correspondence between
the predictions and the observations in D for a set of model parameters θ. The predictions
f1

(
xi;θ

)
, . . . , fK

(
xi;θ

)
are obtained by propagating the input vector xi through the

network. The error is calculated by comparing the predictions with the observed output
yi,1, . . . , yi,K . A common choice is to use the squared distance between the predictions
and the observations as a measure of model fit. For a specific data sample pair

(
xi,yi

)
the

i’th squared loss is defined as

Li(D;θ) =
K∑
k=1

(
fk
(
xi;θ

)
− yi,k

)2
= l2i . (2.5)

Define the total error as the sum of the error for each data sample in D, i.e.

L (D;θ) =

n∑
i=1

Li(D;θ). (2.6)

For convenience, introduce the notation l = (l1, . . . , ln)
T . With this notation L(D;θ) can

be written compactly as
L (D;θ) = lT l. (2.7)

The BP procedure is summarised in Algorithm 1 . In each iteration, the model parameters
are updated based on the loss function L(D;θr) and the gain

∆θ = θr+1 − θr. (2.8)
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The gain is determined by using a numerical optimisation technique for minimisation of
the error function. The process of presenting the network with data samples, computing
the errors and gain, and adding the gain to the current model parameters are repeated
iteratively. For later use, we introduce the gradient ∇L (D;θ), where the j’th element is
defined as

∇L (D;θ)j =
∂L (D;θ)

∂θj
. (2.9)

Using the fact that L (D;θ) is a sum of squares, the j’th element of the gradient may be
written as

∂L (D;θ)

∂θj
=

n∑
i=1

∂l2i
∂θj

= 2

n∑
i=1

li
∂li
∂θj

, (2.10)

and the gradient can be expressed on matrix form as

∇L (D;θ) = 2JT l, (2.11)

where J is the Jacobian matrix with elements (i, j) defined as

Ji,j (θ) =
∂li
∂θj

. (2.12)

Different numerical numerical optimisation techniques can be used to determine the gain
∆θ = θr+1− θr in order to minimise the loss function L (D;θ). Two of the most widely
studied methods are introduced in the proceeding sections 2.2.1 and 2.2.2.

2.2.1 Gradient descent
By using a gradient descent method, the (r + 1) update may be written on the form

θr+1 = θr − γr∇L (D;θr) , (2.13)

where γr is the step size in the negative direction of the gradient∇L (D;θ). The rightmost
term in the above equation represent the gain ∆θ. By inserting for the gradient, from
Equation (2.11), the (r + 1) iteration is given by

θr+1 = θr − γr2J (θr)
T
l. (2.14)

The (r+1) iteration can be written on elementwise form, by using the definition of∇l (θr)
in Equation (2.9), i.e.

θr+1
j = θrj − 2γr

n∑
i=1

li
∂li
∂θj

. (2.15)

From Equation (2.15), it is clear that the j’th update contains the partial derivatives of
l1, . . . , ln with respect to θj . Recall from Equation (2.5) that

li =

K∑
k=1

fk
(
xi;θ

)
− yi,k, (2.16)

10



where the network output fk
(
xi;θ

)
for a MLP network with one hidden layer is given by

Equation (2.4). The partial derivatives of li with respect to the model parameters

θ = {θ1, . . . , θF } (2.17)
= {α0,1, . . . , α0,Q,α1, . . . ,αQ, β0,1, . . . , β0,K ,β1, . . . ,βK}, (2.18)

are derived in Hastie et al. (2009), and can can be inserted into Equation (2.15) in order
to obtain an explicit expression for the (r + 1) update of the j’ model parameter θj . The
focus of this thesis is more on the utilisation of ANNs. Different fitting procedures are
implemented in many software tools, hence the details of such procedures are omitted in
order to reduce the scope of the project.

Recall that the update equations were derived by calculating the derivatives of the
sum of the errors for each data sample in the data set D. This is often referred to batch
learning since a batch of data samples is considered between each update. An alternative
is to use only one sample pair (xi,yi) to estimate the sum of errors in Equation (2.6).
Thus, the computational requirements of computing the gradient descent update for θ in
Equation (2.13) may be reduced significantly if n is large. The resulting update formula is
often called stochastic gradient descent and may result in better estimates of θ. We refer
to LeCun et al. (2012) for a more in depth study of the advantages of batch and online
learning.

The derived update equations are based on a gradient (or steepest) descent method
for a non-linear least squares function L (D;θ). In the proceeding, a method that often
outperforms the steepest descent method, in terms of convergence speed, is discussed.

2.2.2 Levenberg-Marquardt
The Levenberg-Marquardt (LM) method combines the Gauss-Newton method and a damp-
ing factor. The Gauss-Newton method uses an approximation of the Hessian to approxi-
mate the Newton method. The two methods are described in the following, the derivations
are based on more detailed work that can be found in (Hagan et al., 2003, ch. 12). The
r+ 1’th iteration of Newtons method of minimising the loss (error) L (D;θ), with respect
to θ, has the form

θr+1 = θr +
[
∇2L (D;θ)

]−1∇L (D;θ) , (2.19)

where∇2L (D;θ) and∇L (D;θ) denotes the Hessian matrix and the gradient ofL (D;θ).
The (i, j)’th element of the Hessian matrix is defined as

∇2L (D;θ)i,j =
∂2L (D;θ)

∂θi∂θj
. (2.20)

It can be shown that the Hessian matrix of the sums of squared errors function L (D;θ) is

∇2L (D;θ) = 2J (θ)
T
J (θ) + 2

n∑
i=1

Li (D;θ)∇2Li (D;θ) . (2.21)

The Hessian matrix in Equation (2.21) involves second derivatives. The GN method avoids
the computation of these derivatives by assuming that the term

∑n
i=1 Li (D;θ)∇2Li (D;θ)

11



is small, i.e.
∇2L (D;θ) ≈ 2J (θ)

T
J (θ) . (2.22)

By inserting the gradient, Equation (2.11), and the approximated Hessian, Equation (2.22),
into the Newton iteration defined in Equation (2.19), the (r+ 1)’th iteration of the Gauss-
Newton method is

θr+1 = θr +
[
∇2L(θr)

]−1∇L(θr) (2.23)

= θr +
[
J (θr)

T
J (θr)

]−1

J (θr)
T
l (θr) . (2.24)

The matrix J (θ)
T
J (θ) may not be invertible. The LM method avoids this problem by

adding a term λrI to the approximated Hessian matrix. The parameter λr is commonly
referred to as a damping factor. Augmenting the approximated Hessian matrix in Equation
(2.23), the (r + 1)’th iteration of the LM method takes the form

θr+1 = θr +
[
J (θr)

T
J (θr) + λr

]−1

J (θr)
T
l (θr) . (2.25)

In this section, equations for computing the gain for the model parameters θr+1 were
derived for two different numerical optimisation methods. In the proceeding section, tech-
niques that may improve the generalisation ability of the network are presented.

2.3 Regularisation techniques
The number of model parameters θ is often large compared with the number of data
samples. Therefore, fitting an ANN by minimization of the loss L(D;θ) may lead to
a complex network which describes the noise in the dataset instead of the underlying func-
tion f true(x). Two techniques commonly referred to as early stopping and regularisa-
tion to address this problem is described in the following sections 2.3.1 and 2.3.2. These
techniques are illustrated by fitting ANNs, with and without early stopping and different
choices of regularisation parameters, to synthetic data. In Section 2.3.3 the Bayesian reg-
ularisation approach which enables objective determination of regularisation parameters
is introduced.

In order to ease the understanding, the different concepts are illustrated on a running
example. Let f true(x) be defined as

f true (x) =

{
sin
(
πx
5

)
+ 1

5 cos
(

4πx
5

)
, if 0 ≤ x ≤ 10

x
10 − 0.8, if 10 ≤ x ≤ 15,

(2.26)

and let Dn = {
(
xi, yi

)
}ni=1 denote a dataset of n samples where yi is a noisy observation

of f true(xi), as defined in Table 2.1. The function f true(xi) is shown in Figure 2.3 .

2.3.1 Early stopping
Let Dtr and Dva denote a partitioning of the original data samples D, with ntr and nva

unique data sample pairs respectively. The sets Dtr and Dva, often called training and
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Figure 2.3: The function f true(x) for the running example. A similar function was used by Higdon
(2002) and augmented in Gramacy and Lee (2009) with the linear region [10, 15]. This is used as a
running example.

Table 2.1: Definition of Dn, Dn
0 and Dgrid,n for denoting date samples {(x1, y1), . . . , (xb, yn)}

with different procedure of generating design points x1, . . . , xn and observations and y1, . . . , yn.
The data samples Dn and Dn

0 represent n observations of f true(xi) with and without noise re-
spectively, where xi is drawn uniformly from Ωx = [0, 15]. The data samples Dgrid,n denotes
noise-free observations of f true(xi) where x1, . . . , xn are defined as a regular grid on Ωx. The set
Dgrid,n is throughout this chapter used as a test set to measure the prediction accuracy of different
ANNs.

Data samples Design points Observations
Dn xi ∼ Unif(Ωx) yi = f true

(
xi
)

+ Zi ∼ Norm
(
0, 0.12

)
Dn

0 xi ∼ Unif(Ωx) yi = f true
(
xi
)

Dgrid,n xi = 0.1(i− 1) yi = f true
(
xi
)

13



Table 2.2: Explanation of training, validation and test set. The pairs of data samples D =
{
(
xi,yi

)
}ni=1 are divided randomly into Dtr , Dva and Dte.

Dataset Number of data
sample pairs

Purpose

Dtr ntr The training set Dtr is repeatedly used to update
the model parameters θ

Dva nva The validation set Dva is used to determine at
which iteration r the model f(x;θr) is adequate

Dte nte The test set Dte is used to assess the performance
of the fitted model on unseen data.

validation sets, can be utilised to fit and determine at which iteration the fitting process
should be terminated. In some cases, the data samples D are partitioned in an additional
test set Dte that can be used to evaluate the performance of the fitted network. This
partitioning of D and the role of each set is summarised in Table 2.2. The training set is
used to update the model parameters θ. The error on the validation set is computed for
each set of model parameters θr. Typically, both the training and validation error decreases
in the first few updates of the model parameters. However, at some point the validation
error may increase. This indicates that the updated parameters θr+1 begins to mimic the
training set rather than the underlying function. Thus, by recording the validation error and
weights in all iterations, a network with better generalisation abilities can be obtained by
selecting the set of model parameters θr with corresponding low validation errors rather
than low training error.

The effect of early stopping is shown in Figure 2.4. for an ANN fitted to the 100 noisy
observations D100. The error L (θr) for the training set Dtr decreases each epoch, while
the error calculated on the validation set increases for r > 3. The parameters θr with low
training error, r > 5, has high error on an independent test set. Thus, a network with better
generalisation abilities can be achieved by selecting the weights θr which minimises the
validation error.

2.3.2 Regularisation
A less complex model may be achieved by augmenting the error function

Lreg(D;θ) = aL (D;θ) + bL(θ), (2.27)

where L (θ) is a penalty term for the model complexity. The two new parameters a and b
represents a balance between the two error terms. For a >> b (a << b) the penalty term
for model complexity has little (large) influence on the total loss Lreg(D;θ) respectively.
A common choice for L(θ) is the ridge penalty defined as the sum of squared parameters,
i.e.

L(θ) =

F∑
j=1

θ2
j , (2.28)
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Figure 2.4: The mean squared error of the training, validation and test set as a function of θr . The
data D100 is splitted into training, validation and test set with ratio [.7, .15, .15]. The number of
epochs r is the number of times all training samples Dtr has been used to update the parameters θ.
The mse for the training set decreases for increasing r, while the mse for the validation set is lowest
for r = 3. This indicates that the weights θ3 may have best generalisation abilities. The mse for of
the independent increases for r > 3, which indicates overfitting.

where θ = {θ1, . . . , θF }. Recall that the updating formulas used in the backpropagation
procedure involved derivation of the loss function L (D;θ). The augmented loss function
Lreg(·) has one additional term for the model complexity, hence the derivative of Lreg(·)
can be written as

∂

∂θj
Lreg(D;θ) =

∂

∂θj
(aL (D;θ) + bL(θ)) . (2.29)

For the case with L(θ) defined as the sum of squared weights, Equation (2.28), it is easily
seen that

∂

∂θj
Lreg(D;θ) =

∂

∂θj

(
aL (θ) + bL (θ)

)
= a

∂L (D;θ)

∂θj
+ 2bθj . (2.30)

The sum of squared parameters is just one example of many penalty functions. A charac-
teristic of this penalty function is that the parameters θ1, . . . , θF are shrunk, but not to zero
unless b = ∞. The penalty contribution of the parameter θi is θ2

i which is very small for
small θi. The sum of squared parameters is used throughout this project. An alternative
loss function is the sum of absolute values of the parameters, called Lasso penalty (Hastie
et al., 2009), which may result in more sparse models since some parameters are shrunk
to zero. In the proceeding, the sum of squared parameters is used as the measure of the
model complexity.

Recall that the error function (2.27) is used for minimisation. Therefore, it could be
parametrised by using only one parameter as for example

Lreg(D;θ) = (1− b)L (D;θ) + bL(θ). (2.31)
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Figure 2.5: The two terms in Equation (2.31), both scaled by the reciprocal of n, computed for
ANNs fitted to the dataset D20 with different values of b. The ANNs are fitted with the LM algorithm
with loss function given by Equation (2.31). The sum of squared errors L (D;θ) is computed over
an independent test set Dgrid,151. Note that for small values of b, (1 − b)L (D;θ) ≈ L (D;θ). It
seems that networks with balance parameters b ∈ [0.02, 0.04] gives lower to L (D;θ) than b > 0.4
for this particular dataset D20, network architecture and fitting process.

The two parameters a and b are used later for the bayesian regularisation method described
in Section 2.3.3. With the parameterisation of the loss function given in Equation (2.31),
one parameter b has to be specified to balance prediction accuracy L (D;θ) and model
complexity L(θ). It is not straightforward to specify a value for this parameter that ensures
the desired balance. The effect of b can be illustrated by fitting ANNs to the same dataset
D20 and comparing the two terms in Equation (2.31), as shown in Figure 2.5. The figure
indicates that networks fitted with b ∈ [0.02, 0.04] perform better, lower error L (D;θ), on
the test data Dgrid,151. Several aspects of the fitting process have stochastic components,
for example the random initialisation of the parameters θ and the partitioning of D20

into Dtr and Dva. Thus, repeating the same process results in different estimates for
the optimal value of b. In the proceeding section, a method that automatically adjust the
balance parameters a and b is introduced.

2.3.3 Bayesian regularisation

Determination of the parameters a and b for balancing the two error terms in the augmented
error function, Equation (2.27), is not straightforward. A way to determine the optimal
regularisation parameters is the Bayesian Regularisation (BR) method, first proposed in
the doctoral thesis of MacKay (1992). The work extended the Bayesian interpretation of
regularisation in a way that enables objective determination of a and b. For a more in depth
description, we refer to MacKay (1992).

The Bayesian Regularisation (BR) approach is commonly used with the LM algorithm
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Algorithm 2 Bayesian regularisation algorithm

Obtain Dn = {
(
x1,y1

)
, . . . , (xn,yn)}

Initialise a and b.
Initialise θ0 = (θ0

1, . . . , θF ), set F̃ = F
repeat

Update θr+1 by taking one LM step towards the minimum of Lreg(D;θ)
Compute GN approx. of the Hessian HGN

Compute F̃ = F − 2aTrace
(
H−1
GN

)
Update a = F̃

2L(x) and b = n−F̃
2L(x)

until Convergence
return θr+1 . Model parameters

described in Section 2.2.2. The abbreviation LM-BR is used to emphasise that the BR
method is used as an extension of the backpropagation algorithm with LM updates for
fitting ANNs. The process of fitting networks the LM-BR is summarised in Algorithm 2.
Derivation of the equations for updating a and b can be found in Hagan et al. (2003). Note
that the BR approach does not use early stopping techniques. Therefore, all available data
samples in D can be used to determine the model parameters θ, which may be beneficial
when the sample size is small. A comparison of the accuracy of ANNs fitted using the back
propagation with LM and LM-BR is given in the proceeding section, where the hidden
layer size is altered as well.

2.3.4 Assessment of the effect of the number of vertices
A model’s flexibility may be interpreted as its ability to represent a large class of func-
tions. Increasing the number of vertices Q enables the network to represent more complex
functions, but may at the same time increase the risk of overfitting. However, this problem
is reduced by applying the regularisation techniques discussed in Section 2.3 for improved
generalisation. The effect of the number of vertices can be illustrated by fitting ANNs
with different value of Q to synthetic data. Figure 2.6 shows two ANNs with Q = 3 and
Q = 10 vertices fitted to the same dataset D1000

0 without noise. The experimental setup
is summarised in Table 2.3. The network with Q = 3 is not flexible enough to model
f true(x). This can be seen by looking at the error plot, which is relatively high and clearly
follows some trend. For the network with Q = 10, the errors are much smaller. This
illustrates the importance of having enough vertices.

Setting Q very high is not critical if regularisation techniques as those presented in
Section 2.3 are utilised. Figure 2.7 shows the root mean squared error of four ANNs fitted
with the LM (early stopping) and LM-BR (regularisation) methods. The ANNs with few
vertices Q < 3 have higher root-mean-squared errors. The error decreases by increasing
the number of vertices. Comparing the the root-mean-squared errors for the ANNs fitted
to D20 and D50, it seems that the latter benefits more of having a high number of vertices.

When fitting an ANN, there a are lot of choices that may effect the performance of
the network. For example, a one layer MLP network architecture was assumed and the
back propagation procedure was used in the derivation of the update equation. For these
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Figure 2.6: ANNs withQ = 3 andQ = 10 vertices fitted to D1000
0 with the LM-BR algorithm. The

root mean squared error is calculated over an independent test set Dgrid,151. The ANN withQ = 10
vertices is much more accurate than the simpler ANN with Q = 3 vertices. The former captures
the non-linearities in the function f true(x), whereas the latter is not flexible enough to approximate
f true(x) adequately.

Table 2.3: Experimental setup. For the LM method, the data set D is divided randomly into training
set Dtr and validation set Dv with ratios 0.8 and 0.2. A test set Dgrid,151 defined as noise-free
observations on a regular grid is used to calculate the root mean squared error (rmse) for different
ANNs trained with different number of vertices Q and different training procedures.

Dataset D Design points Observations Q Figure
D1000

0 xi ∼ Unif(Ωx) yi = f true (xi) 3 and 10 2.6
D20 xi ∼ Unif(Ωx) yi = f true (xi) + Zi ∼ N

(
0, 0.12

)
1, . . . , 10 2.7a

D50 xi ∼ Unif(Ωx) yi = f true (xi) + Zi ∼ N
(
0, 0.12

)
1, . . . , 15 2.7b
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(b) Average rmse for 5 ANNs fitted to D50.

Figure 2.7: Average root mean squared as a function of the hidden layer size Q and fitting procedure.
The reported results are obtained by fitting 5 ANNs with the LM procedure (solid line) and the LM-
BR procedure (dotted line) with different number of vertices Q to the data samples D20 (left figure)
and D50 (right figure). The root mean squared errors are computed over an independent test set
Dgrid,151 and averaged across the 5 ANNs with the same combination of fitting procedure, Q and
data samples. The rmse is high when Q is small, and decreases as Q increases.

derivations, it was implicitly assumed that the activation function σ, the transfer functions
g1, . . . , gK and the hidden layer size Q were specified. Similarly, we chose to use the
squared error function E(θ) in Equation (2.6) as a measure of model fit, and the sum of
squared parameters Eθ(θ) to describe model complexity.

The network architecture, training procedure and measure of model fit and complex-
ity could be chosen differently. It is outside the scope of this project to go into detail of
the effect of these choices. In order to increase reproducibility and credibility, we adopt
the choices found in the neural network toolbox of Matlab. The toolbox enables efficient
fitting of ANNs with different architectures, activation functions, training procedures etc.
Throughout the project, the default parameters for two layer FFNNs with Bayesian Regu-
larisation as training procedure are used to train ANNs. Table 2.4 gives an overview of the
most important parameters used in the two layer FFNN of Matlab. For those familiar with
the toolbox, it may be informal to recognise the architecture shown in Figure 2.8 . In the
proceeding section, a method that can be used to form a more accurate surrogate model by
using several ANNs is described.

2.4 Bagging for stabilization and quantification of uncer-
tainty

Predictions by ANNs are often unstable. Fitting several ANNs to the same dataset will
in general give different fitted networks depending on the initial model parameters θ0.
In this section, a method called bagging is described and utilised to achieve more stable
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Table 2.4: An overview of the network architecture and other parameters used in the fitting process.
The choices are similar to the default values used by the Neural network toolbox for two layer
FFNN. A more in depth discussion of other choices of function, training procedures and parameters,
we refer to (Hagan et al., 2003, chapters, 11-13). A thorough description of Matlabs neural network
toolbox can be found in Beale et al. (2016).

Quantity Parameter value Explanation
Activation
function

σ (x) = 2
1+exp (−2∗x) − 1 Assumed to be the tan-sigmoid

function
Transfer func-
tions

gk (x) = x for k =
1, . . . ,K

Assumed to be the identity func-
tion.

Hidden layer
size

Q Chosen by a rule of thumb for the
problem at hand.

Gain ∆θ The LM algorithm is used to deter-
mine the gain ∆θ = θr+1 − θr.

Fitness func-
tion

Lreg (θ) Unless stated otherwise, the
Bayesian Regularisation approach
(LM-BR) is used. The loss func-
tion penalises both the sum of
squared errors and sum of squared
parameters, see Equation (2.27).

Sets Dtr, Dva and Dte Unless stated otherwise, Dte is not
used. The LM and LM-BR ap-
proach divides the data samples D
randomly into training and valida-
tion set with ratio (.8, .2) and (1, 0)
respectively.

Figure 2.8: A representation of the architecture under consideration. The number of input nodes
P = 3, hidden layer size Q = 10 and number of output nodes K = 2 can be specified by the user.
The tan-sigmoidal function is used as activation function for the sum (+) of a linear transformation
(w) of the input plus a vector of biases (b). The identity function is used as the transfer functions
g1(·), . . . , gK(·).
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Algorithm 3 Bagging

Data sample D = {
(
x1,y1

)
· · · (xn,yn)}

Generate B bootstrap samples D? = {D?,b}Bb=1

Fit a neural network f b(x) to each bootstrap sample in D?

Let Υ (x) = {f b (x)}Bb=1

Define f(x) as the average of Υ (x) . Bagged predictor

predictions. For many real world applications, it is of interest to quantify the uncertainty
of predictions. We study how the bagging method can be used to obtain a measure of
the model uncertainty. The uncertainty estimate and a probabilistic representation of the
surrogate model can be used to form confidence intervals for the prediction. This approach
is tested on synthetic data.

2.4.1 Bagging
The bagging method, as first proposed by Breiman (1996), derives its name due to the
use of aggregated predictions from several models, where each of these models is fitted
on a bootstrap sample of the training set D. Let D = (x, y) = {(xi, yi)}ni=1 represent
the set of all realisations of yi = f true(xi), assuming K = 1 for simplicity. Since the
observations in D are assumed to be independent and identically distributed (i.i.d.), any
permutation of these are equally likely to be observed. A bootstrap sample of D is a set of
n pairs {(xji , yji)}ni=1 drawn randomly with replacement from D. The bootstrap indices
j1, . . . , jn describe the index of the original dataset for the j’th bootstrap sample. Let

D? = {(x, y)?b}Bb=1, (2.32)

denote a set of B bootstrap samples of the original set D. All the permutations in D?

are equally likely, so inference of f(x) should not only be based on the original set x.
Therefore, an ANN is fitted to each of the bootstrap samples in D?. Let

Υ (x) = {f b(x;D?
b)}Bb=1, (2.33)

denote the set ofB neural network fitted to the bootstrap samples. A more stable surrogate
model f(·) is formed by combining these neural networks. The bagging technique com-
bines these predictions by averaging over them. Thus, the bagged estimator f(x) may be
written as

f(x) =
1

B

B∑
b=1

f b(x). (2.34)

The bagging procedure is summarised in Algorithm 3 . We assume that each network
f b(x) is an unbiased estimator of the true relation f true(x), i.e. E(f b(x)) = f true(x).
Thus, the average f(x) is also unbiased since

E (f(x)) = E

(
1

B

B∑
b=1

f b(x)

)
=

1

B
Bf true(x) = f true(x). (2.35)
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Figure 2.9: The underlying function f true (x) (dotted line) and the data samples D20 (’o’).

2.4.2 Uncertainty estimation
In the following, an approach for quantifying σ (x) by applying the bootstrap procedure is
studied. The variance σ2(x) can be estimated as the empirical variance of the B predic-
tions Υ (x) predictions around their average f (x) defined in Equation (2.34). This can be
expressed as

σ2 (x) =
1

B − 1

B∑
b=1

(f b (x)− f (x))2. (2.36)

The estimated variance can be used to form confidence intervals for f (x). This esti-
mate reflects the variance of each single ANNs predictions Υ (x) = {f1 (x) , . . . , f b (x)}
around the average f(x). The predictions of each ANN may vary much more than their
average f (x), so the variance estimate based on Equation (2.36) can be biased upwards.
As proposed in Carney et al. (1999), ensemble techniques can be used to improve the vari-
ance estimate. For the running example, numerical experimentation showed that the most
accurate confidence intervals was obtained by using the variance estimate from Equation
(2.36). The results are omitted to limit the scope of this project, and without further dis-
cussion, the variance estimate from Equation (2.36) is used throughout this project.

As before, let D20 denote a data sample 20 noisy observations of the f(xi), where
x1, . . . , x20 are drawn uniformly from the domain Ωx = [0, 15]. For convenience, the
realisation of D20 displayed in Figure 2.9 is used throughout this section. Fitting neural
networks to D20 generally results in different networks due to random initialisation of
the model parameters θ0. It could be reasonable to fit B ANNs to the same data sample,
without using bootstrapping, and use the variability of these predictions to estimate the
model uncertainty σ(x). In the proceeding, these two approaches are compared. As will
become apparent, the approach based on using the same data sample may give a misleading
estimate of σ(x), and therefore motivates the bagging approach. Let

Υ = {f̂ b(x;D?
b}Bb=1, (2.37)
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Figure 2.10: The predictions based on the B ANNs in Υorig and Υorig . The variability of the
networks in Υ has more variability since each is fitted to a bootstrap sample of D. Note the difference
in the y-axis.

denote the B = 16 ANNs fitted to bootstrap samples of D20. Similarly, let

Υorig = {f̂ b(x;D20}Bb=1, (2.38)

denoteB = 16 ANNs fitted to the same dataset D20. Figure 2.10 shows the corresponding
predictions Υ(x) and Υorig(x). Note that each single ANN in Υ(x) may deviate signifi-
cantly from f true (x). The bagged predictor obtained by averaging the B = 16 predictors
in Υ is more stable, see Figure 2.11b. The average of the B = 16 networks in Υorig is
included as a comparison. Both of the averaged predictors are reasonable estimates of the
underlying function for the relatively limited data set D20.

The model uncertainty σ(x) is estimated for Υ and Υorig by Equation (2.36). The
corresponding bands f(x) ± 1.96σ(x) are shown in Figure 2.12. The model uncertainty
σ(x) should ideally be high (low) when |f true − f(x)| is high (low). However, Figure
2.12a shows that the band f(x)±1.96σ(x) for Υorig is, for some values of x, very narrow
(wide) in regions where the deviation |f true− f̂(x)| is high (low). Thus, the estimate σ(x)
based on Υorig does not reflect the model uncertainty.

From the band f(x)± 1.96σ(x) for Υ, shown in Figure 2.12a, it seems that the men-
tioned effect is less apparent. This motivates the approach of estimating the variance of
ANNs fitted to bootstrap samples D?, instead of ANNs fitted to the original data D. In
the proceeding, bands on the form f(x) ± cσ(x), where c > 0 is a constant, are assigned
a natural interpretation as confidence intervals for the underlying function f true(x).

The distribution of f true(x), around the given the surrogate model prediction f(x),
is not analytical tractable. In this section, the distribution is estimated by assuming that
f true(x) is normal distributed with mean f(x) and standard deviation σ(x). A more
thorough discussion of the distribution FFNN fitted to bootstrap samples can be found in
Paass (1993). An (1 − α) CI for a quantity should ideally cover the true quantity with
probability 1 − α. Since the CI for f true(x) is analytical intractable, it is of interest
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Figure 2.11: The averaged predictor (solid line) based on Υorig (left subfigure)and Υ (right subfig-
ure). The data sample D20 and f true(x) are shown as circles and a dashed line. Both predictors are
reasonable estimates of f true(x) given the relatively small and noisy data set D20.
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Figure 2.12: The band f(x) ± 1.96σ(x) for the B (dashed lines) for Υorig (left subfigure) and Υ
(right subfigure). Note that band for Υorig is narrow in some regions where the difference |f(x)−
f true(x)| is large. This indicates that using Υorig is unsuitable for estimating the model uncertainty
σ(x).
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to evaluate the coverage of the approximated CI. The CI for f true(x) is estimated by
assuming that

f true(x) ∼ Norm(f(x), σ2). (2.39)

With the above assumption, a (1− α) CI for f true is given by

CI1−α(x) = f(x)± cα/2σ̂(x), (2.40)

where the constant cα/2 is defined as

cα/2 = P(f true(x)) ≤ cα/2) = α. (2.41)

The empirical coverage of the confidence interval can be evaluated on synthetic data. Let
t1, . . . , tF denote the index of the F in the regular grid Dgrid,151. The empirical coverage
probability is obtained by computing the fraction of points in the test set Dgrid,151 that
are within the estimated CI. Using the estimated CI, Equation (2.40), this ratio can be
expressed as

1

F

F∑
i=1

I
(
f (xti)− cα2 σ (xti) ≤ f(x) ≤ f (xti) + cα

2
σ (xti)

)
, (2.42)

where the indicator function I(A) is one (zero) if the expression A is (true) false.
Recall the B ANNs Υ fitted to bootstrap samples of D20. For this particular case, the

band f(x) + σ(x) covered the underlying function f true(x) for all values of x ∈ [0, 15].
In general, the estimates f(x) and σ(x) depends on the data sample D used in the fitting
process. For example, observing 50 noisy observations D50 and performing the same
fitting process as for Υ for D20 in Section 2.4.2, results in the CI intervals shown in Figure
2.13, with coverage ratio of 0.9007. Experimental results indicates that the estimated
CIs have a desirable coverage ratio for different sample sizes. By increasing (decreasing)
α wider (narrower) CIs are obtained and the coverage ratio can be calculated by using
Equation (2.42). For different sample sizes and confidence α, the corresponding CIs tend
to have a coverage ratio that reflects the desired confidence.

In this chapter, a surrogate model f(x) based on B ANNs fitted to bootstrap samples
of the available data samples Dn has been studied. The bagging procedure can be used
to estimated the model uncertainty, which can be useful for estimating CIs. The above
aspects have been demonstrated on a one-dimensional function. In the proceeding chapter,
an optimise procedure that utilise f(x) and σ(x) in the search for x that maximise f true(x)
is proposed.
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Figure 2.13: The function f true(x) (solid line) and the estimated 95-CI (dotted lie) based on the B
ANNs Υ fitted to bootstrap samples of D50. The bottom line (dash-dotted) increases if f true(x) is
outside the CI. The estimated CI seem to capture the model uncertainty adequately. Note the CI is
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Chapter 3
Optimisation by sequential design

3.1 Introduction
Optimisation of f true(x) is not straightforward, due to the lack of an analytical expres-
sions for f true(x) and since evaluations of f true (x) are only available through a time-
consuming simulation model. In this chapter, techniques from the surrogate-based op-
timisation methodology is used in the search of an approximatively global optimiser of
f true (x). Such methods use a surrogate model, also called response surface, meta-model
and function approximation, to guide the search for the optimum. Since the number of
function evaluations is limited, it is of interest to concentrate the function evaluations in
regions where f true(x) is high. This may be achieved by first observing a part of the
experimental design Dn = {

(
xi,yi

)
}ni=1, and iteratively selecting the next design point

xn+1 based on the surrogate model f(x;Dn) fitted to all available data samples Dn.
Efficient global optimisation typically requires a balance between exploitation and ex-

ploration. As sampling strategy, the next point xn+1 is selected as the maximiser of an
acquisition, or infill function, u(·) that balances these aspects, i.e.

xn+1 = argmax
x∈Ωx

u (x;Dn) . (3.1)

A general procedure of selecting design point sequentially is shown in Algorithm 4.
Common acquisition functions based on the probability of improvement (PI), expected
improvement (EI) and an upper confidence bound (UC) use a statistical interpretation of
f true (x). For surrogate model based on Gaussian process, the statistical distribution of
f true (x) follows from the (assumed) Gaussian process, the observed data Dn and the
estimated model parameters. For surrogate model based on other regression models, for
example ANNs, such inherit distribution of f true (x) is seldom available. In the proceed-
ing section, two approaches for estimating the distribution of f true (x) is presented. The
two approaches uses different estimates of the cumulative distribution function (CDF). In
section 3.3, the EI, PI and UC are derived and illustrated for both approaches.

In section 3.4, we extend these acquisition functions such that several design points
can be selected in each iteration. Using several acquisition functions instead of only one
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Algorithm 4 Optimisation by sequential design
Infill function u(·)
Obtain Dn0 = {

(
x1,y1

)
, . . . , (xn0 ,yn0)}

n = n0

repeat
Find xnew = argmaxu (x;Dn)
Sample ynew = f(xnew)
Augment Dn = {Dn, (xnew, ynew)}

until Stopping criterion met
return Dn . Data samples used for further analysis.

have shown promising results (Hoffman et al., 2011), and for the simulation model under
consideration, the evaluation of the selected points can be performed efficiently in parallel.

The optimisation of f true (x) may be difficult due to the mentioned time-consuming
evaluations and possibly stochastic output. In addition, the optimisation may be restricted
to a constraint c (x) that may only be evaluated by an equally time-consuming process. A
way to deal with this problem is by estimating the probability that x satisfy the constraint
c (x), and incorporating the estimate into the infill function. See for example Schonlau
et al. (1998) for a discussion of such extension of the EI criterion, and Gelbart et al. (2014);
Williams et al. (2010) for a more in depth study of sequential designs for constrained opti-
misation. A drawback of these methods is that they require an additional output variable.
In section 3.5, we propose a method that avoids the additional variable by introducing a
penalty function for constraint violation.

3.1.1 Notational remarks
In the proceeding, let

Dn = {
(
xi, yi

)
}ni=1, (3.2)

denote a set of n data samples. For the running example, let

Dlhc,n
0.1 = {

(
xi, f true(xi) + Zi

)
}ni=1, (3.3)

where
Zi ∼ Norm(0, 0.1), (3.4)

denote n noisy observations of f true(x) where the design points x1, . . . , xn are generated
using a Latin Hypercube sampling procedure. For a thorough discussion of such space
filling designs, see Santner et al. (2003); Forrester et al. (2008).

3.2 Statistical distribution of f (x)

Let Dn denote all current data samples, and f (x) the surrogate model defined as the
average of the B ANNs Υ = {f b (x)}Bb=1, each fitted to a bootstrap sample of Dn, as de-
scribed in Chapter 2. The unknown function f true (x) is interpreted as a random variable,
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with observations Υ (x) = f1 (x) , . . . , fB (x). Inference based on these observations is
used to select xn+1.

In this project, two approaches for estimating the distribution of Y (x) = f true (x)
based on Υ (x), namely by

• Calculating the empirical CDF of Υ (x)

• Assuming Y (x) is normal distributed with mean µ (x) = 1
B

∑B
b=1 f

b (x) and stan-
dard deviation σ (x) = σ̂ (x)

In order to simplify the derivation of the infill functions and emphasise the viewpoint of
f true(x) as a random variable, the following notation is adopted. Let Y (x) = f true (x)
represent a random variable, with unknown distribution, and observations {y1 (x) , . . . , yB (x)} =
Υ (x). Assuming that (y1 (x) , . . . , yB (x)) are independent, identically distributed ran-
dom variables with CDF FY (x)(y), the empirical CDF F̂Y (x)(y) is defined as

F̂Y (x)(y) =
1

B

B∑
b=1

[
yb (x) ≤ y

]
, (3.5)

where the notation [A] is one (zero) if A is true (false). An alternative approach of esti-
mating the distribution of Y (x) is by assuming that Y (x) is normal distributed

Y (x) ∼ Norm
(
µ (x) , σ2 (x)

)
, (3.6)

with the two fist moments µ (x) and σ2 (x) estimated by the empirical mean and variance
of Υ (x). Note that this approach was used to estimate confidence intervals in Section
2.4.2. By transformation of variables, the corresponding CDF can be expressed as

F̂normY (x) (y) = Φ(z), (3.7)

where Φ(·) denotes the CDF for the a standard normal distributed variable, and z (x) =
y(x)−µ(x)

σ(x) . The difference between the two approaches is illustrated on an example. Let

Υ denote a set of B = 16 ANNs fiited to D10,lhc
0.1 . These observations and ANNs are used

throughout the section. Figure 3.1 shows f true(x), f(x), D10,lhc and Υ. For a specific x,
say x = 5, F̂Y (5)(y) can be estimated using Equation (3.5) and the B = 16 observations

Υ(5) = {−0.974,−0.0456, , . . . , 0.492}. (3.8)

Correspondingly, F̂normY (5) (y) is easily computed for a normal distributed variable with em-
pirical mean f(5) = 0.134, and empirical σ(5)2 = 0.334. The CDFs are shown in Figure
3.2 and it is clear that the CDF F̂normY (5) (y) is smoother than the alternative. Note also
that this CDF is zero (one) only asymptotically when σ (x) > 0, whereas the alternative
reaches these values when the argument is lower (larger) than the smallest (largest) value
of Υ (x). In the proceeding, the infill functions are derived using the two approaches for
estimation of the distribution of Y .
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3.3 Infill functions
The performance of a particular infill function is problem-dependent, but typically a bal-
ance between exploitation and exploration is necessary in order to avoid getting stuck in
local optimums and exhaustive exploration of the domain Ωx. In this section, infill func-
tions based on the two CDF’s are derived. Some iterations of the sequential process of
fitting surrogate model and selecting the next point for evaluations is included.

3.3.1 Probability of improvement
Infill functions based on the probability of improvement (PI), first proposed by Kushner
(1964), aims at selecting xn+1 such that Y = f true

(
xn+1

)
is most likely to improve over

an incumbent µ+. For deterministic simulation models, the incumbent is often defined
as the best (highest) observed simulation output. For stochastic simulation model under
consideration, a more reliable incumbent can be achieved by defining µ+ as

µ+ = max
i=1,...,n

f
(
xi
)
, (3.9)

namely the maximum of the predictions in the current design points x1, . . . ,xn. The
probability that the random variable Y is an improvement over µ+ is

PIµ+ (x) = P
(
Y (x) > µ+

)
=

∫ ∞
µ+

P (Y (x) = y) dy

= 1− P
(
Y (x) ≤ µ+

)
= 1− FY (x)(µ

+),

(3.10)

where P (Y (x) = y) and FY (x)(y) denotes the PDF and CDF of Y (x) respectively.
Inserting for PI as acquisition function u(·) in Equation (3.1), using F̂Y (x)(y) and

F̂normY (x) (y) from equations (3.5) and (3.7) respectively, yields the following expressions

xn+1 = argmax
x∈Ωx

1−
B∑
b=1

[
yi ≤ µ+

]
, (3.11)

xn+1 = argmax
x∈Ωx

1− Φ (z (x)) , (3.12)

where z (x) = µ+−f(x)
σ(x) . From Equation (3.11) it is easily seen that by using F̂Y (x)(y),

xnew is the point where most of the B ANN predictions f1(xnew), . . . , fB(xnew) is
greater than the incumbent µ+. Alternatively, using the imposed normal distribution, the
maximiser xnew in Equation (3.12) is the maximiser of 1−Φ (z (x)). Since Φ(·) is mono-
tonically increasing, xnew is the minimiser of z(x), which is small when µ+ << f (x)
and σ (x) small. This corresponds to high values of f (x) with little variability σ (x)
across Υ (x).

The two alternative versions of the PI criterion is illustrated on the sample D8
0.1. Figure

3.3 shows the PI using Equation (3.11) and Equation (3.12). Note that the PI following
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Figure 3.3: The PI computed using F̂norm
Y (x) (y) (solid line) and F̂Y (x)(y) (dotted line). The latter is

less smooth due to the discontinuous form of F̂Y (x)(y).

from the assumed normal distribution of Y is smoother than the alternative. Moreover, it
is always greater than 0 unless σ (x) = 0, as opposed to the alternative which is 0 for all
x satisfying

{x : f1 (x) , . . . , fB (x) ≤ µ+}. (3.13)

The PI criterion is sensitive with respect to µ+: perturbing the incumbent with a small
amount δ may greatly affect the maximiser xn+1. This is illustrated in Figure 3.4 An
increase (decrease) of µ+ tends to more (less) exploration compared to exploitation In
the proceeding, a criterion with less sensitivity to µ+ is presented. The criterion balance
exploration and exploitation by weighting the magnitude of the potential improvement, as
opposed to only weighting the probability of improvement.

3.3.2 Expected Improvement

As before, let Y (x) denote a random variable with independent, identically distributed
observations {y1 (x) , . . . , yB (x)} and an assumed known CDF. In order to simplify the
derivation of the expected improvement (EI), the reference variable x is neglected from
the notation. Hence, we write the above-mentioned quantities as Y , {y1, . . . , yB} and let
F (y) denote the corresponding CDF.

Define improvement over an incumbent y+ as

I (Y ) =

{
y − y+, if y > y+

0, if y ≤ y+
(3.14)

The EI is defined as the expectation of the improvement function, i.e.

EI = E{I (Y )}. (3.15)
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Figure 3.4: The PI computed using F̂norm
Y (x) (y) (upper subfigure) and F̂Y (x)(y) (lower subfigure)

using incumbent µ+ + δ for different values of δ. Small (large) δ gives large (low) probability of
improvement and encourages a higher degree of exploitation (exploration).

From the definition of the expectation operator E{·}, this is the same as

EI =

∫ ∞
−∞

I (y)P (Y = y) dy, (3.16)

which, by inserting for the improvement function I (y) and splitting the integral, is the
same as

EI =

∫ ∞
y+

(
y − y+

)
P (Y = y) dy + 0

∫ y+

−∞
P (Y = y) dy (3.17)

where the second term is obviously 0. By splitting the first term, the EI can be written as

EI =

∫ ∞
y+
y P (Y = y) dy − y+

∫ ∞
y+

P (Y = y) dy, (3.18)

where the second term is a constant y+ multiplied by the PI given by Equation (3.10).
Inserting for the PI yields

EI =

∫ ∞
y+
y P (Y = y) dy − y+

(
1− F

(
y+
))
. (3.19)

The integral over the weighted PDF, the first term of Equation (3.19), may by complicated
depending on the PDF of the random variable Y . However, for the two version of the CDF,
this term can be expressed with well-known functions. By assuming the empirical CDF,
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defined in Equation (3.5), the first term in Equation (3.19) can be expressed as∫ ∞
y+
y P (Y = y) dy =

1

B

∑
{b:yb>y+}

yb (3.20)

=
1

B

B∑
b=1

yb
[
yb > y+

]
, (3.21)

where mass 1
B is assigned to each of the B observations y1, . . . , yB . By insertion of

Equation (3.21) into Equation (3.19), the EI takes the form

EI =
1

B

B∑
b=1

yb
[
yb > y+

]
− y+

(
1− F

(
y+
))

=
1

B

B∑
b=1

[
yb > y+

] (
yb − y+

)
,

(3.22)

where the last transition follows from the definition of the CDF in Equation (3.5). Re-
call from Equation (3.14) that [yb > y+] (yb − y+) is the improvement I(yb) over y+,
hence the EI in Equation (3.22) is simply a sum of the improvements for the predictions
y1, . . . , yB .

An expression for the EI using the alternative CDF FnormY (y), defined in Equation
(3.7), is derived in the following. Recall that Y is a normal distributed variable with mean
µ and variance σ2, with PDF

P (Y = y) =
1√
2πσ

exp {− (y − µ)
2

2σ
}. (3.23)

Inserting P (Y = y) and performing the change of variable, Z = Y−µ
σ , the first term in

Equation (3.19) can be written as∫ ∞
y+
y P (Y = y) dy =

1√
2πσ

∫ ∞
y+
y exp{− (y − µ)

2

2σ2
} dy

=
1√
2π

∫ ∞
z

(σz + µ) exp{−z
2

2
}dz

=
σ√
2π

∫ ∞
z

z exp{z
2

2
} dz +

µ√
2π

∫ ∞
z

exp{z
2

2
} dz,

(3.24)

with z = y+−µ
σ . By recognising that the second term in the last equation is a constant µ

multiplied by the PI for a standard normal variable Z, and integrating the first term, the
last equation can be written with familiar functions as∫ ∞

y+
y P (Y = y) dy =

σ√
2π

exp{−z
2

2
}+ µ (1− Φ (z))

= σφ (z) + µ (1− Φ (z)) .

(3.25)
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Figure 3.5: The EI computed using F̂norm
Y (x) (y) (solid line) and F̂Y (x)(y) (dotted line). Note that the

EI criterion typically has several modes as is the case for this example.

Thus, inserting the above expression into Equation (3.19), yields the following expression
for the EI

EI = σφ (z) + µ (1− Φ (z))− y+ (1− Φ (z))

= σ [φ (z) + z (Φ (z)− 1)] .
(3.26)

Figure 3.5 shows the EI over incumbent µ+. The EI have two modes at x = 0 and
x ≈ 3. From the illustration of Υ(x) and f(x) in Figure 3.1, it can be seen that these two
regions corresponds have high variability of Υ and high prediction f(x). The expected
criterion is less sensitive to the incumbent µ+. This is illustrated in Figure 3.6 for µ+ + δ
for different values of δ. Note that the same point xn+1 = 0 maximises the EI criterion
for most combinations of δ and CDF. The EI criterion tends to select xn+1 where f (x) is
high and or σ (x) is high.

3.3.3 Upper confidence bound
Let the UCB be defined as

UCB (x;κ) = f (x) + κσ (x) , κ ≥ 0. (3.27)

High (low) κ gives high (low) degree of exploration. The two special cases κ = 0 and κ =
∞ results in maximisation of only f (x) and (x) respectively. The acquisition function
UC (x;κ) requires the user to determine the parameter κ. The UC is shown in the bottom
left corner of Figure 3.7 Illustration of f(x), Υ, D8,lhc

0.1 and the infill function based on PI
and EI seen previously in this chapter, are included to ease comparison.

3.3.4 Generalised Expected Improvement with constraints
In this section a more general form of the improvement function I is introduced. The
extension were first proposed by Schonlau et al. (1998), and this project used to handle
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Figure 3.6: The EI computed using F̂norm
Y (x) (y) (upper subfigure) and F̂Y (x)(y) (lower subfigure)

using incumbent µ+ + δ for different values of δ. Small (large) δ gives large (low) probability of
improvement and encourages a higher degree of exploitation (exploration). Note that the shape of
the EI is relatively similar for different values of δ.
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36



improvements subjected to constraints on an additional response variable. Let the im-
provement function Iρ (x) be defined as

Iρ (x) =

{
(y (x)− y+)ρ, if y (x) > y+

0, otherwise,
(3.28)

i.e. the improvement from Equation (3.14) raised to the power of ρ ≥ 0. For ρ > 1, the
improvements (Y − µ+)ρ >> (Y − µ+), so large improvements (Y − µ+) are assigned
more weight for increasing ρ. Thus, the general improvement function Iρ may be used
to balance exploration and exploitation in a more systematic manner. In this project, the
parameter values ρ = {0, 1} are used. For these values, the expectation of Iρ is the PI and
EI derived in Section 3.3.1 and Section 3.3.2 respectively. Recall that the PI and EI were
derived using CDFs based on an imposed normal distribution and an empirical CDF. For
the latter, Iρ may be easily obtained by taking the ρ’th power of the term (yb − y+) in
Equation (3.22). The alternative requires more cumbersome derivation that can be found
in Schonlau et al. (1998).

3.3.5 Sampling paths for synthetic data

The criteria PI,EI and UC are reasonable candidates for infill functions. Assessing the
performance of each of them may be cumbersome, since the performance is dependent on
the initial sample Dn0 , the problem under consideration, and possible random effects in
the fitting of the ANNs used as surrogate model fitting. In this section, we illustrate some
iteration of iterations of a sequential method in order to capture the characteristics of the
infill function under consideration.

In this section, only one point is sampled in each iteration, i.e S = 1. For notational
simplicity, let fn(x) and σn(x) denote the surrogate model and the associated model un-
certainty at the i’th iteration. Figure 3.8 show four iterations of the sequential method for
the running example with an initial data sample D8,lhc. For all i = 1, . . . , 4 iterations
fn(x), σn(x) and the infill function u(x) and the current data sample Dn is displayed.

The PI criterion is characterised by less global search than the alternatives. Note
that the model uncertainty σn+1(x; ) tend to be lower than σn(x) near the last observed
data sample (xn+1, yn+1). Since the initial sample D8,lhc

0.1 is relatively large, the initial
surrogate models has much knowledge of the underlying function f true(x). Thus, the
benefit of infill functions with high degree of exploration is less apparent.

By starting with a smaller initial sample D3,lhc
0.1 , a higher degree of exploration may be

necessary for efficient global optimisation. Figure 3.9 shows 20 iterations of the sequential
method with D3,lhc

0.1 as initial sample. For all cases, the rightmost region has highest pre-
dicted value in the first i = 1, . . . , 16 iterations. Note that the PI infill function samples
points almost exactly at the predicted maximum, and fails to identify the global maxima.
The sample paths obtained with EI and UC as criterion, are spread more evenly in the
domain [0, 15]. Around the 15. and 16. iteration, the sampling strategy based on the two
criteria identifies the region around the global optimum, as opposed to the PI criterion.
This indicates that infill functions with a high degree of exploration are more suitable for
problems where the initial sample is sparse.
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(b) 1. iteration, EI
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(c) 1. iteration, UC
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(d) 2. iteration, PI
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(e) 2. iteration, EI
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(f) 2. iteration, UC
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(g) 3. iteration, PI
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(h) 3. iteration, EI
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(i) 3. iteration, UC
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(j) 4. iteration, PI
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(k) 4. iteration, EI
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(l) 4. iteration, UC

Figure 3.8: Four iterations of the sequential optimisation method using D8,lhc
0.1 as initial sample,

surrogate model fn(x) based on B = 20 ANNs, using PI (left column), EI (middle column) and
UC90 as infill function respectively. The upper sub-figures shows fn(x) (solid line), fn(x)±σn(x)
(dashed line), f true(x) (dotted line), observations Dn (+) where last observed point is enclosed in
a circle. The lower subfigures shows the infill function and its maximiser (downward triangle). The
infill function are based on F̂norm

Y (x) (y). The points selected using PI as infill function, are near the
maximiser of fn(x). The points selected by the EI criterion have more spread. Note that the EI(·)
is reduced in regions near the last sampled points due to reduced model uncertainty σ(·). The UC90

criterion selects points where f(x) and/or σ(x) is high.
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(b) 20 iterations with EI
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(c) 20 iterations with UC

Figure 3.9: The upper sub-figures shows f true(x) (dashed line), the initial sample Dlhc,3
0.1 (circles),

the pairs (xi, yi) (small diamond marked with the iteration number i = 1, . . . , 20) and the prediction
f(x) (solid line) for the last iteration. The points x1, . . . , x20 are selected using PI, EI and UC
as infill function. The lower sub-figures shows the selected points xi (small *) and the predicted
maxima xmax,n = argmax fn(x) (+). The sequential optimisation method based on PI as infill
fails to identify the global maxima due to the high degree of exploitation.
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Table 3.1: Explanation of different approaches for selecting S points xn+1, . . . ,xn+S .

Technique Explanation Challenges
Joint maximi-
sation

Select x1, . . . ,xS that
jointly maximise an infill
function u(x1, . . . ,xS ;D)

Computationally demanding, can
be avoided by using an sequential
approach see for example (Schon-
lau et al., 1998).

Sequential
maximisation

Compute x1, . . . ,xS
′

such
that xs maximise us(x;D)

x1, . . . ,xS may contain several
(approximately) equal points. Can
be avoided by applying clustering
techniques, see for example Pon-
weiser et al. (2008); Ginsbourger
et al. (2007).

3.4 Several input points
It may be of interest to select several points xn+1, . . . ,xn+S between each update of the
surrogate model. Sequential optimisation strategies such as the Efficient Global optimisa-
tion (EGO) algorithm (Jones et al., 1998) selects only one design point xn+1 between each
refitting of the model. Selecting S > 1 design points in each iteration may offer benefits
as

• reduced number of surrogate model updates,

• f(xn+1), . . . , f(xn+S) evaluated in parallel.

The simulation model under consideration can be evaluated efficiently in parallel. There-
fore, selecting S > 1 points in each iteration can significantly reduce the time consump-
tion of the sequential process described in Algorithm 4. In the following sections, two
approaches for selecting the S points are discussed. They are distinguished by whether
one or several infill functions are used to select the S > 1 points. A short description and
possible challenges of the two approaches are described briefly in Table 3.1. For surrogate
models based on a GP, a covariance structure is available and can be utilised to select the
S points. Since such structure is unavailable for the surrogate model under consideration,
some alternative methods for selecting the S points x1, . . . ,xS are proposed. The methods
are relatively simple compared to similar heuristics (Ponweiser et al., 2008; Ginsbourger
et al., 2007). A thorough analysis and discussion of these methods are outside the scope
of this project. Instead, they are illustrated for the running example using infill functions
based on EI.

3.4.1 Joint maximisation
Let the S infill points as be defined as

{xn+1, . . . ,xn+S} = argmaxu
(
xn+1, . . . ,xn+S

)
, (3.29)
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namely the S point that jointly maximise u(·). Note that the infill function u(·) in Equation
(3.29) is defined with S points as argument. The joint distribution of xn+1, . . . ,xn+S may
be complex and analytical intractable, and the numerical optimisation time-consuming.
For example, the generalised improvement function Iρ, Equation (3.28), can be augmented
to

IρS =
[
max{0, y(x1)− y+, . . . , y(xS)− y+}

]ρ
(3.30)

for the case where S points are selected. This extension was first defined by Schonlau
et al. (1998) as the ”ρ-step EI” and the criteria is studied more in depth in Ginsbourger
et al. (2007), where it is referred to as the multi-points EI. Calculating the expectation
of the above expression is difficult since the multivariate distribution may be complex
or unknown and the set of combinations x1, . . . ,xS is large. However, approximations
of the maximisers x1, . . . ,xS of Equation (3.29) can be achieved by applying suitable
simplifications. As proposed by Schonlau et al. (1998), a reasonable simplification is to
select the S points sequentially as the univariate maximisers

xn+i = argmaxu
(
x;Si

)
, for i = 1, . . . , S, (3.31)

conditioned on the previous selected points S defined as

Si =

{
{}, if i = 1

xn+1, . . . ,xn+i−1, if i = 2, 3, . . . , S
(3.32)

where {} denote the empty set. However, for the surrogate model considered in this
project, the selected points Si does not affect the prediction f (x) and σ (x) unless the
function f true is evaluated at the points Si and the model refitted. Thus, the points
xn+1, . . . ,xn+S maximising Equation (3.31) can be written as

xn+i = argmaxu (x) , for i = 1, . . . , S, (3.33)

and are therefore all equal. Note that this is not the case for a Gaussian process, since the
estimated variance depends on the design points Si (Schonlau et al., 1998).

Maximisation of (3.29) by the sequential simplification results in S duplicates, and
is therefore not a good strategy since it is desirable that x1, . . . ,xS has some degree of
spread. The latter can be achieved by augmenting the expression for the S joint maximis-
ers, Equation (3.29), to

u
(
xn+1, . . . ,xn+S

)
=

S∑
i=1

u
(
xi
)
− Lspread

(
xn+1, . . . ,xn+S

)
, (3.34)

where the term Lspread is a loss-function that penalise points xn+1, . . . ,xn+S that are
close. If Lspread(·) << u(·) the effect of the additional term Lspread(·) is low, and
vice versa. In the following, loss.functions based on a measure of the pairwise distances
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between the points xn+1, . . . ,xn+S are proposed. Let dS be defined as

dS = {d(xn+1,xn+2), . . . , d(xn+1,xn+S),

d(xn+2,xn+3), . . . , d(xn+2,xn+S),

...

d(xn+S−1,xn+S)},

(3.35)

the set of distances d(xi,xj) between all pairs of points xi,xj ∈ {xn+1, . . . ,xn+S}. The
distance d(xi,xj) is assumed to satisfy

d(x′,x′′) = d(x′′,x′) ≥ 0, (3.36)

and only the euclidean distance is considered in this project. The set dS contains |dS | =
S(S − 1) elements, and for notational convenience let d1, . . . , d|dS | denote the elements
of dS defined in Equation (3.35). Functions Lspread(·) that only depends on the distances
d
(
x1, . . . ,xS

)
can be expressed as

Lspread
(
xn+1, . . . ,xn+S

)
= Lspread

(
dS
)
. (3.37)

A natural choice of Lspread
(
d
(
x1, . . . ,xS

))
is a function that penalise all distances that

are less than a threshold η, i.e.

Lspread
(
dS
)

= Cspread
|dS |∑
i=1

[di < η] , (3.38)

where the notation [A] is one (zero) ifA is true (false) andCspread a non-negative constant.
An illustration of [d < η] compared to e−d is shown in Figure 3.10. Inserting the above
equation into Equation (3.34) gives the following expression for the S joint maximisers

u
(
xn+1, . . . ,xn+S

)
=

S∑
i=1

u
(
xi
)
− Cspread

|dS |∑
i=1

[di < η] . (3.39)

Thus, the maximisers {x1, . . . ,xS} are strongly (weakly) encouraged to have distances
of at least ≥ η from each other for Cspread large (small). In some sense, η is a range
parameter that reflects the desired minimum pairwise distance, while Cspread affects the
balance between exploitation of u() and spread of x1, . . . ,xS . In the following, the set of
joint maximisers obtained using the above equation is illustrated on the running example
using the EI as infill function u() for different values of S, η andCspread and the surrogate
model fitted to D8,lhc

0.1 .
The EI generally decreases as D increases, therefore it may be reasonable to letCspread

depend on the current iteration. Let umax be defined as

umax = max
x∈Ωx

u (x) , (3.40)
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Figure 3.10: The indicator function [d < η] (solid line) with η = 1 and the exponential function
e−d (dashed line) as a function of d. The former is zero for all d ≥ η and the latter approaches zero
fast for increasing d. The exponential function e−d increases as d > 0 approaches zero, i.e. small
distances d corresponds to large penaltiesCspreade−Cdecayd. In contrast, the termCspread [di < η]
is equal for all d < η.

and let
Cspread ∝ umax, (3.41)

i.e. Cspread is a fraction of the maximum of u(·) at the current iteration. This may be used
to balance the two terms in Equation (3.39) in a meaningful way. The values of Cspread, η
used in the illustrations are listed in Table 3.2 , with references to figures showing SS for
S = 2, . . . , 5. The chosen parameter values Cspread = {umax, 1

5u
max} corresponds to

very high and moderate penalty, respectively, for all pairwise distances in d smaller than
η. Figure 3.11 illustrate the S selected points obtained for the former parameter value.

Note that for all values of S and η, the selected points xn+1, . . . ,xn+S are unique
and have pairwise distances greater than or equal to η. This is due to the large value of
Cspread, which strongly encourage set of points with pairwise distances at least η.

Figure 3.12 shows the selected points using a smaller Cspread. Comparing Figure 3.11
and 3.12, it is clear that the sampled points are similar for η small (middle subplots). How-
ever, for η large, the sampled points obtained using a smaller Cspread are not unique. This
may be understood by observing that when Cspread is small, the right sum in Equation
(3.39) is small, hence the joint maximisers may have pairwise distances less than η. More-
over, the selected points may be duplicates since the penalty Cspread [d < η] is constant
for all d < η. To summarise, the joint maximisers x1, . . . ,xS , obtained by using the pro-
posed penalty function, seem to have a reasonable spread that may be controlled by the
parameters η and Cspread. A possible drawback of the penalty function is that x1, . . . ,xS

may contain duplicates.
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Table 3.2: Values of the parameters Cspread and η from Equation (3.39) used to determine the joint
maximisers x1, . . . ,xS . The refereed figures shows the joint maximsiers for S = 2, . . . , 5. The
values for η corresponds to a fraction of 1

30
and 1

10
of the range x ∈ [0, 15].

Cspread η Interpretation of Lspread Figure
umax 0.5 High penalty for all pairwise dis-

tances less than a small size
3.11, middle subfigure

umax 1.5 High penalty for all pairwise dis-
tances less than a moderate size

3.11, lower subfigure

1
5u

max 0.5 Moderate penalty for all pairwise
distances less than a small size

3.12, middle subfigure

1
5u

max 1.5 Moderate penalty for all pairwise
distances less than a moderate size

3.12, lower subfigure
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Figure 3.11: The infill function u(x) (upper subfigure) and the S selected points xn+1, . . . ,xn+S

for S = 2, . . . , 5 using Cspread = umax and η = 1
30

(middle subfigure) and η = 1
10

(lower
subfigure).
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Figure 3.12: The infill function u(x) (upper subfigure) and the S selected points xn+1, . . . ,xn+S

for S = 2, . . . , 5 using Cspread = 1
5
umax and η = 1

30
(middle subfigure) and η = 1

10
(lower

subfigure).

Motivated by the above discussion, an alternative penalty function Lspread
(
dS
)

is
proposed. A smoother version of the penalty function from Equation (3.38) can be ob-
tained by replacing the indicator function [di < η] with e−C2di , i.e.

Lspread
(
dS
)

= Cspread
|dS |∑
i=1

e−C
decaydi . (3.42)

The constant Cdecay is redundant since it could be incorporated in the distance measures
di, but is included to emphasise that the rate of decay can be controlled. Note that the
(reciprocal) of Cdecay affects the range of the penalty function, similar to η from Equation
(3.38), with small (large) values giving a rapid (slow) diminishing penalty Lspread(d)
for distances d. The function e−d approaches zero (one) for large (small) d. Thus, the
penalty function is approximately zero if all distances in d are large, and approximately
Cspread|dS | if all distances in d are close to zero. Note that this asymptotic behaviour
is similar to the penalty function defined in Equation (3.38). Moreover, each pairwise
distance di has an exponential contribution, thus Lspread(·) is small only if all distances
d are large. By inserting Lspread (·) from Equation (3.42) into Equation (3.34), the joint
maximisers is given by

u
(
xn+1, . . . ,xn+S

)
=

S∑
i=1

u
(
xi
)
− Cspread

|dS |∑
i=1

e−C
decaydi . (3.43)

In the proceeding, xn+1, . . . ,xn+S are computed for S = 2, . . . , 5, a fixed value for
Cspread = 2umax and different values of Cdecay for the running example D8,lhc

0.1 . The
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joint maximisers obtained for three different values of Cdecay are shown in Figure 3.13a
The points x1, . . . ,xS tend to be centred in regions where u() is high, while keeping a
reasonable spread. Note that the sets x1, . . . ,xS does not contain duplicates, contrary to
what was observed for the penalty function based on the indicator function.

An alternative loss-function could be defined as

Lspread
(
dS
)

= CspreadeC
decay ∑|dS |

i=1 −di , (3.44)

penalising the sum of pairwise distances. However, this penalty term is small as long
the sum of distances is large. Therefore, a set of points xn+1, . . . ,xn+S where all pair-
wise distances dS are small, except one, results in a large sum and consequently a small
penalty Lspread

(
dS
)
. Thus, the loss-function in the above equation may not be suitable

for selecting S with a desired amount of spread.

3.4.2 Pool of infill functions
In this section, methods that utilise several infill functions to select the points xn+1, . . . ,xn+S

are studied. The rationale is that since there is no guarantee that a particular infill function
has overall best performance, it is reasonable to consider several functions. As demon-
strated in Hoffman et al. (2011), considering several acquisition functions as criterion for
selecting xn+1, often outperforms strategies where a single infill function is used in all
iterations.

However, in order to utilise parallel computing, we are interested in selecting S > 1 in
each iteration. This can be achieved by determining the S′ ≥ S maximisers

xn+i = argmaxui (x;D) , for i = 1, . . . , S′, (3.45)

of u1, . . . , uS′ , and selecting a subset of these points as the S design points xn+1, . . . ,xn+S .
The S′ maximisers may be equal, or approximately equal, hence a criteria that ensures that
the S selected points xn+1, . . . ,xn+S have some spread may be reasonable. Examples of
clustering techniques for selecting the S points can be found in Ponweiser et al. (2008);
Jones (2001). Possible drawbacks of these techniques is that they may be computationally
expensive, the performance may depend on several user-specified parameters and the lack
of analytical tractability.

An alternative approach is proposed in the following. Let Lpenalty
(
x;Si

)
denote a

function that is high when x is close to previously selected points Si, defined in Equation
(3.32). An sequential approach for selecting the S point is to select the i’th points as the
maximiser of

xn+i = argmaxui (x;D)− Lspreadi

(
Si
)
, for i = 1, . . . , S. (3.46)

The above expression can be interpreted as follows. The first point xn+1 is simply the
maximiser of the infill function u1(·). The second point xn+2 is the maximiser of u2(·)
adjusted with a penalty Lspreadi (x1) for the closeness of xn+2 to the set S1 = xn+1. The
process is repeated i = 1, . . . , S times, and the set Si and the infill function ui(x) is used
in the i’th iteration. In order to balance the two terms in (3.46) in a sensible way, it is
reasonable to let Li(·) depend on the i’th infill function ui(·).
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(a) The infill function u(x) (upper subfigure) and SS for S = 2, . . . , 5 using
Cdecay = {4, 2, 1} (2nd, 3.rd and 4.th subfigure from the top respectively).
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(b) The function Cspreade−Cdecayd for Cdecay = {4, 2, 1}
(solid, dashed and dotted lines respectively). Large (small)
Cdecay gives fast (slow) decay, and thus large (small)
penalty Lspread(d) for large (small) distances d.

Figure 3.13: The upper subfigures show the selected points obtained using Equation (3.43) for
Cspread = 2umax fixed and different values of Cdecay . The bottom figure shows the corresponding
functions Cspreade−Cdecayd. For Cdecay = 4 the points (x)1 , . . . , (x)S are spread in the region
where u() is high. Decreasing to Cdecay = 2 gives slower decay of e−Cdecayd, and therefore a
greater spread is encouraged. For Cdecay = 1 the penalty Lspread(d) is large for relatively large d,
thus the points are spread evenly in the domain Ωx = [0, 15].
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Recall the penalty functions Lspread, based on the indicator function and the exponen-
tial function, studied in the previous section. The latter was defined as

Lspread
(
d
(
x1, . . . ,xS

))
= Cspread

|d|∑
i=1

e−C
decaydi . (3.47)

where the parameter Cspread was chosen to be proportional to umax defined in Equation
(3.40). Let Lspreadi be defined as

Lspreadi

(
di
(
x1, . . . ,xi

))
= Cspreadi

|d|∑
i=1

e−C
decaydi ,

Cspreadi ∝ umaxi = max
x∈Ωx

ui (x;D)

(3.48)

where the function Lspreadi

(
x1, . . . ,xi

)
depends on the number of selected points (i− 1)

at the i’th iteration and Cspreadi . As discussed ib the previous section it may be reasonable
to select a constant proportional to the maximum of the current infill function. Inserting
Lspreadi into Equation (3.46) gives the following expression for the i’th selected point

xn+i = argmaxui (x;D)− Cspreadi

|d|∑
i=1

e−C
decaydi . (3.49)

As it is difficult to analyse the performance of a single acquisition function in general,
it is difficult to assess the performance of the proposed sequential approach for selecting
x1, . . . ,xS . However, assuming that the computer intensive function f true can be evalu-
ated efficiently in parallel, the proposed method can be used to utilise parallel processing.
The proposed sequential method is rather simple, and may be an adequate approach for
selecting S design points with a reasonable spread.

3.4.3 Sample paths for synthetic data
In the proceeding, six iterations of the sequential optimisation method using S infill points
selected jointly, as described in Section 3.4.1, are illustrated on the running example. The
data samples D3,lhc

0.1 are used as initial sample. For each iteration, the current data samples
Dn, the prediction fn(x) fn(x)±σn(x) and the set of joint maximisers SS are recorded.
The latter quantity is of particular interest since it gives information of whether the joint
maximisers of Equation (3.43) have a reasonable balance between maximisation of the
univariate EI criterion and spread.

Figure 3.14 shows these aspects obtained by selecting S = 2 in each iteration. Note
that for the second and sixth iteration, the two selected points are in the maxima of two
different modes of the EI. For the first, third, fourth and fifth iteration, the EI criterion has
one significant mode, and the two points are sampled from this mode with some spread.
It seems that the S = 2 selected points have a reasonable balance between spread and
maximisation of the EI criterion for all iterations.

Similarly, Figure 3.15 shows fn(x), fn(x)±σn(x), Dn and the S = 3 joint maximis-
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Figure 3.14: Upper subfigures: fn(x), fn(x) ± σn(x) and f true(x) shown as solid, dashed and
dotted lines respectively. Middle subfigures: observations Dn at iteration i. For i > 1, the previ-
ously S observed points are marked with a + sign. Lower subfigure; the EI infill function u(x) and
the set of joint maximisers SS obtained by finding an approximate solution of Equation (3.43).
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Figure 3.15: Upper subfigures: fn(x), fn(x) ± σn(x) and f true(x) shown as solid, dashed and
dotted lines respectively. Middle subfigures: observations Dn at iteration i. For i > 1, the previ-
ously S observed points are marked with a + sign. Lower subfigure; the EI infill function u(x) and
the set of joint maximisers SS obtained by finding an approximate solution of Equation (3.43).
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ers for 6 iterations. Note that in the fourth iteration, the three joint maximisers are selected
from three different modes of the EI criterion. In the first and third iteration the points are
selected from two different modes. Note that in the sixth iteration, only one point is se-
lected from the single mode. This mode is very spiky, hence the penalty of sampling more
than one point in this mode is large due to the small pairwise distances. For all iterations
the selected points seem to have a reasonable degree of spread.

The same quantities are displayed in Figure 3.16 using S = 4 infill points in each of
the 6 iterations. In the first iteration, the four joint maximisers are in the leftmost region.
Note that for all remaining iterations, the maximisers of the modes are always in the set of
joint maximisers.

As is demonstrated for S = {2, 3, 4}, the sets of joint maximisers S have a reasonable
balance between maximisation of the EI criterion and pairwise distances. This indicates
that the multipoint criterion defined in Equation (3.43) is suitable for selecting S > 1 infill
points.
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Figure 3.16: Upper subfigures: fn(x), fn(x) ± σn(x) and f true(x) shown as solid, dashed and
dotted lines respectively. Middle subfigures: observations Dn at iteration i. For i > 1, the previ-
ously S observed points are marked with a + sign. Lower subfigure; the EI infill function u(x) and
the set of joint maximisers SS obtained by finding an approximate solution of Equation (3.43).

52



3.5 Constrained optimisation
A simulation model may contain constraints on the input x. It may require simulations in
order to evaluate if the input satisfy the constraints. Such (unknown) constraints poses a
challenge for surrogate based optimisation, and we refer to Schonlau et al. (1998); Gelbart
et al. (2014); Williams et al. (2010); Lindberg and Lee (2015); Gramacy et al. (2016) for
different approaches for incorporating constraints in surrogate based optimisation meth-
ods. In this section, two methods for handling constraints are studied. The method intro-
duced in 3.5.1 is based on the work by Schonlau et al. (1998), and requires an additional
response variable to model the probability that a constraint is satisfied. The method pro-
posed in section 3.5.2 use a penalty term for constraint violation, and does not require
modelling of additional output variables.

3.5.1 Constrained expected improvement
Following the approach in Schonlau et al. (1998), let c (x) denote a constraint on an addi-
tional response variable Yc. Let the improvement function Iρc (x), subjected to c (x) , be
defined as

Iρc (x) =

{
(y (x)− y+)ρ, if y (x) > y+ and a ≤ c (x) ≤ b
0, otherwise,

(3.50)

i.e. the improvement Iρc are non-zero if and only if y (x) > y+ and the variable yc (x)
satisfy the constraint c (x). Let Y 1 (x) and Y 2 (x) denote the two response variables under
consideration. By assuming that two variables Y and Yc are statistical independent, the
expectation of Equation (3.50) can be written as

E [Iρc (x)] = E [Iρ (x)]P (a ≤ c (x) ≤ b) (3.51)

The above equation is a scaled version of E [Iρ (x)]. By estimating the probability of
constraint satisfaction P (a ≤ c (x) ≤ b), the constrained expected improvement for E [Iρc ]
can be obtained by simple multiplication of the expected improvement E [Iρ].

In the proceeding, the constrained expected improvement is illustrated for the ANNs
Υ(x) shown in Figure 3.1. For simplicity, assume ρ = 1 and that the probability of
constraint satisfaction is given by

P (a ≤ c(x) ≤ b) =
2x

152
, (3.52)

i.e. it increases linearly from zero to one on the domain x ∈ [0, 15]. Thus, E
[
I1
c (x)

]
can be easily obtained by inserting for E

[
I1 (x)

]
and P (a ≤ c(x) ≤ b) into Equation

(3.51). E
[
I1 (x)

]
is given by Equation (3.22) and Equation (3.26) for CDF based on

the emprical CDF and an assumed normal distribution respectively. Figure 3.17. shows
E
[
I1
c (x)

]
computed for the two CDFs and the constraint in Equation (3.52). Comparing

the unconstrained and constrained expected improvement, the former shown in Figure 3.5,
it is clear that P (a ≤ c(x) ≤ b) encourages exploration of x with high probability for
constraint satisfaction.
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Figure 3.17: The expectation of the constrained improvement E [Ic (x)] computed using F̂norm
Y (x) (y)

(solid line) and F̂Y (x)(y) (dotted line) and P (a ≤ c(x) ≤ b) from Equation (3.52). The latter is
small (large) for x low (high). Note that E [Ic (x)] is high where the constraint c (x), defined in
Equation (3.52), is high.

3.5.2 Penalty method
The approach proposed in this section utilise a penalty function Lc (x) to adjust the sim-
ulation output f true (x). An appealing feature of this approach is that it does not require
modelling the probability that a strategy x satisfy c (x), as opposed to the method dis-
cussed in the previous section. The rationale for including the term Lc (x) is that it can
be used to reflect a penalty for constraint violation. Thus, optimisation of the simulation
model will tend to avoid regions where c(·) is not satisfied. In the following, the method
is explained for a generic maximisation problem and penalty function Lc (x).

Let f true (x) denote the function to be maximised. Let c (x) denote the unknown
constraint available through evaluation of f true (x). Let Lc (x) ≥ 0 denote a function
that penalises violation of c (x), and assume high (low) degree of constraint violation
corresponds to high (low) values of Lc (x). Define the adjusted observations yi of xi as

fadj
(
xi
)

= f true
(
xi
)
− Lc

(
xi
)
. (3.53)

The above equation is high when f true (x) is high and Lc(x) is low, and the maximiser
is the point with best balance between f true

(
xi
)

and Lc
(
xi
)
. This approach is used to

adjust the output for a simulation model in Section 4.1.2.
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Chapter 4
Case study on NOWIcob
simulation model

In this chapter, the surrogate based optimisation method is tested on a real-world prob-
lem that require evaluation of a time-consuming simulation model. The problem under
consideration is to reduce the costs related to operation and maintenance (O&M) tasks
for offshore wind farms. These costs constitute about one third of the overall cost during
the lifetime of a wind farm. Thus, finding good strategies for performing the O&M tasks
are essential. In practice it is infeasible, or at best extremely costly, to evaluate the per-
formance of strategies by physical experiments. There are developed several simulation
models that mimic the logistics related to O&M tasks. The sequential optimisation method
is utilised on such a model called NOWIcob. The aim is to identify combinations of vessel
fleet and personnel that gives low O&M cost. An introduction to O&M operations is given
in Section 4.1, and the decision problem is described more in detail in Section 4.2.

4.1 Introduction

SINTEF has developed a simulation model called NOWIcob (Norwegian offshore wind
power life cycle cost and benefit model). The simulation model mimics the daily opera-
tions on a wind farm in order to evaluate the performance of different O&M strategies. In
this section, main features of the model are described. See Hofmann et al. (2014) for a
more in depth description of this simulation model, and Hofmann (2011) for a review of
similar simulation models.

One of the key features of the simulation model is that different types of turbine-
failure occurs. These failures cause the windmill to stop or reduce the produced energy
until they are fixed. Failures may require technicians, spare parts and vessels with special
abilities in order to be restored. Since the wind farm is offshore, the vessels have to access
the wind farm in order to fix the failures. The different vessels have limits that restricts
what kind of weather they can be operated in, and if the weather is too rough the repair
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Figure 4.1: Simplified flow scheme of the NOWIcob simulation model, adopted from a similar
illustration in Hofmann et al. (2014). The wind farm and the related O&M strategy x are specified
by the input data. The weather can be either historical records or synthetic data generated from such
records. Operations related to maintenance and logistics are simulated with one hour resolution. The
results contain many output variables. The profit π (x) is used throughout this project.

must be rescheduled. The simulation model distinguish between corrective and preventive
maintenance tasks. The former type refers to maintenance tasks related to failures that
randomly occurs. The failure times are assumed to follow a homogeneous Poisson process
with an average yearly rate. This rate can be different for different years, which can be
used to model for example a bathtub curve with higher intensities the first few and last
few years. The latter type is time-based maintenance tasks that have to be performed at
predetermined time steps. For convenience, such tasks are modelled as one annual service
task that occurs each year for each turbine. The setup of the NOWIcob model used in this
project does not penalise O&M strategies that are not able to complete all annual service
tasks. This is discussed more in detail in Section 4.1.2 due to the implications this feature
has on the sequential optimisation method. A more in depth discussion of the failures and
related logistics can be found in Hofmann et al. (2014).

The user of the model can specify many input parameters that together describe all
aspects that are used by the simulation model. Figure 4.1 illustrates the steps in the sim-
ulation model. The weather can be chosen as historical records, or synthetically weather
generated from such records by using a Markov chain process. The power curve of the
turbines depends on the wind speed, and vessels may have weather limits that restricts the
time they can be used.

In the proceeding, let x denote all input parameters. By running the simulation model
for particular values of the input parameters x a resulting output y is produced, which is
stochastic if either failure times or the weather is treated as stochastic. The failure times
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Table 4.1: Explanation of some important input and output parameters.

Input parameter Definition
Weather Time series for wave height and wind speed are generated

from historical weather from the wind farm location.
Turbine type Properties as power curve, physical dimensions, cut-in

and cut-off speeds differs for different types.
Turbine number The total number of turbines at the wind farm
Distance to location The shortest distance from the wind farm to the loca-

tion(s) with personnel accommodation.
Simulation horizon The simulated lifetime of the wind farm
Personnel available The average number of maintenance or technician per-

sonnel available each shift. These are stationed at an on-
shore or offshore location.

Failure type The different failure types have different consequences.
They may partly or fully reduce the turbines ability to
produce energy, or they can be annual services in order to
prevent future failures.

Rate The different failures types are assumed to occur ran-
domly with some intensity. Maintenance tasks that are
performed regularly, as annual service, can be performed
at predetermined dates.

Total direct O&M cost The sum of all costs related to vessels, repair, personnel
and location.

Total energy production Takes into account availability, loss and downtime.

refers to the times when corrective failures occurs.
Some examples of different types of input x and output y are shown in Table 4.1.

A reader unfamiliar with wind farms and simulation models similar to NOWIcob, may
ease the further reading by getting familiar with the input and output explanations in the
mentioned table. Other parameter are listed in Table 6.2, 6.3, 6.4 and 6.5 in Appendix
A. A throughout descriptions of all input, output and assumptions used in the simulation
model is outside the scope of this paper, and we refer to Hofmann et al. (2014) for a more
detailed description.

Before proceeding with demonstrations of the simulation model, a more mathematical
language is adopted for describing the relation between different wind farms with specific
O&M strategies and their performance.

Let the vector [x′,x−], where x′ = (x1, . . . , xP )
> and x− = (xP+1, . . . , xP̃ )

> con-
tain all input parameters necessary to describe any wind farm with specific O&M strate-
gies. The two vectors x′ and x− are a partition of the input parameters categorised by
whether a user of the model finds the parameters of interest or not. The former type of
variables are referred to as decision variables. The nuisance parameters are assumed to be
fixed. In order to ease the readability, we may adopt notation that excludes the fixed pa-
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rameters. Hence, let x = [x′;x−] = [x1, . . . , xp;x
−] denote the values of the P varying

parameters, given the value x− for the fixed parameters.
Moreover, let the associated performance for a specific choice of variables be denoted

by y (x). With this notation, we can model the stochastic simulation model as

y (x) = f true (x) + ε (x) (4.1)

where f true (x) may be interpreted as the true relation and ε (x) as noise due to the ran-
domness in weather and failure times. If both weather and failure time are deterministic,
the noise term could be omitted. However, this approach would give information on how
strategies perform for a particular weather time series with known failure times, and hence
may be disadvantageous since it fails to favour strategies with overall good performance
for different realisations of the assumed random weather and failure times. In some cases,
it may be of interest to use deterministic weather, either historical weather or the same syn-
thetic weather, and/or let the failure times be the same for all simulations with the same
input. Before illustrating the effect of the stochastic aspects, the different outputs of the
simulation model are introduced.

In Banks (1998) several advantages of simulation models are mentioned, and most of
them concern the ability to learn about the underlying system, in this case a wind farm
and its related operations. A decision maker may learn some characteristics of different
O&M strategies, and be enabled to answer what-if questions. The NOWIcob simulation
model produces a lot of output that may help the user draw inference. Some of these
outputs are listed in Table 6.5 in Appendix A. Two of these outputs, namely O&M cost
and produced amount of energy should ideally be low and high respectively. Let the profit
π (x) represent the users desired trade off between the two aspects, and be defined here as

π (x) = Iener (x)− COM (x)− Cinve (4.2)

where COM (x) and Iener (x) denotes the total cost and income from energy production
for a particular O&M strategy x over the whole lifetime, and Cinve denotes the investment
cost of the wind farm. Unless stated otherwise, it is assumed that Cinve = 0 since a fixed
investment cost does not affect maximisation of Equation (4.2). The income from energy
production Iener (x) implicitly assumes some (future) price scenario for electricity. A
constant price scenario is assumed for simplicity. The overall focus is on maximisation
of the profit π (x), which can be calculated from the two outputs COM (x) and Iener (x)
by insertion into Equation (4.2). Results from the simulation model may indicate if a
given O&M strategy has high associated O&M cost, produced energy and profit. How-
ever, due to stochastic weather and failure times, it may be hard to draw conclusions since
the promising (poor) results may be caused by favourable (unfavourable) realisations of
the stochastic components. The effect of the stochastic failure times and the (possible)
stochastic weather on the profit π (x) may be assessed by performing several simulation
with the same input x. Figure 4.2 shows two boxplots of π (x) obtained by performing 8
simulations for a strategy x, with deterministic and stochastic weather respectively. Note
that the variability of π (x) is smaller (higher) when the weather is deterministic (stochas-
tic). The reason is that some weather time series have calm (harsh) weather such that
maintenance tasks are less (more) restricted to the wind speed and weather height. More-
over, the turbines potential energy production depends on the wind speed, which also effect

58



Deterministc weather Stochastic weather

#108

3.95

4

4.05

4.1

4.15

4.2

4.25

4.3

:(x)

Figure 4.2: The left (right) figure shows boxplots of the profit π (x) obtained through 8 repeated
simulations using deterministic (stochastic) weather time series and the same strategy x. The simu-
lation horizon is 5 years, and the failure times are stochastic. The deterministic weather is a sequence
of historic records, whereas the stochastic weather sequences are (unique) synthetically generated
weather sequences. Using deterministic (stochastic) weather gives low (high) variability for the
profit π (x).

the amount of potential energy that can be harvested. The effect of stochastic weather is
discussed more in detail in Section 4.1.1.

When comparing the performance of different strategies, it is not obvious which strat-
egy that is best due to the stochastic output. An approach may be to perform several
simulations for each input to reduce the variability. This is time consuming, so different
kinds of analysis could be applied in order to reduce the need of many simulations. In the
master thesis of Hagen (2013) sensitivity analysis was performed for analysing the results
from the NOWIcob simulation model, and is an integrated part of this model. Such anal-
ysis aims at answering how the output is affected by changes in one or more of the input
parameters. A surrogate model can be used to approximate f true (x) in Equation (4.1).
If the surrogate model is accurate, we may obtain knowledge of how changes in one or
several input parameters affect the output.

Some input parameters have a trivial effect on the output, so processing of previously
simulations could be used to infer what the output would be for changes in these inputs.
Examples of such parameters are all cost parameters. Parameters that do not have a trivial
relation are those which affect the daily operations or the electrical availability of the wind
farm, like the failure rates, prioritisation of maintenance tasks, vessel fleet, weather etc. In
this project we will focus on the latter type of parameters. Parameters that either have a
known and easy relation to the output, or a negligible effect, are given less consideration
than parameters with unknown and great effect on the output. The reason is to avoid
problems related to the ”curse of dimensionality”. The term refers to problems that arises
when the dimensionality increases and computer demands exceed what is feasible.

Some other assumptions that may affect the analysis in this project is discussed in
Appendix A.
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Figure 4.3: The empirical CDF of Itheo(w) calculated from w1, . . . , w270 weather time series
over 1 (upper subfigure) and 5 (lower subfigure) years. Note the difference in x-axis: the relative
variability of Itheo(w) is higher for the short time series compared to the longer time series. This
illustrates that more stable results may be obtained by increasing the simulation horizon. Longer
simulation horizons corresponds to more time-consuming simulations, hence the user may balance
stability and time consumption.

4.1.1 Maximal theoretical income

The variability increases if different weather time series w is used in the different simu-
lations. Some weather time series may have more harsh weather conditions compared to
other time series, such that maintenance tasks are more difficult to perform. However, this
effect depends on the strategy x since some strategies are less sensitive to weather than
others. In the following, a quantity that is useful for understanding the effect of weather
on the simulation output is discussed. Define the maximum theoretical income Itheo(w)
as the income if all turbines were working all the time for weather time series w . This
measure of the potential of the wind farm is independent of the strategy x, and is useful
for explaining the variability of the simulation output. Itheo(w) is one of the many output
parameters of the NOWIcob model, and it is calculated by taking into account the wind
speed, power curve of the turbines and losses due to wake effect and electrical infrastruc-
ture (Hofmann et al., 2014).

Figure 4.3 shows the empirical CDFs FItheo(w) obtained by computing Itheo(w) for
270 weather time series w1, . . . , w270 over a period of one and five years. From the figure,
it is clear that FItheo(w) has more spread for simulations performed over one-year than
the alternative. This illustrates that the more stable output from the simulation model may
be achieved by increasing the simulation horizon. The time consumption increases for
increasing simulation horizon. By specifying the simulation horizon, the user can balance
a simulations time consumption and the outputs variability.
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4.1.2 Annual service constraint
Annual service tasks are a type of maintenance tasks that must be performed for each
turbine every year. In this section, the sequential method is extended to handle a constraint
related to the number of such tasks that has to be completed. It is reasonable to require that
only strategies with a high degree of completed annual service tasks are valid strategies.
Evaluating if a strategy satisfy this constraint may only be assessed through simulation.
Annual service require technicians assessing the turbines, spare parts and shut-down of
the turbine during work, see Appendix 6.7. The NOWIcob does not penalise strategies
that fails to complete the service tasks.

The first few runs of the sequential method optimised only the profit, and the method
converged to strategies that had high profit due to low O&M cost and high amount of pro-
duced energy. More careful analysis of the simulation output for these strategies showed
that the amount of completed annual service tasks were too low. Such (unknown) con-
straints poses a challenge for surrogate based optimisation, and we refer to Schonlau et al.
(1998); Gelbart et al. (2014); Williams et al. (2010); Lindberg and Lee (2015); Gramacy
et al. (2016) for different approaches for incorporating constraints in surrogate based op-
timisation methods. In the proceeding, we propose an approach for handling the annual
service constraint by adjusting the profit for strategies that fail to complete the annual
services. The motivation for this approach is that it is simpler than the above-mentioned
approaches, and such penalty methods are commonly used in different optimisation meth-
ods.

Let T as (x) ∈ [0, 1] denote the fraction of annual service tasks that are completed for
strategy x. Since strategies are only valid if most annual service tasks are completed, it is
of interest that T as is exactly, or very close to, 1. Define an adjusted profit measure π? (x)
as

π? (x) = π (x)− Las (x) (4.3)

where Las (x) is a loss-function for constraint violation. A thorough discussion of the
effect of constraint violation is outside the scope of this project. However, since it is of
interest to consider strategies with T as high, it may suffices with any penalty function T as

that encourages exploration of strategies where T as is likely to be high. For simplicity,
assume that Las (x) depends linearly on T as (x) as

Las (x) = Cas (1− T as (x)) (4.4)

where Cas > 0 is a constant that ensure a sufficiently high penalty for service tasks not
completed. Note that if all annual service tasks are completed, i.e. T as = 1, Equation
(4.4) is 0. From Equation (4.4), it is clear that by multiplying the constant Cas with a
factor, corresponds to multiplying Las (x) with the same factor. The value of C is set such
that the penalty of not completing a service task, is higher than an estimate of the total
cost of completing the task. In the following, the profit π (x) and the adjusted π? (x) are
computed for an example case with 30 different strategies. Figure 4.4 illustrates that the
profit for strategies with low T as (x) are adjusted by a penalty Las (x). A higher (lower)
value of the constant Cas results in a higher (lower) penalty. The magnitude of the penalty
seem reasonable. A low penalty may results in a sequential method that converges towards
an optimal strategy x where T as (x) < 1. A too high penalty may cause greater variability
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Figure 4.4: The upper subfigure shows π (x) (’o’) and π? (x) (’+’) obtained through simulation of
strategies x1, . . . ,x30 and by applying equations (4.2) and (4.3) respectively. The lower subfigure
shows the corresponding values of T as(xi) for i = 1, . . . , 30. The strategies xi represent differ-
ent choices of number of personnel and vessels, and the constant Cas corresponds to a penalty of
100.000 GBP per annual service that is not completed. Note especially that the fifth strategy has
very high profit π (x), whereas the adjusted profit π? (x) is lower since only 53.5% percent of the
service tasks are completed. The strategies x1, . . . ,xn0 are generated by using a Latin Hypercube
design for the three variables CTV, SES and technicians
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Table 4.2: Parameters related to personnel and the vessel types CTV and SES. Both vessels have
capacity of transporting 12 personnel. They can operate one shift before returning to the harbour.
Fuel consumption is neglected. The SES vessels is faster, more robust and more expensive than the
alternative. The set of feasible strategies Ωx is all possible combinations of x1, x2 and x3.

CTV SES Personnel
Fixed cost [GBP/year] 638.750 1875.000 80.000
Speed [knots] 20 30 -
Weather limits access (wave heigh,
wind speed)

1.5 m, 16 m/s 2 m, 16m /s -

Feasible range [0, 1, . . . , 4] [0, 1, . . . , 4] [6, 7, . . . , 50]

in the data samples since the magnitude of the stochastic term Las (x) increases. In the
proceeding, the maximisation of the simulation model output is done with respect to π? (x)
from Equation (4.3), with Cas = 100.000.

4.2 Vessel fleet optimisation-problem
In this section, the sequential method is tested on a problem of selecting a combination
of Crew Transfer Vessels (CTVs) and technicians. CTVs are used to transport personnel
that can perform maintenance tasks. Different vessel types may have different abilities as
speed, capacity weather restrictions etc. The weather affects how and when the vessels
can operate. Therefore, it is not straightforward to analyse which fleet mix gives the best
balance between O&M cost and produced amount of energy. Different approaches have
been applied to analyse problems related to vessel fleet selecting. For example, a simu-
lation model is in Dalgic et al. (2014) used to study the decision problem of selecting a
combination of two types of CTVs. A similar problem is studied in Tande et al. (2013)
and Gundegjerde et al. (2015) by applying deterministic and stochastic mathematical op-
timisation respectively.

The above-mentioned approaches show promising results for selecting combinations
of several vessels, helicopters etc. In this project, we extend the decision problem by
adding workforce as a decision variable. The sub problems of selecting vessel fleet and
work force are highly connected, and it is therefore of interest to consider them as a single
decision problem. In the following, the decision problem is formulated in a more precise
manner. Let

x = (xCTV , xSES , xPER) (4.5)

denote a strategy represented by the number of CTVs, Surface Effects Ships (SES) and
personnel respectively. The vessel types CTV and SES can be used to transport personnel,
and the SES is defined as a more robust and expensive version of the CTV. Costs and other
related parameters for the decision variables are listed in Table 4.2. The objective is to find
xopt that maximises the adjusted profit π?(·), defined in Equation (4.3), i.e.

xopt = argmax
x∈Ωx

π? (x) (4.6)
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Table 4.3: Explanation of the three instances of the VFO optimisation case. The main difference is
whether the same (historical) weather time series is used or unique (synthetic) time series are used
for the different simulations. All other parameters used by the simulation model is equal for the three
cases. The number of iteration of the sequential method niter is low (high) depending on degree of
variability in output.

Case 1 Case 2 Case 3
Lifetime 1 year 5 years 5 years
Weather Deterministic Deterministic Stochastic
Failure times Deterministic Stochastic Stochastic
niter 40 60 80
Simulation
characteristics

Rapid simulations,
deterministic output

Slow, stochastic out-
put with moderate
variability

Slow, stochastic out-
put with high vari-
ability

Interpretation:
Modelling of
O&M tasks and
related logistics
over...

1 year with the same
(historical) weather
time series and equal
failure times for
replicates of the
same strategy

5 years with the
same (historical)
weather time series
and different failure
times for replicates
of the same strategy

5 years with unique
(synthetic) weather
time series and dif-
ferent failure times
for replicates of the
same strategy

where Ωx denotes the set of feasible strategies. For notational ease, let f true (x) denote
the observed adjusted profit π? (x) for strategy x. It is of particular interest to gain knowl-
edge of the sequential methods performance on problems with different amount of noise.
Therefore, the method is tested on three instances of the VFO problem with different de-
gree of variability in the simulation output. The instances are referred to as case1, case2
and case3, and a description of each can be found in Table 4.3. The cases differ by whether
the failure times and/or the weather are treated as deterministic or stochastic. The simu-
lation output for case 1 is noise-free, and case 2 and case 3 has moderate and high degree
of noise respectively. In the proceeding section, the sequential method is used to optimise
the simulation output π?(·) for the three cases.

.

4.3 Optimisation algorithm for the VFO problem
The sequential method utilised for optimising the different cases of the VFO problem
is summarised in Algorithm 5 . The initial design points x1, . . . ,xn0 are selected by a
Latin Hypercube sampling procedure, see Santner et al. (2003); Forrester et al. (2008) for
thorough discussion of such space filling procedures. The same set of parameters are used
for the different cases, except the number of iterations niter. This parameter is used as
stopping criteria, and is set to 40, 60 and 80 for case 1, case 2 and case 3 respectively.
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Algorithm 5 Optimisation by sequential design
Define:

wind farm with the fixed parameters x−

decision variables x = (xCTV , xSES , xPERS)
feasible domain Ωx

Specify surrogate model parameters:
number of ANNs B = 10

Specify sampling procedure:
number of infill points S = 4
joint infill function u

(
xn+1, . . . ,xn+S

)
defined by Equation (3.43)

with univariate infill function u (x) = EI (x)
Obtain initial sample

initial sample size n0 = 30
Select x1, . . . ,xn0 by Latin Hypercube sampling
Evaluate yj = f true(xj) in parallel for j = 1, . . . , n0

Dn = {(xj , yj)}n0
j=1

Iteration i = 1
repeat

Fit surrogate model fn (x) to Dn

Find xn+1, . . . ,xn+S = argmaxx∈Ωx
u
(
xn+1, . . . ,xn+S

)
Sample yn+j = f(xn+j) in parallel for j = 1, . . . , S
Augment Dn = {Dn,

(
xn+1, yn+1

)
, . . . ,

(
xn+S , yn+S

)
}

Record:
xmax,i = argmaxx∈Ωx

fn (x)
umax,i = argmaxx∈Ωx

u (x)
i = i+ 1

until i > niter

return Dn . Data samples used for further analysis.
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Chapter 5
Experimental results

In this chapter, the sequential optimisation procedure presented in section 4.3 is used to
optimise the three instances of the VFO problem. It is of interest both to assess aspects
related to the sequential optimisation method and the results available after the method has
converged. These two aspects are studied in Section 5.1 and Section 5.2 respectively.

5.1 The optimisation process
Since the surrogate model is tested on problems without a known optimal solution, it can
be difficult to measure the performance. In order to better understand how the surro-
gate model learns which strategies that are favourable, the predicted maximiser xmax,i is
recorded at each iteration i = 1, . . . , niter. The predicted maximisers xmax,i is interesting
since it shows which strategies the surrogate model fn (x) predicts is the best at iteration
i. Figure 5.1 shows xmax,i for i = 1, . . . , niter for the three cases. From the figure, it can
be seen that the xmax,i is very unstable the first few iterations i. This indicates that the
surrogate model fn (x) changes significantly between each iteration. As the number of it-
erations increases, xmax,i stabilises at some equilibrium point. Note that such convergent
behaviour occurs fast for case 1, and slower for case 2 and case 3 which have moderate
and high degree of variability in the simulation output.

An alternative method for visualising xmax,i is shown in Figure 5.2 where the frequen-
cies of xmax,i are shown as three dimensional histograms. The histograms illustrates the
pairwise distribution of xmax,i, with respect to the components xCTV , xSES , xPER, for
the three cases. From the figures, it is clear that xCTV = 1 and xSES = 1 is the most
common combination of vessels for all cases. Moreover, the most common number of
personnel is within the interval [20, 30].

Another quantity that can be of interest is the maximum expected improvement umax,i.
This quantity is implicitly used to select the S maximisers, see (3.43) and recall that the
constant Cspread was defined as 2umax,i. The sample paths of umax,i for the three cases
are shown in Figure 5.3 as a function of i. The maximum EI decreases, which suggests
that using Cspread ∝ umax,i is reasonable. Low EI indicates that large improvements
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(c) xmax,i for case 3

Figure 5.1: The figures show the components (xmax,i
CTV , xmax,i

SES , xmax,i
PER ) of the predicted maximisers

xmax,i as a function of iteration i = 1, . . . , niter for case 1 (upper subfigure), case 2 (middle
subfigure) and case 3 (bottom subfigure). Note that xmax,i stabilises for increasing i. This reflects
that the surrogate model becomes more confident in which strategy x that maximise the simulation
output. The convergence towards equilibrium point(s) occurs faster for case 1 (deterministic) and
slower for the alternatives. Note that the number of iterations differs for the three cases.
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(a) CTV vs tech. (b) SES vs tech. (c) CTV vs SES

(d) CTV vs tech. (e) SES vs tech. (f) CTV vs SES

(g) CTV vs tech. (h) SES vs tech. (i) CTV vs SES

Figure 5.2: The subfigures show histograms of the pairwise components of xmax,i for i =
1, . . . , niter for case 1(upper row), case 2 (middle row) and case 3 (bottom row). The histograms il-
lustrates the number of times the components of xmax,1, . . . ,xmax,niter are within certain bins. For
all cases, most of the predicted maximisers have few CTVs and SESs and around 25 personnel. Note
that the histograms are more centred for case 1 (upper row) than the alternative. This indicates that
the predicted maximiser are similar between the iterations i, . . . , niter . Note that the frequencies
(z-axis) are not directly comparable due to different number of iterations for the different cases.
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Figure 5.3: The figures show the predicted maximum EI umax,i as a function of iteration i =
1, . . . , nopt for case 1 (left), case 2 (middle) and case 3(right). umax,i reflects the expected im-
provement of performing a simulation for strategy x. Note that umax,i generally decreases for
increasing iterations. This indicate that the surrogate model becomes certain that only very small
improvements over the current best predicted strategy xmax,i is likely. Note the difference in y-axis
due to difference in simulation horizon between case 1 and the alternatives.

over the predicted best strategy is unlikely. Thus, decreasing umax,i may indicate that the
sequential method predicted optimiser converges to the global optimiser as the number of
iterations increases. Recall that the S = 4 points selected for simulations are selected
using a criterion that encourages exploration. This strengthen the belief that the predicted
optimiser indeed converges to the (approximate) global optimiser.

5.2 Optimal strategies
After the optimisation procedure has terminated, it is of interest to gain knowledge of
which strategies x that are favourable. A more accurate surrogate model fn (x), using 20
instead of 10 ANNs, are fitted to the data samples Dn. The strategy that maximises the
surrogate model can easily be computed. However, a decision maker may be interested
to gain more knowledge of how the optimal strategy compares to other good strategies,
the related uncertainty and other aspects. For the decision problem at hand, the following
results are computed for each of the cases

• the nopt = 20 best strategies,

• the related profit and uncertainty

The nopt predicted best strategies are defined as

xopt,j =

{
argmaxx∈Ωx

f (x) , if j = 1

argmaxx∈Ωx
f
(
x;x 6∈ {xopt,1, . . . ,xopt,j−1}

)
, if j = 2, 3, . . . , nopt

(5.1)

i.e. as the nopt unique maximiser of the surrogate model f (x). A search heuristic is used
to identify the 20 predicted best strategies defined in Equation 5.1, hence the prediction
f
(
xopt,j

)
may not necessarily decrease for increasing j.
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Table 5.1: The table show the components xopt,j = xopt,jCTV , x
opt,j
SES , x

opt,j
PER, the predicted profit

f
(
xopt,j

)
and prediction uncertainty σ

(
xopt,j

)
for the 20 best strategies xopt,1, . . . ,xopt,20 for

case 1. The 90% confidence interval [CIj
0.05,CI

j
0.95] is estimated by f

(
xopt,j

)
± 1.645σ

(
xopt,j

)
for j = 1, . . . , 20. A visual representation of xopt,j and f

(
xopt,j

)
with confidence interval

[CIj
0.05,CI

j
0.95] is shown in figures 5.4a and 5.4b respectively.

j xopt,jCTV xopt,jSES xopt,jPER 10−6f
(
xopt,j

)
10−6σ

(
xopt,j

)
10−6CI0.05 10−6CI0.95

1 1 1 21 84.86 0.08 84.72 84.99
2 1 1 20 84.84 0.08 84.72 84.97
3 1 1 22 84.84 0.11 84.66 85.02
4 1 1 23 84.79 0.13 84.56 85.01
5 1 1 19 84.77 0.11 84.59 84.96
6 1 1 24 84.72 0.15 84.46 84.97
7 1 1 18 84.64 0.18 84.35 84.93
8 1 1 25 84.63 0.17 84.36 84.91
9 1 1 26 84.54 0.18 84.24 84.84
10 2 1 21 84.49 0.18 84.18 84.79
11 2 1 20 84.47 0.19 84.16 84.78
12 2 1 22 84.46 0.19 84.15 84.77
13 1 1 27 84.45 0.20 84.12 84.77
14 1 1 17 84.43 0.25 84.02 84.84
15 2 1 23 84.40 0.20 84.08 84.72
16 1 1 28 84.35 0.22 83.99 84.71
17 2 1 19 84.40 0.21 84.05 84.75
18 1 1 29 84.26 0.25 83.85 84.66
19 2 1 24 84.32 0.20 83.99 84.66
20 2 1 18 84.24 0.26 83.82 84.66
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Table 5.1 shows the 20 predicted best strategies xopt,1, . . . ,xopt,20, the predicted profit
f(xopt,j), the prediction uncertainty σ(xopt,j) and the estimated 90% confidence intervals
for case 1. The strategies are very similar, most of them differ only by small differences
in the number of technicians. Note that there are only two vessel combinations among the
20 best predicted strategies, namely

• 1 CTV, 1 SES,

• 2 CTV, 1 SES.

Strategies based on the above vessel combinations has relatively low O&M cost and are
able to complete corrective maintenance task effectively when the number of technicians
are larger than approximately 18. Moreover, such strategies most often complete all annual
service. Note that the predicted profit for all of the 20 strategies are high and have only
small differences.

The confidence intervals may be used to assess whether a strategy is significantly bet-
ter than an alternative. For example, the 90% confidence interval for the best predicted
strategy has lower bound 10−684.72 which is higher than the predicted profit for all strate-
gies xopt,j for j > 6. This indicates that the best predicted strategy is indeed better than
all strategies that is not among the six predicted best.

The reader should be aware that some of the predicted best strategies are redundant.
For example, strategies with a higher number of technicians than the total capacity of
the available vessels could be removed since these extra technicians contributes to the
O&M cost without affecting the energy production. Each of the vessel types have capacity
of twelve technicians. However, in order to emphasise that the sequential optimisation
method works without using prior knowledge of technicians, vessels and other aspects of
a wind farm, such strategies are not removed.

The same process of fitting a high fidelity surrogate model to the available data samples
Dn, identifying the 20 best strategies with corresponding prediction, uncertainty estimate
and confidence intervals are repeated for case 2 and case 3. The results are shown in Table
5.2 and Table 5.3 respectively. In order to ease the comparison across cases, the numerical
results from the tables are visualised in Figure 5.4 . Comparing the 20 predicted best
strategies for case 1 and case 2, either using the tables 5.1 and 5.2 or the figures 5.4a and
5.4c, it is clear that the same favourable range of technicians and vessel combinations are
identified. Note also that the vessel combination

• 0 CTV, 2 SES

is among the 20 best predicted strategies for case 2 and case 3, but not for case 1. The
confidence intervals for case 2 and case 3 are wider than for case 1 since stochastic simu-
lations increases the prediction uncertainty σ (x). The scatter plots in Figure 5.5 illustrates
the prediction accuracies of the surrogate model for the three cases. The prediction and
the observations are overall very similar. The accuracy is lower for the two case 1 and
case 2, due to the stochastic output. Note that, for all cases, the majority of observations
and predictions are much lower than the the predicted profit for the 20 optimal candidates.
This indicates that the sets of predicted bests strategies are indeed among the best feasible
strategies.
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Table 5.2: The table show the components xopt,j = xopt,jCTV , x
opt,j
SES , x

opt,j
PER, the predicted profit

f
(
xopt,j

)
and prediction uncertainty σ

(
xopt,j

)
for the 20 best strategies xopt,1, . . . ,xopt,20 for

case 2. The 90% confidence interval [CIj
0.05,CI

j
0.95] is estimated by f

(
xopt,j

)
± 1.645σ

(
xopt,j

)
for j = 1, . . . , 20. A visual representation of xopt,j and f

(
xopt,j

)
with confidence interval

[CIj
0.05,CI

j
0.95] is shown in figures 5.4c and 5.4d respectively.

j xopt,jCTV xopt,jSES xopt,jPER 10−7f
(
xopt,j

)
10−7σ

(
xopt,j

)
10−7CI0.05 10−7CI0.95

1 1 1 20 43.27 0.14 43.04 43.50
2 1 1 21 43.27 0.13 43.05 43.49
3 1 1 19 43.25 0.15 43.01 43.50
4 1 1 22 43.25 0.13 43.04 43.46
5 1 1 23 43.22 0.12 43.03 43.42
6 1 1 18 43.20 0.17 42.93 43.48
7 1 1 24 43.20 0.11 43.01 43.38
8 1 1 25 43.17 0.11 43.00 43.35
9 1 1 26 43.15 0.11 42.97 43.33
10 1 1 27 43.12 0.12 42.92 43.32
11 1 1 17 43.12 0.20 42.79 43.45
12 0 2 21 43.10 0.18 42.81 43.39
13 1 1 28 43.10 0.14 42.87 43.33
14 2 1 21 43.07 0.12 42.88 43.26
15 0 2 20 43.10 0.17 42.81 43.39
16 0 2 22 43.09 0.19 42.78 43.40
17 1 1 29 43.08 0.16 42.81 43.35
18 0 2 23 43.07 0.20 42.74 43.41
19 2 1 22 43.07 0.11 42.88 43.26
20 0 2 19 43.07 0.21 42.73 43.40
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Table 5.3: The table show the components xopt,j = xopt,jCTV , x
opt,j
SES , x

opt,j
PER, the predicted profit

f
(
xopt,j

)
and prediction uncertainty σ

(
xopt,j

)
for the 20 best strategies xopt,1, . . . ,xopt,20 for

case 3. The 90% confidence interval [CIj
0.05,CI

j
0.95] is estimated by f

(
xopt,j

)
± 1.645σ

(
xopt,j

)
for j = 1, . . . , 20. A visual representation of xopt,j and f

(
xopt,j

)
with confidence interval

[CIj
0.05,CI

j
0.95] is shown in figures 5.4e and 5.4f respectively.

j xopt,jCTV xopt,jSES xopt,jPER 10−7f
(
xopt,j

)
10−7σ

(
xopt,j

)
10−7CI0.05 10−7CI0.95

1 1 1 23 42.04 0.20 41.71 42.36
2 1 1 24 42.04 0.23 41.67 42.41
3 1 1 22 42.02 0.19 41.71 42.33
4 1 1 25 42.02 0.26 41.59 42.45
5 0 2 24 42.02 0.22 41.65 42.38
6 0 2 23 42.01 0.22 41.65 42.37
7 0 2 25 42.00 0.24 41.61 42.39
8 1 1 26 41.99 0.29 41.51 42.47
9 1 1 21 41.99 0.20 41.66 42.32
10 0 2 22 41.98 0.22 41.61 42.35
11 0 2 26 41.97 0.26 41.55 42.39
12 1 1 27 41.95 0.32 41.42 42.47
13 1 1 20 41.93 0.23 41.56 42.30
14 0 2 21 41.93 0.24 41.53 42.33
15 0 2 27 41.92 0.28 41.46 42.38
16 1 1 28 41.89 0.34 41.33 42.45
17 1 1 19 41.85 0.26 41.43 42.27
18 0 2 28 41.86 0.30 41.36 42.36
19 1 1 29 41.81 0.35 41.23 42.40
20 0 2 20 41.85 0.28 41.39 42.30
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(b) f(xopt,j) with 90% CI for case 1.
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(c) xopt,j for case 2.
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(d) f(xopt,j) with 90% CI for case 2
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(e) xopt,j for case 3.
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(f) f(xopt,j) with 90% CI for case 3

Figure 5.4: The left subfigures shows the 20 predicted optimal strategies xopt,j for j = 1, . . . , 20,
and the right subfigures shows the predictions f(xopt,j) with corresponding 90% CI f(xopt,j) ±
1.645σf(xopt,j) for case 1 (upper row), case 2 (middle row) and case 3 (bottom row). For all cases,
the predicted profits f(xopt,1), . . . , f(xopt,20) are relatively similar. Note the difference in the y
axis for the right-hand subfigures.
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Figure 5.5: Scatter plot of observations D and corresponding predictions f(x;x ∈ D) for case 1
(upper subfigures), case 2 (middle subfigures) and case 3 (bottom subfigures). Note the difference
in y-axis for the different cases. The right-hand figures shows the whole range of observations and
predictions, whereas the left-hand figures are zoomed to the most profitable ranges.
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5.2.1 Comparison of fleet mix
In the proceeding section, the surrogate model was used to identify the 20 most profitable
strategies. As were discussed, the 20 most profitable strategies for all three scenarios had
one of the following vessel combinations

• one CTV, one SES,

• two CTVs, one SES,

• two SES.

A decision maker may be interested in studying these vessel combinations more in de-
tail. Figure 5.6 shows the predicted profit f (x) and the band f (x) ± σ (x) as a function
of the number of technicians for the tree vessel combinations for all cases. The figures
illustrates the effect of changes in the number of technicians. For case 1, the vessel com-
bination (xCTV , xSES) = (1, 1) seem to be better than the alternatives. The same results
holds for case 2, although the differences are smaller. For case 3, both combinations
(xCTV , xSES) = (1, 1) and (xCTV , xSES) = (0, 2) are marginally better than the alter-
native.

Note that for the combinations (xCTV , xSES) = (1, 1) and (xCTV , xSES) = (0, 2),
f (x) decreases linearly for xPER ≥ 24 for all cases. This is reasonable, since each vessel
has capacity of transporting 12 technicians, hence adding more technicians corresponds to
adding the fixed costs of technicians without increasing the energy production. The surro-
gate model captures this behaviour without any prior knowledge of the problem at hand.
This indicates that the surrogate model is able to learn the relation f true (x) adequately
using only the data samples Dn.

From Figure 5.6, it is clear that the predicted profit has a non-linear relation with
respect to the decision variable xPER. In other words, the sensitivity of increasing or
decreasing xPER depends on the value of xPER.

As has been demonstrated in this section, the proposed sequential optimisation method
is able to identify favourable strategies for all cases. The surrogate model can be used
to predict the profit and related uncertainty for different strategies. This can be used to
compare different strategies and to gain knowledge of how changes in one or several input
variables affect the output. The optimisation method used only information of the range
of each of the decision variables x and the input-output D. Thus, the same method may
be used for other decision problems by changing only the range of the related decision
variables.

5.3 Limitations
Recall that the vessel types CTV and SES were defined as two vessel types with difference
in cost, speed and weather limit when accessing turbines, see Table 4.3. However, the
vessels types used in the three cases had difference in two other parameters as well. These
parameters are the weather limits for transportation and the time used for transporting
technicians from the vessel to the wind turbine. The effect of the difference in the latter
parameter has a negligible effect, while the former may have greater effect. The CTV
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Figure 5.6: The figures shows the surrogate prediction f (x) (solid line) and f (x)± σ (x) (dotted
line) for the three best vessel combinations as a function of the number of personnel xPER. The
vessel combination (1,1), (2,1) and (0,2) are shown in the left, middle and right column respectively,
for case 1 (upper row), case 2 (middle row) and case 3 (bottom row).
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was specified without weather limits for travelling, whereas the SES was specified to only
operate in weather with wave height less than 4 meter and wind speeds less than 30 meter
per second.

The effect of this difference in weather limits are most likely small since the weather
limits for the SES are large, and both vessels are restricted to the more conservative
weather limits for accessing the turbines. This parameter should have been specified more
consistently in order to ease comparison of the two vessel types.
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Chapter 6
Conclusion

In this thesis, a surrogate-based optimisation method based on ANNs was proposed. The
surrogate model used the previous simulation results and a multipoint criteria to select
a set of input points for the next simulations. The method was applied for a decision
problem of selecting vessel fleet and personnel for a wind farm. The results indicated that
the optimisation method was able to identify favourable strategies.

The method used only information of the feasible range of the decision parameters and
the input-output relations. This suggests that a sequential method based on ANNs may be
used to solve other decision problems without high degree of tailoring for each problem.

As was demonstrated, a surrogate model fitted to all available data samples, can be
used to identify the best strategies or predict the output and related uncertainty for arbi-
trary strategies. For a decision-maker, the former may be particular useful for identifying
favourable regions of the input space, whereas the latter may be utilised to compare differ-
ent strategies and assess the sensitivity of the output with respect to input variables.

The proposed multipoint criterion enabled better utilisation of parallel processing due
to independence between simulations. The criterion used a relatively simple penalty func-
tion in order to achieve a desirable amount of spread between the selected points.

6.1 Possible improvements
It may be of interest to study the performance of the proposed sequential optimisation
method on benchmark cases. Since the method was tested on a real-world problem without
a known optimal solution, it may be difficult to compare the performance to alternative
methods.

The points selected by the multipoint criterion was not studied in detail for the vessel
fleet problem. A more thorough study of the proposed multipoint criterion should be
carried out in order to assess its usability for surrogate based optimisation.
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Appendix

A Input data and model assumptions
In all case studies considered in this project, it have been assumed that all turbines is
working when the simulation starts. This assumption may be too optimistic, and it has a
significant effect for simulations performed over a short time horizon. For longer simula-
tions, the effect stabilises during the first years. The investment cost is neglected, which
results in high profit for most O&M strategies. However, the investment cost does not
depend on the decision variables, and could be incorporated as a shift in the profit.

Explanations of the most central input parameters related to wind farm specification,
workforce, turbine failures and vessels are listed in tables 6.1 , 6.2 , 6.3 and 6.4 respec-
tively. Some the available simulation output are listed in Table 6.5 . The values of the
different input variables related to wind farm and simulation setup, workforce, failures
and vessels used for all simulations are listed in tables 6.6 , 6.7 , 6.8 A set of historical
weather records is used for case 1, and synthetic weather generated from these records are
used for case 2 and case 3.
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Table 6.1: Explanation of input parameters related to the wind farm and simulation setup

Input parameter Definition
Weather Time series for wave height and wind speed are generated

from historical weather from the wind farm location.
Turbine type Properties as power curve, physical dimensions, cut-in

and cut-off speeds differs for different types.
Turbine number The total number of turbines at the wind farm
Distance to location The shortest distance from the wind farm to the loca-

tion(s) with personnel accommodation.
Distances for
(un)planned tasks

The average distance vessels travels between turbines for
planned and unplanned maintenance tasks.

Electricity price Defines the price of electricity each month through the
entire lifetime of the wind farm. It can be constant, sea-
sonal etc.

Simulation horizon The simulated lifetime of the wind farm
Time resolution The time unit that defines the smallest time step
Weather resolution The minimum difference in wind speed and wave height

that are considered
Simulation runs How many simulations that are performed for the same

input case. Since the weather and failure times are
stochastic, the result of several simulations differs.

Wake loss Loss in produced energy due to wake effects
Electrical loss Loss in produced energy due to electrical infrastructure
Downtime loss Loss in produced energy due to downtime in electrical

infrastructure
Discount rate Used to calculate the net present value of future income

and costs
Fuel price Price for the fuel used by the vessels. For some chartered

vessels the fuel cost is included in the charter rate.
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Table 6.2: Explanation of input parameters related to the workforce

Input parameter Definition
Daily shifts The number of shifts each day.
Working hours The number of working hours in each shift.
Shift start The time each shift starts.
Minimum working hours The maintenance task will be postponed if the available

time is less than the minimum working hours.
Personnel available The average number of maintenance or technician per-

sonnel available each shift. These are stationed at an on-
shore or offshore location.

Personnel cost The fixed cost for each personnel.
Prioritisation Defines which maintenance task have highest priority.

For example maintenance tasks that are already started,
but not finished, could have higher prioritisation than cor-
rective tasks.
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Table 6.3: Explanation of input parameters related to turbines and failures

Input parameter Definition
Failure type The different failure types have different consequences.

They may partly or fully reduce the turbines ability to
produce energy, or they can be annual services in order to
prevent future failures. Maintenance, either remotely or
one site, are required to restore the turbine after failure.

Rate The different failures types are assumed to occur ran-
domly with some intensity. Maintenance tasks that are
performed regularly, as annual service, can be performed
at predetermined dates.

Repair cost Some maintenance tasks requires replacement of spare
parts. These have an associated cost.

Lead time Most spare parts are always be available, but others may
have a lead time associated to the ordering process.

Work duration The expected number of hours used to perform the main-
tenance tasks.

Personnel needed Denotes the number of personnel needed on the structure
to perform the maintenance tasks.

Abilities Replacement of heavy parts can only be performed by
vessels with special abilities, as for example jack up rig
etc.

Access needed Most failures requires technicians assessing the turbine,
while some may be performed remotely.

Logistics time The time needed to transfer crew or equipment before the
work can start.
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Table 6.4: Explanation of input parameters related to vessels.

Input parameter Definition
Vessel type The vessels available for charter or purchase have differ-

ent properties that affect their operation and maintenance
abilities. Some of the vessels are used merely to trans-
port personnel to the offshore wind farm, while others
have abilities that either are required or may be useful to
perform the operational tasks efficiently.

Number The number of available vessels of each type.
Day rate Daily cost for chartering a specific vessel.
Mobilisation cost Cost related to the process of preparing a vessel.
Lead time Ships that are chartered sporadically often have an associ-

ated lead time before they are available in the wind farm.
Weather limits The vessels are assumed to have some limits related to

the significant wave height and wind speed. These limits
often may be depend on whether vessels are traveling or
accessing a turbine.

Speed At which speed the vessels can travel to and within the
wind farm.

Space The vessels have an upper limit on the number of person-
nel that are transferred or offered accommodation.

Abilities Some vessels have special abilities that are required to
perform certain tasks, or are useful in other ways. Vessels
with jack-up abilities could be used to lift heavy parts,
while others have support for a helicopter.
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Table 6.5: Explanation of some output parameters.

Output parameter Definition
Total direct O&M cost The sum of all costs related to vessels, repair, personnel

and location.
Total energy production Takes into account availability, loss and downtime.
Annual direct O&M cost The total direct O&M cost divided by the simulation hori-

zon.
Annual energy production The total amount of produced energy divided by the sim-

ulation horizon.
Time-based availability Defined here as the percentage of time the turbines are

operative, including availability of electrical infrastruc-
ture.

Electricity-based availability The actual electricity production measured relative to
the theoretical production. The latter takes into account
losses due to wake effects and electrical infrastructure,
while the former also consider the downtime of turbines
and in the electrical infrastructure.

Table 6.6: Specification of input related to the wind farm specification and simulation setup. All
losses, discount rate and fuel price are neglected and therefore not listed in this table.

Input parameter Value
Weather FINO dataset
Turbine type Vestas V90 3.0MW (Staffel, 2015)
Turbine number 80
Distance to location 50
Distances for (un)planned tasks 0
Simulation horizon 1 and 5 years
Time resolution 1 hour
Weather resolution 0.1 m and 0.1 m pr s
Runs 1
Electricity price 90 GBP pr MWH
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Table 6.7: Specification of input related to failures. Lead time and the logistics time are neglected,
and access to the wind farm are required for all failure types. These parameters are therefore not
listed in the table.

Failure type Manual
reset

Minor repair Medium re-
pair

Annual ser-
vice

Rate [pr year] 7.5 3.6 0.34 1
Repair cost [GBP] 0 1000 185000 18500
Work duration
[hours]

3 7.5 22 60

Personnel needed on
structure

2 2 3 3

Stop during repair Yes Yes Yes Yes
Stop at failure Yes Yes Yes No

Table 6.8: Specification of input related to the workforce.

Input parameter Value
Daily shifts 1
Working hours 12 hours
Shift start At 06:00
Minimum working hours 0.5 hours
Personnel available 20
Personnel cost 80.000 GBP pr year
Prioritisation Corrective tasks
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