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Abstract

In this thesis we calculate the vacuum polarisation contribution to the well-known Lamb shift.
The Lamb shift is a correction of order α5 to the non-relativistic energy spectrum of the hydrogen
atom. We discuss the gauge symmetry of quantum electrodynamics (QED), and derive the photon
propagator in both the Lorenz and Coulomb gauge. We then calculate the vacuum polarisation
tensor of the photon in QED. It is calculated using dimensional regularisation and the modified
minimal subtraction scheme. We show that the vacuum polarisation results in a finite correction to
the photon propagator, and thus changes the two-point function of the photon field. We introduce
non-relativistic QED (NRQED), an effective field theory that is popular for QED bound state
calculations. Radiative and relativistic corrections are incorporated into NRQED by a matching
procedure. The matching procedure enforces that the scattering amplitudes of QED coincide with
the scattering amplitudes of NRQED. The vacuum polarisation of the photon is incorporated into
NRQED by adding correction terms to the photon Lagrangian. The two-point function of the
photon field in NRQED is matched to the two-point function of the photon field in QED at one
loop. We use the corrected photon Lagrangian to calculate the vacuum polarisation contribution
to the Lamb shift. This contribution is a relatively small fraction of the total Lamb shift, it shifts
the level of the 2S 1

2
-state downward by 27.1 MHz compared to the 2P 1

2
-state. Lamb shift is an

upward shift of around 1000 MHz. We would not have agreement between the theoretical result
and experimental observations without the vacuum polarisation contribution. The Lamb shift
lifts the degeneracy between the 2S 1

2
-state and the 2P 1

2
-state.
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Sammendrag

I denne avhandlingen beregner vi vakuumpolarisasjonens bidraget til den velkjente Lamb-
forskyvningen. Lamb-forskyvningen er en korreksjon til hydrogenatomets ikke-relativistiske en-
ergispektrum. Forskyvningen er av størrelsesorden α5. Vi diskuterer gaugesymmetri i kvan-
teelektrodynamikk (QED), og utleder fotonpropagatoren i Lorenz gauge og i Coulomb gauge.
Deretter beregnes vakuumpolarisasjonstensoren for et foton i QED. Den blir beregnet ved bruk
av dimensjonal regularisering. Det vises at vakuumpolarisasjonen korrigerer fotonpropagatoren,
og dermed også to-punkt-funksjonen til fotonfeltet. Videre introduseres ikke-relativistisk QED
(NRQED), en effektiv feltteori som er populær ved beregninger av bundne tilstander i QED.
Relativistiske- og strålingskorreksjoner innarbeides i NRQED ved hjelp av matchingmetoden.
Når vi bruker matchingmetoden, krever vi at spredningsamplitudene i QED og NRQED samsvarer.
Vakuumpolarisasjonen til fotonet blir inkludert i NRQED gjennom korreksjonsledd i fotonets La-
grangetetthet. To-punkt-funksjonen til fotonfeltet i NRQED blir matchet mot to-punkt-funksjonen
til fotonfeltet i QED, slik at vi finner størrelsen til det korrigerende fotonleddet. Det korrigerende
fotonleddet i Lagrangetettheten brukes til å beregne vakuumpolarisasjonens bidrag til Lamb-
forskyvningen. Dette bidraget er en relativt liten faktor av den totale Lamb-forskyvningen, det
forskyver energinivået til 2S 1

2
tilstanden negativt med 27,1 MHz sammenliknet med 2P 1

2
tilstanden.

Hele Lamb-forskyvningen er en positiv forskyvning av energinivået på omtrent 1000 MHz.
Det er foretatt svært nøyaktige målinger av hydrogenatomets energispektrum i QED. Uten fo-
tonets bidrag, ville ikke teorien vært i samsvar med eksperimentelle observasjoner. Fotonets
bidrag er derfor av signifikant betydning. Lamb-forskyvningen splitter degenerasjonen mellom
2S 1

2
tilstanden og 2P 1

2
tilstanden.
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Notation and conventions

The notation and conventions used in this thesis are presented in the following list;

• Natural units, c = ~ = 1 are used, specifically the Lorentz-Heaviside convention, i.e.
ε0 = 1, α = e2

4π
. Notice that speed, v ≤ 1, is dimensionless.

• Greek indices denote space-time coordinates, xµ = (x0, x), (µ = 0, 1, 2, 3), while Latin
indices are used for space coordinates, xi (i = 1, 2, 3).

• Boldface font represents three-dimensional vectors, i.e. ~r = r.

• We write four-dimensional vectors as either kµ or k.

• The dot product of two four-vector are written as kx = kµx
µ = gµνk

µxν .

• The Minkowski metric sign convention is chosen to be gµν = diag(1,−1,−1,−1).

• Differential operators are written in short notation, ∂µ = ∂
∂xµ

, where ∂µ = (∂0,∇).

• The covariant derivative is defined by Dµ ≡ ∂µ + iqAµ.

• The D’Alembertian operator is denoted � ≡ ∂µ∂
µ = ∂2

t −∇2.

• Repeated indices are summed over, as to follow the Einstein summation convention.

• Feynman slash notation reads /A = γµAµ.
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Chapter 1

Preliminaries

Quantum mechanics will be assumed familiar throughout this thesis, as well as the basics of
quantum field theory (QFT). We will remind the reader about some of these subjects in the pre-
liminaries.

1.1 Introduction

Quantum mechanics started developing early in the twentieth century. One of the starting points
was the atomic model of Bohr [1]. He postulated that the electron in the hydrogen atom was
bound in stationary states.

The atomic energy spectrum was theoretically derived after Schrödinger formulated the the-
ory of quantum mechanics based on Hamiltonian mechanics [2]. The energy spectrum derived
from the Schrödinger equation resulted in a higher number of degenerate states than experiments
showed. Schrödinger theory does not take into account relativistic or radiative effects, which are
necessary to theoretically reproduce experimental observations.

The development of quantum mechanics took a leap in the right direction when Dirac pre-
sented a relativistic wave equation for spin-1

2
particles[3]. Contrary to the Schrödinger equation,

the Dirac equation incorporates relativistic corrections. Thus, the energy spectrum is more in
agreement with experimental observations than the energy spectrum derived from Schrödinger
theory.

Although the Dirac equation is more in agreement with the experimentally observed energy
spectrum for the hydrogen atom, it is still not exact. In 1947, Lamb and Retherford observed a
splitting of the two degenerate states, 2S 1

2
-state and 2P 1

2
-state [4]. The energy level of the two

states did not coincide. This was theoretically explained in the same year by Bethe [5]. He derived
the Lamb shift by including radiative corrections, and using non-relativistic approximations.

The traditional way to solve bound state problems in quantum field theory was to use the
Bethe-Salpeter equation [6]. It describes an electron-nucleous scattering using Green’s functions.
The equation mixes contributions from different energy scales, which make it difficult to work
with. It proved to be very hard to reach beyond the leading order of the non-relativistic limit
[7]. However difficult, it was the only method used in practice until effective field theory was
developed.

In 1979, Caswell and Lepage developed an effective field theory called non-relativistic quan-
tum electrodynamics (NRQED) [8]. This theory was developed as a model to systematically
formulate a non-relativistic Lagrangian, taking both relativity and radiation into consideration.
The NRQED Lagrangian can be constructed to find both the Lamb shift, and a smaller correc-
tions, where the latter constitute the hyperfine structure [8–10]. The Lagrangian is systematically
constructed in orders of both p

m
∼ v and α, where m is the fermion mass, v is the fermion speed

and α is the fine-structure constant.
Some fundamental introduction to regularisation and renormalization in quantum field theory

(QFT) will first be discussed. Gauge theory is analysed, and both the Lorenz and Coulomb gauge

1



Chapter 1. Preliminaries

of the photon propagator are derived. NRQED is used to find the O
(
α5

m2

)
correction to the non-

relativistic energy spectrum. We will derive the vacuum polarisation contribution of the Lamb
shift in Chapter 4.

1.2 Quantum field theory
Quantum field theory combines two of the fundamental theories of physics; quantum mechanics
and special relativity [11]. Quantum mechanics alone is not capable of describing creation and
annihilation of particles, or fluctuation between energy and mass. The Schrödinger equation
describes a fixed number of particles.

Quantum field theory describes particles as modes of a single particle field. Both the particle
and the anti-particle can be seen through the same field, i.e. both the electron and positron is em-
bedded in the Dirac field. Quantum field theory can be formulated, either by using a Hamiltonian
formalism, or by using a Lagrangian formalism. The Lagrangian formalism will be used in this
thesis. The basis of this formalism will be assumed familiar, e.g. the path integral and generating
functional. In Chapter 2, we will derive the propagator for the photon, and discuss the general
procedure of obtain the propagator from the two-point function of the field.

During the early development of quantum field theory, two problems arose which nearly dis-
rupted QFT as a theory. In the 1930s, the appearance of infinities in loop integrals was discovered
[11]. This was a huge problem at the time, and were not solve until the 1950s. The other problem
was its unsuccessful attempts to treat the strong interaction. Perturbation theory is not capable
of treating the strong coupling of strong interaction. This was eventually addressed by using
effective field theory.

In the next sections, we will discuss how to treat the infinities of quantum field theory, by
regularisation and renormalisation.

1.3 Regularisation
Regularisation is the process of isolating the divergent terms in a divergent Feynman integral
[12]. It is thus possible to analyse the divergent term separately and find counterterms in a process
called renormalisation. There are many methods of regularisation; cut-off regularisation, Pauli-
Villars regularisation [13], lattice regularisation, Schwinger’s proper time regularisation [14] and
dimensional regularisation [15]. We will discuss dimensional regularisation in this thesis. A
more detailed description of the regularisation method can be found in introductory books of
quantum field theory, e.g. [16, 17]. The dimensional regularisation method is beneficial when
working in QED, since conservation of current is independent on the spacetime dimensions [17].
This independence will guarantee that the vacuum polarisation tensor is transverse, and that we
keep the photon massless, see Section 3.1.1.

The integral we are evaluating is of the form

In =

∫
d4pE
(2π)4

1

(p2
E + ∆)n

, (1.1)

where n is an integer and the subscript E denotes Euclidean space. The variable ∆ is a well
behaved constant of mass dimension two. This integral is ultraviolet divergent, for n < 3. From

2



1.4 Renormalisation

dimensional analysis we find that it should be quadratically divergent for n = 1, and logarithmi-
cally divergent for n = 2. The divergence is isolated by dimensional regularisation. We make a
small deviation from the four dimensions of spacetime, and introduce the d-dimensional integral

In =

∫
ddpE
(2π)d

1

(p2
E + ∆)n

, (1.2)

where d is the spacetime dimension. The dimension of In should be kept fixed. This is achieved
by introducing an auxiliary mass scale µ, which is of mass dimension one. The integral is multi-
plied by µ4−d, which allows the dimension of our physical quantities to be fixed. Notice that the
mass scale vanishes in spacetime dimension four. The dimensional integral is now written as

In = µ4−d
∫

ddpE
(2π)d

1

(p2
E + ∆)n

. (1.3)

This dimensional integral is calculated in Appendix A, and the result is shown in equation (A.19).
We obtain

In = µ4−d 1

(4π)d/2
Γ
(
n− d

2

)
Γ (n)

∆d/2−n. (1.4)

Let us choose n = 2 and d = 4−2ε, where ε is a real scalar. We will assume that ε is infinitesimal,
and expand in powers of ε. Thus, equation (1.4) can be written as

I2 =
1

(4π)2
Γ (ε)

(
4πµ2

∆

)ε
, (1.5)

where we have used Γ(2) = 1, see Appendix A. We expand the last two factors in powers of ε,
and omit terms of higher order than O (ε0). This yields

I2 =
1

(4π)2

[
1

ε
− γE + ln

(
4πµ2

∆

)
+O(ε)

]
. (1.6)

To make this expansion, we have used equation (A.6) and aε = 1 + ε ln(a) +O (ε2). γE denotes
the Euler-Mascheroni constant. We have managed to separate the divergent term by introducing
an infinitesimal deviation in the spacetime dimension. Divergent terms are often accompanied
by γE and 4π. The integral can therefore be simplified by letting the mass scale be modified to
µ2 → µ2eγE

4π
. This yields

I2 =
1

(4π)2

(
1

ε
+ ln

(
µ2

∆

)
+O(ε)

)
. (1.7)

These divergent integrals occur when evaluating loop integrals. In the following section we will
discuss how to treat divergent terms.

1.4 Renormalisation
Loop integrals are important since they make contribution to the exact propagators and tree level
diagrams. They are considered higher order diagrams, since they increase the number of vertices.

3



Chapter 1. Preliminaries

In QED, the coupling constant is the electric charge. One additional loop in a QED diagram
increases the power of α = e2

4π
by one, where α is the fine structure constant.

We want to calculate the exact propagator in λΦ4-theory as an example of regularisation and
renormalisation. To calculate the exact propagator, we must take into account all propagator-
like diagrams. Propagator-like diagrams are diagrams with one incoming and one outgoing line.
Examples of the different propagator-like diagrams can be seen in Figure 1.1. In Figure 1.1
we distinguish between one-particle irreducible diagrams (1PI) and two-particle irreducible di-
agrams (2PI). We define 1PI as diagrams which cannot be divided into subdiagrams by cutting
a single internal line. The 2PI can be divided into two 1PI, and so on. Let i∆ denote all 1PI
diagrams. The exact propagator then reads [18]

� =�+�1PI +�1PI 1PI + · · ·

=
i

p2 −m2
+

i

p2 −m2
i∆

i

p2 −m2
+

i

p2 −m2
i∆

i

p2 −m2
i∆

i

p2 −m2
+ · · ·

=
i

p2 −m2

∞∑
n=0

(
i∆

i

p2 −m2

)n
=

i

p2 −m2

1

1− i∆ i
p2−m2

=
i

p2 −m2 + ∆
, (1.8)

where i
p2−m2 is the propagator of the scalar field. We see that the propagator correction is

equivalent with a shift in the mass by ∆. Thus, ∆ is known as the mass counter term and is
often denoted by δm. The exact propagator corresponds to the proper propagator of the theory,
and the corrected mass must correspond to the physical mass m0. The physical mass is written
as m2

0 = m2
B − δm, where we have denoted the “bare” mass as m → mB. A bare quantity is

defined to be a quantity which has not been renormalised. It is the quantity which we find in the
non-renormalised Lagrangian. We obtain the dressed quantities, e.g. m0, by renormalising the
bare quantities. Dressed quantities should be used when describing a physically correct system.
The bare value absorb any infinities and yields a finite dressed value.

We can write the Lagrangian in terms of the physical mass, it reads

LλΦ4 =
1

2
(∂µΦ)2 − 1

2
m2

0Φ2 − 1

2
∆Φ2 − 1

4
λΦ4. (1.9)

The Lagrangian has been renormalised with respect to the mass. To fully renormalise the La-
grangian, both the coupling constant, λ, and the field, Φ, must be renormalised. The reminding
part is to identify ∆.

If we assume that the coupling constant, λ, is small, we can use the self-energy diagram to
approximate the 1PI diagrams. With this approximation, the correction to the coupling constant
is neglected, and we only find correction to the mass. This is the diagram which contributes the
most to the propagator, as each vertex add an additional power to the coupling constant. We use
the Feynman rules to express the self-energy diagram mathematically. It reads [18]

� ∝ i∆(1) = i
λ

2

∫
d4p

(2π)4

1

p2 −m2
= i

λ

2

∫
d4pE

(2π)4

1

p2
E +m2

, (1.10)

where the factor 1
2

is due to symmetry, and the superscript (1) denotes that we only keep terms
of O(λ). In the last step we performed a Wick rotation, see Appendix A. The integral has a
superficial degree of divergence of two, meaning that it is at worst quadratically divergent.

4



1.5 Ward’s identity

Figure 1.1: The figure represents some basic one-particle irreducible (1PI) diagrams in scalar field theory.
The dotted line in the two-particle irreducible diagrams denotes where the diagram can be split into two
1PI.

In order to isolate the divergence, we apply dimensional regularisation as before, and find

i∆(1) = −iλ
2

m2

(4π)2

(
1 + ln

(
µ2

m2

)
+

1

ε
+O(ε)

)
. (1.11)

1.5 Ward’s identity
Ward’s identity,

kµMµ = 0, (1.12)

is a special case of a more general identity known as the Ward-Takahashi identity [19]. Here kµ

is the momentum of an external photon, and Mµ is a Feynman amplitude for a QED process.
We will not derive the Ward-Takahashi identity here, as this is done in great detail in several text
books, e.g. [12, 16, 20].

Ward’s identity can be used to show that the probability for a longitudinal and a time-like
photon cancel, and thus, the photon polarisation is transverse [16]. Another consequence of the
identity is that the renormalisation of charge is universal, i.e. the renormalised charge of a muon
particle has the same magnitude as the renormalised charge of the electron [16, 18]. We apply
the Ward’s identity later, to argue that the photon polarisation must be transverse.
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Chapter 2

Gauge theory in quantum electrodynamics

In this chapter we will discuss the gauge invariance of QED, and derive the photon propagator in
different gauges. The choice of our gauge must not affect the physical values in the theory. We
are going to focus mainly on the gauge invariance of the photon propagator. We first remind the
reader of the QED Lagrangian.

2.1 QED Lagrangian
The QED Lagrangian should be familiar. It reads

LQED = LDirac + LMaxwell + LInteractions

= Ψ̄
(
i/∂ −m

)
Ψ− 1

4
FµνF

µν − eΨ̄γµΨAµ, (2.1)

where Ψ̄ = Ψ†γ0, i.e. the Dirac adjoint spinor. It constitutes three different contributions, where
the Dirac Lagrangian describes the behaviour of the Dirac field, Ψ(x), the Maxwell Lagrangian
describes the behavior of the Maxwell field, Aµ, and the interaction Lagrangian describes the
interaction between the fields. The Maxwell field is often called the gauge field, or the gauge
vector field. It is not uniquely defined, and is thus a physically unobservable quantity. The
electrodynamic field strength, Fµν = ∂µAν − ∂νAµ, is the physically observable quantity.

We will demonstrate a simple way of constructing the QED Lagrangian. This is done by
demanding that the free Dirac field is invariant under a localU(1) symmetry, and not only a global
U(1) symmetry. The difference between the two is that a local symmetry contains transformation
operators which are dependent on the space-time point xµ [21].

2.2 Gauge invariance in QED
The symmetry of QED is fundamentally necessary in understanding the different phenomena in
the theory, such as the universality of charge and the massless property of the photon. QED
respects the local U(1) symmetry group, and is an abelian gauge theory.1 The symmetries of
a physical system often plays an essential role when constructing the Lagrangian density. For
instance, if we want to have a relativistic model of the photon propagator, we must enforce
Lorentz invariance.

Let us stipulate that, in QED, the Dirac field and the gauge vector field transform as

Ψ(x)→ eiα(x)Ψ(x), Aµ → Aµ −
1

e
∂µα(x), (2.2)

without changing the appearance of the QED Lagrangian. We will begin with the free Dirac
Lagrangian, which is only invariant under a global U(1) symmetry. By applying a local trans-
formation to the Dirac field, we get an additional term in the Lagrangian due to the dynamical

1In an abelian symmetry, the transformation operators are commutative.

7



Chapter 2. Gauge theory in quantum electrodynamics

properties of the Dirac field,

LDirac → LDirac − (∂µα) Ψ̄γµΨ. (2.3)

An additional term must be added to the free Dirac Lagrangian, in order to get rid of the additional
term in the transformed Lagrangian. The additional term should couple a new field to the Dirac
field. We see that the interaction Lagrangian in equation (2.1) will result in a cancellation, if
the new field transforms like Aµ. Thus, we add LInteractions to the free Dirac Lagrangian. The
”new” field, i.e. Aµ, must also have a free Lagrangian, such that the effective Lagrangian is
complete. We therefore add the Maxwell Lagrangian to the complete Lagrangian, since it respects
the condition of the gauge invariance in equation (2.2). The conclusion is that, when demanding
that a global symmetry should be a local symmetry, we are forced to introduce a massless vector
field. It is essential that the field is massless. If it was not, the gauge invariance would have been
broken.

The photon field is a four vector, which implies that the photon has four degrees of freedom.
We know that the photon only has two polarised states, the transverse states. We will see how we
can fix this redundancy in the next section.

2.3 Photon propagator
Looking at the path integral formalism of QFT, the propagator of a field is defined as the inverse
of the operator associated with the quadratic term of said field in the Lagrangian. This can be
shown by looking at the two-point Greens function of the field. The calculation regarding the
two-point Greens function will not be derived, as this can be found in introductory books to
QFT, e.g. [16, 18]. We will adopt the method of obtaining the propagator to the field using the
Lagrangian. In the case of the photon propagator, the quadratic term of the Maxwell field is found
in the free Maxwell Lagrangian. The free Maxwell Lagrangian, or photon Lagrangian, is

LMaxwell = −1

4
FµνF

µν , (2.4)

where Fµν is the electromagnetic field strength and reads

Fµν = ∂µAν − ∂νAµ. (2.5)

The Lagrangian can be expressed by the photon field,Aµ, by multiplying the two electromagnetic
field strengths. We get

1

4
FµνF

µν =
1

4
(∂µAν∂

µAν − ∂µAν∂νAµ − ∂νAµ∂µAν + ∂νAµ∂
νAµ)

=
1

2
∂µAν (∂µAν − ∂νAµ) . (2.6)

In the last step, the two last terms have had their indices changed, i.e. µ→ ν and ν → µ. We can
perform a partial integration to the Lagrangian. This yields

LMaxwell =
1

2
Aν (�gµν − ∂µ∂ν)Aν =

1

2
Aµ
(
D−1

)µν
Aν , (2.7)

8



2.3 Photon propagator

where we have omitted the surface term. It is admissible to omit the surface term as long as we
assume that the field is zero at the boundary [12]. The Lagrangian can be Fourier transformed to
momentum space. We obtain

LMaxwell =
1

2
Aν
(
k2gµν − kµkν

)
Aν =

1

2
Aµ
(
D−1

)µν
Aν . (2.8)

The propagator is the inverse of the operator D−1
µν by definition. We denote the photon prop-

agator as Dµσ, and thus have the relation

D−1
µνD

µσ(x− y) = δσν δ
4(x− y), (2.9)

where x and y are two space-time points. The Dirac delta function, δ4(x − y), is in four
dimensions, and δσν is the Kronecker delta. We must find an inverse of the 4 × 4 matrix,
D−1
µν = (�gµν − ∂µ∂ν). Unfortunately, the 4 × 4 matrix is singular, meaning that the deter-

minant is zero and not invertible. This is shown by letting the operator act on an eigenvector, kν .
In momentum space, the operator can be written as

D−1
µν =

(
k2gµν − kµkν

)
. (2.10)

By acting the operator on the eigenvector kν , we find(
k2gµν − kµkν

)
kν = 0, (2.11)

which is equivalent with stating that the determinant of the operator is zero. The singular prop-
erty of the operator is a consequence of gauge invariance of the Maxwell field. When looking
at the generating functional, we see that it contains an integration over all possible Aµ configu-
rations, many of which correspond to the same physical system. The integration is done over a
redundant number of configurations. We have to choose a gauge, i.e. fix the gauge field in one
configuration. The gauge field is fixed in one configuration by identifying a proper constraint of
the field, and adding a gauge-fixing term to the Lagrangian. A constraint will be equivalent to a
line in configuration space, which must satisfy the constraint equation. This can be done more
rigorously by the Faddeev-Popov procedure [22], where the gauge dependency of Aµ is factored
out [16]. We will not use the Faddeev-Popov procedure, but will add a gauge-fixing term directly
to the Lagrangian. First we will mention two gauge configurations which are commonly used
in QED, the Lorenz gauge and the Coulomb gauge.2 The constraint associated with the Lorenz
gauge is

∂µA
µ = 0. (2.12)

One of the components of the photon field is fixed by the constraint equation. There are still
three degrees of freedom of Aµ. The advantage of the Lorenz gauge is that it is manifest Lorentz
invariant. When doing calculations over physical quantities, e.g. on-shell elements of the scat-
tering matrix, the gauge choice can not affect the calculations. The physical quantities do not
depend on the choice of gauge. Thus, when performing on-shell scattering calculations, the
gauge dependent terms must cancel and the photon must have two degrees of freedom.

2The Lorenz gauge is named in honour of L.V. Lorenz, and not H.A. Lorentz [23] It is often misspelled as Lorentz
gauge.
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Chapter 2. Gauge theory in quantum electrodynamics

Although the Coulomb gauge is not manifest Lorentz invariant, the advantage comes from
the fact that it separates the zeroth component of the photon field, A0, from the spatial part of the
photon field, Ai. The constraint introduced in the Coulomb gauge is

∇ · A = 0. (2.13)

We see that the constraint fixes one of the spatial components of field. The zeroth component of
the photon field is also fixed by using the Gauss’s law [20].

Choosing a gauge is arbitrary when doing physical calculations, it can be chosen by pref-
erence and convenience. When doing QFT calculations, the Feynman gauge might be simpler,
since the propagator can be expressed in a very shorthand notation. In NRQED, the Coulomb
gauge is often used, since it separates the zeroth component of the photon propagator from the
spatial components of the photon propagator. The zeroth component of the photon propagator is
associated with the Coulomb interaction. In the scope of this thesis, the Coulomb interaction is
an instantaneous interaction.

2.3.1 Lorenz gauge
As we mentioned above, the Lorenz gauge is manifest Lorentz invariant. The free Maxwell La-
grangian is manifest Lorentz invariant by construction, and the gauge-fixing term in the Lorenz
gauge is also manifest Lorentz invariant. We construct the gauge-fixing term by using the con-
straint in equation (2.12). We see that the constraint sums over the four indices, and leaves us
with a Lorentz invariant scalar constraint. We can multiply the scalar constraint by an arbitrary
constant, 1

2ξ
. The gauge-fixing term added to the Lagrangian is therefore [12]

LGF =
1

2ξ
(∂µA

µ)2. (2.14)

By performing a partial integration on the Lagrangian, including the gauge-fixing term, we can
find a new operator (D−1)µν , equivalent to equation (2.7). The operator reads

D−1
µν =

[
�gµν +

(
1

ξ
− 1

)
∂µ∂ν

]
. (2.15)

Plugging this operator into equation (2.9) and Fourier transforming it to momentum space, we
find ∫

d4k

(2π)4

(
k2gµν + (

1

ξ
− 1)kµkν

)
Dµσe

ik(x1−x2) =

∫
d4k

(2π)4
δσν e

ik(x1−x2). (2.16)

By equating the integrand in the expression above, we find an equation for the photon propagator,(
k2gµν + (

1

ξ
− 1)kµkν

)
Dµσ = δσν . (2.17)

The tensor structure of the propagator must be a linear combination of kµkσ and gµσ. These
two second rank tensors constitutes the general Lorentz invariant rank two tensors which are

10



2.3 Photon propagator

available. By inverting this matrix we find3

Dµν =
1

k2
[gµν − (1− ξ)kµkν ] . (2.18)

The most commonly used values for ξ are,

ξ = 0, Feynman gauge (2.19)
ξ = 1, Landau gauge. (2.20)

We can choose ξ arbitrarily, the gauge choice does not affect physical quantities such as on-shell
S-matrix elements.4 The ξ is chosen in such a way that the calculations are as easy as possible.
We are free to change the gauge for isolated calculations, i.e. different scattering calculations.

2.3.2 Coulomb gauge
In the coulomb gauge, the photon propagator is separated in two terms. One term is associated
with the coulomb photon field, and one term is associated with the spatial photon field. This
makes it easier to evaluate corrections to the non-relativistic Hamiltonian, which constitutes the
different shifts in energy. We find the gauge-fixing term in a similar manner as for the Lorenz
gauge. In the Coulomb gauge, the constraint is shown in equation (2.13). The gauge-fixing term
added to the Lagrangian is [18]

LGF =
1

2ξ
(∂iA

i)2 =
1

2ξ
(∂µA

µ − nν∂νnµAµ)2 , (2.21)

where nµ = (1, 0, 0, 0). We add the gauge-fixing term to the free photon Lagrangian, and partial
integrating the Lagrangian as before. This yields an operator, which reads

D−1
µν =

[
�gµν +

(
1

ξ
− 1

)
∂µ∂ν −

1

ξ
∂0∂µnν −

1

ξ
∂0nµ∂ν +

1

ξ
nµnν∂

2
0

]
. (2.22)

By using the same procedure as for the Lorenz gauge, i.e. Fourier transforming into momentum
space and inverting the operator, we get a propagator of the form

Dµν =

[
1

k2 0
0 1

k2

(
δij − kikj

k2

)] . (2.23)

We had to choose ξ = 0 to get this simple expression for the photon propagator in the Coulomb
gauge. The bold faced zeroes indicate null-vectors, and 1

k2

(
δij − kikj

k2

)
is a 3 × 3-matrix. The

propagator can also be written in four-component notation as

Dµν =
1

k2

(
Θµν +

k2

k2n
µnν
)
, (2.24)

where Θ0ν = Θµ0 = 0 and Θij =
(
δij − kikj

k2

)
.

3We have used computational tools to invert the operator.
4S-matrix elements (scattering-matrix elements) are associated with a scattering process. They relate the initial

and final states.
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Chapter 3

Vacuum polarisation of the photon

In this chapter we are going to derive a radiative correction to the photon propagator. The ex-
act photon propagator must take into account all possible propagator-like diagrams. There are
infinitely many diagrams contributing to the photon propagator. Let iΠµν denote the sum of all
one-particle-irreducible (1PI) diagrams contributing to the photon propagator. iΠµν is known as
the vacuum polarisation tensor. We will try to predict how this tensor should look like, before we
calculate it. Throughout this derivation, we follow the approach of Peskin and Schroeder [16].

3.1 Vacuum polarisation tensor

We can write the exact photon propagator as a sum of all contributing diagrams, analogous to
λΦ4-theory in the preliminaries. The correction to the photon propagator is not as simple as the
correction to the propagator in the λΦ4-theory. One of the reasons is the vector-like properties
of the photon field reflected in the indices of the 1PI, iΠµν . The most general form for the
vacuum polarisation tensor must be in agreement with the symmetries otherwise found in QED.
We have that the photon propagator must be Lorentz invariant, which tells us that the tensor must
be a linear combination of gµν and kµkν . Here gµν denotes the metric tensor, and kµ is the four
momentum of the photon. The Ward’s identity, Section 1.5, suggests that the vacuum polarisation
tensor must be transverse, i.e. kµΠµν = 0. We use the projection matrix, Pµν = gµν − kµkν

k2
, to

write the polarisation tensor [24]. The projection matrix has some simple properties, PµνP ν
σ =

Pµσ and kµPµν = 0, guaranteeing a transverse polarisation tensor. Thus, we write the vacuum
polarisation tensor as

iΠµν = iPµνΠ
(
k2
)
. (3.1)

The scalar Π (k2) is of mass dimension two. It will be shown that this scalar can be made
dimensionless by factorising out k2. This simplifies the equation for the exact photon propagator,

p

p + k

k k

→ →
µ ν

Time
→

Figure 3.1: The Feynman diagram represents the vacuum polarisation. It is a one-loop correction to the
photon propagator. The wavy lines are photon propagators. We use solid lines for the fermion loop. The
k is the photon four-momentum, and p and p + k is the fermion four-momentum. The µ and ν indicates
the vertices. The arrow indicates the direction of propagation.
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Chapter 3. Vacuum polarisation of the photon

as we will show below. We factor out k2 and write the vacuum polarisation tensor as

iΠµν = ik2PµνΠ
(
k2
)
. (3.2)

The photon propagator will be written in the Coulomb gauge, see equation (2.24). By using the
Coulomb gauge, the exact photon propagator is written as

� =�+�1PI +�1PI 1PI + · · ·

= iDµν + iDµρiΠρσiD
σν + iDµρiΠρσiD

σλiΠληiD
ην + · · ·

= iDµν + iDµρik2PρσiD
σνΠ + k4iDµρiPρσiD

σλiPληiD
ηνΠ2 + · · ·

= iDµν
(
1 + Π + Π2 + · · ·

)
= iDµν

(
1

1− Π

)
, (3.3)

where we in the last step summed the geometric series. The contraction between the indices
of the propagator and polarisation tensor reads

1

Π (k2)
DµρΠρσD

σν =
1

k2

(
Θµρ +

k2

k2n
µnρ
)(

k2gρσ − kρkσ
)
Dσν

=

(
δij −

kikj

k2 −
k2

k2n
µnσ +

nµkσk
0

k2

)
Dσν

=
1

k2

(
Θµ
σ −

k2

k2n
µnσ +

nµkσk
0

k2

)(
Θσν +

k2

k2n
σnν
)

= Dµν . (3.4)

For a more rigorous derivation, see Appendix A. The contraction between the indices have not
created any mass term to the photon. It would have been a dramatic failure if our prediction
resulted in a massive photon. We see that the photon propagator is simply scaled by the factor

1
1−Π

. The photon propagator in the Feynman gauge is calculated by Peskin & Schroeder [16]. In
the Feynman gauge, the exact propagator receives a term proportional to kµkν . This term is not
present in the original photon propagator in the Feynman gauge, see equation (2.18). The kµkν-
term is called a gauge term, since the scaling of this term depends on the choice of gauge. Since
it is gauge dependent, it does not affect physical quantities, such as on-shell S-matrix elements.
In any real calculation, the photon is virtual, and connects to at least one conserved current. The
conserved current in QED is a fermion line, which respects the equation ∂µj

µ = 0 [19]. In
momentum space it reads kµjµ = 0, which means that the gauge term have not contribution to
on-shell scattering calculations. The vacuum polarisation tensor will be calculated in the next
section, and the scalar Π(k2) will be identified.

3.1.1 Calculation of Πµν

There are an infinite number of 1PI diagrams contributing to the exact photon propagator. We
must thus try to approximate the correction with the diagram which contributes the most. Since

14



3.1 Vacuum polarisation tensor

each vertex contributes with an additional power to the coupling constant, we only include the
diagram with the lowest number of vertices possible. We will only consider the one-loop con-
tribution to the 1PI diagrams when we calculate the polarisation tensor. This is the lowest order
contribution to the photon propagator, and the diagram is shown in Figure 3.1. The diagram
illustrates fermion pair production and annihilation in vacuum. This effect was first observed ex-
perimentally in 1947 [4], before a theoretical explanation was developed. The calculation of the
vacuum polarisation is useful in itself, as it is a common correction in many tree diagrams. By
calculating it once, the result can be used in many contexts where this diagram must be accounted
for, such as scattering diagrams [21].

We obtain the following equation by applying the Feynman rules of QED to the vacuum
polarisation tensor [12, 16],

iΠµν(k
2) = (−1)

∫
d4p

(2π)4
Tr

[
(−ieγµ)

1

/p−m
(−ieγν)

1

/p+ /k −m

]
. (3.5)

Three-momentum has been conserved in the vertices. The trace is taken over the Dirac space, i.e.
the trace affects the gamma matrices. We get the factor (−1) due to the fermion loop. The trace
can be rewritten by factorising a common denominator. We obtain

Tr(. . . ) =
Tr
[
γµ(/p+m)γν(/p+ /k +m)

]
(p2 −m2) [(p+ k)2 −m2]

, (3.6)

where we have used

/p
2 = γµγνp

µpν =
1

2
{γµ, γν} pµpν = gµνp

µpν = p2. (3.7)

The trace can be written out by using trace identities, which can be found in many text books,
e.g. [16, 21]. We only get contribution from even numbers of gamma matrices, and thus have

Tr[. . . ] = Tr
[
γµ/pγν(/p+ /k) +m2γµγν

]
= 4

[
2pµpν + (m2 − p · k − p2)gµν + pµkν + pνkµ

]
. (3.8)

The two factors in the denominator in equation (3.6) can be collected in a single factor by using
Feynman parametrisation, see equation (A.8). This yields

1

(p2 −m2) [(p+ k)2 −m2]
=

1∫
0

dx
1

[(p+ kx)2 + k2x(1− x)−m2]2
. (3.9)

We make the substitution p′ → p + kx, such that the denominator becomes even in p′. By using
equation (3.8) and (3.9), the polarisation tensor, equation (3.5), now reads

iΠµν(k
2) = −e2

1∫
0

dx

∫
d4p′

(2π)4

N

[p′2 + k2x(1− x)−m2]2
, (3.10)

where the numerator N is

N = 4
[
(m2 + k2x(1− x))gµν + 2p′µp

′
ν − p′

2
gµν − 2kµkνx(1− x)

]
+ terms linear in (p′).
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Chapter 3. Vacuum polarisation of the photon

Since the denominator is even in p′, we only get contribution from even terms in p′ in the numer-
ator. This is because we integrate over space-time.

We must take some care before evaluating the integral. The denominator contains a pole for
m2 > k2/4, which might be integrated over.1 Notice that k2 = (2m)2 is the threshold energy for
creating real electron-positron pairs. We can avoid the pole by evaluating our system for small
values of k2.

By performing a Wick rotation, see Appendix A, we make the change from Minkowski space
to Euclidean space. This results in the following transformation of the integrating variable, p′0 →
ip0
E and p′ → pE . We will now drop the subscriptE in pE in further calculations. Equation (3.10)

can be written in Eucledian space, and reads

iΠµν(k
2) =− 4ie2

1∫
0

dx

∫
d4p

(2π)4

× [(m2 + k2x(1− x))gµν − 2pµpν + p2gµν − 2kµkνx(1− x)]

[p2 − k2x(1− x) +m2]2
.

(3.11)

To solve this expression we use dimensional regularisation, see Chapter 1. This method allows
us to isolate the divergent terms. Our denominator is O(p4) and numerator is O(p4) and O(p6),
meaning that we should expect a quadratic ultraviolet divergent term and a logarithmic ultraviolet
divergent term.

In order to apply dimensional regularisation, we must introduce a dimensionful scale, analo-
gous to our example in Chapter 1. We integrate in d dimensions and multiply the integral with
µ4−d. Equation (3.11) can now be separated into two parts, one containing the quadratically di-
vergent terms, and one containing the logarithmic divergent terms. We write the integral as a
d-dimensional integral,

iΠµν(k
2) = −4iµ4−de2

1∫
0

dx

∫
ddp

(2π)d
N2 +Nln

[p2 − k2x(1− x) +m2]2
, (3.12)

where we have denoted

N2 =
[
p2 +m2 − k2x(1− x)

]
gµν −

2

d
gµνp

2 (3.13)

Nln = 2x(1− x)
(
k2gµν − kµkν

)
. (3.14)

In the calculations from equation (3.11) to equation (3.12), we have used that pµpν = gµν
d
p2. By

using equation (A.19) and (A.27), we will show that that the two terms in equation (3.13) cancel.
We have

iΠN2
µν =

[m2 − k2x(1− x)]
d
2
−1

(4π)
d
2

Γ

(
1− d

2

)
− [m2 − k2x(1− x)]

d
2
−(2−1)

(4π)
d
2

Γ

(
2− 1− d

2

)
,

(3.15)

1The largest value of x(1− x), for x ∈ [0, 1] is 1
4 .
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3.1 Vacuum polarisation tensor

where we can see that the two terms cancel. The vacuum polarisation tensor can now be written
as a single integral of the logarithmically divergent term,

iΠµν(k
2) = −4iµ4−de2

1∫
0

dx

∫
ddp

(2π)d
2x(1− x) (k2gµν − kµkν)
[p2 − k2x(1− x) +m2]2

. (3.16)

Notice that the numerator is independent of p. We can therefore use equation (A.19) to write the
polarisation tensor as a function of a Gamma function. The dimension is set to d = 4− 2ε as in
the preliminaries, and the polarisation tensor now reads

iΠµν(k
2) = − 8ie2

(4π)2

1∫
0

dx

[
x(1− x)

(
k2gµν − kµkν

)( 4πµ2

m2 − k2x(1− x)

)ε
Γ(ε)

]
, (3.17)

We now series expand the Gamma function and the factor
(

4πµ2

m2−k2x(1−x)

)ε
in powers of ε, see

Appendix A. The series expansion yields(
4πµ2

m2 − k2x(1− x)

)ε
≈ 1 + ε ln

(
4πµ2

m2 − k2x(1− x)

)
+O(ε2)

Γ(ε) ≈ 1

ε
− γE +O(ε)(

4πµ2

m2 − k2x(1− x)

)ε
Γ(ε) ≈ 1

ε
− γE + ln

(
4πµ2

m2 − k2x(1− x)

)
+O(ε), (3.18)

where γE is the Euler-Mascheroni constant.
We recognise the projection tensor in equation (3.17), (k2gµν − kµkν) = k2Pµν . This can be

factored out and the result is a vacuum polarisation tensor on the form that we predicted, i.e.

iΠµν(k
2) = ik2PµνΠ(k2). (3.19)

As we can see, the vacuum polarisation tensor is transverse and Lorentz invariant. The scalar
quantity has been identified and reads

Π(k2) = − 8e2

(4π)2

1∫
0

dx

{
x(1− x)

[
1

ε
− γ + ln

(
4πµ2

m2 − k2x(1− x)

)]}

= − 4e2

3(4π)2

1

ε
+ 6

1∫
0

dx

[
x(1− x) ln

(
µ2

m2 − k2x(1− x)

)] . (3.20)

The auxiliary mass scale µ was modified in the last step, µ2 → µ2eγE

4π
. The modification sim-

plifies the notation, and is commonly performed when using the modified minimal subtraction
renormalisation scheme, or the MS-scheme. We use renormalisation to treat the divergent term,
∝ 1

ε
, in the polarisation tensor.
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Chapter 3. Vacuum polarisation of the photon

3.2 Renormalisation

Physicists have developed tools to treat divergences in quantum field theory, e.g. regularisation
and renormalisation. Divergent integrals are common in quantum field calculations, and it is no
surprise that the calculation of Π(k2) resulted in a divergent term. The divergent term was isolated
by using dimensional regularisation. We still have to choose a renormalisation scheme. There are
various choices of renormalisation schemes available, e.g. on-shell renormalisation, momentum
subtraction, minimal subtraction [25, 26] (MS) and modified minimal subtraction (MS). Each
scheme has their own way of treating the divergent term, which is isolated by regularisation. In
this thesis we will use the MS-scheme.

We must return to the Lagrangian in order to interpret the result obtained from calculating
the polarisation tensor. Let us introduce a superscript B to original quantities in the Lagrangian,
e.g. Aµ → AB

µ . This is introduced in order to separate the bare values from the dressed values,
as discussed in Chapter 1. The dressed quantities will be written without any extra notation, i.e.
Aµ.

We begin by looking at the exact propagator, equation (3.3). The divergent result affects the
photon propagator. We absorb the divergent term into the photon field by a factor Z

1
2
3 . The Z3

is known as the field strength renormalisation since it is absorbed into the bare photon field. We
write the renormalised photon field as

Aµ = Z
− 1

2
3 AB

µ . (3.21)

Recall that the propagator is found by inverting the quadratic term in the Lagrangian, we thus
have to invert the scalar correction, Z

1
2
3 , when going back to the Lagrangian. Similar field strength

renormalisation is introduced to the Dirac field, i.e.

Ψ = Z
− 1

2
2 Ψ. (3.22)

The Lagrangian now reads

LQED = Z2Ψ̄
(
i/∂ −mB

)
Ψ− 1

4
Z3FµνF

µν − eBZ2Z
1
2
3 Ψ̄γµΨAµ, (3.23)

where eB denotes the bare coupling constant, and mB denotes the bare mass of the fermion. Al-
though we have rescaled the fields, the Lagrangian is still dependent on bare quantities. We can
write the Lagrangian purely by dressed quantities, if we introduce counterterms. The countert-
erms are introduced to renormalise the masses and coupling constants. The Lagrangian is written
as

LQED = Ψ̄
(
i/∂ −m

)
Ψ− 1

4
FµνF

µν − eΨ̄γµΨAµ + Lct, (3.24)

where

Lct = Ψ̄
(
iδZ2

/∂ − δm
)

Ψ− 1

4
δZ3FµνF

µν − δeΨ̄γµΨAµ. (3.25)
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3.2 Renormalisation

We can easily check that the coefficients must be

δZ2 = Z2 − 1

δZ3 = Z3 − 1

δm = Z2m
B −m

δe = Z2Z
1
2
3 e

B − e. (3.26)

The counterterms act as corrections in a similar way as the 1PI-diagrams, e.g. the vacuum po-
larisation. It is common to represent the corrections graphically as in Figure 3.2. The photon
propagator now contains an additional term due to the counterterm, δZ3 . We obtain

iΠ
µν (

k2
)

= ik2P µν
[
Π(k2)− δZ3

]
= ik2P µνΠ

(
k2
)
. (3.27)

This is an effective vacuum polarisation, and can be made finite with an adequate choice of
δZ3 . The choice of δZ3 depends on the renormalisation scheme. We use the MS-scheme in this
calculation. This is a particularly convenient scheme to apply, as we only subtract the divergent
term.2 Another advantage with this scheme is that the subtracted term is mass independent, unlike
the on-shell renormalisation scheme [18]. The divergent term can be found in equation (3.20) and
is canceled by the counterterm. Thus, the coefficient associated with the counterterm must be

δZ3 = − 4e2

3(4π)2

1

ε
, (3.28)

in the MS. Notice that the vacuum polarisation is finite after the renormalisation. Recall that
the vacuum polarisation is associated with the one particle irreducible diagrams. The vacuum
polarisation is the leading order in α of the one particle irreducible diagrams. We have

�1PI =�+�+ · · ·

≈ iΠ
µν (

k2
)
. (3.29)

The only contribution included is the vacuum polarisation and its counterterm. To get the exact
propagator, we must add all propagator like diagrams, as in Section 3.1. We use equation (3.3)
to express the corrected photon propagator, but substitutes the divergent scalar Π with the finite
scalar Π. The photon propagator now reads

D̃µν = Dµν 1

1− Π (k2)
= Dµν

1 +
8e2

(4π)2

1∫
0

dx

[
x(1− x) ln

(
µ2

m2 − k2x(1− x)

)]
−1

.

(3.30)
In Chapter 4, we will show that this correction modifies the Hamiltonian in non-relativistic

quantum electrodynamics (NRQED), and alters the energy spectrum of a the hydrogen atom.

2The modified MS-scheme also subtract constant terms when modifying the auxiliary mass scale.
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Chapter 3. Vacuum polarisation of the photon

�
= ik2P µν

Figure 3.2: The diagram represents the counterterm in the Lagrangian for the vacuum polarisation of the
photon. Figure is adapted from Peskin & Schroeder [16].

3.3 Non-relativistic limit

In bound state physics, the rest mass is much larger than the kinetic energy, i.e. k2 � m2. This is
because the binding energy of a bound state system is very small compared to the rest energy of
an electron. The binding for the ground state of the hydrogen atom is 13.6eV [21], while the rest
energy of an electron is 511keV. We can thus approximate the four-potential to a fermion line to
be slightly off-shell pµ = (E0,p), where E0 ≈ m. The zeroth component of the four-momentum
associated with the photon is zero, as a result of the approximation on the four-momentum of the
fermion. In QED, the photon will always connect with a fermion line. The four-momentum of the
photon is determined by the momentum transfer of the fermion, i.e. kµ = pµ − p′µ = (0,p− p′),
i.e. k2 = −k2.

Lets evaluate the integral in the second term in equation (3.30) by first expanding the loga-
rithm in powers of k2

m2 , and use k0 = 0. We find

ln

 µ2

m2
[
1 + k2

m2x(1− x)
]
 = ln

(
µ2

m2

)
+ ln

 1[
1 + k2

m2x(1− x)
]


≈ ln

(
µ2

m2

)
− ln

[
1 +

k2

m2
x(1− x)

]
≈ ln

(
µ2

m2

)
− k2

m2
x(1− x), (3.31)

where terms of higher order than O
(

k2

m2

)
, have been omitted. The integral in equation (3.30)

can thus be solved analytically by using the approximation above. This yields
1∫

0

dx

[
x(1− x) ln

(
µ2

m2 + k2x(1− x)

)]
≈

1∫
0

dx

{
x(1− x)

[
ln

(
µ2

m2

)
− k2

m2
x(1− x)

]}
=

1

6
ln

(
µ2

m2

)
− 1

30

k2

m2
. (3.32)

The photon propagator in the non-relativistic limit can be written as

D̃µν = Dµν

[
1 +

α

3π
ln

(
µ2

m2

)
− α

15π

k2

m2

]−1

, (3.33)

where α = e2

4π
is the fine structure constant.
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Chapter 4

Non-relativistic quantum electrodynamics

NRQED is an effective field theory developed by Caswell and Lepage [8]. It systematically in-
corporate relativistic and radiative corrections into the non-relativistic Hamiltonian. The Hamil-
tonian is constructed in powers of α and p

m
∼ v, where α is the fine-structure constant, m is the

fermion mass, p is the momentum, and v the speed of the fermion in units of speed of light. Since
it’s introduction, NRQED has been repeatedly reviewed. The paper [27], by Kinoshita and Nio,
is one of the more thorough reviews, and is relevant for this thesis. It is the first paper in a series
of papers that outline the theory. In the paper, Kinoshita and Nio derive the Lagrangian including
corrections of O (v4) and α2(Zα). Kinoshita and Nio derive the hyperfine structure, a correction
to the non-relativistic energy spectrum which is about 1000 times smaller than the Lamb shift
correction [21].

The construction of the Lagrangian in NRQED will be outlined, using the same notation as
Kinoshita and Nio [27]. We will first present a transformation called the Foldy-Wouthuysen trans-
formation [28]. This transformation decouples the upper components from the lower components
of the Dirac field. The upper and lower component of the Dirac field describes the fermion and
the anti-fermion sector respectively. If we successfully decouple the two sectors, we can use the
two-component Pauli spinor to represent the fermion field in the Lagrangian.

4.1 Foldy-Wouthuysen transformation

If we are able to decouple the upper from the lower components of the Dirac spinor, the parti-
cle and anti-particle sectors can be analysed separately. We will show that the decoupling can
be performed to a certain order in v by applying a canonical unitary transformation to the La-
grangian. The transformation is named after Foldy and Wouthuysen, who in 1950 introduced the
transformation [28].

The operators in the transformed Lagrangian can not have off-diagonal block elements in the
Pauli-Dirac basis.1 This basis is the choice of convention of the gamma matrices, we use the same
basis as is presented in [29]. Diagonal operators in this basis are called even operators, as opposed
to odd operators which contains off-diagonal block elements. The product between two odd or
even operators yields an even operator, while the product between one odd and one even operator,
produces an odd operator. For instance, the generalised spin operators, Σi = diag (σi, σi), where
σi are the Pauli matrices, are even operators. The gamma matrices, γi, are odd operators. We
apply minimal coupling to the Dirac Lagrangian. It reads

LDL = Ψ̄
(
i /D −m

)
Ψ, (4.1)

where we have used the Feynman slash notation on the covariant derivative. The spatial part of
the operator /D = γµDµ = γµ (∂µ − ieAµ) is odd, due to the gamma matrices. We can find the

1By block elements, we mean the 2 × 2 matrices which constitute the 4 × 4-matrices in QED, e.g. the Pauli
matrices are block elements in the gamma matrices.
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Chapter 4. Non-relativistic quantum electrodynamics

equation of motion, by varying the action, S =
∫
d4xLDL, with respect to Ψ̄. This yields

∂LDL

∂Ψ̄
=
(
i /D −m

)
Ψ = 0. (4.2)

By substituting the covariant derivative into the equation above, we find

i∂tΨ =
(
γ0m+ iαi∂i + eαiAi − eA0

)
Ψ = HDΨ, (4.3)

where HD is the Dirac Hamiltonian and αi = γ0γi.
we can find an expression for the transformed Hamiltonian, H ′D, by using the equation of

motion, equation (4.3). Let us denote the unitary transformation by UFW = eiS , where S is a
time-dependent operator. We transform the Dirac field by Ψ→ UFWΨ, and find

HDΨ = i∂tΨ = i∂te
−iSΨ′ = i

(
∂te
−iS)Ψ′ + ie−iS∂tΨ

′. (4.4)

The transformed Dirac Hamiltonian is found by

i∂tΨ
′ = eiS (HD − i∂t) e−iSΨ′ ≡ H ′DΨ′. (4.5)

We can now perform the Foldy-Wouthuysen transformation to the Dirac Hamiltonian. In general,
the transformation is time dependent. Thus, we can not find one transformation which cancels all
odd operators. The transformation will only cancel the leading order odd operator in powers of
v. We will only sketch the procedure, since this is done rigorously by Bjorken & Drell [30], and
in the specialisation project in advance of this thesis [31].

A Taylor expansion is applied to the unitary transformation, UFW. This results in commu-
tators of the operator S and the operators in the Hamiltonian. The operator S can be chosen to
cancel the leading order odd operator. Each transformation removes odd operators at next-to-
leading order in p

m
= v. Notice that v is small in the non-relativistic limit, it is a fraction of the

speed of light when using natural units.
The Foldy-Wouthuysen transformation yields the following transformed Dirac Hamiltonian

[30–33]

H ′′′D =

(
m− D2

2m
− D4

8m3
− eA0 +

e

2m
σσσ · B

)
ψ

+

[
e

4m2
σσσ · (E× p) +

e

8m2
∇ · E +

ie

8m2
σσσ · (∇× E)

]
ψ + · · · , (4.6)

where ψ is the two-component Pauli spinor, σσσ is the Pauli matrices, E and B are the electric and
magnetic field respectively and D = i (p− eA). We had to transform The Hamiltonian three
times to get the final result, therore it is denoted by three apostrophes.

4.2 NRQED Lagrangian
One of the many advantages of NRQED is that it is manifest gauge invariant. By construction,
we can enforce that the NRQED Hamiltonian respects gauge invariance. NRQED, as any effec-
tive field theory, must respect the same symmetries as the underlying theory. Another advantage
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4.2 NRQED Lagrangian

of NRQED is that the Lagrangian is written in terms of the two-component Pauli spinor, as op-
posed to the four-component Dirac spinor. We can freely focus on the particle sector alone,
since the particle and anti-particle sectors are decoupled. The decoupling of the particle sector
from the anti-particle sector is limited to a certain power of p

m
, which is evident from the Foldy-

Wouthuysen transformation. We will later see that the NRQED Lagrangian contains operators
which are not found by the Foldy-Wouthuysen transformation, e.g. the vacuum polarisation of
the photon. This is a radiative correction, which is not incorporated in the Foldy-Wouthuysen
transformation. Radiative corrections are not found in classical physics. The photon is treated
the same way as in QED, because it is relativistic of nature [27]. NRQED does not have vac-
uum polarisation diagrams in the same way as QED. The vacuum polarisation of the photon is
incorporated through additional terms in the photon Lagrangian [32].

We will follow the paper by Paz [34] when constructing the NRQED Lagrangian. The sym-
metries of NRQED are gauge and parity invariance, time reversal, hermiticity, and invariant
under Galilean transformations. NRQED is a non-relativistic theory, and is thus invariant under
Galilean transformations, while QED is relativistic and invariant under Lorentz transformations.
Thus, the Lagrangian can not contain any vector-like terms. The NRQED Lagrangian will be
written in terms containing the Pauli spinor, ψ, the electric field, E, the magnetic field, B, and
the Pauli matrices, σi. We can represent the electric and magnetic field by using the compo-
nents of Aµ. To remind the reader, the electric and magnetic field can be written in terms of the
four-potential, i.e.

E = −∇A0 − ∂tA
B = ∇× A. (4.7)

Hermiticity is respected by using Hermitian operators. The eigenvalues of any Hermitian
operator are real. This guarantees real energy eigenvalues. We will use the components of the
covariant derivative, Dµ = ∂µ − ieAµ, to construct the NRQED Lagrangian.

Parity invariance and time reversal symmetry can be analysed by looking at the different
terms we want to use when constructing the Lagrangian. The electromagnetic vector potential
and the position vector are classical vectors which are odd under parity transformation. The
scalar potential and time variable are scalar quantities which transform even under parity. With
this, we have that the spatial part of the covariant derivative, D = ∇− ieA, and the electric field
must be parity odd. The magnetic field and the zeroth component of the covariant derivative,
Dt = ∂t − ieA0, must be parity even. Spin is an axial vector, thus the Pauli matrices are even
under parity.

As for the time reversal symmetry, we know that time is odd under time reversal, and position
is even. The time reversal also leads to complex conjugation [30], because the transformation is
anti-unitary. Thus we have that iDt = i∂t + eA0 is even under time reversal, and iD = i∇+ eA
is odd under time reversal. This implies that the vector potential, A, is odd, whilst the scalar
potential, A0, is even under time reversal. The Pauli matrices are odd under time reversal. Both
time reversal and parity invariance are extensively discussed by Bjorken and Drell [20].

The Lagrangian must be constructed with terms respecting even parity and time reversal
symmetry, in agreement with QED. When constructing the NRQED Lagrangian, there are two
corrections we must take into account, namely the relativistic and radiative corrections. The
relativistic corrections are incorporated in a series expansion in powers of p

m
or equivalently, in
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Chapter 4. Non-relativistic quantum electrodynamics

powers of v. The radiative corrections are incorporated through a power series in α, which are
found by taking loop diagrams into consideration. Loop diagrams add two vertices with coupling
constant e, thus each additional loop diagram contributes with an additional power in α.

We use the energy-momentum relation to indicate to which order in v the operators are. The
energy-momentum relation reads

E =
√

p2 +m2 = m

(
1 +

p2

2m2
− p4

8m4
+ · · ·

)
= m+

(
p2

2m
− p4

8m3
+ · · ·

)
= m+

[
p2

2m

(
1− p2

4m2
+ · · ·

)]
. (4.8)

It should be familiar that the energy for a free non-relativistic particle is m + p2

2m
. Therefore the

relativistic correction, p4

8m3 , is a correction of O (v2), relative to the free particle.
Recall that minimal coupling is p → p′ = p + eA = iD. We know that the momentum

is associated with the derivative. Thus, the D4 is accompanied by a factor 1
m3 . This is shown

in the Foldy-Wouthuysen transformation and in the energy-momentum relation. The term D4

is of O (v4), i.e. a O (v2) correction. Terms of higher order than D4 will be omitted. Notice
that D2

2m
and D4

8m3 were derived from the expansion of the energy-momentum relation. These
terms have coefficients which are unaffected by radiative corrections [27]. The results from the
Foldy-Wouthuysen transformation indicates other types of operators we can expect to find. The
Foldy-Wouthuysen transformation contains all the operators of the fermion NRQED Lagrangian
at O (v2). These operators can be found by using combinations of the covariant derivative, and
the symmetries of NRQED. This is done rigorously in [34], and will not be shown here.

Operators which are not found from the series expansion of the relativistic energy-momentum
relation will be accompanied by a coefficient written as a power series in α. The power series
incorporates radiative corrections. We will normalise the coefficients in such a way that every
power series start at unity. The leading order of the coefficients, the zeroth order in α, is equiva-
lent to the coefficients found from the Foldy-Wouthuysen transformation.

We should point out that the Lagrangian is not uniquely defined, but defined up to a surface
term. One can always perform a partial integration to one of the terms in the Lagrangian. If
the partial integration of one operator result in a new operator, the two operators are considered
equivalent. The partial integration will also result in a surface term, which can in most cases be
set to zero. We can omit the surface terms if we assume that the fields are zero at the boundary
[12]. Two equivalent operators are not independent of one another, as one can be derived from
the other. For instance, the term containing the operator ∇ · E, can be partially integrated to
obtain the operator −E · ∇, plus a surface term. Thus, the two operators are equivalent up to a
surface term, and connected through a partial integration. The two operators have the same coef-
ficient. In addition to the fermion NRQED Lagrangian, we will later see that the photon NRQED
Lagrangian has additional terms in the NRQED Lagrangian. The photon NRQED Lagrangian
contains corrections, which are not obtained using the Foldy-Wouthuysen transformation.

We now understand that the relativistic aspect of bound state physics is manifested in a series
expansion in v. Relativistic corrections are taken into account during the construction of the
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4.2 NRQED Lagrangian

Lagrangian. The Lamb shift is an O (v2α5) correction [9]. We identify the power series in α by
using power counting rule. We will elaborated on the power counting rules later.

Recall that the QED Lagrangian can be written as

LQED = Ψ̄ (iDµγ
µ −m) Ψ− 1

4
FµνF

µν , (4.9)

where Ψ̄ = Ψ†γ0. This is expressed using a four-component Dirac field, containing both particle
and anti-particle components. The Foldy-Wouthuysen transformation showed that we can ex-
press the Dirac Lagrangian by a non-relativistic expansion in powers of p

m
∼ v, where the upper

and lower components decouple. Thus, we can express the NRQED Lagrangian in terms depen-
dent on the two-component Pauli spinor. We can replace the Dirac Lagrangian by the NRQED
Lagrangian, which reads [9, 34]

LNRQED = L0 + Lrel + LF + LD + LSO + Lγ, (4.10)

where

L0 = ψ†
(
iDt +

D2

2m

)
ψ

Lrel = ψ†δrel
D4

8m3
ψ

LF = −ψ†δF
eσσσ · B

2m
ψ

LD = −ψ†δD
e (D · E− E · D)

8m2
ψ

LSO = −ψ†δSO
ieσσσ · (D× E− E× D)

8m2
ψ, (4.11)

and ψ is the two-component Pauli spinor. The last term, Lγ , is the term associated with the
photon. We will discuss the photon Lagrangian later in this section. Notice that every operator
in the fermion Lagrangian is also present in the Foldy-Wouthuysen transformation. This follows
naturally, given that the Foldy-Wouthuysen transformation incorporates relativistic corrections.
The terms in the fermion Lagrangian can all be treated as perturbations, and we can use Rayleigh-
Schrödinger perturbation theory to find the energy correction [10]. This is not the case for the
photon. The photon terms can not be treated as perturbations.

The coefficients, δi, where i =[rel,D,F,SO], are found by using a matching procedure. This
procedure matches the scattering diagrams in NRQED to the scattering diagrams in QED, or
the two-point function in NRQED to the two-point function in QED. The matching procedure
enforces that the scattering amplitudes in the two theories must agree. Matching the NRQED La-
grangian at tree level, results in coefficients equal to the coefficients from the Foldy-Wouthuysen
transformation. Going beyond tree level, we must add radiative corrections. The addition of a
loop correction gives a contribution which has an additional power in α, due to the addition of
two coupling constants e. This gives a power series in α.

We will perform NRQED calculations in the Coulomb gauge. This is advantageous since
it isolates the Coulomb photon. The Coulomb gauge separates the Coulomb photon from the
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Chapter 4. Non-relativistic quantum electrodynamics

spatial photon field [9]. In the Coulomb gauge, two new photon interactions are added to the
photon Lagrangian [27].

We can derive the two new photon interactions by adding a correction to the electromagnetic
field tensor. The correction must be Lorentz invariant, Hermitian and respect the same parity and
time symmetry as the electromagnetic field tensor, Fµν . We can add the D’Alembertian opera-
tor between the electromagnetic field tensors in the Maxwell Lagrangian. In QED, the photon
field has mass dimension one, which implies that the operator must be of mass dimension two.
The action in the path integral formalism must be dimensionless. Thus, in four dimensions the
Lagrangian must be of mass dimension four. This is also mentioned in earlier discussion, when
we added the auxiliary mass µ in Chapter 3. The D’Alembertian operator must be multiplied by
a factor 1

m2 . By using the approximation k0 = 0,2 and Fourier transforming the Lagrangian to
momentum space, we find

Lγ = −1

4
FµνF

µν +
δ̄VP

m2
Fµνk2F µν (4.12a)

= −1

4
FµνF

µν + LVPt + LVPs, (4.12b)

where

LVPt = δVP
α

15π
A0(k)

k4

m2
A0(k) (4.13)

LVPs = −δVP
α

15π
Ai(k)

k4

m2
Aj(k)

(
δij −

kikj

k2

)
. (4.14)

The t and s in the subscript stands for time and spatial part respectively. The steps between
equation (4.12a) and (4.12b) are similar to the mathematical steps shown in Section 2.3. We
have changed the notation from δ̄VP → δVP. We factored out the leading order in α, such that
δVP is normalised to be one for the leading order. The leading order contribution is the vacuum
polarisation of the photon.

4.2.1 NRQED Hamiltonian
To calculate the energy shift, we must determine the Hamiltonian density. The NRQED Hamil-
tonian can be found by performing a Legendre transformation to the NRQED Lagrangian. We
first identify the conjugated momentum for the photon field, πµ = ∂L

∂Ȧµ
, and for the fermion field

πψ = ∂L
∂ψ̇

. The photon field yields three conjugated momentum, since the Lagrangian is indepen-

dent of Ȧ0. Thus, the zeroth component of the photon field is not a dynamical variable. We find
that the conjugated momentum for the photon and the fermion field are

πAi =
∂LNRQED

∂Ȧi
= F 0i = Ei

πψ =
∂LNRQED

∂ψ̇
= iψ†. (4.15)

2Justified by the non-relativistic limit, see Section 3.3.
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4.3 Matching NRQED with QED

The Hamiltonian is found by the Legendre transformation [9, 20],

HNRQED = ψ†
(

p2

2m
+ qA0

)
ψ +Hrel +HF +HD +HSO +Hγ, (4.16)

where each of the Hi is its negative equivalence to Li. There is one exception to the latter
statement, i.e.

Hγ =
1

2

(
E2 + B2

)
+HVPt +HVPs, (4.17)

where we have used that −1
4
FµνF

µν = 1
2

(
E2 − B2

)
[20]. The last two terms in the equation

above are HVPt = −LVPt and HVPs = −LVPs. Notice that when performing the Legendre
transformation, the interaction terms are only affected by a change in sign. This is also true in
QED.

The Feynman rules are presented in Figure B.1. We have not derived the Feynman rules
in this thesis, we adapt the Feynman rules from the paper by Kinoshita and Nio [27]. It is the
vacuum polarisation contribution of the Lamb shift which is of interest, and only the Feynman
rules for the Coulomb photon is presented in the figure. The Feynman rules for the fermion and
spatial part of the photon can be found graphically in the paper by Kinoshita and Nio [27]. For
the interaction terms, the Feynman rules could have been directly read from the Hamiltonian, see
equation (4.16). We will next introduce the matching method used for identifying the coefficients.

4.3 Matching NRQED with QED
The matching procedure between the NRQED and QED involves scattering diagrams and the
two-point functions of the fields. This procedure enforces that the scattering amplitudes of QED
coincide with the scattering amplitudes of NRQED. To incorporate higher order corrections in
powers of α, we must calculate higher order loop diagrams in QED and include higher order
diagrams in NRQED.

In this thesis, we calculate corrections to order v2 in the Lagrangian. For the fermion field,
we are content with matching at tree level. At tree level, the coefficients in NRQED is equiva-
lent to the coefficients of the Foldy-Wouthuysen transformed Dirac Hamiltonian equation (4.6).
The tree-level matching does not reproduce the Lamb shift, it only reproduces the fine structure
[31]. As mentioned, to find the correction with higher powers of α, we must include radiative
corrections with loop diagrams in QED.

The Lamb shift is an α5-correction [9]. We will not derive the power counting rules in this
thesis. A derivation has been worked out by Labelle in [10]. The result of the counting rules is that
the leading order radiative corrections are of O(α5). Diagrams which contribute to leading order
are discussed in [9, 27]. For the photon field, we only get contribution from the instantaneous
Coulomb interaction describes by the zeroth component of the photon propagator [35]. If we
were to include the next-to-leading order in α, we get retardation effects [10]. This effect account
for the finite speed of a photon propagator. At the energy level of the Lamb shift, the photon
interaction can be said to be instantaneous.

The power counting rules also show that the photon term can not be treated as perturbation.
We can add any number of Coulomb interactions without changing the net power of α, because
the Coulomb interaction is independent of the mass [36]. Each addition of a Coulomb interaction
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Time
→ p p′

−p −p′

k

k
(Ze,M )

(-e,m)

Figure 4.1: The Feynman diagram represents the vacuum polarisation contribution to the coulomb in-
teraction in NRQED. We use solid and double solid lines to represents the fermion and the nucleus line
respectively. The blob represents the correction due to vacuum polarisation, and the dotted lines are the
Coulomb-photon propagators. The nucleus has mass M and charge Ze, while the fermion has mass m and
charge −e. We adapted the figure from Labelle and Zebarjad [9].

will also decrease the power of v. Since we can add any number of Coulomb interaction, we
must sum over all. We will associate the external lines with the Schrödinger wave function in the
Coulomb potential. This implies that we sum over the Coulomb interactions.

The loop correction to the photon propagator will be graphically represented as a blob, see
Figure 4.1. Recall that NRQED does not have loop corrections, this is simply an additional
correction to the photon Hamiltonian in NRQED. The diagram in Figure 4.1 is the diagram
which must be calculated to find the vacuum polarisation contribution to the Lamb shift. We use
the NRQED Feynman rules, shown in Figure B.1, to calculate the diagram in the next section.

Before we perform the calculations, the coefficient, δVP, is shown to be unity to leading
order correction in α. We enforce the two-point function of NRQED to match the two-point
function of QED. Recall that the photon Lagrangian in NRQED is treated analogous to the photon
Lagrangian in QED [27]. We find

Lγ = LγQED, (4.18)

where we disregard the common term 1
4
FµνF

µν . The two Lagrangian reads

Lγ = δV P
α

15π

[
A0(k)

k4

m2
A0(k)− Ai(k)

k4

m2
Aj(k)

(
δij −

kikj

k2

)]
, (4.19)

and

LγQED = Aµ
(
−k2gµν − kµkν

) [
− α

15π

k2

m2
+

α

3π
ln

(
µ2

m2

)]
Aν . (4.20)

We can separate the zeroth component from the three spatial components in equation (4.20), this
yields

LγQED = A0k2

(
α

15π

k2

m2

)
A0 − Ai α

15π

k2

m2

(
k2δij − kikj

)
Aj, (4.21)

28



4.4 Lamb shift

where we have omitted the dependence on the auxiliary mass scale, µ. This will be elaborated
below. By equating the two equations (4.19) and (4.21) we find that δVP = 1.

The term which is dependent on the auxiliary mass scale, µ, were omitted from the two-point
function. This term should not affect the physical energy levels since it is not a physical quantity.
The auxiliary mass scale is canceled by a field redefinition. We can factor out − α

15π
k2

m2 from the

square bracket in equation (4.20). The square bracket now reads
[
1− 5m2

k2 ln
(
µ2

m2

)]
. We redefine

the photon field by Aµ → A′µ =
[
1− 5m2

k2 ln
(
µ2

m2

)]
Aµ.

The other coefficients introduced in the NRQED Lagrangian (4.10) can be identified by
adding loop corrections to the tree level diagrams for the vertex factor in QED. By matching the
coefficient at higher loop corrections of the vertex factor, we could get contributions of higher
order than the leading order in α.

4.4 Lamb shift

The calculation of the energy corrections is the final part of the calculations. We will evaluate
the diagram for the leading order correction to the Coulomb interaction, see in Figure 4.1. The
Feynman rules in Figure B.1 are applied to the diagram [9]. The diagram is known as the Uehling
potential [37], and is a correction to the Coulomb potential. We choose Z = 1, thus the diagram
reads

∆EVP =

∫
d3p

(2π)3

d3p′

(2π)3ψ
∗ (p′)

[
(−e) 1

k2

(
−δVP

α

15π

k4

m2

)
1

k2 (+e)

]
ψ (p)

= δVP
4α2

15m2

∫
d3p

(2π)3

d3p′

(2π)3ψ
∗ (p′)ψ (p)

= δVP
4α2

15m2
|ψ (0) |2

= δVP
4α2

15m2

1

π

(mα
n

)3

δl0

= δVP
4mα5

15πn3
δl0, (4.22)

where we have evaluated the wave function at the origin [29]. The integration is recognised as
a Fourier transformation of the wave function from momentum to position space, for the wave
function evaluated at origin. We get a delta function due to the fact that the radial function
is only non-zero at the origin for the S-states. The quantum number n and l is known as the
principal quantum number and the azimuthal quantum number respectively. Notice that the result
shown in equation (4.22) is of order O (α5) as it should be. The coefficient δVP is determined
by the matching procedure, and would be different from unity if we included higher order loop
corrections.

Notice that the energy correction in equation (4.22) is positive. This is not in agreement with
literature or experimental observations [12, 16, 33, 38–40]. The disagreement suggests a sign
error in the calculation above, which we were unable to correct. As far as we can tell, the sign
error is also present in the paper by Labelle and Zebarjad [9], but missed in the end result. We
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make reservations that we miss crucial information in the thesis, and that there is an explanation
to why Labelle and Zebarjad [9] got the correct sign in the final result. When we calculated the
Lamb shift above, we used Feynman rules that coincide with the paper by Kinoshita and Nio
[27].

We will demonstrate the traditional way of finding the energy shift caused by the vacuum
polarisation of the photon. The vacuum polarisation corrects the Coulomb potential, and the
correction is known as the Uehling potential [37]. We will not derive the Coulomb potential in a
rigorous manner, as this is done by Peskin & Schroeder [16].

The Coulomb potential can be obtained by evaluating the electron-positron scattering, see
Figure 4.2. As mentioned earlier, it is more convenient to do QED calculations in Feynman
gauge, see equation (2.18). The scattering diagram yields the following scattering amplitude,

iM = ū(p′)(−ie)γµu(p)
−igµν

(p′ − p)2
v̄(q)(ie)γνv(q′), (4.23)

where we have used a plane wave solution for the Dirac field, i.e. Ψ = u(p)e−ipx for the electron,
and Ψ = v(q)eiqx for the positron. Momentum-conservation have been enforced in the vertices,
i.e. k = p′−p. We want to do the calculation in the non-relativistic limit, which yields (p′−p)2 ≈
−(p′ − p)2 = −k2. We can write the spinors in the non-relativistic limit as [16]

u(p) ≈
√
m

[
ξ
ξ

]
(4.24)

v(q) ≈
√
m

[
ξ
−ξ

]
, (4.25)

where ξ denotes a two-component spinor. The spinors have been approximated to zeroth order
in p

m
. The spinor ξ depends on the spin configuration of the particle. We can now evaluate the

spinors, u and v, in the approximation above. This yields

ū(p′)γiu(p) = 0 (4.26)

v̄(q)γiv(q′) = 0 (4.27)

ū(p′)γ0u(p) = 2mξ′†ξ (4.28)

v̄(q)γ0v(q′) = 2mξ†ξ′, (4.29)

where we have used ū(p′) = u†γ0. Thus, the scattering amplitude in the non-relativistic limit
reads

iM =
ie2

k2 (2mξ′†ξ)u(2mξ
†ξ′)v (4.30)

The scattering amplitude can now be compared with the scattering amplitude from the Born
approximation [11, 29]. We use the Born approximation for a scattering potential. The potential
reads

V (x) = −
∫

d3k

(2π)3
eik·x

e2

k2 = −α
x
, (4.31)

which we recognise as the Coulomb potential. We refer to Adkins [41] for a detailed calculation
of the integral. By including the vacuum polarisation diagram, we can find a correction to the
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Time
→ p p′

q q′

k

(e,m)

(-e,m)

Figure 4.2: This figure illustrates the electron-positron scattering. We denote the electron, positron and
photon momentum by p, q and k respectively. The positron propagates in negative time direction. We
have adapted the figure from Peskin & Schroeder [16].

Coulomb potential. We include the vacuum polarisation diagram, Figure 3.1, by inserting it into
the photon propagator. This gives the next-to-leading order correction in α. The vacuum polari-
sation was calculated in Chapter 3, and resulted in a corrected photon propagator, see (3.33). We
expand the correction in powers of k2

m2 . The zeroth component reads

D00 =
1

k2

[
1 +

α

15π

k2

m2
+ · · ·

]
, (4.32)

where the auxiliary mass scale is absorbed in a field redefinition, analogous to Section 4.3. We
have omitted terms of higher order than k2

m2 . The scattering amplitude in equation (4.30) is now
scaled by the vacuum polarisation contribution. By comparing it to the scattering amplitude of
the Born approximation, the potential reads

V (x) =
(
−e2

) ∫ d3k
(2π)3

eik·x
(

1

k2 +
α

15π

1

m2

)
. (4.33)

We are interested in the correction term, and not the Coulomb potential. The correction term
is a scalar in momentum space. Thus, the Fourier transform result in a three-dimensional delta
function. We obtain

U(x) = − 4α2

15m2

∫
d3k

(2π)3
eik·x = − 4α2

15m2
δ(3)(x). (4.34)

This is the famous Uehling potential [37], which we denote by U(x). We can now apply Rayleigh-
Schrödinger perturbation theory on the Schrödinger wave function, using the Uehling potential
as the perturbation [29]. This gives

∆EU =

〈
ψ

∣∣∣∣[− 4α2

15m2
δ(3)(x)

]∣∣∣∣ψ〉 =

[
− 4α2

15m2

]
|ψ(0)|2 = − 4mα5

15πn3
δl0, (4.35)

where |ψ(0)|2 = 1
π

(
mα
n

)2
δl0, and ψ(0) is the Schrödinger wave function in the Coulomb poten-

tial evaluated at the origin [29]. We see that the energy correction is of the right magnitude and
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negative. By using the traditional method, we have calculated the vacuum polarisation contribu-
tion to the Lamb shift, which is in agreement with literature and experimental observations.

We can add this correction to the fine structure of the hydrogen atom. The fine structure was
calculated in the specialisation project in advance of the thesis [31], and the energy level now
reads

E = m

[
1− α2

2n2
− α4

2n4

(
n

j + 1
2

− 3

4

)
− 4α5

15n3
δl0

]
= ENR + ∆EFS + ∆EU, (4.36)

where j is the quantum number for the total angular momentum. ENR is the non-relativistic ap-
proximation to the binding energy, ∆EFS is the fine structure correction, and ∆EU is the vacuum
polarisation contribution of the Lamb shift. We notice that the Lamb shift lifts the degeneracy
between the 2S 1

2
-state and the 2P 1

2
-state. The energy levels are quantitatively presented in Figure

4.3.
We have calculated the vacuum polarisation contribution to the Lamb shift of the 2S 1

2
-state,

which numerically is of the order 10−7eV. This is only a small fraction of the total Lamb shift
[16]. By using the Planck-Einstein relation, E = hν, where h is the Planck constant and ν
is frequency, we can express the energy shift in hertz. The photon contribution results in a
downward shift of the energy level for the 2S 1

2
state by 27.1 MHz [12], while the observation

by Lamb and Retherford in 1947 was an upward shift of about 1000 MHz [4]. This would
suggest that the larger part of the contribution to the Lamb shift is due to the corrections in the
fermion NRQED Lagrangian. The next-to-leading order in α for the fermion field could have
been calculated by finding higher order corrections to the coefficients in equation (4.10).
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Energy
[eV]

E = 0

n = 3

n = 2

n = 1

3D 5
2

3D 3
2
, 3P 3

23P 1
23S 1
2

2P 3
2

2P 1
22S 1
2

1S 1
2

(C)(B)(A)

Figure 4.3: This figure shows, qualitatively, how the energy spectrum of bound states changes with the
different corrections. The non-relativistic energy levels (A) is shifted by the fine structure (B). Some of
the degenerate states in (A) is lifted by the effects in (B). The vacuum polarisation contribution of the
Lamb shift (C), only affects the S-states, and lifts the degeneracy of some of the states from (B). S,P,D
is associated with l = one, two and three respectively. The fraction denotes the value of j, i.e. the total
angular momentum. This figure is a reworked figure from the specialisation project in advance of this
thesis [31].
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Chapter 5

Conclusion and outlook

In this thesis, we have reviewed some of the basic concepts of quantum field theory. After a brief
review of regularisation and renormalisation, we discussed gauge symmetry in QED. We derived
the photon propagator in both Lorenz and Coulomb gauge. The vacuum polarisation diagram for
the photon was derived in QED. It resulted in a finite correction to the photon propagator. We
calculated the diagram by using dimensional regularisation and the modified minimal subtraction
scheme. The correction to the photon propagator did not result in a massive photon, i.e. the pole
of the photon propagator remained located at k2 = m2

γ = 0.
We introduced an effective field theory known as non-relativistic QED. We discussed how

one systematically constructs the NRQED Lagrangian by identifying the symmetries of the the-
ory. The Lagrangian is constructed with operators in an expansion in powers of v. In this thesis,
we omitted operators which are of higher order than v4. The terms in the NRQED Lagrangian
were multiplied by coefficients. These coefficients are power series in α. The power series incor-
porates radiative corrections into the theory. They are determined by a matching procedure. The
matching procedure enforces that the scattering amplitudes in QED coincide with the scattering
amplitudes in NRQED. We match at tree-level for the terms in the fermion Lagrangian. Tree-
level matching is not sufficient for calculating the Lamb shift, but reproduces the fine structure
of the hydrogen energy spectrum. The coefficients at tree level, had the same value as the coeffi-
cients of the Foldy-Wouthuysen transformed Dirac Hamiltonian. This is not surprising, given that
the Foldy-Wouthuysen transformation only incorporates relativistic corrections, and not radiative
corrections.

The terms in the photon Lagrangian were matched at one loop. We matched the two-point
function of the photon field in NRQED with the two-point function of the photon field in QED at
one loop. The two-point function of QED was corrected by the vacuum polarisation of the photon
field. By using the one-loop correction, we calculated a correction to the energy spectrum of the
hydrogen atom. We found that the calculation resulted in an energy shift written as 4mα5

15πn3 δl0. The
fact that the result is a positive energy shift is a clear indication that the result is wrong. The
sign error was attempted solved, but without success. We think that the sign error is caused by
using wrong Feynman rules when finding the energy correction, and suggest that it might have
been solved by using different Feynman rules. In QED, the Feynman rules are multiplied by i.
The Feynman rules were not derived in this thesis, due to lack of time, and we can not state that
the Feynman rules by Kinoshita and Nio [27] are incorrect. We make reservation that the sign
error may be caused by lack of physical insight with respect to the Feynman diagram drawn, but
suggest that it may be caused by incorrect Feynman rules.

We provided the reader with an alternative derivation of the energy shift caused by the vacuum
polarisation of the photon. This is done by the traditional method of finding the energy shift. It
was derived by identifying a correction to the Coulomb potential known as the Uehling potential.
By applying perturbation theory to the Schrödinger wave function, using the Uehling potential as
perturbation, we derived the correct energy shift of the hydrogen atom. The energy shift is part of
the well known Lamb shift, and was found to be − 4mα5

15πn3 δl0. We could have done the calculation
of the energy correction using an arbitrary nucleus with general mass and charge, M and Ze
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respectively. In our calculations we chose Z = 1, which corresponds to the hydrogen atom.
The calculated contribution only constitute a small fraction of the Lamb shift. However,

the vacuum polarisation resulted in an important feature, as it lifts the degeneracy between the
2S 1

2
-state and the 2P 1

2
-state. The 2S 1

2
-state was shifted by 27.1 MHz downward, compared to

the 2P 1
2
-state. The total Lamb shift is an upward shift of 1057.9 MHz [12]. Even though the

energy shift, which comes from the vacuum polarisation of the photon, is small, it is essential
to have agreement between the experimentally measured and the theoretically calculated energy
spectrum of the hydrogen atom. The energy spectrum of the hydrogen atom has been measured
to very high precision [38–40], and the correction from the vacuum polarisation is significant.

5.1 Outlook

Let us first address the sign error. We make reservations that we lack the insight to how the
sign error can be avoided. This must be further studied, and it is essential that the sign error is
accounted for. Since we suggested that the sign error is caused by incorrect Feynman rule, we
would have wanted to derive the Feynman rules in greater detail. We could not find any articles
where the Feynman rules have been rigorously derived. The Feynman rules obtained in this
theory should be studied and derived in a systematically and pedagogically manner.

Chapter 4 suggests that there is still much work to be done. The calculation involving the
photon Lagrangian was more demanding than anticipated. Thus, we only calculated the contri-
bution to the Lamb shift which came from vacuum polarisation of the photon. The total Lamb
shift can be derived by including higher-order corrections to the power series in α in NRQED.
Matching the NRQED scattering amplitudes to the scattering amplitudes of QED at one-loop,
will reproduce the famous Lamb shift [9].

There are even smaller corrections, which contributes to the hyperfine structure. These cor-
rections can be calculated by evaluating NRQED for muonium or positronium [27, 36, 42]. The
calculation includes corrections of higher order than α5. We must include contact terms the
NRQED Lagrangian at this precision, to make NRQED equivalent to QED. These contact terms
incorporates interactions between the particles in the bound state, and are need to find the hy-
perfine structure. The theoretical work on the hyperfine structure is used as a precision test of
QED. For instance, the hyperfine structure has been measure to a very high precision using muo-
nium and measuring the muon magnetic moment [43, 44]. The theoretical work on the muonium
energy spectrum is in agreement with experimental observations to a very high precision.

The photon propagates at a finite speed. Thus, the photon interaction is not instantaneous.
This effect is know as retardation. We can incorporate the retardation effect through a multipole
expansion [10]. The multipole expansion is performed on the vertices of NRQED. For instance,
let us consider the interaction e

2m
ψ† (p · A + A · p)ψ, which comes from the term proportional

to D2 in the Lagrangian. We replace the fields by plane waves, i.e. ψ(p) = eip·x and A(k) = eik·x.
The exponentials are associated with three-momentum conservation. In multipole expansion,
we expand the photon exponential in powers of k · r. We then find that p′ = p, as opposed
to p′ = p − k. This implies that by using a multipole expansion, we do not conserve three-
momentum in the vertices. Thus, the fermion momenta is unchanged by absorption or emission of
a photon. This changes the expression of the photon propagator [10]. One example of the physical
implication of the retardation effect is the change of the 1

r
dependence of the interaction potential
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from the Van der Waals force [33]. The usual non-relativistic law, disregarding retardation effect,
is of O

(
1
r6

)
. By incorporating retardation effects, we find that the interaction potential is of

O
(

1
r7

)
. The Van der Waals force is caused by a two-photon exchange between two neutral

spinless particles [45]. We could not find any references where the Van der Waal interaction is
derived by applying NRQED. It would be interesting to test the scope of this effective field theory
by determining the the Van der Waal interaction.

37



Chapter 5. Conclusion and outlook

38



Bibliography

[1] N. Bohr, “I. on the constitution of atoms and molecules,” The London, Edinburgh, and
Dublin Philosophical Magazine and Journal of Science, vol. 26, no. 151, pp. 1–25, 1913.

[2] E. Schrödinger, “An undulatory theory of the mechanics of atoms and molecules,” Phys.
Rev., vol. 28, pp. 1049–1070, Dec 1926.

[3] P. A. M. Dirac, “The quantum theory of the electron,” Proceedings of the Royal Society of
London A: Mathematical, Physical and Engineering Sciences, vol. 117, no. 778, pp. 610–
624, 1928.

[4] W. E. Lamb Jr and R. C. Retherford, “Fine structure of the hydrogen atom by a microwave
method,” Physical Review, vol. 72, no. 3, p. 241, 1947.

[5] H. A. Bethe, “The electromagnetic shift of energy levels,” Phys. Rev., vol. 72, pp. 339–341,
Aug 1947.

[6] E. E. Salpeter and H. A. Bethe, “A relativistic equation for bound-state problems,” Phys.
Rev., vol. 84, pp. 1232–1242, Dec 1951.

[7] A. Vairo, “Non-relativistic bound states: the long way back from the Bethe-Salpeter to the
Schroedinger equation,” 2009.

[8] W. E. Caswell and G. P. Lepage, “O(α2 ln(α−1)) corrections in positronium: Hyperfine
splitting and decay rate,” Physical Review A, vol. 20, no. 1, p. 36, 1979.

[9] P. Labelle and S. M. Zebarjad, “Derivation of the lamb shift using an effective field theory,”
Canadian journal of physics, vol. 77, no. 4, pp. 267–278, 1999.

[10] P. Labelle, “Effective field theories for qed bound states: Extending nonrelativistic qed to
study retardation effects,” Phys. Rev. D, vol. 58, p. 093013, Oct 1998.

[11] A. Zee, Quantum field theory in a nutshell. Princeton, N.J: Princeton University Press, 2nd
ed. ed., 2010.

[12] L. H. Ryder, Quantum field theory. Cambridge: Cambridge University Press, 1985.

[13] W. Pauli and F. Villars, “On the invariant regularization in relativistic quantum theory,”
Reviews of Modern Physics, vol. 21, no. 3, p. 434, 1949.

[14] J. Schwinger, “On gauge invariance and vacuum polarization,” Physical Review, vol. 82,
no. 5, p. 664, 1951.

[15] M. Veltman et al., “Regularization and renormalization of gauge fields,” Nuclear Physics
B, vol. 44, no. 1, pp. 189–213, 1972.

39



[16] M. E. Peskin and D. V. Schroeder, An introduction to quantum field theory. Reading, Mass:
Addison-Wesley, 1995.

[17] S. Weinberg, The quantum theory of fields : Vol. 1 : Foundations, vol. Vol. 1. Cambridge:
Cambridge University Press, 1995.

[18] M. Kachelrieß, “From the hubble to the planck scale: An introduction to quantum fields.”
2016.

[19] T. Lancaster and S. Blundell, “Quantum field theory for the gifted amateur,” 2014.

[20] J. D. Bjorken and S. D. Drell, Relativistic quantum fields. International series in pure and
applied physics, New York: McGraw-Hill, 1965.

[21] D. Griffiths, Introduction to elementary particles. Weinheim: Viley-VCH, 2nd, rev. ed. ed.,
2008.

[22] L. D. Faddeev and V. N. Popov, “Feynman diagrams for the yang-mills field,” Physics
Letters B, vol. 25, no. 1, pp. 29–30, 1967.

[23] B. Z. Iliev, “The lorenz gauge is named in honour of ludwig valentin lorenz!,” arXiv preprint
arXiv:0803.0047, 2008.

[24] M. Srednicki, Quantum field theory. Cambridge: Cambridge University Press, 2007.

[25] G. t Hooft, “Dimensional regularization and the renormalization group,” Nucl. Phys. B,
vol. 61, no. CERN-TH-1666, pp. 455–68, 1973.

[26] S. Weinberg, “New approach to the renormalization group,” Phys. Rev. D, vol. 8, pp. 3497–
3509, Nov 1973.

[27] T. Kinoshita and M. Nio, “Radiative corrections to the muonium hyperfine structure: The
α2( Z α) correction,” Physical Review D, vol. 53, no. 9, pp. 4909–4929, 1996. PRD.

[28] L. L. Foldy and S. A. Wouthuysen, “On the dirac theory of spin 1/2 particles and its non-
relativistic limit,” Physical Review, vol. 78, no. 1, p. 29, 1950.

[29] P. C. Hemmer, Kvantemekanikk. Trondheim: Tapir akademisk forl., 5. utg. ed., 2005.

[30] J. D. Bjorken and S. D. Drell, Relativistic quantum mechanics. International series in pure
and applied physics, New York: McGraw-Hill, 1964.

[31] J. Frafjord, “Fine structure of the hydrogen atom.” Available at https:
//www.dropbox.com/s/davs81no3l2wu82/Project_Jonas_Frafjord.
pdf?dl=0, 2015.

[32] T. Kinoshita and M. Nio, Quantum Electrodynamics, pp. 81–89. Singapore: World Scien-
tific, 1990.

[33] C. Itzykson and J.-B. Zuber, Quantum field theory. International series in pure and applied
physics, New York: McGraw-Hill, 1980.

40

https://www.dropbox.com/s/davs81no3l2wu82/Project_Jonas_Frafjord.pdf?dl=0
https://www.dropbox.com/s/davs81no3l2wu82/Project_Jonas_Frafjord.pdf?dl=0
https://www.dropbox.com/s/davs81no3l2wu82/Project_Jonas_Frafjord.pdf?dl=0


[34] G. Paz, “An introduction to nrqed,” Modern Physics Letters A, vol. 30, no. 26, p. 1550128,
2015.

[35] W. Caswell and G. Lepage, “Effective lagrangians for bound state problems in qed, qcd,
and other field theories,” Physics Letters B, vol. 167, no. 4, pp. 437 – 442, 1986.

[36] P. Labelle, S. M. Zebarjad, and C. P. Burgess, “Nonrelativistic qed and next-to-leading
hyperfine splitting in positronium,” Phys. Rev. D, vol. 56, pp. 8053–8061, Dec 1997.

[37] E. A. Uehling, “Polarization effects in the positron theory,” Physical Review, vol. 48, no. 1,
pp. 55–63, 1935. PR.

[38] S. R. Lundeen and F. M. Pipkin, “Measurement of the lamb shift in hydrogen, n = 2,” Phys.
Rev. Lett., vol. 46, pp. 232–235, Jan 1981.

[39] E. W. Hagley and F. M. Pipkin, “Separated oscillatory field measurement of hydrogen 2s1/2-
2p3/2 fine structure interval,” Phys. Rev. Lett., vol. 72, pp. 1172–1175, Feb 1994.

[40] S. Bourzeix, B. de Beauvoir, F. Nez, M. D. Plimmer, F. de Tomasi, L. Julien, F. Biraben,
and D. N. Stacey, “High resolution spectroscopy of the hydrogen atom: Determination of
the 1S lamb shift,” Phys. Rev. Lett., vol. 76, pp. 384–387, Jan 1996.

[41] G. S. Adkins, “Three-dimensional fourier transforms, integrals of spherical bessel func-
tions, and novel delta function identities,” arXiv preprint arXiv:1302.1830, 2013.

[42] T. Kinoshita, “NRQED approach to the hyperfine structure of the muonium ground state,” in
International Workshop on Hadronic Atoms and Positronium in the Standard Model Dubna,
Russia, May 26-31, 1998, 1998.

[43] F. G. Mariam, W. Beer, P. R. Bolton, P. O. Egan, C. J. Gardner, V. W. Hughes, D. C. Lu,
P. A. Souder, H. Orth, J. Vetter, U. Moser, and G. z. Putlitz, “Higher precision measurement
of the hfs interval of muonium and of the muon magnetic moment,” Phys. Rev. Lett., vol. 49,
pp. 993–996, Oct 1982.

[44] E. Klempt, R. Schulze, H. Wolf, M. Camani, F. N. Gygax, W. Rüegg, A. Schenck, and
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Appendix A

General derivations and mathematical tools

This chapter introduces some mathematical tools used in the thesis, as well as some derivations
which were found to be too extensive for the main text. Some of the mathematical formulas are
collected from [46]. We mostly follow derivations from Ryder [12], Peskin & Schroeder [16],
and Kachlreiss [18].

A.1 Gaussian integral
Gaussian integral recur often in quantum field theory. The Gaussian integral is

∞∫
q=0

dqe−a
2q2 =

√
π

2a
. (A.1)

Other variations in the integrand can use this result by rewriting it into a similar form. Let a
and b be real constants, and let the integrand be exp (−a2q2 ± bq). If we complete the square in
the argument of the exponential, the argument becomes

[
−
(
aq ∓ b

2a

)2
+ b2

4a2

]
. The second term

have no q dependence, and can be factorised out. The integral results in
∞∫

q=0

dqe−a
2q2±bq = e

b2

4a2

√
π

a
(A.2)

A.2 Gamma and beta function

The gamma function is denoted by Γ(x), and is defined by the Euler integral which reads

Γ(x) =

∞∫
0

dttx−1e−t. (A.3)

Below is some of the properties associated to Γ(x)

Γ(x+ 1) = xΓ(x) (A.4a)
Γ(1) = Γ(2) = 1 (A.4b)

Γ(
1

2
) =
√
π (A.4c)

Γ(n+ 1) = n!, (A.4d)

where n ∈ N. The beta function is denoted by B(q1, q2), and is defined by

B(q1, q2) =

1∫
0

dttq1−1(1− t)q2−1 =

∞∫
0

dt
tq1−1

(1 + t)q1+q2
, (A.5)
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for q1 and q2 positive. It is convenient to look at series expansion for a gamma function for small
arguments. We have

lim
x→0

Γ(x) =
1

x
− γE +O(x), (A.6)

where γE ≈ 0.5772 is the Euler-Mascheroni constant.
The beta function can also be expressed using the gamma functions. This yields

B(q1, q2) =
Γ(q1)Γ(q2)

Γ(q1 + q2)
. (A.7)

From this equation we see that the beta function is invariant when changing the order of q1 and
q2.

A.3 Feynman parametrisation
The Feynman parametrisation is often used in QED calculations. It is used to get propagators
under the same common denominator. It is presented in many textbooks, e.g. [16, 18], and reads

1

AB
=

1∫
0

dz
1

[zA+ (1− z)B]2
. (A.8)

A.4 Wick rotation
A Wick rotation is a rotation of the integration path in the complex plane [16]. Let us start with
the following integral in Minkowski space,

In =

∫
d4p

(2π)4

1

(p2 −∆)n
, (A.9)

where ∆ is a variable which behaves as a constant with respect to the integration variable, and n is
an integer. The integral is taken over p0 ∈ [−∞,∞], meaning that we integrate over a pole when
p0 = ±

√
p2 + ∆. By using the Feynman prescription, adding iε in the denominator, we avoid

the pole by shifting it off the real axes. The pole is now located at p0 = ±
√

p2 + ∆ ∓ iε, and
we can rotate the integration path counter-clock wise by 90◦, this is illustrated in figure A.1. The
integration path is now p0 ∈ [−i∞, i∞]. We have gone from a integral in Minkowski space to an
integral in Euclidean space by rotating the integration path. This corresponds to a substitution;
p0 → ip0E . In Euclidean space we have p2 = p2

0 + p2.1 The integral in equation (A.9) can now
be written as

In = i(−1)n
∫

d4pE
(2π)4

1

(p2
E + ∆)

n . (A.10)

The integral does no longer contain a pole, this is important when we derive a result for a d-
dimensional integral.

1The subscript E is usually dropped, when it is clear from context that we work in Euclidean space.
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√
p2 + ∆− iε

−
√

p2 + ∆ + iε

Figure A.1: This graph illustrates how the integration path is rotated. The dotted line indicate the original
integration path, while the solid line indicates the rotated integration path. Each one of the crosses indicates
the location of the singularities. Notice that the rotation avoids contact with the singularities. The figure is
adapted from Peskin & Schröder [16].

A.5 d-dimensional integral

Equation (A.10) is ultraviolet divergent for n ≤ 2. The integral often appears in quantum field
theory and is thus useful to evaluate. It is evaluated in d space-time dimensions, where d can be
any real number. The dimensional integral can be written as

In =

∫
ddpE
(2π)d

1

(p2
E + ∆)

n (A.11)

where we have introduced an arbitrary d = 4−2ε. The term 2ε represents a small deviation from
the original four-dimensions in space-time. In d dimensions the polar coordinates reads

(p0, r, φ, θ1, θ2, . . . , θd−3) , (A.12)

where r = |p|. The differential of p in polar coordinates reads,

ddp = dp0r
d−2drdφ sin(θ1)dθ1 sin2(θ2)dθ2 · . . . · sind−3(θd−3)dθd−3 (A.13)
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Using these polar coordinates, the integral reads

In =

∫
dp0

(2π)d

∫
dr

rd−2

(p2 + ∆)n

2π∫
0

dΦ

π∫
0

d−3∏
k=1

dθk sink θk

=

∫
dp0

(2π)d−1

∫
dr

rd−2

(p2 + ∆)n

d−3∏
k=1

Γ
(

1
2

)
Γ
(
k+1

2

)
Γ
(
k+2

2

)
=

π
d−3
2

Γ
(
d−1

2

) ∫ dp0

(2π)d−1

∫
dr

rd−2

(p2 + ∆)n
, (A.14)

where we have used
π∫

0

dθ sink θ =
Γ
(

1
2

)
Γ
(
k+1

2

)
Γ
(
k+2

2

) . (A.15)

The integral over r in equation (A.14) can be performed by equating it to the integral in equation
(A.5), but first we will massage equation (A.14) into a simpler expression. By using that p2 =
p2

0 + p2 = p2
0 + r2, and makeing the substitution x2 = r2

p20+∆
, we find

In = (p2
0 + ∆)(

d−1
2
−n)
∫

dx
xd−2

(1 + x2)n

= (p2
0 + ∆)(

d−1
2
−n)
∫

d (x2)

2x

xd−2

(1 + x2)n

=
1

2
(p2

0 + ∆)(
d−1
2
−n)B

(
d− 1

2
, n− d− 1

2

)
. (A.16)

Equation (A.14) is now written as

In =
π
d−3
2

2

Γ
(
n− d−1

2

)
Γ(n)

∫
dp0

(2π)d−1
(p2
o + ∆)(

d−1
2
−n). (A.17)

The integral over p0 can be performed analogously to what we did for the integral over r. This
yields ∫

dp0

(2π)d−1
(p2
o + ∆)(

d−1
2
−n) =

∆
d
2
−n

(2π)d−1
B

(
1

2
, n− d

2

)
. (A.18)

With this last equation, the d-dimensional integral reads

In =

∫
ddpE
(2π)d

1

(p2
E + ∆)n

=
∆

d
2
−n

(4π)
d
2

Γ
(
n− d

2

)
Γ(n)

. (A.19)

This integral often occurs in QFT calculations. There are variations of this integral which also
frequently appears. These variations can be found by modifying the integral in equation (A.19).
It is not as general as the derivation above, since we make the assumption that ∆ = ∆0 − k2.
The assumption to ∆ introduces a variable ∆0 which is independent on both k2 and p2. In many
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cases, the assumed k dependence of ∆ is in agreement with the expression we want to evaluate.
By making the substitution p→ p+ k, we find∫

ddp

(2π)d
1

[(p+ k)2 + ∆]n
=

∫
ddp

(2π)d
1

(p2 + 2p · k + ∆0)n
. (A.20)

We now take the derivative with respect to kµ, this yields

dIn
dkµ

=

∫
ddp

(2π)d
−2npµ

(p2 + 2p · k + ∆0)n+1 =

(
d

2
− n

)
(−2kµ)

∆
d
2
−(n+1)

(4π)
d
2

Γ
(
n− d

2

)
Γ(n)

. (A.21)

We make the substitution n→ n− 1 and get

dIn−1

dkµ
= I ′n =

∫
ddp

(2π)d
pµ

(p2 + 2p · k + ∆0)n
= −kµ∆

d
2
−n

(4π)
d
2

(
n− 1− d

2

)
Γ
(
n− 1− d

2

)
(n− 1)Γ(n− 1)

= −kµ∆
d
2
−n

(4π)
d
2

Γ
(
n− d

2

)
Γ(n)

. (A.22)

We can analogously modify this integral, and thus get

dI ′n−1

dkν
= I ′′n =

∫
ddp

(2π)d
pµpν

(p2 + 2p · k + ∆0)n

= kµkν
∆

d
2
−n

(4π)
d
2

Γ
(
n− d

2

)
Γ(n)

+
gµν

2

∆
d
2
−(n−1)

(4π)
d
2

Γ
(
n− 1− d

2

)
Γ(n)

. (A.23)

Since we work in d space-time dimensions, we must adjust the properties of the metric tensor
and gamma matrices. Some of the properties are presented in P&S [16]. The one we want to use
reads

gµνg
µν = d. (A.24)

Equation (A.23) can be rewritten by using the identity above. This yields

gµνI
′′
n =

∫
ddp

(2π)d
p2

(p2 + 2p · k + ∆0)n

= k2 ∆
d
2
−n

(4π)
d
2

Γ
(
n− d

2

)
Γ(n)

+
d

2

∆
d
2
−(n−1)

(4π)
d
2

Γ
(
n− 1− d

2

)
Γ(n)

. (A.25)

The first term is recognised as k2In. We make the substitution p→ p− k which yields,

gµνI
′′
n =

∫
ddp

(2π)d
(p− k)2

(p2 + ∆)n
= k2 ∆

d
2
−n

(4π)
d
2

Γ
(
n− d

2

)
Γ(n)

+
d

2

∆
d
2
−(n−1)

(4π)
d
2

Γ
(
n− 1− d

2

)
Γ(n)

. (A.26)

Finally, the integral we want can be read off the expression above,

gµνI
′′
n =

∫
ddp

(2π)d
p2

(p2 + ∆)n
=
d

2

∆
d
2
−(n−1)

(4π)
d
2

Γ
(
n− 1− d

2

)
Γ(n)

, (A.27)

where we have used that terms linear in p gives zero contribution as the denominator is even in p.
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A.6 Tensor contraction in the Coulomb gauge
This is ment as a supplement calculation to Section 3.1. The different tensors can be found in
Section 3.1. The calculations are done below.

1

Π (k2)
DµρΠρσD

σν =
1

k2

(
Θµρ +

k2

k2n
µnρ
)(

k2gρσ − kρkσ
)
Dσν .

We use that Θ0ν = Θµ0 = 0, Θil =
(
δil − kikl

k2

)
, and glj = −δlj . This yields,

1

Π (k2)
DµρΠρσD

σν =

(
δij −

kikj

k2 −
k2

k2n
µnσ +

nµkσk
0

k2

)
Dσν

=
1

k2

(
Θµ
σ −

k2

k2n
µnσ +

nµkσk
0

k2

)(
Θσν +

k2

k2n
σnν
)
.

Notice that nµ = (1, 0, 0, 0) contracted with Θµν is zero. We find

1

Π (k2)
DµρΠρσD

σν =
1

k2

[
Θµ
σΘσν − k2

k2n
µnσ +

k0nµkσΘσν

k2 −
(
k2

k2

)2

nµnν +
k2 (k0)

2

k4 nµnν

]

=
1

k2

[(
δil −

kikl

k2

)(
δlj − klkj

k2

)
+
k2

k2n
µnν
]

=
1

k2

[(
δij − kikj

k2

)
+
k2

k2n
µnν
]

=
1

k2

(
Θµν +

k2

k2n
µnν
)

= Dµν .

We thus see that the calculation results in a single tensor. This is useful for calculations in
Section 3.1.
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Appendix B

Feynman rules NRQED

In this appendix we present the Feynman rules in NRQED, for the coulomb photon. These Feyn-
man rules are relevant when we find the energy correction which comes from vacuum polarisation
of the photon in Section 4.4. The rules are derived from the NRQED Hamiltonian for the photon
[27].

Coulomb vertex: q

Coulomb propagator: 1
k2

Vacuum polarisation
Coulomb photon : −δVP

α
15π

k4

m2

Figure B.1: The Feynman rules for the NRQED Hamiltonian. The rules are valid in the Coulomb gauge.
The dotted and solid lines represent the Coulomb photon propagator and the fermion propagator respec-
tively. q is the charge of the fermion. k is the momentum of the photon. The Feynman rules are adapted
from Kinoshita and Nio [27].
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