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Preface

This thesis is the result of a doctoral project at the Department of Production
and Quality Engineering (IPK) at the Norwegian University of Science and
Technology (NTNU). The work was carried out from November 2004 until
April 2008.

This PhD position has been funded through the research project “Mainte-
nance and refurbishment in hydropower” (Vedlikehold og rehabilitering innen
vannkraft), which lasted five years and which was commissioned by the Norwe-
gian Electricity Industry Association (EBL - Energibedriftenes landsforening).
The research work was carried out at SINTEF Energy Research, Department
of Energy Systems, and the PhD work was conducted in collaboration with
research activities at SINTEF.

One of the objectives of the research project was the development of a
deterioration and maintenance model for components in hydropower plants.
A PhD position was announced with the goal of supporting research in the
field of failure and maintenance modelling. The research project had already
started in 2001. However, when I started to work as researcher at SINTEF
Energy Research in August 2004, the position was still vacant. It turned out
that filling the gap of the vacant PhD position was my mission and hence
I started as PhD student at IPK in November of 2004. Unfortunately, the
research project had already ended before my work was completed. In 2006,
however, the follow-up project “Value adding maintenance in power produc-
tion” (Verdiskapende vedlikehold innen kraftproduksjon) was launched, which
will last until 2010.

Trondheim, April 2008 Thomas Welte
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1

Summary

High reliability is an indispensable requirement for the operation of techni-
cal systems and infrastructure, such as power plants, oil platforms, aircrafts,
railway lines and bridges. Failures can result in high costs and hazards to
humans and the environment. Practically all technical systems are subject to
deterioration, and a failure is often the consequence of excessive deterioration.
Thus, inspections and maintenance are undertaken to uncover deterioration
and to prevent failures and damage.

The improvement and the optimization of maintenance has great poten-
tial for cost savings. In order to exploit this potential, we need a systematic
and structured approach. Furthermore, mathematical models are required to
quantify the influence of maintenance decisions on reliability and costs.

The main objective of this thesis has been the development of a general
deterioration and maintenance model for components in hydropower plants.
The model was designed to serve as basis for maintenance planning and main-
tenance optimization. It is intended help to answer questions, such as:

• What is the probability of failure in a given time interval?
• How often should inspections be carried out?
• Is it better to carry out a maintenance action now or in x years?
• Is it advisable to postpone the action?
• What are the costs if the action is postponed?
• If we can choose between alternatives A and B: Which alternative should

be performed first?

The aim has been to develop a general model that can be applied to different
components and failure modes. The model was designed to utilize existing
methods, processes and perspectives in the Norwegian electricity industry.

The general maintenance model presented in this thesis is based on a
deterioration model consisting of a semi-Markov process with discrete state
space. The model was built on an existing state definition established by
the industry. This state definition is based on observable and thus physical
properties of the deteriorating component. These states are therefore denoted
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physical states. It is assumed that the sojourn time in a physical state may
be modelled using a gamma distribution. A numerical solution procedure is
suggested that requires states with exponentially distributed sojourn times.
Thus, it is suggested transforming the gamma distributed sojourn times in
the physical states into virtual states with exponentially distributed sojourn
times, that is, transforming the gamma distributions into a Markov process.
The thesis discusses different approaches on how to establish the virtual states.

A challenge in maintenance modelling is to provide a time-dependent
model solution and to incorporate different maintenance strategies in the
model, such as non-periodic inspections. An analytical solution for this case
is difficult to obtain. Thus, a numerical solution is presented in this thesis
for computing the expected number of inspections and maintenance actions
in a given time interval. It is shown how deterioration, inspections and main-
tenance can be mathematically treated by simple numerical procedures. Fur-
thermore, imperfect inspection and imperfect repair may also be realized.
The numerical procedure presented serves the requirements of the Norwegian
electricity industry.

A Bayesian framework is suggested for estimating the parameters of the
sojourn time distributions. Both expert judgement and condition monitoring
data may be used as sources of information for the parameter estimation. The
thesis also provides suggestions on how to carry out expert judgement.

The thesis also discusses two other popular models: First, a maintenance
model that also uses a Markov processes and that is frequently applied to
modelling maintenance of components in electric power systems, and second,
a maintenance model that treats the deterioration as a gamma process. It
is shown that the former yields an error when it is used to analyse mainte-
nance strategies with non-periodic inspections. The results presented make
clear that the incorporation of a non-periodic inspection strategy is not as
easy as suggested in some research papers. The latter yields similar results in
maintenance optimization as the model presented if a maintenance strategy is
analysed that is defined for discrete states. Differences and similarities between
the models are described and advantages and disadvantages are discussed.

This thesis discusses all relevant modelling steps; from describing existing
concepts and perspectives in the electricity industry, building the model, es-
timating parameters and calculating results, to the presentation of relevant
examples. Solutions for all modelling steps are outlined. Thus, an operational
model is provided that is ready to be implemented and applied by the elec-
tricity industry. Close corporation with the ongoing research activities at SIN-
TEF Energy Research allowed successful testing of some of the thesis results
at electricity companies participating in the research project.

The model presented provides a general framework for deterioration mod-
elling. In some cases, there is the need for a more specialized deterioration
model. One example is presented in this thesis where the influence of different
operating conditions on the life of Francis turbines is analysed by a deter-
ministic crack growth model. This model is based on the empirical Paris’ law.
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Crack growth simulations are used to investigate the influence of different load
patterns on crack propagation and residual lifetime. The model may be used
to quantify the relationship between turbine operation and damage progres-
sion, and consequently, to assess the lifetime reduction caused by changes of
the operating conditions.
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Structure of thesis

This thesis is divided into two parts:

• Part I
The first part starts with an introduction where the background for the
thesis is described, where some perspectives and concepts used in the Nor-
wegian electricity industry are described, and where the objectives and the
scope of the thesis are defined. Maintenance and deterioration modelling
is briefly discussed in the subsequent chapter. A description of the scien-
tific approach is given in Chapter 5 and the main results are presented
in Chapter 6. Some important topics are discussed in Chapter 7 and the
conclusions, including suggestions for further work, follow in Chapter 8.
The first part also comprises two appendices where the numerical solution
procedure is described and where the influence of parameter uncertainty
on the modelling results is discussed. This first part of the thesis combines
the content of the papers found in Part II into a totality that serves to
fulfil the thesis objectives.

• Part II
The second part consists of a collection of papers constituting the major
work that was carried out.

List of papers and publications

This thesis includes the following papers:

• Paper 1:
T. M. Welte, J. Vatn and J. Heggset
Markov state model for optimization of maintenance and renewal of hydro
power components
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• Paper 2:
T. M. Welte
A theoretical study of the impact of different distribution classes in a
Markov model

• Paper 3:
T. M. Welte
Using state diagrams for modelling maintenance of deteriorating systems

• Paper 4:
T. M. Welte
Comparison of a gamma process and a state space model applied to main-
tenance optimization

• Paper 5:
T. M. Welte and A. O. Eggen
Estimation of sojourn time distribution parameters based on expert opin-
ion and condition monitoring data

• Paper 6:
T. M. Welte
A rule-based approach for establishing states in a Markov process applied
to maintenance modelling

• Paper 7:
T. M. Welte, A. Wormsen and G. Härkeg̊ard
Influence of different operating patterns on the life of Francis turbine run-
ners

Paper [1] and reports [2, 3] are based on the results presented in this work,
but are not included in this thesis.



Part I

Main Report
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Introduction

This chapter provides a description of the background for the thesis, as a
means to provide a broader context for the work. Some concepts and per-
spectives that are frequently used in the Norwegian electricity industry are
described. These concepts and perspectives define a frame within which this
work must be integrated. The thesis objectives are defined at the end of this
chapter, along with its scope and the delimitations.

The title of this thesis “Deterioration and maintenance models for com-
ponents in hydropower plants” describes in few words the contents of this
thesis. The objective has been to develop a suitable deterioration and main-
tenance model for components in hydropower plants that can provide a basis
for maintenance planning.

3.1 Background

Hydropower plant downtime, or damage to a power production unit, may
result in substantial economic consequences. The failure costs comprise not
only the repair costs for the failed equipment, but also loss of production.
Each unit in a plant produces dozens of MWh of electrical energy, and for
a major production unit or a big power plant, production losses due to an
unexpected failure may add up to 100 000 EUR1 per day. In addition, threats
to human life and health may arise when personnel or other individuals are
present at severe failure events. Other factors are environmental damage and
loss of reputation, which ultimately might result in a loss of customers.

In order to avoid failures and unscheduled plant downtime, plant operators
regularly carry out inspections and maintenance of their equipment. Typical
questions the engineers responsible for maintenance planning must consider
are (see also [4]):

1 Example: Run-of-river hydropower plant. Output: 100 MW. Electricity price:
40 EUR/MWh → 100 MW · 24 h · 40 EUR/MWh = 96 000 EUR
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• What is the probability of failure within a given time interval?
• How often should inspections be carried out?
• Is it better to carry out a maintenance action now or in x years?
• Is it advisable to postpone the action?
• What are the costs if the action is postponed?
• If there must be chosen between two maintenance actions, which mainte-

nance action should be performed first?

In order to answer these questions, maintenance engineers must rely on either
experience or models and tools for decision support.

Traditionally, maintenance decisions have been based on experience. In
the 20th century, most plants were manned by maintenance personnel. The
personnel got to know ‘their’ plant on their daily tours of the plant, and they
knew what ‘their’ plant’s weaknesses and typical problems were. Irregularities
and deviations were detected at an early stage and were corrected immediately.

A new situation arose after the deregulation of the Norwegian electricity
market at the beginning of the 1990s. A national exchange for trading of
electrical power was established in 1993. Sweden joined the exchange in 1996
and the world’s first multinational exchange for trade of electrical power,
named NordPool ASA, was established. The Nordic power market became
fully integrated when Finland and Denmark joined few years later [5]. Apart
from physical limitations in transmission capacity, this market allows for free
trading of electrical power between all Nordic countries.

This new situation has led to two main trends:

1. Changing operating conditions, since the prices can vary significantly over
short periods, driven by supply and demand. Companies try to produce
electricity during periods when the prices are highest to maximize their
profit. This results in more market-driven operating strategies, such as
peak load production, an increased number of starts and stops, and faster
start-ups and run-downs [6, 7].

2. An increased focus on cost reduction due to fierce competition on the
deregulated market. This has led to a shift from technical to economic
driving factors [8]. Thus, maintenance optimization and a reduction of
operating costs have become a priority area for companies.

The former has led to extraordinary and increased loads, which may stress
the components beyond their design limits and which may reduce their life-
time. Thus, previously used inspection and maintenance intervals are no longer
valid and companies must reconsider and optimize their maintenance pro-
grams.

The latter resulted in activities such as staff reduction and in a need
for suitable decision support systems. Mathematical models for maintenance
planning and optimization hardly exist in the electricity industry [9]; and
when they exist, they are seldom applied. Most of the maintenance models
that are available have been developed in other industrial branches and must
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be adapted to an application in the electricity industry. Research activities
were therefore launched [10–12] in order to develop models and tools that take
into account the requirements of the Norwegian electricity industry.

A model for decision support for maintenance and upgrading of hy-
dropower stations had been developed in the 1990s [13, 14]. The model is de-
noted ‘VTG’ (water path, turbine, generator; in Norwegian: vannvei, turbin,
generator), and helps to find the optimal point in time for upgrading hy-
dropower plants. The VTG-model contains a simple failure model based on a
lifetime distribution. However, the main focus of the model is not on failure
modelling, but on production planning and on changes of the plant efficiency
due to equipment upgrades. A deterioration model is not included in the VTG-
model. Hence, it does not link deterioration with the residual lifetime and the
failure probability, and it cannot use results from condition monitoring. Thus,
a deterioration and maintenance model must be developed if a more detailed
analysis of failures, deterioration and the influence of maintenance on the
lifetime is desired.

3.2 Existing concepts and perspectives

This section describes concepts and perspectives that are used in the Norwe-
gian electricity industry. An understanding of these concepts and perspectives
is very important because they provide the background for some of the choices
made during the modelling process.

One of the objectives in this thesis has been to use relevant concepts and
perspectives existing in the industry. It is therefore important to start with
a description of these concepts and perspectives. It is easier to apply a new
model when it is based on existing foundations, because they are accepted
and known by the practitioners, whereas the introduction of something that
is completely new may cause opposition and refusal. The existing concepts
and perspectives must be extended and supplemented when necessary.

3.2.1 Condition monitoring

In some cases, it is possible to measure physical deterioration directly (e.g.
tire wear). In many other cases, however, physical deterioration cannot be
measured directly [15]. Thus, one or several other quantities must be used as
a deterioration indicator (e.g., power output of a generator, oil temperature in
a gear). Based on these quantities, the deterioration (technical condition) can
be judged. In an ideal case, the condition of a component can be related to
one measurable quantity. If continuous monitoring of this quantity is possible,
deterioration can be monitored and maintenance actions can be performed
before a failure occurs.

In many situations, the technical condition of a component cannot be
described by a continuous, measurable quantity. Component deterioration is
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often assessed by visual inspections or by other methods that lead to quali-
tative results only. The appearance of a surface or the colour of a lubricant,
for example, are properties that are difficult to quantify. As an alternative
to continuous measures, discrete measures, such as states, grades and classes
have been introduced. This results in the definition of several discrete deteri-
oration states. The examples in the literature show that the number of states
is usually set in the range of three to six.

A classification system with six states was used by van Winden and Dekker
[16] to describe the condition of building elements such as masonry, win-
dow frames and painting. Kallen et al. [17–19] presented maintenance models
where the condition of bridges was rated by six and seven states. Endrenyi et
al. [4, 20, 21] presented maintenance models for electric power system com-
ponents that are based on a classification system with four states. A similar
classification system is used by the Norwegian hydropower industry where five
states are defined, as described in the following section.

3.2.2 The EBL classification system

In the 1990s, the Norwegian Electricity Industry Association (EBL) intro-
duced a classification system with five states for the description of the deteri-
oration of hydropower plant components. A general description of the states
is given in Table 3.1. EBL published handbooks [22] where a more detailed
description of the states was provided for all major components and failure
mechanisms. Examples of such descriptions are given in Tables 3.2 and 3.3 for
the Francis turbine runner and ‘material fatigue’ as the failure mechanism.
The examples show that it is sometimes necessary to combine two or several
inspection methods to get an idea of the component’s actual deterioration
state. The handbooks and the classification system are widely used by plant
operators, which means that the maintenance personnel are accustomed to
these state definitions.

In 2002, a survey of condition indicators that are registered or measured
by the Norwegian electricity industry was conducted by SINTEF Energy Re-
search [23]. The survey lists 229 indicators and parameters for different plant
components. The results show that for mechanical equipment in a hydropower
plant, such as the turbine, approximately 50 % of the indicators are judged
by means of the EBL classification system. Thus, if a maintenance model is
developed for the hydropower industry it should be adapted to this system.
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Table 3.1. General description of deterioration states according to the Norwegian
Electricity Industry Association (EBL) [22].

State Description

1 No indication of deterioration.
2 Some indication of deterioration. The condition is noticeably worse than

‘as good as new’. (‘Minor deterioration’)
3 Serious deterioration. The condition is considerably worse than ‘as good

as new’. (‘Major deterioration’)
4 The condition is critical.

Table 3.2. Description of deterioration states. Component: Turbine runner. Failure
mechanism: Fatigue. Inspection method: Visual inspection [24].

State Description

1 Surface is plane and bright. No sign of damage.
2 Minor areas of the runner have a dull surface.
3 Surface is rough. Pitting. Small cracks evaluated as uncritical.
4 Critical cracks in the turbine runner.

Table 3.3. Description of deterioration states. Component: Turbine runner. Failure
mechanism: Fatigue. Inspection method: Liquid penetration [24].

State Description

1 No crack detection.
2 No crack detection.
3 No crack detection.
4 Cracks.
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3.2.3 Inspection strategy

The operator of the plant must conduct inspections and maintenance to de-
tect deterioration and to prevent failures. Preventive maintenance is the most
beneficial strategy for many components in a hydropower plant. Condition-
based maintenance is used for the major equipment such as the generator and
the turbine. Recurrent inspections play a decisive role in this strategy. When
condition information about the equipment condition is available, it is more-
over advantageous to increase the inspection frequency, if the component is
in an advanced state of deterioration. Thus, a so-called non-periodic inspec-
tion strategy is employed, instead of a periodic strategy with constant time
intervals between each inspection. Three reasons support this strategy:

• It is more cost effective to reduce the inspection frequency for new com-
ponents and to increase it when signs of deterioration become visible.

• The deterioration often accelerates as the deterioration itself progresses,
and thus, the expected sojourn time in a deterioration state becomes
shorter state by state.

• The likelihood of detecting a potential failure and progressed deterioration
increases when the inspection interval length is reduced.

Some components have a high failure rate during the initial phase of their
lifetime (known as ‘infant mortality’). This behaviour is often illustrated by
the decreasing part of the bathtub curve. If infant mortality is not caused by a
shock, but by rapid component deterioration, frequent inspections during the
early phase would help detect infant mortality and thus prevent these failures.
Information about this type of failure is scarce in the electricity industry, and
it is not clear to what extent this is of importance for hydropower plants. The
deterioration model presented in this thesis does not take infant mortality into
account. An extension of the model to include infant mortality is a potential
topic for future work.

3.2.4 Economic framework

Many maintenance actions in the electricity industry are economically moti-
vated. A common application of maintenance and deterioration models is in
maintenance and refurbishment planning. In this case, the maintenance and
deterioration models are part of a broader modelling framework, which con-
sists of an economic analysis, a cost-benefit analysis, a failure consequence
analysis, and so on. The overall objective is to provide decision support for
maintenance and reinvestments; typical questions to be answered are listed in
Section 3.1, and some typical application examples are presented in [1, 20, 21].

An electricity company will invest in maintenance or new equipment when
it can be proven that the investment is economically profitable. Cost fac-
tors that influence profitability are, among others, the investment costs (new
equipment, manpower etc.), production losses during scheduled downtime and
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failure costs (replacement or repair of failed equipment, manpower, production
loss during unscheduled downtime etc.).

It is common practice to discount all costs [1, 20, 21, 25]. This means
that costs that occur far in the future are not of interest because the present
value of these costs is approximately zero (see Paper 1). Furthermore, the
analysis period is usually restricted to 30 to 70 years and costs in the far
future occur outside of the analysis period. From this it follows that if we
consider a component that has a long lifetime, we are rather interested in a
time-dependent model solution describing the component’s behaviour within
the analysis period, rather than in an asymptotic solution that is only valid
in a steady state situation.

3.2.5 Implications for maintenance modelling

The topics addressed suggest that a maintenance model for the Norwegian
hydropower industry should meet the following needs:

• The model should be capable of handling inspection results expressed by
means of discrete condition states.

• State dependent inspection interval lengths should be taken into account
(non-periodic inspections).

• The model solution should yield a time-dependent solution to enable cost
discounting.

This thesis thus presents a maintenance model that fulfils these requirements.

3.3 Objectives

The main objective of this work has been to develop a deterioration and
maintenance model for components in hydropower plants. The model serves as
basis for further modelling steps such as maintenance scheduling, maintenance
optimization, investment planning and profitability analyses. The focus should
not only be on modelling theory, but also on demonstrating how the model
can be applied in practice.

The following more specific objectives have been identified:

• To identify a deterioration and maintenance model that is suitable for an
application in the Norwegian hydropower industry. The model shall utilize
and support commonly used concepts, perspectives, inspection methods
and maintenance routines.

• To develop a general model that may be used for different types of equip-
ment, deterioration mechanisms and failure modes.

• To compare the suggested model with other models to verify and validate
the model and to discuss differences, similarities, advantages and disad-
vantages.
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• To show how the input parameters in the model can be estimated based
on different types of available sources of information.

• To provide realistic examples that show the application and use of the
model and the results.

3.4 Delimitations and scope

This thesis is written from an engineer’s point of view. Thus, it must be
considered to be applied science and not pure science. Some parts of this
thesis deal with mathematical models and statistical methods. Nevertheless,
the main contributions of this thesis are not in statistics and mathematics,
but in applied reliability engineering.

The work in this thesis is adapted to conditions in the Norwegian electricity
industry; particularly those that apply to hydropower plants. Nevertheless, the
results and models presented here are general enough so that they may also
be applied to components in other types of power generating plants. Certain
components in the electricity transmission and distribution grid might also
be potential application areas. The results may be extended to applications
in other industrial sectors, in and outside of Norway, as well.

One may classify all components in hydropower plants and electrical in-
stallations as either ‘point objects’ (also denoted ‘discrete objects’) or ‘line
objects’ [8]. Many components in a hydropower plant are classified in the
former category (e.g., most of the parts and components in a turbine or a
generator). Some other components, especially in the electricity grid, are line
objects, such as cables and transmission lines. The results from this thesis
are primarily intended for point objects. If deterioration and failures of line
objects are modelled, they may be treated as single point objects by, for ex-
ample, dividing the line objects into several short segments. Then, the thesis
results may be applied to each segment. Methods are required for aggregating
the results from each segment to create valid results for the whole line object.
This may be a challenging task and requires techniques that are not covered
by this thesis.

The thesis results can serve as the basis for maintenance planning. One as-
pect of maintenance planning is maintenance optimization. The development
of planning tools or optimization routines is, however, not the objective of this
work. Nevertheless, some examples of maintenance planning and maintenance
optimization are presented to show how the models can be used.

Other limitations are set by the modelling assumptions. These are, for
example, sojourn times that are statistically independent and sojourn times
that follow a given parametric distribution. These assumptions are discussed
in more detail in Chapters 6 and 7.
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Maintenance and deterioration modelling

Maintenance is carried out to avoid failures and excessive deterioration. Thus,
maintenance cannot be modelled without a suitable failure and deteriora-
tion model. The failure and deterioration model is therefore the ‘core’ of any
maintenance model. This chapter discusses some important topics related to
maintenance and deterioration modelling.

4.1 Maintenance modelling

4.1.1 Classification of maintenance and maintenance models

The simplest classification of maintenance is given by the two types ‘preven-
tive maintenance’ and ‘corrective maintenance’. EN 13306:2001 [26] and IEC
60050-191 [27] define preventive maintenance as “the maintenance carried out
at predetermined intervals or according to prescribed criteria and intended
to reduce the probability of failure or the degradation of the functioning of
an item”; corrective maintenance is defined as “the maintenance carried out
after fault recognition and intended to put an item into a state in which it
can perform a required function”. During maintenance, different activities are
performed, such as inspections/monitoring, overhaul, repair, and so on [26].

This thesis also uses the terms preventive maintenance, corrective main-
tenance and inspections. In maintenance modelling it is common to define
the terms ‘inspection’, ‘preventive maintenance’ and ‘corrective maintenance’
as three different cost drivers. This is not in full accordance with the defi-
nition given in the standards, since inspections are defined as a part of the
maintenance in the standards.

Not all inspections result in an ‘active’ maintenance action that changes
the component condition. An inspection is therefore a ‘passive’ maintenance
action to determine the component condition, whereas preventive maintenance
includes all ‘active’ maintenance actions to change (improve) the component
condition. Corrective maintenance is also an ‘active’ maintenance action to
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change (improve) the condition after a failure. Each inspection, each preven-
tive maintenance action and each corrective maintenance action results in
different costs that must be quantified before economic analysis and mainte-
nance optimization can be carried out.

A number of surveys of maintenance modelling and the application of
models have been presented in the past decades. One of the most recent re-
views has been provided by Wang [28], who lists dozens of older reviews and
may therefore serve as a starting point for an overview of this broad topic.
Wang [28] classified maintenance models into numerous categories based on
the maintenance policies that were applied. Another survey conducted by
Valdez-Florez and Feldman [29], introduced a classification scheme that cate-
gorized preventive maintenance models into inspection models, minimal repair
models, shock models and miscellaneous models. The model presented in this
thesis falls into the category of inspection models. Valdez-Florez and Feldman
[29] defined an inspection model as follows:

“Inspection models usually assume that the state of the system is com-
pletely unknown unless an inspection is performed. Every system is normally
assumed to be perfect in the sense that it reveals the true state of the system
without error1. In the absence of repair or replacement actions, the system
evolves as a non-decreasing stochastic process. In general, at every decision
epoch there are two decisions that have to be made. One decision is to deter-
mine what action to take, whether the system should be replaced or repaired
to a certain state or whether the system should be left as it is. The other
decision is to determine when the next inspection epoch is to occur. Thus, the
decision space of a maintenance inspection problem is two dimensional.”

Figure 4.1 illustrates the principles provided in the definition. The dete-
rioration and the maintenance/inspection strategy can be regarded as two
parallel ‘processes’ that are connected to each other only in situations when
inspections (I) or maintenance (M) are carried out. Then, information about
the component condition can be gathered and decisions (D) about mainte-
nance actions and the next inspection interval (τ) are made. After having set
the component into operation, the deterioration process is hidden until the
next inspection or a failure reveals the new component state.

4.1.2 Application of maintenance models

In 1995, the IEEE subcommittee on Application of Probability Methods estab-
lished a task force to investigate the present status of maintenance strategies
in the power industry. A summary of the results of this investigation can be
found in [9]. From a review of current maintenance policies in electric utilities
it was concluded that maintenance at fixed intervals is the most frequently
used approach. Methods, such as reliability-centered maintenance (RCM), are
increasingly being considered and used, but, methods based on mathematical

1 Note that this assumption may be relaxed (comment Thomas Welte)
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Figure 4.1. The deterioration and the maintenance/inspection strategy represented
as two parallel ’processes’. The figure is taken from Paper 3.
D: decision, F: failure, I: inspection, M: maintenance, τ : inspection interval.

models are hardly ever used or even considered. What is the reason for this
mismatch between available model theory and application?

Other authors have also pointed out that there is a gap between theory
and practice [30–32]. They claim that many models are difficult to understand
and to interpret and that some work has put too much focus on mathematical
analysis and techniques than on solutions to real problems [30]. Thus, there
is the appeal to work on real problems [31].

Dekker and Scarf [32] described the state of the art at the end of the 1990s
in the applications of optimization models in maintenance decision making.
They review, among other things, decision support systems. They pointed
out that the success of one of the first commercial PC-based decision support
systems for maintenance optimization was the embedding of mathematical
models in a user-friendly environment so that the input for the models could
easily be formulated by the maintenance engineer. This aspect, which turned
out to be crucial, had completely been ignored in the mathematical analysis.

In my opinion, many of the statements and observations mentioned above
are still valid. As discussed in Section 3.1, no deterioration and maintenance
model is applied in the Norwegian electricity industry today. This work may
contribute to changing this situation. The implementation of the models in
user-friendly software tools remains a challenging task, and the work is there-
fore not completed by the development of a maintenance model. The develop-
ment of such tools is a goal of the research projects that are being carried out
at SINTEF Energy Research. Prototypes are available and under development
[2, 3], and are currently in a testing phase at several power companies.

4.1.3 Multi-component maintenance models

Most maintenance models have been prepared for single-component systems.
Optimal maintenance policies for multi-component systems are identical to
those for systems with a single component only if there exists no dependence.
In this situation, maintenance decisions are also independent and the optimal
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maintenance policy is to employ an optimal single-component strategy for
each component separately [28].

Some few papers also consider maintenance models for optimization of
multi-component maintenance. The review paper by Wang [28], for example,
contains a section that is devoted to maintenance policies for multi-component
systems. However, Wang primarily considers models with economic depen-
dence. A more comprehensive review of multi-component maintenance models
is given by Nicolai and Dekker [33, 34].

Virtually all real systems consist of two or several components. Thus, a
modeller should work for a multi-component maintenance model. However, a
multi-component model can hardly be developed if we have no understanding
of the degradation and failure behaviour of each single component. Since no
suitable model exists for single components in the Norwegian hydropower
industry, we have to start with this type of modelling. This is the starting point
for this thesis. Consequently, the focus of this thesis is on single-component
systems. Multi-component systems are not considered here.

4.2 Deterioration modelling

Up to the early nineties, most mathematical maintenance models were based
on describing the uncertainty in ageing using a lifetime distribution. One dis-
advantage of a lifetime distribution is that it only quantifies whether a com-
ponent is functioning or not [35]. Many failure mechanisms can be traced to
an underlying deterioration process. Deterioration eventually leads to a weak-
ness that can cause failure. When it is possible to measure deterioration, such
measures often provide more information than failure-time data [15]. Hence,
for engineering structures and infrastructures, it is generally more attractive
to base a failure model on the physics of failure and the characteristics of the
operating environment [35]. It is therefore recommended using a deterioration
model for components in hydropower plants.

Deterioration can be represented as a curve in a diagram showing deterio-
ration on the y-axis and the time (or another measure of usage, for example,
load cycles, revolutions, odometer reading etc.) on the x-axis (Figure 4.2).
This requires that the deterioration is measurable and one-dimensional, that
is, that deterioration can be described, merged and represented by one mea-
surable quantity. The curve in Figure 4.2 is called a ‘degradation/deterioration
curve’, ‘degradation/deterioration path’, or ‘life curve’ [15, 21]. In the follow-
ing, the term ‘deterioration curve’ is used to denote such a curve. Figure 4.2
shows examples of three general shapes of deterioration curves: linear, con-
vex and concave. The examples represent three general types of deterioration
rates: constant, increasing and degreasing.

The rate of many deterioration mechanisms is of the increasing type, that
is, the deterioration curve has a convex shape. A classic example is fatigue
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crack growth. The results of expert judgements on sojourn time durations (Pa-
per 1, [36]) confirmed the assumption that the deterioration curves of many
components in hydropower plants have a convex shape. Thus, a deterioration
curve in this thesis is usually represented by a convex-shaped curve, as shown
in Figure 4.3(a). The figure illustrates the deterioration process in a idealized
way as smooth curves, which is not very realistic for real deterioration. Deteri-
oration is not a deterministic process and hence the curves may be considered
to represent the mean deterioration.

Many practitioners and maintenance engineers prefer to draw deteriora-
tion curves in a reverse way (Figure 4.3(b)). Increasing deterioration means
a worsening situation, which is usually associated with a curve that runs
‘downwards’. Close collaboration with maintenance personnel during the the-
sis research has shown that deterioration curves are confused with failure rate
curves if deterioration curves are drawn as shown in Figure 4.3(a). A repre-
sentation similar to the one in Figure 4.3(b) helps to avoid this mistake.

The terms ‘technical condition’, ‘deterioration’ and ‘degradation’ are used
in the literature to describe the same measure. Equipment that is in a good
technical condition means it has suffered less deterioration/degradation. Se-
rious deterioration/degradation is usually a sign of poor technical condition.
Thus, the terms ‘condition’, ‘deterioration’ and ‘degradation’ are often inter-
changeable, because they have the same interpretation.

D
et

er
io

ra
tio

n

Failure level 

Concave 

Linear

Convex 

Time or measure of usage

Figure 4.2. Possible shapes for deterioration curves (adapted from [15, p.319, Fig-
ure 13.2]).

4.2.1 Classes of deterioration models

Based on the degree of understanding of the problem, deterioration models
may be classified as either [37]:

• Black-box models

• Grey-box models
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Figure 4.3. Two different representations of a deterioration curve.

• White-box models

A lifetime distribution describing the random time to failure is a typical ex-
ample for a black-box model. One disadvantage of a lifetime distribution is
that it only quantifies whether a component is functioning or not [35], and
deterioration as a function of time is not modelled. A white-box model is ob-
tained through the knowledge and modelling of the deterioration mechanisms.
Typical examples of grey-box models are stochastic processes, which are based
on a measurable quantity indicating time-dependent deterioration and failure
[37].

In this thesis, the main focus is on grey-box deterioration models. A
continuous-time semi-Markov process with discrete state space is suggested as
a general deterioration model for the Norwegian hydropower industry. For one
special application, a white-box deterioration model based on the empirical
Paris law, is also considered in this thesis (Section 6.8 and Paper 7).
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Scientific approach

This research work belongs to the field of applied science, that is, the research
has direct practical applications in industry. Applied science is an activity
of an original nature to gain new knowledge and insight, primarily to solve
specific, practical problems. The quality of the research must be considered
not only from a scientific point of view, but also from a user’s point of view.

The general basis for this thesis and the topics it addresses have been
established through literature surveys. These surveys represent the starting
point for the research and support all subsequent activities. In addition, the
professional experience from my supervisors Jørn Vatn and Gunnar Härkeg̊ard
and from colleagues at NTNU and at SINTEF have contributed valuable input
in the identification and solution of problems. Furthermore, useful insight into
the maintenance challenges facing the electricity industry has been gained
through discussions and cooperation with engineers working in the electricity
industry and at equipment manufacturers.

The objective in this thesis is to develop deterioration and maintenance
models for components in hydropower plants. From a classical point of view,
the usefulness of models should be empirically verified, for example, by exper-
iments or by collecting field data. Empirical verification may be impossible in
the reliability and safety engineering field, where we deal with analysing and
modelling of undesired events such as failures, accidents and catastrophes.
These events occur infrequently. In addition, the objects analysed are often
unique and expensive constructions with a long lifetime. It would be extremely
costly or time consuming to carry out experiments and collect data to con-
firm the models and modelling results. Thus, the evaluation and verification
of the scientific work and the models must be done by procedures other than
empirical or experimental methods. This is discussed in the following section.
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5.1 Model evaluation

Much of the scientific work in the field of reliability and safety engineering
is related to the development of models for reliability and safety analysis.
As discussed above, verification and evaluation can be problematic because
empirical or experimental verification is often not possible.

An attempt to overcome this problem was made by the European Union
with its launch of the Model Evaluation Group in 1992 [38]. The group’s objec-
tive was to improve the culture in which models were developed, particularly
by encouraging voluntary model evaluation procedures based on a formalized
consensus protocol. The group suggested a model evaluation process, consist-
ing of the following three main elements:

• Scientific assessment
• Verification
• Validation

The scientific assessment should comprise a comprehensive description of
the model, an assessment of the scientific content, limits of applicability, and
limitations and advantages of the model. Verification was defined by the group
as “the process showing that a model has a sound scientific basis, that any
assumptions are reasonable, that equations are being solved correctly, and
more generally, that the model presented to the user actually does what the
the document claims” and validation as “the process of assessing a model so
that its accuracy and usefulness can be determined.” The latter often involves
comparison with other models [39].

This thesis is a contribution to the scientific assessment of the presented
work by a comprehensive description of the model, an assessment of the sci-
entific content, and a description of the limitations and advantages of the
model. According to the definition given above, one aspect of validation is a
comparison with other models. Comparison with other models may also be
useful for model verification. If other models exist for the same application,
a comparison of the results provides evidence that the model has a sound
scientific basis, that the assumptions are reasonable and that the equations
are solved correctly.

Another aspect of validation is closely related to the proof of usefulness of a
model in practical applications. Close collaboration with an ongoing research
project at SINTEF Energy Research provided the opportunity to test some
of the results presented in this thesis. Prototypes of software tools have been
established in the project and the project participants were able to test some
of the tools.

It was very important for me to create models and methods that are ap-
plied by maintenance engineers in the hydropower industry to make good
decisions. Many readers of this thesis probably know the following statement
by J. Frank Dobie [40]: “The average PhD thesis is nothing but a transference
of bones from one graveyard to another.” It is actually impossible to do a PhD
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work without dragging bones around. Literature research and the reading and
understanding of previous work are indispensable elements of research. During
this process the researcher often digs up old research results (bones). How-
ever, the aim must be to bring life to the bones, that is, the bones should not
be buried again. Perhaps, I have dug some bones up during my PhD work.
However, if the results originating from this work are used by practitioners for
solving everyday problems in maintenance planning, or if parts of this work
help other scientists to solve their problems, this thesis may then be more
than transferring bones between graveyards.

5.2 Scientific quality

The term ‘scientific quality’ is difficult to define. According to the Research
Council of Norway [41], quality in science may be related to the following
three aspects:

• Originality, or to what extent the research is novel and features the inno-
vative use of theory and methods.

• Solidness, or to what extent the statements and conclusions in the research
are well supported.

• Relevance, or to what extent the research is linked to professional devel-
opment or is practical and useful to society.

It has been pointed out that these three criteria may be contradictory in
some cases. Strong solidity due to thoroughness may restrain creativity and
originality, and research of little originality still may be very useful [41]. Thus,
scientific work, as this thesis, may be seen as a kind of balance act between
solidness, originality and relevance.

From my point of view, this thesis is a balanced compromise between
originality, solidness and relevance. The work combines and advances existing
theory and methods in a new way and proposes new solutions. The work is
based on established standards for scientific work and research in the disci-
plines of reliability engineering and maintenance modelling. Furthermore, the
results presented are useful in solving the problems with which they are con-
cerned. Thus, the work has been carried out in accordance with the criteria
given above.

5.3 Research approach

This work has used an analytical approach, which involves applying known
and proven methods, techniques and frameworks. These were combined, mod-
ified and extended in order to adapt them for the intended purpose. The
following methods, techniques and frameworks have been employed in this
work:
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• Stochastic modelling
• Numerical methods
• Expert judgement
• Lifetime data analysis
• Bayesian methods
• Fracture mechanics (empirical model)

5.3.1 In retrospect

When I started to write this chapter of my thesis, I took some old presentations
of the very early phase of my PhD studies to review my original plans. In my
first presentation made for one of the companies financing this PhD thesis,
I presented a figure (Figure 5.1) in which I tried to describe my research
approach. When I saw this figure three years later, I was really surprised
how well it still describes the structure of the research approach used for
my PhD work. I described the PhD task as ‘building a house’. In the figure,
the roof of the house represents the deterioration and maintenance model.
The model input is based on (at that time unspecified) data about failures
and plant operation. The roof (model) rests on pillars representing the various
methods, techniques and frameworks used during the research work. Sure, the
‘pillars’ of my house (PhD work) changed over time and came to have other
names, that is, I have used other methods, techniques and frameworks than I
originally thought; nevertheless, the basic structure of the research approach
has remained the same.
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Figure 5.1. ’Building a house’: A vision at a very early stage of my PhD work.
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Main results

This chapter gives an overview of the main results of this work. The various
publications associated with this research are referred to where they relate to
specific topics. The main part of this work deals with a generic deterioration
and maintenance model for components in hydropower plants. The model,
the model solution, parameter estimation and some examples are presented
in Sections 6.1-6.6 and in Papers 1, 2, 5 and 6. One result of this thesis is the
discussion and comparison of different maintenance models; see Section 6.7
and Papers 3 and 4. The last part of this chapter (Section 6.8) and Paper 7
describe an approach for analysing the influence of different operating patterns
on the life of Francis turbine runners. The approach is denoted the ‘turbine
model’ and is based on the empirical Paris’ law [42].

The main results from this thesis are summarized as follows:

• A general deterioration and maintenance model for components in hy-
dropower plants has been developed.

• A numerical procedure, which provides a time-dependent model solution
for a maintenance strategy with non-periodic inspections, has been devel-
oped.

• Recommendations on how best to carry out expert judgement have been
provided.

• An approach for parameter estimation allowing the use of expert judge-
ment, the combination of several expert judgements and data has been
suggested.

• Different maintenance models have been compared. This includes a critical
discussion of a model that is frequently applied by the electricity industry.

• An approach for analysing the influence of different operating patterns on
the life of Francis turbine runners has been developed.
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6.1 Deterioration model for components in hydropower
plants

It is clearly more efficient and effective to use the existing classification system
(as described in Section 3.2.2) as the basis for a deterioration model instead
of introducing a new system or measure to describe deterioration. The ad-
vantage is that the maintenance personnel and the engineers responsible for
maintenance planning can continue using a classification system with which
they are familiar.

The deterioration process of a new component that is put into operation
at time t = 0 will run through all four states, provided that no maintenance
is carried out (Figure 6.1). Assume a population of equal components under
equal operating conditions; some components will have a shorter lifetime than
others. The time the process spends in state j (the sojourn time in state j) will
hence vary as well. Thus, the sojourn time Tj in state j is a random variable.
This is represented by the probability distributions in Figure 6.1. If we allow
Tj to have a general ‘lifetime’ distribution (sojourn time distribution) and
if we assume independence between the Tj, the deterioration process can be
mathematically described as a semi-Markov process [43].
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Figure 6.1. Modelling of deterioration by a semi-Markov process with discrete
states.

6.2 The concept of physical states and virtual states

The states that are defined in Table 3.1 are so-called ‘physical states’ or ‘main
states’. They are defined by physical, and thus observable, characteristics of
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the deteriorating component. It is not possible to monitor the states contin-
uously. The exact time of state transition is hence not known. Even if it was
possible to conduct continuous monitoring, it would be difficult to specify the
exact transition time, because the state definition is somewhat vague. Nev-
ertheless, the states are observable, and based on a sequence of several state
observations, censored observations of the sojourn times may be extracted as
described in Paper 5. Such observations may be used for parameter estimation.

In some applications, the sojourn times in the physical states are mod-
elled by exponential distributions [4, 44]; see also Paper 3. The choice of the
exponential distribution is mainly based on practical reasons, because in this
case, the physical states can directly be used as states in the mathematical
deterioration model. The resulting model is an ‘ordinary’ Markov process. Ex-
pert judgement results collected during this research and by SINTEF Energy
Research have shown that the sojourn times are often not exponentially dis-
tributed; see Paper 1 and [36]. Thus, the choice of exponentially distributed
sojourn times is in many cases not a realistic solution.

In this thesis, it is therefore suggested that the sojourn times in the physical
states be modelled using a gamma distribution. The gamma distribution may
be approximated by a sequence of exponentially distributed ‘virtual states’
(called sub-states in Paper 1) so that a chain of exponentially distributed
virtual states represents a gamma distributed physical state 1. From this it
follows that the semi-Markov process is approximated by a Markov process.
Figure 6.2 illustrates this approach, where the physical states are indexed
by j, j = 1, ..., 5, and the virtual states are indexed by i, i = 1, ..., Ij . The
sojourn time in the ith virtual state of the jth physical state is denoted Tj,i

in the figure.
The probability density function of the gamma distribution is

f(t) =
1

βαΓ (α)
· tα−1 · e−t/β (6.1)

where α is a shape parameter and β a scale parameter [15].
There are several reasons, which support the choice of the gamma distri-

bution in the application presented. First of all, the gamma distribution has
a more flexible shape than simply assuming exponentially distributed sojourn
times. For a shape parameter α > 1, the distribution has an increasing failure
rate, which is a realistic property in most cases. However, the rate flattens for
t → ∞. Some other distributions may provide a more realistic choice. Never-
theless, the gamma distribution may be chosen, because it is closely related
to the sum of exponential distributions. Thus, the gamma distribution is a
natural choice when we divide the physical states into virtual states. It is
known that a gamma distribution with an integer shape parameter n (which

1 Note that ‘exponentially distributed virtual state’ and ‘gamma distributed phys-
ical state’ means that the sojourn time is exponentially distributed and gamma
distributed, respectively, and does not refer to the state itself.
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Figure 6.2. Physical states, virtual states and resulting Markov process.

is an Erlang distribution) is the distribution of the sum of n identically ex-
ponentially distributed variables. Even though the shape parameter is not an
integer, the gamma distribution may be approximated by a chain of exponen-
tial distributions. Two simple and straightforward approximation approaches
are discussed in Papers 2 and 6. From this it follows that the gamma distri-
bution is a means of generating the states in the Markov process. A gamma
distribution provides a good model when deterioration is caused by a sequence
of shocks. This may be realistic for a number of failure mechanisms, but ob-
viously not for all failure mechanisms. Whatever distribution is chosen, when
applied in in a general maintenance model, it must result at the end in a good
compromise of properties that fulfils different situations. It is assumed that
the gamma distribution provides a balanced compromise between different
properties.

6.3 Maintenance and inspection strategy

The following general maintenance and inspection strategy is considered in
this thesis (see Figure 6.3):

• The component is regularly inspected. However, the inspection interval,
τj , is not constant since the time of the next inspection depends on the
deterioration state j revealed by the previous inspection (non-periodic
inspections).

• If an inspection reveals that the deterioration exceeds an intervention
threshold (maintenance limit), preventive maintenance (PM) will be car-
ried out.
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• If the component has failed, corrective maintenance (CM) will be carried
out.

• Preventive maintenance and corrective maintenance improve the compo-
nent’s condition.

Unless otherwise noted, a failure is usually assumed to be self-announcing, that
is, failure is immediately revealed, and a corrective maintenance action is con-
ducted; inspection and maintenance durations are assumed to be negligible.
Note that the definition of the inspection strategy is based on the definition
of the physical states. Only physical states are observable, and only they can
serve as a basis for maintenance decisions in a condition based maintenance
strategy.

Inspections are usually assumed to be perfect, that is, the real deterioration
state can be detected without error. Contrary to this assumption, inspections
may be considered to be imperfect, that is, the real deterioration state is not
always revealed and it remains a probability of erroneous classifications.

Maintenance may also be modelled as perfect, as shown in Figure 6.3. Per-
fect maintenance, also denoted perfect repair, is usually defined as a mainte-
nance action that restores the system to a condition ‘as good as new’, whereas
imperfect maintenance, also denoted imperfect repair, is defined as a main-
tenance action that improves the system condition, but not to a state of ’as
good as new’ [45, 46].

In addition to the definition provided, one may also associate with the term
‘perfect’ in connection with the term ‘maintenance’ that maintenance always
fulfils its intended purpose, which means that the maintenance action always
restores the component to a predetermined (planned) state. Consequently,
the maintenance action may be considered to be ‘imperfect’ if it fails to fulfil
its intended purpose. An example is a maintenance action that is intended
to restore the component condition to a state of ‘as good as new’ (which is
state 1 according to the EBL classification system), but in reality results in
state 2 or 3.

Imperfect maintenance is the general, but more complicate, situation [46].
Since the assumption of perfect inspections and perfect maintenance is not al-
ways realistic, a model that covers imperfect maintenance (and in an ideal case
also imperfect inspections) is desirable. Thus, a model solution is presented in
Section 6.4 that provides the possibility to include imperfect inspection (see
Paper 1) and imperfect maintenance. Nevertheless, the application of these
extensions is not advisable in all situations. A simple model assuming perfect
repair and perfect maintenance will often be a good approximation of the real
situation. Furthermore, the extension of the model to imperfect inspections
and imperfect maintenance requires the specification of additional model pa-
rameters that may be difficult to estimate. Thus, increased model precision
will in many situations not justify the additional modelling effort.
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Figure 6.3. Illustration of the general inspection and maintenance strategy.

6.4 Model solution

A main result in this thesis is a numerical procedure that can be used to
solve the maintenance model described in the previous section. Solving the
maintenance model means to calculate

• the expected number of corrective maintenance actions (failures),
• the expected number of preventive maintenance actions, and
• the expected number of inspections

for a given time interval, and as a function of time and the inspection strat-
egy. For example, if the time interval is chosen 1 year, the expected number
of corrective/preventive maintenance actions and inspections is calculated for
the first year, the second year, and so on. This approach allows for cost dis-
counting.

A major challenge is to incorporate a maintenance strategy with non-
periodic inspections. Such a strategy is difficult to treat analytically. An al-
ternative is to use Monte Carlo simulation. In principle, this approach al-
lows for the computation of results from all types of maintenance models
representing all types of maintenance strategies (including non-periodic in-
spections, imperfect inspections and imperfect repair). The disadvantage is
that the computation time strongly depends on the accuracy required. Monte
Carlo simulation may become very slow when accurate results are required.
The procedure suggested in this thesis may provide an alternative to a Monte
Carlo simulation. If accurate results are required, the procedure suggested
here is usually faster than Monte Carlo simulation.

The procedure satisfies the requirements described in Section 3.2.5, which
are discrete condition states, non-periodic inspections and a time-dependent
solution. The numerical procedure covers:

• Deterioration
• Inspections
• Preventive maintenance
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• Corrective maintenance

The procedure is described in more detail in Appendix A and is outlined in
Paper 1. Paper 1 also presents an example with imperfect inspections. The
procedure can easily be extended to imperfect maintenance.

6.5 Parameter estimation

A main challenge in maintenance modelling is the estimation of model pa-
rameters. The maintenance model presented in this thesis requires estimates
for the following parameters:

• Sojourn time distribution parameters
• Costs for a single inspection, preventive maintenance and corrective main-

tenance action
• Inspection interval lengths (if the inspection interval length is not a deci-

sion variable)
• Maintenance limit (if the maintenance limit is not a decision variable)

Inspection interval lengths and maintenance limits are usually decision
variables that are given by the maintenance strategy. Inspections are fre-
quently carried out and the hydropower companies record inspections and
maintenance actions in the Computerized Maintenance Management System
(CMMS) where they can be retrieved for statistical and other analyses. The
average cost of an inspection is therefore a well-known quantity.

The estimation of the average cost for a preventive maintenance or cor-
rective maintenance action is more challenging, especially for maintenance
actions that are seldom carried out. Corrective maintenance actions are rare
for long-lived products, such as many of the components in a hydropower
plant. Statistics about historical events barely exist. Economic losses from
the outage time as a consequence of maintenance are difficult to assess. In
addition, the evaluation of failure consequences is a challenging task. Thus,
other methods may be used to estimate costs, for example:

• A maintenance service provider can be asked to provide a quotation for a
preventive or corrective maintenance action.

• Systematic approaches, such as event tree analyses [47], can be applied to
carry out a more detailed analysis of undesired events.

• Simulation based methods are available for the estimation of production
losses and market prices (e.g. EOPS and EMPS [48, 49], the one-area and
multiple-area power simulator software developed by SINTEF Energy Re-
search. This software is designed for generation scheduling and forecasting
of market prices. The models treat uncertainties both in future inflow and
market prices.)
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Last but not least, good estimates for the sojourn time distribution param-
eters must be found. If sufficient reliability data is available, classical methods,
such as least square or maximum likelihood methods [15, 50], can be used.
However, reliability data is often scarce. Components in hydropower plants
are often designed to such high reliability standards that deterioration is slow
and that failures seldom occur. Furthermore, there are often missing or bad
routines for the collection of failure and inspection data.

Beginning at the end of the 1990s, some operators had started to regis-
ter inspection data in their maintenance management systems. Until enough
data is available for statistical analysis, however, we must rely on alternative
sources of information. Thus, Paper 5 suggests an approach for the estimation
of sojourn time distribution parameters that allows for expert judgement as
source of information. The approach provides a starting point until a suitable
database is available. The suggested approach can easily be extended such
that data can be incorporated.

6.5.1 Expert judgement on sojourn time distributions

The meaning of many probability distribution parameters is rather abstract
for non-statisticians. Thus, it is generally difficult for experts to estimate
probability distribution parameters directly. For example, asking directly for
a Weibull shape parameter is not a good question; instead, an assessment
of the failure probabilities should be requested [32]. We must therefore ask
the experts for quantities that are easier to assess, such as probabilities, per-
centiles, or the mean, median or mode of a random event.

For the elicitation procedure in this thesis, it is suggested to request an
estimate for the 10th percentile and the mean sojourn time. The 10th per-
centile is situated in the left part of the distribution and corresponds to early
failures. The experts may have experienced such early failure events and it is
therefore assumed that they can provide a good assessment for this percentile.
A second reason to use a percentile in the left part of the distribution is that
this percentile is close to the inspection interval. Paper 2 shows that the error
in the maintenance model can be minimized when the percentile is in the
same order of magnitude as the inspection interval, even though the ‘correct’
distribution class is unknown.

Expert answers are usually subject to errors. Sources of errors can be of a
random or systematic nature. If experts are called upon to assess probabilities
or determine degrees of belief, they rely often on various rules of thumb. Such
rules are called heuristics [51–53], and if they lead to systematic errors, we
talk about biases [53]. Typical biases are over-/underestimation and over-
/underconfidence [53–55]. If biases are revealed and if the magnitude of the
errors is known, one can try to remove the errors, that is, one can try to
calibrate the expert estimates.

It is known that experts often tend to be overconfident, especially with
respect to highly difficult tasks. Unfortunately, this is exactly the type of
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situation in which expert opinion is most likely to be used and needed [56].
Thus, a broadening of the distributions can be carried out as suggested in
[54, 57]. However, the broadening is a controversial matter [58–60] and there
is no final recipe for the best way to do this.

Rules of thumb for the interpretation of expert opinion are given by Meyer
and Booker [54]:

• When experts provide 5th and 95th percentiles, they are really only pro-
viding the 30-40th and 70-60th percentiles.

• When experts provide maximum and minimum values, they are really
providing the 5-10th and 95-90th percentiles.

• When experts provide their best central estimate, they are really giving a
value that corresponds to a median (50th percentile) rather than a mean.

• When experts provide a variance, they are really representing less than
half of the variance.

It is suggested to apply some of the rules of thumb in the interpretation
of the received expert responses. The recommendation is to use the expert’s
assessment of the mean sojourn time as the median (50th percentile) in sub-
sequent analyses, and the 10th percentile as the quartile (25th percentile).

6.5.2 Combining expert responses and data

The use of expert judgement implies that we must aggregate the responses
obtained by some means or another. In principle we can distinguish between
two aggregation problems [54]:

1. Aggregation estimates, in which a single summary value (estimate) is cal-
culated based on a set of answers.

2. Aggregation distributions, in which several probability distributions are
aggregated or a distribution is calculated for multiple values from many
experts.

The latter problem is relevant for this work because we must combine
probability distributions obtained from several expert judgements (and per-
haps from data). The combination of probability distributions is discussed in
[53, 54, 61, 62]. Several researches have concluded that Bayesian approaches
are the most appropriate aggregation method [62].

A Bayesian approach allows the incorporation of any type of information as
long as it can be represented by a likelihood function. In this thesis, two types
of information sources are considered; expert opinion and inspection data.
The likelihood function for the expert opinion is calculated according to an
approach described by Mosleh and Apostolakis [63]. The incorporation of the
expert judgement in the likelihood function has not been without controversy
[64], since expert judgement is usually represented by the prior distribution.
However, as pointed out by Apostolakis and Mosleh [65, 66], the presented
approach is one possible application of Bayes’ theorem, because the theorem is
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a “fundamental tool that allows us to coherently incorporate in our knowledge
new evidence, which does not have to be statistical [65]”. The approach was
originally developed for the lognormal distribution and an analytical solution
is presented for this case in [63]. The approach was generalized for this thesis
by using numerical methods (see Paper 5). Then, it is possible to apply the
approach to other distribution classes as well. Paper 5 shows furthermore
how an additional parameter required for the approach can be estimated and
how data can be combined with expert judgement. The paper presents a
numerical example for a typical dataset, which will hopefully be available in
the Norwegian electricity industry in the near future.

6.6 Model application

This section presents two applications of the proposed deterioration and main-
tenance model. The first example concerns maintenance and investment plan-
ning, while the second is about maintenance optimization. The examples show
that the application of the maintenance model may help to provide answers
on the questions raised in Section 3.1.

6.6.1 Maintenance and investment planning

This example represents a typical application in the hydropower industry. The
example is similar to the case considered in [1]. Two maintenance alternatives
are analysed and a decision must be made between these alternatives.

Assume the following situation: A company has a old component in one of
their hydropower plants. The component has been inspected and the deterio-
ration is classified in state 3. The following two maintenance alternatives are
considered:

1. Immediate refurbishment in 2008
2. Carry out ‘normal’ preventive maintenance (PM) in 2008 and postpone

the refurbishment by four years, that is, refurbishment in 2012

The refurbishment is a costly action. The effect of this action is that the
condition is ‘as good as new’ afterwards and that the deterioration is slowed
down. An example for such a refurbishment is the surface treatment of the
turbine blades by a hard coating. This coating makes the turbine more resis-
tant again wear, such as erosion and cavitation. Thus, the refurbishment will
result in a component with other deterioration properties than the component
before refurbishment.

The ‘normal’ PM action is a cheap maintenance action. The effect of this
maintenance action is that the condition is improved to state 2 (the begin-
ning of state 2). For the turbine example and the failure mechanism surface
wear, the company may consider a repair of the damaged areas by build-up
welding. The surface will not be ‘as good as new’ after this PM action. The
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deterioration properties of the component are as before, because there is no
principle changing or upgrading of the component.

It is obvious that an immediate refurbishment will reduce the probability
of failures in the first four years. However, this advantage has to be paid
through the investment costs in the year 2008. Thus, the question is if the
early investment is profitable from an economic point of view.

The deterioration properties are given in terms of mean sojourn times and
gamma distribution parameters in Table 6.1. In addition to the planned main-
tenance actions in 2008 and 2012, the company schedules inspections accord-
ing to the inspection strategy given by the inspection intervals in Table 6.2.
A PM action is carried out when the component deterioration is classified
in state 3. Corrective maintenance (CM) is carried out after a failure. Both
PM and CM improve the system condition to state 2. The costs for a single
maintenance action are given in Table 6.3. Note that PM and refurbishment
are planned actions, whereas CM is a unplanned action after a failure which
may result in high costs.

The numerical procedure presented in this thesis can now be used to calcu-
late the expected number of inspections, PM actions and CM actions for the
following years. The analysis period is chosen 30 years in this example. Fig-
ure 6.4 shows the various costs for the different actions for both alternatives.
All costs are discounted (discount rate: 8 %) with year 2008 as reference. The
net present value (NPV) of the costs for the first alternative is 57.4, whereas
the NPV of the costs for the second alternative is 68.5. Thus, it is profitable
to carry out the refurbishment already in 2008 instead of postponing it by
four years.

A more general question is: When is the optimal time for the refurbish-
ment? Figure 6.5 shows a plot of the NPV of the costs as a function of the
year of refurbishment. The plot shows that the most profitable alternative is
to perform the refurbishment already in 2008. The NPV increases when the
refurbishment is postponed 1 to 5 years and decreases afterwards. Thus, it
would be advisable to do refurbishment immediately. However, the operator
of the plant may have restrictions regarding the budget or the availability of
personnel and decides that refurbishment is not performed in 2008, because
other projects are more urgent and profitable than alternative 1. Once the
company has performed normal PM in 2008, it would not be wise to sched-
ule refurbishment in one of the following years. The normal PM action has
improved the condition to state 2. It can be expected that the equipment
and the plant operator may benefit from this action some years. Thus the
refurbishment may be postponed several years.
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Before refurbishment After refurbishment
state j mean αj βj mean αj βj

1 10 3.4 2.9 20 5.3 3.8
2 8 3.1 2.6 10 2.3 4.4
3 4 1.5 2.7 7 3.9 1.8
4 2 1.9 1.1 3 2.6 1.1

Table 6.1. Sojourn time distribution parameters.

Before After
state j refurbishment refurbishment

1 4 5
2 2 3
3 1 1

Table 6.2. Inspection interval lengths τj .

Before After
refurbishment refurbishment

Inspection 3 3
PM 10 10
CM 100 100

Refurbishment 50

Table 6.3. Costs per maintenance action.
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Figure 6.4. Various costs for the two alternatives.
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6.6.2 Inspection interval optimization

A typical example of an inspection interval optimization is presented in [36].
This example is very similar to the example in Paper 1. The purpose of the
analysis was to find out whether Statnett (the Norwegian transmission system
operator) is carrying out optimal maintenance on their circuit breakers. The
analysis was restricted to a special sub-component, the driving mechanism.
Statnett currently uses a strategy according to which they replace the driving
mechanism when the condition is classified as state 3 (serious or major de-
terioration). The objective of the analysis was to find the optimal inspection
interval lengths, τ1 and τ2, when the mechanism is classified in state 1 and
state 2, respectively. The type of driving mechanism and the operating condi-
tions were defined by means of the scheme shown in Figure 7.1 (see Section 7.1,
page 51). Estimates for the sojourn time distributions, failure consequences,
and costs for inspections, preventive maintenance and corrective maintenance
are given in [36]. The maintenance model described in this thesis was used
to calculate the net present value of the overall maintenance costs (costs for
corrective maintenance, preventive maintenance and inspections) over a time
horizon of 100 years.

A contour plot of the overall costs as a function of τ1 and τ2 is shown
in Figure 6.6. The contour lines have some breaks, for example, at τ1 = 48,
τ1 = 60 and τ1 = 72. This may be explained that the net present value
is calculated year after year, that is, discounting is done in discrete time
steps and not by using a continuous time measure. This means that cost
drivers may occur in one year when the inspection interval is, say 59 months,
but in the following year when the inspection interval is 60 months. This
will result in different net present values. The minimal costs are obtained for
τ1 ≈ 54 months and τ2 ≈ 14 months. The results confirmed that Statnett’s
present inspection strategy (τ1 = 48 months and τ2 = 12 months) is close
to optimal. One could consider increasing the inspection interval length in
state 1 slightly. However, the cost function is quite flat in the τ1-direction,
and the choice of τ1 = 48 months instead of, for example, τ1 = 54 months,
would only result in minor savings.

6.7 Comparisons with other models

6.7.1 Markov processes based on state diagrams

Figure 6.7 shows an example of a state diagram that illustrates a simple main-
tenance strategy, where maintenance improves the condition by one state.
Some researchers have suggested such state diagrams for analysing mainte-
nance of electric power system components [4, 9, 20, 21, 44, 67–69]. For ex-
ample, the model is quite popular in the IEEE Power Engineering Society.
Deterioration and failure can be represented by the nodes S1-S3 and F in
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Figure 6.6. Inspection interval optimization for the circuit breaker driving mech-
anism. The figure shows a contour plot of the cost surface as a function of τ1 and
τ2.

Figure 6.7. It has been suggested incorporating maintenance (including in-
spections) into the state diagram as shown by the additional nodes M1-M3
[9]. It is claimed that the model can be solved by standard Markov techniques
[4].

During my PhD work, I have taken a closer look at this model; see Paper 3.
The paper compares properties of this model with the situation in the real
world. It is shown that discrepancies between the model and reality may occur
when Markov processes are based on such state diagrams and when they are
used for analysing maintenance strategies with non-periodic inspections. An
example is presented that shows that this kind of model may yield erroneous
results. In my opinion, the reason for this is that the model incorporates
maintenance and inspections in a way that is not in accordance with reality;
as discussed in more detail in Paper 3.

Figure 6.7. Example of a state diagram for maintenance modelling; adapted from
[9].
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6.7.2 Gamma process

A quite popular deterioration model that is used in many maintenance models
is the gamma process (see [35] for an overview). Many different maintenance
and inspection strategies have been modelled using the gamma process.

Some of the strategies are similar or equal to the strategy in this thesis
(Section 6.3), for example, in situations where thresholds are introduced that
define deterioration states and where maintenance decisions depend on these
states. Thus, results, which are presented in research papers using the gamma
process for a maintenance and inspection strategy that is similar to the strat-
egy analysed in this thesis, can be compared with results calculated by a
maintenance model using a Markov process with discrete state space (state
space model) as deterioration model. Both models should yield the same or
at least similar results. Paper 4 compares a maintenance model based on a
gamma process with a state space model that is similar to the model presented
in this thesis. The two examples presented in this paper show that both mod-
els yield the same or similar results in maintenance optimization, but results
such as costs may differ significantly, dependent on the model chosen. Paper 4
discusses advantages and disadvantages of the models and their possible field
of application.

The work in Paper 4 is also a contribution to the verification and validation
of the results in this thesis. Obtaining the same results with both models is a
step towards verification and, furthermore, comparing the model results with
the results of another model that is accepted and proven is a step towards
validation.

6.8 Turbine model

While the main part of this thesis is about the generic maintenance and dete-
rioration model (grey-box model) presented in Sections 6.1-6.6, the last part
of the thesis (this section and Paper 7) is about a deterministic deterioration
model (white-box model).

There is general agreement in the electricity industry that changed oper-
ating conditions that resulted from the the deregulation of the Nordic power
market reduces the lifetime of the components (see Section 3.1), but there is
little knowledge about the extent of the lifetime reduction. This means that
we have a situation in the electricity industry where everybody complains
about changed operating conditions and the consequences for equipment, but
where nobody can quantify the extent of the problem. One or both of the
following two questions should be answered when we want to specify to what
extent these changed operating conditions are really a problem:

1. What is the lifetime reduction/increase due to changed operating condi-
tions?
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2. How much is reliability reduced/increased due to changed operating con-
ditions?

Material fatigue is a typical failure mechanism in turbine runners in hy-
dropower plants. Fatigue means failure due to repeated loading [70]. Fatigue
starts with crack initiation, continues with crack propagation and terminates
in the fracture of the component. However, a component failure can occur
before a fracture occurs, for example, due to excessive deformation caused by
large cracks.

In the case of fatigue cracks, an obvious and direct measure of deterioration
is the crack size a. An idea at the beginning of this work was to use the generic
model presented here with discrete deterioration states. In theory, we could
define deterioration states by assigning each state a specific crack size (for
example, state 1: 0.5 mm ≤ a < 1 mm, state 2: 1 mm ≤ a < 3 mm, and so
on). However, it turned out that it is difficult to define states in practice. It
was therefore decided to use the empirical Paris’ law [42] as the basis for a
deterioration model.

There are numerous factors that influence the formation and the growth
of fatigue cracks. The most important factors are shown in Figure 6.8. Ob-
viously, it is very difficult to cover all these factors in a model. The focus of
this work was on operating conditions (denoted operational characteristics in
Figure 6.8). The aim was to provide an answer to the first question raised
above. Paper 7 presents an approach that may help answer this question. The
factors influencing fatigue crack growth that are included in the approach are
shown in Figure 6.9. Factors such as turbine design, runner geometry, rota-
tional speed, and so on, are not explicitly modelled. However, they are covered
indirectly by this approach, because the quantification of the stress cycles is
based on measurements (dashed box and arrow in Figure 6.9). The influence
of factors such as material properties may be analysed by the approach, but
they were assumed to be constant in the application presented here.

From previous work, strain gauge measurements on a specific Francis tur-
bine runner have been available. They have been analysed [71] by means of
a procedure called rainflow cycle counting [70]. The analysis has yield the
mean stress, and the amplitude and frequency of the stress cycles in the blade
of a Francis turbine runner under different operating conditions. These re-
sults were used as input for a fatigue crack growth analysis in the approach
presented in Paper 7.

The contribution of this work is the development of an approach where the
measurements available are used for an analysis of the influence of the oper-
ating conditions on the turbine lifetime. Paper 7 describes how the operating
condition may be specified by the number of start and stops per year and
the magnitude of the load. The novelty of the approach is that it relates the
results from the strain gauge measurements to the operating patterns. Then
crack growth can be simulated for various operating conditions. The paper
presents an example which shows that for the turbine runner analysed here,
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an increase of the number of starts and stops may reduce the lifetime con-
siderably, whereas an increase in overload operation may hardly change the
turbine life. The results may support the plant operator in assessing the con-
sequences of different operating conditions and establishing recommendations
for plant operation.
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Figure 6.8. Qualitative influence diagram showing causes of the failure mode ‘fa-
tigue of turbine runner’.
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Discussion

7.1 Independence between states

The model properties must be equal or similar to the properties of the real
component, otherwise the model is not a valid representation of the real-
ity. One model property is independence between deterioration states. This
assumption is not always realistic. There are statistical tests to verify inde-
pendence between states. However, it has already been pointed out by other
researchers that testing of the hypothesis of independence is not practically
feasible (see discussion in [19]).

Instead of simply assuming state independence, one may try to ensure
independence as far as possible by providing a not too general definition of
the component and its operating conditions. If the the component and its
operating conditions are thoroughly defined, we may define a population that
has states with approximately independent sojourn times. Obviously, and in
contrast to this line of reasoning, the state sojourn times are not independent
if the component definition is too general (e.g., all types of hydraulic tur-
bines under unspecified operating conditions). Some turbines will then have
a shorter lifetime and consistently shorter state sojourn times than others,
dependent on factors, such as

• Type and exact design of the equipment
• Year of construction and manufacturer
• Material properties (type of material, strength etc.)
• Manufacturing method (cast, forged, welded, hardened etc.)
• Operating conditions (operating hours, number of start stops, machine

load etc.)
• Ambient conditions (salt water or freshwater, silt and sand in the water

etc.)

These factors may be modelled as ‘covariates’. In the ideal case, a regression
model may be established, which allows expressing the sojourn time distribu-
tion parameters as a function of the covariate(s) zk, that is,
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αi = αi(z0, z1, z2, ...) and βi = βi(z0, z1, z2, ...) (7.1)

This approach usually requires a large amount of data, which has not been
available for components in hydropower plants yet.

Since there is too few data to establish a covariate model, other approaches
are required to assess the most important factors that influence the state so-
journ times. It is therefore suggested that the experts provide an thorough
definition of the component and the operating conditions before expert judge-
ment is carried out. A scheme was developed that supports the maintenance
experts in defining the most important influencing factors (Figure 7.1).

The definition of the influencing factors can be regarded as an iterative
process, as shown in Figure 7.2. The aim is to define the most important in-
fluencing factors such that it can be accepted that the sojourn times in the
various states are approximately independent. If the expert feels that the com-
ponent deteriorates rapidly in the state j if the component has deteriorated
rapidly in the state j − 1, or in other words, if the sojourn time in state j is
assumed to be short (below average) if the sojourn time has been short (below
average) in state j−1, this is a sign for a correlation between states. Then, the
states are dependent. However, this dependence must have a reason. It can
hardly be explained through pure intuition. Thus, we can reply “Why? What
are the reasons for the dependence?” From an experienced engineer we will
probably obtain reasons that are founded in one or several factors that have
not been considered yet. By accepting and defining this (these) factor(s), the
sojourn time in state j is assumed to be (approximately) independent from
the sojourn time in state j − 1.

The process described can be very challenging and it is obviously not
possible to cover all influencing factors. Nevertheless, one may conduct judge-
ments for relevant combinations of the most important influencing factors.
which may be the better approach instead of ignoring the problem discussed
completely. It is therefore suggested to carry out the steps illustrated in Fig-
ure 7.2 with reasonable care.

As an alternative to the described approach, models may be used that allow
dependence between states. Adaptive approaches may be considered where the
sojourn time in the following states may be adjusted to the knowledge gained
during the early phase of deterioration. For example, one might consider a
reduction of the mean time in states 2, 3 and 4, if the sojourn time in the first
state was short. Such an approach has not been considered in this thesis, but
is a potential topic for further research.
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Comment 
1. Unit / component description 

Unit: Turbine /Runner (Francis) 
Type: High Head (300m) 

Medium runner (D=2500 mm) 
Information about the unit that has 
influence on the deterioration process 
(type, design, operation, etc.) 

2. Description of deterioration mechanism 
Deterioration 
mechanism:

Fatigue

Reason: Cavitation due to wrong shape of the blade combined 
with welding and or cast faults 

Damage 
development: 

Crack growth 

3. Normal operating condition (design criteria) 

Name Description 

Depends on the operating pattern of all 
units in the power plant. No turbine is 
exactly equal, but most Francis turbines 
should avoid 45 – 55 % due to turbulence 
and pulsation. 

Part load (30-80 %) 40 % of time Operating pattern varies much from 
machine to machine, i.e. it is difficult to 
define a ’nomal’ operating condition 

Full load (80-100 %) 60 % of time 
Variation in head 6 % 

Figure 7.1. Screenshot of the scheme for define factors that influence the sojourn
times.

Factors influencing 
the sojourn times 

(Type and design of equipment, 
year of construction, manufacturer, 
material properties, manufacturing 

method, operating patterns, 
operating, ambient conditions etc.) 

 

Independence 
of states? 

Why?  What are the 
reasons for this? 

No

Yes

Estimate model 
parameters, calculate 

results, decision 

Figure 7.2. The process of defining factors that influence the sojourn times.
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7.2 Approximating the gamma distribution

The approximation of a general probability distribution by a Markov process
leads to the field of phase-type distributions [72]; see also Paper 6. The phase
type distribution is a natural extension of the exponential distribution [73].
The time to reach an absorbing state in a finite-state Markov process has a
phase-type distribution. The Erlang distribution is a special case of a phase-
type distribution with a structure where all states are arranged sequentially.
By allowing the Markov process to have a more general structure, the phase-
type distribution becomes a very flexible distribution class. The disadvantage
is that the number of parameters increases with the number of states.

The phase-type distribution may be fitted to a probability distribution
or data. There are numerical tools [74–78] that can be used for fitting a
phase-type distribution to a parametric probability distribution or a dataset.
However, these tools require decisions about the Markov process structure,
the number of states and other parameters that are required for starting the
fitting algorithm. The results obtained must be judged, because the fitting
tools use numerical optimization approaches, which can get stuck at a local
maximum or at a saddle point [79]. Thus, a good outcome for the fitting is
uncertain. This does not provide a good foundation for a practical application.
Thus, simple and straightforward approaches, as suggested and discussed in
Papers 2 and 6, seem more suitable for the intended purpose.

A reason for choosing a chain-formed Markov process structure is that the
suggested model solution requires this structure (see Appendix A). Further-
more, we can give the virtual states an unspecified, but obvious, meaning.
This is usually not possible with a general phase-type distribution [74]. The
virtual state i+1 represents a stage of increased deterioration compared with
virtual state i. During our work with maintenance engineers, we found that
the condition of the component may sometimes be judged, for example, as
‘good state 2’, or ‘close to state 3, but still state 2’. The appropriate dete-
rioration state may be defined as the first virtual state (state 2,1 using the
notation in Figure 6.2) in the former case, whereas the deterioration state may
be defined as the last virtual state (state 2,I2) in the latter case. Thus, the
additional information provided by maintenance engineers can be used when
the Markov process is restricted to a simple, chain-formed structure.

7.3 Model solution

It is well-known that non-periodic inspections generally result in a policy with
lower costs [80]. Jia and Christer [81] present a maintenance optimization
model for a periodic inspection strategy, where the first inspection interval is
allowed to be different from all subsequent inspection intervals. An example
is presented where the savings of this strategy compared with a pure non-
periodic strategy is 11.3 %.
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As already discussed in Section 3.2.3, the general policy in the Norwegian
electricity industry is reducing the inspection interval length as the deterio-
ration state increases. Section B.2 presents an example where the influence
of the lengths of the inspection intervals in the first two states, τ1 and τ2,
on the total costs C(τ1, τ2) is analysed. Figure 7.3 shows a contour plot of
C(τ1, τ2). The optimal solution is given by τ1 ≈ 44 and τ2 ≈ 12. This strategy
yields annual long-term costs of Cmin ≈ 4.21. In Figure 7.3, the location of
the cost function for the case when τ1 = τ2 = τ is indicated by the bold,
straight line in the upper left part of the contour plot. Figure 7.4 shows the
cost function C(τ). The optimal inspection strategy is τ ≈ 18 and the total
costs are Cmin ≈ 6.15 in that case. The savings in applying the non-periodic
inspection strategy compared to a periodic inspection strategy are 31 %.

1 = 2 =  

Figure 7.3. Optimization of total costs, non-periodic inspection strategy: Contour
plot of the cost surface. Cmin(τ1, τ2) ≈ 4.21 at τ1 ≈ 44, τ2 ≈ 12.

The maintenance model presented in this thesis is solved by a numerical
procedure. It is possible, for example, to calculate the total costs for a given
time interval and a given inspection and maintenance strategy. It is, however,
not possible to find the lowest costs as a function of decision variables such as
inspection intervals or the maintenance threshold by analytical methods. An
approximate optimal solution may be determined by creating plots of the cost
surface (as presented above, in Paper 1 or in Section 6.6), but the computation
of this solution requires some time (minutes or hours). Numerical optimization
methods might be considered. Since the objective function (total costs) is also
calculated numerically, an optimization run might be time-consuming as well.
Nevertheless, the combination of the numerical procedure proposed in this
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Figure 7.4. Optimization of total costs, constant inspection interval: Plot of the
cost function. Cmin(τ ) ≈ 6.15 at τ ≈ 18.

thesis with numerical optimization methods could be useful, even though it
was not considered in this thesis.

Analytical solutions are available for periodic inspection strategies. Kallen
[19], for example, has recently presented a model for the optimization of bridge
maintenance. Similar to the model presented in this thesis, the model is based
on discrete deterioration states. A analytical solution for the long-term average
maintenance costs as a function of the inspection interval is provided. The
solution may be used for the optimization of the inspection interval length.
This model might be applied in the Norwegian hydropower industry as well.
However, it only treats the periodic inspection strategy. As shown by the
example above, this strategy can be far from optimal. Nevertheless, such a
solution may be useful in combination with numerical models. It is clear that
τ1 is somewhat longer than the optimal solution for the periodic strategy τ ,
and that τ2 is shorter than τ . This may help to identify the order of magnitude
of the optimal non-periodic inspection strategy. Afterwards, the numerical
procedure suggested in this thesis may be used to search for a non-periodic
strategy that furthermore reduces the costs.

The great potential in cost savings may provide enough motivation for
determining an optimal (or close to optimal) non-periodic inspection strategy,
even though it must be obtained by computational effort. A computation
time of several minutes or hours will not constitute a substantial problem
since maintenance optimization requires no immediate solution. Furthermore,
these computations can easily be carried out on a standard PC and require
no special calculating capacity. Nevertheless, this solution is not completely
satisfying and thus there is a need for further work. It is always useful to
establish analytical solutions and to reduce computing time so that the results
can easily be implemented in other models and analyses.

Note that some interesting solutions for non-periodic inspection strategies
exist when deterioration can be described by a continuous variable (e.g. by
a gamma process); see references [80, 82–85]. However, inspection results ex-
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pressed by discrete deterioration states cannot be transformed to a continuous
scale; see also discussion in Paper 4. Thus, these models cannot be applied as
general deterioration and maintenance models for components in hydropower
plants.

7.4 Expert judgement

The use of expert judgement in reliability analyses is not new. Much research
on this topic has been carried out in past decades, and many techniques and
methods were developed to provide the required input for reliability mod-
els; see [53–55, 86] for a survey. However, the use of expert judgement is not
without controversy. Scarf [31] raised the criticism that the validity of such
subjective data is sometimes suspect, particularly in maintenance applications
where the interviewed experts are those responsible for the current mainte-
nance strategy. He concluded therefore that their judgement must surely re-
flect current practices rather than the true underlying engineering phenomena.
A second point that is criticized is that one might state cynically that data
collected subjectively is mainly useful for fitting the complex models proposed,
that is, the subjective data may be used for the benefit of the modeller rather
than for the benefit of the decision maker.

One can oppose [87] that those types of analyses are undertaken because
a decision must be made. If the analysis cannot be based on field data then
the knowledge has to be found elsewhere, and the engineers with experience
in the relevant field are the most obvious source [87]. Thus, quantification can
normally not be carried out without employing expert judgement [88]. The
experience with expert judgement during this research is that the experts does
not understand the impact of their assessments on the modelling results and
the decisions. Thus, the first argument raised against expert judgement is not
valid for the applications discussed in this thesis.

The lack of suitable inspection data for parameter estimation is also a
problem in the Norwegian electricity industry. In recent years, however, a
classification system with five deterioration states has been employed by the
Norwegian electricity companies. Several companies started to enter inspec-
tion results in their computerized maintenance management system. However,
currently there are too few observations available for statistical analyses. A
further problem is that the electricity industry is split into many indepen-
dent companies. There is neither an authority nor an industry institution (as
in the Norwegian oil industry [89]) that manages the collection of inspection
and failure data. Thus, a national database should be established for effective
data collection. Until a larger database is established, we must rely on expert
judgement. As soon as data is available, the Bayesian framework presented in
Paper 5 may be used to update expert judgements.

A general problem is that there is limited information about the sojourn
time in state 4. The plant operator usually does not wait with maintenance
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actions until a critical deterioration state is reached. If data collection is in-
tensified, there will be many records of states 1-3 in the maintenance man-
agement system, but there will be few records of the last deterioration state.
Expert judgement may therefore always remain an important contribution to
the assessment of the last sojourn time. With regard to this fact, it might
be advantageous to request expert judgements of the sojourn time in the last
state as an assessment relative to the previous sojourn time(s). Then the as-
sessment of the last sojourn time can still be used when the expert judgements
of the sojourn times in the previous states are replaced by estimates based on
data.

7.5 Modelling frameworks

A framework as described in [86] is used for modelling of the sojourn time dis-
tribution. One of the components in this framework is a mathematical model
with one or several parameters. Both deterministic and stochastic models can
be used in this framework. In this thesis, the model is of the stochastic type
because it is given by the sojourn time distribution, which is assumed to have
a gamma distribution. Note that this framework is used to estimate a proper
distribution for the sojourn time T only, not for the whole maintenance model.
The model parameters are the distribution parameters, denoted θ = (α, β).
The parameters are represented by the so called state-of-knowledge distribu-
tion π(θ). The sojourn time distribution is denoted f(t). Thus, the distribu-
tion f(t) represents aleatory uncertainty (also called randomness, variability,
or objective probability), whereas the distribution π(θ) represents epistemic
uncertainty (subjective probability). The framework described here is also
known as the probability of frequency framework [90, 91], where the word
‘probability’ is used for the ‘subjective probability’ and the word ‘frequency’
for the ‘objective probability’.

The separation of uncertainties in ‘aleatory’ and ‘epistemic’ was (and is
still) much discussed. The interested reader is referred to [90, 92–94]. A gen-
eral consensus exists that basically all uncertainties are epistemic [95–97].
Nevertheless, distinctions are often made between aleatory and epistemic un-
certainties. Mosleh [95] gives the following reason for this: “Randomness is
nothing but a reflection of the level at which we choose to model the phe-
nomenon of interest. It is a characterization we use for system behavior when
we are unable or unwilling to model the system or phenomenon in enough
detail such that for a given scope and set of boundary conditions the be-
havior can be predicted (deterministically).” Thus, the distinctions should be
thought of in terms of a separation that make it easier to deal with the un-
certainties effectively [96] and it is merely for our convenience in investigating
complex phenomena [97].

The classical framework described has been criticized by others. Aven [91]
argued that much of the existing classical thinking puts probability first, which
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would give the wrong focus. Attention should be placed on observable quan-
tities and the use of probability as a subjective measure of uncertainty. First
comes the world, the reality (observable quantities), then uncertainties and
finally probability. Thus, no distribution classes with unknown parameters
should be introduced when not required because there is no point in in talking
about uncertainties in parameters unless they are observable, i.e. not fictional
[91]. This particularly applies to types of applications where the component is
rather unique in the sense that we cannot find reasonably similar components
without doing thought experiments. However, in situations where a real popu-
lation can be defined (e.g. in experiments), the relative frequency probability,
that is, the portion of failed units, is an observable quantity [98].

Despite the critique raised in the previous paragraph, a classical modelling
framework was used in this thesis. In my opinion, the classical framework,
which allows for stochastic models (aleatory uncertainty), is an approach that
is well suited to the solution of the problem at hand. In the case of com-
ponents in a hydropower plant, a reasonable population can be defined. A
reasonable population might be, for example, all components of this type op-
erated under comparable conditions in an electricity company or in Norway.
For the specified component, the deterioration process cannot be predicted
deterministically. Some components will deteriorate faster, and some others
slower. Thus, we may use a probability distribution to model the variability
(aleatory uncertainty) of the sojourn time in the deterioration states.

7.6 Approach to uncertainty

In the previous section, the state-of-knowledge distribution π(θ) was intro-
duced. Consequently, the probability distribution describing the sojourn time
T must be calculated by applying the following equation [86]:

f(t) =
∫

θ

f(t; θ) · π(θ)dθ (7.2)

Note the special notation in this equation. f(t; θ) is the model for the sojourn
time, which is a gamma distribution in this thesis, and which is conditioned
on θ, whereas f(t) is the unconditional model solution, which is not a gamma
distribution. This solution is denoted a ‘probabilistic solution’ [99].

In Section 6.2, it was assumed that the sojourn time is gamma dis-
tributed, under the assumption that the sojourn time distribution parameters
are known. Estimates for the parameters may be obtained by the approach
presented in Paper 5. Then, the following relation is used:

f(t) = f(t; θ̂) (7.3)

where θ̂ is the best estimate for the model parameters. Consequently, the re-
sulting distribution is still a gamma distribution. However, the approach is
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not properly finalized in this case, since the state-of-knowledge distribution is
not propagated through equation 7.2. This approach is denoted a ‘determin-
istic solution’ [99], or a ‘best estimate approach’ [91], since a deterministic,
best estimate is used for the model parameters.

In Appendix B, it is analysed to what extent the use of a probabilistic so-
lution and a deterministic solution, respectively, influences the model results.

7.7 Turbine model

This model assumes that cracking always starts at a material defect of a given
shape and size, and at a given location. The three factors of size, shape and
location of defect, will greatly influence the life of a turbine runner. In prac-
tice, however, these factors are often unknown because there is only limited
knowledge about the size, shape and location of defects.

Some fairly realistic values, representing a kind of worst case (a large defect
of a given size and shape at the location with the highest stress), have been
assessed for the crack growth simulations in Paper 7. The resulting lifetime
should not be considered a prediction for the real lifetime of a runner, since
the real size, shape and location of the defect is usually unknown. However,
the lifetime can be used as reference value. We can compare this value with
the results when we repeat crack growth simulations with the same starting
conditions but with changed operating patterns. By applying this procedure,
is possible to judge the influence of the changed operating patterns on the
lifetime of the equipment. It is recommended that the results be normalized
as shown in Figure 7.5. ‘A’ denotes the reference alternative for which the
normalized lifetime is one. If we change the operating patterns from ‘A’ to
‘B’ (see Paper 7 for a definition of operating pattern A, B and C), we expect
that this will hardly influence the life of the turbine runner. However, if we
change from ‘A’ to ‘C’, this will likely reduce the lifetime considerably.

In order to provide a better solution for the problem and to remove some
of the limitations discussed, we need more sophisticated approaches. This re-
quires an advanced treatment of the problem by fracture mechanics. This is
far beyond the scope of this thesis. Thus, the approach was not further devel-
oped in this work. However, the co-authors of Paper 7 have worked intensively
with a probabilistic fatigue assessment tool that post-processes results from
finite element stress analyses. The PhD thesis by Wormsen [100] provides an
extensive description of the latest activities and results.

Regardless of the limitations of the turbine model, the model is a straight-
forward and simple approach to assess the influence of different operating
conditions. Several strain gauge measurements are available for other tur-
bines. They may provide the basis for similar analyses of other turbines. A
useful method is also the definition of the operation conditions by the number
of start stops and the operating profile (see Paper 7). This method may be
used in other applications as well.
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Conclusions and further work

8.1 Conclusions

The results presented in this thesis may mainly be used by maintenance en-
gineers that are responsible for planning and scheduling of maintenance and
renewal. The general deterioration and maintenance model may be applied
to:

• Assess the condition development of a component.
• Calculate the failure probability of a component.
• Calculate the expect number of inspections, preventive maintenance, and

failures/corrective maintenance in a given time interval and for a given
maintenance strategy.

• Calculate the overall maintenance costs and the present value of these
costs.

The intended field of application is hydropower plant components. At the
moment, the Norwegian electricity industry is also endeavouring to introduce
the EBL classification system (Section 3.2.2) for installations other than hy-
dropower plants. Working groups have been launched [101–103] to establish
specific descriptions of the deterioration states for components in wind tur-
bines and in the power grid, as has been done for components in hydropower
plants. Hydropower is the backbone of the Norwegian electricity production
and most of the maintenance engineers working in the electricity industry
know the perspectives and practices that are applied in the maintenance of
hydropower plants. It therefore clearly makes sense to extend practices that
have been successfully used for hydropower plants to other types of instal-
lation as well. This will establish a common foundation for the electricity
industry.

The turbine model may be used to

• Simulate fatigue crack growth in a Francis turbine runner under various
loading.
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• Analyse the influence of different operating conditions on the life of Francis
turbine runners.

It has been shown that the general maintenance and deterioration model
presented in this thesis provides a suitable analysis tool for the Norwegian
electricity industry. The model is general in such a way that it can be ap-
plied to different types of equipment, deterioration mechanisms and failure
modes. This thesis discusses all relevant modelling steps: Description of exist-
ing concepts and perspectives, the model itself, the parameter estimation, a
numerical solution procedure and relevant examples of use. Thus, this thesis
provides an operational model. An advantage of the model is that it is built on
an already existing state definition. The maintenance engineers are familiar
with the systematics and no new and unknown concept had to be introduced.

The estimation of model parameters is always a great challenge. On the
one hand, the modelling of the sojourn time in a (physical) state using a
probability distribution is a very intuitive approach. On the other hand, the
estimation of sojourn time distribution parameters is a demanding task be-
cause the parameters are abstract quantities for non-statisticians since they
are not observable. The suggested parameter estimation process, however, is
based on potentially observable quantities, which are the sojourn times. It
is clear that the sojourn times are only observable when the deterioration
is continuously monitored. This is seldom possible in practice. However, the
deterioration states are observable by inspections and seen over a longer time
period, the sojourn time in a state is an interval censored observation that is
recorded in terms of condition monitoring data in the companies’ maintenance
management systems.

Condition monitoring data is still rare, and until now, no maintenance
models existed in the Norwegian electricity industry that provided an incentive
for data collection. However, missing data is a reason why no maintenance
models were developed, because it was argued that the development of models
is potentially useless without data for parameter estimation. This attitude
creates a vicious circle where missing data cause a lack of models, and missing
models cause a lack of data (Figure 8.1). This thesis is an attempt to break this
vicious circle. A maintenance model has been developed. This will hopefully
provide motivation for data collection.

Expert judgement provides an alternative starting point until a sufficient
amount of condition monitoring data is available. The discussions and in-
terviews with maintenance engineers and experienced plant personnel have
shown that experts are able to judge the length of a sojourn time. They can
provide useful information about the sojourn time in terms of percentiles and
a best estimate. The model can immediately be applied even though data are
scarce. It is important to note that the possibility of using expert judgement
must not stall attempts to collect condition monitoring data. It is important
to intensify the collection of condition monitoring data in the future; and it
must be avoided that the possibility for using expert judgement does not cre-
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No data 

Missing incentive for 
data collection Missing incentive for 

model development 

No model 

Figure 8.1. Vicious circle of data collection and model development.

ate a new vicious circle, where expert judgement causes a missing incentive
for data collection, and the lack of data is an ‘excuse’/reason for using expert
judgement.

The comparison with other maintenance models has shown that it is im-
portant to check that the model is a realistic representation of the real mainte-
nance situation. The model yields proper results only if the real maintenance
situation is realized in the model. Provided that the same maintenance situa-
tion is analysed, and provided that this situation is also realized in the model,
different models should yield similar results. The comparison of the model in
this thesis with a model applying a gamma process has shown that the results
of these two models are similar. The reason for this is that both models realize
the real maintenance situation in the same (and correct) way.

The deterioration model presented in this thesis is still very rough. Only
transitions from one state to the next state are modelled. The deterioration
inside the states is not explicitly modelled. A more refined model could be
developed by increasing the number of (physical) states. However, this would
require a more detailed state definition, which is probably not possible in
many cases. Alternatively, a continuous deterioration measure could be in-
troduced. This allows the use of other solutions for modelling deterioration
(e.g. the gamma process). In many cases, however, it would be difficult to
define such a measure. Regardless of the roughness of the model used here,
the examples presented in this thesis show that the model serves its intended
purpose and that the main objective of the thesis, to “develop a deterioration
and maintenance model for components in hydropower plants”, is fulfilled.

The turbine model provides useful insight into the relationship between
operating conditions, crack growth and residual lifetime. The disadvantage of
the model is that it requires input that is based on stress measurements. Some
of these measurements have already been carried out in the past by Norwegian
companies and they may be utilized. It may be difficult and expensive to
provide additional measurements. Nevertheless, the high costs that are related



64 8 Conclusions and further work

to fatigue failures of turbine runners should justify a somewhat more expensive
approach.

8.2 Further work

This thesis may be the basis for further research in several areas.
It was discussed earlier that the component and the operating conditions

must be thoroughly defined to ensure the independence between the sojourn
times in each state. The component and its operating conditions could be
mathematically represented by covariates. A topic for further research could
be to incorporate covariates into the model. Instead of carrying out expert
judgement or data analysis for each specific component under given operating
conditions, one could evaluate the covariates. In the longer term and when
data collection is intensified, enough data might be available so that the so-
journ time distribution parameters could be modelled as a function of the
most important covariates. Once a covariate relation is established, it would
simplify the estimation of the sojourn time distributions considerably, because
it is easier for a user of the model to collect information about the covariates
than information about the sojourn time. Alternatively, an adaptive approach
could be considered where the sojourn time distribution parameters of subse-
quent states are updated based on the knowledge of the previous states.

The approach presented here uses the gamma distribution as a model for
the sojourn time in a deterioration state. Further research could focus on
methods that allow the use of other distribution classes as well. If the numeri-
cal model solution presented is applied, it will require methods to transfer the
distributions into a sequence of exponentially distributed virtual states. The
further application of the theory of phase-type distributions might be use-
ful for this purpose. Another approach might be to replace the chain-formed
Markov process by a more general type of phase-type distribution. The nu-
merical solution procedure might be extended such that general phase-type
distributions can be applied.

Further work should also focus on the handling of uncertainty. It would
be desirable to propagate all uncertainties through the model such that the
parameter uncertainty represented by the state-of-knowledge distributions is
reflected in an uncertainty measure related to consequences, costs and optimal
results.

It was discussed elsewhere in this thesis that virtually all systems consist of
several components that depend on each other. Interactions offer the opportu-
nity to pool maintenance activities, which may save costs. Thus, optimization
of the maintenance of multi-component systems has great potential for costs
savings and is an interesting future research topic.

Another topic for further work is the modelling of infant mortality. In a
first step, one should assess to what extent infant mortality is of importance
in hydropower plants. If this phenomenon is relevant, a second step is to
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develop an approach to include infant mortality into the deterioration and
maintenance model.
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A

Numerical model solution

This appendix describes a numerical procedure, which can be used to solve
the general maintenance model introduced in Chapter 6. The challenge is the
incorporation of a non-periodic inspection strategy where the next inspection
interval depends on the condition (deterioration state) revealed by the pre-
vious inspection. Thus, the inspection interval is a decision made after an
inspection or a maintenance action; see discussion in Paper 3.

The following nomenclature is used in this appendix (see also Figures A.1
and A.2):

i Virtual state (sub-state); exponentially distributed, i = 1, ..., r
j Physical state (main state); gamma distributed, j = 1, ..., 5
i1j First virtual state in physical state j
m Maintenance limit (preventive maintenance if i ≥ m)
Pz,i(t) Probability that the system is in virtual state i at time t,

when the next inspection is scheduled after z time units
t Time variable
t̃ Time of the previous inspection
Δt Small time interval
r Fault state (r = i15)
z Remaining time until next inspection (discrete variable)
Δz Step length of z
λi Transition rate from virtual state i to virtual state i + 1
τj Inspection interval length

The problem to be solved is ‘multidimensional’. One ‘dimension’ is the con-
dition of the system, which is described by discrete deterioration states. A
second ‘dimension’ is the time, since the condition of the component changes,
various decisions are made and different maintenance actions are performed
over time. Another ‘dimension’ is the time until the next inspection. These
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‘dimensions’ are represented by a time-dependent array in the numerical pro-
cedure suggested.

The probability that the system is in virtual state i at time t, when the next
inspection is scheduled after z time units, is denoted Pz,i(t). The remaining
time until the next inspection is approximated by a discrete quantity z with
step length Δz. In the applications presented in this thesis, an adequate value
for Δz is usually 1 month. Thus, the time to the next inspection is covered
by the ‘z-dimension’ and the condition by the ‘i-dimension’.

The elements of Pz,i(t) are arranged in an array where the elements change
over time, as illustrated in Figure A.2. The dimension of the array may be
chosen (zmax ·imax), where zmax = τ1 (τ1 given in months) and imax = r. Dete-
rioration, inspection and maintenance can be simulated by simple numerical
algorithms that change the array elements according to some predefined rules.

Consider a simple example where the sojourn time in each of the four phys-
ical states is exponentially distributed. Thus, the number of physical states is
equal the number of virtual states. Preventive maintenance (PM) is carried
out when the system is classified in state 4. Corrective maintenance (CM) is
performed after failure. PM and CM restore the system to a state of ‘as good
as new’, that is, i = 1. It follows that i11 = 1, i12 = 2, i13 = 3, m = i14 = 4 and
r = i15 = 5. Assume that the inspection interval lengths are τ1 = 6 months,
τ2 = 3 months and τ3 = 1 month. Δz may be chosen 1 month in this case.

Virtual states i:
(Markov process) 1 2 r-14 531 r2 3 5 r-1

…1 2 4 5Physical states j:

4

11
1i 31

2i

Figure A.1. Physical states and virtual states.

A.1 Deterioration

Deterioration within a small time interval Δt can be modelled by applying
the approximations

Pz,r(t + Δt) ≈ Pz,r(t) + Pz,r−1(t) · λr−1 · Δt (A.1)

for all Pz,i where i = r,

Pz,i(t + Δt) ≈ Pz,i(t) · (1 − λi · Δt) + Pz,i−1(t) · λi−1 · Δt (A.2)

for all Pz,i where 1 < i < r, and
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t

i

z

z 3· t
2· t

t

0

Figure A.2. Illustration of the basic principle of the framework for the numerical
model solution.

Pz,1(t + Δt) ≈ Pz,1(t) · (1 − λ1 · Δt) (A.3)

for all Pz,i where i = 1.
If we have a new system that is set into operation at t = 0 and that is

inspected the first time after 6 months, we can denote this P6,1(0) = 1. This
situation is shown in the upper left part of Figure A.3 where the ‘probability
mass’ of P6,1(0) = 1 is represented by a grey bar.

When time goes, the system will deteriorate, which means that the prob-
ability mass will spread ‘rightwards’ in the array. This can numerically be
treated by equations (A.1)-(A.3). If no maintenance is carried out, the system
will definitely fail sooner or later. If we wait long enough, say n · dt time in-
tervals (n is large), the probability that the system is in the last state, which
is the fault state, approaches 1. Then, the probability mass is concentrated in
the last state, and P6,5(n · dt) → 1. This is represented in the lower right part
of Figure A.3. Note that simulating deterioration increases t by Δt. It does
not move the probability in z-direction, but in i-direction.

A source code (here: Visual Basic) for simulating deterioration is presented
in the following example:

For z = 1 To z_max
P(z, r) = P(z, r) + P(z, r - 1) * lambda(r - 1) * dt
For i = (r - 1) To 2 Step - 1

P(z, i) = P(z, i) * (1 - lambda(i) * dt) + _
P(z, i - 1) * lambda(i - 1) * dt

Next i
P(z, 1) = P(z, 1) * (1 - lambda(1) * dt)
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Next z
t = t + dt

A.2 Corrective and preventive maintenance

It has been shown that deterioration spreads the probability mass in the z-i-
array in i-direction. Let us consider a situation as illustrated in the upper left
part of Figure A.4 (references to the appropriate equations are shown in the
figure). For the given example where Δz = 1 month, inspections and PM are
simulated each time when the numerical procedure has run through 1 month
simulated time. Inspections and PM may be numerically realized by applying
the following procedures; equations (A.4)-(A.10):

t̃ = t (A.4)
Pz−1,i(t) = Pz,i(t) for all z, i (A.5)

Pτ1,i(t) = Pτ1,i(t) + P0,i(t) for all i < i12 (A.6)
Pτ2,i(t) = Pτ2,i(t) + P0,i(t) for all i12 ≤ i < i13 (A.7)
Pτ3,i(t) = Pτ3,i(t) + P0,i(t) for all i13 ≤ i < m (A.8)
Pτ1,1(t) = Pτ1,1(t) + P0,i(t) for all m ≤ i < r (A.9)
P0,i(t) = 0 for all i < r (A.10)

Equation (A.5) reduces the remaining time until inspection by one month.
As an alternative, one may use a circular list as illustrated in Figure A.5 and
as realized by the following source code example:

’Check if inspections must be simulated:
If t >= (NextInspectionNo * (1 / 12)) Then

’Find actual index in the circular list:
inspIndx = ((NextInspectionNo - 1) Mod tau(1)) + 1

’Inspection and re-scheduling of next inspection
’PM when state 4 is detected
For j = 1 To 3

’Find new index in the circular list:
newIndx = ((inspIndx + tau(j) - 1) Mod tau(1)) + 1

For i = i_1_j(j) To (i_1_j(j+1) - 1)
P(newIndx, i) = P(newIndx, i) + P(inspIndx, i)
P(inspIndx, i) = 0

Next i
Next k

’PM resulting in state ’as good as new’
’Find new index in the circular list:
newIndx = ((inspIndx + tau(1) - 1) Mod tau(1)) + 1
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For i = i_1_j(4) To (r - 1)
P(newIndx, 1) = P(newIndx, 1) + P(inspIndx, i)
P(inspIndx, i) = 0

Next i

NextInspectionNo = NextInspectionNo + 1
End If

If a component failure is not self-announcing, that is, if a component fail-
ure is only detected by inspections, failures and CM may be treated by the
numerical procedure each time when inspections are simulated by (see also
Figure A.4)

Pτ1,1(t) = Pτ1,1(t) + P0,r(t) (A.11)

and
P0,r(t) = 0 (A.12)

If a component failure is self-announcing, the procedure must be modified;
see Figure A.6. The array must be extended in z-direction by one row, that
is, zmax = τ1 +1. The following procedure may then be used at each time step
Δt:

Pτ1,1(t) = Pτ1,1(t) + Pz,r(t) for all z (A.13)

if (t − t̃) < Δz/2, or

Pτ1+1,1(t) = Pτ1+1,1(t) + Pz,r(t) for all z (A.14)

if (t − t̃) ≥ Δz/2. Set afterwards

Pz,r(t) = 0 for all z (A.15)

The additional row becomes the new 6. row in the 2. step in Figure A.4 when
PM is simulated.

The expected number of inspections, PM and CM in a given time interval
can be ‘calculated’ by summing up P0,i(t), P0,r(t) or Pz,r(t) in equations
(A.6)-(A.9), (A.11) and (A.13)/(A.14), respectively, in counter variables (not
shown in the script code).

A.3 Possible model extensions

The procedure can be extended to imperfect inspections as proposed in Pa-
per 1. It is also possible to cover imperfect maintenance when the probability
mass P0,i(t) in equation (A.9) is not solely added to Pτ1,1(t) but to Pz,i(t)
where z �= τ1 and i �= 1. Furthermore, it is possible to treat situations where
the properties of the component and the inspection strategy changes after a
maintenance action, for example after a replacement with a new component
that has other properties than the old one. Assume that this replacement
is carried out at t = tM . The situation may hence be illustrated as in Fig-
ure A.7. When t = tM , the array elements Pz,i(tM ) are rearranged in a new
array; denoted P ′

z′,i′(tM ) in Figure A.7.
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A.4 Summary

The presented relations represent numerical routines and cannot be simply
implemented one-to-one in a computer code. However, they may help to un-
derstand the proposed numerical procedures and to create the computer code,
and in combination with the figures they illustrate the basic principle of the
procedure.

The procedure can be characterized as ‘moving of probability masses in a
time dependent array’. Note that

∑
z

∑
i Pz,i(t) = 1 for all t. Referring to the

illustration of Pz,i in Figure A.3, the simulation of deterioration, inspections,
PM and CM may be summarized as follows:

• Deterioration moves the probability mass ‘rightwards’ (+i-direction) and
one time-step (dt) ’forwards’ (+t-direction).

• CM and PM move the probability mass ‘leftwards’ (−i-direction).
• Rescheduling of inspection moves the probability mass ‘downwards’ (+z-

direction).
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Figure A.3. Deterioration.
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Figure A.7. Schematic illustration of a maintenance action that is carried out at
tM and that changes the component properties.
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Treatment of parameter uncertainty

The influence of a ‘probabilistic solution’ and a ‘deterministic solution’ on the
modelling results is analysed in this appendix. This means that it is analysed
to what extent the use of a best estimate (point estimate) for the sojourn
time distribution parameters influences the results, compared with a solution
where the parameter uncertainty is propagated through the whole mainte-
nance model. It has been argued in Section 7.6 that the parameter uncertainty
must actually be propagated through the whole maintenance model. This is
usually not done in complex maintenance models, because handling parame-
ter uncertainty is often too complicate. Thus, it is simply assumed that the
model parameters are known and that they can be treated as fixed parameters
in the model.

Vatn [99] presents a numerical example where the lifetime of a compo-
nent is modelled by a Weibull distribution and where the shape parameter
is either assumed to be a known, constant parameter (deterministic model)
or to be gamma distributed (probabilistic model). The latter means that is
is uncertain what the value of this parameter is. The uncertainty about the
parameter value is therefore descried by a gamma distribution. A determinis-
tic and a probabilistic solution is calculated for an example where a minimal
repair strategy is analysed. The probabilistic model shows significant devia-
tion from the deterministic model. Thus, the parameter uncertainty should be
propagated through the whole maintenance model, because the uncertainty
influences the model results and the decisions.

In the following two sections, it is analysed to what extent the use of a
probabilistic model and a deterministic model influences the results of the
maintenance model presented in this thesis.

B.1 Sojourn time distribution

Figure B.1 shows two probability density functions of the same sojourn time
distribution; the deterministic solution (f(t; θ̂), a gamma distribution; see
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equation 7.3)) and the probabilistic solution (f(t); see equation 7.2)). The
example is based on the dataset and the expert estimates shown in Table B.1.
The maximum likelihood estimates of α and β have been used as deterministic
(best) estimate. They were calculated by using the approach described in
Paper 5.

The two distributions have approximately the same location, however,
the deterministic approach yields a distribution that is somewhat broader
than the distribution calculated by the probabilistic approach. One could
conclude that the best estimate approach yields a distribution that is more
conservative with respect to the sojourn time T . However, this conclusion can
not be generalized. In other cases, f(t; θ̂) is narrower than f̃(t) or the location
is somewhat displaced to each other.

Further analyses are required to judge the influence of the deterministic
approach on the costs and on the results of the maintenance model presented
here. The following section presents therefore an attempt to propagate the so-
journ time distribution parameter uncertainty through the whole maintenance
model.

Expert judgement

Estimate: 10th percentile Mean
used as: 25th percentile Median

Expert 1 10 15
Expert 2 15 25

Data (uncensored)

18.3 64.4 37.9
51.7 50.0 46.4
31.3 32.0 40.1
29.0

Table B.1. Expert judgement and data used for the Bayesian analysis.

B.2 Example with cost figures

Consider the following example: Two expert judgements for the four sojourn
time distributions have been requested (see Table B.2). The expert judgements
are requested as 10th percentile and mean of the sojourn time Ti and are used
as 10th percentile and median in the following analysis. The resulting best
estimates (mean values of the state-of-knowledge distributions) have been
calculated by using the approach described in Paper 5. The estimates are
shown in Table B.3. A maintenance strategy is considered where preventive
maintenance is carried out when the component is classified in state 3 or
state 4. Failure is self-announcing and corrective maintenance is carried out
immediately. The objective of the analysis is to find the inspection interval



B.2 Example with cost figures 87

0 10 20 30 40 50 60 70
0

0.01

0.02

0.03

0.04

0.05

t

f(
t)

 

 
Probabilistic solution
Deterministic solution

Figure B.1. Sojourn time distribution: Probabilistic solution vs. deterministic.

lengths in state 1 and state 2, τ1 and τ2, respectively, that minimize the annual
long-term total cost. The costs for a single inspection, preventive maintenance
action and corrective maintenance action are 5, 50 and 1500, respectively.

Assume that the parameter uncertainty of the sojourn time distribution
of the second state is propagated through the maintenance model, whereas
all other parameters are kept constant (best estimates, ignoring parameter
uncertainty; see Table B.3). The following approach is used to calculate an
approximative probabilistic solution for the optimal inspection strategy:

1. The state-of-knowledge distribution π(θ2) is approximated by a discrete
joint probability distribution π(θ2,k), k = 1, ..., 9.

2. For each θ2,k, the cost surface Ck(τ1, τ2|θ2,k) is calculated.

—- Expert 1 —- —- Expert 2 —-
State j 10th percentile Mean 10th percentile Mean

[years] [years] [years] [years]

1 7 15 8 25
2 1 5 3 8
3 1 2 0.5 2
4 0.2 0.5 0.25 1

Table B.2. Expert judgement results. Requested: 10th percentile and mean. Used
as: 10th percentile and median.

State j αj βj

1 2.2 9.9
2 1.7 4.2
3 2.2 1.1
4 1.5 0.7

Table B.3. Best estimates for the sojourn time distribution parameters.
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3. The probability that this cost surface represents the reality is pk = π(θ2,k).
4. The cost surface of the probabilistic solution is calculated as

C(τ1, τ2) =
∑

k[pk · Ck(τ1, τ2|θ2,k)].
5. The probabilistic solution is given by τ1 and τ2 that minimize C(τ1, τ2).

The resulting cost surface is shown as contour plot in Figure B.2(c). The
results are compared with the cost surface that is obtained by a deterministic
model, that is, when T2 is modelled as gamma distribution where the model
parameters are constants (best estimates). Figure B.2(a) shows a deterministic
solution where the mean of π(θ) is used as best estimate for the sojourn time
distribution parameters, and Figure B.2(b) shows a deterministic solution
where the maximum likelihood estimates (MLE) are used as best estimate for
the sojourn time distribution parameters. The cost surfaces are very similar
and the optimal solution is approximately the same (τ1 ≈ 44 months and
τ2 ≈ 12 months).

The approach can be extended to the case where the parameter uncertainty
in both T1 and T2 is driven through the maintenance model:

1. The state-of-knowledge distribution π(θ1) is approximated by a discrete
joint probability distribution π(θ1,l), l = 1, ..., 9.

2. The state-of-knowledge distribution π(θ2) is approximated by a discrete
joint probability distribution π(θ2,k), k = 1, ..., 9.

3. For each possible combination of θ1,l and θ2,k, the cost surface
Cl,k(τ1, τ2|θ1,l, θ2,k) is calculated.

4. Assuming independence1 between θ1 and θ2, the probability that this cost
surface represents the reality is pl,k = pl · pk = π(θ1,l) · π(θ2,k).

5. The cost surface of the probabilistic solution is calculated as
C(τ1, τ2) =

∑
l

∑
k[pl,k · Ck(τ1, τ2|θ1,l, θ2,k)].

6. The probabilistic solution is given by τ1 and τ2 that minimize C(τ1, τ2).

A contour plot of the cost surface is shown in Figure B.2(d). In this case,
the optimal solution of the inspection intervals is τ1 ≈ 40 months and τ2 ≈
12 months.

Although the analysis in the previous section has shown that the sojourn
time distributions can differ considerably if either the deterministic approach
or the probabilistic approach is used (Figure B.1), the results calculated with
the maintenance model does not differ much, which is a surprising finding.
From the results it can be concluded that the treatment of the parameter
uncertainty in the maintenance model does not influence the optimal solu-
tion much. The calculated minimum costs (Cmin) does not differ much. They
vary between 4.21 (Figure B.2(b)) and 4.43 (Figure B.2(d)). The increased
modelling effort by using the probabilistic approach seems not to be justified
by a considerable improvement of the results. Thus, it is suggested to use

1 The assumption of independence is not very realistic, but it allows calculating pl,k

in a simple way, since defining dependence between θ1 and θ2 seems practically
impossible.
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the deterministic approach in practice. Nevertheless, it would be desirable to
analyse the problem in more detail in further work to confirm the results.

(a) Deterministic model; mean for T2.
Cmin = 4.25 at τ1 ≈ 42 and τ2 ≈ 13

(b) Deterministic model; MLE for T2.
Cmin = 4.21 at τ1 ≈ 44 and τ2 ≈ 12

(c) Probabilistic model for T2.
Cmin = 4.30 at τ1 ≈ 44 and τ2 ≈ 12

(d) Probabilistic model for T1 and T2.
Cmin = 4.43 at τ1 ≈ 40 and τ2 ≈ 12

Figure B.2. Contour plot of cost surface for deterministic solution and probabilistic
solution; τ1 and τ2 er given in months.
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Markov State Model for Optimization of 
Maintenance and Renewal of Hydro Power 

Components 
Thomas M. Welte, Jørn Vatn and Jørn Heggset 

  
Abstract—In this paper a reliability model is presented which 

can be used for scheduling and optimization of maintenance and 
renewal. The deterioration process of technical equipment is 
modeled by a Markov chain. A framework is proposed how the 
parameters in the Markov process can be estimated based on a 
description of the technical condition of components and systems 
in hydro power plants according to the Norwegian Electricity 
Industry Association. A time dependent solution of the Markov 
model is presented. Imperfect periodic inspection can be modeled 
by the proposed approach. The length of the inspection interval 
depends on the system condition revealed by the previous 
inspection. The model can be used to compute performance 
measures and operational costs over a finite time horizon. 
Finally, simulation results for a dataset for a Norwegian hydro 
power plant are presented. 
 

Index Terms—deterioration model, imperfect inspection, 
maintenance optimization, Markov model 

I.  NOMENCLATURE 
b inspection interval ratio factor 
C costs 
d discount rate 
fred   reduction factor 
i    state in the final Markov chain 
k    main state (gamma distributed) 
l    sub state (exponential distributed) 
Lk    number of sub states in main state k 
m    maintenance limit in the final Markov chain 
n    number of events 
Pi(t) probability that the system is in state i at time t 
qj|k probability that the system is classified to be in main 

state j when the real state is k 
r    failure state in the final Markov chain 
t    time variable 
t0.1,k 10th percentile of Tk 
Tk    duration of main state k 
Tk,l   duration of sub state l in main state k 
u    proportion of uncertainty 
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y    year 
z    time of inspection 
αk    shape parameter 
βk    scale parameter 
λi transition rate from state i to state i + 1 
τk inspection interval for a system regarded to be in 

main state k 

II.  INTRODUCTION 
CHEDULING and optimization of maintenance and 
renewal require reliability models describing the 

deterioration process of technical equipment. Suitable models 
should be capable of evaluating the residual service life, the 
failure probability and the change of operational costs as a 
function of maintenance and renewal. A common objective of 
many of these models is to find the maintenance and renewal 
strategy where the total costs of repairs, inspections, 
production losses and other consequences are minimal. 

Various models were proposed over the past decades. 
Anders, Endrenyi and Leite da Silva presented in [1] and [2] 
maintenance optimization models based on a Markov chain 
and computer software for maintenance management. An 
often applied method to model deterioration is the use of the 
gamma process.  A short overview about work on this topic is 
given by Kallen and Noortwijk in [3]. Extensive analyses have 
been carried out on handling different inspection strategies 
and special situations in the models. Here, the work done by 
Grall, Dieulle, Bérenguer and Roussignol [4] could be 
mentioned. However, by using the gamma process the 
deterioration has, in average, a linear trend. Whether this 
applies to the case of interest or not has to be considered. 
Another frequently surveyed and suggested method is the 
delay time concept [5]. Other maintenance models and an 
overview about their application is given e.g. in [6], [7] and 
[8]. 

In spite of the great number of methods, mathematical 
models for maintenance optimization are hardly used in 
practice [9]. One reason can be that there are often difficulties 
in providing the proper amount of data. To overcome this 
problem, the model described in this paper is built on an 
already existing state definition of the technical condition of 
hydro power components [10]. This definition is used by 
many of the Norwegian power companies. It can be expected 

S
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that a model based on an already existing approach is far 
easier to implement in existing maintenance procedures than 
models based on more abstract statistical concepts. 

Technical condition 

State:

The state definition is presented in Section III. In 
Section IV a probabilistic model based on this state definition 
is described including an approach that transfers this model 
into a Markov chain. In the next Section we define a 
maintenance model. For this model a time-dependent solution 
for the Markov chain is presented (Section VI). The model 
can be used to calculate performance measures. In 
Section VIII, the model is applied to a real example in order to 
show its potential.  

This work is part of ongoing R&D activities within hydro 
power operation and maintenance in Norway. An overview 
over the activities and recent results were presented by 
Wiborg, Solvang, Heggset and Daleng in [11].  

III.  DESCRIPTION OF TECHNICAL CONDITION 
The technical condition of a system in hydro power plants 

is characterized on a scale from 1 to 4 according to the 
Norwegian Electricity Industry Association (EBL) [10]. Thus, 
the continuous degradation of a component is simplified by 
dividing it into four states. The state description is given in 
Table I and in the following, these four states will be denoted 
main states k. A component as-good-as-new is in state k = 1. 
When the condition is characterized as critical, the state is 
k = 4 and normally maintenance actions must be taken 
immediately. 

TABLE I 
TECHNICAL CONDITION STATES (MAIN STATES) 

State Description 
1 No indication of degradation. 
2 Some indication of degradation. The condition is noticeably 

worse than “as good as new”. 
3 Serious degradation. The condition is considerably worse than 

“as good as new”. 
4 The condition is critical. 

 
In addition to this general state specification, more detailed 

descriptions are given in the handbooks [10] for different 
failure modes of all main components in a hydro power plant. 
Thus, the maintenance personnel have a guideline for the 
interpretation of different inspections and measurement results 
in order to define the condition of the system according to the 
four-state-scale. 

Failure is always assumed to occur when there is a 
transition out of state 4 in a state 5 as indicated in Fig. 1. The 
length Tk of each main state k may vary from several years 
(state 1) to only a few years or months (state 4). If the length 
of Tk is known, the concept of life curves [2] can be applied 
and in principle the deterioration process can be sketched as 
shown in Fig. 1.  However, the length of the four main states 
has an element of uncertainty, which can be represented by a 
probability distribution. The Gamma distribution was used in 
this paper in order to model Tk. 

 
Fig. 1.  Technical condition levels (main states) and life curve 

IV.  MAIN STATE MODELING 
Preferably, the estimation of suitable probability 

distributions that describe the length of the four main states is 
based on analyses of reliability data and real observations. 
However, reliability data is often scarce. Hence, Tk has to be 
modeled by expert judgment. Currently, EBL is establishing a 
national database for reliability data for power plant 
components. The data will be collected in a standardized way. 
Thus, the amount and quality of the collected data will be 
largely improved in the future. At the moment, however, the 
opinion of experts and maintenance personal is playing a 
decisive role in the analysis process. 

There exist many proposals how expert judgment can be 
carried out. A good overview about expert judgment 
techniques and a practical guideline is given in [12]. In the 
examples presented in this paper the experts express their 
opinion about the main state length by assessing the 
expectation E(Tk) and the 10th percentile t0.1,k of Tk. A gamma 
distribution is fitted to these values. Due to the fact that the 
definition of the technical condition states is based on the 
handbook descriptions and that the described state definition 
is already in use in the Norwegian hydro power industry for 
many years, the plant experts are familiar with the systematic 
and have a lot of experience with the described state 
definition. Thus, feasible estimates can be expected from 
experienced experts. Nevertheless, expert judgment should 
only be regarded as a preliminary source until the estimates 
can be improved by reliability data from plant operation. 

In the next step, the gamma distributed main states are 
transferred into a Markov chain. A known theoretical result 
states that a sum of n identical and independent distributed 
exponential variables is gamma distributed with shape 
parameter n. In the following, an approach is described for the 
approximation of each main state k by Lk exponential 
distributed states. These exponential distributed states are 
denoted sub states. This means that during a stay in the main 
state k the condition of the system runs through the sub states 
l = 1, 2, …, Lk. The number of sub states Lk must be at least as 
big as the shape parameter αk. 

                        ,...}3,2,1{∈≥ kkk LL α  (1) 

T3 
Commissioning, 
refurbishment, etc. 

T1 T2 T4

Failure  

1

2

3

4

5 Time 
[year] 
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The deterioration process often accelerates towards the end 
of life. This yields a life curve similar to the one shown in 
Fig. 1. If one wants to reflect the accelerating deterioration 
behavior in the Markov model, the expectation of the 
exponential distributed states in the Markov chain has to 
become stepwise smaller. Thus, we pragmatically set 

                        (2) )()( 1,,red, −⋅= lkklk TEfTE

where fred,k is a reduction factor (fred,k < 1). E(Tk,l) and E(Tk,l-1) 
denote the expectation of the length of sub state l and sub state 
l-1, respectively, in main state k.  

The probability density function of the gamma distribution, 
which is used to model the four main states k, can be written 
in the following form: 

                 dtettf kk
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where αk is a shape parameter and βk a scale parameter. The 
shape parameter αk can be expressed by the expectation and 
the variance as 
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The variance of the exponential distributed sub states is 

                               (5) 2
,, )()( lklk TETVar =

If we assume independence between the Markov states, the 
expectation and variance of the chain of exponential 
distributed sub states in one main state k is given by 
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=

=
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l
lkk TETE

1
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                          (7) ∑
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respectively. The expectation of the first sub state is E(Tk,1). 
According to (2), the expectation of an arbitrary sub state l can 
be expressed as 

                     (8) )1(
,red1,, )()()( −⋅= l
kklk fTETE

Equation (6) and (8) yield 
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and with (5) and (8) the variance (7) becomes 
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The expectation and variance of the chain of exponential 
distributed sub states should be equal to the expectation and 

variance in the primary gamma distribution. Thus, the shape 
parameter αk can be expressed with (9) and (10) as 
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E(Tk,1) and fred,k have to be chosen such that both (9) and (11) 
are satisfied.  

The described procedure yields the final Markov chain 
which is used for further analyses in Section VI. The states in 
the final Markov process are denoted i and the number of 
states is 

1
4

1
+= ∑

=k
kLr  (12) 

where r is the failure state. The first exponential distributed 
state ik that represents the beginning of a main state k is given 
by 

         11 =i ,       112 += Li ,       1213 ++= LLi  
                 13214 +++= LLLi ,        (13) ri =5

V.  MODEL SPECIFICATIONS 
In the following sections, a system is analyzed that is 

maintained according to the following specifications: 

• The system is subjected to a deterioration process. The 
deterioration is modeled as a Markov chain with r states. 

• The system is periodically inspected. However, the 
inspection interval is not constant. The time of next 
inspection depends on the system state revealed by the 
previous inspection. 

• The inspections are considered to be imperfect, i.e. there is 
a probability that the inspection results in a wrong 
assessment of the technical condition. 

• If the system excesses an intervention threshold level, 
preventive maintenance (PM) will be carried out. 

• If the system fails, corrective maintenance (CM) will be 
carried out. 

• PM and CM are modeled as perfect and the system is 
replaced or repaired to an “as good as new” state. 

VI.  TIME DEPENDENT MARKOV CHAIN SOLUTION 
Now, we want to consider the final Markov process as 
specified in the end of Section IV. The transition rate from 
state i to state i+1 is denoted λi. As described in the previous 
section, a PM action will be taken if an inspection reveals that 
the technical condition of the system has exceeded a 
maintenance limit. CM is carried out directly after failure. The 
maintenance limit and the failure state are denoted m and r, 
respectively. PM is triggered by i ≥ m. For the analyses in this 
paper it was assumed that PM is carried out as soon as it is 
observed that the system is in main state 4, i.e. m = i4. 
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However, the maintenance limit could also be set to any other 
state i. The time of the next inspection depends on the result 
of the previous inspection, i.e. if the inspection reveals, that 
the system is in main state 1, 2 or 3, the next inspection is 
after a time period τ1, τ2 and τ3, respectively. This definition 
implies that the answer on the question “maintain or don’t 
maintain” is given by the system state. If the system appears to 
be in state 1, 2 or 3, the system is not maintained but the 
inspection interval is adjusted to the assumed system state. If 
the system appears to be in state 4 at an inspection point a PM 
activity is carried out. System failure could occur between 
inspections leading to an immediate CM action. The situation 
is shown in Fig. 2. 

 
Fig. 2.  Maintenance str  in the Markov model 

We will now find the probability that the system is in the 
va

ategy

rious states as a function of the time t. We let Pi(t) denote 
the probability that the system is in the state i at time t. By 
standard Markov considerations [13], we obtain the Markov 
differential equation:  

    tPttP ttPt iiiii Δ⋅⋅+Δ⋅−⋅ −− 11 )()1(=Δ+ )()( λλ  (14) 

where Δt is a small time interval. The transition rate 

                                

of the ith 
state is given as the reciprocal of the expectation of state i. 

)(
1

i
i TE

=λ  (15) 

For a constant inspection interval the integration of (14) is 
str

tical way: 
Th

aight forward and we can easily handle the situation when 
the system is inspected at time τ, 2τ, etc. However, a challenge 
is to model different inspection and maintenance strategies. 
The inspection interval is not assumed to be constant but the 
time of the next inspection depends on the inspection result. In 
addition, the time of next inspection will be rejected and 
rescheduled if a failure occurs unexpectedly early.  

These problems are handled in the following prac
e state probabilities Pi(t) are written in a vector with r 

elements. 

                  [ ])(),...(),( ,2,1, tPtPtPP rzzzz =
r

 (16) 

where e time of the nex

 

z  is th t inspection and 
Pz,1(t), Pz,2(t), … Pz,r(t) are the probabilities to be in Markov 
state 1, 2, … r at time t. For a new component for example, at 
t = 0 all information is placed in one vector where z is the time 

of the first inspection after a period of τ1 and Pz,1(t) = 1.   
Now, the Markov differential equation can be written as

ttPttPttP iiziiziz Δ⋅⋅+Δ⋅−⋅=Δ+ −− 11,,, )()1()()( λλ  (17) 

By applying (17) the deterioration of the system can be 

t  = t + Δt 

) for all vectors 

 (18) 

modeled. Additional considerations are necessary in order to 
simulate inspections, maintenance and failure. Let qj|k be the 
probability that the system is classified to be in main state j 
when the real state is k. An imperfect inspection and 
preventive maintenance can be simulated in the following 
way: 

1)  Integration according to (17), 
2a) Inspection and PM  equations (18)-(22

where z ≤ t: 

      )(tP )(|1,,, )()(
11 ikizitit qtPtP ⋅+= ++ ττ

      )(|2,,, )()()(
22 ikizitit qtPtPtP ⋅+= ++ ττ  (19)  

       (20) )(|3,,, )()()(
33 ikizitit qtPtPtP ⋅+= ++ ττ

       (21) )(|4,1,1, )()()(
11 ikiztt qtPtPtP ⋅+= ++ ττ

  for 1 ≤ i < r 

  and 
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                    Pz riti <= 0)(,  (22) 

 the simulation of corrective maintenance the following 

3) and (24) for all vectors z: 

For
procedure can be used: 

2b) CM  equations (2

                 )()()( tPtPtP + ,1,1 rzt1,1t = +τ+τ  (23) 

and 

                        (24) 

Equations (18)-(20) represent the situation when the system 
is 

ed for the 
ca

         0)(, =tP rz

inspected and when it is assumed that the system is in state 
k = 1, k = 2 and k = 3, respectively. Thus, the next inspection 
will be carried out at t + τk. Equation (21) represents the 
situation that the system is classified in main state 4 and PM is 
carried out. During PM the system is renewed, i.e. the system 
state is set to i = 1 and the time of the next inspection is 
chosen as t + τ1. Equation (23) is used for the modeling of 
failures. Also in this case the new system state is i = 1 and the 
next inspection will be carried out after a period τ1. 

The equations outlined in this section can be us
lculation of performance measures like e.g. the expected 

number of inspections and maintenance actions per year. By 
choosing Δt sufficiently small, the proposed numerical 

m 
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Maintenance limit 

Time 

2 

3 

4 

1 

λ  1

λ2 
λ3 

λm λm-1 

λr-1 

Maintenance 

τ2

τ3 

PM 

 

τ1 

strategy: 1 
2 

3 

M
ai

n 
st

at
e 

CM

© Copyright KTH 2006 



9th International Conference on Probalistic Methods Applied to Power Systems 
KTH, Stockholm, Sweden – 11-15 June, 2006 

5

procedure provides good results. The presented equations 
represent the basic principle. During the simulation procedure 
the number of vectors increases. Nevertheless, the probability 
to be in state i at time t is the sum of Pz,i over all vectors z. 

                                ∑=
z

izi tPtP )()( ,  (25) 

In addition, it must hold for an arbitrary chosen t that 

                                 (26) 

At first view, the computational effort seems to be large. 

VII.  COSTS 
The overall obj e inspection or renewal 

str

where 

CM rective maintenance (= costs for failure 

CPM reventive maintenance (= costs for 

CI ection 

E[nCM PM [nI(y)] denote the expected 

1)(
1

, =⎥
⎦

⎤
⎢
⎣

⎡
∑ ∑
=i z

iz tP  
r

However, by smart programming the computing time can be 
reduced considerably. Thus, the method provides a quite 
effective way to calculate the time dependent solution of the 
Markov chain. 

ective is to find th
ategy which gives the lowest costs. The costs are expressed 

as their current value, i.e. the present value (PV) is calculated 
for all future costs. For the calculation of the present value of 
a future amount C in year y, the following equation is used: 

                            ydCC −+⋅= )1(  (27) PV

d is the discount rate. In this paper we consider the 
following expenses: 

C   Costs per cor
consequences, incl. production loss due to 
unscheduled plant down time and costs for 
replacement) 
Costs per p
replacement incl. production loss due to scheduled 
plant down time) 
 Costs for one insp

If (y)], E[n (y)] and E
number of CM, PM and inspections, respectively, in the yth 
year, the total costs expressed as PV in the beginning of year 
one is: 

[ ] [ ] [ ]( ){ }∑ ++⋅+= −

y

y ynECynECynECdC )()()()1( IIPMPMCMCMtot  (28) 

In the presented examples in Section VIII, all costs are 
cal

VIII.  EXAMPLE AND SIMULATION RESULTS 
example 

for

TABLE II 
MAIN S ELING 

 ----- Expert 1 ---- Combined ---- 

culated for a time horizon of 30 years. The costs are 
assumed to be constant over the analysis period. Typically, the 
discount rate d is set to 0.08 for this type of analysis in the 
Norwegian power production sector. 

In this section we want to analyze and discuss an 
 a Norwegian hydro power plant. Data and results are given 

for the degradation of a special type of stator winding 
connection. The degradation process can result in overheating 

and short circuit. Two expert groups were asked to express 
their opinion about the length of the main states k. The expert 
opinion given as expectation and percentiles resulted in a 
gamma distribution with expectation and standard deviation as 
shown in Table II. The average of the two expert opinions 
(bold numbers in Table II) were used for the further modeling. 
The life curves for the main states and for all exponential 
distributed states after having transferred the gamma 
distributions into a Markov chain as described in Section IV 
are shown in Fig. 3. 

TATES MOD

 ----- ----- Expert 2 ----- 
Main 
state 

k 

E(Tk) SD(Tk) 
[years] [years] 

E(Tk) SD(Tk) 
[years] [years] 

E(Tk) SD(Tk) 
[years] [years] 

1 15 4.14 25 8.40 20 6.54 
2 2 0.87 5 4.04 3.5 2.34 
3 1 0.43 2 1.46 1.5 0.87 
4 0.5 0.22 1 1.01 0.75 0.53 
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Fig. 3.  Life curve with main states (left) and all sub states (right) 

 
ow, after having defined the final Markov process, the 

q
N

e uations presented in Section VI can be used to calculate 
performance measures. For the given data the expected 
number of CM, PM and inspections have been calculated for a 
new system. In addition Monte Carlo simulations have been 
carried out in order to verify the results. The chosen lengths of 
the inspection intervals τ1, τ2 and τ3 are assumed to be 
36 months, 6 months and 1 month, respectively. E[nCM(y)], 
E[nPM(y)] and E[nI(y)] will reach a steady state after a while. 
As an example, results for the expected number of PM are 
shown in Fig. 4. The steady state situation is reached after 
approximately three replacements, i.e. after 3 · E(T). In the 
analyzed case this is after around 80 years. However, as 
shown in Fig. 5, expenses incurred in the steady state situation 
are not of interest considered from a present point of view 
because the present value (PV) of these costs converges to 
zero after few decades. Thus, the PV of the costs for CM, PM 
and inspections are only summed up in the total costs figure 
Ctot for the first decades. In the presented example the analysis 
period is 30 years. The expenses were estimated for the 
failure, repair and inspection costs of a medium size generator 
(100 MW) as CCM = 2 500 000 EUR, CPM = 800 000 EUR and 
CI = 7 000 EUR, respectively. 
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Fig. 4. Development of the expected number of PM per year 
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Fig. 5. Expected annual costs for PM 

 
In order to find a good inspection strategy, the length of the 

inspection interval τ1 and τ3, respectively, are defined as 
follows: 

21 ττ ⋅= b                   (29) 

23
1 ττ ⋅=
b

                  (30) 

This means that dependent on the choice of the length of one 
inspection interval, τ1 is always b times τ2 and τ3 is b times 
smaller than τ2. The total costs (present value calculated over a 
time horizon of 30 years) are plotted in Fig. 6 versus τ2 for 
various values of the factor b. The plot shows clearly that the 
optimal inspection strategy is given by b ≈ 4.5 and 
τ2 ≈ 0.7 years, i.e. a plant operator should choose τ1, τ2 and τ3 
around 38 months, 8 months and 2 months, respectively. The 
different cost drivers and the total costs are shown versus τ2 
for the optimal value of b in Fig. 7. 
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Fig. 6. Total costs vs. τ2 for different values of factor b 
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Fig. 7. Present value of total costs and costs for CM, PM and inspections 
vs. τ2; b = 4.5 

 
Until now, the inspections were assumed to be perfect. In 

the next step we want to analyze the influence of imperfect 
inspections. By introducing the proportion of uncertainty u, 
qj|k can be defined as shown in Table III. For u = 0 the 
inspection is perfect. A value 0 < u < 0.5 means that the 
system is wrong classified with probability u in one of the 
adjacent states. Fig. 8 shows the influence of imperfect 
inspections on the number of expected failures per year for 
different values of u. The influence of imperfect inspections 
on the costs is shown in Fig. 9 for u = 0.1. As expected, the 
total costs increases and the inspection intervals have to be 
chosen somewhat shorter in order to compensate the 
uncertainty of the inspection method. 

TABLE III 
DEFINITION OF qj|k BY USING THE UNCERTAINTY PROPORTION u 

  -     -     -     -     -     real main state k     -     -     -     -     - 
  1 2 3 4 

1 1 - u u 0 0 

2 u 1 - 2u u 0 

3 0 u 1 - 2u u 

cl
as

si
fie

d 
in

 
m
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4 0 0 u 1 - u 
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Fig. 8.  Expected number of failures per year for different values of u 
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A theoretical study of the impact of different distribution classes in a 
Markov model 

T.M. Welte 
Department of Production and Quality Engineering, 
Norwegian University of Science and Technology, Trondheim, Norway 

ABSTRACT: In this paper it is shown that a semi-Markov process with sojourn times given as a general life-
time distribution can be approximated by a conventional Markov process with exponentially distributed so-
journ times. This means that the general lifetime distribution is replaced by a sum of exponentially distributed 
times. A replacement of the gamma distribution by a chain of exponential distributions gives good results in a 
maintenance model. Different approximation approaches are presented and discussed. If the general lifetime 
distribution is a Weibull distribution, however, an approximation becomes more difficult. One way to esti-
mate the general lifetime distribution in the semi-Markov model is the use of expert opinion. It is recom-
mended asking the experts to assess the mean sojourn time and a percentile in the same order of magnitude as 
the inspection interval of the system. It is shown that such a strategy will give rather small modeling errors, 
even when the ‘correct’ lifetime distribution is unknown. 

1 INTRODUCTION  

Components and systems in hydro power plants re-
quire high reliability and availability. The down-
time of a plant due to failures or due to unexpected 
maintenance tasks causes usually high costs. Apart 
from the expenses for repair or replacement, the 
failure of a component can also cause hazards for 
humans, environment and other components. For a 
production unit like a hydro power plant an addi-
tional cost factor is the loss of production due to the 
unscheduled down-time. Thus, the operation of a 
power plant calls for models for scheduling of main-
tenance and renewal. Objective of the models is to 
describe the relationship between maintenance deci-
sions (e.g. inspection or replacement frequency) and 
the operational costs in order to find the best strategy 
that gives the lowest overall costs. 

In an ongoing research program, a Markov model 
with five main states was established to be used as a 
general maintenance model of hydro power plants 
(Welte et al. 2006). Each main state in the model 
represents a certain, well-defined technical condition 
of a system (component, item, …) in the plant. Four 
states in the Markov model stand for different stages 
of deterioration and the fifth state is the fault state. 
The state definition is based on a classification sys-
tem used in the condition monitoring handbooks 
(EBL 2006) from EBL Kompetanse, a subsidiary of 
the Norwegian Electricity Industry Association 
(EBL). A verbal definition of the main states is 

given in Table 1. If no maintenance is carried out, 
the system’s technical condition will run through all 
main states until failure occurs. The progression of 
the system condition in a situation where no mainte-
nance is carried out is sketched in Figure 1. 

 
 

Table 1. Technical condition states (EBL 2006). 
Main 
state 

Description 

1 No indication of deterioration. 
2 Some indication of deterioration. The condition is 

noticeably worse than ‘as good as new’. 
3 Serious deterioration. The condition is considerably 

worse than ‘as good as new’. 
4 The condition is critical. 
5 Failure 
 
 

 
Figure 1. Condition propagation in a situation without mainte-
nance. 



The sojourn times in each main state k, denoted 
Tk, are believed to have an increasing failure rate. 
The sojourn times are modeled by a ‘general’ (i.e. 
non-exponential) probability distribution like e.g. the 
Weibull distribution or the gamma distribution. This 
means that deterioration and failures are modeled as 
a semi-Markov process. In addition, it is possible to 
include different maintenance situations in the 
model like e.g. preventive maintenance and various 
inspection strategies. The model may be solved by 
means of Monte Carlo simulations. In order to get 
sufficiently accurate results, however, Monte Carlo 
simulations are often a time-consuming task. There-
fore, a numerical solution was proposed in Welte et 
al. (2006). However, to apply the suggested algo-
rithm, the sojourn times must be split into a number 
of virtual, exponentially distributed sojourn times. 
This means that the semi-Markov process used for 
modeling deterioration is approximated by a conven-
tional Markov process. This approximation simpli-
fies the solution of the model.  

A challenge in maintenance modeling is the esti-
mation of the model parameters like e.g. the parame-
ters of the probability distribution describing the so-
journ time in the Markov model. If reliability data is 
scarce, expert judgment can be used to provide miss-
ing or additional information. Expert judgment tech-
niques have been the object of much research activ-
ity in the past decades. An overview about the topic 
and practical guidelines are given e.g. in Cooke 
(1991), Meyer & Booker (1991) and Øien & Hok-
stad (1998). A general problem in estimating prob-
ability distributions by means of expert opinion is, 
however, that it is often unknown which probability 
distribution is the ‘correct’ one to model the problem 
at hand. Thus, an approach is suggested asking the 
experts to provide estimates for the expectation and 
the pth percentile of the distribution where p is cho-
sen such that the pth percentile is in the order of 
magnitude of the inspection/replacement interval of 
the chosen maintenance strategy. In Section 3 we 
show, that this will result in relatively small model-
ing errors although if the ‘correct’ probability distri-
bution is unknown. The representation of different 
distribution classes by a sum of exponential distribu-
tions is discussed in Section 2. In Section 4 the re-
sults are summarized and conclusions are drawn. 

 
 

 
Figure 2. Basic principle of Approach B. 

2 APPROXIMATING DIFFERENT 
DISTRIBUTION CLASSES 

In this section several approaches are discussed how 
to approximate a gamma or a Weibull distribution 
by a sum of exponentially distributed lifetimes. 

2.1 Gamma distribution 
A known theoretical result states that a sum of n 
identically and independently exponentially distrib-
uted variables is gamma distributed with shape pa-
rameter n. Thus, a gamma distribution with a shape 
parameter n that is an integer (also known as Erlang 
distribution) can be modeled by a sum of n exponen-
tial distributions. However, this result can only be 
applied to gamma distributions where n is an integer. 
If n is not an integer, other approximations have to 
be found. 

The probability density function of the gamma 
distribution is 

βα
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where α is a shape parameter and β a scale parame-
ter. Expectation and variance of the gamma distribu-
tion are given by E(T) = α β and VAR(T) = α β2, re-
spectively. 

2.1.1 Approach A 
One approach to approximate a gamma distribution 
by a chain of exponential distributions was presented 
by Welte et al. (2006). The sojourn times in the ex-
ponentially distributed states become stepwise 
smaller by a reduction factor fred. This corresponds to 
an accelerated deterioration process. Furthermore, it 
is assumed that expectation and variance of the 
chain of exponential sojourn times is equal expecta-
tion and variance of the original gamma distribution. 
These assumptions result in a set of equations that 
gives a definite solution for the length of the expo-
nentially distributed states (Welte et al. 2006). How-
ever, this approach does not give the best approxi-
mation of the gamma distribution. Therefore, 
another approach will be discussed in the following 
paragraph. 

2.1.2 Approach B 
The principle of this approach is sketched in Figure 
2. As in Approach A, the number n of exponentially 
distributed sojourn times is equal or bigger as the 
shape parameter α of the gamma distribution. As a 
premise we assume that expectation and variance of 
the sum of exponential distributions is equal expec-
tation and variance of the correct gamma distribu-
tion. Finally, the first (n-1) sojourn times have the 
same length Efirst, i.e. 
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and the last sojourn time has the length Elast, i.e. 

last)( ETE n =  (3) 

If we assume independence between the exponen-
tial sojourn times this yields: 
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The system of the two equations (4) and (5) can eas-
ily be solved and results in a quadratic equation with 
two solutions. If the relative distribution function 
(confer Section 2.1.4) for both solutions is plotted 
one can easily see that the best solution is given by 
the largest Efirst, i.e. 
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If we consider a gamma distribution with shape 
parameter α, where (n–1) ≤ α ≤ n, then, the proposed 
solution converges both to (n–1) equal, exponen-
tially distributed sojourn times if the shape parame-
ter α approaches to (n–1) and to n equal, exponen-
tially distributed times if the shape parameter α 
approaches to n. 

2.1.3 Examples 
The influence of the presented approaches on the 
calculation results in a maintenance model is ana-
lyzed in this section. In Welte et al. (2006) the main-
tenance model described in Section 1 was used for 
maintenance optimization (example 1). In a second 
application the model was used for the assessment of 
the current maintenance strategy of a Norwegian 
power distribution company (example 2). The for-
mer application and a slightly modified version of 
the latter application were used as examples to ana-
lyze the error caused by the approximation of the 
gamma distribution by a sum of exponential distri-
butions. The expected number of corrective mainte-
nance actions per year (expected failure rate in year 
y) was calculated by means of Monte Carlo simula-
tions, and by means of the numerical solution pre-
sented in Welte et al. (2006). Both Approach A and 
Approach B were used to transfer the semi-Makov 
process into a conventional Markov process. The pa-
rameters for the gamma distribution in the semi-
Markov process are given in Table 2 and the inspec-
tion strategy is given by the length of the inspection 
intervals τ1-τ3 in Table 3. The general maintenance 

strategy is to reduce the length of the next inspection 
interval if the previous inspection reveals that the 
system has deteriorated from state 1 to state 2 or 3. 
The system is replaced or renewed if an inspection 
has revealed that the system is in main state 4 or af-
ter failure (confer also Figure 1). The expected fail-
ure rates for a system that is as good as new at t = 0 
are shown in Figure 3 and Figure 4, respectively. 

As it can be seen from the diagrams, both ap-
proximations are rather good compared with results 
calculated by Monte Carlo simulations using the cor-
rect gamma distributions. In both examples, costs 
were assigned to a failure event and the present val-
ues were calculated. In the first example (Figure 3)  

 
 

Table 2. Gamma distribution parameters for example 1 & 2. 
 Example 1                 Example 2                 
State k Shape  αk Scale βk Shape  αk Scale βk
1 9.37 2.13 5.32 7.52 
2 2.23 1.57 1.53 3.26 
3 2.99 0.50 2.62 1.15 
4 2.02 0.37 5.32 0.19 
 
 
Table 3. Inspection interval length for example 1 & 2. 
State k Inspection interval τk           
 Example 1 

months 
Example 2 
months 

1 36 48 
2 6 12 
3 1 3 
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Figure 3. Expected yearly failure rate, E[nCM(y)], example 1. 
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Figure 4. Expected yearly failure rate, E[nCM(y)], example 2.  



Approach B gives rather good results, whereas the 
failure rate calculated with Approach A is noticeably 
too low in a steady state situation. However, the 
steady state situation has no influence on the dis-
counted costs because the present value of incurred 
expenses for y > 60 years is approximately zero; 
confer Welte et al. (2006). 

2.1.4 Relative distribution function 
Instead of considering the results in the Markov 
model we analyze the relative distribution function 
r(t) defined by 
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where we want to set the distribution function of the 
approaches that are presented in the sections before, 
FApproach j(t), in relation to the distribution function of 
the gamma distribution, FGamma distribution(t). A good 
distribution fit is given by r(t) ≈ 1. 

Figure 5 shows several plots of the relative distri-
bution function for a gamma distribution with differ-
ent shape parameters and an approximation by Ap-
proach A and B. One can see that there is a large 
deviation in the left tail of the distribution. This 
means that the approximations are not suitable to 
model the lower left tail of the distribution. How-
ever, in a practical application, as for example in the 
presented examples, this seems to have only minor 
influence on the results. The risk is given by the 
probability to get a serious deterioration within one 
inspection interval. In those models, however, the 
length of the inspection interval is not situated in the 
extreme left tail of the distribution. 

2.2 Partial fit of the distribution function 
The weakness revealed in the previous chapter leads 
to the solution to fit the distribution function of the 
sum of exponential distributions partially to the  
 
 

 
Figure 5. Relative distribution function r(t) for different shape 
parameters α. 

distribution function of the original gamma distribu-
tion. In the order of magnitude of t where accurate 
results are required, denoted tf, the exponential dis-
tribution parameters can be adjusted such that F(tf) 
of the chain of exponential distributions is approxi-
mately equal F(tf) of the gamma distribution. 

The probability density function of the sum of 
two independent random variables is given by the 
convolution rule (Papoulis 1991): 
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Multiple application of the convolution rule leads to 
the probability density function of the sum of several 
random variables. A last integration step yields the 
distribution function F(t). For very simple combina-
tions, like e.g. two exponential distributions, the in-
tegrals can easily be solved analytically. For longer 
and more complicate sums of random variables, 
however, the analytic solution becomes cumbersome 
or impossible. Numerical methods can be used alter-
natively. However, the numerical solution of multi-
ple integrals can become a tricky task. Thus, the 
evaluation of the exponential parameters by partial 
distribution fit can only be recommended if the other 
approaches give unsatisfying results. 

Figure 6 shows two examples for a gamma distri-
bution where the distribution function of the sum of 
exponential distributions is fitted to the distribution 
function of the original gamma distribution at 
around tf = 2. Distribution fit ‘i’ fulfils the require-
ment that r(t) ≈ 1 at tf. Distribution fit ‘ii’ gives 
rather good results for F(t) for t = 1 … 5. However, 
the requirement that the expectation of the sum of 
exponential distributions is equal the expectation of 
the original gamma distribution was relaxed. More-
over, the solution presented in Section 2.1.2 is better 
for t > 5.  
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Figure 6. Relative distribution function, r(t), for two examples 
of partial distribution fit. 
Gamma distribution: α = 1.5, β = 6.67  E(T) = 10 
Approach B: E(T1) = 7.89, E(T2) = 2.11 
Partial distribution fit i: E(T1) = 8.8, E(T2) = 1.2 
Partial distribution fit ii: E(T1) = 11.94, E(T2) = 0.66 
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Weibull distribution. The section of t where the distribution is 
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Weibull distribution: E(T) = 10, VAR(T) = 46.1 
a: E(T1) = 4, E(T2) = 6 
b:  E(T1) = 8, E(T2) = 2 
c:  E(T1) = 1, E(T2) = 9 

 

2.3 Weibull distribution 
There is no useful relationship between the Weibull 
distribution and the exponential distribution as it is 
given for the Erlang distribution by the sum of ex-
ponential distributions. Thus, a simple approxima-
tion rule giving acceptable results could not be 
found for the Weibull distribution. However, a par-
tial distribution fit can be carried out. Figure 7 
shows three partial distribution fits for a Weibull 
distribution. The time ranges where the distribution 
function of the Markov chain is fitted to the distribu-
tion function of the Weibull distribution is indicated 
in Figure 7. Distribution fit ‘c’ gives good results for 
t ≥ 3. For smaller t, however, the approximation be-
comes rather poor. 

3 EXPERT JUDGMENT IN A MAINTENANCE 
MODEL 

A common problem in reliability analysis is the lack 
of data. A common way to overcome this problem is 
the use of expert knowledge. A typical expert judg-
ment task is the estimation of expectation, median or 
percentiles of a stochastic variable (e.g. failure time, 
or sojourn time in a Markov model). Thereafter, a 
suitable probability distribution can be fitted to these 
estimates. 

In this paper an expert judgment approach is con-
sidered where the expert assesses the expectation 
and the pth percentile. We want to assume that the pth 

percentile is smaller than the expectation, i.e. from a 
reliability engineer point of view, the expert has to 
assess an unexpected event like e.g. an early failure. 
The expert’s task is to assess the probability q that a 
component fails after a (short) time interval tq, or 

vice versa, the time tq when (q·100)% of the compo-
nents has failed, i.e. F(tq) = q. The time tq is denoted 
the (q·100)th percentile. 

Two groups of persons that are involved in an ex-
pert judgment process are the analyst(s) and the ex-
pert(s). From an analyst point of view, the challenge 
is to choose the ‘correct’ distribution class for the 
analysis and to choose q and tq, respectively. Quali-
tative understanding about the failure mechanisms 
might be utilized in this process, e.g., crack initiation 
is often modeled by a Weibull distribution because a 
crack will start at the largest of many small material 
defects, whereas a gamma distribution is relevant 
when the failure process is driven by a series of ran-
dom shocks. Analysts may tend to choose distribu-
tion types that can easily be handled mathematically, 
or they may use a certain distribution because the 
used model requires this type of probability distribu-
tion (e.g. the exponential distribution in Markov 
models). Consequentially, the expert should recom-
mend a suitable distribution if he has good knowl-
edge about the failure mechanisms. 

Typical measures in maintenance modeling are 
e.g. the expected number of system failures or the 
mean time between failures as a function of the 
maintenance interval and the intervention strategy. 
The probability of a system failure is given by the 
probability that the system fails before it is replaced 
or before an inspection reveals that the system con-
dition is in a failed or unacceptable state. The in-
spection interval is normally shorter than the expec-
tation, median and mode of the distribution. Thus, 
the main interest will be in the left tail of the prob-
ability distributions, i.e. the risk of failure is due to 
this left part of the distribution. Even if the Weibull 
and the gamma distribution have very similar prop-
erties, there can be significant differences in the left 
tail of these distributions. 

We recommend asking the expert to assess the 
expectation, and a percentile being in the same order 
of magnitude as the replacement/inspection interval 
of the system. Such a strategy will give rather small 
modeling errors, even when there is no knowledge 
about the failure mechanisms, i.e. even when the 
‘correct’ distribution class is unknown. This is 
shown in this section by means of two examples. 
The first example is an age replacement strategy in a 
binary system and the second example is a multi-
state Markov model. 

To ask experts questions that are related to the 
length of maintenance intervals has also practical 
reasons (van Noortwijk et al. 1992). Experts are 
usually familiar with thinking in terms of mainte-
nance intervals and their knowledge about the sys-
tem’s behavior is closely related to events and de-
grees of degradation occurring within one interval 
length. 



3.1 Age replacement 
This first and very simple example considers an age 
replacement policy as described in Rausand & Høy-
land (2004). Under an age replacement policy a sys-
tem is replaced upon failure or at a specified opera-
tional age t0, whichever comes first. It is assumed 
that the lifetime T of the system can be described by 
a probability distribution and that the system is bi-
nary, i.e. the system has only two states: Functioning 
or failed. 

According to Rausand & Høyland (2004), the 
mean time between failures, MTBF, can be calcu-
lated by 
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where t0 = replacement age; and F(t) = cumulative 
distribution function of lifetime T. 

Now, we want to assume that the ‘correct’ life-
time distribution is unknown, i.e. it is unknown 
which type of probability distribution should be used 
for the modeling. Thus, we want to consider both the 
gamma and the Weibull distribution as potentially 
‘correct’ lifetime distribution. 

In this example, it is assumed that the failure time 
of the real system is gamma distributed. Shape and 
scale parameter are given by α = 2.29 and β = 17.47, 
respectively. However, neither the expert estimating 
the lifetime properties nor the analyst eliciting the 
expert opinion knows this fact. If no failure occurs, 
the system is regularly replaced after a period t0. 
This is, however, well known for both the expert and 
the analyst. 

Two cases (I and II) are analyzed in this example. 
In the former case the replacement age is 12 years, 
whereas in the latter case the replacement age 
is 4 years, i.e. t0,I = 12 years and t0,II = 4 years. If the 
lifetime of the system is gamma distributed with 
α = 2.29 and β = 17.47, the probability getting a fail-
ure before replacement is 10% (case I) and 1.1% 
(case II), respectively. This means that t0,I is the 10th 
percentile of the lifetime distribution and t0,II is ap-
proximately the 1st percentile of the distribution. 

As described above, the elicitation process is car-
ried out by asking the expert to assess expectation 
and a pth percentile of the distribution. The remain-
ing degrees of freedom in this expert judgment task 
are given by the distribution class and the choice of 
p, i.e. either the expert or the analyst has to decide 
what type of distribution is used in the following 
analysis steps and which percentile is used. 

Now, we assume that the analyst (or maybe the 
expert) chooses p and the distribution class and the 
expert gives an estimate for expectation and pth per-
centile of T. The chosen distribution (either the 
gamma or the Weibull distribution) is fitted to the 
expert estimate and afterwards MTBF is calculated 
by means of Equation 10. 

Figure 8 and Figure 9 show the mean time be-
tween failures for different combinations of p and 
distribution class for case I and case II, respectively. 
The chart curve for the gamma distribution is a 
straight line, i.e. MTBF is constant for all p. As men-
tioned before, the real system behavior is a gamma 
distribution. At this point, we want to make use of 
the term ‘model of the world’ (Chhibber et al. 1992). 
In the current example the ‘world’ is gamma distrib-
uted, whereas the ‘model of the world’ can be a 
gamma or a Weibull distribution. The expert’s ex-
perience is based on observations, this means it is 
based on observations of the real world. Thus, a per-
fect (unbiased) expert gives estimates that corre-
spond to the percentiles in a gamma distribution. If 
now the calculations are carried out with the correct 
‘model of the world’ (gamma distribution), MTBF is 
a constant value, regardless at which percentile the 
expert gives his (unbiased) estimate. However, if the 
wrong ‘model of the world’ (Weibull distribution) is 
used, the calculated MTBF will vary depending on 
the percentile used for the expert judgment. 

Both plots have a common feature: The graphs 
for the gamma and the Weibull distribution have an 
intersection at one point. This means that there is 
one p where the choice of the distribution has no in-
fluence on MTBF. This specific point is given by p 
where the pth percentile is approximately equal to the 
length of the replacement interval t0. In other words,  
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Figure 8. MTBF vs. p in the age replacement model. Case I: 
Replacement age t0 is the 10th percentile of the lifetime T. 

 
 

100

200

300

400

500

600

0 5 10 15 20 25
p

M
TB

F 
[y

ea
rs

]

Gamma distribution

Weibull distribution
Location of replacement age

 
Figure 9. MTBF vs. p in the age replacement model. Case II: 
Replacement age t0 is the 1.1th percentile of the lifetime T. 



 
Figure 10. MTBF vs. p in the age replacement model with un-
certain estimate for the pth percentile. 
 
 
by choosing p such that tp ≈ t0, the distribution class 
has no influence on the calculation of MTBF. 

If we look on Equation 10, this result is not sur-
prising. We can expect that the survivor function, 
(1–F(t)), is very close to one in the interval (0, t0) 
because we usually require high reliability of techni-
cal systems. This holds regardless of the distribution 
type used for the modeling. Thus, the integral ex-
pression in Equation 10 has a result varying not 
much for different distributions. F(t) is equal for the 
gamma distribution and the Weibull distribution at 
the point where the expert estimate is given, i.e. at 
t = tp. Thus, MTBF hardly depends on the choice of 
the distribution type if tp = t0, i.e. if the pth percentile 
corresponds to the replacement age t0.  

The assumption that the expert is perfect and un-
biased is unrealistic. We generally expect good es-
timates from experienced experts. However, expert 
errors are possible without any doubt. Thus, it re-
mains the question if the suggested rules also are 
valid if the expert gives biased estimates.  

If we e.g. assume that the expert systematically 
over-/underestimates the pth percentile and if the 
minimum or the maximum error is +/-20% of tp, 
then, the sample space for MTBF for different com-
binations of p, distribution class and error is given 
by the grey area in the diagram in Figure 10.  If p is 
chosen approximately in the order of magnitude of 
the replacement interval, the possible spread for 
MTBF (= MTBFmax – MTBFmin) becomes small and 
is part of the area where the calculation error attain 
its minimum value. The diagram shows the curves 
both for the gamma and the Weibull distribution for 
the minimal possible (-20%) and the maximal possi-
ble (+20%) error. In addition the curves for perfect 
estimates (0% error) are shown. Again, each pair of 
curves (Gamma/Weibull) at a given error has one in-
tersection at p such that tp ≈ t0. 

3.2 Markov model 
The Markov model described in Section 1 is consid-
ered in the second example. The sojourn times, Tk, 
are estimated by experts. As suggested before, this 
can be done by asking the experts for expectation 
and pth percentile of Tk. Similarly to the example 
presented in Section 3.1, it is analyzed how the 
choice of p and distribution class influences the cal-
culated results. The effective failure rate is calcu-
lated for different combinations of p and distribution 
class. Once again, the real system behavior is  
 
  
Table 4. Duration of sojourn times. 
State k Shape  α Scale β Expectation 

years 
Standard deviation 
years 

1 2.29 17.47 40 26.44 
2 2.29   8.73 20 13.21 
3 2.29   4.37 10   6.61 
4 2.29   2.18   5   3.30 
 
 
Table 5. Inspection interval lengths for both case I and II. 
State k Inspection interval τk
 Case I 

years 
Case II 
years 

1 12 4 
2   6 2 
3   3 1 
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Figure 11. Effective failure rate vs. p in the Markov model. 
Case I: Inspection interval length τk is 10th percentile of sojourn 
time Tk. 
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Figure 12. Effective failure rate vs. p in the Markov model. 
Case II: Inspection interval length τk is 1.1th percentile of so-
journ time Tk. 



assumed to be gamma distributed, i.e. 
Tk ~ gamma(αk, βk). Shape and scale parameters for 
T1 - T4, as well as expectation and standard devia-
tion, are given in Table 4. Two cases are analyzed 
with inspection interval lengths τk (k = 1, 2, 3) as 
given in Table 5. The two cases correspond to the 
situations where the length of τk is equal to the 
length of the 10th percentile of Tk and the 1.1th per-
centile of Tk, respectively. 

The effective failure rate for different combina-
tions of p and distribution class is shown in Figure 
11 for case I and in Figure 12 for case II. Once 
again, there is an intersection between the curve for 
the gamma distribution and the curve for the 
Weibull distribution. This intersection is close to the 
point where the percentile assessed by the expert is 
in the same order of magnitude as the inspection in-
terval of the system. This means, if p is chosen such 
that tp ≈ τ, the choice of the distribution class has 
only minor influence on the effective failure rate. 

4 SUMMARY AND CONCLUSIONS 

In this paper was shown that a general lifetime dis-
tribution like the gamma distribution or the Weibull 
distribution can be approximated by a sum of expo-
nential distributions in a maintenance model. Such 
an approximation can be especially useful in semi-
Markov models with sojourn times following a gen-
eral lifetime distribution. Thus, the semi-Markov 
process is transferred into a conventional Markov-
process. This simplifies the solution of the model. 

Two simple approaches for an approximation of 
the gamma distribution for the use in maintenance 
modeling were presented in this paper. The ap-
proaches are based on simple rules. They can easily 
be applied and they give quite good results in many 
applications. However, the two approaches have 
weaknesses in the lower left tail of the distribution. 
Hence, a partial distribution fit can be carried out in 
applications where the suggested approaches give 
unsatisfying results and where a good distribution fit 
for the lower left tail is necessary. This will yield a 
good approximation at least in a smaller range of t. 
A partial distribution fit must also be applied for the 
approximation of the Weibull distribution. This can 
give good results for the central part and the right 
tail of the distribution. However, this method does 
not provide a good approximation of the left tail of 
the Weibull distribution. 

In the second part of this paper was shown that if 
the expert judgment is carried out by assessing ex-
pectation and a lower percentile of the distribution, a 
recommended approach is to ask the expert to assess 
a percentile being in the same order of magnitude as 
the inspection/renewal interval of the system. By 
means of several examples it was shown that this 
approach will give rather small modeling errors, 

even when there is no knowledge about the correct 
lifetime distribution. 

This finding can be utilized in the presented 
Markov model. Even if it is difficult to represent the 
Weibull distribution by exponential distributions, a 
case with Weibull distributed sojourn times can be 
modeled if the parameter estimation is based on ex-
pert judgment and the experts assess percentiles ac-
cording to the recommendations above. 

The recommendations are useful if the mainte-
nance modeling is carried out for a situation with a 
constant replacement/inspection interval. If, how-
ever, the maintenance model is used to find an opti-
mal maintenance strategy, it is not possible asking 
the expert to assess a percentile corresponding to the 
replacement/inspection interval because this interval 
is an unknown variable. In this case, one could try to 
collect the expert data at time tp that approximately 
corresponds to the expected optimal inspection in-
terval. If, after having calculated the optimal solu-
tion, the optimal interval diverges much from the 
expected solution, the experts could update their es-
timates and the calculations could be repeated. 
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