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I Norge er det for tiden under planlegging en rekke meget slanke brukonstruksjoner, for 

eksempel Halsafjorden, Julsundet og Nordfjorden, alle som klassiske hengebroer, enten med 

enkelt eller splittet kassetverrsnitt i hovedbæreren. Disse broene har hovedspenn mellom ca. 

1550 og 2050 m. De er svært utsatt for den dynamiske lastvirkningen fra vind. Halsafjorden 

som er den lengste med et spenn på ca. 2050 m er på grensen av det som tidligere er bygget 

av denne typen konstruksjoner. Prosjektene er spesielt krevende med hensyn til virvel-

avløsning og bevegelsesinduserte krefter, dvs. med hensyn til å oppnå en konstruktiv utførelse 

som ikke medfører uakseptable virvelavløsningssvingninger ved lave vindhastigheter og 

tilstrekkelig sikkerhet mot en uakseptabelt lav stabilitetsgrense i koblede vertikal og 

torsjonssvingninger (”flutter”). Hensikten med denne oppgaven er å se på mulige utførelser av 

fjordkryssinger i denne spennvidden med tanke på å oppnå gunstige aerodynamiske 

egenskaper, og hvor det legges spesiell vekt på kryssinger i form av en eller annen variant av 

den klassiske hengebroen. Arbeidet foreslås lagt opp etter følgende plan: 

 

1. Studenten setter seg inn i teorien for hengebroen som konstruksjonssystem. 

2. Studenten setter seg inn i teorien for dynamisk respons og aerodynamisk stabilitet av 

slanke broer (se for eksempel Strømmen: Theory of bridge aerodynamics, Springer 2006). 

3. For en eller flere aktuelle utførelser og spennvidder (avtales med veileder) skal det foretas 

en utredning med sikte på å kvantifisere de viktigste mekaniske egenskapene (dvs. 

aktuelle masse- og stivhetsegenskaper). Det skal foretas beregninger av de aktuelle 

egenfrekvensene og tilhørende egensvingeformene som er avgjørende for broens 

dynamiske egenskaper. I den grad det er mulig kan beregningene baseres på 

regnemaskinprogrammet Alvsat (eller innhentes fra Vegdirektoratet/Bruavdelingen). 

4. For de samme tilfellene som er behandlet under punkt 3 skal det foretas beregninger av 

vindindusert dynamisk respons. Studenten kan selv velge om han vil legge vekt på 

virvelavløsning, «buffeting» eller stabilitet. For å kunne ta tilstrekkelig hensyn til 

bevegelsesinduserte krefter skal responsberegningene utføres i modalkoordinater i Matlab, 

enten i tidsplanet eller i frekvensplanet. I den grad tiden tillater det kan studenten velge å 

undersøke om en eller flere massedempere kan bedre systemets dynamiske egenskaper. 

 

Studenten kan selv velge hvilke problemstillinger han ønsker å legge vekt på. Oppgaven skal 

gjennomføres i samarbeid med Dr.ing. Bjørn Isaksen og Siv.ing. Kristian Berntsen i 

Vegdirektoratet. 

 

NTNU, 2016-01-15 
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Abstract

The design and construction of the new coastal highway E39 along the west coast of

Norway involves great challenges due to the large width and depth of the fjords along the

coast. The new bridges involved in this project are very long and slender, which means

aerodynamic design is very important. This thesis studies the aerodynamic stability of

one such bridge, a proposed bridge crossing the Halsafjord. This bridge is a single span

suspension bridge with a main span of 2050 meters, and a streamlined dual box girder

deck, 32 meters wide in total.

The solution has been pursued in modal coordinates and in the frequency domain. The

eigenfrequencies and eigenmodes have been calculated using the calculation program

ALVSAT, and the numerical analysis of the bridge has been performed in MATLAB.

Only the lowest vertical and torsion modes are considered in this analysis. The aerody-

namic derivatives are determined from indicial functions obtained experimentally from

wind tunnel testing.

A stability limit is identified by investigating where the response is greatly increased for

a small increase in mean wind velocity until it approaches infinity. It has been concluded

that flutter is the only type of instability that can affect the bridge. It is shown that while

both the vertical and torsional modes gain considerable damping, motion induced loss

of stiffness in torsion is the main driving force for the loss of stability. The calculations

show that the flutter stability limit occurs only after the vertical and torsion modes have

coupled, and that their cooperation alongside the loss of torsional stiffness cause the

combined vertical-torsion peak in the frequency response function to be larger than the

original peaks at V = 0.
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Notation

Matrices and vectors:

Matrices are in general bold upper case Latin or Greek letters

Vectors are in general bold lower case Latin or Greek letters

diag [·] is a diagonal matrix whose content is written within the brackets.

det (·) is the determinant of the matrix within the brackets.

Statistics:

E [·] is the average value of the variable within the brackets

V ar (·) is the variance of the variable within the brackets

Cov (·) is the covariance of the variable within the brackets

Coh (·) is the coherence function of the content within the brackets

R (·) is the auto- or cross-correlation function

ρ (·) is the covariance coefficient of content within brackets

σ, σ2 is the standard deviation, variance

Imaginary quantities:

i is the imaginary unit (i.e. i =
√
−1).

Re (·) is the real part of the variable within the brackets.

Im (·) is the imaginary part of the variable within the brackets.

Superscripts and bars above symbols:

Superscript T indicates the transposed of a vector or a matrix.

Superscript * indicates the complex conjugate of a quantity.

Dots above symbols indicate time derivatives (e.g. ṙ = dr/dt, r̈ = d2r/dt2).

Prime on a variable (e.g. C
′
L) indicates its derivative with respect to a relevant variable.

Bar above a variable (e.g. H̄) indicates its time invariant average value.

Tilde above a variable (e.g. C̃) indicates a modal quantity.

Hat above a symbol (e.g. Ĥ) indicates a normalised quantity.

The use of indices:

Index x, y or z refers to the corresponding structural axis.

Index xf , yf or zf refers to corresponding flow axis.

u, v or w refer to flow components.

i and j are general indices on variables.

v



n and m are mode shape or element numbers.

p and k are in general used as node numbers.

D, L, M refer to drag, lift and moment.

r refers to response.

s indicates quantities associated with vortex shedding.

exp as an index is short for exposed, referring to wind exposed part of the structure.

c is short for cables and indicates main cables

Abbreviations:

CC and SC are short for the centre of cross-sectional neutral axis and the shear centre.

c/c is short for centre-to-centre distance.

tot is short for total.

max, min are short for maximum and minimum

ae is short for aerodynamic, indicates a flow induced quantity.

cr is short for critical.

int or ext are short for internal and external.

Latin letters:

A Area, cross sectional area

An Wind spectrum coefficient (n = u, v, w)

A(ω), B(ω) Complex amplitudes

A∗1 − A∗6 Aerodynamic derivatives associated with the motion in torsion

a Constant or Fourier coefficient, amplitude

a, ar, aR Coefficient, Fourier coefficient vector associated with response or load

B Cross sectional width

Bq Buffeting dynamic load coefficient matrix at cross sectional level

b Constant, coefficient, band-width parameter

bc Distance between cable planes

bq Mean wind load coefficient vector

C,C Damping or load coefficient, matrix containing damping coefficient

Cae,Cae Aerodynamic damping, aerodynamic damping matrix

Cw Cross sectional warping constant

C̄ Force coefficients at mean angle of incidence

C
′

Slope of load coefficient curves at mean angle of incidence

c Constant, coefficient, Fourier amplitude

Co,Co Co-spectral density, co-spectral density matrix

Covj Covariance matrix associated with variable j

D Cross sectional depth

d Constant or coefficient
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E Modulus of elasticity

Ê, Ê Impedance, impedance matrix

e, ec Exponential number (≈ 2, 7183), cable sag

F Force

f Frequency [Hz]

f (·) Function of variable within brackets

G Modulus of elasticity in shear

Gxx Single sided spectral density

g Gravity constant

H,H,Hr,Hη Frequency response function, frequency response matrix, modal frequency

response matrix

H(t), H̄ Horizontal force component

H∗1 −H∗6 Aerodynamic derivatives associated with the across-wind motion

h0 Height of the pylons measured from the deck

hc, hm Length of hangers at an arbitrary position along span, hanger length at midspan

hr Vertical distance between shear centre and hanger attachment

I (β) Numerical equivalent to the joint acceptance function

It St Venant torsion

Iu, Iv, Iw Turbulence intensity of flow components u, v, w

Iy, Iz Moment of inertia with respect to y or z axis

I Identity matrix

J,J Joint acceptance function, joint acceptance matrix

k Index variable, node or sample number

K,K Stiffness, stiffness matrix

Kae,Kae Aerodynamic stiffness, aerodynamic stiffness matrix

L Length
sLn Integral length scales (s = xf , yf , zf , n = u, v, w)

le Effective length

M,M Mass, mass matrix

m Distributed mass

Mae,Mae Aerodynamic mass, aerodynamic mass matrix

N Number, number of elements in a system

Ntot Cross section axial force

P ∗1 − P ∗6 Aerodynamic derivatives associated with the along-wind motion

Q,Q Wind load or wind load vector at system level

Qae Aerodynamic motion induced wind load at system level

q,q Wind load or wind load vector at cross sectional level

qs, qc Half the self weight of the beam, self weight of a single main cable

r, r Cross sectional displacement or rotation, displacement vector
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Rd Dynamic amplification factor

R,R External load, external load matrix

S,S Auto or cross spectral density, cross-spectral density matrix

Sj Cross spectral density matrix associated with variable j

s Dimensionless time

t, T Time, total length of time series

U Instantaneous wind velocity in the main flow direction

u Fluctuating along-wind horizontal velocity component

V Mean wind velocity

Vy, Vz Shear forces

v Fluctuating across wind horizontal velocity component

v Wind velocity vector containing fluctuating component

w Fluctuating across wind vertical velocity component

x, y,X Arbitrary variables, e.g. functions of t or ω

x, y, z Cartesian structural element cross sectional main neutral axis

xr Chosen span-wise position for response calculation

z0 Terrain roughness length

zmin Minimum height for the use of a logarithmic wind profile

zref Reference height above ground

Greek letters:

α Coefficient, angle of incidence

β Constant, coefficient

γm Material factor

ζ, ζ Damping ratio or damping ratio matrix

ζae, ζae Aerodynamic modal damping, matrix containing aerodynamic modal damping

contributions

η,η Generalised modal coordinate, modal coordinate matrix

θ Index indicating cross sectional rotation or load (about shear centre)

κae,κae Aerodynamic modal stiffness, matrix containing aerodynamic modal stiffness

contributions

ν Poisson’s ratio

λ Coefficient, wave length

µae,µae Aerodynamic modal mass, matrix containing aerodynamic modal mass contri-

butions

ρ Coefficient or density (e.g. of air)

τ Time shift (lag)

φyn , φzn , φθn Continuous mode shape components in y, z and θ directions

Φ (·) Indicial function
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Φ Mode shape matrix containing Nmod ϕn vectors

Φr Mode shape matrix at span-wise response location xr

ψ Trial function

ϕ Mode shape vector containing components φy, φz, φθ

ω, ωn Circular frequency (rad/s), eigenfrequency associated with mode shape n

ωn (V ) Resonance frequency associated with mode n at mean wind velocity V

Symbols with both Latin and Greek letters:

∆f,∆ω Frequency segment

∆t Time step

∆s Spatial separation (s = x, y, z)
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1 INTRODUCTION

1 Introduction

The ongoing Ferjefri E39 project conducted by The Norwegian Public Roads Administra-

tion (NPRA) aims to allow for ferry-free transportation along the west coast of Norway.

The new coastal highway route will stretch from Kristiansand in the south of Norway all

the way up to Trondheim in central Norway at a total length of approximately 1100 km.

The traffic along the coast today relies heavily on ferry links due to the extremely wide

and deep fjords. This new route, when completed, will reduce travel time from 20 - 21

hours down to 12 - 13 hours, where the most significant contributions come from replacing

the current ferry links with bridges. This involves great challenges, considering both the

large width and depth of the fjords along the coast, reaching up to 5 km width and 1,5

km depth at the largest. Aerodynamic design of these bridges is therefore very important,

especially considering that Norwegian suspension bridges are generally more slender than

their foreign counterparts since they experience less traffic and require fewer lanes as a

result [14].

In this thesis, a proposed single span suspension bridge over the Halsafjord in Western

Norway will be studied with respect to its aerodynamic properties. The proposed bridge

has a main span of 2050 meters, thus it surpasses the current record holder for the longest

bridge span in the world, the Akashi-Kaikyo Bridge with its central span of 1991 meters

[11]. The main focus will be on studying the aerodynamic stability of the bridge. This

will be approached by two methods, first by conducting a dynamic response analysis

of the bridge cross section over the relevant mean wind velocity range, and second by

inspecting the roots of the impedance matrix to identify any common and simultaneous

roots for its real and imaginary parts. A bridge has become unstable when its response

drastically increases with a small increase of mean wind velocity. The main causes of

instability problems are the motion induced forces that arise in the combined structure-

flow system and can cause loss of stiffness and damping. Since an unstable bridge can

lead to catastrophic deformations and rotations, it is important that the stability limits

occur only at higher wind velocities than what could be expected on site. There exist

stability limits for all eigenmodes of the system, yet it is the lowest modes that are of the

most importance since they are the easiest ones to attain. In this thesis, only the lowest

modes in the vertical direction and torsion will be considered.

The calculation program ALVSAT will be used to calculate the eigenfrequencies and ei-

genmodes of the bridge section [7]. Then dynamic response calculations and investigation

of the stability limits will be performed in MATLAB using self-made scripts based on

well-known theory of suspension bridges. Lastly, a study into the significance of some
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key parameters will be conducted. The reader is assumed to be familiar with basic math-

ematics and statistics, as well as the basics of structural dynamics. However, a brief

explanation of the most important concepts will be provided for completeness.

2



2 BASIC THEORY

2 Basic Theory

2.1 Structural Dynamics

The study of structural dynamics is concerned with the response analysis for structures

subject to dynamic, i.e. time dependent, loading. In its core, it is based upon the Principle

of d’Alambert, which states that by considering an instantaneous moment in time where

the system is frozen at an arbitrary position, we are able to establish equilibrium for any

system that is in motion. In adopting this principle it is also assumed that the acceleration

of the system can be interpreted as an inertia force mr̈ where m is the mass of the system

and r̈ is the acceleration [21].

The behaviour of a dynamic system can be expressed as a combination of modes. Any

dynamic motion can in fact be described by adding the relevant modes together. Each

mode is characterized by certain parameters which depend on the system geometry and

material properties as well as its boundary conditions. These parameters differ between

modes, and they are known as the natural frequency ωn, damping ratio ζn and mode

shapes φn where n is the mode number [19]. These parameters are extracted by response

calculations. Natural frequencies, also known as eigenfrequencies, can be thought of as the

preference frequencies of a system. Given an undamped system left to oscillate by itself

without any external influence, it will oscillate at an eigenfrequency and the oscillation

shape will be the corresponding mode shape. If an external force drives the system to

oscillate at its natural frequency (ω = ωn), its response will increase dramatically due to

a phenomenon known as resonance [3]. This is shown in Figure 2.1. The figure also shows

the dramatic effect of damping on the response, as the response is plotted for different

damping ratios ζ. Structural systems generally have very low damping, and hence the

eigenfrequencies are very distinct.

The number of eigenfrequencies will always be the same as the number of degrees of

freedom in the system. Analytically, all systems have an infinite amount of degrees of

freedom. However it is usually deemed adequate to model a discrete system with a finite

number of degrees of freedom. It is the lowest eigenfrequencies that are of the most

interest anyway, since they require the least amount of energy to excite and usually give

the largest response. Therefore, eigenfrequencies are usually presented in ascending order

[4].

For dynamic systems, response calculations can be performed in what is known as the

time domain or the frequency domain. The analyst is free to choose either one of those two

approaches for the response calculations, and which approach is chosen depends entirely

3
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on which is deemed more suitable for the situation at hand [21].

Figure 2.1: Dynamic amplification factor Rd as a function of frequency ratio and damping
ratio [20]

2.1.1 Time Domain

In the time domain, the dynamic behaviour of a structure is described by differential

equations of motion. In its most general form the equation of motion for a multi-degree

of freedom system is as follows:

Mr̈(t) + Cṙ(t) + Kr(t) = R(t) (2.1)

where M, C and K are the mass, damping and stiffness matrices of the system respectively,

r̈, ṙ and r are the acceleration, velocity and displacement and R(t) is the time dependent

external loading on the system [3]. This equation is derived by applying d’Alambert’s

principle and taking force equilibrium. By solving this differential equation, the modal

parameters ωn, ζn and φn can be determined for the system. Since the load (and hence

the response) is assumed to be a harmonic function, the solution takes the form [21]:

r = Re
[
ϕ · eiωt

]
(2.2)

where ϕ is the mode shape matrix. Substituting Eq. 2.2 into an undamped and unloaded

version of Eq. 2.1 and simplifying, the equation takes the following form:

4
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(
K− ω2M

)
ϕ = 0 (2.3)

where the non-trivial solution is

det
(
K− ω2M

)
= 0 (2.4)

which is an eigenvalue problem. By solving this, we are able to find the eigenfrequencies

ω and corresponding eigenmodes φ [21].

2.1.2 Frequency Domain

In the frequency domain, the behaviour of a structure under dynamic loading is described

by a set of algebraic equations. Applying Fourier transform, which is explained in more

detail in Section 2.3.1, we can convert the equations of motion from Eq. 2.1 into a

frequency domain description [21]. Starting from Eq. 2.1, we take the discrete Fourier

transform:

r(t) = Re
∑
ω

ar(ω) · eiωt (2.5)

R(t) = Re
∑
ω

aR(ω) · eiωt (2.6)

where ar and aR are the Fourier coefficients of the displacement and load processes re-

spectively. The equation of motion from Eq. 2.1 now takes the form:

(
−Mω2 + Ciω + K

)
· ar = aR (2.7)

We can now define the frequency response function as the ratio between the Fourier

transforms of the output r and the input R [19]:

Hr(ω) =
ar
aR

=
(
−Mω2 + Ciω + K

)−1
(2.8)

In other words, the frequency response function expresses the response of the structure to

an applied force as a function of frequency. It is also known as a transfer function since it

can be used to transfer the Fourier amplitude of the load aR into the Fourier amplitude

of the response ar (and vice versa) if used on the form:

Hr(ω)aR = ar (2.9)

It has been found convenient to express the frequency response function as a function

of the frequency of motion, natural frequencies and corresponding damping ratios. For

simplicity, we consider a single degree of freedom system for the development of the
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expression. Starting with the single degree of freedom system version of the dynamic

equilibrium equation [21],

M · r̈(t) + C · ṙ(t) +K · r(t) = R(t) (2.10)

where the response is given in the form r(t) = Re [A (ω) · eiωt]. Introducing this expression

for r(t) into 2.10 we obtain

(
−Mω2 + Ciω +K

)
A(ω)eiωt = R(t) · eiωt (2.11)

Dividing through the equation by K and introducing the natural frequencies ω2
n = K/M

we get (
1− ω2

ω2
n

+
C

ω2
nM

iω

)
A(ω)eiωt =

R(t)

K
eiωt (2.12)

Introducing the damping ratio ζn = C/ (2ωnM) and solving for A(ω) gives

A(ω) =
R(t)

K
·
[
1− (ω/ωn)2 + 2iζn (ω/ωn)

]−1
(2.13)

By comparison with Eq. 2.9, we now find that the frequency response function in a single

degree of freedom system system is given by

Ĥn(ω) =
[
1− (ω/ωn)2 + 2iζn (ω/ωn)

]−1
(2.14)

where the hat (̂ ) is used to indicate that this is a non-dimensional quantity. This expres-

sion can be expanded for a general multi-degree of freedom system with Nmod number of

modes as follows

Ĥ(ω) =



Ĥ1 · · · 0 · · · 0
...

. . .
... . .

. ...

0 · · · Ĥn · · · 0
... . .

. ...
. . .

...

0 · · · 0 · · · ĤNmod


(2.15)

where Ĥn(ω) is as given in Eq. 2.14 and n = 1, . . . , Nmod.

2.1.3 Galerkin’s Method

Galerkin’s Method is a method of weighted residuals. In general, methods of weighted re-

siduals are used to solve differential equations by expressing the solutions as a combination

of known trial functions ψi that satisfy the boundary conditions and unknown coefficients

ai. Therefore, Galerkin’s method can be used as a way of converting the continuous equi-
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librium equation of motion (Eq. 2.1) into a numerical discrete problem. Since the solution

is numerical, it is only an approximation and thus a residual f (r, r̈) = R will be produced.

The method aims to select the coefficients ai such that the residual is minimized, or equal

to zero, over a chosen domain. To evaluate the solution, weighted functions are used. In

Galerkin’s Method, the weighted functions are chosen to be equal to the trial functions.

Hence, if the trial function is orthogonal,
´
ψiψj = 0 when i 6= j, the residual will be

orthogonal as well [17]. Taking the exact unloaded and undamped version of Eq. 2.1,

f (r, r̈) = Mr̈(t) + Kr(t) = 0 (2.16)

Galerkin’s Method converts the equation into the following numerical eigenvalue problem

[21]

A · a = 0 (2.17)

with unknown coefficients a =
[
a1 · · · ai aNψ

]T
, such that

r ≈ Re

Nψ∑
i=1

ai · ψi (x) · eiωt (2.18)

The approximate solution, given by

f

 Nψ∑
i=1

aiψie
iωt

 = 0 (2.19)

is successively weighed with the same functions ψj, j = 1, 2, . . . , Nψ and integrated over

its functional space (i.e. its length L or surface A), rendering Eq. 2.17, which in its full

form is given by 

A11 · · · A1j · · · A1Nψ

...
. . .

... . .
. ...

Ai1 · · · Aij · · · AiNψ
...

. . .
... . .

. ...

ANψ1 · · · ANψj · · · ANψNψ





a1

...

ai
...

aNψ


= 0 (2.20)

where

Aij =

ˆ

L

ψi · f (ψj, ω) dx or Aij =

ˆ

L

ψi · f (ψj, ω) dA (2.21)
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2.2 Stochastic Process

A stochastic process is a physical process which is random in time and space and can only

be predicted with a certain probability. Due to this randomness, the measured outcome

of a process represents only one particular realisation of that process. If measurements of

the process were to be repeated, even under the same conditions, the results would differ

to some extent. I.e. there is an infinite number of other possible representatives of the

process. Therefore the physical characteristics of a stochastic process must be described

by the statistics of numerous sets of realisations [22]. An example of a stochastic process is

shown in Figure 2.2. Another relevant example of a stochastic process is wind loading on

a structure. Note that since the process itself is stochastic, it follows that any subsequent

process will also be stochastic. Hence, the stochastic wind loading will produce a stochastic

response in the structure. Stochastic dynamics is a field of dynamics that concerns itself

with these stochastic processes, or noisy signals, in other words.

Figure 2.2: An example of a stochastic process is acceleration of the ground due to
earthquakes [18]

2.3 Frequency Response

To identify the eigenfrequencies and damping properties of a structure under stochastic

loading, it is appropriate to pursue a stochastic solution in frequency domain [21]. The

aim of this section is to define and explain the various properties of the process needed

for the response analysis in the frequency domain.
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2.3.1 Fourier Transform

The Fourier transform is a fundamental tool in signal analysis used to transfer the signal

from time domain to frequency domain. By taking the Fourier transform of a signal,

we decompose the signal as a linear combination of sinusoidal (harmonic) functions at

different frequencies [19]. In other words, any signal can be split up and described as the

sum of multiple harmonic signals. It is noted that Fourier transformation is a reversible

process and is therefore able to bind together the time domain and the frequency domain.

Though this type of decomposition is originally developed for periodical functions, it can

be extended to non-periodic functions. Any non-periodic function x(t) which satisfies the

condition [6]:

∞̂

−∞

|x(t)|dt <∞ (2.22)

can be represented by the integral:

x(t) =

ŵ

−∞

(A(ω)cosωt+B(ω)sinωt) dω (2.23)

where

A(ω) =
1

π

ŵ

−∞

x(t)cosωtdt ; B(ω) =
1

π

m̂

−∞

x(t)sinωtdt (2.24)

More conveniently, this can be expressed in complex form:

x(t) =

∞̂

−∞

X(ω)eiωtdω (2.25)

where

X(ω) =
1

2π

∞̂

−∞

x(t)e−iωtdt (2.26)

Examples of non-periodic functions are transient and random signals. With this theory,

any signal, periodic or non-periodic, can now be decomposed into a sum of harmonic

functions. In practice, however, it is impossible to do measurements over an infinitely

long time period. Therefore discrete Fourier transform is taken, as it makes it possible to

represent a finite time series. On a discrete form, Eq. 2.25 and Eq. 2.26 become [6]:

x(tk) ≡ xk =
N−1∑
n=0

Xne
i2πnk/N (2.27)

9
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X(ωn) ≡ Xn =
1

N

N∑
k=1

xke
−i2πnk/N , n = 1, . . . , N (2.28)

where N is the total number of data points. In our case, N represents time instants with

a constant time step 4t.
The discrete Fourier transform requires a great amount of computational effort, however,

since its evaluation requires N2 operations. Therefore an algorithm under the name of

fast Fourier transform has been developed. Given that the number of data points equals

a power of 2, this algorithm reduces the number of operations to N · log2N , making

fast Fourier transform a much more efficient tool for Fourier transform than its discrete

counterpart [19]. The fast Fourier transform algorithm is included in MATLAB as a

function.

2.3.2 Modal Coordinates

The equilibrium equation of motion has already been presented in Section 2.1.1 and it

has been established that the solution is a harmonic motion which may be described by

r = Re
(
ϕ · eiωt

)
where ϕ =

[
a1 a2

]T
(2.29)

If the system is subject to any external load, an approximate solution to the equilibrium

equation may be obtained by separating the position and time variables, and taking a

linear combination of a limited set of chosen eigenmodes which are known, that is [21]

r(t) ≈
Nmod∑
i=1

ϕnηn(t) (2.30)

where ηn(t) are now the unknown variables of the system. For continuous systems the

mode shape functions are continuous as well, such that

r(x, t) ≈
Nmod∑
i=1

ϕn(x)ηn(t) (2.31)

Instead of working with a linear combination of all the degrees of freedom of the system

(Nr), we now work with a linear combination of a selected number of modes, Nmod. The

computational advantage of this modal approach is considerable, since structural systems

have a large number of degrees of freedom while the number of modes to consider can be

chosen to be quite low and yet gain sufficient accuracy.

In a discrete format it is convenient to define a mode shape matrix [21]

Φ =
[
ϕ1 ϕ2 · · · ϕn · · · ϕNmod

]
(2.32)

10
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where ϕn (n = 1, 2, . . . , Nmod) contains the mode shape numerical values

ϕn =
[
ϕ1 ϕ2 · · · ϕp · · · ϕNr

]T
(2.33)

and a time dependent unknown vector

η(t) =
[
η1 η2 · · · ηn · · · ηNmod

]T
(2.34)

which is the modal coordinate vector. Then Eq. 2.30 takes the general form

r(t) ≈ Φη(t) (2.35)

To establish the equilibrium equation of motion in modal coordinates, we substitute Eq.

2.35 into Eq. 2.1 and pre-multiply the entire equation by ΦT ,

ΦTMΦη̈(t) + ΦTCΦη̇(t) + ΦTKΦη(t) = ΦTR(t) (2.36)

This expression is simplified by defining modally equivalent structural properties (modal

mass, stiffness and damping) and a modal load vector, i.e.

M̃ = ΦTMΦ

C̃ = ΦTCΦ

K̃ = ΦTKΦ

R̃ (t) = ΦTR (t)

(2.37)

The modal dynamic equilibrium equation is then expressed by

M̃η̈(t) + C̃η̇(t) + K̃η(t) = R̃(t) (2.38)

The orthogonal properties of the mode shapes give an additional benefit to using modal

coordinates for frequency response analysis, that is, all of the off diagonal terms in M̃ and

K̃ are zeros. Thus

M̃ = diag
[
M̃n

]
K̃ = diag

[
K̃n

] (2.39)

where M̃n = ϕTnMϕn and K̃n = ϕTnKϕn. Since damping data is in general also associated

with a particular mode shape, we also have that

C̃ = diag
[
C̃n

]
(2.40)

By introducing an arbitrary mode shape ϕn and its corresponding eigenfrequency ωn into

Eq. 2.3 and pre-multiplying by ϕTn ,

11



2.3 Frequency Response 2 BASIC THEORY

ϕTn (K− ω2
nM)ϕn = 0

⇒ ϕTnKϕn = ω2
nϕ

T
nMϕn

(2.41)

it is seen that the terms of the modal stiffness matrix may be more conveniently determined

from

K̃n = ω2
nM̃n (2.42)

C̃n is then determined from

C̃n = 2M̃nωnζn (2.43)

where ζn are the modal damping ratios associated with a corresponding mode shape and

critical modal damping 2M̃nωn. It is now apparent that knowledge of the contents of the

stiffness matrix K and the damping matrix C is not required to perform analysis in modal

coordinates [21].

It should be noted that modal coordinates can be used both in time and frequency domain

analyses, and whether it is more convenient to pursue a solution on original or modal

coordinates depends on the case at hand. A solution in frequency domain is often far

more conveniently obtained in modal degrees of freedom than in original.

2.3.3 Spectral Density

To define spectral density we first need to define correlation functions. Consider a random

vibration parameter x(t) in the time domain. Then the autocorrelation function Rxx(τ)

is defined as [6]:

Rxx(τ) = E [x(t) · x(t+ τ)] (2.44)

where τ is an arbitrary time lag. In words, this means that the autocorrelation function is

the expected value of the vibration parameter multiplied by itself at a time shift τ . Unlike

the random vibration parameter itself, its autocorrelation satisfies the requirements for

Fourier transformation. If we then take the Fourier transform of the autocorrelation, we

get what is called the auto- or power spectral density Sxx(ω):

Sxx(ω) =
1

2π

∞̂

−∞

Rxx(τ) · e−iωτdτ (2.45)

This means that spectral densities and correlation functions are Fourier transform pairs.

The power spectral density is a frequency domain representation of the time domain

variance in the process, and the area under the spectral density curve will be the variance

of the process itself. In other words, the spectral density of x(t) is intended to represent the
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variance density distribution in the frequency domain. For example, in wind engineering

the spectral densities are used to describe the fluctuation components of a wind flow in

the frequency domain [22].

Eq. 2.45 describes a two-sided power spectral density, that is, the spectra is defined from

−∞ to∞. The spectral density can also be described as one-sided, i.e. from 0 to∞. Eq.

2.45 then becomes [19]:

Gxx(ω) =
2

π

∞̂

0

Rxx(τ) · cos(ωt)dτ (2.46)

It is seen that when taking the one-sided spectrum we are no longer operating with

a complex format. The relationship between the two-sided and the one-sided spectral

density is simply Gxx(ω) = 2 · Sxx(ω). That is, a symmetric double-sided auto spectrum

may be defined as the half of the corresponding one-sided spectrum [22].

Another way of defining the spectra is as expressed by Fourier amplitudes, also known as

Fourier coefficients as in Section 2.1.2. Defining a non-normalized amplitude

ak(ωk) =

T̂

0

x(t) · e−iωktdt = T · dk (2.47)

the two-sided power spectral density may be defined by

Sxx(ω) =
(a∗k/T ) (ak/T )

2π/T
=

1

2πT
· a∗kak (2.48)

where T is the total length of the given time series. In the limit of T → ∞, assuming

sufficiently large number of realisations of the process, the two-sided power spectral density

may be written on the following continuous form

Sxx(ω) = lim
T→∞

1

2πT
· a∗(ω) · a(ω) (2.49)

It may also be useful to define some statistical properties between processes. For a pair

of time variable functions x(t) and y(t), the cross correlation is defined similar to the

autocorrelation function:

Rxy(τ) = E [x(t) · y(t+ τ)] (2.50)

After a Fourier transform, we obtain what is known as the cross spectral density [6]:

Sxy(ω) =
1

2π

∞̂

−∞

Rxy(τ) · e−iωτdτ (2.51)

The cross spectral density contains the frequency domain properties between processes.
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In the same sense that the power spectral density represents the time domain variance in

the frequency domain, the cross spectral density represents the time domain covariance in

the frequency domain [22]. It is noted that cross spectra are generally complex functions

of frequency for non-symmetric systems.

Lastly, the spectral density Sxx of the input (f.ex. wind load) and the output Srr (response

of structure) have the following relation:

Srr(ω) = lim
T→∞

1

πT

(
a∗r · aTr

)
= lim

T→∞

1

πT

[
(H (ω) ax)

∗ · (H (ω) ax)
T
]

=

H∗ (ω) · lim
T→∞

1

πT

(
a∗x · aTx

)
·HT (ω) = H∗(ω) · Sxx(ω) ·HT (ω) (2.52)

where H∗(ω) is the frequency response function complex conjugate transpose and HT (ω)

is the frequency response function transposed. Therefore it is possible to transform one

into the other. In the case of one-sided spectrum, H∗(ω) = HT (ω) since we do not have

any complex part. Eq. 2.52 then becomes:

Srr(ω) = |H(ω)|2 · Sxx(ω) (2.53)

2.3.4 Coherence Function

The statistical property used to examine the relation between two properties is known as

coherence. The coherence function for two processes x(t) and y(t) is defined as follows

[22]:

Cohxy(ω) =
|Sxy(ω)|2

Sxx(ω)Syy(ω)
=

|Gxy(ω)|2

Gxx(ω)Gyy(ω)
(2.54)

Values of the coherence functions will always satisfy 0 ≤ Cohxy(ω) ≤ 1, and give an

estimation of to what extent y(t) may be predicted from x(t). In practice, all imaginary

parts will cancel out as they are only mathematical tools, and are not physically real.

Therefore only the real part of Cohxy(ω) is of interest, also known as the co-spectrum:

Ĉoxy (ω) =
Re [Sxy (ω)]√
Sx (ω) · Sy (ω)

(2.55)

If x(t) and y(t) are realisations of the same stationary and ergodic process then Sx(ω) =

Sy (ω) and the co-spectrum is given by

Ĉoxy (ω) =
1

Sx (ω)
Re [Sxy (ω)] (2.56)

It is worth mentioning that the coherence function can be used to help identify the actual

eigenfrequencies and modes of the system in the case of noisy signals, and by utilizing this
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parameter we can minimize any possible error in the determination of eigenfrequencies

and their corresponding modes. As previously stated, the coherence function has a range

from 0 to 1, and will be close to 1 in correspondence of a natural frequency because of

the high signal-to-noise ratio at that frequency. Therefore, by comparing the coherence

function with the power spectral density we can identify which peak in the spectra is a

natural frequency peak and which is a peak due to disturbances [19].

2.3.5 Time Series Simulation

A realisation of time domain response rz and rθ at a point x along the span may be

simulated from a single point spectral density at any given wind velocity V . A single-

sided auto spectral density Sx(ω) may be given on the discrete form as strømmen-2010

Sx (ωk) =
c2
k

2∆ωk
(2.57)

where ∆ωk is a frequency segment, ck =
√
a2
k + b2

k and

[
ak

bk

]
=

2

T

T̂

0

x(t)

[
cosωkt

sinωkt

]
dt (2.58)

A time domain representative of the spectral density is then obtained by subdividing Sx

into N blocks along the frequency axis, where each block covers a frequency segment ∆ωk

and has its centre at ωk. Hence, it is seen that the spectral density is the variance of each

harmonic component per frequency segment. This is shown in Figure 2.3.

Figure 2.3: Obtaining a time series simulation from spectral density [22]

A time series representative of x is finally obtained by
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x (t) = Re

{
N∑
k=1

ck exp [i (ωkt+ ψk)]

}
(2.59)

where ψk is an arbitrary phase angle between 0 and 2π. The amplitudes ck may readily

be obtained from the expression for Sx (ωk) above,

ck = [2 · Sx (ωk) ·∆ωk]1/2 (2.60)
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3 Aerodynamics

3.1 Wind Flow

A wind field met by a structure is in the following theory described at a certain point by

its own Cartesian coordinate system (x, y, z)f , where xf is the main flow direction and

zf is the vertical direction. For simplicity, it is taken for granted that the wind field is

stationary and homogeneous within the time and space considered. The wind flow can

be split up into a mean wind velocity V (xf , yf , zf ) and a fluctuating part, or turbulence

component, described by the variance or standard deviation. The oncoming wind flow is

denoted

U (xf , yf , zf , t) =


V (xf , yf , zf ) + u (xf , yf , zf , t)

v (xf , yf , zf , t)

w (xf , yf , zf , t)

(3.1)

where V + u is the along wind mean and fluctuating part, v is the horizontal fluctuating

part perpendicular to flow main direction and w is the vertical fluctuating part [22]. The

wind flow met by a bridge type structure is shown in Figure 3.1.

Figure 3.1: Bridge type structure subject to fluctuating wind field [21]

The mean wind velocity is generally described as the average wind velocity over a chosen

time interval. It depends greatly on the local topography, as obstacles such as hills or

valleys might diminish or increase the design wind velocity. As seen from Figure 3.1, the

mean wind velocity increases exponentially with height as a function of a reference height,
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often chosen to be zref = 10m. This height variation of velocity is due to horizontal

friction forces from the surface which retard the flow, most significantly close to the

ground. From Figure 3.1 it is further seen that the wind flow not only varies with height,

but along the span as well. Hence, the fluctuating turbulence components are functions

of both time and space. In the presence of large obstacles, turbulence becomes large close

to the ground, but decreases steadily away from the ground. In the absence of obstacles,

for example over a body of water, the turbulence is small [10].

Two further quantities are used to characterize the oncoming wind flow, the integral length

scale and the turbulence intensity. The integral length scale sLn provides a measure of the

average length of a turbulent wind eddy in particular direction of flow, where n = u, v, w

and s = xf , yf , zf [22]. Turbulence intensity is a scale used for characterizing turbulence

as a percent. Steady wind flow with low fluctuations has low turbulence intensity and an

unsteady flow with high fluctuations has high turbulence intensity. An idealized flow of air

with no fluctuation components would have a turbulence intensity value of 0%, however

this case is unrealistic. Because of how turbulence intensity is calculated, values greater

than 100% are possible. This can be the case for example when the average air speed

is small and yet there are large fluctuations present [24]. An expression for turbulence

intensities is given by [22]

In(zf ) =
σn(zf )

V (zf )
where n = u, v, w (3.2)

where σn(zf ) is the standard deviation of the fluctuating wind velocity V at reference

height zf . A typical variation of the turbulence intensity for the along wind u component

is given by

Iu(zf ) ≈

{
1/ln(zf/z0) when zf > zmin

1/ln(zmin/z0) when zf ≤ zmin
(3.3)

where z0 is called the roughness length and zmin is a lower limit for the vertical height of

wind velocity profile. These values depend on the terrain in the observed area, and can

be found in standards. Under isotropic conditions high above the ground, Iu ≈ Iv ≈ Iw.

From a height of over zmin to about 200 m, Iv and Iw can be approximated as[
Iv

Iw

]
≈

[
3/4

1/2

]
· Iu (3.4)

What remains is an expression for the turbulence properties both in the time and frequency

domain. The following auto covariance functions and covariance coefficients are used to

represent the time domain properties of turbulence,
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 Covu(τ)

Covv(τ)

Covw(τ)

 =

 E [u(t) · u(t+ τ)]

E [v(t) · v(t+ τ)]

E [w(t) · w(t+ τ)]

 =
1

T

T̂

0

 u(t) · u(t+ τ)

v(t) · v(t+ τ)

w(t) · w(t+ τ)

 dt (3.5)

ρn(τ) =
Covn(τ)

σ2
n

where n = u, v, w (3.6)

where τ is an arbitrary time lag. The cross covariance coefficients between two processes

(turbulence components in this case) are defined by

ρnm(τ) =
Covnm(∆s, τ)

σn · σm

{
m,n = u, v, w

∆s = ∆xf ,∆yf ,∆zf
(3.7)

where ∆s is an arbitrary separation. Spectral densities are used to represent the fre-

quency domain properties of the turbulence components. In this thesis, the following

non-dimensional expression proposed by J.C. Kaimal will be used to describe the turbu-

lence spectral density

f · Sn{f}
σ2
n

=
An · f̂n(

1 + 1.5 · An · f̂n
)5/3

where n = u, v, w (3.8)

where f̂n = f ·xf Ln/V , f is the frequency in Hz and xfLn is the integral length scale of

the relevant turbulence component. By converting f to angular frequency ω in rad/s, the

normalized auto spectral density takes the following form:

Ŝn (ω) =
Sn(ω)

σ2
n

=
An

xfLn/V

(1 + 1, 5 · AnωxfLn/V )5/3
where n = u, v, w (3.9)

Full scale recordings are required to determine the An parameter, however the following

values may be adopted if such recordings are not available: Au = 6.8, Av = Aw = 9.4 [22].

The Kaimal auto spectral density for the Halsafjorden bridge is shown in Figure 3.2. The

figure gives information on for what reduced frequencies the turbulence components are

greatest, that is, for what frequency range the fluctuations in the wind flow are largest.
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Figure 3.2: Kaimal spectral density of turbulence components

Lastly, the co-spectrum given in Section 2.3.4 may be developed further for the purposes

of wind engineering. Assuming homogeneous conditions, a first approximation of the

co-spectrum may be adopted as

Ĉonn (∆x, ω) exp

(
−Cnx

ω∆x

V

)
where n = u, v, w (3.10)

where ∆x = |x1 − x2| is the separation between two points along the span and Cnx are

constants.

3.2 Motion Induced Loads

Buffeting wind load is the dynamic load due to turbulence in the oncoming flow, which

acts on the structure and causes it to vibrate. For bridge type structures, wind with

its main flow direction perpendicular to the bridge span is of most interest. As the

wind load acts on the bridge, the bridge starts to move and this bridge motion produces

aerodynamic forces which are motion dependent. Hence these additional loads are known

as motion induced loads. As a consequence, the aerodynamic forces acting on the bridge

are functions of both the incoming turbulence and of the bridge motion [5].

In the following we assume a straight line-like bridge under buffeting wind loading. As the

bridge is line-like in the yf direction it is unnecessary to include the v wind component
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which acts along the bridge span and is hence of little consequence. We can assume there

are no height variations of the bridge as well as that its zf position is constant along

the entire span before loading, in which case xf is constant and yf may be exchanged by

x. It is also assumed that d’Alembert’s principle may be adopted (see Section 2.1) such

that we can take the bridge deck cross section at an instantaneous moment in time and

establish dynamic equilibrium. The bridge deck frozen at an instant in time along with

the relevant instantaneous flow and displacement quantities is shown in Figure 3.3. The

figure shows the deck in three positions. On the bottom left the deck is shown at rest

before any loading. After static loading, the deck has displaced to the position shown

in the middle of the figure, where r̄y, r̄z and r̄θ are the static displacements the deck

has experienced. Around this position the deck will fluctuate. Including the dynamic

fluctuations, d’Alembert’s principle is applied at the moment in time when the deck is at

the top right position in the figure. The deck has now been displaced by r̄y + ry in the

y-direction, by r̄z + rz in the z-direction and rotated by r̄θ + rθ where ry, rz and rθ are

the dynamic displacements [22].

Figure 3.3: Instantaneous flow and displacement quantities [22]

In this final position the instantaneous drag force qD, lift force qL and moment force qM

acting on the cross section in flow axes are by definition given by qD (x, t)

qL (x, t)

qM (x, t)

 =
1

2
ρV 2

rel

 D · CD(α)

B · CL(α)

B2 · CM(α)

 (3.11)

where Vrel is the relative instantaneous wind velocity, α is the corresponding angle of flow

incidence and CD, CL and CM are the drag, lift and moment coefficients. These forces

are produced as the wind flows over a given body, where drag acts in the direction of the
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flow, lift acts normal to the flow direction and moment acts as a rotation on the body.

However, as seen from Figure 3.3, the flow axis does not necessarily coincide with the

structural axis, and therefore the loads will need to be transformed into the structural

axis by coordinate transformation. The resulting loads are then given in the structural

axis by

qtot (x, t) =

 qy

qz

qθ


tot

=

 cosβ −sinβ 0

sinβ cosβ 0

0 0 1


 qD

qL

qM

 (3.12)

where

β = arctan

(
w − ṙz

V + u− ṙy

)
. (3.13)

For this theory to be applicable in time domain as well as in frequency domain we apply

two linearisation, where we assume that linearisation of any fluctuating parts will render

results with sufficient accuracy. The first linearisation is that structural displacements

and cross sectional rotations are small, as well as that the fluctuation components u(x, t)

and v(x, t) are small as compared to the mean wind velocity V . In this case cosβ ≈ 1 and

sinβ ≈ tanβ ≈ β. From Eq. 3.13 we have then that

β ≈ w − ṙz
V + u− ṙy

≈ (w − ṙz)
V

(3.14)

and thus

V 2
rel = (V + u− ṙy)2 + (w − ṙz)2 ≈ V 2 + 2V u− 2V ṙy (3.15)

and

α = r̄θ + rθ + β ≈ r̄θ + rθ +
w

V
− ṙz
V
. (3.16)

The second linearisation involves the load coefficients CD, CL and CM . These load coef-

ficients depend on the angle of incidence and the load coefficient curves, shown in Figure

3.4, and they vary non-linearly. As a linearisation, we replace the non-linear curves with

the following linear approximation CD(α)

CL(α)

CM(α)

 =

 CD(ᾱ)

CL(ᾱ)

CM(ᾱ)

+ αf ·

 C
′
D(ᾱ)

C
′
L(ᾱ)

C
′
M(ᾱ)

 =

 C̄D

C̄L

C̄M

+ αf ·

 C
′
D

C
′
L

C
′
M

 (3.17)

where ᾱ and αf are the mean value and the fluctuating part of the angle of incidence, and

C
′
D, C

′
L and C

′
M are the slopes of the load coefficient curves at ᾱ.
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Figure 3.4: Load coefficients obtained from static tests [22]

From Eq. 3.16 we can deduce that ᾱ = r̄θ and αf = rθ + w
V
− ṙz

V
.

Now, substituting Eq. 3.11 into Eq. 3.12 and applying the first linearisation we get qy

qz

qθ


tot

= 1
2
ρV 2

rel

 1 −β 0

β 1 0

0 0 1


 D · CD(α)

B · CL(α)

B2 · CM(α)



= ρV (V
2

+ u− ṙy)

 1 − (w−ṙz)
V

0
(w−ṙz)
V

1 0

0 0 1


 D · CD(α)

B · CL(α)

B2 · CM(α)



= ρV (V
2

+ u− ṙy)

 D · CD(α)− (w−ṙz)
V
·B · CL(α)

D · CD(α) · (w−ṙz)
V

+B · CL(α)

B2 · CM(α)



(3.18)

Next we apply the second linearisation and obtain

 qy

qz

qθ


tot

= ρV (
V

2
+u−ṙy)


 DC̄D

BC̄L

B2C̄M

+

(
rθ +

w

V
− ṙz
V

) DC
′
D

BC
′
L

B2C
′
M

+
w − ṙz
V

 −BC̄LDC̄D

0




(3.19)

Discarding all terms containing the product of quantities that have been assumed to be

small we are finally left with
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qtot (x, t) =

 q̄y(x)

q̄z(x)

q̄θ(x)

+

 qy(x, t)

qz(x, t)

qθ(x, t)

 = q̄ + Bq · v + Cae · ṙ + Kae · r (3.20)

where

v(x, t) =
[
u w

]T
(3.21)

r(x, t) =
[
ry rz rθ

]T
(3.22)

q̄(x) =

 q̄y(x)

q̄z(x)

q̄θ(x)

 =
ρV 2B

2

 (D/B)C̄D

C̄L

BC̄M

 =
ρV 2B

2
· b̂q (3.23)

Bq(x) =
ρV B

2

 2(D/B)C̄D
(
(D/B)C

′
D − C̄L

)
2C̄L

(
C
′
L + (D/B)C̄D

)
2BC̄M BC

′
M

 =
ρV B

2
· B̂q (3.24)

Cae(x) = −ρV B
2

 2(D/B)C̄D
(
(D/B)C

′
D − C̄L

)
0

2C̄L
(
C
′
L + (D/B)C̄D

)
0

2BC̄M BC
′
M 0

 (3.25)

Kae(x) =
ρV 2B

2

 0 0 (D/B)C
′
D

0 0 C
′
L

0 0 BC
′
M

 (3.26)

It should be noted that q̄ is the static load, Bq · v is the buffeting load (dynamic loading

associated with turbulence in the oncoming flow), while Cae · ṙ and Kae · r are the motion

induced loads associated with structural velocity and displacement . The Kae matrix can

change the total stiffness of the combined structure and flow system while Cae can change

the damping of the system. This means that the resonance frequency at V 6= 0 will be

different than that in still air, at V = 0. Cae, Kae and Mae are known as the motion

dependent cross sectional load coefficient matrices. The oncoming flow does not cause

changes in the mass, so Mae is negligible in this case [22].

3.3 Wind Tunnel Testing

Wind tunnel testing is an integral part of the aerodynamic design of a suspension bridge,

since the wind load depends both on the dimensions of the deck as well as its shape.

For long suspension bridges, their high flexibility makes them particularly vulnerable

to aerodynamic instability (see section 3.7), which makes wind tunnel testing all the
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more important. These tests are performed to identify the aerodynamic and aeroelastic

behaviour of the different bridge components, and optimize the shape of the deck. Usually

tests are performed in a smaller model scale on the individual components of the bridge

(the deck, tower and cables), and subsequently on a full aeroelastic bridge model.

The general procedure for tests of the bridge deck is as follows [5]:

1) Static tests are performed on a sectional model of the deck to measure the drag, lift

and moment coefficients CD, CL and CM as a function of the angle of incidence α.

The model is placed on a dynamometric system and allowed to rotate around the

deck longitudinal axis. The load coefficients are then measured as a function of the

wind angle of attack by changing the rotational angle of the deck.

2) The deck shape is optimized in order to fulfil the bridge stability requirements. By

analysing the slopes of the load coefficients obtained in the static test, the deck

shape can be designed to fulfil the stability requirements. These requirements are

covered in more detail in Section 3.7.

3) Verification of that vortex shedding excitation of the deck is controlled. If it is not,

the deck optimization must be repeated.

4) Dynamic tests in order to identify the aerodynamic derivatives (see Section 3.4) and

extract the motion induced forces. Two methods currently in use are the free motion

method and the forced method. During free motion tests the deck sectional model

is allowed to vibrate freely under the mean wind speed action, the response of the

system is measured and the aerodynamic derivatives are extracted by computing

the variation of the structural response at a given wind velocity as compared to

the values obtained in still air. The forced motion method is more expensive but

more reliable. The deck is forced to vibrate in the y, z and θ directions at various

frequencies, while the motion induced forces are measured for a given constant

velocity.

3.4 Aerodynamic derivatives

The coefficients of the Cae and Kae matrices derived in Section 3.2 are better known

as aerodynamic derivatives. Together, these eighteen coefficients give a full frequency

domain description of motion induced dynamic forces associated with structural velocity

and displacement. That is, they describe the wind flow around a given cross section. As

such they are functions of the type of cross section and its dimensions, as well as the

mean wind velocity and the frequency of motion. The main use for these aerodynamic

derivatives is in the detection of unstable motion at high wind velocities. Usually they

have to be experimentally determined in wind tunnel tests for a given cross section,
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as was covered in the previous section. These tests have the limitation that the along

wind motion is absent in the section model, and thus the experiments are limited to

vertical and torsion displacements. The wind tunnel tests are performed at a smaller

model scale and hence it must be possible to accurately convert the results to full scale.

This means that the aerodynamic derivatives have to be extracted as functions of the

reduced velocity V̂ = V/ (Bωi) where ωi is the in-wind eigenfrequency associated with

mode shape i. As previously mentioned, Cae and Kae can reduce the total damping and

stiffness of the system and therefore it follows that the eigenfrequencies ωi of the system

will also be changed. However, in the quantification of the aerodynamic derivatives and

their contribution to the total stiffness and damping it is assumed that the changes in the

eigenfrequencies may be ignored [22]. The coefficients included in Cae and Kae are most

commonly notated as follows

Cae =

 P1 P5 P2

H5 H1 H2

A5 A1 A2

 and Kae =

 P4 P6 P3

H6 H4 H3

A6 A4 A3

 (3.27)

It has been considered convenient to normalize Cae and Kae with ρB2ωi/2 and ρB2ω2
i /2

into a non-dimensional form, such that

Cae =
ρB2

2
· ωi(V ) · Ĉae and Kae =

ρB2

2
· [ωi(V )]2 · K̂ae (3.28)

where

Ĉae =

 P ∗1 P ∗5 BP ∗2

H∗5 H∗1 BH∗2

BA∗5 BA∗1 B2A∗2

 and K̂ae =

 P ∗4 P ∗6 BP ∗3

H∗6 H∗4 BH∗3

BA∗6 BA∗4 B2A∗3

 (3.29)

It is these non-dimensional coefficients that are usually called aerodynamic derivatives.

Comparing the notation of Eq. 3.28 and Eq. 3.29 with Eq. 3.25 and Eq. 3.26 and

remembering that the aerodynamic derivatives were extracted as functions of V/ (Bωi),

we get the quasi-static aerodynamic derivatives



P ∗1 H∗1 A∗1

P ∗2 H∗2 A∗2

P ∗3 H∗3 A∗3

P ∗4 H∗4 A∗4

P ∗5 H∗5 A∗5

P ∗6 H∗6 A∗6


=



−2C̄D
D
B

V
Bωi(V )

−
(
C
′
L + C̄D

D
B

)
V

Bωi(V )
−C ′M V

Bωi(V )

0 0 0

C
′
D
D
B

(
V

Bωi(V )

)2

C
′
L

(
V

Bωi(V )

)2

C
′
M

(
V

Bωi(V )

)2

0 0 0(
C̄L − C

′
D
D
B

)
V

Bωi(V )
−2C̄L

V
Bωi(V )

−2C̄M
V

Bωi(V )

0 0 0


(3.30)
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The choice of normalizing the aerodynamic derivatives with ωy(V ), ωz(V ) or ωθ(V ) is

optional, as the frequency ratio stays the same both in the model and full scale regardless.

In this thesis it has been chosen to have normalized H∗i with ωz(V ) and A∗i with ωθ(V ),

where i = 1 − 4. Quantifying P ∗i is obsolete since it associated to drag, and y direction

response is not of relevance for the purposes of this thesis.

Aerodynamic derivatives for the specific case of an ideal flat plate type of cross section

are often used as a reference. They are given by


H∗1 A∗1

H∗2 A∗2

H∗3 A∗3

H∗4 A∗4

 =


−2πF V̂i −π

2
FV̂i

π
2

(
1 + F + 4GV̂i

)
V̂i −π

8

(
1− F − 4GV̂i

)
V̂i

2π
(
FV̂i −G/4

)
V̂i

π
2

(
FV̂i −G/4

)
V̂i

π
2

(
1 + 4GV̂i

)
π
2
GV̂i

 (3.31)

where V̂i = V/ [Bωi (V )] and F and G are the real and imaginary parts of Theodorsen’s

circulatory function, given by

F

(
ω̂i
2

)
=
J1 · (J1 + Y0) + Y1 · (Y1 − J0)

(J1 + Y0)2 + (Y1 − J0)2 (3.32)

G

(
ω̂i
2

)
= − J1 · J0 + Y1 · Y1

(J1 + Y0)2 + (Y1 − J0)2 (3.33)

Jn and Yn (n = 0, 1) used in this function are Bessel functions of the first and second

kinds. ω̂i is the non-dimensional resonance frequency, ω̂i = Bωi(V )/V = V̂ −1. The

aerodynamic derivatives associated with the along-wind direction are notably absent in

the section model for a flat plate. They have been disregarded due to the limitations of

wind tunnel testing, however these components are of minor importance for bridges with

this type of cross section [22].

3.5 Modal Frequency Response Function

The aim of this section is to derive the modal equivalent of the frequency response function

given by Eq. 2.14 with motion induced loads included. Starting from the modal dynamic

equilibrium equation for mode number i

M̃i · η̈i(t) + C̃i · η̇i(t) + K̃i · ηi(t) = Q̃i(t) + Q̃aei(t, ηi, η̇i, η̈i) (3.34)

where [
Q̃i(t)

Q̃aei(t, ηi, η̇i, η̈i)

]
=

ˆ

Lexp

φi ·

[
q

qae

]
dx (3.35)
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Lexp is the flow exposed part of the structure and Q̃aei is the modal motion induced load.

To transfer this expression into the frequency domain we take the Fourier transform on

both sides of the equation,

ηi(t) = aηi(ω) · eiωt

Q̃i(t) = aQ̃i(ω) · eiωt

Q̃aei(t) = aQ̃aei(ω, ηi, η̇i, η̈i) · e
iωt

(3.36)

which gives

(
−M̃i · ω2 + C̃i · iω + K̃i

)
· aηi(ω) = aQ̃i(ω) + aQ̃aei(ω, ηi, η̇i, η̈i) (3.37)

where aηi , aQ̃i and aQ̃aei are Fourier amplitudes. It is assumed that

aQ̃aei =
(
−M̃aei · ω2 + C̃aei · iω + K̃aei

)
· aηi(ω) (3.38)

i.e. includes the motion induced part of the modal mass, stiffness and damping of the

system. Substituting Eq. 3.38, into Eq. 3.37, we obtain

(
−M̃i · ω2 + C̃i · iω + K̃i

)
· aηi(ω) = aQ̃i(ω) +

(
−M̃aei · ω2 + C̃aei · iω + K̃aei

)
· aηi(ω)

⇒
(
−
(
M̃i − M̃aei

)
ω2 +

(
C̃i − C̃aei

)
· iω +

(
K̃i − K̃aei

))
· aηi(ω) = aQ̃i(ω)

(3.39)

Dividing through the equation with K̃i and substituting Eq. 2.42 and Eq. 2.43 gives after

some simplifications

aηi(ω) = Ĥi(ω) · 1

K̃i

· aQ̃i(ω) (3.40)

where

Ĥi(ω) =

[
1− K̃aei

ω2
i M̃i

−

(
1− M̃aei

M̃i

)
·
(
ω

ωi

)2

+ 2i

(
ζi −

C̃aei
2ωiM̃i

)
· ω
ωi

]−1

(3.41)

is the non-dimensional modal frequency response function. Finally, introducing µaei =

M̃aei/M̃i, κaei = K̃aei/ω
2
i M̃i and ζaei = C̃aei/

(
2ωiM̃i

)
, then

Ĥi(ω) =

[
1− κaei − (1− µaei) ·

(
ω

ωi

)2

+ 2i (ζi − ζaei) ·
ω

ωi

]−1

(3.42)

The corresponding multi-mode form of the modal frequency response function is given by

[22], taking full motion induced load effects:
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Ĥ(ω) =

{
I− κae −

(
ω · diag

[
1

ωi

])2

(I− µae) + 2iω · diag
[

1

ωi

]
(ζ − ζae)

}−1

(3.43)

where

µae =


. . . . .

.

µaeij

. .
. . . .

 κae =


. . . . .

.

κaeij

. .
. . . .

 ζae =


. . . . .

.

ζaeij

. .
. . . .

 (3.44)

are given by

µaeij =
M̃aeij

M̃i

=

´
Lexp

(
ϕTi Maeϕj

)
dx

M̃i

=
ρB2

2m̃i

·

´
Lexp

(
ϕTi M̂aeϕj

)
dx´

L
(ϕTi ϕi) dx

(3.45)

κaeij =
K̃aeij

ω2
i M̃i

=

´
Lexp

(
ϕTi Kaeϕj

)
dx

ω2
i M̃i

=
ρB2

2m̃i

·
[
ωi(V )

ωi

]2
´
Lexp

(
ϕTi K̂aeϕj

)
dx´

L
(ϕTi ϕi) dx

(3.46)

ζaeij =
C̃aeij

2ωiM̃i

=
ρB2

4m̃i

· ωi(V )

ωi
·

´
Lexp

(
ϕTi Ĉaeϕj

)
dx´

L
(ϕTi ϕi) dx

(3.47)

where ωi(V ) is the mean wind velocity dependent resonance frequency associated with

mode i, ωi = ωi(V = 0) is the mean wind velocity as calculated in still-air conditions and

m̃i = M̃i/
´
L

(
ϕTi ·ϕi

)
dx is the modally equivalent and evenly distributed mass.

3.6 Response Calculations

This section gives a general solution strategy for calculation of the dynamic response

due to wind loading, as presented by [22]. Three methods can be used for obtaining the

solution. First, if eigenmodes are well separated and, hence there is no significant coupling

between displacement components, a single mode single component response solution will

render a sufficiently accurate solution. Second, a single mode three component response

solution may be used when there is significant coupling between modes, yet they are still

well separated. Lastly, a general multi-mode approach does not require the modes to be

either uncoupled or far apart and can be used for all cases. For the sake of generality,

only the multi-mode approach will be presented here, as the two other cases are nothing

but special cases of this general method.

The solution method is pursued in modal coordinates (see Section 2.3.2) and in the fre-
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quency domain (see Section 2.1.2). The solution is given in frequency domain as the

spectral density of the response, where

Srr(xr, ω) =

 Sryry Sryrz Sryrθ
Srzry Srzrz Srzrθ
Srθry Srθrz Srθrθ

 (3.48)

is the cross spectral density matrix of the unknown modal displacements ry, rz and rθ.

Here, the spectral density of the response has been converted from modal coordinates into

original coordinates by

Srr(xr, ω) = Φr(xr) · Sη(ω) ·ΦT
r (xr) (3.49)

where Sη(ω) is the response spectral density in modal coordinates, given by

Sη(ω) = lim
T→∞

1

πT

(
a∗η · aTη

)
= lim

T→∞

1

πT

((
ĤηaQ̂

)∗
·
(
ĤηaQ̂

)T)
= Ĥη ·

[
lim
T→∞

1

πT

(
a∗
Q̂
· aT

Q̂

)]
· ĤT

η = Ĥ∗η · SQ̂ · Ĥ
T
η

where SQ̂(ω) is the spectral density of the modal load defined by

SQ̂(ω) = lim
T→∞

1

πT

(
a∗
Q̂
· aT

Q̂

)
(3.50)

The response spectral density can be converted to the time domain by frequency domain

integration. There the solution is given by the covariance matrix, containing the time

domain variances and covariances of each response displacement component ry, rz and rθ.

The covariance matrix is given by

Covrr(xr) =

 σ2
ryry Covryrz Covryrθ

Covrzry σ2
rzrz Covrzrθ

Covrθry Covrθrz σ2
rθrθ

 (3.51)

which is obtained by frequency domain integration,

Covrr(xr) =

∞̂

0

Srr(xr, ω)dω = Φr(xr)

 ∞̂
0

Ĥ∗η(ω)SQ̂(ω)ĤT
η (ω)dω

ΦT
r (xr) (3.52)

where Ĥη(ω) is as given in Eq. 3.43 and Φr(xr) is the mode shape matrix given in Eq.

2.32.

The content of the normalised modal load matrix SQ̂(ω) is given by
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SQ̂iQ̂j(ω) =
ρB3

2m̃i

· ρB
3

2m̃j

·
(

V

Bωi

)2

·
(

V

Bωj

)2

· Ĵ2
ij (3.53)

where Ĵ2
ij is known as the reduced joint acceptance function. In wind engineering, this

function is used to quantify the ability of the wind loading to excite the mode considered.

The function contains the span-wise statistical averaging of variance contributions from

the fluctuating wind flow components, i.e. it accounts for variations of the wind velocity

over the length of the mode. Theoretically, if the joint acceptance function equals 1, the

wind velocity is the same over the span of the bridge. Close to 0, the span-wise deviations

in wind velocity are great. The reduced joint acceptance function is given by [21]

Ĵ2
ij =

˜
Lexp

ϕTi (x1) ·
{

B̂q ·
[
I2
v · Ŝv(∆x, ω)

]
· B̂T

q

}
·ϕj(x2)dx1dx2(´

L
ϕTi ·ϕidx

)
·
(´

L
ϕTj ·ϕjdx

) (3.54)

where

Iv = diag
[
Iu Iw

]
(3.55)

Ŝv = diag
[
Suu/σ

2
u Sww/σ

2
w

]
(3.56)

and B̂q has previously been defined in Eq. 3.24.

3.7 Stability

As the mean wind load acting on a structure increases, the response of the structure will

generally increase as well. As high wind velocities are reached, motion induced forces

may reduce the total stiffness of the combined structure and flow system. After these

motion induced load effects start occurring, a certain critical mean wind velocity limit

may be reached, at which point the dynamic response curve will rapidly increase for a

small increase in the wind velocity until it approaches infinity. This is known as a stability

limit, and is shown in Figure 3.5. The number of stability limits in a system is equal to

the number of modes that system has, where each stability limit is associated with a

corresponding mode shape.
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Figure 3.5: Relationship between structural response and mean wind velocity [22]

As the structural displacement response approaches infinity, so does the frequency re-

sponse function in Eq. 3.43. It follows that its inverse, known as the impedance matrix

Ê, will approach zero at this point. Therefore we can define the stability limit where

both the real and the imaginary part of the non-dimensional impedance matrix is zero,

i.e. where ∣∣∣det
(
Ê (ω, V )

)∣∣∣ = 0

⇒ Re
(

det
(
Ê (ω, V )

))
= 0 and Im

(
det
(
Ê (ω, V )

))
= 0

(3.57)

and Ê (ω, V ) is given as

Ê(ω, V ) =

{
I− κae −

(
ω · diag

[
1

ωi

])2

+ 2iω · diag
[

1

ωi

]
(ζ − ζae)

}
(3.58)

where any aerodynamic mass effects have been neglected. The effect of κae is to change

the stiffness properties of the system, while ζae affects the system by changing its damping

properties. For a two-mode approach, their contents are as follows:

κae =

[
κaezz κaezθ
κaeθz κaeθθ

]
and ζae =

[
ζaezz ζaezθ
ζaeθz ζaeθθ

]
(3.59)

where

κaezz =
ρB2

2m̃z

H∗4

´
Lexp

φ2
zdx´

L
φ2
zdx

κaezθ =
ρB3

2m̃z

H∗3

´
Lexp

φzφθdx´
L
φ2
zdx

(3.60)
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κaeθz =
ρB3

2m̃θ

A∗4

´
Lexp

φθφzdx´
L
φ2
θdx

κaeθθ =
ρB4

2m̃θ

A∗3

´
Lexp

φ2
θdx´

L
φ2
θdx

(3.61)

ζaezz =
ρB2

4m̃z

H∗1

´
Lexp

φ2
zdx´

L
φ2
zdx

ζaezθ =
ρB3

4m̃z

H∗2

´
Lexp

φzφθdx´
L
φ2
zdx

(3.62)

ζaeθz =
ρB3

4m̃θ

A∗1

´
Lexp

φθφzdx´
L
φ2
θdx

ζaeθθ =
ρB4

4m̃θ

A∗2

´
Lexp

φ2
θdx´

L
φ2
θdx

(3.63)

While in Section 3.4 we assumed changes to the resonance frequencies were negligible,

close to an instability limit the motion induced load effect of changing the system’s eigen-

frequencies ωi can no longer be ignored, and ωi will be taken at the relevant critical wind

velocity Vcr. As such the impedance matrix depends both on the mean wind velocity as

well as the frequency of motion and the determination of Vcr will require iterations.

The solution to Eq. 3.57 is an eigenvalue problem, each representing a stability limit.

Of all the eigenvalues that can be extracted from the equation, it is the lowest one that

is most important for design of structures, giving the lowest Vcr and corresponding in-

wind resonance frequency ωr. It should be noted that that this is not the only method

of identifying stability limits. Another method is to calculate the dynamic response of

the structure over the wind velocity range, and identifying where the response starts to

rapidly approach infinity.

There are four types of unstable behaviour of a bridge section, characterized either by ver-

tical motion, torsional motion or a combination of both. Since it is the lowest eigenmodes

that are of most importance and the fact that unstable behaviour of bridges only depends

on rz and rθ, it is sufficient to search only for the stability limits associated with the

lowest vertical and torsional modes, ϕ1 ≈
[

0 φz 0
]T

1
and ϕ2 ≈

[
0 0 φθ

]T
2

. The

possible types of unstable behaviour of a bridge section will be described in the following

subsections. All these descriptions are obtained from [22].

3.7.1 Static divergence

Static divergence is a static type of instability governed by torsional frequency and the

slope of the moment coefficient C
′
M . It can occur when the predominant mode shape

is torsional and is as such a problem of losing torsion stiffness due to interaction effects

with the air flow. Since ω = ωr = 0 for static problems, and the only mode shape to be

considered is ϕ2 ≈
[

0 0 φθ

]T
, the impedance matrix from Eq. 3.58 is reduced to the

simple form

Êη (ωr = 0, Vcr) = 1− κaeθθ (3.64)

As described above, instabilities occur when Êη = 0. It follows that static divergence will
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occur when κaeθθ = 1. Substituting the quasi-static expression for A∗3 from Eq. 3.30 into

the expression for κaeθθ (Eq. 3.61) and equating to 1, we get

ρB4

2m̃θ

(
ωθ(Vcr)

ωθ

)2

C
′

M

(
Vcr

Bωθ(Vcr)

)2
´
Lexp

φ2
θdx´

L
φ2
θdx

= 1 (3.65)

from which we are able to solve for the critical mean wind velocity Vcr for static divergence,

Vcr = B · ωθ ·

(
2m̃θ

ρB4C
′
M

·
´
L
φ2
θdx´

Lexp
φ2
θdx

)1/2

(3.66)

3.7.2 Galloping

Galloping is a single mode unstable behaviour containing motion purely in the vertical

direction, i.e. the mode shape vector becomes ϕ1 ≈
[

0 φz 0
]T

. The resonance fre-

quency associated with this mode is ωr = ωz(V ). Since the motion is purely vertical, the

impedance matrix reduces to

Êη (ωr, Vcr) = 1− κaezz − (ωr/ωz)
2 + 2i (ζz − ζaezz)ωr/ωz (3.67)

In this case, unstable behaviour will occur under the simultaneous conditions that

Re
(
Êη

)
= 1− κaezz − (ωr/ωz)

2 = 0

Im
(
Êη

)
= 2i (ζz − ζaezz)ωr/ωz = 0

(3.68)

from which we observe that

ω2
r = ω2

z − ω2
zκaezz = ω2

z −
ρB2

2m̃z
· ω2

r ·H∗4
´
Lexp

φ2
zdx´

L φ
2
zdx

⇒ ωr = ωz(Vcr) = ωz

(
1 + ρB2

2m̃z
H∗4

´
Lexp

φ2
zdx´

L φ
2
zdx

)−1/2
(3.69)

and that

ζz = ζaezz =
ρB2

4m̃z

(
ωz(Vcr)

ωz

)
H∗1

´
Lexp

φ2
zdx´

L
φ2
zdx

(3.70)

It should also be noted that since ζz − ζaezz = 0 is a requirement for galloping to occur,

it will only occur when H∗1 is positive. As seen from the expression above, negative H∗1

will increase the total vertical damping of the system, hence ζz − ζaezz = 0 will never be

fulfilled.

Substituting the quasi-static expression for H∗1 from Eq 3.30 into Eq. 3.70, we are able to

obtain an expression for Vcr for galloping:
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ζz = −ρB
2

4m̃z

(
ωz(Vcr)

ωz

)(
C
′

L + C̄D
D

B

)
Vcr

Bωz(Vcr)

´
Lexp

φ2
zdx´

L
φ2
zdx

(3.71)

⇒ Vcr = Bωz ·
ζz

−
(
C
′
L + C̄D ·D/B

) · 4m̃z

ρB2
·
´
L
φ2
zdx´

Lexp
φ2
zdx

(3.72)

Another prerequisite for galloping is that C
′
L < −C̄D · D/B. The right side of this

inequality is always positive. However, the slope of the lift coefficient
(
C
′
L

)
is able to take

negative values, which should be taken as a danger signal.

3.7.3 Dynamic instability in torsion

Another type of single mode unstable behaviour is known simply as dynamic instability in

torsion. The mode shape vector for this type of instability becomes ϕ2 ≈
[

0 0 φθ

]T
,

and its corresponding resonance frequency ωr = ωθ(V ). Since vertical z motion is not

present or neglected, the impedance matrix reduces to

Êη (ωr, Vcr) = 1− κaeθθ − (ωr/ωθ)
2 + 2i (ζθ − ζaeθθ)ωr/ωθ (3.73)

where unstable behaviour will only occur when both the real and imaginary parts are

simultaneously equal to zero:

Re
(
Êη

)
= 1− κaeθθ − (ωr/ωθ)

2 = 0

Im
(
Êη

)
= 2i (ζθ − ζaeθθ)ωr/ωθ = 0

(3.74)

It is seen that

ωr = ωθ(Vcr) = ωθ

(
1 +

ρB4

2m̃θ

A∗3

´
Lexp

φ2
θdx´

L
φ2
θdx

)−1/2

(3.75)

when damping is such that

ζθ = ζaeθθ =
ρB4

4m̃θ

(
ωθ(Vcr)

ωθ

)
A∗2

´
Lexp

φ2
θdx´

L
φ2
θdx

(3.76)

Since ζθ − ζaeθθ = 0 is a requirement for dynamic instability in torsion, A∗2 must attain

positive values for this to be an issue.

3.7.4 Flutter

The last type of instability discussed here is a combined unstable motion of both ver-

tical and torsion displacements. This can occur when the mean wind velocity dependent

resonance frequencies ωz(Vcr) and ωθ(Vcr) get coupled, i.e. resonance occurs for both
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vertical and torsional displacements at the same frequencies. This coupling occurs via

the off-diagonal terms κaezθ and κaeθz and therefore the two modes considered must be

shape-wise similar, i.e. the off-diagonal terms must be unequal to zero. The two mode

shapes are as follows:

ϕ1 ≈
[

0 φz 0
]T

ϕ2 ≈
[

0 0 φθ

]T
(3.77)

with corresponding eigenfrequencies ω1 = ωz and ω2 = ωθ. As before, the stability limit is

identified by
∣∣∣det

(
Ê (ω, V )

)∣∣∣ = 0. Flutter occurs when the eigenfrequencies are coupled,

i.e. when ωr = ωz(Vcr) = ωθ(Vcr). In this particular case, where only the two modes are

considered, the impedance matrix is given as

Êη(ωr, Vcr) =

[
1 0

0 1

]
−

[
κaezz κaezθ
κaeθz κaeθθ

]
−

[
(ωr/ωz)

2 0

0 (ωr/ωθ)
2

]

+ 2i

[
ωr/ωz 0

0 ωr/ωθ

]
·

[
ζz − ζaezz −ζaezθ
−ζaeθz ζθ − ζaeθθ

]
(3.78)

Fully expanding the real and imaginary parts of
∣∣∣det

(
Ê (ω, V )

)∣∣∣ separately gives the

following two equations

Re
(

det
(
Êη

))
= 1− κaezz − κaeθθ + κaezz · κaeθθ − κaezθ · κaeθz−

4 · [(ζz − ζaezz) · (ζθ − ζaeθθ)− ζaezθ · ζaeθz ] · (ωr/ωz) · (ωr/ωθ)−

(1− κaeθθ) · (ωr/ωz)
2 − (1− κaezz) · (ωr/ωθ)

2 + (ωr/ωz)
2 · (ωr/ωθ)2 = 0 (3.79)

Im
(

det
(
Êη

))
= 2 · {[(1− κaeθθ) · (ζz − ζaezz)− κaeθz · ζaezθ ] · ωr/ωz+

[(1− κaezz) · (ζθ − ζaeθθ)− κaezθ · ζaeθz ] · ωr/ωθ−

(ζθ − ζaeθθ) · (ωr/ωθ) · (ωr/ωz)
2 − (ζz − ζaezz) · (ωr/ωz) · (ωr/ωθ)

2} = 0 (3.80)

It should be noted that calculating the flutter stability limit involves iterations, since ωr

and Vcr both need to be known to be able to read off the aerodynamic derivatives. In

cases where ωθ/ωz is larger than 1.5, Selberg’s formula may be used to provide a rough

estimate of the stability limit,

Vcr = 0.6Bωθ

{[
1−

(
ωz
ωθ

)2
]
· (m̃z · m̃θ)

1/2

ρB3

}1/2

(3.81)
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4 Suspension Bridges

Suspension bridges have four main components which all work together: bridge deck beam,

cable system, towers and anchor blocks. The roadway itself is supported from below by

a girder beam, which most often consist of either a system of trusses or a stiffened box

girder. There are usually two towers, or pylons, on each side of the bridge main span.

They sustain two parallel cables, which in turn sustain the girder beam through vertical

hangers that connect the two together. From the pylons, the cables connect to an anchor

block which transfers the axial forces from the cables to the ground. The four components

are shown in Figure 4.1. The anchorages and towers are usually erected first. Then the

cables are installed between the two tower pairs and hangers attached to them. Finally,

the girder beam can be raised to position, usually in sections, which are then individually

hooked to the hangers [8].

Figure 4.1: A typical suspension bridge [10]

4.1 The Single Span Suspension Bridge

The single span suspension bridge is the most simple case of a suspension bridge. Only

the main span is supported by the cable system while the main cables continue past the

pylons as backstays connected to the anchor blocks. This means that the side spans are

acting independent of the cable system. All the weight of the main beam is transferred

via the hangers directly into the two cables. From there the weight is transferred to the

pylons, and further into the anchor blocks via the backstays [10]. The overall geometry

of a single span suspension bridge is shown in Figure 4.2,
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Figure 4.2: A single span suspension bridge [21]

where:

ho− height of the pylons measured from the deck

ec− cable sag

hm− distance between cable and deck at midspan

L− length of main span

L1, L2− length of side spans

B− width of the deck

D− depth of the deck

bc− distance between the cables on either side of the deck

rn− deck displacement components, n = z, y, θ

rcn− cable displacement components, n = z, y

hc− height of cables at an arbitrary coordinate along the span

hr− vertical distance between the shear centre (sc) and hanger attachment

For simplicity, it is assumed that the shear centre of the main beam coincides with its

centroid. Flexibility of hangers as well as backstays and towers are ignored as that usually

only results in minor discrepancies in the calculation of the eigenvalues of the system. With

these assumptions in place, the system behaves as a combination of two cables and a beam

where the main girder and the the two cable planes move in perfect harmony. Therefore,

the motion of the system can be split into three independent components: in plane vertical

component z, out of plane horizontal component y and pure torsion component θ. The

idealized structural system of a suspension bridge is shown in Figure 4.3, where it has

been distinguished between the distributed mass mn of the bridge girder in the n = y,

z and θ directions. The hanger self weight is included, half in mz and half in the self
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weight of the cable, mc. EIy, EIz, GIt and EIw give the stiffness properties of the beam,

while (EA)c gives the stiffness properties of the cable. It should be noted that the shear

force Vb in the beam at its connection to the two pylons is negligible, due to all its weight

being distributed to the cables and further to the ground, as described previously in this

section.

Figure 4.3: Idealized structural system of a suspension bridge [21]

4.2 The Cable Systems

4.2.1 Structural Considerations

A cable system consists of a cable and attached hangers. In a traditional suspension

bridge, the cables are supported at 4 points: the anchorage to the ground on each side of

the bridge, and on the two pylon tops. The cables are the main load-carrying components

in the bridge. They are what holds up the bridge deck and transfer the loads to the

ground. They are therefore designed to support the loads from the girder, the hanger

cables and their own self weight. Vertical forces from traffic and self weight of the bridge

deck are transferred through to the hangers as tensile forces and from there to the cables,

which will then also be in pure tension. The biggest advantage of using cables as the

main load-carrying elements is related to the low consumption of structural material in

the cables themselves, as much smaller cross sections are required than for a steel beam,

for example. This stems from the high efficiency of load transfer by pure tension [10].

An important attribute of a suspension cable is its ability to self-adapt to external loads.

That is, it will instantly change the shape of its axis, vary curvature and deformation to

adapt to the condition of stress on the structure. This is all elastic deformation so it will

return to its equilibrium state after unloading, unlike a beam or and arch which are much

more susceptible to plastic deformations [12].

It is important to consider the sag of the cables, as it has an effect on their load-carrying

capabilities. The sag ratio is defined as the ratio of the sag of the cable (denoted ec)

to the length L of the cable span, ec/L. The horizontal force H in the cable is inversely
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proportional to the sag ratio. This means that small sag will result in large forces, requiring

uneconomically thick cables. However, when the sag ratio becomes larger than a certain

limit, deflections start to grow significantly. It has been determined that the optimal sag

ratio, giving not too high loads and not too high deflections, is generally between 1
9

and
1
11

. It is noted that the sag ratio can for example be adjusted by increasing or decreasing

the pylon height in the design [10].

4.2.2 The Shallow Cable Theory

Unlike beams or beam-columns, a cable has negligible cross sectional bending and torsion

stiffness. Therefore a cable must rely almost entirely on the presence of an axial force N

and its axial elastic stiffness property EA, where E is the elastic modulus for the cable

material and A is the cross section area. Thus, a cable will only offer stiffness against

displacement rx, ry and rz. Shallowness is assumed in the following theory. A cable is

defined as shallow if the cable sag is less than 1
10

of its suspended length. Figure 4.4a

shows the shallow cable suspended over the main span of a bridge, where zc is the cable

vertical position at an arbitrary coordinate x, ec is the cable sag and L is the length of the

span. Figure 4.4b shows a free body diagram of the same cable in static, or time invariant

equilibrium [21].

(a) Suspended cable

(b) Static equilibrium

Figure 4.4: A shallow cable supported at identical levels [21]

The cable will be subject to both static forces due to gravity field as well as forces due to

dynamic motion of the cable itself. Only the static forces are shown in Figure 4.4b but

for dynamic equilibrium, the fluctuating parts must also be included. The internal forces

in the cables are then:
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Ntot = N̄ (x) +N (x, t)

Htot = H̄ (x) +H (x, t)

Vz,tot = V̄z (x) + Vz (x, t)

Vy,tot = Vy (x, t)

(4.1)

where Ntot is the cross section axial force, and Htot and Vz,tot are its horizontal and

vertical components respectfully, while Vy,tot is the out of plane force component which

is only caused by dynamic motion. The static parts of the forces are derived in detail in

[21] by taking the force and moment equilibrium for an finite element ds at an arbitrary

position along the span, subject only to vertical gravity force q · ds. The time invariant

axial force is found to be:

N̄ = H̄ · cosh

(
qx

H̄
− qL

2H̄

)
(4.2)

and the vertical force component at the supports:

V̄z (x = 0) = V̄z (x = L) =
qL

2

[
1 +

1

24

(
qL

H̄

)2
]

(4.3)

It is noted that these expressions for N̄ and V̄z are dependent on the time invariant part

of the horizontal force H̄, which will be derived in Section 4.2.4. For suspension bridges, q

is the total static vertical load acting on the cable, i.e. the self weight of the cable, beam

and hangers.

The same method is used to establish the relevant dynamic equilibrium requirements,

with the dynamic components added to the finite element diagram (see Figure 4.5). Cable

shallowness is again assumed, and in addition the simplification that the cable motion in

the x direction rx is negligible is adopted. This is reasonable for bridges due to their high

span-wise stiffness. With this assumption the equilibrium requirement in the x direction

simply becomes [21]

d

dx

(
H̄ +H

)
= 0 (4.4)

which implies that both H̄ and H (t) are independent of x.
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Figure 4.5: Equilibrium of shallow cable, y direction motion [21]

The corresponding equilibrium requirements in the y and z direction are given by

dVy −mcr̈y · ds = 0

d
(
V̄z + Vz

)
+mcg · ds−mcr̈z · ds = 0

(4.5)

where mc is the cable mass per unit length. Similarly, the moment equilibrium taken

about axes through the element midpoint and parallel to the y and z directions, are given

by (
H̄ +H

)
· d (zc + rz)−

(
V̄z + Vz

)
· dx = 0(

H̄ +H
)
· dry − Vy · dx = 0

(4.6)

from which the following is obtained

Vy =
(
H̄ +H

) dry
dx

V̄z + Vz =
(
H̄ +H

)
d
dx

(zc + rz)
(4.7)

By substituting this into Eq. 4.5 and remembering that H̄ and H (t) are independent of

x, we obtain (
H̄ +H

) d2ry
dx2

dx
ds

= mcr̈y(
H̄ +H

)
d2

dx2 (zc + rz)
dx
ds

+mcg = mcr̈z
(4.8)

The static case, where H, ry and rz are all zero, is then defined by

H̄z”
c = −mcg and Hz”

c = −mcg

H̄
H (4.9)

Assuming that dynamic displacements are small, i.e. that

Hr”
y � H̄r”

y and Hr”
z � H̄r”

z (4.10)

and shallowness justifies ds ≈ dx, the first part of Eq. 4.8 becomes
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H̄r”
y

dx

ds
+Hr”

y

dx

ds
−mcr̈y = 0 ⇒ r”

y −
mc

H̄
r̈y = 0 (4.11)

and the second part becomes

H̄z”
c + H̄r”

z +Hz”
c +Hr”

z +mcg = mcr̈z

⇒ −mcg + H̄r”
z −

mcg
H̄
H +mcg = mcr̈z

⇒ H̄r”
z −

mcg
H̄
H −mcr̈z = 0

⇒ r”
z − mc

H̄
r̈z = mcg

H̄
H
H̄

(4.12)

Eq. 4.11 and 4.12 are the differential equations for unloaded and undamped motion of a

shallow cable, for out of plane and vertical motion respectively. An expression for H(t),

the time dependent increase of cable tension during a small dynamic vertical motion

rz (x, t), is yet to be determined. The reader is referred to [21] where this is derived in

detail, while only the result will be included here. It is then given that

H(t) =
EA

l

8ec
L2

ˆ

L

rz (x, t) dx (4.13)

where le = L
[
1 + 8 (ec/L)2].

Defining

λ2 =

(
8ec
L

)2
EA

H̄

L

le
(4.14)

the full expressions for the differential equations for unloaded and undamped motion of a

shallow cable become

r”
y − mc

H̄
r̈y = 0

r”
z − mc

H̄
r̈z = λ2

(
1
L3

) ´
L
rzdx

(4.15)

where
´
L
rzdx accounts for cable stretching. It is noted that there is no coupling between

rz and ry motion and therefore they may be handled separately. To solve these equations,

we use the general solution for a differential equation which is given as

ry (x, t) = Re [φy (x) · eiωt]
rz (x, t) = Re [φz (x) · eiωt]

(4.16)

where φy and φz are the mode shapes of the motion.

4.2.3 Solution to the Eigenvalue Problem for Shallow Cables

Horizontal Motion

Since in plane horizontal motion is trivial in the case of bridges, we only look at out of

plane horizontal motion. In that situation ry 6= 0 and rz = 0 since the two motions are
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uncoupled. Inserting Eq. 4.16 into Eq. 4.15 for that case, we get

φ”
y + ω2

(
mc/H̄

)
φy = 0 (4.17)

which can only be satisfied for all values of x if the second derivative of φy is con-

gruent to φy itself, and simultaneously satisfy the boundary conditions φy (x = 0) =

φy (x = L) = 0. That means that we can take the mode shape as an harmonic func-

tion, φyn = aynsin (nπx/L), n = 1, 2, 3, .... By inserting this into Eq. 4.17 and solving for

ωyn we obtain the eigenfrequencies for horizontal out of plane motion

ωyn = nπ
√
H̄/ (mcL2) (4.18)

Vertical Anti-symmetric Motion

In the case of vertical anti-symmetric motion (see Figure 4.6), rz 6= 0, ry = 0 and, since

the cable retains its original length (no stretching for this type of motion as the cable is

displaced anti-symmetrically about the midpoint),
´
L
rzdx = 0. Again, substituting Eq.

4.16 for vertical motion into Eq. 4.15 we get

φ”
z + ω2mc

H̄
φz = 0 (4.19)

where φzn = aznsin (2nπx/L), n = 1, 2, 3.... Following the same procedure as before, we

obtain the eigenfrequencies for vertical anti-symmetric motion

ωzn = 2nπ
√
H̄/ (mcL2) (4.20)

Figure 4.6: Vertical in plane anti-symmetric motion [21]

Vertical Symmetric Motion

In the case of vertical symmetric motion, cable stretching indeed does occur, so
´
L
rzdx 6= 0

and we must use the full version of Eq. 4.15 for vertical motion. This is shown in Figure

4.7. As before, introducing rz (x, t) = Re [φz (x) · eiωt] into Eq. 4.15 we get the differential

equation
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φ”
z + β2φz = λ2

(
1/L3

) ˆ
L

φzdx (4.21)

where β2 = ω2mc/H̄. The solution which satisfies the boundary conditions φy (x = 0) =

φy (x = L) = 0 as well as Eq. 4.21 for all values of x is given by

φz = az {1− cos [β (x− L/2)] /cos (βL/2)} (4.22)

The eigenfrequencies are then obtained as before by substituting the expression for the

mode shapes into the equation. After some simplifications, the resulting equation becomes

tan

(
βL

2

)
=
βL

2
−
(

2

λ

)2(
βL

2

)3

(4.23)

Since β2 = ω2mc/H̄, then any solution βn to this equation represents an eigenfrequency

ωn = βn

√
H̄/mc (4.24)

and a corresponding eigenmode as given in Eq. 4.22.

Figure 4.7: Vertical in plane symmetric motion [21]

4.2.4 Horizontal Cable Force in a Suspension Bridge System

With the addition of the beam forces to the system, the time invariant force diagram for

each cable up to midspan is as shown in Figure 4.8, where qs is the self weight of the beam

taken up by the hangers and qc is the self weight of the cable.
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Figure 4.8: Time invariant force diagram for cable-beam system [21]

The time invariant horizontal cable force H̄ in the cable-beam system can then be found

by taking the moment equilibrium of half the cable span with respect to its top point, i.e.

at its connection to the pylons. This gives:

H̄ · ec =
´ L/2

0

(
mzg

2
dx+mcgds

)
x = g

´ L/2
0

(
mz
2

+mc
ds
dx

)
xdx

= g
´ L/2

0

{
mz
2

+mc

[
1 +

(
dzc
dx

)2
] 1

2

}
xdx ≈ g

´ L/2
0

[
mz
2

+mc

(
1 + 1

2
z
′2
c

)]
xdx

(4.25)

Introducing zc ≈ 4ec
x
L

(
1− x

L

)
:

H̄ec
g

= mz
2

´ L/2
0

xdx+mc

´ L/2
0

[
1 + 8

(
ec
L

)2 (
1− 2 x

L

)2
]
xdx

= mzL2

16
+ mcL2

8

[
1 + 4

3

(
ec
L

)2
]

(4.26)

This gives the following expression for the horizontal cable force:

H̄ =
mzgL

2

16ec

{
1 +

2mc

mz

[
1 +

4

3

(ec
L

)2
]}

(4.27)

4.3 Bridge Deck

The deck is subject to the major part of the external load on a suspension bridge. The

traffic load is applied directly to the deck, the deck usually has high self weight and also

has a much larger contact area for the wind load as compared to the cable system. The

deck must then be able to transfer these forces to the cable system to reduce the moments

in the deck. For a conventional suspension bridge with vertical cable planes, the support
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by the cable system is most efficient for the deck self weight, less efficient for the traffic

load and least efficient for the horizontal load [10].

The design of the bridge deck in a suspension bridge decisively influences how much the

deck participates in the total structural system, as well as the size of the vertical dead

load and lateral wind load that will act on the bridge. With a small depth-to-span ratio

the bridge becomes lighter and hence the self weight of the bridge is decreased. However,

at the same time the flexural stiffness of the deck is also decreased, potentially leaving

it vulnerable to aerodynamic load effects. A small width-to-span ratio also increases the

slenderness of the bridge, hence reducing its stiffness and efficiency towards aerodynamic

loading. When it comes to aerodynamic stability, the torsional and flexural stiffness of

the deck play the biggest role. That is, a bridge deck will only experience catastrophic

oscillations if the structure is so flexible or soft that its motion will allow the aerodynamic

instability to develop fully at actual wind speeds. Sufficient stiffness can be achieved both

by having large dimensions of the deck or by designing the deck with a streamlined shape.

4.3.1 Box Girders

Traditional suspension bridges made before the 1960s achieved aerodynamic stability by

the application of large trusses with considerable flexural and torsional stiffness. How-

ever, since the successful application of a streamlined box girder in the Severn Bridge of

Great Britain, they have gained considerable popularity and are widely used all over the

world. A closed box section achieves sufficient torsional stiffness for smaller depths than

a corresponding truss section would. Additionally, a streamlining of the bridge girder has

clear advantages as it leads to reduced wind forces and thus smaller dimensions [10]. As

an example, the cross section of the box girder used for the Hardanger Bridge deck is

shown in Figure 4.9.

Figure 4.9: Bridge deck [15]
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These kind of box girders usually have a streamlined hexagonal shape, with the hangers

attached to the upper edges. This type of girder is torsionally stiff, which leads to a fa-

vourable distribution of forces between the two cable planes. This is because the torsional

moment is taken up partly by the deck and partly by the cable systems, and in turn, the

force distribution between the two cable systems on each side of the deck becomes more

even. The twist angle of the deck is also reduced. The shape of the deck gives a significant

aerodynamic benefit. The sharp edges on each side divide the air flow, reducing the drag

coefficient, vortex shedding and flutter induced vibrations, and thus improving aerody-

namic stability. The effect of this streamlined shape and the angle of the edge plates on

vortex shedding is illustrated in Figure 4.10. It is seen that for a reduced angle, the vortex

shedding is reduced as less vortices are formed and shed [10]. According to experimental

tests conducted by Wang [25], keeping the angle of the inclined web below 16° not only

restrains and delays vortex shedding but it also increases the critical flutter wind speed.

The design is asymmetric about the horizontal axis, which is beneficial in regards to vortex

shedding. At vortex shedding level wind speeds, the asymmetric shape makes it so that it

is more difficult for the upper vortices to become powerful enough to excite fluctuations

of the deck (see Figure 4.11). At the point when critical flutter wind speeds are reached

however, the upper vortex has strengthened to a level as powerful as the lower vortex.

This means that the asymmetric shape does not stop aerodynamic instability from being

introduced to the girder [25]. To further suppress vortex shedding induced vibrations,

guide vains can be added on the bottom face (see Figure 4.9). They work by guiding the

air flow through the vanes and thus disturb the formation of large vortices.

Stiffeners should be added to avoid buckling of the hollow box girder. They are placed on

the inside where corrosion protection can be established efficiently by dehumidifying the

air. The application of a streamlined box girder gives a noticeable saving in construction

cost as compared to the truss deck. This is largely due to the fact that the box girders can

be pre-fabricated in multiple sections and then assembled at the construction site [10].
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Figure 4.10: Effect of box girder shape and edge angle on vortex shedding [10]

Figure 4.11: Vortex formation at low wind speeds [25]

4.3.2 Dual Box Girders

A dual box girder, is a cross section type where two box girders are used which are

separated by a large gap. The box girders are connected together by stiffened transverse

girders at regular intervals along the span. A dual box girder bridge is shown in Figure

4.12. The idea behind the dual box girder is twofold. Firstly, employing an air vent in the

centre of the deck has been found to give clear aerodynamic stabilization benefits. Studies

have shown that there is a clear trend for the flutter critical wind speed to increase as

the gap between the two box girders is increased, until an optimal point is reached, after

which it will decrease again [26]. It should be noted that since dual box girders have

their masses distributed relatively far from the centre of mass of the bridge deck, the

cross section is still very torsionally stiff despite the large gap. Secondly, the cross section

dimensions, weight and material demand is significantly reduced as compared to using

one large box section which means that the construction cost is reduced as well.
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Figure 4.12: Conceptual design from 2002 of the Tsing Lung Bridge in Hong Kong [10]

4.4 Pylons

The pylons of a suspension bridge are tower structures. Their primary function is to

elevate the main cables, and thus their height depend on the span length and sag ratio of

the cables. In contrast to a regular free-standing tower, where the moment induced from

the horizontal wind loading dominates the design, the most decisive load on the pylons

will be the axial force originating from the cables which are attached to the pylon [10].

This is seen in Figure 4.13, where TC and TA are the forces in the cables on either side

of the tower, and RT is the resultant of the vertical components of the cable forces at

the supporting point. Hence the towers can be designed as simply supported columns

susceptible to buckling. In the case of lateral loading on the deck, it will deflect laterally,

in which case a proper structural model for the pylon would be a simply supported column

loaded with an axial force RT at the top and a moment RT eg at the bottom, where eg

is the eccentricity of the column base as compared to the top. This model is shown in

Figure 4.14.

It is noted that even though the axial loading from the cables is the dominating part of the

pylon structural design, it is only part of the force system acting on the pylon and other

forces such as reactions from cable dead load and wind loading should not be neglected

[10].
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Figure 4.13: The axial force resultant acting on the pylon tower [10]

Figure 4.14: Pylon modelled as a column with base moment [10]
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5 The Halsafjorden Bridge

5.1 Overview

As part of the Ferjefri E39 project, NPRA is conducting a study of the possible bridge

designs to cross the over 2 km wide fjord. Currently, the Halsafjord must be crossed by a

ferry connection, which can be felt as a barrier as it contributes to increasing the travel

time between the towns in the region. A bridge over this fjord would effectively replace

this ferry connection, and reduce travel times through the region [14]. Many possible

solutions have been investigated for crossing the fjord, such as a single span suspension

bridge, a floating bridge, a multi-span suspension bridge with a floating support and an

underwater tunnel. The solution considered in this thesis is the single span suspension

bridge. The bridge site is located over 4 km north of the current ferry connection, reaching

from Halsaneset on the west side of the fjord, to Åkvik on the east. Figure 5.1 shows the

bridge site, as well as the current ferry connection.

Figure 5.1: Halsafjorden bridge site (red line) and the current ferry crossing (dotted line)
[www.vegvesen.no]

With a width of ca. 2000 meters and a depth of up to 490 meters at this site, bridging

this fjord involves great challenges. The depth makes it difficult to place intermediate

supports along the span, and therefore a single span suspension bridge is considered.

Such a suspension bridge would have a main span of 2050 m, which would be the longest
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main span in the world. Currently, the record holder is the Akashi-Kaikyo bridge in

Japan with a main span of 1991 meters. An illustration of the proposed bridge design is

shown in Figure 5.2. The extreme length and slenderness of the proposed bridge makes

aerodynamic design highly important.

Figure 5.2: Illustration of a proposed bridge design over Halsafjorden [14]

5.2 Outline of the Bridge

A side view of the proposed bridge design with relevant dimensions is shown in Figure

5.3. Concrete pylons with a height of 265 meters are on either side of the main span,

from which the cables suspend down to the rock anchor blocks over a side span of 410

meters. The cable sag is ec = 205m which gives a sag ratio of 0,1. The main cables have

a diameter of /o75mm, a tensile strength of 1860MPa and a constructive steel area of

A = 0, 375m2 each. Hangers as full-locked coil ropes with a diameter of /o100mm are

used to connect the cables to the bridge deck at 30 meter intervals. The deck consists of

a twin box girder, chosen for its beneficial aerodynamic properties. Each box girder has

a height of D = 2, 5m, a width of B = 11m and an area of A = 0, 4430m2, whereas the

gap between them is 10 meter long. Each girder supports a two lane roadway as well as a

walking/cycling path. The two box girders are connected together by transverse stiffened

steel girders with a height of 2,5 m, width of 1,5 m and a constructive steel area of 0,132

m2. The transverse girders are placed in line with the hangers at 30 m intervals along the

bridge span [16]. The bridge deck is shown in Figure 5.4.
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Figure 5.3: Illustration of a proposed bridge design over Halsafjorden [16]

Figure 5.4: Bridge deck of the proposed Halsafjorden bridge [16]

5.3 Cross-Sectional Properties of Bridge Deck

The necessary cross sectional parameters for numerical analysis of the bridge will be

presented in this section. All data in this section was either given by or based on data

provided by the NRPA [16].

5.3.1 Stiffness Parameters

The second moment of area for a given cross section quantifies its ability to resist bending

or buckling. It is highly dependent on the size and shape, or mass distribution, of the

section at hand [9]. For a single box in the Halsafjorden bridge deck, the second moments

of area are given as 
Iy,box = 0, 4414m4

Iz,box = 5, 2398m4

IT,box = 1, 0402m4

(5.1)

where Iy,box is the second moment of area of one box girder about the horizontal axis,

Iz,box about the vertical axis, and IT,box is the torsional constant. However, since the deck

consists of two box girders, the centre of gravity of each box does not coincide with the

centre of gravity of the combined system about the vertical z axis. As a consequence, the
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parallel axis theorem must be used to calculate the second moment of area of the total

dual box cross section. This theorem must be used whenever it is necessary to find the

second moment of area with respect to any axis other than the centroidal axis [9]. Hence,

we find that

Iz = 2 ·
(
Iz,box + Abox · r2

z

)
(5.2)

where rz is the perpendicular distance between the two axes in question, the centroid of

the deck and the vertical centroid of one box, rz = 9, 69m. The contribution from the

transverse girder has been assumed to be negligible in this case. Additionally, since the

horizontal gravity axis for each box coincides with the centroid, ry = 0, then the total

second moment of area about the horizontal axis simply becomes

Iy = 2 · Iy,box (5.3)

and the torsional constant becomes

IT = 2 · IT,box (5.4)

The above quantities are then given as
Iy = 0, 8828m4

Iz = 93, 67m4

IT = 2, 0804m4

(5.5)

For a full description of the stiffness of the bridge deck, we must also determine a warping

constant Cw. It has been given to be Cw,box = 0, 856m6 for each box girder, and assumed

to be Cw = 2·Cw,box for the total deck cross section. This assumption is deemed acceptable

as the warping constant has only a small influence on the results. A description of the

bending stiffness of the bridge deck is given by multiplication of the before determined

parameters with either the Young’s modulus of elasticity E or the shear modulus G as

follows 
EIy = 1, 766× 1011Nm2

EIz = 1, 873× 1013Nm2

ECw = 3, 424× 1011Nm4

GIT = 1, 664× 1011Nm2

(5.6)

where E ≈ 200× 109N/m2 and G ≈ 80× 109N/m2 for steel.
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5.3.2 Mass Parameters

The distributed mass in the vertical z direction is given as the sum of the individual

contributions from the two box girders, the transverse girders and half of the mass of the

hanger cables. Due to the mass distribution of the dual box girder deck, the rotational

mass must be found using the parallel axis theorem, as such

mθ = 2 ·mθ,box +mt + 2 ·
(mh

2
+mc

)
· r2

θ (5.7)

where mθ,box is the mass contribution from a single box, mt,mh and mc are the mass

contributions from the transverse girders, hanger cables and main cables respectively, and

rθ is half the distance between the two cable systems. It is found that the distributed

masses are 
mc = 3200 kg/m

mz = 13250 kg/m

mθ = 2760000 kgm2/m

(5.8)

Since the numerical analysis performed in Section 6 will be performed in modal coordin-

ates, we need to establish the modally equivalent distributed masses m̃z and m̃θ. Gener-

ally, a modal equivalent of an evenly distributed mass in the i direction can be obtained

with the following equation

m̃i = M̃i/

ˆ

L

(
ϕTi ·ϕi

)
dx (5.9)

For the z and θ directions and a two mode approach, this reduces to

m̃z = M̃z/

ˆ

L

(
φ2
z

)
dx =

ˆ

Lexp

(mz + 2 ·mc)φ
2
zdx/

ˆ

L

φ2
zdx (5.10)

m̃θ = M̃θ/

ˆ

L

(
φ2
θ

)
dx =

ˆ

Lexp

mθφ
2
θdx/

ˆ

L

φ2
θdx (5.11)

Assuming Lexp = L , i.e. the wind exposed span is identical to the bridge main span, this

is reduced further and we find the modally equivalent and evenly distributed masses{
m̃z = mz + 2 ·mc = 19650 kg/m

m̃θ = mθ = 2760000 kgm2/m
(5.12)

5.3.3 Cable Forces

For control purposes, the capacity of the main cables has been calculated. The capacity

of a cable in the ultimate limit state is given by Handbook N400 from the NPRA [13].
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Given the cable properties already established in Section 5.2, an ultimate tensile strength

of fu,c = 1860MPa and a constructive steel area of Ac = 0, 375m2, we get the capacity

of the main cables

FRd =
Fuk

1, 5γm
=

fu,cAc
1, 5 · 1, 2

= 387, 5× 103 kN (5.13)

where γm = 1, 2 is a material factor. The design load on the cables is the horizontal static

load given by Eq. 4.27, and given as

H̄ =
mzgL

2

16ec

{
1 +

2mc

mz

[
1 +

4

3

(ec
L

)2
]}

=

13250 · 9, 81 · 20502

16 · 205

{
1 +

2 · 3200

13250

[
1 +

4

3

(
205

2050

)2
]}

= 248, 05× 103 kN

It is seen that FRd > H̄ and that the utilization is H̄
FRd

= 64%, so the cables pass the

capacity check.

5.3.4 Load Coefficients

The load coefficients have been determined from static tests and found to be[
C̄L C

′
L

C̄M C
′
M

]
=

[
−0, 246 4, 473

0, 098 −1, 540

]
(5.14)

where the drag coefficient C̄D and its derivative C
′
D have not been quantified since y

direction response is minimal as compared to the other directions and horizontal motion

is in addition not associated with instabilities.

5.4 Aerodynamic Derivatives and Indicial Functions

The common practice is to use aerodynamic derivatives obtained from aeroelastic section

model tests for the calculation of dynamic response and the prediction of instabilities in a

bridge deck. The aerodynamic derivatives in the Halsafjorden bridge have been described

by the NPRA as indicial function pairs measured at mode shapes TS1/VS2, and must

therefore be converted to aerodynamic derivatives to keep within the framework used in

this thesis, which operates in the frequency domain. Indicial functions are the analogous

time-domain counterparts of the aerodynamic derivatives. On the most general form,

indicial functions are given by [2]

Φ (s) = a0 −
n∑
i=1

aie
−bis (5.15)
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where a0, ai and bi are all constants to be identified from a non-linear least square method,

and s = V · t/B is the dimensionless time. The first part of the equation, a0, accounts

for quasi-steady effect while the second part describes the unsteady evolution of the force.

Indicial functions have the property that they must converge into one as time approaches

infinity, and it follows that bi must always be a positive value. The indicial functions

can be converted to aerodynamic derivatives in the frequency domain by the following

relationships [16]:

2π

V̂i
H∗1 =

dCL
dα

[
1−

N∑
i=1

aiLz
π2

b2
iLzV̂

2
i + π2

]

2

V̂ 2
i

H∗4 =
dCL
dα

[
N∑
i=1

aiLz
biLy

b2
iLzV̂

2
i + π2

]

4π

V̂ 3
i

H∗2 =
dCL
dα

[
N∑
i=1

− aiLα
biLα

b2
iLαV̂

2
i + π2

]

4π2

V̂ 2
i

H∗3 =
dCL
dα

[
1−

N∑
i=1

aiLα
π2

b2
iLαV̂

2
i + π2

]

2π

V̂i
A∗1 =

dCM
dα

[
1−

N∑
i=1

aiMz
π2

b2
iMzV̂

2
i + π2

]

2

V̂ 2
i

A∗4 =
dCM
dα

[
N∑
i=1

aiMz
biMy

b2
iMzV̂

2
i + π2

]

4π

V̂ 3
i

A∗2 =
dCM
dα

[
N∑
i=1

−aiMα
biMα

b2
iMαV̂

2
i + π2

]

4π2

V̂ 2
i

A∗3 =
dCM
dα

[
1−

N∑
i=1

aiMα
π2

b2
iMαV̂

2
i + π2

]

(5.16)

where V̂i = 2π · V/(B · ωi) is the reduced mean wind velocity. In the particular case of

the Halsafjorden bridge, dCL
dα

= 2π and dCM
dα

= π
2
. These are coefficients which should

not be confused with the actual load coefficient slopes in Section 5.3.4. The constants

aiLy, aiLα, aiMy and aiMα identified for the Halsafjorden bridge are given in Table 1. The

aerodynamic derivatives obtained from these equations are shown in Figure 5.5, where the

aerodynamic derivatives of a flat plate are shown as a reference, represented by dotted

lines.
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Table 1: Indicial function constants

Constants ϕLz (H∗1 , H
∗
4 ) ϕLα (H∗2 , H

∗
3 ) ϕMz (A∗1, A

∗
4) ϕMα (A∗2, A

∗
3)

a1 3, 1871 9, 9797× 102 6, 3134× 101 1, 7282

b1 7, 5233× 10−3 4, 1659× 10−1 4, 4634× 10−2 8, 2129× 10−2

a2 2, 8661 2, 5178× 101 −6, 1917× 101 −8, 7918× 10−1

b2 1, 3663 3, 2417× 101 4, 7993× 10−2 3, 0692× 10−9

a3 −4, 6341× 10−3 −1, 0000× 103 0,0000 0,0000

b3 1, 4553× 10−4 4, 1794× 10−1 0,0000 9, 6410× 10−2

a4 -2,5164 0,0000 0,0000 0,0000

b4 1, 3555× 10−1 0,0000 0,0000 0,0000

Figure 5.5: The aerodynamic derivatives of the Halsafjorden bridge deck. Dotted lines:
Flat plate aerodynamic derivatives

5.5 Wind Properties at Bridge Site

At the time of writing this thesis, on site wind measurements have been ongoing for about

two years. It has been found that the 10 minute average mean wind speed with a 50 years
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return period, measured at zf = 50 meters over sea level and normal to the bridge is [16]:

V10(50) = 37, 1m/s (5.17)

The critical wind speed, determined based on a dynamic analysis and instability check,

is required by [13] to be larger than 1,6 times the average mean wind speed, and has a

return period of 500 years,

Vcr,min = 1, 6 · V10(50) = 59, 4m/s (5.18)

The turbulence intensities have also been measured at the same height, and found to be

Iu = 0, 12 Iv = 0, 107 Iw = 0, 047 (5.19)

The integral length scales are found to be

xfLu = 100 · (zf/10)0,3 = 162m (5.20)

xfLw =xf Lu/12 = 13, 5m (5.21)
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6 Numerical Analysis

This section will present the methods used for analysis of the proposed Halsafjorden

bridge, as well as the obtained results. The calculation program ALVSAT was used to

find the eigenfrequencies and corresponding mode shapes in still air conditions. The

lowest vertical eigenmode and lowest eigenmode in torsion were identified, and a two

mode solution approach was pursued in modal coordinates. A frequency domain solution

strategy was deemed to be most suitable, and selected for calculating the dynamic response

and finding the stability limits. These calculations were performed using self-made scripts

in the MATLAB programming language. These scripts can be found in Appendix B and

have been verified against similar examples in [21].

For this analysis, the structure is assumed to be lightly damped such that a choice of

vertical damping ratio ζz = 0, 005 at zero mean wind velocity is reasonable. The torsional

damping ratio has little consequence on the stability limit, as seen from Figure 6.1, and

its initial value is chosen as ζθ = 0, 005.

Figure 6.1: Effects of the variation on the damping ratio ζθ on the torsion response
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6.1 ALVSAT

ALVSAT is a computer program designed specifically for the analysis of long suspension

bridges under wind action [7]. Though the program has other capabilities, in this thesis

it has been exclusively used to calculate the horizontal, vertical and torsional eigenfre-

quencies and eigenmodes in still air conditions, i.e. for V = 0. ALVSAT uses Galerkin’s

method (see Section 2.1.3) with Fourier coefficients to solve the eigenvalue problem. The

precision of the mode shapes is dependent on the number of Fourier coefficients used in

the calculation. As a general rule, the number of Fourier coefficients must be higher or

equal to the number of mode shapes to be calculated. The 6 lowest eigenmodes for each

direction of motion have been calculated, corresponding to 3 symmetric mode shapes and

3 asymmetric. The number of Fourier coefficients has been chosen to be 8 coefficients for

each mode. This is deemed a sufficient number since the last rows of coefficients in the

ALVSAT output are either close to or equal to zero. The values of the input parameters

for the ALVSAT model, as well as the input file itself are given in Appendix A.1. The

resulting output file is given in Appendix A.2.

6.2 Eigenfrequencies and Mode Shapes

The eigenfrequencies extracted from the ALVSAT output file are given in Table 2. Only

the vertical and torsional eigenfrequencies are shown, as the horizontal modes will not

be considered in the analysis. The notation is as follows: V=Vertical, T=Torsional,

S=Symmetric, A=Asymmetric. The eigenfrequencies are numbered corresponding to the

order they occur along the frequency range. The normalized mode shapes obtained from

the calculations are shown in Figures 6.2 - 6.4. It is seen that the lowest eigenfrequencies in

vertical and torsional motion are ωz(V = 0) = 0, 537 rad/s and ωθ(V = 0) = 1, 01 rad/s,

respectively. Both have a corresponding asymmetrical mode shape. It should be noted

that the lowest vertical and torsional mode shapes are shape-wise similar, so there is a

possibility for coupling of the eigenfrequencies, that is, flutter instability may occur (see

Section 3.7.4).
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Table 2: Lowest eigenfrequencies for the Halsafjorden bridge

Mode Shape ωi [rad/s] Mode Shape ωi [rad/s]

VA1 0,537 VS3 1,270

VS1 0,656 VA3 1,510

VS2 0,887 TS2 1,530

VA2 1,000 TA2 1,970

TA1 1,010 TS3 2,46

TS1 1,030 TA3 2,95

Figure 6.2: Lowest horizontal mode shapes for the Halsafjorden bridge. Fully drawn
lines: main girder, broken lines: the cables
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Figure 6.3: Vertical mode shapes for the Halsafjorden bridge

Figure 6.4: Torsional mode shapes for the Halsafjorden bridge
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6.3 Dynamic Response Calculations

6.3.1 Analysis Process

The response calculations in this section focus solely on the lowest eigenfrequencies in

vertical and torsional motion. From inspection of Figures 6.3 and 6.4 it is seen that

the largest deformations occur at x = L/4 = 512, 5m from each end, and therefore,

dynamic response calculations will be pursued at that location. The height of bridge deck

is estimated to be zf = 50m. The mode shape matrix is given as

Φ =

[
φz 0

0 φθ

]
(6.1)

Since the mode shapes have been normalized, the mode shape matrix at the point of

interest is given as

Φr(L/4) =

[
1 0

0 1

]
(6.2)

A short summary of the constants necessary for a numerical calculation of the response

of the bridge is provided in Table 3, however most of these have already been presented

in previous sections. Note that the reference width B is the width of two box sections.

Table 3: Halsafjorden bridge constants

(a) Bridge properties

ρ L = Lexp B D m̃z m̃θ ωz ωθ ζz = ζθ
[kg/m3] [m] [m] [m] [kg/m] [kgm2/m] [rad/s] [rad/s] [−]

1,25 2050 22 2,5 19650 2760000 0,537 1,01 0,005

(b) Wind properties at bridge site

Iu Iw
xfLu

xfLw
[−] [−] [m] [m]

0,12 0,047 162 13,5

Additionally, the aerodynamic coefficients κaeij and ζaeij have already been established in

Section 3.7 and the load coefficients in Section 5.3.4.

The spectral density response matrix at L/4 is given by

Srr(L/4, ω) =

[
Srzrz Srzrθ
Srθrz Srθrθ

]
= Φr(L/4) · Sη(ω) ·ΦT

r (L/4) (6.3)
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where Sη(ω) = Ĥ∗η(ω) · SR̂(ω) · ĤT
η (ω). In this case, the non-dimensional frequency

response function from Eq. 3.43 reduces to

Ĥη (ω) =

{[
1 −κaezθ
0 1− κaeθθ

]
− ω2

[
ω−2
z 0

0 ω−2
θ

]
+ 2iω

[
ω−1
z 0

0 ω−1
θ

][
ζz − ζaezz −ζaezθ
−ζaeθz ζθ − ζaeθθ

]}−1

(6.4)

The modal load matrix is defined by

SR̂(ω) =

[
SR̂zR̂z SR̂zR̂θ
SR̂θR̂z SR̂θR̂θ

]
where SR̂nR̂m (ω) =

ρB3

2m̃n

ρB3

2m̃m

(
V

Bωn

)2(
V

Bωm

)2

Ĵ2
nm

(6.5)

n,m = z or θ. Ĵ2
nm is the reduced joint acceptance function, who’s general expression is

given in Eq. 3.54. In this situation, the expression is reduced to the following:

Ĵ2
zz =

¨

Lexp

φz(x1)φz(x2)
[(

2C̄L
)2
I2
uŜuĈouu(ω,∆x)+

(
C
′

L +
D

B
C̄D

)2

I2
wŜwĈoww(ω,∆x)

]
dx1dx2/(

´ L
0 φ2

zdx)
2

Ĵ2
zθ =

¨

Lexp

φz(x1)φθ(x2)
[
4C̄LBC̄MI

2
uŜuĈouu(ω,∆x)+

(
C
′

L +
D

B
C̄D

)
BC

′

MI
2
wŜwĈoww(ω,∆x)

]
dx1dx2/(

´ L
0 φ2

z

´ L
0 φ2

θdx)

Ĵ2
θθ =

¨

Lexp

φθ(x1)φθ(x2)
[(

2BC̄M
)2
I2
uŜuĈouu(ω,∆x)+

(
BC

′

M

)2

I2
wŜwĈoww(ω,∆x)

]
dx1dx2/(

´ L
0 φ2

θdx)
2

Ĵθz = Ĵzθ (6.6)

Since this is a numerical analysis, the reduced joint acceptance functions must be ob-

tained by numerical integration in the form of a double summation. The integrals˜
Lexp

φn(x1)φm(x2)Ĉouudx1dx2 and
˜
Lexp

φn(x1)φm(x2)Ĉowwdx1dx2 in the above equa-

tion can be found numerically by [22]
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I (β) =
1

N2

N∑
n=1

N∑
m=1

φi (x̂n)φj (x̂m) · exp (−β ·∆x̂) (6.7)

where ∆x̂ = |x̂n − x̂m|, N is the number of integration points and β = CkxωLexp/V with

k = u or w. It is assumed that Cux = 9/ (2π) and Cwx = 6/ (2π). Substituting I (β) into

the relevant equations for the joint acceptance function we get

Ĵ2
zz = L2

[(
2C̄L

)2
I2
uŜuIu,zz(β) +

(
C
′

L +
D

B
C̄D

)2

I2
wŜwIw,zz (β)

]/  L̂

0

φ2
zdx

2

(6.8)

Ĵ2
zθ = L2

[
4C̄LBC̄MI

2
uŜuIu,zθ(β) +

(
C
′

L +
D

B
C̄D

)
BC

′

MI
2
wŜwIw,zθ(β)

] /  L̂

0

φ2
z

L̂

0

φ2
θdx


(6.9)

Ĵ2
θθ = L2

[(
2BC̄M

)2
I2
uŜuIu,θθ(β) +

(
BC

′

M

)2

I2
wŜwIw,θθ(β)

] /  L̂

0

φ2
θdx

2

(6.10)

Having now defined the necessary parameters to calculate the spectral density response

matrix Srr, we obtain the corresponding covariance matrix by frequency domain integra-

tion

Covrr (xr = L/4) =

∞̂

0

Srr (L/4, ω) dω =

[
σ2
rzrz Covrzrθ

Covrθrz σ2
rθrθ

]
(6.11)

6.3.2 Analysis Results

Following the procedure in Section 6.3.1, the response analysis of the Halsafjorden bridge

at response location xr = L/4 along the bridge is performed in MATLAB. Figure 6.5

shows the resulting standard deviation of the dynamic response in the vertical across wind

direction z and in torsion θ at various mean wind velocities, as well as their covariance

coefficient and the mean wind dependent resonance frequencies associated with the lowest

modes in z and θ.
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Figure 6.5: Top and lower left: Dynamic response at L/4. Top right: covariance coef-
ficient. Lower right: resonance frequencies associated with the lowest modes in vertical
direction and torsion

A stability limit, where there is large increase in displacement for a small increase in

mean wind velocity, is seen to be reached at a mean wind velocity of slightly below 60

m/s, more specifically, at approximately Vcr = 56, 4 m/s. For comparison, Selberg’s

formula (Eq. 3.81) gives a critical mean wind velocity of Vcr = 47, 36 m/s. This number

is notably lower, however, Selberg’s formula is only used to provide a first estimate and

thus should not be viewed as a concrete solution. It should be noted that the value

found for the critical mean wind velocity is lower than the requirement set in Section

5.5, Vcr = 56, 4 < Vcr,min = 59, 4 m/s. However, the value for Vcr,min is given for a wind

field with a return period of 500 years, and as such includes safety factors. Since the

difference between the calculated Vcr and the required Vcr,min is only 3 m/s, it should be

investigated further if this is acceptable. However, this is outside of the scope of this thesis.

The covariance coefficient ρrzrθ approaches 1 as the mean wind velocity increases, which

indicates modal coupling. This coupling combined with the large increase in displacement

indicates flutter instability. It is noticeable that the ρrzrθ curve makes a small drop when

the modes start to couple. A reasonable explanation for this was not found in the writing

of this thesis, however it might simply be a numerical issue. Modal coupling is seen

even more clearly in the lower right diagram of Figure 6.5, which shows coupling occur

already at V = 55, 2 m/s, at which point the resonance frequencies begin oscillating at
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the same frequency. By comparison with the response diagrams (upper and lower left),

we see that as the two modes have coupled the response starts to drastically increase

until a stability limit is reached. From the lower right diagram it is further seen that

the torsional resonance frequency ωθ is gradually reduced for higher values of mean wind

velocity, while ωz increases, but at a slower rate. This complies well with the theory of

flutter, which gives that the aerodynamic forces associated with the motion in torsion are

the main driving forces for modal coupling. The dominance of the torsional eigenmode

is also evident as the coupled modes seem to follow the declining curve of the torsional

mode.

Figure 6.6 shows the development of the absolute value of the determinant of the fre-

quency response function for selected mean wind velocities. Since the frequency response

function describes the relationship between the input and the output of the system (see

Section 2.1.2), which in this case are the wind loading and the response of the struc-

ture, the peaks will be located at the points where response is the highest, namely at the

resonance frequencies. The first peak represents the response relationship at the lowest

vertical eigenfrequency, and the second peak at the lowest torsional eigenfrequency. It is

seen that the peaks move closer together with increasing wind velocity, as they should,

since the torsional eigenfrequency is reduced with larger wind velocities while the vertical

eigenfrequency is increased. It is seen that the peaks are reduced with higher wind velo-

cities (excluding velocities close to the stability limit). This is largely due to the effects

of aerodynamic damping. It is interesting to note that close to the stability limit the two

frequencies have coupled, and the eigenmodes will work together and produce only one

peak. This peak is however larger than the original peaks at V = 0 m/s. Even though

total damping has increased at this point due to motion induced effects, the two modes

now work together and the response becomes considerably larger. The tail of the fre-

quency response function has been lifted at the wind velocity close to the stability limit,

which is caused by reduced stiffness.
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Figure 6.6: The absolute value of the determinant of the frequency response function at
chosen mean wind velocities

For further analysis, the components of the frequency response function are presented in

Figure 6.7. By comparing H22 with H11 it becomes more apparent how much a greater

impact the torsional aerodynamic forces have on the stability limit, since the peak of H22

moves by a much greater amount. It is also apparent that the system loses torsional

stiffness since the tail of H22 has increased at V ≈ Vcr, while it gains a little bit of vertical

stiffness since the tail of H11 is lowered by a small amount. The peaks of both H11 and

H22 at V ≈ Vcr are increased beyond the original peak due to the considerable increase in

response. H12 gives even more evidence of modal coupling and the largely increasing tail of

the function indicates a large loss of stiffness between the cross terms due to aerodynamic

effects. Figure 6.8 gives a comparison between the spectral density at a wind velocity of

V = 30 m/s and at Vcr = 56, 4 m/s. At 30 m/s there are two clear peaks in the spectral

densities, including the cross spectrum between vertical and torsion response components.

However, as in the determinant of the frequency response function, there is only one large

peak at the critical mean wind velocity.
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Figure 6.7: Each component of the frequency response function

Figure 6.8: Spectra of response components in vertical direction, torsion and cross spec-
trum
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Time series simulations (see Section 2.3.5) of the dynamic response at a point located at

x = L/4 along the span at both V = 30 m/s and Vcr = 56, 4 m/s are given in Figures 6.9

and 6.10, respectively. Note that these are only two realisations of the process, and no

two realisations will be unique. By comparing the two figures we see the effects that the

motion induced forces have on the response. Close to the stability limit, at Vcr = 56, 4

m/s, the dynamic response of the structure is much greater than at V = 30 m/s, reaching

up to about 10 m vertical deformation and a cross sectional rotation of over 0,2 rad

≈ 11, 46°. It is also seen that the vertical deformation becomes more narrow banded,

as its frequency has increased, while the torsional deformation has become more broad

banded since its frequency has decreased.

Figure 6.9: Time domain simulation of dynamic response at x = L/4 and V = 30 m/s
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Figure 6.10: Time domain simulation of dynamic response at x = L/4 and critical mean
wind velocity Vcr = 56, 4 m/s

6.3.3 Parameter Study

This section is intended to study what effects the aerodynamic derivatives have on the

system in terms of response, stiffness and damping. The aerodynamic derivatives are

shown graphically in Figure 5.5

The aerodynamic derivatives have the effect of changing the total damping and stiffness

of the combined structure and flow system. Figure 6.11 shows the development of the

total damping and aerodynamic stiffness and damping coefficients with increasing mean

wind velocities. The upper left diagram shows how both the total torsional damping and

vertical damping are increased. This explains why the peaks in the frequency response

function (Figure 6.6) appears to be almost damped out. It is also noticeable that the

torsional damping increases by a much greater extent than the vertical damping. With

reference to Eq. 3.60 - 3.63 we can see which aerodynamic derivatives cause changes in

which aerodynamic coefficients. H∗1 is what affects ζaezz and thus affects the total vertical

damping, ζz,tot = ζz−ζaezz . In this case, H∗1 is negative and increasing which in turn makes

ζaezz negative and increasing. This has the effect of increasing the total vertical damping,

and thus reduce the vertical response peak. In the same manner, A∗2 causes an increase

in torsional damping and a reduction of the torsion peak as it is negative as well. The

upper right diagram shows the development of the aerodynamic stiffness coefficients κaezz

and κaeθθ . The diagram shows that κaeθθ is always positive and increasing, which means it

contributes to loss of stiffness in the system. It is important to note that κaeθθ eventually

73



6.3 Dynamic Response Calculations 6 NUMERICAL ANALYSIS

increases even beyond a value of 1, at which point the system has theoretically lost all its

stiffness in torsion, making way for large torsional deformations. The vertical aerodynamic

stiffness coefficient κaezz however quickly attains negative values, giving increasing total

vertical stiffness. This is why the torsional eigenfrequency is decreased with increasing

mean wind velocity, and why the vertical eigenfrequency is increased. This corresponds

well with the frequency response function and the discussion in Section 6.3.2. The cross

damping terms ζaezθ and ζaeθz are shown in the lower left diagram, while the cross stiffness

terms κaezθ and κaeθz are shown in the lower right diagram. It is apparent that ζaeθz and

κaeθz can be considered negligible in comparison with ζaezθ and κaezθ , which means that

the torsional velocity and displacement are the clear driving forces for coupling motion.

There is a notch in the blue curve in the lower diagrams. This is likely due to numerical

issues and it is more plausible the development should look like a continuous curve.

Figure 6.11: Development of total damping and aerodynamic stiffness contributions

The effects of the aerodynamic derivatives on the stability limit are investigated by per-

forming the response calculations and setting the particular aerodynamic derivative to be

studied as half its original value, and double its original value, respectively. The result

of this parameter study is presented in Figures 6.12 and 6.13. It is seen that A∗3 has the

biggest effect on the stability limit by far. As A∗3 takes half its original value, the stabil-

ity limit has increased to over 66 m/s. At double its original value, A∗3 has caused the
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stability limit to drop to around 45 m/s. Since A∗3 affects κaeθθ , this change is due to loss

or increase of torsional stiffness. When A∗3 becomes larger, so does κaeθθ and the system

loses torsional stiffness, giving a stability limit at a lower mean wind velocity. The reverse

is true for a smaller A∗3. This indicates that the stability limit is mainly caused by motion

induced loss of torsional stiffness. The more torsional stiffness the system loses, the faster

the torsional eigenfrequency drops to the same value as the vertical eigenfrequency.

Figure 6.12: Effects of the variation of aerodynamic derivatives on the torsional response
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Figure 6.13: Effects of the variation of aerodynamic derivatives on the torsional response

6.4 Stability Limits

As discussed in Section 3.7 there are four different types of motion induced instabilities

that can occur in a bridge section, identified by the type of response that develops. In

this section they will be discussed with reference to the Halsafjorden bridge.

Since static divergence is purely a static problem of losing torsional stiffness, the quasi-

static version of A∗3 may be used, A∗3 = C
′
M

(
V

Bωi(V )

)2

. A static divergence stability limit

is identified by 1− κaeθθ = 0. With reference to Eq. 3.61 using the quasi-static version of

A∗3 it is seen that a stability problem will never occur for a negative C
′
M . In the case of

the Halsafjorden bridge section, C
′
M = −1, 540 and therefore static divergence is not an

issue.

Similarly, and as explained in Section 3.7.2, galloping instability can only occur if H∗1

attains positive values. For the Halsafjorden bridge section H∗1 is purely negative, and as

such, galloping instability will not occur.

Since ζθ − ζaeθθ = 0 is a requirement for dynamic instability in torsion, if A∗2 is always

negative, ζθ and ζaeθθ will always have the same sign and therefore this equation will never

equate to zero. Therefore dynamic instability in torsion will not occur in the Halsafjorden

bridge section.

The last type of instability, flutter, can however occur. A flutter instability limit has

already been identified in Section 6.3.2 using dynamic response calculations. Another

method is the one described in Section 3.7.4, where it is assumed that the flutter instability
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limit occurs at frequencies where ωr = ωθ(Vcr) = ωz (Vcr), i.e. where the lowest shape-wise

similar vertical and torsional eigenfrequencies have coupled. It has been found that the

mode shapes used in this analysis, φz and φθ, are shape-wise similar such that φz ≈ φθ.

To calculate the stability limit based on this assumption, a self made MATLAB program

was used and can be found in Appendix B. The program determines when the roots of

the real part of the impedance matrix are equal to the roots of the imaginary part, i.e.

finds if there are values of ωr for which both Re
(

det
(
Êη

))
= 0 and Im

(
det
(
Êη

))
= 0

simultaneously. The result is presented in Figure 6.14, where a solution is found at a point

where the two lines intersect. It is seen that even though the roots come close to being

equal, they are never fully equal. For comparison, the dynamic response calculations found

that the vertical and torsional eigenfrequencies couple at V = 55, 2 m/s, translating to a

reduced mean wind velocity of about V̂ = 4, 10, while the stability limit was identified at

V = 56, 4 m/s, or V̂ = 4, 33. At this V̂ interval, the roots in Figure 6.14a are very closely

spaced. Figure 6.14b gives a closer look at the interval where the resonance frequencies

are close to coupled. It is seen that the difference between them at their closest point is

about ∆ω = 0, 008 rad/s. Due to this low margin, it can be concluded that according to

this method, a flutter instability has a high risk of occurring.
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(a) Development of the real and imaginary roots of the impedance matrix

(b) A closer look at the most critical velocity range

Figure 6.14: Flutter analysis of the Halsafjorden bridge section

6.5 Control of Wind Induced Response

If a structure is found not to meet the aerodynamic requirements imposed on it, there

are several ways of controlling the response either by reducing the response directly or

changing relevant design parameters to increase the stability limit.

While early in the design phase, the possibility of adjusting the geometrical shape of the

deck is feasible. This is done to obtain a more aerodynamic cross section with the aim
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of decreasing drag forces and increasing the stability limit. The easiest way to improve

aerodynamic performance of a bridge deck is usually to reduce the height of the deck edge,

since both flutter and vortex shedding are sensitive to the height-to-width ratio of the deck.

This reduction must however be within reasonable practical limits. Alternatively, edge

treatments such as deck extensions and fairings can be used to improve the aerodynamic

performance of the deck [23].

Additionally, increasing the stiffness of the bridge deck will also lead to improved aerody-

namic performances, especially important if the bridge is subject to loss of stiffness due

to motion induced loads. By increasing the torsional stiffness, the torsional resonance fre-

quency will increase, thus contributing to decreasing the risk of coupling between the two

modes. However, increasing the stiffness of the deck may prove expensive, especially for

very long spans. Other avenues may be explored as well, such as increasing the distance

between the main cable planes, increasing the centre-to-centre distance between the box

girders, adjusting the cable sag, and the addition of stay cables [1].

Aerodynamic optimization of the bridge deck can be performed in wind tunnel tests,

with the purpose of reducing the motion induces loads acting on the deck. The drag

forces should be kept as low as possible as they will be transferred from the deck and

to the top of the towers, producing moment loading. The slopes of the moment and

lift coefficients (C
′
M and C

′
L) are very important to avoid instability and increase flutter

velocity. Preferably they should be as much as possible lower than the values of a flat

plate, π/2 and 2π respectively, to increase the flutter velocity stability limit [5]. It is noted

that for the proposed Halsafjorden bridge section, C
′
M is negative and close to equal to

−π/2. A smaller number would decrease A∗3, which as seen in Figure 6.13 would increase

the stability limit considerably. Furthermore, a positive A∗3 produces positive aerodynamic

torsional stiffness which decreases the total torsional stiffness in the combined structure

and flow system, and lowers the torsional frequency until it coincides with the vertical

one, as was seen in the previous sections. Performing aerodynamic optimization of the

deck in wind tunnel tests makes it possible to identify a deck cross section with a more

favourable C
′
M . In this particular case, since C

′
M affects A∗3 which has great influence on

the stability limit as discussed in Section 6.3.3, this might be a feasible course of action.

A highly effective method of controlling the dynamic response, is to increase the damping

in the bridge. Damping is a complicated phenomenon and difficult to estimate, yet a

significant part of structural design due to the large effect it can have on the structural

response. There are several different damping mechanisms that can occur in a structure,

such as material damping, which occurs in the material itself on a molecular level, frictional

damping between structural members and connections in mechanical joints and supports

in the system, damping due to energy dissipation mechanisms in the foundation, and

aerodynamic damping. There are several types of dampers available to increase damping

in the system and mitigate the structural response. Inertial dampers, such as the tuned
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mass dampers, absorb vibration by utilizing inertial effects. The damping added to the

system does not stem from energy dissipation, but rather from modification of the building

frequency response. This works as the damper masses are tuned to be out of phase with

the response, and hence interrupt the response vibration. A tuned mass damper consists

of an additional mass that is attached to the main system through a spring and a dashpot.

Therefore the system is represented as a 2 degree of freedom system. The frequency of

this mass is tuned to a particular structural frequency. When that frequency is excited,

the damper resonates out of phase with the structural motion. This effect can be seen

clearly on the frequency response function of the system, as the resonance peak is reduced

and replaced by two smaller peaks corresponding to the two modal frequencies of the new

2 degree of freedom system. Another notable type of dampers are viscous fluid dampers,

which exploit the properties of highly viscous materials in order to develop resisting forces

that are proportional to the body’s velocity and act in the opposite direction of the body’s

movement. Friction dampers dissipate energy directly through frictional mechanisms and

allow for plastic behaviour to occur in selected regions of a structure. They are designed

to have a fixed slipping load, and when this load is reached in the structure, the damper

activates and two surfaces dissipate energy by slipping on each other. Note that this is

plastic deformation, and hence not reversible [23].

6.6 Further Discussion

In the analysis performed in this thesis there are many factors that could contribute to

inaccuracies in the model and the results. With such a complex structure, a vast number

of mechanical properties, dimensions, and geometric shapes in all parts of the bridge come

into play, as well as experimental values obtained from wind tunnel tests. All of these

variables affect the dynamic behaviour of the bridge. For computational efficiency as well

as cost and time constraints, various assumptions and simplifications have been made

in the bridge calculation model, which means the result will not be entirely accurate. A

stability limit was not explicitly identified by investigation of the real and imaginary parts

of the impedance matrix, however, the resonance frequencies were found to be very closely

spaced at the same velocity range as the stability limit that was identified using response

calculations. The possibility of a stability limit at this velocity range must therefore be

considered. Moreover, this analysis was based only on the two lowest modes while a full

multi-mode analysis would provide more accurate results, and a more complete description

of the stability limits. It should be noted that in recent years it has been found that a

flutter stability limit can occur even before ωθ(Vcr) = ωz (Vcr), so a search for stability

limits based on that assumption may be unreliable. In such a case, a flutter stability limit

should be identified through response calculations instead.
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7 Conclusions

The aim of this thesis was to investigate motion induced instability in long, slender sus-

pension bridges by identification of stability limits, and to study which aerodynamic de-

rivatives have the greatest influence on said stability limits. A case study was performed

on one bridge in particular, the proposed Halsafjorden bridge. The bridge has a main

span of 2050 meters, and a dual box girder deck with each girder supporting a roadway

and a walking path. The bridge may therefore be considered as slender.

A simplified model of the bridge was set up where it was assumed that the bridge behaves

as combination of two cables and a beam. This simplification can cause some inaccuracies

in the calculations, and is but one side of the design process. The relevant load coefficients

were extracted from wind tunnel test, and the aerodynamic derivatives calculated from

indicial functions.

The dynamic response analysis allowed for the identification of a stability limit at Vcr =

56, 4 m/s for the lowest modes in vertical direction and torsion. This number is lower than

the requirement set by [13], Vcr,min = 59, 4 m/s. Therefore either adjustments should be

made to the bridge design or external control mechanisms should be applied to fulfil this

requirement.

In the analysis of the impedance matrix it was determined that the only type of instabil-

ity that will occur in this bridge is flutter. However, a flutter stability limit was not

explicitly identified by this method. The two eigenfrequencies investigated were however

dangerously close to being equal at a certain velocity range. By comparing these results

with the result from the dynamic response analysis it is found that this critical velocity

range is similar in both cases, making a strong case for adopting the result from the re-

sponse analysis to air on the safe side, rather than the results from the impedance matrix

analysis.

As was seen, A∗3 has a large effect on the stability limit, and therefore accurate prediction

of the aerodynamic derivatives in wind tunnel tests is of great importance to correctly

predict stability limits. As A∗3 increases, κaeθθ increases as well which gives the system

lower total torsional stiffness and causes its torsional eigenfrequency to decrease. The

torsional eigenfrequency ωθ was found to be the main driving force for modal coupling,

which explains the large effect of A∗3 on the stability limit. Even though the system

was found to gain increased damping for increasing mean wind velocities, the frequency

response function shows only one peak, which is larger than the two peaks at V = 0. This

is due to considerably larger deformations and the cooperation between the vertical and

torsional modes.

81



8 BIBLIOGRAPHY

8 Bibliography

[1] Astiz, M. A. (1998). Flutter Stability of Very Long Suspension Bridges. Journal of

Bridge Engineering, 3(3), 132-139. Springer, 1. edition.

[2] Chobsilprakob, P., Kim, K.-D., Suthasupradit, S. and Manovachirasan, A. (2014).

Application of Indicial Functions for the Flutter Analysis of Long Span Suspension Bridge

During Erection. International Journal of Steel Structures, 14(1), 185-194.

[3] Chopra, A. K. (2011). Dynamics of Structures - Theory and Applications to Earthquake

Engineering. Pearson Prentice Hall, 4. edition.

[4] Dahlen, A. and Lystad, T. M. (2013). Instrumentering av Bergsøysundbrua og Gjemne-

sundbrua. Master’s thesis, Norwegian University of Science and Technology, Trondheim.

[5] Diana, G., Fiammenghi, G., Belloli, M. and Rocchi, D. (2013). Wind Tunnel Tests

and Numerical Approach for Long Span Bridges: the Messina Bridge. Journal of Wind

Engineering and Industrial Aerodynamics, 122, 38-49.

[6] Ewins, D. J. (2000). Modal Testing: Theory, Practice and Application. Research

Studies Press, 2. edition.

[7] Fergestad, D., Høyte, J., and Brathaug, H.-P. (1996) Brukermanual til ALVSAT

versjon 3.7: Analyse av lineære svingninger av hengebru i vinduro. SINTEF Bygg og

miljøteknikk, Konstruksjonsteknikk.

[8] Gazzloa, F. (2015). Mathematical Models for Suspension Bridges: Nonlinear Structural

Instability. Springer, 1. edition.

[9] Ghavami, P. (2014). Mechanics of Materials: An Introduction to Engineering Techno-

logy. Springer, 1. edition.

[10] Gimsing, N. J. and Georgakis C. T. (2012). Cable Supported Bridges: Concept and

Design. John Wiley & Sons Ltd., 3. edition.

[11] Kitagawa, M. (2004). Technology of the Akashi Kaikyo Bridge. Structural Control

and Health Monitoring, 11, 75-90.

[12] Lin, S. and Huang, Z. (2016). Comparative Design of Structures. Springer, 1. edition.

[13] NPRA. (2015). Bruprosjektering: H̊andbok N400. www.vegvesen.no.

[14] NPRA. (2012). Ferjefri E39: Delprosjekt Fjordkryssing. www.vegvesen.no.

[15] NPRA. (2012). Hardanger Bridge: Technical Brochure. www.vegvesen.no.

[16] NPRA, Berntsen, K. Private communication.

[17] Otto, A. (2011). Methods of Numerical Simulation in Fluids and Plasmas. University

of Alaska Fairbanks.

[18] Papadrakakis, M., Stefanou, G. and Papadopoulos, V. (2011). Computational Meth-

ods in Stochastic Dynamics.

[19] Rainieri, C. and Fabbrocino, G. (2014). Operational Modal Analysis of Civil Engin-

eering Structures. Springer, 1. edition

[20] Rupakhety, R. and Sigbjörnsson, R. (2012). Computational Mechanics 1: Lecture

82



8 BIBLIOGRAPHY

Notes. Universioty of Iceland.

[21] Strømmen, E. N. (2014). Structural Dynamics. Springer, 1. edition.

[22] Strømmen, E. N. (2010). Theory of Bridge Aerodynamics. Springer, 2. edition.

[23] Tamura, Y. and Kareem, A. (2013). Advanced Structural Wind Engineering. Springer,

1. edition.

[24] TSI Incorporated. (2012). Turbulence Intensity Measurements.

[25] Wang Q., Liao, H., Li, M. and Ma, C. (2011). Influence of aerodynamic configuration

of a streamline box girder on bridge flutter and vortex-induced vibration. Journal of

Modern Transportation, 19(4), 261-267.

[26] Yang, Y., Ge, Y. and Zhang, W. (2009). Flutter Performance and Surrounding

Flow Structures of Central-Slotted Box Girders. Computational Structural Engineering,

Shanghai, 577-586.

83



A ALVSAT

Appendix

A ALVSAT

This appendix includes all relevant data for the calculations performed in ALVSAT, both

the input data for the calculations of the eigenvalue problem as well as the resulting output

data.
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A.1 Input

A summary of the parameters used for the input file to define the bridge model is provided

in Table 4 below. Most of these parameters have been previously defined or calculated in

Section 5.

Table 4: Input parameters used in Alvsat

Parameter Value Description

DG 2, 5 Height of bridge deck [m]

DC 0, 691 Diameter of main cable [m]

BG 11 Breadth of bridge deck [m]

L 2050 Length of bridge main span [m]

HM 3,02 Shortest hanger length [m]

F 205 Sag of main cable [m]

NY 26,283 Hogging of bridge deck [m]

MG 13250 Mass of both bridge decks pr. meter [kg/m]

MC 3200 Mass of each main cable pr. meter [kg/m]

H 2, 48× 108 Tension in each of the main cables, bridge span centre [N]

EIZ 1, 873× 1013 Bending stiffness of bridge deck about vertical axis, lateral

displacement [Nm2]

G 9, 80665 Gravitational acceleration [m/s2]

S0 0 Tension in bridge deck [N]

PI1/PI2 0,231 Length of backstay nr. 1/2, as a proportion of L [-]

FI1/FI2 0,523 Incline of backstay 1/2 [rad]

HR 0,84 Vertical distance between hanger fastening level and centre

of gravity of bridge deck [m]

BC 15 Half the distance (c/c) between main cables [m]

M 2 760 000 Rotational inertia of the deck and main cables [kgm2/m]

AC 0,375 Cross sectional area of each of the main cables [m2]

EIX 1, 766× 1011 Bending stiffness of bridge deck about horizontal axis,

vertical displacement [Nm2]

EIW 3, 424× 1011 Warping torsion stiffness for bridge deck [Nm4]

GIT 1, 664× 1011 Torsional stiffness for bridge deck [Nm2]

EC 2, 0× 1011 Modulus of elasticity for main cables [N/m2]
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The input file in its entirety is as follows:

TEXT

Bru over Ha l sa f j o rden . Tes tk jø r ing rev . 22 .02 .2016

Dempning : Korr . bu f f e t ing−t e o r i og 0 ,5 % s t r u k t u r e l l dempning

Las t f ak to r på vind er 1 .0 ( r . p . 50 år )

MODE

1 1 1

0 0 0

0 0 0

STRU

2.5 0 .691 22

2050 3 .02 205 26.283

13250 3200 2 .48E8 1.873 e13

0 0 0

.231 .231 .523 .523

0 .84 15

2760000 .375

1 .766 E11 3.424 E11 1.664 E11 0.200 E12

FREQ

8 8 8

6 6 6

0 0 0 0

30 50 1

ENVI

2 2

29 .16 62 0.0232

1 1 . 9 1 .25

COEF

0.826

0

1 .0

−0.251 9 .7 2 1

2 .401 9 .7 2 1

0 .002 9 .7 2 1

0 .770 9 .7 2 1

STAT

10 10 10

DYNA

1 1 1

0 0 0

600

0 .005 −0.0074 0.0141

0 .005 −0.0077 0.0096

0 .005 −0.0062 0.0074

0 .005 −0.0059 0.0065

0 .005 −0.0043 0.0061

0 .005 0.0031 0.0059

200

200

200

200

200

200

200

END
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A.2 Output

0000000000000000000000000000000000000000000000000000000000000000000000000000000

0 .0 0 .0

0 .0 Bru over Ha l sa f j o rden . Tes tk jø r ing rev . 22 .02 .2016 0 .0

0 .0 Dempning : Korr . bu f f e t i ng−t e o r i og 0 ,5 % s t r u k t u r e l l dempning 0 .0

0 .0 Las t f ak to r på vind er 1 .0 ( r . p . 50 år ) 0 .0

0 .0 0 .0

0000000000000000000000000000000000000000000000000000000000000000000000000000000

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Analysed by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . 0 0 0 . . . . . 0 0 0 0 . . . . . . . . 0 0 0 . . . . . 0 0 0 . . . 0 0 0 0 0 0 0 . . . . . . . 0 0 0 . . . . . 0 0 0 0 0 0 0 0 0 0 0 . 0 . 0

0 . 0 . . . . 0 0 . . . . 0 0 . . . . . . . . 0 0 . . . . . 0 0 . . 0 0 . . . . . 0 0 . . . . 0 0 . 0 . 0

0 . 0 . . . 0 0 . . . 0 0 . . . . . . . . 0 0 . . . . . 0 0 .0 0 . . . 0 0 . . . 0 0 . 0 . 0

0 . 0 . . 0 0 . . 0 0 . . . . . . . . 0 0 . . . . . 0 0 .0 0 . . 0 0 . . 0 0 . 0 . 0

0 . 0 . 0 0 0 .0 0 . . . . . . . . 0 0 . . . . . 0 0 .0 000 0 .0 0 0.00000 00000 .0 . 0

0 . 0 . 0 0 .0 0 .0 0 . . . . . . . . 0 0 . . . . . 0 0 .0 0 . . . 0 0 0 0 . 0 0 .0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . . . . 0 0 . . . . . 0 0 .0 0 . . . . . . . . 0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . . . . 0 0 . . . . . 0 0 .0 0 . . . . . . . 0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . . . . 0 0 . . . 0 0 .0 0 . . . . . . 0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . . . . 0 0 . . . 0 0 . . 0 0 . . . . . 0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . . . . 0 0 . . . 0 0 . . . 0 0 . . . . 0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . . . . . 0 0 .0 0 . . . . . 0 0 . . . 0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . . . . . 0 0 .0 0 . . . . . . 0 0 . . 0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 00000 0 .0 0 . . . . . . . . . 0 0 .0 0 . . . . . . . 0 0 .0 00000 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 .0 0 . . . . . . . . . . 0 0 0 . . . . . . . . . 0 0 .0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 .0 0 . . . . . . . . . . 0 0 0 . . . . . . . . . . 0 0 .0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 .0 0 . . . . . . . . . . 0 0 . . . . . . . . . . 0 0 .0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 00000 0 .0 0 . . . . . . . . . . . 0 0 . . . . . . . . . . . 0 0 .0 00000 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . . . . . . . 0 0 . . . . 0 0 0 0 . . . 0 0 .0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 0 0 0 0 0 0 0 . . . . 0 0 . . . . 0 000 0 .0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . 0 0 . . . . . 0 0 .0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . 0 0 . . . . . 0 0 .0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 . . . 0 0 .0 0 . . . . . 0 0 0 . . . . . . 0 0 . . 0 0 . . . 0 0 . . . . . 0 0 . . . . . 0 . 0

0 . 0 . 0 0 0 0 . . . 0 0 0 0 . 0 0 0 0 0 0 0 0 0 0 0 . . . . . . 0 . . . . . . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 . . . 0 0 0 0 . . . . . 0 0 0 . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . Vers ion 3 .7 / 940628 / . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0 .0 . . .0000000000000000000000000000000000000000000000000000000000000000000 . . .0 .0

0 . 0 . . . 0 0 . . . 0 . 0

0 . 0 . . . 0 Developed by : SINTEF div . o f S t ruc tu ra l Engineer ing 0 . . . 0 . 0

0 . 0 . . . 0 N−7034 TRONDHEIM NTH 0 . . . 0 . 0

0 . 0 . . . 0 0 . . . 0 . 0

0 . 0 . . . 0 Excecuted 16−05−01 at 13 : 10 : 13 0 . . . 0 . 0

0 . 0 . . . 0 0 . . . 0 . 0

0 .0 . . .0000000000000000000000000000000000000000000000000000000000000000000 . . .0 .0

0 . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0.000000000000000000000000000000000000000000000000000000000000000000000000000.0

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 . 0

0000000000000000000000000000000000000000000000000000000000000000000000000000000

1RUN MODES

HOR VER TOR

FRECUENCY ANALYSES: 1 1 1

STATIC ANALYSES: 0 0 0

DYNAMIC ANALYSES: 0 0 0

STRUCTURAL PARAMETERS :

LENGTH OF BRIDGE SPAN L = 2050.

MINIMUM HANGER LENGTH HM = 3.020

SAG OF MAIN CABLES F = 205.0

HOGGING OF THE GIRDER NY = 26.28

LENGTH OF SIDE SPAN SECOND. CABLE L1 = .0000

SAG OF SECONDARY CABLES FS = .0000

MASS OF GIRDER MG = .1325E+05

MASS OF MAIN CABLES (ONE CABLE) MC = 3200.

TENSION IN MAIN CABLE (ONE CABLE) H = .2480E+09

RIGIDITY OF GIRDER EI = .1873E+14

ACCELERATION OF GRAVITY G = 9.807

TYPICAL DIMENSION OF GIRDER DG = 2.500

TYPICAL DIMENSION OF ONE CABEL DC = .6910

TYPICAL WIDTH OF THE GIRDER BG = 22.00
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TENSION IN GIRDER S0 = .0000

TENSION IN SECOND. CABLES F0 = .0000

INITIAL STRAIN IN SECOND. CABLES STR = .0000

LENGTH OF BACKSTAYS IN % OF PI1 = .2310

THE LENGTH OF THE BRIDGE SPAN PI2 = .2310

CABLE SLOPE OF BACKSTAY 1 : FI1 = .5230

CABLE SLOPE OF BACKSTAY 2 : FI2 = .5230

DISTANCE BETWEEN POINT OF ATTACHMENT

FOR HANGERS AND THE CENTER OF

GYRATION HR = .8400

HALF THE DISTANCE BETWEEN

THE CABLES BC = 15.0000

MASS MOMENT OF INERTIA M = .2760E+07

HORIZONTAL COMPONENT OF

CROSS SECTION OF EACH CABLE AC = .3750

BENDING STIFFNESS OF GIRDER EIX = .1766E+12

WARPING RESISTANCE EIW = .3424E+12

TORSIONAL STIFFNESS GIT = .1664E+12

MODULUS OF ELASTICITY OF CABLE EC = .2000E+12

1DATA FOR FREQUENCY ANALYSES

HOR VER TOR

NUMBER OF COEFFICIENTS (NFC) : 8 8 8

NUMBER OF NORMAL MODES (NNM) : 6 6 6

FREQUENCY RANGE FOR ITERATION SEARCH :

LOWER LIMIT FOR VERTICAL MODE VOMI = .0000

UPPER LIMIT FOR VERTICAL MODE VOMA = .0000

LOWER LIMIT FOR TORSIONAL MODE TOMI = .0000

UPPER LIMIT FOR TORSIONAL MODE TOMA = .0000

MAXIMUM NUMBER OF ITERATIONS NMAX = 30

NO. OF INTERVALS IN

FREQUENCY RANGE IN ASYM ITFR = 50

BRIDGE HELD/FREE AT THE ENDS LC = 1

LC=0 : FREE LC=1 : HELD AT ONE END

ENVIRONMENTAL DATA

ESDU SPECTRUM (ISTYP=2)

−−−−−−−−−−−−−−−−−−−−−−−
WIND SPEED AT THE LEVEL OF THE BRIDGE (UREF) = 38.60

INTEGRAL LENGTH SCALE OF U IN X−DIR (XLU) = 448.2

TURBULENCE INTENSITY U COMPONENT = .1370

CHARACTERISTIC HEIGHT ABOVE THE

GROUND OF THE BRIDGE DECK = 62.00

WIND VELOCITY 10 M ABOVE THE GROUND = 29.16

TURBULENCE INTENSITY OF VERTICAL VELOCITY = .7551E−01

INTEGRAL LENGTH SCALE OF U IN Y−DIR = 127.4

INTEGRAL LENGTH SCALE OF U IN Z−DIR = 81.11

INTEGRAL LENGTH SCALE OF W IN X−DIR = 37.56

INTEGRAL LENGTH SCALE OF W IN Y−DIR = 21.35

INTEGRAL LENGTH SCALE OF W IN Z−DIR = 27.18

ALFA VALUE IN MODIFIED VON KARMAN SPECTRUM = .5884

BETA1 IN MODIFIED VON KARMAN SPECTRUM = .6259

BETA2 IN MODIFIED VON KARMAN SPECTRUM = .3741

TERRAIN ROUGHNESS (Z0) = .2320E−01

ESDU COHERENCE FUNCTION (ICTYP=2)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
DECAY FACTOR HORIZONTAL SEPARATION (U,W)= 1.000 1 .000

DECAY FACTOR VERTICAL SEPARATION (U,W) = 1.000 1 .000

AVERAGE CORRELATION BETWEEN LOADS

ON GIRDER AND CABLES = .9000

DENSITY OF AIR : = 1.250

COEFFICIENTS (FORM FACTORS)

CDG( 1 : 5 ) : .8260 .0000 .0000 .0000 .8260

CDDG( 1 : 5 ) : .0000 .0000 .0000 .0000 .0000

CDC( 1 : 5 ) : 1 .000 .0000 .0000 .0000 1 .000

CLG( 1 : 5 ) : −.2510 9 .700 2 .000 1 .000 −.2510

CLDG( 1 : 5 ) : 2 .401 9 .700 2 .000 1 .000 2 .401

CMG( 1 : 5 ) : .2000E−02 9 .700 2 .000 1 .000 .2000E−02

CMDG( 1 : 5 ) : .7700 9 .700 2 .000 1 .000 .7700
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1DATA FOR STATIC ANALYSIS

NUMBER OF INTERVAL FOR RESPONS CALCULATION

HOR VER TOR

10 10 10

DATA FOR DYNAMIC ANALYSES

HOR VER TOR

CROSS TERMS BETWEEN MODES: 1 1 1

IRS : 0 0 0

DURATION OF STORM : 600 .

CRITICAL DAMPING RATIOS :

CRDR( 1 , 1 : 3 ) : .5000E−02 −.7400E−02 .1410E−01

CRDR( 2 , 1 : 3 ) : .5000E−02 −.7700E−02 .9600E−02

CRDR( 3 , 1 : 3 ) : .5000E−02 −.6200E−02 .7400E−02

CRDR( 4 , 1 : 3 ) : .5000E−02 −.5900E−02 .6500E−02

CRDR( 5 , 1 : 3 ) : .5000E−02 −.4300E−02 .6100E−02

CRDR( 6 , 1 : 3 ) : .5000E−02 .3100E−02 .5900E−02

1 ********************************************

********** HORIZONTAL RESPONSE *************

********************************************

***** OUTPUT FROM THE FREQUENCY ANALYSIS *****

EVALUATION OF SYMMETRIC MODES:

MODE PERIOD FREQUENCY

NO: SEC RAD/SEC

1 25.58721 .24556

2 7.43792 .84475

3 5.34431 1.17568

FOURIER CONSTANTS :

MODE 1 2 3

GIRDER CABLES GIRDER CABLES GIRDER CABLES

.1000E+01 .8929E+00 .1860E+00 −.5136E+00 −.3285E+00 .7781E+00

.3806E−01 −.2748E−01 .1000E+01 .1838E+00 .1646E+00 .1000E+01

−.2195E−02 .4504E−02 .1680E−01 −.3746E−01 .1218E−01 −.2759E−01

.3687E−03 −.1539E−02 −.2146E−02 .9640E−02 −.1727E−02 .8119E−02

−.8025E−04 .5860E−03 .5225E−03 −.3900E−02 .3516E−03 −.2721E−02

.2461E−04 −.2586E−03 −.1481E−03 .1621E−02 −.1105E−03 .1242E−02

−.8389E−05 .1257E−03 .5323E−04 −.8139E−03 .3602E−04 −.5613E−03

.3309E−05 −.6604E−04 −.1988E−04 .4023E−03 −.1464E−04 .3010E−03

MODES OF VIBRATION

1 2 3

OBSERVATION GIRDER CABLES GIRDER CABLES GIRDER CABLES

POINT

.00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00

102.50 .172E+00 .129E+00 .493E+00 −.175E−01 .307E−01 .562E+00

205.00 .338E+00 .257E+00 .882E+00 −.412E−01 .426E−01 .103E+01

307.50 .490E+00 .381E+00 .108E+01 −.772E−01 .221E−01 .132E+01

410.00 .624E+00 .500E+00 .106E+01 −.134E+00 −.351E−01 .140E+01
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512.50 .735E+00 .610E+00 .829E+00 −.215E+00 −.123E+00 .127E+01

615.00 .823E+00 .709E+00 .443E+00 −.322E+00 −.227E+00 .966E+00

717.50 .887E+00 .795E+00 −.478E−02 −.450E+00 −.329E+00 .564E+00

820.00 .929E+00 .864E+00 −.413E+00 −.585E+00 −.411E+00 .161E+00

922.50 .952E+00 .910E+00 −.694E+00 −.702E+00 −.462E+00 −.145E+00

1025.00 .959E+00 .927E+00 −.794E+00 −.751E+00 −.479E+00 −.262E+00

1 ********************************************

********** HORIZONTAL RESPONSE *************

********************************************

***** OUTPUT FROM THE FREQUENCY ANALYSIS *****

EVALUATION OF ASYMMETRIC MODES:/

MODE PERIOD FREQUENCY

NO: SEC RAD/SEC

1 12.89222 .48736

2 5.66201 1.10971

3 4.24020 1.48181

FOURIER CONSTANTS :

MODE 1 2 3

GIRDER CABLES GIRDER CABLES GIRDER CABLES

.1000E+01 .4770E+00 −.2202E+00 .1000E+01 −.7206E−01 .2104E+00

.3868E−01 −.5244E−01 −.1603E+00 .1503E+00 .1000E+01 .5777E+00

−.3711E−02 .1201E−01 .6712E−02 −.2317E−01 .1614E−01 −.6064E−01

.7740E−03 −.4418E−02 −.1317E−02 .8009E−02 −.2606E−02 .1698E−01

−.2017E−03 .1802E−02 .3311E−03 −.3092E−02 .6833E−03 −.6678E−02

.6652E−04 −.8572E−03 −.1100E−03 .1463E−02 −.2151E−03 .2956E−02

−.2393E−04 .4183E−03 .3898E−04 −.6987E−03 .7903E−04 −.1454E−02

−.4415E−05 −.2244E−03 −.1617E−04 .3762E−03 −.3155E−04 .7487E−03

MODES OF VIBRATION

1 2 3

OBSERVATION GIRDER CABLES GIRDER CABLES GIRDER CABLES

POINT

.00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00 .000E+00

102.50 .329E+00 .123E+00 −.158E+00 .384E+00 .577E+00 .367E+00

205.00 .621E+00 .240E+00 −.276E+00 .713E+00 .923E+00 .624E+00

307.50 .844E+00 .341E+00 −.328E+00 .942E+00 .899E+00 .696E+00

410.00 .975E+00 .419E+00 −.306E+00 .105E+01 .512E+00 .561E+00

512.50 .100E+01 .466E+00 −.227E+00 .102E+01 −.876E−01 .266E+00

615.00 .931E+00 .474E+00 −.120E+00 .882E+00 −.668E+00 −.909E−01

717.50 .772E+00 .435E+00 −.248E−01 .667E+00 −.101E+01 −.381E+00

820.00 .547E+00 .343E+00 .301E−01 .420E+00 −.977E+00 −.490E+00

922.50 .282E+00 .195E+00 .333E−01 .189E+00 −.594E+00 −.351E+00

1025.00 −.168E−06 −.119E−06 −.234E−07 −.108E−06 .373E−06 .226E−06

1 ********************************************

********** VERTICAL RESPONSE *************

********************************************

***** OUTPUT FROM THE FREQUENCY ANALYSIS *****

********** SYMMETRIC MODES **********

MODE PERIOD FREQUENCY

NO: SEC RAD/SEC

1 9.57608 .65613

2 7.07971 .88749

3 4.95216 1.26878

FOURIER CONSTANTS :

MODE 1 2 3
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.1000E+01 .9454E+00 .1212E+00

−.9577E+00 .1000E+01 .5951E−01

−.6460E−01 −.1749E+00 .1000E+01

−.1945E−01 −.4168E−01 −.1758E−01

−.8416E−02 −.1685E−01 −.5627E−02

−.4333E−02 −.8438E−02 −.2595E−02

−.2491E−02 −.4780E−02 −.1412E−02

−.1543E−02 −.2934E−02 −.8467E−03

MODES OF VIBRATION : 1 2 3

OBSERVATION

POINT :

.00 .0000E+00 .0000E+00 .0000E+00

102.50 −.3573E+00 .4097E+00 .7274E+00

205.00 −.5438E+00 .8967E+00 .1072E+01

307.50 −.5239E+00 .1321E+01 .8306E+00

410.00 −.3045E+00 .1547E+01 .1450E+00

512.50 .8319E−01 .1516E+01 −.5711E+00

615.00 .5676E+00 .1228E+01 −.8919E+00

717.50 .1072E+01 .7773E+00 −.6229E+00

820.00 .1508E+01 .2976E+00 .7366E−01

922.50 .1802E+01 −.6590E−01 .7805E+00

1025.00 .1908E+01 −.1981E+00 .1076E+01

1 ********** ASYMMETRIC MODES **********/

MODE PERIOD FREQUENCY

NO: SEC RAD/SEC

1 11.70565 .53677

2 6.28596 .99956

3 4.15777 1.51119

FOURIER CONSTANTS :

MODE 1 2 3

.1000E+01 .6803E−02 .1282E−02

−.6804E−02 .1000E+01 .6262E−03

−.1278E−02 −.6349E−03 .1000E+01

−.4246E−03 −.1695E−03 .0000E+00

−.1818E−03 −.6737E−04 .0000E+00

−.8992E−04 .0000E+00 .0000E+00

−.4891E−04 .0000E+00 .0000E+00

−.2847E−04 .0000E+00 .0000E+00

MODES OF VIBRATION : 1 2 3

OBSERVATION

POINT :

.00 .0000E+00 .0000E+00 .0000E+00

102.50 .3019E+00 .5878E+00 .8090E+00

205.00 .5817E+00 .9511E+00 .9511E+00

307.50 .8080E+00 .9511E+00 .3090E+00

410.00 .9549E+00 .5878E+00 −.5878E+00

512.50 .1006E+01 −.1852E−06 −.1000E+01

615.00 .9549E+00 −.5878E+00 −.5878E+00

717.50 .8080E+00 −.9511E+00 .3090E+00

820.00 .5817E+00 −.9511E+00 .9511E+00
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922.50 .3019E+00 −.5878E+00 .8090E+00

1025.00 −.1790E−06 .3704E−06 −.5556E−06

ONE START FREQUENCY TRIED IN ASYM

NUMBER OF ITERATIONS NECESSARY: 4

1 ********************************************

********** TORSIONAL RESPONSE *************

********************************************

***** OUTPUT FROM THE FREQUENCY ANALYSIS *****

********** SYMMETRIC MODES **********

MODE PERIOD FREQUENCY

NO: SEC RAD/SEC

1 6.07282 1.03464

2 4.09734 1.53348

3 2.54982 2.46416

FOURIER CONSTANTS :

MODE 1 2 3

.1000E+01 .2418E+00 .3725E−01

−.2428E+00 .1000E+01 .1855E−01

−.3281E−01 −.2760E−01 .1000E+01

−.1081E−01 −.7656E−02 −.5389E−02

−.4891E−02 −.3280E−02 −.1787E−02

−.2628E−02 −.1718E−02 −.8508E−03

−.1575E−02 −.1016E−02 −.4799E−03

−.1018E−02 −.6510E−03 −.2992E−03

MODES OF VIBRATION : 1 2 3

OBSERVATION

POINT :

.00 .0000E+00 .0000E+00 .0000E+00

102.50 .3825E−02 .4592E+00 .7133E+00

205.00 .7262E−01 .8509E+00 .1023E+01

307.50 .1989E+00 .1083E+01 .7454E+00

410.00 .3670E+00 .1100E+01 .4475E−01

512.50 .5628E+00 .9007E+00 −.6652E+00

615.00 .7611E+00 .5283E+00 −.9667E+00

717.50 .9441E+00 .7269E−01 −.6812E+00

820.00 .1090E+01 −.3602E+00 .2252E−01

922.50 .1185E+01 −.6690E+00 .7294E+00

1025.00 .1218E+01 −.7801E+00 .1023E+01

1 ********** ASYMMETRIC MODES **********/

MODE PERIOD FREQUENCY

NO: SEC RAD/SEC

1 6.20975 1.01183

2 3.19575 1.96610

3 2.13348 2.94505

FOURIER CONSTANTS :
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MODE 1 2 3

.1000E+01 .1857E−02 .3702E−03

−.1857E−02 .1000E+01 .1851E−03

−.3699E−03 −.1858E−03 .1000E+01

−.1319E−03 −.5305E−04 .0000E+00

−.6152E−04 −.2291E−04 .0000E+00

−.3354E−04 .0000E+00 .0000E+00

−.2026E−04 .0000E+00 .0000E+00

−.1316E−04 .0000E+00 .0000E+00

MODES OF VIBRATION : 1 2 3

OBSERVATION

POINT :

.00 .0000E+00 .0000E+00 .0000E+00

102.50 .3071E+00 .5878E+00 .8090E+00

205.00 .5861E+00 .9511E+00 .9511E+00

307.50 .8087E+00 .9511E+00 .3090E+00

410.00 .9521E+00 .5878E+00 −.5878E+00

512.50 .1002E+01 −.1852E−06 −.1000E+01

615.00 .9521E+00 −.5878E+00 −.5878E+00

717.50 .8087E+00 −.9511E+00 .3090E+00

820.00 .5861E+00 −.9511E+00 .9511E+00

922.50 .3071E+00 −.5878E+00 .8090E+00

1025.00 −.1834E−06 .3704E−06 −.5556E−06

ONE START FREQUENCY TRIED IN ASYM

NUMBER OF ITERATIONS NECESSARY: 4

***** CPU−TIME USED = 12.9600 *****
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B MATLAB Codes

B.1 Calculation Codes

B.1.1 main.m

% This matlab code runs dynamic response analysis on Halsafjorden Bridge.

% Required functions:

% > ImportAlvsat.m, JAF.m

% Requires a result file obtained from Alvsat.

clear all

close all

clc

%% Input parameters

% Import from Alvsat:

txtfile = ’halsafjordfinal.res’; %Name of text file to import

nModesH = 6; nModesV = 6; nModesT = 6; %Number of modes to import

nPoints = 11; %Number of observation points along bridge (half span)

lineEV=[211,260,312,360,426,474]; %First lines containing eigenvalue data

lineEM=[237,286,344,393,458,507]; %First lines containing eigenmode data

% Bridge geometry:

L = 2050; %Length of bridge span [m]

Lexp = 2050; %Flow exposed length, assumed equal to length of span [m]

B = 22; %Width of one box [m]

D = 2.5; %Height of box section [m]

gap = 10; %opening between box girders [m]

zf = 50; %height of deck over sea level at x=L/2 [m]

% Bridge mass and damping parameters:

m_z = 13250+2*3200; %Modally equivalent and evenly distributed mass [kg/m]

m_theta = 1320000+2*3200*15^2; %Modally equivalent and evenly distributed mass [kgm^2/m]

zeta_z = 0.005; zeta_theta = 0.005; %Damping ratios

% Bridge load coefficients:

C_D = 1.246; C_L = -0.246; C_M = 0.098; %Load coefficients

dC_L = 4.473; dC_M = -1.54; %Load coefficient slopes

% Wind data:

rho = 1.25; %Density of air [kg/m^3]

Iu = 0.12; Iv = 0.107; Iw = 0.047; %Turbulence intensity

% V = [10 20 30 40 45 50 54 55 55.2 55.4 56 56.4];
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V = [10 20 30 40 45 47 50 52 54 56 58 60];

% V = linspace(10,46,30);

Nv = length(V); %Number of wind increments

% Frequency response calculations:

xr = L/4; %Location of response calculation along span.

x = linspace(0,1,2*nPoints-1); %Normalized length

omegamin = 0.001; %Minimum frequency

omegamax = 10; %Maximum frequency

Nomega = 1000; %Number of frequency increments

%End of input parameters

%% Eigenfrequencies and mode shapes

% Imports eigenfrequencies and mode shapes from a specified

% Alvsat result file.

[omegaH,omegaV,omegaT,fiHs,fiHa,fiVs,fiVa,fiTs,fiTa]=...

ImportAlvsat(txtfile,nModesH,nModesV,nModesT,lineEV,lineEM,nPoints);

[omega_z,rowz] = min(omegaV(:,3));

[omega_theta,rowv] = min(omegaT(:,3));

if rowz <= nModesV/2

fiV = fiVs(:,rowz+1);

else

fiV = fiVa(:,rowz+1-nModesV/2);

end

if rowv <= nModesT/2

fiT = fiTs(:,rowv+1);

else

fiT = fiTa(:,rowv+1-nModesV/2);

end

[rowfi] = find(fiVa==xr);

PHIr = [fiV(rowfi) 0; 0 fiT(rowfi)]; %Mode shape matrix

%% Wind data calculations

xfLu = 100*(zf/10)^0.3; xfLw = xfLu/12;

Au = 6.8/(2*pi); Aw = 9.4/(2*pi);

Cux = 9/(2*pi); Cwx = 6/(2*pi);

%% Frequency response

% Matrix creation:

% Mean wind velocity dependent eigenfrequency

omegaVz = zeros(1,Nv+1); omegaVz(1) = omega_z;

omegaVv = zeros(1,Nv+1); omegaVv(1) = omega_theta;

omegar = linspace(omegamin,omegamax,Nomega);

% Frequency response function / Impedence matrix

H11 = zeros(Nv,Nomega); H12 = H11; H21 = H11; H22 = H11;
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detH = zeros(Nv,Nomega);

% Reduced wind velocity

VredVz = zeros(1,Nv);

VredVv = zeros(1,Nv);

% Unit vector

I = eye(2,2);

% Spectral Density response matrix

Srr11 = zeros(Nv,Nomega);

Srr12 = Srr11; Srr21 = Srr11; Srr22 = Srr11;

% Covariance matrix

sigmaz = zeros(1,Nv); sigmav = sigmaz;

COVzv = sigmaz; COVvz = sigmaz;

% Joint Acceptance Function

Iu11 = zeros(Nomega); Iu12 = Iu11; Iu22 = Iu11;

Iw11 = zeros(Nomega); Iw12 = Iw11; Iw22 = Iw11;

betau = zeros(Nomega); betaw = betau;

J11red = zeros(Nomega); J12red = J11red; J22red = J11red;

% Kaimal Spectral Density

Su = zeros(Nomega); Sw = zeros(Nv,Nomega);

% Aerodynamic Coefficients

k_aezv = zeros(1,Nv); k_aezz = k_aezv; k_aevz = k_aezv; k_aevv = k_aezv;

z_aezv = zeros(1,Nv); z_aezz = z_aezv; z_aevz = z_aezv; z_aevv = z_aezv;

% Mode shape integrals

fizz = L*trapz(x,fiV.^2);

fizv = L*trapz(x,fiV.*fiT);

fivz = fizv;

fivv = L*trapz(x,fiT.^2);

for i = 1:Nv

VredVz(i) = V(i)/(B*omegaVz(i));

VredVv(i) = V(i)/(B*omegaVv(i));

H1v = VredVz(i)*(2*pi)*(1-(3.1871*pi^2/((7.5233e-3)^2*(VredVz(i)*(2*pi))^2+pi^2)...

+2.8661*pi^2/(1.3663^2*(VredVz(i)*(2*pi))^2+pi^2)+...

(-4.6341e-3)*pi^2/((1.4553-4)^2*(VredVz(i)*(2*pi))^2+pi^2)+...

(-2.5164)*pi^2/((1.3555e-1)^2*(VredVz(i)*(2*pi))^2+pi^2)));

H4v = pi*(VredVz(i)*(2*pi))^2*...

(3.1871*((7.5233e-3)/((7.5233e-3)^2*(VredVz(i)*(2*pi))^2+pi^2))+...

2.8661*(1.3663/(1.3663^2*(VredVz(i)*(2*pi))^2+pi^2))+...

(-4.6341e-3)*((1.4553-4)/((1.4553-4)^2*(VredVz(i)*(2*pi))^2+pi^2))+...

(-2.5164)*((1.3555e-1)/((1.3555e-1)^2*(VredVz(i)*(2*pi))^2+pi^2)));

H2v = 0.5*(VredVz(i)*(2*pi))^3*...

(-(9.9797e2)*(4.1659e-1)/((4.1659e-1)^2*(VredVz(i)*(2*pi))^2+pi^2)+...

-(2.5178e1)*(3.2417e1)/((3.2417e1)^2*(VredVz(i)*(2*pi))^2+pi^2)+...

-(-1e3)*(4.1794e-1)/((4.1794e-1)^2*(VredVz(i)*(2*pi))^2+pi^2)+0);

H3v = (1/(2*pi))*(VredVz(i)*(2*pi))^2*(1-...
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((9.9797e2)*pi^2/((4.1659e-1)^2*(VredVz(i)*(2*pi))^2+pi^2)+...

(2.5178e1)*pi^2/((3.2417e1)^2*(VredVz(i)*(2*pi))^2+pi^2)+...

(-1e3)*pi^2/((4.1794e-1)^2*(VredVz(i)*(2*pi))^2+pi^2)+0));

A1v = (1/4)*(VredVv(i)*(2*pi))*(1-...

((6.3134e1)*pi^2/((4.4634e-2)^2*(VredVv(i)*(2*pi))^2+pi^2)+...

(-6.1917e1)*pi^2/((4.7993e-2)^2*(VredVv(i)*(2*pi))^2+pi^2)+0));

A4v = (pi/4)*(VredVv(i)*(2*pi))^2*...

((6.3134e1)*(4.4634e-2)/((4.4634e-2)^2*(VredVv(i)*(2*pi))^2+pi^2)+...

(-6.1917e1)*(4.7993e-2)/((4.7993e-2)^2*(VredVv(i)*(2*pi))^2+pi^2)+0);

A2v = (1/8)*(VredVv(i)*(2*pi))^3*...

(-(1.7282)*(8.2129e-2)/((8.2129e-2)^2*(VredVv(i)*(2*pi))^2+pi^2)+...

-(-8.7918e-1)*(3.0692e-9)/((3.0692e-9)^2*(VredVv(i)*(2*pi))^2+pi^2)+...

-(0)*(9.641e-2)/((9.641e-2)^2*(VredVv(i)*(2*pi))^2+pi^2)+0);

A3v = (1/(8*pi))*(VredVv(i)*(2*pi))^2*(1-...

((1.7282)*pi^2/((8.2129e-2)^2*(VredVv(i)*(2*pi))^2+pi^2)+...

(-8.7918e-1)*pi^2/((3.0692e-9)^2*(VredVv(i)*(2*pi))^2+pi^2)+...

(0)*pi^2/((9.641e-2)^2*(VredVv(i)*(2*pi))^2+pi^2)+0));

% Aerodynamic coefficients

k_aezz(i) = (rho*B^2/(2*m_z))*H4v;

k_aezv(i) = (rho*B^3/(2*m_z))*H3v*(fizv/fizz);

k_aevv(i) = (rho*B^4/(2*m_theta))*A3v;

k_aevz(i) = (rho*B^3/(2*m_theta))*A4v*(fivz/fivv);

K_ae = [k_aezz(i) k_aezv(i); k_aevz(i) k_aevv(i)];

z_aezz(i) = (rho*B^2/(4*m_z))*H1v;

z_aezv(i) = (rho*B^3/(4*m_z))*H2v*(fizv/fizz);

z_aevv(i) = (rho*B^4/(4*m_theta))*A2v;

z_aevz(i) = (rho*B^3/(4*m_theta))*A1v*(fivz/fivv);

Z_ae = [z_aezz(i) z_aezv(i); z_aevz(i) z_aevv(i)];

for k = 1:Nomega

% Impedance matrix

omega=omegar(k); omegaz=omega/omega_z; omegav=omega/omega_theta;

Ek = I-K_ae-[omegaz^2 0; 0 omegav^2]+...

2i*([omegaz 0; 0 omegav]*([zeta_z 0; 0 zeta_theta]-Z_ae));

% FRF

Hk = inv(Ek);

H11(i,k) = Hk(1,1); H12(i,k) = Hk(1,2);

H21(i,k) = Hk(2,1); H22(i,k) = Hk(2,2);

detH(i,k) = abs(det(Hk));

end

[~,locz] = max(abs(H11(i,:)));

[~,locv] = max(abs(H22(i,:)));

omegaVznew = omegar(locz);

omegaVvnew = omegar(locv);

omegaVz(i+1) = omegaVznew;

omegaVv(i+1) = omegaVvnew;
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% Normalized auto spectral density:

Su = (Au*xfLu/V(i))*ones(size(omegar))./((1+1.5*Au*xfLu*omegar/V(i)).^(5/3));

Sw = (Aw*xfLw/V(i))*ones(size(omegar))./((1+1.5*Aw*xfLw*omegar/V(i)).^(5/3));

% Joint Acceptance Function

betau = Cux*Lexp*omegar/V(i);

betaw = Cwx*Lexp*omegar/V(i);

[Iu11] = JAF(x,fiV,fiV,betau);

[Iu12] = JAF(x,fiV,fiT,betau);

[Iu22] = JAF(x,fiT,fiT,betau);

[Iw11] = JAF(x,fiV,fiV,betaw);

[Iw12] = JAF(x,fiV,fiT,betaw);

[Iw22] = JAF(x,fiT,fiT,betaw);

J11 = L^2.*((2*C_L)^2*Iu^2*Su.*Iu11+(dC_L+(D/B)*C_D)^2*Iw^2*Sw.*Iw11);

J12 = L^2.*(4*C_L*B*C_M*Iu^2*Su.*Iu12+(dC_L+(D/B)*C_D)*B*dC_M*Iw^2*Sw.*Iw12);

J22 = L^2.*((2*B*C_M)^2*Iu^2*Su.*Iu22+(B*dC_M)^2*Iw^2*Sw.*Iw22);

J11red = J11/(fizz^2);

J12red = J12/(fizz*fivv);

J22red = J22/(fivv^2);

% Normalized modal load matrix

for j = 1:Nomega

SRR11 = (rho*B^3/(2*m_z))*(rho*B^3/(2*m_z))...

*(V(i)/(B*omega_z))^2*(V(i)/(B*omega_z))^2*J11red(j);

SRR12 = (rho*B^3/(2*m_z))*(rho*B^3/(2*m_theta))...

*(V(i)/(B*omega_z))^2*(V(i)/(B*omega_theta))^2*J12red(j);

SRR21 = SRR12;

SRR22 = (rho*B^3/(2*m_theta))*(rho*B^3/(2*m_theta))...

*(V(i)/(B*omega_theta))^2*(V(i)/(B*omega_theta))^2*J22red(j);

H = [H11(i,j) H12(i,j); H21(i,j) H22(i,j)];

SRR = [SRR11 SRR12; SRR21 SRR22];

Seta = conj(H)*SRR*H’;

Srr = PHIr*Seta*PHIr’;

Srr11(i,j) = Srr(1,1); Srr12(i,j) = Srr(1,2);

Srr21(i,j) = Srr(2,1); Srr22(i,j) = Srr(2,2);

end

COVrrVi = [trapz(omegar,abs(Srr11(i,:))) trapz(omegar,abs(Srr12(i,:)));...

trapz(omegar,abs(Srr21(i,:))) trapz(omegar,abs(Srr22(i,:)))];

sigmaz(1,i) = sqrt(COVrrVi(1,1)); COVzv(1,i) = COVrrVi(1,2);

COVvz(1,i) = COVrrVi(2,1); sigmav(1,i) = sqrt(COVrrVi(2,2));

end
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clear ADplot c0 c1 c2 i j J11 J12 J22 k locv locz...

rowfi rowv rowz Seta COVrr Srr SRR SRR11 SRR12 SRR21 SRR22

save response.mat
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B.1.2 ImportAlvsat.m

% This matlab code extracts eigenvalues and corresponding

% eigenmodes from an Alvsat response file.

function [omegaH,omegaV,omegaT,fiHs,fiHa,fiVs,fiVa,fiTs,fiTa] = ...

ImportAlvsat(txtfile,nModesH,nModesV,nModesT,lineEV,lineEM,nPoints)

%% Output Structure Guide

%

% Eigenvalues exported into 3 matrices with the following structure:

% symmetric [mode no. period(sec) frequency(rad/s)]

% [ ... ... ... ]

% asymmetric [mode no. period(sec) frequency(rad/s)]

% [ ... ... ... ]

%

% Eigenmodes given in a total of 6 separate matrices for symmetric and

% asymmetric modes for horizontal, vertical and torsional response,

% respecively.

% The structure for horizontal modes is as follows:

% mode no. 1 2 ...

% [Observation point Displ. (girder) Displ. (cable) ...

%

% The structure for vertical/torsional modes is as follows:

% mode no. 1 2 ...

% [Observation point Displacement ...

%

%% User Input Variables Guide

%

% txtfile - name of text file

% nModesH - number of horizontal modes

% nModesV - number of vertical modes

% nModesT - number of torsional modes

% lineEV - start of eigenvalue data lines

% ([xsym,xasym,zsym,zasym,tsym,tasym], set a column as 0 if not included)

% lineEM - start of eigenmode data lines

% ([xsym,xasym,zsym,zasym,tsym,tasym], set a column as 0 if not included)

% nPoints - number of observation points along bridge (half span)

%% Read text file

fid = fopen(txtfile);

S = textscan(fid,’%s’,’Delimiter’,’\n’);
S = S{1};

%% Eigenvalues
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nVar = 3; %no of variables

omegaH = zeros(nModesH,nVar); omegaV = zeros(nModesV,nVar);

omegaT = zeros(nModesT,nVar);

if nModesH ~= 0

for j = 1:2;

for i = 1:(nModesH/2)

responseLine=S{i-1+lineEV(j)};

responseData=sscanf(responseLine(1:end),’%f’);

omegaH(i+(nModesH/2)*(j-1),[1:nVar])=responseData;

end

end

end

if nModesV ~= 0

for j = 1:2;

for i = 1:(nModesV/2)

responseLine=S{2*i-2+lineEV(j+2)};

responseData=sscanf(responseLine(1:end),’%f’);

omegaV(i+(nModesV/2)*(j-1),[1:nVar])=responseData;

end

end

end

if nModesT ~= 0

for j = 1:2;

for i = 1:(nModesT/2)

responseLine=S{2*i-2+lineEV(j+4)};

responseData=sscanf(responseLine(1:end),’%f’);

omegaT(i+(nModesT/2)*(j-1),[1:nVar])=responseData;

end

end

end

% omega(~any(omega,2),:) = []; %delete zeros rows

%% Eigenmodes

if nModesH ~=0

nVarH = (nModesH/2)*2+1; %no of variables for horizontal modes

fiH = zeros(nPoints*2*2,nVarH); %horizontal eigenmodes

for j = 1:2;

for i = 1:nPoints

responseLine=S{i-1+lineEM(j)};

responseData=sscanf(responseLine(1:end),’%f’);

fiH(i+2*nPoints*(j-1),[1:nVarH])=responseData;

end

end

for j = 1:(nPoints-1)

fiH(j+nPoints,1)=1025+102.5*j;
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fiH(j+3*nPoints,1)=1025+102.5*j;

for k = 1:length(fiH(1,:))-1;

fiH(j+nPoints,k+1)=fiH((nPoints-j),k+1);

fiH(j+3*nPoints,k+1)=-fiH((3*nPoints-j),k+1);

end

end

% Normalize eigenmodes

for n=1:nVarH-1

ms=max(abs(fiH(1:(2*nPoints-1),n+1)));

fiH(1:(2*nPoints-1),n+1)=(1/ms).*fiH(1:(2*nPoints-1),n+1);

ma=max(abs(fiH((2*nPoints+1):(4*nPoints-1),n+1)));

fiH((2*nPoints+1):(4*nPoints-1),n+1)=(1/ma).*fiH((2*nPoints+1)...

:(4*nPoints-1),n+1);

end

fiHs = fiH(1:2*nPoints-1,:); %symmetric modes

fiHa = fiH(2*nPoints+1:4*nPoints-1,:); %aymmetric modes

else fiHs = []; fiHa = [];

end

if nModesV ~=0

nVarV = (nModesV/2)+1; %no of variables for vertical modes

fiV = zeros(nPoints*2*2,nVarV); %vertical eigenmodes

for j = 1:2;

for i = 1:nPoints

responseLine=S{i-1+lineEM(j+2)};

responseData=sscanf(responseLine(1:end),’%f’);

fiV(i+2*nPoints*(j-1),[1:nVarV])=responseData;

end

end

for j = 1:(nPoints-1)

fiV(j+nPoints,1)=1025+102.5*j;

fiV(j+3*nPoints,1)=1025+102.5*j;

for l = 1:length(fiV(1,:))-1;

fiV(j+nPoints,l+1)=fiV((nPoints-j),l+1);

fiV(j+3*nPoints,l+1)=-fiV((3*nPoints-j),l+1);

end

end

% Normalize eigenmodes

for n=1:nVarV-1

ms=max(abs(fiV(1:(2*nPoints-1),n+1)));

fiV(1:(2*nPoints-1),n+1)=(1/ms).*fiV(1:(2*nPoints-1),n+1);

ma=max(abs(fiV((2*nPoints+1):(4*nPoints-1),n+1)));

fiV((2*nPoints+1):(4*nPoints-1),n+1)=(1/ma).*fiV((2*nPoints+1)...

:(4*nPoints-1),n+1);

end

fiVs = fiV(1:2*nPoints-1,:); %symmetric modes

fiVa = fiV(2*nPoints+1:4*nPoints-1,:); %aymmetric modes

else fiVs = []; fiVa = [];
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end

if nModesT ~= 0

nVarT = (nModesT/2)+1; %no of variables for torsional modes

fiT = zeros(nPoints*2*2,nVarT); %torsional eigenmodes

for j = 1:2

for i = 1:nPoints

responseLine=S{i-1+lineEM(j+4)};

responseData=sscanf(responseLine(1:end),’%f’);

fiT(i+2*nPoints*(j-1),[1:nVarT])=responseData;

end

end

for j = 1:(nPoints-1)

fiT(j+nPoints,1)=1025+102.5*j;

fiT(j+3*nPoints,1)=1025+102.5*j;

for l = 1:length(fiV(1,:))-1;

fiT(j+nPoints,l+1)=fiT((nPoints-j),l+1);

fiT(j+3*nPoints,l+1)=-fiT((3*nPoints-j),l+1);

end

end

% Normalize eigenmodes

for n=1:nVarT-1

ms=max(abs(fiT(1:(2*nPoints-1),n+1)));

fiT(1:(2*nPoints-1),n+1)=(1/ms).*fiT(1:(2*nPoints-1),n+1);

ma=max(abs(fiT((2*nPoints+1):(4*nPoints-1),n+1)));

fiT((2*nPoints+1):(4*nPoints-1),n+1)=(1/ma).*fiT((2*nPoints+1)...

:(4*nPoints-1),n+1);

end

fiTs = fiT(1:2*nPoints-1,:); %symmetric modes

fiTa = fiT(2*nPoints+1:4*nPoints-1,:); %aymmetric modes

else fiTs = []; fiTa = [];

end
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B.1.3 ADs.m

% This script calculates the aerodynamic derivatives

% based on given indicial functions.

% ADs sorted in rows in the following format:

% [H1*; H2*; H3*; H4*; A1*; A2*; A3*; A4*]

% Requires ’response.mat’ obtained by running ’main.m’.

clear all

close all

load response.mat

NvAD = 40; %Number of increments

H1 = zeros(1,NvAD); H2 = H1; H3 = H1; H4 = H1;

A1 = zeros(1,NvAD); A2 = A1; A3 = A1; A4 = A1;

Vred_min = 0/(B*omega_theta);

Vred_max = 180/(B*omega_z);

Vred = linspace(Vred_min,Vred_max,NvAD);

for i = 1:NvAD

% ADs from new measurements

H1(i) = Vred(i)*(2*pi)*(1-(3.1871*pi^2/((7.5233e-3)^2*(Vred(i)*(2*pi))^2+pi^2)...

+2.8661*pi^2/(1.3663^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-4.6341e-3)*pi^2/((1.4553-4)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-2.5164)*pi^2/((1.3555e-1)^2*(Vred(i)*(2*pi))^2+pi^2)));

H4(i) = pi*(Vred(i)*(2*pi))^2*...

(3.1871*((7.5233e-3)/((7.5233e-3)^2*(Vred(i)*(2*pi))^2+pi^2))+...

2.8661*(1.3663/(1.3663^2*(Vred(i)*(2*pi))^2+pi^2))+...

(-4.6341e-3)*((1.4553-4)/((1.4553-4)^2*(Vred(i)*(2*pi))^2+pi^2))+...

(-2.5164)*((1.3555e-1)/((1.3555e-1)^2*(Vred(i)*(2*pi))^2+pi^2)));

H2(i) = 0.5*(Vred(i)*(2*pi))^3*...

(-(9.9797e2)*(4.1659e-1)/((4.1659e-1)^2*(Vred(i)*(2*pi))^2+pi^2)+...

-(2.5178e1)*(3.2417e1)/((3.2417e1)^2*(Vred(i)*(2*pi))^2+pi^2)+...

-(-1e3)*(4.1794e-1)/((4.1794e-1)^2*(Vred(i)*(2*pi))^2+pi^2)+0);

H3(i) = (1/(2*pi))*(Vred(i)*(2*pi))^2*(1-...

((9.9797e2)*pi^2/((4.1659e-1)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(2.5178e1)*pi^2/((3.2417e1)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-1e3)*pi^2/((4.1794e-1)^2*(Vred(i)*(2*pi))^2+pi^2)+0));

A1(i) = (1/4)*(Vred(i)*(2*pi))*(1-...

((6.3134e1)*pi^2/((4.4634e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-6.1917e1)*pi^2/((4.7993e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+0));

A4(i) = (pi/4)*(Vred(i)*(2*pi))^2*...

((6.3134e1)*(4.4634e-2)/((4.4634e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-6.1917e1)*(4.7993e-2)/((4.7993e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+0);

A2(i) = (1/8)*(Vred(i)*(2*pi))^3*...

(-(1.7282)*(8.2129e-2)/((8.2129e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+...
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-(-8.7918e-1)*(3.0692e-9)/((3.0692e-9)^2*(Vred(i)*(2*pi))^2+pi^2)+...

-(0)*(9.641e-2)/((9.641e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+0);

A3(i) = (1/(8*pi))*(Vred(i)*(2*pi))^2*(1-...

((1.7282)*pi^2/((8.2129e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-8.7918e-1)*pi^2/((3.0692e-9)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(0)*pi^2/((9.641e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+0));

end

ADV = [H1;H2;H3;H4;A1;A2;A3;A4];

save ADs.mat

B.1.4 JAF.m

% This function calculates the joint acceptance function by

% numerical integration.

%

% Parameter definitions:

% x - Normalized length along span

% f,g - Mode shapes

function [I] = JAF(x,f,g,beta)

I = zeros(1,length(beta));

for i = 1:length(beta)

for n = 1:length(x)

for m = 1:length(x)

dx = abs(x(n)-x(m));

Co = exp(-beta(i)*dx);

I(i) = I(i) + f(n)*g(m)*Co;

end

end

end

I = (1/length(x)^2).*I;
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B.1.5 ADplate.m

% This function calculates the aerodynamic derivatives

% for an ideal flat plate.

%

% Parameter definitions:

% Vred - Reduced wind velocity (non-dimensional)

% omegand - Non-dimensional eigenfrequency, mode i.

% Hn,An - Aerodynamic derivatives for flat plate. n = 1,2,3,4.

% J0,J1 - Bessel functions of first kind, order 0 and 1 respectively.

% Y0,Y1 - Bessel functions of second kind, order 0 and 1 respectively.

% F - Real part of Theodorsen’s circulatory function

% G - Imaginary part of Theodorsen’s circulatory function

%

% INPUT: Vred

% OUTPUT: Hn,An

function [H1,H2,H3,H4,A1,A2,A3,A4] = ADplate(Vred)

omegand = zeros(1,length(Vred));

F = zeros(1,length(Vred));

G = zeros(1,length(Vred));

H1 = zeros(1,length(Vred)); H2 = zeros(1,length(Vred));

H3 = zeros(1,length(Vred)); H4 = zeros(1,length(Vred));

A1 = zeros(1,length(Vred)); A2 = zeros(1,length(Vred));

A3 = zeros(1,length(Vred)); A4 = zeros(1,length(Vred));

for i = 1:length(Vred);

omegand(i) = 1/Vred(i);

J0 = besselj(0,omegand(i)/2);

J1 = besselj(1,omegand(i)/2);

Y0 = bessely(0,omegand(i)/2);

Y1 = bessely(1,omegand(i)/2);

F(i) = (J1*(J1+Y0)+Y1*(Y1-J0))/((J1+Y0)^2+(Y1-J0)^2);

G(i) = -(J1*J0+Y1*Y0)/((J1+Y0)^2+(Y1-J0)^2);

H1(i) = -2*pi*F(i)*Vred(i);

H2(i) = 0.5*pi*(1+F(i)+4*G(i)*Vred(i))*Vred(i);

H3(i) = 2*pi*(F(i)*Vred(i)-G(i)/4)*Vred(i);

H4(i) = 0.5*pi*(1+4*G(i)*Vred(i));

A1(i) = -0.5*pi*F(i)*Vred(i);

A2(i) = -(pi/8)*(1-F(i)-4*G(i)*Vred(i))*Vred(i);
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A3(i) = 0.5*pi*(F(i)*Vred(i)-G(i)/4)*Vred(i);

A4(i) = 0.5*pi*G(i)*Vred(i);

end

end
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B.1.6 stability.m

% This script investigates four types of instabilities that bridge

% decks are susceptible to by inspection of the impedance matrix.

% Requires ’response.mat’ obtained from running ’main.m’.

close all

clear all

load response.mat

%% Calculation switches (0 to disable, 1 to enable)

statdiv = 1; %Perform a static divergence instability check

gallop = 1; %Perform a galloping instability check

torsioninstab = 1; %Perform a torsional dynamic instability check

flutter = 1; %Performs a flutter instability check

%% Static divergence

if statdiv == 1

if dC_M < 0

disp(’No static divergence instability’)

else

Vcr_statdiv = B*omega_theta*sqrt(2*m_theta/(rho*B^4*dC_M));

end

end

%% Galloping

if gallop == 1

if dC_L < -C_D*D/B

Vcr = -B*omega_z*zeta_z*4*m_z/((dC_L+C_D*D/B)*rho*B^2);

else

disp(’No stability limit for galloping’)

end

end

%% Dynamic instability in torsion

if torsioninstab == 1

if all(A2v<=0)== 1

disp(’No instability in pure torsion’)

else

ReTorsroots = zeros(1,Nv);

ImTorsion = zeros(1,Nv);

for i = 1:Nv

ReTorsion0 = 1-kaevv(i);

ReTorsion1 = 0;

ReTorsion2 = -1;

ReTorsion = [ReTorsion2 ReTorsion1 ReTorsion0];
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ReTorsroots(i) = max(roots(ReTorsion));

ImTorsion(i) = (zeta_theta - zaevv(i));

end

figure(); hold all;

plot(VredVv,ReTorsroots,’b-o’,VredVv,ImTorsion,’r-o’)

xlabel(’V/(B*\omega_r)’); ylabel(’Re,Im’);

end

end

%% Flutter

if flutter == 1

zz = zeta_z; zv = zeta_theta;

betaz = rho*B^2/m_z; betav = rho*B^4/m_theta;

gamma = omega_theta/omega_z;

Selberg = 0.6*B*omega_theta*((1-(omega_z/omega_theta)^2)*(m_z*m_theta)^0.5/(rho*B^3))^0.5;

Vred = linspace(0.1,5,60);

REr = zeros(1,length(Vred));

IMr = zeros(1,length(Vred));

for i = 1:length(Vred)

H1 = Vred(i)*(2*pi)*(1-(3.1871*pi^2/((7.5233e-3)^2*(Vred(i)*(2*pi))^2+pi^2)...

+2.8661*pi^2/(1.3663^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-4.6341e-3)*pi^2/((1.4553-4)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-2.5164)*pi^2/((1.3555e-1)^2*(Vred(i)*(2*pi))^2+pi^2)));

H4 = pi*(Vred(i)*(2*pi))^2*...

(3.1871*((7.5233e-3)/((7.5233e-3)^2*(Vred(i)*(2*pi))^2+pi^2))+...

2.8661*(1.3663/(1.3663^2*(Vred(i)*(2*pi))^2+pi^2))+...

(-4.6341e-3)*((1.4553-4)/((1.4553-4)^2*(Vred(i)*(2*pi))^2+pi^2))+...

(-2.5164)*((1.3555e-1)/((1.3555e-1)^2*(Vred(i)*(2*pi))^2+pi^2)));

H2 = 0.5*(Vred(i)*(2*pi))^3*...

(-(9.9797e2)*(4.1659e-1)/((4.1659e-1)^2*(Vred(i)*(2*pi))^2+pi^2)+...

-(2.5178e1)*(3.2417e1)/((3.2417e1)^2*(Vred(i)*(2*pi))^2+pi^2)+...

-(-1e3)*(4.1794e-1)/((4.1794e-1)^2*(Vred(i)*(2*pi))^2+pi^2)+0);

H3 = (1/(2*pi))*(Vred(i)*(2*pi))^2*(1-...

((9.9797e2)*pi^2/((4.1659e-1)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(2.5178e1)*pi^2/((3.2417e1)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-1e3)*pi^2/((4.1794e-1)^2*(Vred(i)*(2*pi))^2+pi^2)+0));

A1 = (1/4)*(Vred(i)*(2*pi))*(1-...

((6.3134e1)*pi^2/((4.4634e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-6.1917e1)*pi^2/((4.7993e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+0));

A4 = (pi/4)*(Vred(i)*(2*pi))^2*...

((6.3134e1)*(4.4634e-2)/((4.4634e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-6.1917e1)*(4.7993e-2)/((4.7993e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+0);
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A2 = (1/8)*(Vred(i)*(2*pi))^3*...

(-(1.7282)*(8.2129e-2)/((8.2129e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+...

-(-8.7918e-1)*(3.0692e-9)/((3.0692e-9)^2*(Vred(i)*(2*pi))^2+pi^2)+...

-(0)*(9.641e-2)/((9.641e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+0);

A3 = (1/(8*pi))*(Vred(i)*(2*pi))^2*(1-...

((1.7282)*pi^2/((8.2129e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(-8.7918e-1)*pi^2/((3.0692e-9)^2*(Vred(i)*(2*pi))^2+pi^2)+...

(0)*pi^2/((9.641e-2)^2*(Vred(i)*(2*pi))^2+pi^2)+0));

RE0 = 1;

RE1 = 0;

RE2 = -(1+gamma^2+4*gamma*zz*zv+0.5*betaz*gamma^2*H4+...

0.5*betav*A3);

RE3 = gamma*(zv*betaz*gamma*H1+zz*betav*A2);

RE4 = gamma^2*(1+0.5*betaz*H4+0.5*betav*A3+0.25*betaz*betav*...

(A1*H2-A2*H1+A3*H4-A4*H3));

RE = [RE4 RE3 RE2 RE1 RE0];

REr(i) = abs(max(roots(RE))).*omega_theta;

IM0 = 0;

IM1 = 2*(zz*gamma+zv);

IM2 = -0.5*(betaz*gamma^2*H1+betav*A2);

IM3 = -2*(zz*(0.5*betav*A3+gamma)+zv*gamma^2*(0.5*betaz*H4+1));

IM4 = 2*gamma^2*(0.125*betaz*betav*(H1*A3-H2*A4-...

H3*A1+H4*A2)+0.25*(betaz*H1+betav*A2));

IM = [IM4 IM3 IM2 IM1 IM0];

IMr(i) = abs(max(roots(IM))).*omega_theta;

end

figure()

plot(Vred,REr,’b-o’,Vred,IMr,’r-o’)

xlabel(’V_{red} (m/s)’); ylabel(’Resonance frequency, \omega_r (rad/s)’)

legend(’Real roots’,’Imaginary roots’)

end
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B.1.7 timesimulation.m

% This script performs a time domain simulation from the response

% spectral density. Requires ’response.mat’ obtained from running ’main.m’.

clear all

close all

clc

load response.mat

Tmin = 0; %Minimum time value [s]

Tmax = 300; %Maximum time value [s]

Nt = 600; %Number of time increments

Vplot = [56.4]; %Wind velocities at which to perform simulation.

e = 0.01; %Error tolerance

domega = omegar(2) - omegar(1); %Frequency step

t = linspace(Tmin,Tmax,Nt);

for k = 1:length(Vplot)

x1 = zeros(Nomega,length(t));

x2 = zeros(Nomega,length(t));

ind = find(abs(V - Vplot(k))<=e,1,’last’);

for i = 1:Nomega

fi = 2*pi*rand;

ck1 = sqrt(2.*domega.*Srr11(ind,i));

ck2 = sqrt(2.*domega.*Srr22(ind,i));

for j = 1:length(t)

x1(i,j) = real(ck1.*exp(1i.*(omegar(i)*t(j)+fi)));

x2(i,j) = real(ck2.*exp(1i.*(omegar(i)*t(j)+fi)));

end

end

xt1 = sum(x1);

xt2 = sum(x2);

figure(); subplot(2,1,1); plot(t,xt1);

ylabel(’r_z (m)’);

text(0.1,0.9,[’V = ’ num2str(V(ind),3)...

’ m/s, Resonance frequency \omega=’ num2str(omegaVz(ind),3)...

’ rad/s’],’Units’,’normalized’)

text(0.1,0.1,[’Simulated: \sigma_{r_zr_z} = ’...

num2str(sigmaz(ind),3) ’ m’],’Units’,’normalized’)

subplot(2,1,2); plot(t,xt2);

xlabel(’t (s)’); ylabel(’r_\theta (rad)’);

text(0.1,0.9,[’V = ’ num2str(V(ind),3)...

’ m/s, Resonance frequency \omega=’ num2str(omegaVv(ind),3)...

’ rad/s’],’Units’,’normalized’)
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text(0.1,0.1,[’Simulated: \sigma_{r_\thetar_\theta} = ’ ...

num2str(sigmav(ind),3) ’ rad’],’Units’,’normalized’)

end
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B.2 Plot Codes

B.2.1 mainplot.m

% Main file

% This matlab code is the main file used to plot response quantities.

% Required functions:

% > modesh.m, plotADs.m, plotlog.m

% Requires ’response.mat’ obtained from running ’main.m’.

clear all

close all

clc

load response.mat

%% Plot switches (0 to disable, 1 to enable)

% Use these switches to control which quantities to plot.

%Plot mode shapes

plotmodes = 0;

%Plot aerodynamic derivatives from experimental data

ADplot = 0;

plateADplot = 0; %Includes flat plate ADs for comparison,requires ADplot=1

%Wind velocities at which to plot response parameters:

Vplot = [20 40 56.4];

% (multiple values of Vplot are supported)

% (affects FRFplot, FRFcomponents, PSDplot switches below)

%Plot Kaimal Spectral Density:

KaimalSD = 0;

%Plot Joint Acceptance Function:

JAFplot = 0;

%Plot determinant of the Frequency Response Function:

FRFplot = 0;

%Plot all components of the Frequency Response Function:

FRFcomponents = 0;

%Plot Power Spectral Density:

PSDplot = 0;

%Plot aerodynamic damping and stiffness components:

damping_stiffness = 0;

%Response plot, plots sigma, covariance coefficient and omega:

COVplot = 0;

%Parameter study of the effects of changing ADs and damping ratio:

parameterstudy = 0;
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%% Plots

if plotmodes == 1

modesh(fiHs,fiHa,fiVs,fiVa,fiTs,fiTa,nModesH,nModesV,nModesT,...

omegaH,omegaV,omegaT)

end

if ADplot == 1

if plateADplot == 1

[H1pl,H2pl,H3pl,H4pl,A1pl,A2pl,A3pl,A4pl] = ADplate(Vred);

plotADs(Vred,Vred,ADV,H1pl,H2pl,H3pl,H4pl,A1pl,A2pl,A3pl,A4pl);

else

plotADs(Vred,Vred,ADV);

end

end

if FRFplot == 1

figure()

plotlog(V,detH,omegar,Vplot);

ylim([0.01 200]); xlim([0.1 3])

xlabel(’\omega (rad/s)’)

ylabel(’|detH(\omega)|’)
end

if FRFcomponents == 1

figure()

subplot(2,2,1)

plotlog(V,abs(detH),omegar,Vplot);

ylabel(’|detH(\omega)|’)
ylim([0.01 200]); xlim([0.1 3])

legend(’Location’,’Southwest’); legend(’boxoff’)

subplot(2,2,2)

plotlog(V,abs(H11),omegar,Vplot);

ylabel(’|H_{11}(\omega)|’)
xlim([0.1 3]); legend off;

subplot(2,2,3)

plotlog(V,abs(H12),omegar,Vplot);

xlabel(’\omega (rad/s)’)

ylabel(’|H_{12}(\omega)|’)
xlim([0.1 3]); legend off;

subplot(2,2,4)

plotlog(V,abs(H22),omegar,Vplot);

xlabel(’\omega (rad/s)’)

ylabel(’|H_{22}(\omega)|’)
xlim([0.1 3]); legend off;

end
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if KaimalSD == 1

figure()

semilogx(xfLu*omegar./V(end),omegar.*Su,...

xfLw*omegar./V(end),omegar.*Sw)

xlim([min(omegar) 2*max(omegar)])

xlabel(’Reduced frequency, \omega\cdot^{x_f}L_n/V’)
ylabel(’Reduced auto spectral density, \omega\cdotS_n(\omega)/\sigma^2_n’)
legend(’n = u’,’n = w’)

end

if JAFplot == 1

figure()

loglog(betau,sqrt(Iu11),’-’,betau,sqrt(Iu12),’--’,betau,sqrt(Iu22),’-.’);

grid on

xlabel(’\beta=C_{ux}\cdot\omega\cdotL_{exp}/V’)
ylabel(’Integral, I_u(\beta)’)
figure()

loglog(betaw,sqrt(Iw11),’-’,betaw,...

sqrt(Iw12),’--’,betaw,sqrt(Iw22),’-.’); grid on

xlabel(’\beta=C_{wx}\cdot\omega\cdotL_{exp}/V’)
ylabel(’Integral, I_w(\beta)’)
xlim([0.1 100])

figure()

loglog(omegar.*Lexp./V(end),J11red,’b’,...

omegar.*Lexp./V(end),abs(J12red),’g’,...

omegar.*Lexp./V(end),J22red,’r’);

xlabel(’\omega\cdotL_{exp}/V’)
ylabel(’J_{red}^2’)

legend(’J_{11}’,’J_{12}’,’J_{22}’)

title(’The reduced joint acceptance function squared’)

end

if PSDplot == 1

figure()

subplot(2,2,1)

plotlog(V,abs(Srr11),omegar,Vplot);

ylabel(’S_{r_zr_z} (s\cdotm^2)’)
xlim([0.1 3])

legend(’Location’,’Southwest’); legend(’boxoff’)

subplot(2,2,2)

plotlog(V,abs(Srr12),omegar,Vplot);

ylabel(’S_{r_zr_\theta} (s\cdotm\cdotrad)’)
xlim([0.1 3]); legend off;

subplot(2,2,3)

plotlog(V,abs(Srr21),omegar,Vplot);

xlabel(’\omega (rad/s)’)
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ylabel(’S_{r_\thetar_z} (s\cdotm\cdotrad)’)
xlim([0.1 3]); legend off;

subplot(2,2,4)

plotlog(V,abs(Srr22),omegar,Vplot);

xlabel(’\omega (rad/s)’)

ylabel(’S_{r_\thetar_\theta} (s\cdotrad^2)’)
xlim([0.1 3]); legend off;

end

if COVplot == 1

CovCoef = COVzv./(sigmaz.*sigmav);

figure()

subplot(2,2,1); plot(V,sigmaz,’-o’); grid on;

ylabel(’\sigma_{r_zr_z} (m)’)

subplot(2,2,2); plot(V,CovCoef,’-o’); ylim([0 1]); grid on

ylabel(’\rho_{r_zr_\theta} (rad/s)’)

subplot(2,2,3); plot(V,sigmav,’-o’); grid on

ylabel(’\sigma_{r_\thetar_\theta} (rad)’); xlabel(’V (m/s)’)

subplot(2,2,4); plot(V,omegaVv(1,1:length(omegaVv)-1),’b-o’,...

V,omegaVz(1,1:length(omegaVz)-1),’r-d’); grid on

ylabel(’\omega_i(V) (rad/s)’); xlabel(’V (m/s)’)

legend(’\omega_\theta’,’\omega_z’,’Location’,’Northwest’); legend(’boxoff’)

end

if damping_stiffness == 1

figure()

subplot(2,2,1); plot(V,zeta_z-z_aezz,’b-o’,V,zeta_theta-z_aevv,’g-s’);

grid on; ylabel(’\zeta_i_{tot}’)
legend(’i = z’,’i = \theta’,’Location’,’Northwest’)
subplot(2,2,2); plot(V,k_aezz,’b-o’,V,k_aevv,’g-s’); grid on

ylabel(’\kappa_{ae}_{i}’)
legend(’i = z’,’i = \theta’,’Location’,’Northwest’)
subplot(2,2,3); plot(V,z_aezv,’b-o’,V,z_aevz,’g-s’); grid on;

legend(’ij = z\theta’,’ij = \thetaz’,’Location’,’Southwest’)
ylabel(’\zeta_{ae}_{ij}’); xlabel(’V (m/s)’)

subplot(2,2,4); plot(V,k_aezv,’b-o’,V,k_aevz,’g-s’); grid on

ylabel(’\kappa_{ae}_{ij}’); xlabel(’V (m/s)’)

legend(’ij = z\theta’,’ij = \thetaz’,’Location’,’Northwest’)
print -dtiff C:\Users\Notandi\Documents\MATLAB\Masteroppgave\kappazeta

end

%% Parametric study

if parameterstudy == 1

% Damping variation

col = {’b’,’r’,[0 0.5 0]};
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figure

for i = 1:3

filename = [ ’dampingvar’ num2str(i) ’.mat’ ];

load(filename);

hold on

plot(V,sigmav,’-o’,’color’,col{i})

end

xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

legend(’\zeta_{\theta} = 0.0025’,’\zeta_{\theta} = 0.001’,...

’\zeta_{\theta} = 0.025’,’location’,’northwest’)

% AD variation (omega_theta)

% H1

figure

subplot(2,2,1); grid on

hold all

plot(V,sigmav,’-o’,’color’,’b’)

load 05H1.mat

plot(V,sigmav,’-o’,’color’,’r’)

load 2H1.mat

plot(V,sigmav,’-o’,’color’,’g’)

xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

ylim([0 0.12]);

legend(’H1*’,’0.5\cdotH1*’,’2\cdotH1*’,’location’,’northwest’)

% H2

load(’response.mat’,’sigmav’,’V’)

subplot(2,2,2); grid on

hold all

plot(V,sigmav,’-o’,’color’,’b’)

load 05H2.mat

plot(V,sigmav,’-o’,’color’,’r’)

load 2H2.mat

plot(V,sigmav,’-o’,’color’,’g’)

xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

ylim([0 0.12]);

legend(’H2*’,’0.5\cdotH2*’,’2\cdotH2*’,’location’,’northwest’)

% H3

load(’response.mat’,’sigmav’,’V’)

subplot(2,2,3); grid on

hold all

plot(V,sigmav,’-o’,’color’,’b’)

load 05H3.mat

plot(V,sigmav,’-o’,’color’,’r’)

load 2H3.mat

plot(V,sigmav,’-o’,’color’,’g’)
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xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

ylim([0 0.12]);

legend(’H3*’,’0.5\cdotH3*’,’2\cdotH3*’,’location’,’northwest’)

% H4

load(’response.mat’,’sigmav’,’V’)

subplot(2,2,4); grid on

hold all

plot(V,sigmav,’-o’,’color’,’b’)

load 05H4.mat

plot(V,sigmav,’-o’,’color’,’r’)

load 2H4.mat

plot(V,sigmav,’-o’,’color’,’g’)

xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

ylim([0 0.12]);

legend(’H4*’,’0.5\cdotH4*’,’2\cdotH4*’,’location’,’northwest’)

% A1

figure

subplot(2,2,1); grid on

load(’response.mat’,’sigmav’,’V’)

hold all

plot(V,sigmav,’-o’,’color’,’b’)

load 05A1.mat

plot(V,sigmav,’-o’,’color’,’r’)

load 2A1.mat

plot(V,sigmav,’-o’,’color’,’g’)

xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

ylim([0 0.12]);

legend(’A1*’,’0.5\cdotA1*’,’2\cdotA1*’,’location’,’northwest’)

% A2

load(’response.mat’,’sigmav’,’V’)

subplot(2,2,2); grid on

hold all

plot(V,sigmav,’-o’,’color’,’b’)

load 05A2.mat

plot(V,sigmav,’-o’,’color’,’r’)

load 2A2.mat

plot(V,sigmav,’-o’,’color’,’g’)

xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

ylim([0 0.12]);

legend(’A2*’,’0.5\cdotA2*’,’2\cdotA2*’,’location’,’northwest’)

% A3

load(’response.mat’,’sigmav’,’V’)

subplot(2,2,3); grid on
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hold all

plot(V,sigmav,’-o’,’color’,’b’)

load 05A3.mat

plot(V,sigmav,’-o’,’color’,’r’)

load 2A3.mat

plot(V,sigmav,’-o’,’color’,’g’)

xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

ylim([0 0.12]);

legend(’A3*’,’0.5\cdotA3*’,’2\cdotA3*’,’location’,’northwest’)

% A4

load(’response.mat’,’sigmav’,’V’)

subplot(2,2,4); grid on

hold all

plot(V,sigmav,’-o’,’color’,’b’)

load 05A4.mat

plot(V,sigmav,’-o’,’color’,’r’)

load 2A4.mat

plot(V,sigmav,’-o’,’color’,’g’)

xlabel(’V (m/s)’); ylabel(’\sigma_{r_\thetar_\theta} (rad)’);

ylim([0 0.12]);

legend(’A4*’,’0.5\cdotA4*’,’2\cdotA4*’,’location’,’northwest’)
end
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B.2.2 modesh.m

% This matlab function plots the mode shape of a suspension bridge

% Input parameters:

% fiH - horizontal mode shapes obtained from exportResponseDat.m

% fiV - vertical mode shapes obtained from exportResponseDat.m

% fiT - torsional mode shapes obtained from exportResponseDat.m

% nModes - number of modes extracted from avlsat for each mode component

function modesh(fiHs,fiHa,fiVs,fiVa,fiTs,fiTa,nModesH,nModesV,nModesT,...

omegaH,omegaV,omegaT)

X = [0 2050 -1.1 1.1]; % Axis settings

%% Horizontal modes

if isempty(fiHs) == 0

h=figure(); hold all; grid off;

for i = 1:2:(nModesH)

subplot((nModesH/2),2,i)

plot(fiHs(:,1),fiHs(:,(i+1)),’b-’,...

fiHs(:,1),fiHs(:,(i+2)),’r--’)

ylabel([’\phi_y_,_s_y_m_,_’ num2str(i-0.5*(i-1))]);

axis(X);

text(40,-0.5,[’\omega_y_s_’ num2str(i-0.5*(i-1)) ’=’ num2str(...

omegaH(i-0.5*(i-1),3),3) ’ rad/s’])

if i == 1

title(’Horizontal symmetric modes’);

end

if i == 5

xlabel(’x’);

end

subplot((nModesH/2),2,i+1)

plot(fiHa(:,1),fiHa(:,(i+1)),’b-’,...

fiHa(:,1),fiHa(:,(i+2)),’r--’)

ylabel([’\phi_y_,_a_s_y_m_,_’ num2str(i-0.5*(i-1))]);

axis(X);

text(40,-0.5,[’\omega_y_a_’ num2str(i-0.5*(i-1)) ’=’ num2str(...

omegaH(i-0.5*(i-1)+nModesH/2,3),3) ’ rad/s’])

if i == 1

title(’Horizontal asymmetric modes’);

end

if i == 5

xlabel(’x’);

end

end

saveas(h,sprintf(’modeshH%d.tiff’,1));

end
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%% Vertical modes

if isempty(fiVs) == 0

v=figure(); hold all; grid off;

for i = 1:2:(nModesV)

subplot((nModesV/2),2,i)

plot(fiVs(:,1),fiVs(:,(i-0.5*(i-1)+1)))

ylabel([’\phi_z_,_s_y_m_,_’ num2str(i-0.5*(i-1))]);

axis(X);

text(40,-0.5,[’\omega_z_s_’ num2str(i-0.5*(i-1)) ’=’ num2str(...

omegaV(i-0.5*(i-1),3),3) ’ rad/s’])

if i == 1

title(’Vertical symmetric modes’);

end

if i == 5

xlabel(’x’);

end

subplot((nModesV/2),2,i+1)

plot(fiVa(:,1),fiVa(:,(i-0.5*(i-1)+1)))

ylabel([’\phi_z_,_a_s_y_m_,_’ num2str(i-0.5*(i-1))]);

axis(X);

text(40,-0.5,[’\omega_z_a_’ num2str(i-0.5*(i-1)) ’=’ num2str(...

omegaV(i-0.5*(i-1)+nModesV/2,3),3) ’ rad/s’])

if i == 1

title(’Vertical asymmetric modes’);

end

if i == 5

xlabel(’x’);

end

end

saveas(v,sprintf(’modeshV%d.tiff’,1));

end

%% Torsional modes

if isempty(fiTs) == 0

% Symmetric:

t=figure(); hold all; grid off;

for i = 1:2:(nModesT)

subplot((nModesT/2),2,i)

plot(fiTs(:,1),fiTs(:,(i-0.5*(i-1)+1)))

ylabel([’\phi_\theta_,_s_y_m_,_’ num2str(i-0.5*(i-1))]);

axis(X);

text(40,-0.5,[’\omega_\theta_s_’ num2str(i-0.5*(i-1)) ’=’ num2str(...

omegaT(i-0.5*(i-1),3),3) ’ rad/s’])

if i == 1

title(’Torsional symmetric modes’);

end

if i == 5
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xlabel(’x’);

end

subplot((nModesT/2),2,i+1)

plot(fiTa(:,1),fiTa(:,(i-0.5*(i-1)+1)))

ylabel([’\phi_\theta_,_a_s_y_m_,_’ num2str(i-0.5*(i-1))]);

axis(X);

text(40,-0.5,[’\omega_\theta_a_’ num2str(i-0.5*(i-1)) ’=’ num2str(...

omegaT(i-0.5*(i-1)+nModesT/2,3),3) ’ rad/s’])

if i == 1

title(’Torsional asymmetric modes’);

end

if i == 5

xlabel(’x’);

end

end

saveas(t,sprintf(’modeshT%d.tiff’,1));

end
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B.2.3 plotlog.m

% This function generates a logarithmic plot of variables X and Y.

% This works for any length of Vplot and thus supports multiple plots

% in the same figure or subplot diagram.

%

% Parameter definitions:

% V - Mean Wind Velocity [m/s]

% Vplot - A vector of the mean wind velocities at which to plot [m/s]

function plotlog(V,Y,X,Vplot)

grid on;

C = {’b’,’r’,[0 0.5 0],[0.7 0 0.7],[0.7 0.7 0]};

L = {’-’,’--’,’--’,’--’,’--’};

for k = 1:length(Vplot)

ind = find(V == Vplot(k));

if k <6

color = C{k};

line = L{k};

loglog(X(1,:),Y(ind,:),’color’,color,’linestyle’,line); grid on

legendInfo{k} = [’V = ’ num2str(Vplot(k),3) ’ m/s’];

else

color = rand(1,3);

loglog(X(1,:),Y(ind,:),’color’,color,’linestyle’,’--’);

legendInfo{k} = [’V = ’ num2str(Vplot(k),3) ’ m/s’];

end

hold on

end

hold off

legend(legendInfo,’Location’,’Northwest’)

legend(’boxoff’)
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B.2.4 plotADs.m

% This function plots defined aerodynamic derivatives for a structure.

% Optionally, flat plate aerodynamic derivatives can be included for

% comparison.

%

% Parameter definitions:

% Vred_z,Vred_theta - Reduced mean wind velocities in the vertical

% direction and in torsion, respectively

% ADs - Aerodynamic derivatives

% Hnpl,Anpl - Flat plate aerodynamic derivatives, n = 1,2,3,4

function plotADs(Vred_z,Vred_theta,ADs,varargin)

%Optional parameters, used for flat plate ADs.

switch nargin

case 3

case 11

H1pl = varargin{1}; A1pl = varargin{5};

H2pl = varargin{2}; A2pl = varargin{6};

H3pl = varargin{3}; A3pl = varargin{7};

H4pl = varargin{4}; A4pl = varargin{8};

otherwise

error(’Unexpected inputs’)

end

% Plot of Hn

figure();

subplot(4,2,1); plot(Vred_z,ADs(1,:),’b’); ylabel(’H_1*’);

xlim([min(Vred_z) max(Vred_z)]); grid on;

if exist(’H1pl’,’var’)

hold on; plot(Vred_z,H1pl,’r--’);ylabel(’H_1*’); hold off

end

subplot(4,2,2);plot(Vred_theta,ADs(2,:),’b’);ylabel(’H_2*’);

xlim([min(Vred_z) max(Vred_z)]); grid on;

if exist(’H2pl’,’var’)

hold on; plot(Vred_theta,H2pl,’r--’);ylabel(’H_2*’); hold off

end

subplot(4,2,3); plot(Vred_z,ADs(3,:),’b’); ylabel(’H_3*’);

xlim([min(Vred_z) max(Vred_z)]); grid on;

if exist(’H3pl’,’var’)

hold on; plot(Vred_z,H3pl,’r--’);ylabel(’H_3*’); hold off

end

subplot(4,2,4);plot(Vred_theta,ADs(4,:),’b’);ylabel(’H_4*’);

xlim([min(Vred_z) max(Vred_z)]); grid on;

if exist(’H4pl’,’var’)
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hold on; plot(Vred_theta,H4pl,’r--’);ylabel(’H_4*’); hold off

end

% Plot of An

subplot(4,2,5); plot(Vred_z,ADs(5,:),’b’); ylabel(’A_1*’);

xlim([min(Vred_z) max(Vred_z)]); grid on;

if exist(’A1pl’,’var’)

hold on; plot(Vred_z,A1pl,’r--’);ylabel(’A_1*’); hold off

end

subplot(4,2,6);plot(Vred_theta,ADs(6,:),’b’);ylabel(’A_2*’);

xlim([min(Vred_z) max(Vred_z)]); grid on;

if exist(’A2pl’,’var’)

hold on; plot(Vred_theta,A2pl,’r--’);ylabel(’A_2*’); hold off

end

subplot(4,2,7); plot(Vred_z,ADs(7,:),’b’); ylabel(’A_3*’);

xlabel(’V/(B\omega_i)’);
xlim([min(Vred_z) max(Vred_z)]); grid on;

if exist(’A3pl’,’var’)

hold on; plot(Vred_z,A3pl,’r--’);ylabel(’A_3*’); hold off

end

subplot(4,2,8);plot(Vred_theta,ADs(8,:),’b’);ylabel(’A_4*’);

xlabel(’V/(B\omega_i)’);
xlim([min(Vred_z) max(Vred_z)]); grid on;

if exist(’A4pl’,’var’)

hold on; plot(Vred_theta,A4pl,’r--’);ylabel(’A_4*’); hold off

end

set(gcf,’NextPlot’,’add’);axes;

h = title(’Aerodynamic derivatives’);

set(gca,’Visible’,’off’);set(h,’Visible’,’on’);

print -dtiff C:\Users\Notandi\Documents\MATLAB\Masteroppgave\AD
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