
The Virtual Element Method as a
Common Framework for Finite Element
and Finite Difference Methods
Numerical and Theoretical Analysis

Øystein S Klemetsdal

Master of Science in Physics and Mathematics

Supervisor: Xavier Raynaud, MATH
Co-supervisor: Halvor Møll Nilsen, SINTEF ICT

Department of Mathematical Sciences

Submission date: June 2016

Norwegian University of Science and Technology

Abstract

Consistent discretizations of differential equations on polygonal and poly-
hedral grids is an active area of research. This is of particular interest in appli-
cations where the grid is constructed to capture the physical properties of the
domain on which the differential equation is defined, for example in subsur-
face modelling. Recent developments in this area includes the mimetic finite
difference method, which mimics the physical and mathematical properties of
the problem. Construction of such methods involves choosing a term to ensure
stability. Mimetic finite differences has later evolved into a finite element-like
approach called the virtual element method, which is the topic of this thesis.

The work presented here consists of three parts: (i) A literature study of the
virtual element method for Poisson problems, (ii) an analysis of the construction
of the stability term of the virtual element method, and (iii) a MATLAB imple-
mentation of the virtual element method in two and three dimensions, for first
and second order, accompanied by numerical examples.

A detailed proof of the well-posedness of the operator involved in construct-
ing the virtual element function space is presented. We also present a detailed
proof of that this projection can be calculated exactly for any function in the
virtual element function space. Moreover, we show how the stability term can
be chosen such that the bilinear form of the virtual element method equals the
bilinear form it approximates. This is used to show that the stability term can
be chosen such that local stiffness matrix of the first order virtual element is
equal to the local stiffness matrix of the first order finite element method for
certain cell geometries. It is also used to show that we can choose the stability
term to obtain the same system of linear equations as for finite difference sten-
cils. The MATLAB implementation is used to solve simple problems in two and
three dimensions. We also use the implementation to investigate how the sta-
bility term can be used to minimize the error of the approximation in different
norms. Finally, the implementation is compared to some of the most common
methods used in reservoir simulations: Two-point and multipoint flux approx-
imation, and mimetic finite differences. The implementation is robust to irreg-
ular cell geometries and high aspect ratios, and converges as predicted by the
theory. Moreover, for pressure problems, it produces solutions which are close
to or better than the solutions produced by the mentioned reservoir simulation
methods.

i

Sammendrag

Konsistente diskretiseringer av differensialligninger på polygonale og poly-
hedrale grid er et aktivt forskningsfelt. Dette er spesielt interessant i anven-
delser der griddet er konstruert for a fange de fysiske egenskapene til domenet
differensialligningen er definert, for eksempel i undergrunnsmodellering. En
nyvinning innen dette feltet er mimetiske differansemetoder, som hermer et-
ter de fysiske og matematiske egenskapene til problemet. Konstruksjonen av
slike metoder involverer å velge en stabiliseringsterm. Mimetiske differanseme-
toder har senere utviklet seg til en endelig element-lignende tilnærming kalt
den virtuelle element metoden, som er temaet for denne masteroppgaven.

Arbeidet presentert her består av tre deler: (i) En litteraturstudie av den
virtuelle elementmetoden for Poisson problemer, (ii) analyse av den virtuelle
elementmetodens stabiliseringsterm, og (iii) en MATLAB implementasjon av
den virtuelle elementmetoden i to og tre dimensjoner, for første og andre orden,
akkompagnert av numeriske eksempler.

Vi presenterer et detaljert bevis av at projeksjonsoperatoren involvert i kon-
struksjonen av virtuelle elementmetoder er veldefinert, samt et detaljert bevis
for at denne projeksonen kan regnes eksakt for enhver funksjon i det virtuelle
funksjonsrommet. Videre viser vi hvordan stabilitetstermen kan velges slik at
den bilineære formen i den virtuelle elementmetoden blir lik den bilineære for-
men den approksimerer. Dette brukes til å vise at stabiliseringstermen kan
velges slik at den lokale stivhetsmatrisen til første ordens virtuelle element-
metoder er lik den lokale stivhetsmatrisen til første ordens endelige element-
metoder for visse cellegeometrier. Videre bruker vi dette til å vise at vi kan velge
stabiliseringstermen slik at det resulterende lineære ligningssystemet er likt det
vi får fra differansemetoder. MATLAB implementasjonen brukes til å løse enkle
problemer i to og tre dimensjoner. Videre brukes den til å minimere feilen til den
approksimerte løsningen i ulike normer. Til slutt sammenligner vi implemen-
tasjonen med noen av de vanligste metodene innen reservoarsimulering: Top-
unkts og multipunkts fluksapproksimasjon, og mimetiske differansemetoder.
Implementasjonen er robust med hensyn på irregulære cellegeometrier og store
aspektratioer, og konvergerer i henhold til teori. Videre produserer den løs-
ninger på trykkproblemer som er nært oppmot eller mer nøyaktig enn løsnin-
gene fra de nevnte reservoarsimuleringsmetodene.

ii

Preface

This thesis concludes my master’s degree in Industrial Mathematics at the
Norwegian University of Science and Technology (NTNU). The work has been
preformed in the period from the 10th of January to the 10th of June 2016, and
builds upon the work done in the course TMA4500.

I would like to thank everyone at SINTEF ICT Applied Mathematics for
showing interest in my work, and patiently sharing their knowledge. In par-
ticular, I would like to thank my supervisor, Xavier Raynaud, for thoroughly
answering all my questions. Your genuine interest in, and understanding of,
mathematics has been a great source of information and inspiration. I would
also like to thank my second supervisor, Halvor Møll Nilsen. Your intuitive
physicist approach to complex problem solving has been invaluable. Moreover,
I would like to thank my fellow students at Industrial Mathematics at NTNU –
Sharing knowledge and discussing with fellow students is by far the best way
to learn. In particular, I would like to thank Runar Lie Berge for providing me
with grids to test my implementation. I can honestly say that this period has
been the most fruitful during my time as a student.

Finally, I would like to thank my family and friends for support, and for
keeping my mind of this thesis when needed, during these five months of al-
most complete isolation. And last but not least, I would like to thank my girl-
friend for seven years, for patiently supporting me every day. I love you.

Oslo, Øystein Strengehagen Klemetsdal
June 10, 2016

iii

Contents

1 Introduction 1

2 The Virtual Element Method 5
2.1 Notation . 6
2.2 A model problem . 7
2.3 Abstract framework . 8
2.4 The virtual element spaces and projectors 10

2.4.1 The two-dimensional case 12
2.4.2 The three-dimensional case 19

2.5 Constructing the bilinear form . 25
2.6 Construction of the right-hand side 29
2.7 L2 error estimate . 30
2.8 Final Remarks . 30

3 A Family of Bilinear Forms 33
3.1 Constructing the stability term . 33
3.2 Equivalence with the Finite Element Method 45

3.2.1 FEM for triangles and tetrahedra 46
3.2.2 FEM for quadrilaterals and hexahedra 50
3.2.3 FEM for triangular prisms 57
3.2.4 Some remarks . 61

3.3 Equivalence with Finite Difference methods 61
3.3.1 Two dimensions . 62
3.3.2 Three Dimensions . 65

3.4 Final Remarks . 72

4 Implementing VEM for Poisson Problems 73
4.1 Numerical Integration . 73

4.1.1 Using the Divergence Theorem 74
4.1.2 Mapping from a reference element 75

4.2 Computing the 2D local stiffness matrix 75
4.3 Computing the 3D local stiffness matrix 81
4.4 Computing the L2 projection . 83
4.5 Computing the local load term . 84
4.6 Putting it all together . 85
4.7 Boundary Conditions . 86

v

5 Numerical Examples 89
5.1 Implementation details . 89
5.2 A 2D model problem . 90

5.2.1 Estimating the L2-norm . 90
5.2.2 Numerical solutions . 91

5.3 A 3D model problem . 93
5.3.1 Computing averages . 93
5.3.2 Numerical solutions . 94

5.4 Effect of the stability term . 96
5.4.1 Implementing sources and sinks 96
5.4.2 Solutions using different stability terms 97

5.5 Comparing with other methods . 97
5.5.1 Two-point flux-approximation 99
5.5.2 Hybrid formulation . 101
5.5.3 Pressure drop . 103
5.5.4 Point source . 104

5.6 Final remarks . 105

6 Conclusion and Closing Remarks 107
6.1 Conclusion . 107
6.2 Closing Remarks . 108

A Finite Element Function Spaces 111

B Finite Difference Stencils 117

References 121

vi

Chapter 1

Introduction

Perhaps I can best describe my experience of doing
mathematics in terms of a journey through a dark unexplored
mansion. You enter the first room of the mansion and it’s
completely dark. You stumble around bumping into the
furniture, but gradually you learn where each piece of
furniture is.

Andrew John Wiles

From a mathematical-historical point of view, approximating solutions to
differential equations is a rather new topic, and started in the 1930s with the
method of finite differences. One of the first rigour definitions of finite differ-
ences appeared in a paper in 1928 by Courant, Friedrichs and Lewy [11], where
they, among other, discussed approximations of second-order elliptic differen-
tial equations. Interestingly enough, the purpose was not to develop numerical
techniques for solving differential equations, but rather to derive existence re-
sults for such problems. This is also the paper in which they presented the
famous CFL condition.

In 1943, building on ideas by Galerkin, Courant developed the finite element
method (FEM) [12]. The core idea of FEM is to consider the weak formulation of
the differential equation, and divide the domain on which the differential equa-
tion is defined into a grid of triangular or tetrahedral cells. One then construct
finite-dimensional subspaces of the trial and test function spaces, and defines a
suitable set of basis functions for the these. The discrete variational formulation
can then be formulated as a set of linear equations, which can be solved to find
the approximated solution values at the vertices of the grid. These values are
referred to as the degrees of freedom of the method.

Later, the finite element method has been extended to more general cell ge-
ometries such as quadrilaterals, hexahedra and triangular prisms (see for ex-
ample [5, 29]). However, the need for explicit knowledge of the basis functions
makes it impossible to define a consistent discretization on a general polygonal
or polyhedral grid using the classical finite element framework.

1

2 Chapter 1. Introduction

Another widely used numerical method for solving differential equations is
the finite volume method (FVM) (see for example [36]). This method is based on
discretizing the conservation law associated with the differential equation, and
thus captures the physics of the problem. Hence, the method is conservative,
in the sense that the discrete formulation also guarantees conservation of the
quantity the equation describes. This property makes FVM well-suited for solv-
ing flow problems. In contrast to FEM, one allows for trial and test functions
that are discontinuous across the cell boundaries. This makes the finite volume
method more flexible with respect to cell geometries.

A typical example where we encounter polygonal or polyhedral grids is sub-
surface modelling [19, 35, 20]. This is an active area of research, and its applica-
tions ranges from modeling groundwater reserves, to oil reservoir simulation.
In any event, the complexity of the porous media subsurface and the flow im-
pose a close connection between the grid and the reservoir model. In contrast
to many other flow simulation disciplines, a given degree of accuracy of the nu-
merical method cannot be obtained on an arbitrary grid – it has to capture the
geological and petrophysical properties of the reservoir [20, 19].

As a result of significant research, there exists several consistent discretiza-
tions for polygonal and polyhedral grids. Some, like the smoothed FEM [22]
and polygonal FEM [31], are similar to the classical finite element method. Oth-
ers, like the two-point [20, 19] and multipoint flux approximation methods [1,
2] are closer to finite volume methods.

Recently, it has become clear that it is possible to construct consistent first-
order finite volume-like methods on polygonal and polyhedral grids by mim-
icking the underlying properties of the physical problem, and also the mathe-
matical properties of the resulting differential equation. Such methods are know
as mimetic finite differences (MFD), see [35] for a comprehensive introduction.
Higher-order MFD methods can be obtained by introducing more degrees of
freedom, which are associated with quantities other than point values. Specif-
ically, these are moments over the edges, faces and cells of the grid. However,
the construction of such higher-order MFD methods has proved cumbersome
[33, 35].

It has later turned out that if we disregards the requirement of explicit knowl-
edge of the basis functions on the cell interior, it is possible to obtain a much sim-
pler discretization method, and a more unified theoretical framework, using the
same degrees of freedom. The idea is to instead require the basis functions to
satisfy a certain differential equation on the interior of each cell, and has lead
to a finite element-like method called the virtual element method (VEM) [33,
3, 34]. As a result, we do not know what the basis functions look like on the
interior of the cells. However, defining a suitable projection operator from the
VEM function space to the space of polynomials of a given degree, we are able
to compute this projection of the basis functions using the degrees of freedom.
This way, we obtain a consistent method for general polygonal and polyhedral
grids.

It is interesting to note that all the methods mentioned above ultimately
yields a system of linear equations. Hence, if two different numerical methods

Chapter 1. Introduction 3

yield the same system of equations, they are, in a way, two different perspec-
tives on the same problem, more than entirely different approaches. Common
for both MFD and VEM, is that their construction involves choosing a bilinear
form to ensure stability. This stability term can take a number of forms. For
MFD methods, it can be chosen such that MFD is equivalent to other methods,
see, for example [16, 21, 8]. Analysis of the stability term for VEM has also been
done [33, 9], and equivalence between VEM and the polygonal and smoothed
finite element methods is discussed in [23].

Remarks

This thesis builds upon the work presented in [17]. Initially, the goal was to
develop VEM for reservoir simulations. However, in this thesis, the focus has
shifted to a more theoretical perspective, with emphasis on the stability term
and equivalence analysis. Some of the material presented in this thesis can also
be found in [17]. In particular, a first version of Chapter 2 and Chapter 4 was
initially presented here. Part of the MATLAB implementation of second order
VEM in two dimensions is also based on this work.

Based on the work presented in this thesis, in the thesis [4], and on work
done at SINTEF ICT, an abstract has been submitted and accepted for the SPE
Reservoir Simulation Conference 2017 [28], and the work will be presented in a
talk at this conference.

Outline

In Chapter 2, the most important theoretical aspects of the virtual element method
for the Poisson equation in two and three dimensions are described. In Chap-
ter 3, we discuss how to construct the stability term, and show how it can be
chosen in order to make VEM equivalent to other numerical methods. Chapter 4
describes in detail the implementation process of VEM for Poisson problems in
two and three dimensions. In Chapter 5, we discuss some of the details of the
MATLAB implementation of VEM implemented for this thesis. Then, we use it
to solve simple problems in two and three dimensions, look at how the stabil-
ity term can be used to minimize the error, and compare the implementation to
standard reservoir simulation methods. Finally, in Chapter 6, we conclude and
discuss further developments of the virtual element method.

For better readability theorems, propositions and lemmas are written in italic
types. Moreover, a square (�) indicates the end of a proof, and a circle (◦) indi-
cates the end of an assumption, definition, remark or example.

Chapter 2

The Virtual Element Method

Before I came here I was confused about this subject. Having
listened to your lecture I am still confused. But on a higher
level, and about more important things.

Unknown

In this chapter, we will go through the theoretical aspects of the virtual ele-
ment method for Poisson problems. The theory presented here is mainly based
on what is found in [33, 3], supplemented with detailed proofs, definitions and
remarks. In particular, we present a detailed proof of the well-posedness of the
projection operator Π∇.

Before we go into the details of the virtual element method, and explain
terms such as the local stiffness bilinear form, we summarize the core idea:

(i) The virtual element space, in which the trial and test functions are con-
tained, consists of all polynomials of degree less than or equal to k, along
with some possibly non-polynomial functions.

(ii) We choose the degrees of freedom and the virtual element space in such
a way that when one of the two entries is a polynomial of degree less
than or equal to k, the local stiffness bilinear form of each element can be
computed exactly, using only the degrees of freedom.

(iii) In the cases when none of the two entries is a polynomial of degree less
than or equal to k, the stiffness bilinear form is only approximated to the
right order of magnitude, while we ensure that stability properties are
satisfied.

As we will see, we never actually compute the non-polynomial basis functions,
but rather, their polynomial projection, which we can calculate from the degrees
of freedom. Hence, the term virtual.

5

6 Chapter 2. The Virtual Element Method

2.1 Notation

Vectors will be denoted by lower-case bold types. By convention, all vectors are
column vectors. For a vector v = (v1, . . . , vn)T ∈ Rn, we denote the Euclidean
norm by

|v| =

√√√√ n∑
i=1

v2
i .

Matrices will be denoted by upper-case bold types. For a matrixM ∈ Rn×m,
we denote the element in the ith row and jth column by Mi,j . The identity
matrix will be denoted by I .

A multi-index is an n-tuple of nonnegative integers, and will be denoted in
bold types. In particular, if α is a multi-index, we write α = (α1, . . . , αn), and
|α| = α1 + · · ·+ αn. Moreover, for x ∈ Rn, and α = (α1, · · · , αn), we adopt the
notation xα =

∏n
k=1 x

αk

k .
For a subset Ω ⊂ Rd, we will denote the length (d = 1), area (d = 2) or

volume (d = 3) by |Ω|. We will always assume that Ω is bounded. We recall the
following Sobolev norm and seminorm on Ω:

‖w‖Hm(Ω) =

 ∑
|α|≤m

‖Dαw‖2L2(Ω)

1/2

, |w|Hm(Ω) =

 ∑
|α|=m

‖Dαw‖2L2(Ω)

1/2

.

where m is a positive integer, Dα is the partial derivative

Dα =
∂α1 · · · ∂αd

∂xα1
1 · · · ∂x

αd

d

,

and ‖ · ‖L2(Ω) is the L2-norm:

‖w‖L2(Ω) =
(
(w,w)L2(Ω)

)1/2
=

(∫
Ω

|w|2 dx

)1/2

.

We also recall the following Sobolev spaces

Hm(Ω) :=
{
w : ‖w‖Hm(Ω) <∞

}
, Hm

0 (Ω) := {w ∈ Hm(Ω) : w|∂Ω = 0} .

Further, for Hm(Ω), we use the short-hand notation (m,Ω). In particular, we
will use

‖ · ‖L2(Ω) = ‖ · ‖0,Ω, ‖ · ‖Hm(Ω) = ‖ · ‖m,Ω, | · |Hm(Ω) = | · |m,Ω,
(u, v)L2(Ω) = (u, v)0,Ω.

For a differentiable function v we denote its normal derivative∇v ·n by ∂nv,
where n is the outward normal of ∂Ω.

Finally, we denote the space of all polynomials on Ω of degree less than or
equal to k to by Pk(Ω). By convention, P−1 = {0}.

Chapter 2. The Virtual Element Method 7

This notation will be used throughout the thesis.

2.2 A model problem

In order to have something more than just an abstract framework, we will intro-
duce a simple model problem. As mentioned in Chapter 1, consistent discretiza-
tions for polygonal and polyhedral grids are particularly suited for applications
in reservoir simulation. Hence, we will consider the case of an incompressible
fluid flowing through a porous medium. This can be described by the equations

∇ · v = q, (2.1a)

v = −K
µ

(
∇p− ρg∇z

)
, (2.1b)

where p is the fluid pressure, µ is the dynamic viscosity of the fluid, g is the
gravitational constant, z is the vertical coordinate, and q represents a source or
sink term. The tensor K is the permeability of the porous medium – its ability
to transmit a single fluid for a given pressure drop. Equation (2.1b) is known as
Darcy’s law, where v is the macroscopic velocity. See, for instance, [19, Chapter
6.1] for a derivation. For simplicity, we assume that K = KI , where I is the
identity matrix, which corresponds to an isotropic porous medium, and K, µ
and ρ are constant. We can now combine equation (2.1a) and (2.1b) into

−K
µ

∆
(
p− ρgz

)
= q.

We introduce the fluid potential u := p − ρgz, and the modified source term
f := µ

K q, and assume that the subsurface occupies a polygonal domain Ω ⊂ Rd,
where d = 2 or 3. If u vanishes on the boundary of Ω, this leads to the Poisson
equation:

−∆u = f, x ∈ Ω,

u = 0, x ∈ ∂Ω.
(2.2)

We assume that the source term f is in L2(Ω). For simplicity, we write V :=
H1

0 (Ω), and multiply by a function v ∈ V and integrate over Ω to obtain

−(∆u, v)0,Ω = −(∂nu, v)0,∂Ω + (∇u,∇v)0,Ω

= (∇u,∇v)0,Ω ∀v ∈ V.

This leads to the weak formulation of (2.2):

Find u ∈ V such that a(u, v) = (f, v)0,Ω ∀v ∈ V, (2.3)

where a(u, v) = (∇u,∇v)0,Ω. The finite element method was popularized as
a method for solving problems in continuum mechanics [32]. Due to this fact,

8 Chapter 2. The Virtual Element Method

we usually refer to a as the stiffness bilinear form, and the right-hand side as
the load term. The function space V is called the test function space, and the
functions v are called test functions. In problems with inhomogeneous bound-
ary conditions, we sometimes need a second function space U , called the trial
function space, and we seek a solution u among all trial functions. In this case,
however, the trial and test function spaces coincide.

We note that (2.3) has a unique solution. Indeed; the Poincaré inequality [15,
Chapter 5.6] gives

‖v‖1,Ω = ‖v‖0,Ω + |v|1,Ω ≤ C|v|1,Ω ∀v ∈ V,

where C is a positive constant. It follows that a is coercive:

a(v, v) = |v|21,Ω ≥ C−2‖v‖21,Ω ∀v ∈ V.

Moreover, a is continuous, since

a(u, v) ≤ |u|1,Ω|v|1,Ω ≤ ‖u‖1,Ω‖v‖1,Ω ∀u, v ∈ V.

Finally, we have that (f, ·)0,Ω is continuous:

(f, v)0,Ω ≤ ‖f‖0,Ω‖v‖0,Ω ≤ ‖f‖1,Ω‖v‖1,Ω ∀v ∈ V.

Hence, by the Lax-Milgram theorem [15, Chapter 6.2], the weak formulation
(2.3) has a unique solution.

2.3 Abstract framework

For the sake of simplicity, we will follow the weak formulation (2.3). However,
the following is easily generalized to Poisson problems with inhomogeneous
boundary conditions, both Dirichlet and Neumann.

We will need the following definitions:

Definition 2.1. Let K be a polygon in R2 or a polyhedron in R3. The diameter
hK of K is the longest distance between any two vertices of K. ◦

Definition 2.2. A grid is a set Th of adjacent, non-overlapping polygons in R2

or polyhedra in R3. We refer to a polygon or polyhedron K of Th as a cell. The
diameter h of Th is defined as h := maxK∈Th hK . ◦

We let the grid Th be a decomposition of Ω into a finite number of non-
overlapping polygons in R2, or polyhedra R3, with diameter h. The bilinear
form a(·, ·) and seminorm | · |1,Ω can be split as follows:

a(u, v) =
∑
K∈Th

aK(u, v), |v|1,Ω =

(∑
K∈Th

|v|21,K

)1/2

, ∀u, v ∈ V. (2.4)

Since we will work with functions that are only piecewise inH1(Ω), we will also
need the following definition:

Chapter 2. The Virtual Element Method 9

Definition 2.3. We define the function space

H1(Th) :=
∏
K∈Th

H1(K),

along with the broken H1-seminorm,

|v|h,1 :=

(∑
K∈Th

|∇v|20,K

)1/2

. (2.5)

◦

Note that | · |h,1 is indeed a seminorm, and not a norm, since it is zero for all
piecewise constant functions.

For a given degree of accuracy k ≥ 1, we consider grids Th that satisfies the
following:

Assumption 2.4. For each h, there exists

(i) a subspace Vk(K) ⊂ H1(K) for each K ∈ Th;

(ii) a subspace Vh ⊂ V ∩
∏
K∈Th Vk(K);

(iii) a symmetric, bilinear form ah : Vh × Vh → R, which can be split as

ah(uh, vh) =
∑
K∈Th

aKh (uh, vh) ∀uh, vh ∈ Vh, (2.6)

where each aKh (·, ·) is a symmetric, positive definite bilinear form on Vh|K×
Vh|K ;

(iv) an element fh ∈ V ′h, where V ′h is the dual space of Vh.

◦

We want to define these objects in such a way that we have a unique solution
uh ∈ Vh to the discrete version of (2.3):

Find uh ∈ Vh such that ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh, (2.7)

where 〈·, ·〉 denotes the pairing of Vh with V ′h. Moreover, we want the solution
to approximate the function nicely. In particular, if u is a sufficiently smooth
solution to (2.3), and k ≥ 1 is the target degree of accuracy, we want

|u− uh|1,Ω ≤ Chk|u|k+1,Ω

for some positive constant C. To this end, we make the following assumptions
on our bilinear form:

Assumption 2.5. For all h, and all K ∈ Th, we have an integer k ≥ 1 such that,
for all vh ∈ Vh|K , we have

10 Chapter 2. The Virtual Element Method

(i) k-consistency:

aKh (vh, p) = aK(vh, p) ∀p ∈ Pk(K). (2.8)

(ii) Stability: There exists two positive constants c1 and c2, independent of h
and K, such that

c1a
K(vh, vh) ≤ aKh (vh, vh) ≤ c2aK(vh, vh). (2.9)

The integer k is then said to be the degree of accuracy of the method. ◦
The symmetry and stability properties implies continuity of ah:

aKh (uh, vh) ≤
(
aKh (uh, uh)

)1/2 (
aKh (vh, vh)

)1/2
≤ c2

(
aK(uh, uh)

)1/2 (
aK(vh, vh)

)1/2
= c2|uh|1,K |vh|1,K ∀uh, vh ∈ Vh|K .

We now have the following abstract convergence theorem:

Theorem 2.6. Let u be the solution to (2.3). Under Assumption 2.4 and Assump-
tion 2.5, the discrete problem (2.7) has a unique solution uh. Moreover, for every ap-
proximation uI ∈ Vh of u, and every approximation uπ of u that is piecewise in Pk(Ω),
we have

|u− uh|1,Ω ≤ C
(
|u− uI |1,Ω + |u− uπ|h,1 + ‖f − fh‖V ′h

)
,

where C is a constant depending only c1 and c2, and ‖ · ‖V ′h is the dual norm:

‖f − fh‖V ′h := sup
vh∈Vh

〈f − fh, vh〉
‖vh‖V

. (2.10)

This theorem is presented in [33], and a detailed proof is given in [17]. Note
that we have three contributions to the error of the approximation uh of u: The
first is the global error |u− uI |1,Ω, reflecting the error one gets by using of Vh in
stead of V . The second is the local error |u − uπ|h,1, which reflects the error of
the polynomial approximation. The third term reflects the error ‖f − fh‖V ′h of
approximating f by fh.

2.4 The virtual element spaces and projectors

We will now explain how to construct the virtual element spaces and projectors.
In order to do this, we need the following definitions:

Definition 2.7. Let K be a polygon in R2 or a polyhedron in R3. We define the
centroid xK of K by

xK =
1

|K|

∫
K

x dx.

Chapter 2. The Virtual Element Method 11

◦

Definition 2.8. Let K be a polygon in R2 or a polyhedron in R3, with diameter
hK and centroid xK . The scaled monomials of degree less than or equal to k is
defined as

Mk(K) =

{
mα :=

(
x− xK
hK

)α
: |α| ≤ k

}
.

We also define the function space

M∗k(K) =

{
mα :=

(
x− xK
hK

)α
: |α| = k

}
.

◦

We will simply refer to a scaled monomial as a monomial. It follows im-
mediately that dimMk(K) = dimPk(K). Moreover, the scaled monomials are
linearly independent, so that we can useMk(K) as a basis for Pk(K).

In order to simplify notation, we introduce the following mapping between
the positive integers and multi-indices of two elements:

1↔ (0, 0), 2↔ (1, 0), 3↔ (0, 1),

4↔ (2, 0), 5↔ (1, 1), 6↔ (0, 2), . . . ,

and between integers and multi-indices of three elements:

1↔ (0, 0, 0), 2↔ (1, 0, 0), 3↔ (0, 1, 0), 4↔ (0, 0, 1), 5↔ (2, 0, 0),

6↔ (1, 1, 0), 7↔ (0, 2, 0), 8↔ (1, 0, 1), 9↔ (0, 1, 1), 10↔ (0, 0, 2), . . .

This gives a natural way of ordering the monomials. For example, in two di-
mensions, we have m(1,0) = m2. Note that for a monomial mα with α ≤ nk, we
then know that mα ∈Mk(K).

Next, we define the L2-orthogonal projection operator ΠΩ
k onto the space of

polynomials of degree less than or equal to k:

Definition 2.9. Consider a domain Ω ⊂ Rd. For k ≥ 0, the L2-orthogonal projec-
tion operatorΠΩ

k : L2(Ω)→ Pk(Ω) is defined such that, for a function v ∈ L2(Ω),
ΠΩ
k v is the unique element in Pk(Ω) satisfying(

v −ΠΩ
k v, p

)
0,Ω

= 0 ∀p ∈ Pk(Ω).

◦

Whenever it is clear from the context, we omit the degree k and domain Ω,
and simply write Π .

12 Chapter 2. The Virtual Element Method

2.4.1 The two-dimensional case

As mentioned earlier, the polynomials of degree less than or equal to k is con-
tained in the virtual element space. We recall the dimension of Pk(R2):

nk := dimPk
(
R2
)

=
1

2
(k + 1)(k + 2).

Constructing the local 2D virtual element space

We consider a polygon K, with n edges, centroid xK and diameter hK . An
example of such a polygon is shown in Figure 2.1.

xK

hK

Figure 2.1: Example polygon, with centroid xK and cell diameter hK indicated.

For k ≥ 1, we define the function space

Bk(∂K) :=
{
v ∈ C0(∂K) : v|E ∈ Pk(E) ∀E ⊂ ∂K

}
. (2.11)

A function v ∈ Bk(∂K) is uniquely determined by its values at each of the n
vertices, together with the values at k−1 additional points on each of the edges.
Hence, Bk(∂K) is a linear space of dimension n+ (k − 1)n = nk.

We now introduce an important ingredient in the virtual element method:

Definition 2.10. Consider a polygon K. For k ≥ 1, we define the projection
operator Π∇,Kk : H1(K) → Pk(K) such that, for a function v ∈ H1(K), Π∇,Kk v
is the unique element in Pk(K) satisfying

aK
(
v −Π∇,Kk v, p

)
= 0, ∀p ∈ Pk(K), (2.12)

Chapter 2. The Virtual Element Method 13

and ∫
∂K

(
v −Π∇,Kk v

)
ds = 0 for k = 1, (2.13a)∫

K

(
v −Π∇,Kk v

)
dx = 0 for k ≥ 2. (2.13b)

◦

Again, whenever the degree and domain is clear, we simply write Π∇. We
note that Π∇p = p for all p ∈ Pk(K), since, by (2.12), their gradients coincide,
while (2.13a) or (2.13b) takes care of the constant part. Hence, Π∇ is indeed a
projection onto Pk(K).

It is natural to wonder if, for a given v ∈ H1(K), its projection Π∇v well
defined. This is indeed the case, and we state it as a theorem:

Theorem 2.11. The projection operator Π∇ is well-posed.

Proof. Let u ∈ H1(K). We want to show that the set of equations defining Π∇u
has a unique solution. For a function v ∈ H1(K), we define

v̄ =

{∫
∂K

v ds for k = 1,∫
K
v dx for k ≥ 2.

Writing w = Π∇u, we see that the equations defining w can be written as

aK(w, p) = aK(u, p), ∀p ∈ Pk(K),

w̄ = ū.
(2.14)

We define

q =

{
w − 1

|∂K| ū for k = 1,

w − 1
|K| ū for k ≥ 2,

and reformulate (2.14) as

aK(q, p) = aK(u− ū, p) ∀p ∈ Pk(K), (2.15a)
q̄ = 0. (2.15b)

Next, we define the function space

P̄k(Ω) = {p ∈ Pk(Ω) : p̄ = 0} .

Since both w and ū are in Pk(K), it is clear from (2.15b) that q ∈ P̄k(K). More-
over, we note that any polynomial p ∈ Pk(K) can be decomposed into a constant
term and a term in P̄k(K) as

p =


1
|∂K| p̄+

(
p− 1

|∂K| p̄
)

for k = 1,

1
|K| p̄+

(
p− 1

|K| p̄
)

for k ≥ 2.

14 Chapter 2. The Virtual Element Method

Since aK(u,C) = (∇u,∇C)0,K = 0 for any constant C, it is clear that we can
replace Pk(K) by P̄k(K) in (2.15a). We now define the functional

〈f, · 〉 := aK(u− ū, ·),

and rewrite (2.15) in the following way:

Find q ∈ P̄k(K) such that aK(q, p) = 〈f, p〉 ∀p ∈ P̄k(K). (2.16)

Now, we define a basis {pi}i of P̄k(K), and express q in this basis as q =
∑
i ξipi,

where ξi ∈ R for all i. The weak formulation (2.16) can now be stated in matrix
form as

Aξ = b, (2.17)

where
ξ =

(
ξ1, . . . , ξdim P̄k(K)

)T
,

the matrix A is such that Ai,j = aK(pi, pj), and b is the vector such that bi =
〈f, pi〉.

It is now clear that Π∇ is well-posed if (2.17) has a unique solution. To this
end, consider a function p ∈ P̄k(K) such that aK(p, p) = 0. Then p = C, where
C is a constant. Moreover,

0 = p̄ =

{
C|∂K| for k = 1,

C|K| for k ≥ 2,

which gives that C = 0. Hence, aK(p, p) = 0 if and only if p = 0. It follows
that A is invertible, so that (2.17) has a unique solution. We conclude that the
projection operator Π∇ is well-posed.

Remark 2.12. Note that Π∇ is linear: Let K be a polygon in R2, and let u and v
be two functions in H1(K). Then, the definition of Π∇(u+ v) reads

aK
(
u+ v −Π∇(u+ v), p

)
= 0 ∀p ∈ Pk(K),∫

∂K

(
u+ v −Π∇(u+ v)

)
ds = 0 for k = 1,∫

K

(
u+ v −Π∇(u+ v)

)
dx = 0 for k ≥ 2.

Moreover, we have

aK
(
u+ v −

(
Π∇u+Π∇v

)
, p
)

= 0 ∀p ∈ Pk(K),∫
∂K

(
u+ v −

(
Π∇u+Π∇v

))
ds = 0 for k = 1,∫

K

(
u+ v −

(
Π∇u+Π∇v

))
dx = 0 for k ≥ 2.

Chapter 2. The Virtual Element Method 15

By the well-posedness of Π∇, it follows that

Π∇(u+ v) = Π∇u+Π∇v.

◦

We can now define our local virtual element space:

Definition 2.13. For k ≥ 1, we define the two-dimensional local virtual element
space Vk(K) on a polygon K:

Vk(K) :=
{
vh ∈H1(K) : vh|∂K ∈ Bk(∂K), ∆vh|K ∈ Pk(K),(

vh −Π∇k vh,m
)

0,K
= 0 ∀m ∈M∗k−1(K) ∪M∗k(K)

}
.

(2.18)

◦

We equip our virtual element space with the following degrees of freedom:

Definition 2.14. For a function vh in the local virtual element space Vk(K), we
choose the following degrees of freedom:

♦ VK : The values of vh at the vertices of K,

♦ EK : For k ≥ 2, the moments on each edge E of K

|E|−1(vh,m)0,E ∀m ∈Mk−2(E),

♦ PK : For k ≥ 2, the moments

|K|−1(vh,m)0,K ∀m ∈Mk−2(K).

◦

In Figure 2.2, we have indicated the degrees of freedom of a second order
VEM for the polygon shown in Figure 2.1.

Remark 2.15. Notice that for each edge E, since the dimension of Mk(E) is
k + 1, we have k − 1 degrees of freedom for each of the n edges. For a function
vh ∈ V1(K), we know that vh|E ∈ Pk(E) for all edges E of K. Hence, we are
free to use the following alternative definition of EK

♦ EK : For k ≥ 2, the values of vh at k − 1 points on each edge E of K.

This is the degrees of freedom used in [33, 34]. ◦

We now have n+ (k− 1)n+ dimPk−2(K) degrees of freedom in total, which
we write as

NK := nk +
1

2
k(k − 1).

We now have the following proposition:

16 Chapter 2. The Virtual Element Method

VK

EK

PK

Figure 2.2: Degrees of freedom of V2(K).

Proposition 2.16. Any function vh ∈ Vk(K) is uniquely determined from the degrees
of freedom VK , EK and PK .

The proof is based on the observation that VK and EK prescribes a function
vh ∈ Vk(K) on ∂K, while PK prescribes Πk−2vh in K. Hence, it is sufficient to
show that if vh|∂K = 0 and Πk−2vh = 0, then vh ≡ 0. The complete proof is
given in [33, 3].

Remark 2.17. For any vh ∈ Vk(K), we can compute its projection Π∇vh using
the degrees of freedom VK , EK and PK , see Theorem 4.3 and [3, 33]. As we will
see, it is this projection that allows us to construct a consistent discretization
without knowing the exact expression of the function vh on the interior of K. ◦

Remark 2.18. We could have made the somewhat easier choice of virtual ele-
ment space

Uk(K) := {vh ∈ H1(K) : vh|∂K ∈ Bk(∂K), ∆vh|K ∈ Pk−2(K)}. (2.19)

This function space uses the same degrees of freedom as Vk(K), and Π∇vh is
thus computable for any function vh ∈ Uk(K) as well. The reason why we are
not using this definition, will become clear later. ◦

Projection error

In order to ensure existence of a local approximation wπ ∈ Pk(K) of a smooth
function w on K with optimal approximation properties, we need another as-
sumption on our grid Th. We denote the length of an edge by hE , and assume
the following:

Assumption 2.19. There exists a positive, real number γ, such that for all h,

Chapter 2. The Virtual Element Method 17

(i) for every element K ∈ Th, for every edge E of K, hE ≥ γhK ;

(ii) every elementK is star-shaped with respect to all points in a disk of radius
greater than or equal to γhK .

◦

We can now state the following proposition:

Proposition 2.20. Under Assumption 2.19, there exists a constant C, only dependent
on k and γ, such that, for every s with 1 ≤ s ≤ k+ 1, and for every w ∈ Hs(K), there
exists a wπ ∈ Pk(K) such that

‖w − wπ‖0,K + hK |w − wπ|1,K ≤ ChsK |w|s,K .

See [33] for details.

Constructing the global 2D virtual element space

We are now ready to patch together our global virtual element space.

Definition 2.21. For every decomposition Th of Ω into polygonal cells K, and
for every k ≥ 1, we define the global virtual element space Vh:

Vh := {vh ∈ V : vh|K ∈ Vk(K) ∀K ∈ Th} .

◦

Considering the Poisson problem (2.7), it follows from the definition of Vk(K)
that in order to uniquely determine a function vh ∈ Vh, we need

N := NV +NE(k − 1) +NP
1

2
k(k − 1)

degrees of freedom, where NV , NE and NP are the total number of internal
vertices, internal edges, and polygons in Th. We define these as follows:

Definition 2.22. For a function vh in the global virtual element space Vh, we
choose the following N degrees of freedom:

♦ V : The values of vh at the internal vertices;

♦ E : For k ≥ 2, the moments on each internal edge E of Th

|E|−1(vh,m)0,E ∀m ∈Mk−2(E).

♦ P : For k ≥ 2, the moments on each polygon K in Th

|K|−1(vh,m)0,K ∀m ∈Mk−2(K).

◦

From Proposition 2.16, we know that any function vh ∈ Vh can be uniquely
determined from the degrees of freedom V , E and P .

18 Chapter 2. The Virtual Element Method

Interpolation error

From the construction of the local virtual element space, we know that for a
sufficiently smooth function w vanishing on ∂Ω, we can always find a function
wI ∈ Vh such that w and wI share the same degrees of freedom. In order to state
this more precisely, we need the following definition:

Definition 2.23. Numbering the degrees of freedom of Vh from 1 toN , we define
the functionals {χi}Ni=1, that, for a sufficiently smooth function φ, associates to
it the ith degree of freedom χi(φ), defined in Definition 2.22. We will also use
these functionals locally on each cell. The degrees of freedom will then be the
ones defined in Definition 2.14, and we number the functionals from 1 to NK . ◦

Hence, for every sufficiently smooth functionw vanishing on ∂Ω, there exists
a unique interpolant wI ∈ Vh such that

χi(w − wI) = 0 ∀i = 1, . . . , N. (2.20)

This leads to the following proposition:

Proposition 2.24. Under Assumption 2.19, there exists a constant C, depending only
on k and γ, such that for every s with 2 ≤ s ≤ k + 1, for every h, for all K ∈ Th and
for every w ∈ Hs(K), the interpolant wI ∈ Vh defined in (2.20) satisfies

‖w − wI‖0,K + hK |w − wI |1,K ≤ ChsK |w|s,K .

See [33, 3] for details.

Computing the L2-projection

We recall from Definition 2.9 that (vh −Πkvh,m)0,K = 0 for all monomialsm up
to order k. Hence, in order to find Πkvh for a function vh ∈ Vk(K), we need to
compute (vh,m)0,K for all monomials up to order k. But as explained in [3, 34],
these are now given by the degrees of freedom PK , along with the the definition
of Vk(K). We state it here as a proposition:

Proposition 2.25. For k ≥ 1 and for all vh ∈ Vk(K), the L2-projection Πkvh can
be computed from the degrees of freedom PK . In particular, for k = 1 and k = 2,
Πkvh = Π∇k vh.

Proof. Let vh ∈ Vk(K). From the definition of Πk, we know that we can find
Πkvh by computing (vh,m)0,K for all m ∈ Mk(K). Since vh ∈ Vk(K), the first
nk−2 of the inner products are given from PK . Moreover, from the definition of
Vk(K), we have

(vh,m)0,K =
(
Π∇k vh,m

)
0,K

∀m ∈M∗k−1(K) ∪M∗k(K).

Since we are able to computeΠ∇k vh, we can compute all inner products (vh,m)0,K ,
and hence Πkvh. In particular, for k = 1, we have, from the definitions of Π1,

Chapter 2. The Virtual Element Method 19

Π∇1 and V1(K), that for all m ∈M∗0(K) ∪M∗1(K) ≡M1(K),(
Π∇1 vh,m

)
0,K

= (vh,m)0,K =
(
Π1vh,m

)
0,K

,

so that Π1vh = Π∇1 vh for all functions vh in V1(K). For k = 2, we have from the
definitions of Π∇2 and Π2 that∫

K

Π∇2 vh dx =

∫
K

vh dx =

∫
K

Π2vh dx.

Moreover, the definition of V2(K) gives that(
Π∇2 vh,m

)
0,K

= (v,m)0,K =
(
Π2vh,m

)
0,K

∀m ∈M∗1(K) ∪M∗2(K),

so that the first three moments of Π∇2 vh and Π2vh coincide. Hence, Π∇2 vh =
Π2vh for all function vh in V2(K).

Remark 2.26. Note that the proof relies on the fact that
(
vh −Π∇vh,m

)
0,K

= 0

for allm ∈M∗k−1(K)∪M∗k(K), which is a property for all functions vh ∈ Vk(K).
This property does not hold in general for functions in the function space Uk(K)
from Remark 2.18. Thus, if we use function space Uk(K) we are not be able to
calculate the L2-projection from the degrees of freedom. ◦

Before we investigate the virtual element spaces and projectors in 3D, we
take a look at the the basis functions of U1(K) from Remark 2.18 for the polygon
in Figure 2.1. They are similar to the basis functions of V1(K), and are shown in
Figure 2.3.

2.4.2 The three-dimensional case

It is now time to leave Flatland, and ascend into three dimensions. We start by
recalling the dimension of the space of polynomials:

nk := dimPk(R3) =
1

6
(k + 1)(k + 2)(k + 3).

Constructing the local 3D virtual element space

Consider a polyhedronK with nV vertices, nE edges, and nF faces. An example
polyhedron is shown in Figure 2.4.

For every k ≥ 1, and every face F of K, we have from the 2D discussion that
Bk(∂F), defined as in (2.11), is a linear space of dimension νF k, where νF is the
number of edges of face F . Furthermore, we define Vk(F) in the same way as
in (2.18). This leads to the natural extension of Vk(F):

Vk(∂K) := {vh ∈ C0(∂K) : vh|F ∈ Vk(F) ∀F ⊂ ∂K}. (2.21)

We continue by defining the 3D version of the projection operator Π∇,Kk :

20 Chapter 2. The Virtual Element Method

(a) Basis function φ1. (b) Basis function φ2.

(c) Basisfunction φ3. (d) Basisfunction φ4.

(e) Basisfunction φ5. (f) Basisfunction φ6.

Figure 2.3: The 2D basis functions for the polygon in Figure 2.1.

Chapter 2. The Virtual Element Method 21

xK

Figure 2.4: Example polyhedron, with centroid xK .

Definition 2.27. Consider a polyhedron K. For k ≥ 1, we define the projection
operator Π∇,Kk : H1(K)→ Pk(K) such that for a function v ∈ H1(K), Π∇,Kk v is
the unique element in Pk(K) satisfying

aK
(
v −Π∇,Kk v, p

)
= 0 ∀p ∈ Pk(K),

and ∫
∂K

(
Π∇,∂Kk v −Π∇,Kk v

)
ds = 0 for k = 1,∫

K

(
v −Π∇,Kk v

)
dx = 0 for k ≥ 2.

◦

Again, whenever the degree k and domain K is clear from the context, we
write Π∇. Here, Π∇,∂K is understood to be the projection operator such that
for a face F of K, Π∇,∂K |F = Π∇,F . The latter term is the 2D operator from
Definition 2.10. The well-posedness of Π∇ follows in the same manner as in the
proof of Theorem 2.11.

Remark 2.28. From Remark 2.12, we know that Π∇,∂K is linear on each face of
K. Thus, arguing as in R2, it is clear that Π∇ is linear in R3 as well. ◦

We now arrive at the following definition:

22 Chapter 2. The Virtual Element Method

Definition 2.29. For k ≥ 1, we define the three-dimensional local virtual ele-
ment space Vk(K) on a polyhedron K:

Vk(K) :=
{
vh ∈H1(K) : vh|∂K ∈ Vk(∂K), ∆vh|K ∈ Pk(K),(

vh −Π∇k vh,m
)

0,K
= 0 ∀m ∈M∗k−1(K) ∪M∗k(K)

}
,

(2.22)

where Vk(∂K) is defined as in (2.21). ◦

We equip Vk(K) with the following degrees of freedom:

Definition 2.30. For a function vh in the local virtual element space Vk(K), we
choose the following degrees of freedom:

♦ VK : The values of vh at the vertices of K,

♦ EK : For k ≥ 2, the moments on each edge E of K

|E|−1(vh,m)0,E ∀m ∈Mk−2(E),

♦ FK : For k ≥ 2, the moments on each face F of K

|F |−1(vh,m)0,F ∀m ∈Mk−2(F),

♦ PK : For k ≥ 2, the moments

|K|−1(vh,m)0,K ∀m ∈Mk−2(K).

◦

In Figure 2.5, we have indicated the degrees of freedom of a second order
VEM for the polyhedron in Figure 2.4.

Remark 2.31. As in 2D, for each edge E, since the dimensions of Pk(E) = k+ 1,
we have k − 1 degrees of freedom for each of the nE edges. Hence, we are free
to use the alternative definition of EK to be the values at k − 1 points on each
edge in 3D as well. ◦

We now have nV +nE dimPk−2(E)+nF dimPk−2(F)+dimPk−2(K) degrees
of freedom, which we write as

NK := nV + nE(k − 1) +
1

2
nF k(k − 1) +

1

6
k(k2 − 1).

As in two dimensions, we have the following proposition:

Proposition 2.32. Any function vh ∈ Vk(K) is uniquely determined from the degrees
of freedom VK , EK , FK and PK .

The proof is similar to that of Proposition 2.16, see [33, 3].

Remark 2.33. Again, similar to what we found in 2D, we have that for any
vh ∈ Vk(K), we can compute its projection Π∇vh using the degrees of freedom
VK , EK FK and PK . See Theorem 4.9 and [3]. ◦

Chapter 2. The Virtual Element Method 23

VK

EK

FK

PK

Figure 2.5: The degrees of freedom of V2(K).

Remark 2.34. Similar to Remark 2.18, we could have chosen the virtual element
space

Uk(K) = {vh ∈ H1(K) : vh|∂K ∈ Uk(∂K), ∆vh|K ∈ Pk−2(K)},

which has the same degrees of freedom as Vk(K). However, with this choice,
we are no longer able to calculate Π∇vh for a function in vh ∈ Uk(K) directly
from the degrees of freedom. We will come back to this point in Section 2.5. ◦

Projection Error

We denote the diameter of a polygonal face F of a polyhedron K by hF , and
make the following geometric assumptions on our grid Th:

Assumption 2.35. There exists a positive, real number γ, such that

(i) for every element K ∈ Th, for every face F of K, and for every edge E of
F

hE ≥ γhF ≥ γ2hK ;

(ii) every elementK is star-shaped with respect to all points in a ball of radius
greater than or equal to γhK ;

(iii) every face F is star-shaped with respect to all points in a disk of radius
greater than or equal to γhF .

◦

24 Chapter 2. The Virtual Element Method

Under this assumption, it can be shown that Proposition 2.20 also holds in
three dimensions. See [3] for details.

Constructing the global 3D virtual element space

As in two dimensions, we can now proceed to define the global virtual element
space:

Definition 2.36. For every decomposition Th of Ω into polyhedral cells K, for
every k ≥ 1, we define the global virtual element space Vh:

Vh :=
{
vh ∈ V : vh|K ∈ Vk(K) ∀K ∈ Th

}
,

where Vk(K) is defined as in (2.22). ◦

Similar to the 2D case, we have that in order to uniquely determine a func-
tion vh ∈ Vh, we need

N := NV +NE(k − 1) +NF
1

2
k(k − 1) +NP

1

6
k(k2 − 1)

degrees of freedom, whereNV ,NE ,NF , andNP are the total number of internal
vertices, internal edges, internal faces, and polyhedra in Th. We define these as
follows:

Definition 2.37. For a function vh in the global virtual element space Vh, we
choose the following N degrees of freedom:

♦ V : The values of vh at the internal vertices,

♦ E : For k ≥ 2, the moments on each internal edge E of Th

|E|−1(vh,m)0,E ∀m ∈Mk−2(E),

♦ F : For k ≥ 2, the moments on each internal face F of Th

|F |−1(vh,m)0,F ∀m ∈Mk−2(F),

♦ P : For k ≥ 2, the moments on each polyhedron K of Th

|K|−1(vh,m)0,K ∀m ∈Mk−2(K).

◦

From Proposition 2.32 , it follows that a function vh ∈ Vh can be uniquely
determined from the degrees of freedom V , E , F and P .

Interpolation error

Following the 2D procedure, we define the functionals χi, i = 1, . . . , N just
as in Definition 2.23, but with Vh in place of Vh. Under Assumption 2.35, it

Chapter 2. The Virtual Element Method 25

can be shown that Proposition 2.24, with Vh in place of Vh, also holds in three
dimensions. See [3] for details.

Computing the L2-projection

We recall that in order to compute the L2-projection Πkvh for a function vh ∈
Vk(K), we need to calculate (vh,m)0,K for all monomials m ∈ Mk(K). As in
2D, the first nk−2 of these moments are given from PK , while the last ones are
given from the definition of Vk(K), since

(vh,m)0,K =
(
Π∇k vh,m

)
0,K

∀m ∈M∗k(K) ∪M∗k−1(K).

Hence, assuming that we are able to compute Π∇k vh, we conclude that Proposi-
tion 2.25 holds in 3D as well.

Remark 2.38. Again, we rely on that (vh,m)0,K =
(
Π∇vh,m

)
0,K

for all mono-
mials m ∈M∗k−1(K)∪M∗k(K). Hence, using the alternative VEM space Uk(K)
from Remark 2.34, we would not be able to calculate Πkvh directly from the
degrees of freedom. ◦

This concludes the construction of our VEM function spaces. Approxima-
tions of selected basis functions of U1(K) for the polyhedron in Figure 2.4 are
shown in Figure 2.6

2.5 Constructing the bilinear form

In what follows, we will denote the local virtual element space by Vk(K), both
in two and three dimensions.

Let us now justify the choice of degrees of freedom in Vk(K). As mentioned
in the beginning of this chapter, we want to be able to calculate exactly the
stiffness bilinear form aK whenever one of the two functions is in Pk(K). Note
that this is also necessary in order to compute Π∇v for a function v ∈ H1(K).
To this end, let p ∈ Pk(K) and vh ∈ Vk(K). By Greens formula, we then have

aK(vh, p) = (∇vh,∇p)0,K = (vh, ∂np)0,∂K − (vh,∆p)0,K . (2.23)

In two dimension, we see that ∂np|E ∈ Pk−1(E) and vh|E ∈ Pk(E) for all edges
E of ∂K. Hence, assuming we are able to compute integrals of polynomials
over ∂K, the first term can be computed exactly from the degrees of freedom
VK and EK . Further, we note that ∆p ∈ Pk−2(K), so that PK gives us the exact
value of the second term.

In three dimensions, the second term is again computable from PK . For
the first term, we know that the degrees of freedom FK enables us to compute
(vh, ∂np)0,∂K when ∂np|F ∈ Pk−2(F). But ∂np|F belongs, in general, to Pk−1(F).
However, since vh|∂K ∈ Vk(∂K), we know from Definition 2.13 that for a face F
of K, we have

(vh,m)0,F =
(
Π∇,Fk vh,m

)
0,F

∀m ∈M∗k(F) ∪M∗k−1(F).

26 Chapter 2. The Virtual Element Method

0

0.2

0.4

0.6

0.8

1

(a) Basis function φ1.

0

0.2

0.4

0.6

0.8

1

(b) Basis function φ2.

0

0.2

0.4

0.6

0.8

1

(c) Basisfunction φ4.

0

0.2

0.4

0.6

0.8

1

(d) Basisfunction φ9.

0

0.2

0.4

0.6

0.8

1

(e) Basisfunction φ11.

0

0.2

0.4

0.6

0.8

1

(f) Basisfunction φ13.

Figure 2.6: Some of the 3D basis functions for the polyhedron in Figure 2.4.

Chapter 2. The Virtual Element Method 27

Hence, is follows that if p is of degree k, we have

(vh, ∂np)0,∂K =
(
Π∇,∂Kk vh, ∂np

)
0,∂K

,

and conclude we are able to compute both terms in (2.23) in three dimensions
as well.

We now see that with the given construction of the virtual element space, we
are able to calculate aK(vh, p) for all functions vh ∈ Vk(K) and all polynomials
p ∈ Pk(K) exactly, with explicit knowledge only of the degrees of freedom of vh.
From Remark 2.26, it is clear that this would not have been possible in R3 if we
instead used the local VEM space Uk(K).

We note that for two functions u, v ∈ H1(K), we have the following:

aK
(
Π∇u,Π∇v

)
+ aK

(
u−Π∇u, v −Π∇v

)
= 2aK

(
Π∇u,Π∇v

)
+ aK(u, v)− aK

(
u,Π∇v

)
− aK

(
Π∇u, v

)
.

Using the fact that aK
(
u,Π∇v

)
= aK

(
Π∇u,Π∇v

)
, this reduces to the identity

aK(u, v) = aK
(
Π∇u,Π∇v

)
+ aK

(
u−Π∇u, v −Π∇v

)
. (2.24)

From Assumption 2.5, we recall that we want our bilinear form aKh to satisfy
k-consistency (2.8) and stability (2.9). To this end, we mimic the identity (2.24),
and choose aKh to be on the form

aKh (u, v) = aK
(
Π∇u,Π∇v

)
+ sK

(
u−Π∇u, v −Π∇v

)
,

where sK is a symmetric bilinear form, which we refer to as the stability term.
Note that any choice of sK would ensure k-consistency, since, by the definition
of Π∇,

aKh (vh, p) = aK(Π∇vh, Π
∇p) + sK

(
vh −Π∇vh, p−Π∇p

)
= aK(vh, p) ∀p ∈ Pk(K), vh ∈ Vk(K).

However, in general, the stability requirement is not satisfied. Indeed; consider
sK = 0 and vh ∈ Vk(K) a non-constant function such that Π∇vh = 0. Then
aKh (vh, vh) = 0, but aK(vh, vh) = |vh|21,K > 0. Hence, we need sK to be positive
definite on kerΠ∇. In fact, we will require it to satisfy

c̃1a
K(vh, vh) ≤ sK(vh, vh) ≤ c̃2aK(vh, vh) ∀vh ∈ kerΠ∇|Vk(K), (2.25)

where c̃1 and c̃2 are two positive constants, independent of K and hK . This
leads to the following theorem:

Theorem 2.39. Let sK be a symmetric bilinear form satisfying (2.25). Then, the bilin-
ear form

aKh (u, v) = aK
(
Π∇u,Π∇v

)
+ sK

(
u−Π∇u, v −Π∇v

)
(2.26)

28 Chapter 2. The Virtual Element Method

satisfies k-consistency (2.8) and stability (2.9).

See [17, 33] for a proof. Before we proceed, we note the following:

Remark 2.40. We have that kerΠ∇ = Im
(
Id−Π∇

)
, where Id is the identity

map. Indeed; if u ∈ kerΠ∇, then u = u − Π∇u. Hence, u ∈ Im
(
Id−Π∇

)
, so

that kerΠ∇ ⊂ Im
(
Id−Π∇

)
. On the other hand, since Π∇ is a projection, we

have that Π∇
(
Id−Π∇

)
= 0, and it follows that Im

(
Id−Π∇

)
⊂ kerΠ∇. ◦

In order to complete the construction of aKh , we define the following set of
basis functions for Vk(K):

Definition 2.41. LetK be a polygon in R2, or a polyhedron in R3. The canonical
basis for Vk(K) is defined as the unique set of functions {φi}NK

i=1 such that

χi(φj) = δij ,

where χi are the functionals defined in Definition 2.23, and δij is the Kronecker
delta. ◦

Remark 2.42. We have the following interpolation identity:

vh =

NK∑
i=1

χi(vh)φi ∀vh ∈ Vk(K). (2.27)

To see this, let ξ1, . . . , ξNK be the real coefficients such that vh =
∑NK

j=1 ξjφ
j .

Since the functionals χi are linear, we get

χi(vh) = χi

NK∑
j=1

ξjφ
j

 =

NK∑
j=1

ξjχ
i(φj) = ξi,

and (2.27) follows. We will use this interpolation identity extensively in the
following chapters. ◦

Using the canonical basis, it is clear that the discrete problem (2.7) for a cell
K can be formulated in the following way:

For i = 1, . . . , NK , find

(ξ1, . . . ξNK)
T ∈ RN

K

such that aKh

φi, NK∑
j=1

ξjφ
j

 = 〈fh, φi〉K .

This can be written compactly in matrix form as

AKξ = bK ,

where the local stiffness matrix is given by

AK
i,j = aKh (φi, φj) = aK

(
Π∇φi, Π∇φj

)
+ sK

(
φi −Π∇φi, φj −Π∇φj

)
,

Chapter 2. The Virtual Element Method 29

while the local load vector is given by bKi = 〈fh, φi〉K , and ξ is the vector
(ξ1, . . . , ξNK)

T . Following Remark 2.42, we see that the values ξ1, . . . , ξNK we
are approximating in the virtual element method are the degrees of freedom
χ1(uh), . . . , χN

K

(uh) of the solution uh to the discrete problem (2.7).

2.6 Construction of the right-hand side

The only thing missing in order to have a complete description of VEM is the
right-hand side of (2.7). We will assume that f ∈ Hk(Ω).

Definition 2.43. We define the element fh ∈ V ′h from Assumption 2.4 to be such
that fh|K = ΠK

k−1f . ◦

That is, we approximate f by a piecewise polynomial that, for each cell K, is
the L2-orthogonal projection onto Pk−1(K). Consequently, for a function vh ∈
Vk(K), we have

〈fh, vh〉K =
(
Πk−1f, vh

)
0,K

,

which we are able to compute using the degrees of freedom PK , along with the
fact that

(Πk−1f, vh)0,K =
(
Πk−1f,Π

∇
k vh

)
0,K

.

Moreover, we have from Definition 2.9 of the L2 projection that

(f −Πk−1f,Π0vh)0,K = 0.

Hence, we can write

(f −Πk−1f, vh)0,K = (f −Πk−1f, vh −Π0vh)0,K .

Using the theory of approximation of functions in Sobolev spaces (see for in-
stance [13, 5]), we can show that

(f −Πk−1f, vh −Π0vh)0,K ≤ ‖f −Πk−1f‖0,K‖vh −Π0vh‖0,K
≤ ChkK |f |k,KhK |vh|1,K ,

where C is a positive constant, independent on hK and K. Thus, we have that

〈f − fh, vh〉 ≤ C
∑
K∈Th

hk+1
K |f |k,K |vh|1,K

≤ Chk+1

(∑
K∈Th

|f |2k,K

)1/2(∑
K∈Th

|vh|21,K

)1/2

= Chk+1|f |k,Ω|vh|1,Ω,

30 Chapter 2. The Virtual Element Method

from which we conclude that

‖f − fh‖V ′h ≤ Ch
k+1‖f‖k,Ω.

2.7 L2 error estimate

We now have the following theorem:

Theorem 2.44. Let u be the solution to the weak formulation (2.3), and uh be the
solution to the discrete problem (2.7), with fh = Πk−1f for k ≥ 1. Assume further that
Ω is convex, that the right-hand side f belongs to Hk(Ω), and that the exact solution u
belongs to Hk+1(Ω). Then, the following estimate holds:

‖u− uh‖0,Ω + h‖u− uh‖1,Ω ≤ Chk+1|u|k+1,Ω,

where C is a constant independent of h.

The proof is based on a duality argument, and is given in [3], wherein it
is also argued that for k ≥ 3, we can take fh = Πk−2f and still have optimal
estimates. Note that with this choice, we are able to compute the right-hand
side using only the degrees of freedom PK .

2.8 Final Remarks

We note the following: For any function vh ∈ Vk(K), the L2 projectionΠk−2vh is
computable from the degrees of freedom PK . Hence, as long as we are in R2, if
we instead choose fh = Πk−2f for k ≥ 2, we never actually have to use fact that(
vh −Π∇k vh,m

)
0,K

= 0 for all m ∈ M∗k−1(K) ∪M∗k(K). As a matter of fact, if
we are satisfied with a convergence rate of k for k = 2, we could have done just
fine with the local virtual element space Uk(K), as mentioned in Remark 2.18.
This was the original local virtual element space, proposed in [33]. The virtual
element method presented here is also called the modified VEM [3].

The reason for using Vk(K) instead of Uk(K) is that it provides an explicit
knowledge of the L2 projection Π . For our model problem in three dimensions,
this has the obvious advantage that it gives an easy way of computing the last
term of (2.23) exactly. Indeed; In order to calculate this term using Uk(K), one
would have to add k additional degrees of freedom on each face. This is the
approach in higher order mimetic finite differences [35]. In two dimensions, if
the elliptic operator has only the principal part (that is, only the highest order
derivative term), it is sufficient to compute Π∇ in order to construct the dis-
cretization. However, in many cases, explicit knowledge of the L2 projection
allows for much cheaper discretizations. Moreover, in some cases, (like non-
linear problems) knowledge of this projection might substantially improve the
quality of the method [3]. In fact, as long as we are in R2 and we are not comput-
ing the L2 projection, there is no practical difference between choosing Uk(K)
or Vk(K), since they share the same degrees of freedom.

Chapter 2. The Virtual Element Method 31

Finally, we recall our model problem (2.1). In general, the permeability K
is not isotropic, and can vary from between the cells of the grid. The elliptic
operator of interest is then on the form ∇ ·K∇. Thus, in order to solve (2.1)
for a general permeability, we must consider the local stiffness bilinear form
aK(u, v) = (K∇u,∇v)0,K , and define the projection operator ΠK∇ accord-
ingly.

Chapter 3

A Family of Bilinear Forms

With four parameters I can fit an elephant, and with five I can
make him wiggle his trunk.

John von Neumann

As we saw in the previous chapter, we are free to choose the stability term
as long as the local bilinear form satisfies k-consistency and stability. In this
chapter, we present a method for constructing the stability term, and show how
it can be chosen to make aKh equal to the exact bilinear form aK . Finally, we
use this to see how the stability term can be chosen to make VEM equivalent to
other methods.

This chapter consists mainly of original work.

3.1 Constructing the stability term

For two functions u, v ∈ H1(K), we recall that our local stiffness bilinear form
is

aKh (u, v) = aK
(
Π∇u,Π∇v

)
+ sK

(
u−Π∇u, v −Π∇v

)
.

In Section 2.5, we saw that in order to have a stiffness bilinear form satisfying
both k-consistency and stability, we need the stability term sK to be a symmetric
bilinear form satisfying

c̃1a
K(vh, vh) ≤ sK(vh, vh) ≤ c̃2aK(vh, vh) ∀vh ∈ kerΠ∇

∣∣
Vk(K)

, (3.1)

where c̃1 and c̃2 are two positive constants, independent of K and hK . For
the moment, we will relax this requirement so that c̃1 and c̃2 are two positive
constants, which may depend onK and hK . This will still ensure that the virtual
element method produces a solution that is close to the exact solution in the
sense that Theorem 2.6 still holds, with the constant C depending on K and hK .
However, we no longer have the same convergence properties. Throughout this
chapter, we will sometimes abuse notation and write Π∇, meaning Π∇

∣∣
Vk(K)

.

33

34 Chapter 3. A Family of Bilinear Forms

We denote the vector of degrees of freedom of a function v ∈ H1(K) by

v̂ =
(
χ1(v), . . . , χN

K

(v)
)T

. (3.2)

Let uh and vh be two functions in Vk(K). From Remark 2.42, we know that we
can express these in the canonical VEM basis as uh =

∑
i χ

i(uh)φi and vh =∑
i χ

i(vh)φi. Hence, we can write our stability term as

sK(uh, vh) =

NK∑
i,j=1

χi(uh)sK(φi, φj)χj(vh).

Defining theNK×NK matrix S such that Si,j = sK(φi, φj), we have the matrix
representation of sK :

sK(uh, vh) = ûThSv̂h. (3.3)

The requirement of sK to be symmetric positive definite on kerΠ∇ means that
S must be a symmetric and positive definite matrix for all vectors v̂h such that
vh ∈ kerΠ∇. We will simply refer to this as S being symmetric positive definite
on kerΠ∇. Moreover, we need S to be such that (3.1) is satisfied.

At first sight, choosing the stability term involves choosing the NK(NK +
1)/2 elements on and above the diagonal of S. However, we will only use sK

on Im
(
Id−Π∇

)
, which we know from Remark 2.40 equals kerΠ∇. Hence, as

we will see, we do not have to determine that many parameters. To this end,
let {ψi}i be a basis for kerΠ∇ in Vk(K). We note that the restriction of Π∇ to
Vk(K) is a projection from the NK-dimensional function space Vk(K) to the nk-
dimensional function space Pk(K), so that the dimension of kerΠ∇ is nker :=
NK − nk. We now have the following result:

Lemma 3.1. Let {ψi}i be a basis for kerΠ∇, and let Q = [ψ̂1, . . . , ψ̂nker] be its
matrix representation. Similarly, let {pi}i be a basis for

(
kerΠ∇

)⊥, and let R =

[p̂1, . . . , p̂N
K−nker], so that QTR = 0. Moreover, let S be an NK × NK symmetric

matrix, positive definite on kerΠ∇, and let Σ, Σ′ and Σ′′ be the matrices defined by

[Q,R]

[
Σ Σ′

Σ′ Σ′′

] [
QT

RT

]
= S. (3.4)

Then, we have that

ûThSv̂h = ûThQΣQT v̂h ∀uh, vh ∈ kerΠ∇.

Note that the matrices Σ, Σ′ and Σ′′ are uniquely defined by (3.4), since
[Q,R] is an invertible matrix.

Proof. Let uh and vh be two functions in kerΠ∇. We express them in the basis
{ψi}i as

uh =

nker∑
i=1

ξiψ
i, vh =

nker∑
i=1

ηiψ
i,

Chapter 3. A Family of Bilinear Forms 35

where ξi, ηi ∈ R for all i. From the linearity of χj , we have that ûh =
∑
i ξiψ̂

i.
We can write this in matrix form as ûh = Qξ, where ξ = (ξ1, . . . , ξnker

)
T . Anal-

ogously, we write v̂h = Qη. We now have that

ûThSv̂h = ξTQTSQη.

Inserting the expression (3.4) for S yields

ûThSv̂h = ξTQT
(
QΣQT +RΣ′QT +QΣ′RT +RΣ′′RT

)
Qη.

After multiplying out the parentheses, all terms involvingR will vanish due to
the orthogonalityQTR = 0, and we are left with

ûThSv̂h = ξTQTQΣQTQη = ûThQΣQT v̂h.

Note that Σ must be symmetric positive definite: First of all, we have that(
QΣQT

)T
= QΣTQT .

Since S is symmetric, we must have that ΣT = Σ. Moreover, for a function
vh ∈ kerΠ∇, with v̂h = Qξ, we have that

sK(vh, vh) = ξTQTQΣQTQξ.

Now, (QTQξ)T = ξTQTQ, so that sK(vh, vh) is on the form yTΣy. Proposi-
tion 2.16 and Proposition 2.32 tells us that any function in Vk(K) is uniquely
determined from its degrees of freedom. Hence, Q must have full rank, and it
follows that QTQ is invertible. Thus, for a given vector ξ ∈ Rnker , there exists
a vector y ∈ Rnker such that QTQξ = y. Since S is positive definite on kerΠ∇,
this implies that yTΣy > 0 for all vectors y 6= 0.

With this result, since we are only using sK on kerΠ∇, we can now define a
whole family of consistent and stable bilinear forms:

Theorem 3.2. Let K be a polygon or polyhedron, and let u, v ∈ H1(K). The family
of consistent and stable local bilinear forms aKh consists of those that can be written on
the form

aKh (u, v) = aK
(
Π∇u,Π∇v

)
+ sK

(
u−Π∇u, v −Π∇v

)
,

where sK(u, v) = ûTQΣQT v̂. The matrix Q = [ψ̂1, . . . , ψ̂nker] is the matrix repre-
sentation of kerΠ∇, and Σ is an nker × nker symmetric positive definite matrix.

Proof. From Section 2.5, we know that aKh satisfies k-consistency (2.8) for any
choice of sK . To see that the stability requirement (3.1) is satisfied, consider a
function vh ∈ kerΠ∇, and define ‖vh‖2sK := sK(vh, vh). Since sK is bilinear
and symmetric positive definite on kerΠ∇, ‖ · ‖sK is a norm on kerΠ∇. Next,
we recall that aK(vh, vh) = |vh|21,K , and that |vh|1,K > 0 for all non-constant
functions vh. Moreover, since Π∇k p = p for all p ∈ Pk(K), it is clear that no

36 Chapter 3. A Family of Bilinear Forms

constant function besides vh ≡ 0 is in kerΠ∇. We also know that aK is bilinear
and symmetric, and it follows that | · |1,K is also a norm on kerΠ∇. Now, we
notice that the dimension nker = NK−nk of kerΠ∇ is finite. Since all norms are
equivalent in a finite-dimensional vector space, we thus know that there exists
two positive constants c̃1 and c̃2 such that√

c̃1|vh|1,K ≤ ‖vh‖sK ≤
√
c̃2|vh|1,K ∀vh ∈ kerΠ∇.

We conclude that (3.1) is satisfied, with the relaxed requirement that c̃1 and c̃2
can depend on K and hK .

Remark 3.3. Since Σ can be any nker × nker symmetric positive definite matrix,
we are free to choose nker(nker + 1)/2 coefficients, so long as they constitute a
positive definite matrix. ◦

We now want to see how sK must be modified in order for the constants c̃1
and c̃2 to be independent on K and hK . Before we investigate what this means
in practice, we need a result saying how the projection operator Π∇ behaves
under transformations in Euclidean space. We start with the following defini-
tion:

Definition 3.4. Let Kr and K be two polygons in R2, or polyhedra in R3. We
say that K is similar to Kr if there exists a mapping G from Kr to K, and a
positive constant γ, such that for any two points x,y ∈ Kr,

|G(x)−G(y)| = γ|x− y|.

We refer to the mapping G as a similarity mapping. ◦

Remark 3.5. Given two similar elements Kr,K ⊂ Rd, it can be shown that the
similarity mapping G from Kr to K is affine, that is:

G(x) = Ax+ b,

where A is a matrix in Rd×d, and b is a vector in Rd (see for example [10]).
Moreover, for two points x,y ∈ Kr, we have that

|G(x)−G(y)|2 = |A(x− y)|2 = γ2|x− y|2,

which we can write as

(x− y)TATA(x− y) = (x− y)T γ2(x− y).

Hence,ATA = γ2I , andA is orthogonal. ◦
For an affine mapping G from Kr to K, we have that

|K| =
∫
K

dx = |det(DG)|
∫
Kr

dxr = |det(DG)||Kr|,

where xr = (xr1, . . . , x
r
d) are the coordinates on Kr, and DG is the Jacobian

matrix, so that (DG)i,j = ∂Gi/∂x
r
j . Since G is affine, we have that DG = A,

Chapter 3. A Family of Bilinear Forms 37

where A ∈ Rd×d is a constant matrix. However, we will stick to the notation
DG. Note that we have used that DG is constant, and moved it outside the
integral. We see that in order for |K| to be non-zero, we must have det(DG) 6= 0.
In other words, G must be invertible. We will always consider elements with
nonzero area or volume, so that if the mapping from an element Kr to K is
affine, it is also invertible.

We will also consider the restriction of a mapping G to an edge Er of Kr. In
this case, we write G|Er

, which is then understood to be a mapping from Er to
its corresponding edge E of K. That is, G|Er

is a mapping from R to R. Hence,
if G is affine, DG|Er is a constant. Moreover, we see that if G is a similarity
mapping, so is G|Er , and it follows that |DG|Er | is equal for all edges Er of Kr.
The same applies for a face Fr of Kr: G|Fr

is understood to be the mapping
from R2 to R2, mapping Fr to its corresponding face F of K. For a similarity
mapping G we will now have that |det(DG|Fr

)| is equal for all faces of Kr. In
order to have a consistent notation, we will write DG|Er

= det(DG|Er
).

We now have the following result:

Proposition 3.6. Let Kr and K be two similar polygons in R2, or two similar poly-
hedra in R3, and let G be the similarity mapping from Kr to K. For a function
v ∈ H1(Kr), we then have that(

Π∇,Kr

k v
)
◦G−1 = Π∇,Kk (v ◦G−1).

In other words, we the following diagram commutes:

H1(Kr) H1(K)

Pk(Kr) Pk(K)

◦G−1

Π∇,KkΠ∇,Kr

k

◦G−1

Proof. Let p ∈ Pk(K). We have that

aK
(
v ◦G−1 −Π∇,Kk (v ◦G−1), p

)
=

∫
K

∇
(
v ◦G−1 −Π∇,Kk (v ◦G−1)

)
· ∇p dx

=

∫
Kr

|det(DG)|∇r
(
v −Π∇,Kk (v ◦G−1) ◦G

)
(DG)−1 · ∇r(p ◦G)(DG)−1 dxr,

where xr = (xr1, . . . , x
r
d) are the coordinates on Kr, and ∇r is the gradient in

row vector form with respect to these coordinates. Moreover,DG is the Jacobian

38 Chapter 3. A Family of Bilinear Forms

matrix. Since G is affine, DG must be constant. The affineness also gives that
p ◦G ∈ Pk(Kr), and we write this compactly as pr := p ◦G. We now have that

aK
(
v ◦G−1 −Π∇,Kk (v ◦G−1), p

)
= |det(DG)|

∫
Kr

∇r
(
v −Π∇,Kk (v ◦G−1) ◦G

)
(DG)−1(DG)−T (∇rpr)T dxr.

We know from Remark 3.5 that (DG)−1(DG)−T = γ−2I , where γ is a constant.
This gives

aK
(
v ◦G−1 −Π∇,Kk (v ◦G−1), p

)
=

1

γ2
|det(DG)|

∫
Kr

∇r
(
v −Π∇,Kk (v ◦G−1) ◦G

)
(∇rpr)T dxr

=
1

γ2
|det(DG)|aKr

(
v −Π∇,Kk (v ◦G−1) ◦G, pr

)
.

Next, for k = 1 and K ⊂ R2, we have∫
∂K

(
v ◦G−1 −Π∇,K1 (v ◦G−1)

)
ds

=
∑

Er⊂∂Kr

∫
Er

|det(DG|Er)|
(
v −Π∇,K1 (v ◦G−1) ◦G

)
dsr,

where Er is an edge of Kr, and G|Er
is the restriction of the mapping G to Er.

Naturally, DG|Er
is constant. Moreover, since Kr and K are similar, we know

that |det(DG|Er
)| is equal for all edges Er of Kr. Thus,∫

∂K

(
v ◦G−1 −Π∇,K1 (v ◦G−1)

)
ds

= |det(DG|Er)|
∫
∂Kr

(
v −Π∇,K1 (v ◦G−1) ◦G

)
dsr.

Recalling Definition 2.10 and Definition 2.27 of Π∇ in two and three dimen-
sions, we see that the definitions of Π∇,K1 (v ◦G−1) ◦G and Π∇,Kr

1 v are equiva-
lent, and conclude that

Π∇,K1 (v ◦G−1) =
(
Π∇,Kr

1 v
)
◦G−1. (3.5)

In R3, we have that∫
∂K

(
Π∇,∂K1 (v ◦G−1)−Π∇,K1 (v ◦G−1)

)
ds

=
∑

Fr⊂∂Kr

∫
Fr

|det(DG|Fr)|
(
Π∇,∂K1 (v ◦G−1) ◦G−Π∇,K1 (v ◦G−1) ◦G

)
dsr,

Chapter 3. A Family of Bilinear Forms 39

where Fr is a face of Kr. Using what we just found for k = 1 in R2, we know
that Π∇,∂K1 (v ◦ G−1) ◦ G = Π∇,∂Kr

1 v. Moreover, from the similarity of Kr and
K, we know that |det(DG|Fr

)| is equal for all faces Fr. Thus, arguing as in R2,
we know that (3.5) holds in R3 as well.

Finally, for k ≥ 2, we have that∫
K

(
v ◦G−1 −Π∇,Kk (v ◦G−1)

)
dx

= |det(DG)|
∫
Kr

(
v −Π∇,Kk (v ◦G−1) ◦G

)
dxr.

Arguing as for k = 1, it follows that

Π∇,Kk (v ◦G−1) =
(
Π∇,Kr

k v
)
◦G−1, k ≥ 2.

This concludes the proof.

Note that this result says nothing about the case when Kr and K are not
similar. However, in some special cases, the result is valid for k = 1 even if this
is not the case. We will come back to this point later.

Remark 3.7. Looking at the proof of Proposition 3.6, one might be tempted to
go for an even more general result, valid for a broader range of mappingsG: We
only need the mapping G to be such that det(DG) and (DG)TDG are constant
for all x. This is indeed the case if DG is a unitary matrix, since then, we have
that (DG)TDG = I and det(DG) = 1 for all x. However, it can be shown that
a mapping G with DG unitary is an isometry (see for example [10]). Moreover,
an isometry preserves distances, so that it is simply a similarity mapping with
γ = 1. In other words, these mappings are already covered. ◦

With this result, we can prove the following useful property of our VEM
basis functions:

Proposition 3.8. Let Kr ⊂ Rd be a polygon or polyhedron, and let and K be an
element similar to Kr. If the mapping G from Kr to K can be written on the form

G(x) = γx+ b, (3.6)

where γ is a constant, and b is a vector in Rd, the basis {φir ◦ G−1}i is the unique
canonical basis for Vk(K).

Proof. It is sufficient to show that all functions φir ◦ G−1 ∈ Vk(K), and that the
degrees of freedom coincides with the degrees of freedom of the canonical basis
{φi}i of Vk(K). Then, we know from Proposition 2.16 or Proposition 2.32 that
{φir ◦G−1}i is the unique basis {φi}i.

We start with the case of K being a polygon in R2. Since G is affine, we
can conclude φi ◦ G−1 ∈ H1(K), and that ∆(φir ◦ G−1) ∈ Pk(K). Moreover,
since all basis functions φir|E ∈ Pk(Er) for each edge Er of Kr, it follows that

40 Chapter 3. A Family of Bilinear Forms

(φir ◦G−1)|∂K ∈ Bk(∂K). Next, we need to check the condition(
φir ◦G−1 −Π∇,K(φir ◦G−1),m

)
0,K

= 0 ∀m ∈M∗k−1 ∪M
∗
k(K). (3.7)

Proposition 3.6 tells us that(
φir ◦G−1 −Π∇,K(φir ◦G−1),m

)
0,K

= |det(DG)|
∫
Kr

(
φir −Π∇,K(φir ◦G−1) ◦G

)
m ◦Gdxr

= |det(DG)|
∫
Kr

(
φir −Π∇,Krφir

)
m ◦Gdxr = 0,

where we have used the fact thatm◦G is a linear combination of the monomials
M∗k−1(Kr) ∪M∗k(Kr). Hence, we conclude that φir ◦G−1 ∈ Vk(K).

In R3, we can use what we found in R2 to conclude that (φir ◦ G−1)|∂K ∈
Vk(∂K). Furthermore, since G is affine, we see that φi ◦ G−1 ∈ H1(K), ∆(φir ◦
G−1) ∈ Pk(K), and that (3.7) is satisfied, so that φir ◦G−1 ∈ Vk(K).

Both in R2 and R3, it is clear that φir ◦ G−1 takes on the value 1 at all the
vertices of K, so its degrees of freedom VK coincides with VK of φi. Moreover,
since G is on the form (3.6), we have that xK = γxKr

+ b, hK = γhKr
, and |K|

= γd|Kr|. Thus, for the degrees of freedom PK , we have that

|K|−1
(
φir ◦G−1,mα

)
0,K

=
1

|K|

∫
K

φir

(
x− b
γ

)(
x− xK
hK

)α
dx

=
1

γd|Kr|

∫
Kr

φir(x)

(
γx+ b− (γxKr

+ b)

γhKr

)α
d(γx)

=
1

γd|Kr|
γd
∫
Kr

φir(x)

(
x− xKr

hKr

)α
dx = 1,

so that the degrees of freedom PK coincide as well. In the same manner, we can
check that this is also true for EK , and in R3, for FK . This gives that all degrees
of freedom of φir ◦G−1 and φi coincide, and we conclude that {φir ◦G−1}i is the
unique canonical basis {φi}i for Vk(K).

As explained in [34], we can say that the degrees of freedom scales as one.
We can now see how sK must scale in order to satisfy (3.1) with c̃1 and c̃2 in-
dependent on K and hK : Let Kr and K be two similar elements in Rd, with
diameters hKr

= 1 and hK , respectively, and let them be oriented such that
the similarity mapping taking Kr to K is G : x 7→ γx. It then follows that
γ = hK . We know from Proposition 3.8 that the ith basis function of Vk(K)
is φi(x) = φir(x/hK). Moreover, denoting the coordinates on Kr and K by
xr = (xr1, . . . , x

r
d)
T and x = (x1, . . . , xd)

T , respectively, we have that

∂φi

∂xj
=
∂φir
∂xrj

∂xrj
∂xj

=
1

hK

∂φir
∂xrj

,

Chapter 3. A Family of Bilinear Forms 41

so that∇φi = 1
hK
∇rφir. This yields

aK
(
φi, φi

)
=

∫
K

∣∣∇φi∣∣2 dx =

∫
Kr

1

h2
K

|∇rφir|2hdK dxr = hd−2
K aKr

(
φir, φ

i
r

)
.

In other words, we see that aK scales as hd−2
K . More generally, if Assump-

tion 2.19 is satisfied in R2, or Assumption 2.35 is satisfied in R3, we must en-
sure that sK scale as hd−2

K in order to obtain the optimal convergence properties
mentioned in Theorem 2.44. See for [33, 3] for details.

We now ask the following question: Is it possible to choose the parameter
matrix Σ such that aKh (uh, vh) = aK(uh, vh) for all uh, vh ∈ Vk(K)? Before we
proceed, we introduce the useful concept of generalized eigenvalues:

Definition 3.9. Let Ω ⊂ Rd, with d = 2 or 3. We say that λ is a generalized
eigenvalue of aK if there exists a function u ∈ H1(Ω), with u 6= 0, such that

aK(u, v) = λ(u, v)0,K ∀v ∈ H1(Ω). (3.8)

The function u is then an eigenfunction of aK . ◦

If we let Ω be a polygon or polyhedron K, and consider functions uh, vh ∈
Vk(K), we can use the interpolation identity (2.27) to obtain the matrix form of
(3.8):

AKûh = λLKûh,

where AK
i,j = aK(φi, φj), and LKi,j = (φi, φj)0,K . It can be shown that since AK

and LK are symmetric and positive definite, there exists a basis of generalized
real eigenvalues {λi}i, with generalized eigenfunctions {ψi}i. Moreover, we
can choose this basis to be L2-orthogonal [27, Chapter 15.3].

We now have the following important result, telling us how choose sK in
order to obtain the exact bilinear form aK :

Theorem 3.10. Let {ψi}i be an L2-orthonormal basis for kerΠ∇, with generalized
eigenvalues {λi}i, so that

aK(ψi, ψi) = λi,

and let Q = [ψ̂1, . . . , ψ̂nker] be its matrix representation. Let u, v ∈ H1(K), and let
the stability term sK be given by

sK(u, v) = ûTQP−1ΛP−1QT v̂, (3.9)

where P = QTQ, and Λ is the diagonal matrix with the generalized eigenvalues {λi}i
on its diagonal. Then, we have that

aKh (uh, vh) = aK(uh, vh) ∀uh, vh ∈ Vk(K).

42 Chapter 3. A Family of Bilinear Forms

Proof. Let uh and vh be two functions in kerΠ∇. We write these as
∑
i ξiψ

i and∑
i ηiψ

i, respectively, where ξi, ηi ∈ R for all i. Then, we have

aK(uh, vh) = aK

nker∑
i=1

ξiψ
i,

nker∑
j=1

ηjψ
j

 =

nker∑
i,j=1

ξia
K(ψi, ψj)ηj .

Due to the orthonormality of the basis {ψi}i, this simplifies to

aK(uh, vh) =

nker∑
i=1

ξiλiηi = ξTΛη,

where
ξ = (ξ1, . . . , ξnker

)
T
, η = (η1, . . . , ηnker

)
T
.

Recalling that we can write ûh = Qξ and v̂h = Qη, we also have that

sK(uh, vh) = ξTQTQP−1ΛP−1QTQη = ξTΛη,

so that sK(uh, vh) = aK(uh, vh) for all functions uh, vh ∈ kerΠ∇.
Now, let uh and vh denote two functions in Vk(K). Since v −Π∇v ∈ kerΠ∇

for any v ∈ H1(K), we have that

aKh (uh, vh) = aK
(
Π∇uh, Π

∇vh
)

+ sK
(
uh −Π∇uh, vh −Π∇vh

)
= aK

(
Π∇uh, Π

∇vh
)

+ aK
(
uh −Π∇uh, vh −Π∇vh

)
.

Recalling the identity (2.24):

aK(u, v) = aK
(
Π∇u,Π∇v

)
+ aK

(
u−Π∇u, v −Π∇v

)
∀u, v ∈ H1(K),

it is clear that
aK(uh, vh) = aKh (uh, vh) ∀uh, vh ∈ Vk(K),

which concludes the proof.

We see that if we choose sK to be on the form (3.9), the approximated bilinear
form aKh is equal to the exact bilinear form aK . Hence, we will refer to this choice
of stability term as the exact stability term. We now take a moment to investigate
two examples carefully.

Example 3.11. We consider a first order VEM for the rectangle

K = [−hx, hx]× [−hy, hy] ⊂ R2,

shown in Figure 3.1.
We know that the restriction of Π∇1 to V1(K) is a projection from V1(K) of

dimension NK = 4, to P1(K) of dimension n1 = 3, so that kerΠ∇1 has dimen-
sion 1. We can check that xy is in Vk(K), and that Π∇1 xy = 0. We follow the
procedure described in Theorem 3.10, and normalize the basis with respect to

Chapter 3. A Family of Bilinear Forms 43

x

y

−hx hx

−hy

hy

Figure 3.1: The rectangle [−hx, hx]× [−hy, hy].

L2(K) to obtain the L2-orthonormal basis:

{
ψ1
}

=

{√
9

4h3
xh

3
y

xy

}
. (3.10)

Its eigenvalue is then

λ1 = aK
(
ψ1, ψ1

)
= 3

(
1

h2
x

+
1

h2
y

)
.

The degrees of freedom are the values at the vertices, and we order them in
counter-clockwise direction, staring at (−hx,−hy)T . We obtain

Q =

√
9

4hxhy
q̃, (3.11)

where q̃ = (1,−1, 1,−1)T . Note that in order to conform with the notation
of Theorem 3.10, we have slightly abused our notation standard of denoting
vectors in lower-case bold types. The exact stability term is now

QΣQT =
1

12
q̃
(
ε+ ε−1

)
q̃T , (3.12)

where ε = hy/hx expresses the aspect ratio. Notice that all terms involving hx
and hy are gathered in the term (ε+ ε−1). We clearly see that the exact stability
term depends on the aspect ratio. ◦

Example 3.12. Next, we consider the cube

K = [−hx, hx]× [−hy, hy]× [−hz, hz] ⊂ R3,

shown in Figure 3.2.
In this case,Π∇1 is a projection from V1(K) of dimension 8 to P1(K) of dimen-

sion 4, so that dim kerΠ∇1 = 4. A basis for kerΠ∇ is given by {xy, xz, yz, xyz}.

44 Chapter 3. A Family of Bilinear Forms

x
y

z

−hx
hx

−hz

hz

−hy
hy

Figure 3.2: The cube [−hx, hx]× [−hy, hy]× [−hz, hz].

We can check that these functions are also aK-orthogonal. We follow the same
procedure as in the previous example, and obtain the L2-orthonormal basis{
ψ1, ψ2, ψ3, ψ4

}
=

{√
9

8h3
xh

3
yhz

xy,

√
9

8h3
xhyh

3
z

xz,

√
9

8hxh3
yh

3
z

yz,

√
27

8h3
xh

3
yh

3
z

xyz

}
.

The eigenvalues are

λ1 = 3

(
1

h2
x

+
1

h2
y

)
, λ2 = 3

(
1

h2
x

+
1

h2
z

)
, λ3 = 3

(
1

h2
y

+
1

h2
z

)
,

λ4 = 3

(
1

h2
x

+
1

h2
y

+
1

h2
z

)
.

We order the vertices as in Example 3.11 for z = −hz and z = hz , and obtain

Q =

√
9

8hxhyhz
Q̃, (3.13)

Chapter 3. A Family of Bilinear Forms 45

where

Q̃ =



1 1 1 −
√

3

−1 −1 1
√

3

1 −1 −1 −
√

3

−1 1 −1
√

3

1 −1 −1
√

3

−1 1 −1 −
√

3

1 1 1
√

3

−1 −1 1 −
√

3


.

The exact stability term now reads

QΣQT =
1

24
Q̃Σ̃Q̃T ,

where Σ̃ is the matrix
hz
(
εyx + ε−1

yx

)
0 0 0

0 hy
(
εxz + ε−1

xz

)
0 0

0 0 hx
(
εzy + ε−1

zy

)
0

0 0 0 1
9 (hzεyx + hyεxz + hxεzy)

 ,
and

εyx =
hy
hx
, εxz =

hx
hz
, εzy =

hz
hy
.

Again, note that all terms involving hx, hy and hz are gathered in the matrix
Σ̃. We clearly see how the aspect ratios are reflected in stability term. It should
also be mentioned that in [33, 3, 34], the proposed stability term is on the form
S = hKI . But as we have shown, it is impossible to obtain the exact bilinear if
we use a stability term on the form αhKI , with α > 0. ◦

3.2 Equivalence with the Finite Element Method

The finite element method (FEM) is in many aspects equal to the virtual element
method. However, in a finite element method, we have explicit knowledge of
our basis functions. This requires a heavy machinery of basis functions, numeri-
cal integration formulas and mappings from a reference element to the elements
of the grid. Moreover, the classical finite element method can only be defined
for certain cell geometries. We will not go into detail here, and the interested
reader is referred to Appendix A and [5, 29].

We still consider the Poisson equation

−∆u = f, x ∈ Ω, (3.14)

where Ω is a subset of R2 or R3. We will also assume that suitable boundary
conditions are given. As in VEM, for a given order k ≥ 1, we seek to solve a

46 Chapter 3. A Family of Bilinear Forms

discrete version of the weak formulation of (3.14):

Find uh ∈ Qh such that a(uh, vh) = (f, vh)0,Ω ∀vh ∈ Qh,

where Qh is the global finite element function space. Note that since we have
explicit knowledge of the FEM basis functions, we do not approximate the stiff-
ness bilinear form a, but calculate it exactly. The load term (f, ·)0,Ω must be
approximated to the right order.

As in VEM, we consider a decomposition Th of Ω into non-overlapping cells,
and split the bilinear form as

a(u, v) =
∑
K∈Th

aK(u, v).

On each element K, we define a set of local basis functions {ϕi}i, and obtain
the local stiffness matrix AK,FEM, where AK,FEM

i,j = aK(ϕi, ϕj). Theorem 3.10
tells us how to construct the exact stability term sK , which yields aKh (uh, vh) =
aK(uh, vh) for all functions uh, vh in the virtual element function space Vk(K).
Hence, with this choice of sK , if the local set of basis functions for FEM are the
same as for VEM, the two methods will have the same local stiffness matrix,
and we can consider them to be equivalent.

Due to the need for explicit definitions of the FEM basis functions, we will
have to define the basis functions differently for each kind of geometry. We
consider five different cell geometries: The triangle, quadrilateral, tetrahedron,
hexahedron and triangular prism. With each of these cell geometries, we asso-
ciate a reference element: The reference triangle Kt, square Ks, tetrahedron KT ,
cube KC , and prism KP

3.2.1 FEM for triangles and tetrahedra

The reference triangle

We denote by Kt the reference triangle in R2, shown in Figure 3.3. The local
function space for a k-th order FEM for the reference triangle is denotedQk(Kt),
and is defined in Definition A.2. We observe that we have 3 vertex functions,
k−1 edge functions for each of the 3 edges, and (k−1)(k−2)/2 bubble functions.
Hence, the local FEM space Qk(Kt) has dimension

NKt,FEM = 3k + (k − 1)(k − 2)/2.

We also recall the dimension of the local VEM space Vk(Kt):

NKt = 3k + k(k − 1)/2.

Thus, we have that for k = 1, NKt = NKt,FEM, while for k ≥ 2, we have that
NKt > NKt,FEM. Hence, for triangles, we can only analyse the equivalence
between first order FEM and VEM. In a sense, for k ≥ 2, FEM is less expensive
than VEM for this cell geometry, since it uses fewer degrees of freedom.

Chapter 3. A Family of Bilinear Forms 47

x

y

−1 1

−1

1

V1 V2

V3

E1

E2
E3

Figure 3.3: The reference triangle Kt.

The reference tetrahedron

Next, consider the reference tetrahedron KT in R3, shown in Figure 3.4. We
identify each face of KT by its vertices, and choose the following numbering:

F1 = V1V2V4, F2 = V2V3V4, F3 = V1V3V4, F4 = V1V2V3.

For a given order k, the local FEM space for KT is denoted Qk(KT), and is
defined in Definition A.3. In this case, we have 4 vertex functions, k − 1 edge
functions for each of the 6 edges, (k−1)(k−2)/2 face functions for each of the 4
faces, and (k − 3)(k − 2)(k − 1)/6 bubble functions, so that the local FEM space
Qk(KT) has dimension

NKT ,FEM = 4 + 6(k − 1) + 4(k − 1)(k − 2)/2 + (k − 3)(k − 2)(k − 1)/6.

The local VEM space Vk(KT) has dimension

NKT = 4 + 6(k − 1) + 4k(k − 1)/2 + k(k2 − 1)/6.

Again, we have that for k = 1, NKT = NKT ,FEM, while for k ≥ 2, we have that
NKT > NKT ,FEM. Hence, we can only analyse equivalence between FEM and
VEM of first order for the tetrahedron as well. We note that for k ≥ 2, FEM is
cheaper in terms of degrees of freedom than VEM for KT .

The general case

Using the function spaces Qk(Kt) and Qk(KT), we can construct the local FEM
spaces for any triangle in R2, or any hexahedron in R3. To do so, we introduce
the following mapping:

48 Chapter 3. A Family of Bilinear Forms

y
x

z

−1
1

−1

1

1

−1

V1

V2
V3

V4

E1

E2

E3

E4E5 E6

Figure 3.4: The reference tetrahedron KT .

Definition 3.13. LetKr be the reference triangleKt in R2, or the reference tetra-
hedron KT in R3, with coordinates xr, and denote the FEM vertex basis func-
tions on Kr by {ϕVi

r }i. Let K be any triangle in R2 or any tetrahedron in R3,
with vertex coordinates {xi}i. We define the mapping G from Kr to K by

G(xr) =
∑

i
xiϕVi

r (xr).

◦

Remark 3.14. Note that since the basis functions of Qk(Kt) and Qk(KT) are
linear, the mapping G is affine. ◦

Using this mapping, we construct our basis functions for triangles and tetra-
hedra:

Definition 3.15. Let K be a triangle R2 or a tetrahedron R3. Let G be the map-
ping from the reference element Kr to K, defined in Definition 3.13, and denote
the ith basisfunction of Qk(Kr) by ϕVi

r . The finite element basis functions for
Qk(K) are

ϕVi = ϕVi
r ◦G−1.

◦

Equivalence between FEM and VEM for triangles and tetrahedra

We are now ready to analyse equivalence between FEM and VEM for triangles
and tetrahedra. Whenever no confusion can arise, we denote the local VEM
and FEM spaces for an element K by Vk(K) and Qk(K), respectively, both in
two and three dimensions. The key is to notice the equivalence between the
two function spaces:

Chapter 3. A Family of Bilinear Forms 49

Proposition 3.16. Let K be a triangle in R2, or a tetrahedron in R3. Then, V1(K) =
Q1(K), and their bases {φi}i and {ϕVi}i are equal.

Proof. By the definition of the local FEM spaces, we have that χj(ϕVi) = δij .
Hence, from Proposition 2.16 and Proposition 2.32, we know that if all FEM
basis functions ϕVi is in V1(K) then the FEM basis is the unique VEM basis.

We start by recalling Definition 2.13 and Definition 2.29 of the local VEM
spaces, and state the properties of a function vh V1(K) or V1(K):

vh ∈ H1(K), (3.15a)
∆vh|K ∈ P1(K), (3.15b)

vh|∂K ∈

{
B1(K) for vh ∈ V1(K),

V1(∂K) for vh ∈ V1(K),
(3.15c)(

vh −Π∇1 vh,m
)

0,K
= 0 ∀m ∈M1(K). (3.15d)

LetK be an arbitrary triangle in R2, and denote the basis ofQ1(K) by {ϕVi}i.
Let Kt be the reference triangle in Figure 3.3. The basis for Q1(Kt) is the the set
of linear vertex interpolants {ϕVi

t }i. Let G be the mapping from Definition 3.13,
taking Kt to K. We have from Remark 3.14 that G is affine. Since ϕVi = ϕVi

t ◦
G−1, we then know that all basis functions ϕVi are linear, and conclude that
they satisfy (3.15a)-(3.15c). Finally, we need to check that all basis functions ϕVi

satisfies (3.15d). But this is trivially true, since Π∇1 p = p for all polynomials
p ∈ P1(K), and all basis functions ϕVi ∈ P1(K). We can conclude that Q1(K) ⊂
V1(K), and since they have equal dimension, V1(K) = Q1(K). Moreover, since
the degrees of freedom of their basis functions coincide, it is clear that {φi}i =
{ϕVi}i.

Next, we consider an arbitrary tetrahedron K. We denote the basis Q1(K)
by {ϕVi}i. Let KT be the reference tetrahedron in Figure 3.4. The basis for
Q1(KT) is now the set {ϕVi

T }i of linear vertex interpolants. We follow the 2D
procedure, and conclude that (3.15a), (3.15b) and (3.15d) are satisfied. Moreover,
the restriction of the basis functions to a face F of K is the FEM space Q1(F).
Since all faces F are triangular, we can use what we just found in 2D to conclude
that ϕVi |∂K ∈ V1(∂K), so that (3.15c) is also satisfied. Again, since the two
function spaces have equal dimensions, and the degrees of freedom of their
basis functions coincide, we conclude that V1(K) = Q1(K), and {φi}i = {ϕVi}i.

The main lesson to take away from this result is the following: The local
stiffness matrix we are approximating in a first order virtual element method for
triangles or tetrahedra is, in fact, the local stiffness matrix of the finite element
method. We immediately have the following result:

Theorem 3.17. Let K be a triangle in R2, or a tetrahedron in R3. Then, for K, the
local stiffness matrix of the virtual element method and the finite element method are
equal.

50 Chapter 3. A Family of Bilinear Forms

Proof. From Proposition 3.16, we know that V1(K) and Q1(K) share the same
basis. Moreover, since Q1(K) consists entirely of linear functions, we know that
Π∇,K1 vh = vh for all vh ∈ V1(K). It then follows that

aKh (uh, vh) = aK
(
Π∇uh, Π

∇vh
)

+ sK
(
uh −Π∇uh, vh −Π∇vh

)
= aK(uh, vh) ∀uh, vh ∈ V1(K),

which concludes the proof.

3.2.2 FEM for quadrilaterals and hexahedra

Next, we will analyse the equivalence between FEM and VEM for quadrilaterals
and hexahedra.

The reference square

x

y

−1 1

−1

1

V1 V2

V4 V3

E3

E2E1

E4

Figure 3.5: The reference square Ks.

We consider the reference square Ks, shown in Figure 3.5. The local finite
element function space for a kth order FEM for Ks is denoted Qk(Ks), and is
defined in Definition A.4. We observe that we have 4 vertex functions, k − 1
edge functions for each of the 4 edges, and (k − 1)2 bubble functions. Hence,
Qk(Ks) has dimension

NKs,FEM = 4k + (k − 1)2.

We also recall the dimension of the local VEM space:

NKs = 4k + k(k − 1)/2.

Chapter 3. A Family of Bilinear Forms 51

In other words, for k = 1 and k = 2, NKs = NKs,FEM, while for k ≥ 3, we have
thatNKs < NKs,FEM. Because of this, it only makes sense to analyse equivalence
between VEM and FEM of first and second order. In this case, we see that for
k ≥ 3, VEM is cheaper than FEM in terms of degrees of freedom.

The reference cube

x y

z

−1

1

−1

1

−1

1

V1

V2

V3

V4

V5

V6

V7

V8

E1 E2

E3
E4

E5

E6

E7

E8

E9 E10

E11E12

Figure 3.6: The reference cube KC .

Next, we consider the reference cube KC , shown in Figure 3.6. As for the
reference tetrahedron, we identify the faces of KC by their vertices, and choose
the following numbering:

F1 = V1V4V5V8, F2 = V2V3V6V7, F3 = V1V2V5V6,

F4 = V3V4V7V8, F5 = V1V2V3V4, F6 = V5V6V7V8.

The local finite element space for a kth order FEM for KC is denoted Qk(KC),
and is defined in Definition A.5. We observe that we have 8 vertex functions,
k − 1 edge functions for each of the 12 edges, (k − 1)2 face functions for each of
the 6 faces, and (k − 1)3 bubble functions. Hence, the local FEM space Qk(KC)
has dimension

NKC ,FEM = 8 + 12(k − 1) + 6(k − 1)2 + (k − 1)3.

We also recall the dimension of the local VEM space Vk(KC):

NKC = 8 + 12(k − 1) + 6k(k − 1)/2 + k(k2 − 1)/6.

Again, we have that for k = 1 and k = 2, NKC = NKC ,FEM, while for k ≥ 3,
we have that NKC < NKC ,FEM. Hence, we can only analyse the equivalence

52 Chapter 3. A Family of Bilinear Forms

between FEM and VEM for first and second order for the cube as well. As for
Ks, we observe that for k ≥ 3, VEM uses fewer degrees of freedom than FEM.

The general case

Using the function spacesQk(Ks) and Qk(KC), we can now build the local FEM
spaces for any convex quadrilateral or hexahedron. To do so, we define the
mapping G just as in Definition 3.13, but with Kt and KT replaced by Ks and
KC . Furthermore, the construction of basis functions for convex quadrilater-
als and hexahedra are now defined just as in Definition 3.15, but with convex
quadrilateral and convex hexahedron in place of triangle and tetrahedron.

Equivalence between FEM and VEM for quadrilaterals and hexahedra

Again, when no confusion can arise, we will refer to the local VEM and FEM
spaces for an element K by Vk(K) and Qk(K), both in two and three dimen-
sions.

When k = 1, we have from Definition A.4 that Q1(Ks) consists the polyno-
mials {1, x, y, xy}, and from Definition A.5 that Q1(KC) consists of the polyno-
mials {1, x, y, z, xy, xz, yz, xyz}. Using this, we can show the following result:

Lemma 3.18. Let Kr be the reference square in Figure 3.5, or the reference cube in
Figure 3.6. Then, V1(Kr) = Q1(Kr).

Proof. Since the two function spaces have the same dimension, it is sufficient to
show that Q1(Kr) ⊂ V1(Kr).

We follow the same procedure as in the proof of Proposition 3.16, and start
with Ks. First of all, since Q1(Ks) is made up of the polynomials {1, x, y, xy}, it
is clear that all basis functions ϕVi

s satisfies (3.15a)-(3.15c). We must also ensure
that they satisfy (3.15d). That is, since Π∇p = p for all polynomials p ∈ P1(Ks),
it is sufficient to check that the relation is satisfied for the nonlinear terms for
Q1(Ks). But the only nonlinear term in Q1(Ks) is xy, and we already know
from Example 3.11 that Π∇xy = 0. Moreover, due to the symmetry of Ks, the
integral of xy multiplied by any monomialm ∈M1(Ks) overKs is zero, so that
(3.15d) is satisfied. Thus, it is clear that Q1(Ks) ⊂ V1(Ks), and we conclude that
V1(Ks) = Q1(Ks). We also note that since the degrees of freedom of their basis
functions coincide, we know from Proposition 2.16 that they share the same
basis.

Next, we consider KC . Since Q1(KC) consists of the polynomials

{1, x, y, xy, xz, yz, xyz},

it is clear that all basis function ϕVi

C satisfies (3.15a) and (3.15b). Moreover, the
restriction of the basis functions to a face FC of KC is nothing but the basis of
Q1(FC) = Q1(Ks). Hence, the above ensures that all basis functions satisfies
(3.15c). Finally, we saw in Example 3.12 that the nonlinear terms xy, xz, yz and
xyz are in kerΠ∇. Again, the symmetry ofKC ensures that the integrals of these
polynomials multiplied by anym ∈M1(KC) overKC are zero. Hence, the basis

Chapter 3. A Family of Bilinear Forms 53

functions also satisfies (3.15d). Again, we have that Q1(KC) ⊂ V1(KC), and we
conclude that V1(KC) = Q1(KC).

We now have that for k = 1, the FEM basis functions and VEM basis func-
tions coincide for Ks and KC . But what about other quadrilaterals and hexa-
hedra? As we have seen, Definition 3.13 tells us how to define the FEM space
for convex quadrilaterals and hexahedra through the mapping G. Before we
proceed, we need the following special result:

Lemma 3.19. Let Kr and K be the reference square Ks and a quadrilateral in R2, or
the reference cube KC and a hexahedron in R3, such that the mapping G from Defini-
tion 3.13 is affine, and let vh be a function in V1(Kr). Then,(

Π∇,Kr

1 vh

)
◦G−1 = Π∇,K1 (vh ◦G−1). (3.16)

Proof. We start by noting that for a cell K, any function v ∈ H1(K) can be split
into one part in ImΠ∇ and one part in kerΠ∇ as

Π∇v +
(
v −Π∇v

)
.

Since G is affine, it maps linear functions to linear functions. We know that
ImΠ∇,Kr

1 = P1(Kr), and it follows that

G−1
(

ImΠ∇,Kr

1

)
= ImΠ∇,K1 .

Thus, in order to prove the lemma, it is sufficient to check that for a function
vh ∈ kerΠ∇,Kr

1 , we have that vh ◦G−1 ∈ kerΠ∇,K1 .
Let vh ∈ kerΠ∇,Kr

1 , and p ∈ P1(K). We recall the proof of Proposition 3.6,
and calculate

aK
(
vh ◦G−1, p

)
=

∫
Kr

|det(DG)|∇rvh(DG)−1(DG)−T (∇rpr)T dxr,

where pr = p ◦G. Since G is affine, we know that DG is constant. Moreover, we
know that for a constant matrix A ∈ Rd×d and a differentiable, scalar function
v, we have that (∇v)A = ∇(Av), so that we can write

(DG)−1(DG)−T (∇rpr)T =
(
∇r
(
(DG)−1(DG)−T pr

))T
.

Since pr is linear, this is a constant vector, and we can write it as (∇rq)T for a
function q ∈ P1(Kr). It then follows that

aK
(
vh ◦G−1, p

)
= |det(DG)|aKr (vh, q) = 0,

where the last equality follows from the fact that vh ∈ kerΠ∇,Kr

1 .

54 Chapter 3. A Family of Bilinear Forms

In R2, we have that∫
∂K

vh ◦G−1 ds =
∑

Es⊂∂Ks

|det(DG|Es
)|
∫
Es

vh ◦G−1 ◦Gdss

=
∑

Es⊂∂Ks

|det(DG|Es
)|
∫
Es

vh dss, (3.17)

where Es is an edge of Ks, and G|Es
is the restriction of the mapping G to

Es. We know from Example 3.11 that xy is a basis for kerΠ∇,Ks

1 . Clearly, the
integral of xy over each edge Es of Ks is zero. Thus, we have that (3.17) is zero.
It follows that vh ◦G−1 must be in kerΠ∇,K1 , and we conclude that(

Π∇,Ks

1 vh

)
◦G−1 = Π∇,K1 (vh ◦G−1) ∀vh ∈ V1(Ks).

In R3, we have that∫
∂K

Π∇,∂K1

(
vh ◦G−1

)
ds =

∑
FC⊂∂KC

|det(DG|FC
)|
∫
FC

Π∇,F1

(
vh ◦G−1

)
◦GdsC

=
∑

FC⊂∂KC

|det(DG|FC
)|
∫
FC

Π∇,FC

1 vh dsC , (3.18)

where F is a face of K, FC is a face of KC , and G|FC
is the restriction of G to

FC . The last equality follows from what we found in R2. Now, we know from
Example 3.12 that {xy, xz, yz, xyz} constitutes a basis for kerΠ∇,KC

1 . We look
at the restriction of these polynomials to the first face F1 of KC (see Figure 3.6).
These are

{−y,−z, yz,−yz}. (3.19)

We know thatΠ∇,F1

1 p = p for all linear functions p, and the integral of the linear
terms in (3.19) over F1 are clearly zero. Moreover, we recognize the nonlinear
terms±yz as the basis of kerΠ∇,F1 , so that these integrals are also zero. Arguing
similarly for the remaining faces, we thus have that (3.18) is zero, and it follow
that (

Π∇,KC

1 vh

)
◦G−1 = Π∇,K1 (vh ◦G−1) ∀vh ∈ V1(KC).

This concludes the proof.

Using this lemma, we can now prove the following equivalence result for
quadrilaterals and hexahedra:

Proposition 3.20. Let K be a quadrilateral in R2, or a hexahedron in R3, for which
the mapping G in Definition 3.13 from their respective reference elements Ks or KC to
K is affine. Then, V1(K) = Q1(K), and their bases {φi}i and {ϕVi}i are equal.

Proof. We start in R2, and denote the basis functions Q1(Ks) and Q1(K) by
{ϕVi

s }i and {ϕVi}i, respectively. The function space Q1(Ks) consists of the poly-
nomials {1, x, y, xy}. Since G is affine, and p ◦ G−1 ∈ Pk(K) for all p ∈ Pk(K),

Chapter 3. A Family of Bilinear Forms 55

we can conclude that all basis functions ϕVi = ϕVi
s ◦ G−1 satisfies (3.15a) and

(3.15b). Moreover, since the basis functions ϕVi
s are piecewise linear on ∂Ks,

all basis functions ϕVi are piecewise linear on ∂K, so that they satisfy (3.15c).
Finally, we have that(
ϕVi −Π∇,K1 ϕVi ,m

)
0,K

=
(
ϕVi
s ◦G−1 −Π∇,K1 (ϕVi

s ◦G−1),m
)

0,K

= |det(DG)|
(
ϕVi
s −Π

∇,K
1 (ϕVi

s ◦G−1) ◦G,m ◦G
)

0,Ks

,

where m ∈ M1(K), so that m ◦ G ∈ P1(Ks). Lemma 3.18 tells us that ϕVi
s ∈

V1(Ks), and using this, Lemma 3.19 tells us that

Π∇,K1

(
ϕVi
s ◦G−1

)
◦G = Π∇,Ks

1 ϕVi
s .

It then follows that(
ϕVi −Π∇,K1 ϕVi ,m

)
0,K

= |det(DG)|
(
ϕVi
s −Π

∇,Ks

1 ϕVi
s ,m ◦G

)
0,Ks

= 0 ∀m ∈M1(K),

from which it is clear that all basis functions satisfies (3.15d). We conclude that
Q1(K) ⊂ V1(K), and since they have equal dimension, V1(K) = Q1(K). More-
over, we know from Definition A.4 that χj(ϕVi) = χj(φi) = δij , and use Propo-
sition 2.16 to conclude that {φi}i = {ϕVi}i.

In R3, since the restriction of Q1(K) to one of the quadrilateral faces F
of K is the function space Q1(F), we know from what we found in R2 that
ϕVi |∂K ∈ V1(∂K). Moreover, we know that Q1(KC) consists of the polynomials
{1, x, y, xy, xz, yz, xyz}. Thus, arguing as in R2, we have that all basis functions
ϕVi satisfies (3.15a)-(3.15c). Using Lemma 3.18, and Lemma 3.19, we know that(

ϕVi −Π∇,KϕVi ,m
)

0,K
= 0 ∀m ∈M1(K),

so that all basis functions satisfy (3.15d) as well. Again, since the two function
spaces have equal dimension, we conclude that V1(K) = Q1(K). Moreover,
Definition A.5 tells us that χj(ϕVi) = χj(φi) = δij , and we use Proposition 2.32
to conclude that {φi}i = {ϕVi}i.

As for triangles and tetrahedra, we see that in a first order VEM for a quadri-
lateral or hexahedron for which the mapping G from their respective reference
elements Ks or KC is affine, the local stiffness matrix we are approximating is,
in fact, the local stiffness matrix of the finite element method. The hard work
now pays off, and we immediately have the following result:

Theorem 3.21. Let K be a quadrilateral in R2, or a hexahedron in R3, for which the
mapping G in Definition 3.13 from their respective reference element Ks or KC to K is
affine. Then, for K, the local stiffness matrices of the first order virtual element method,
with the exact stability term (3.9), and the first order finite element method, are equal.

56 Chapter 3. A Family of Bilinear Forms

Proof. This follows directly from Proposition 3.20 and Theorem 3.10, since the
former tells us that V1(K) and Q1(K) are equal and share the same basis, and
the latter tells us that with the given choice of sK , aKh (uh, vh) = aK(uh, vh) for
all functions uh, vh ∈ V1(K).

Note that the result is, in general, not valid convex quadrilaterals and hexa-
hedra when the mapping G is not affine. We consider a counter-example:

x

y

−1 1

−1

1

1 + ε

Figure 3.7: The distorted reference square Kε.

Example 3.22. Let Kε be the distorted reference square, with vertices

(−1,−1)T , (1,−1)T , (1, 1 + ε)T , (−1, 1)T ,

shown in Figure 3.7. We find that

G(x, y) =
(
x, y + εϕV3

s (x, y)
)T
, G−1(x, y) =

(
x,

4y − ε(1 + x)

4 + ε(1 + x)

)T
.

Definition A.4 and Definition 3.13 gives that the FEM basis functions are

ϕVi(x, y) = ldx(x)ldy

(
4y − ε(1 + x)

4 + ε(1 + x)

)
,

where ldx and ldy are the Lobatto shape functions from Definition A.1, with
(dx, dy) defined as in Definition A.4. We consider the first vertex function ϕV1 ,
and calculate its Laplacian:

∆ϕV1 =
ε(ε− 4y)(ε+ 2)

(4 + ε(1 + x))
3 ,

which is not in P1(Kε). Hence, we conclude that Q1(Kε) 6⊂ V1(Kε).

Chapter 3. A Family of Bilinear Forms 57

In R3, consider a hexahedron K where, for example, two opposite faces are
similar to Kε. This would mean that Q1(K)|Kε

= Q1(Kε) 6⊂ V1(Kε), so that
Q1(K) 6⊂ V1(K). ◦

As mentioned, the dimensions of the local VEM space and the local FEM
space are equal also for k = 2. In this case, the methods differs in the sense that
they only share their first degrees of freedom, namely the values at the vertices.
However, it might be possible to show that the two function spaces consists of
the same set of polynomials, such that one can construct the local VEM space
using the local FEM space, but we will not do this here.

3.2.3 FEM for triangular prisms

We now consider the final piece of the 3D puzzle; the triangular prisms. These
are commonly used in 3D grids to connect hexahedra and tetrahedra.

The reference prism

y x

z

1

−1

−1

1

−1

1

V3

V1

V2

V6

V4

V5

E3 E1

E2

E4

E6 E5

E8

E9 E7

Figure 3.8: The reference prism KP .

We consider the reference prism KP in R3, shown in Figure 3.8. As usual,
we identify a face by its vertices, and choose

F1 = V1V2V4V5, F2 = V2V3V5V6, F3 = V1V3V4V6,

F4 = V1V2V3, F5 = V4V5V6.

The local FEM space for a k-th order FEM is denoted Qk(KP), and is defined in
Definition A.6. For the prism, we have 6 vertex functions, k − 1 edge functions
for each of the 9 edges, (k−2)(k−1)/2 face functions for each of the 2 triangular
faces, (k − 1)2 face functions for each of the 3 rectangular faces, and (k − 2)(k −
1)2/2 bubble functions. Hence, the local FEM space Qk(KP) has dimension

NKP ,FEM = 6 + 9(k − 1) + 2(k − 2)(k − 1)/2 + 3(k − 1)2 + (k − 2)(k − 1)2/2.

58 Chapter 3. A Family of Bilinear Forms

The dimension of the local VEM space Vk(KP) is

NKP = 6 + 9(k − 1) + 5k(k − 1)/2 + k(k2 − 1)/6.

We observe that for k = 1, NKP = NKP ,FEM, while for k ≥ 2, we have that
NKP > NKP ,FEM. Hence, we can only analyse the equivalence between FEM
and VEM for triangular prisms when k = 1. As for triangles and tetrahedra, we
note that FEM uses fewer degrees of freedom than VEM for k ≥ 2.

The general case

As in the previous cases, the mapping G from KP to any triangular prism K
is as in Definition 3.13, with KP in place of Kt and KT . Moreover, the basis
functions for Qk(K) are constructed as in Definition 3.15, with triangular prism
in place of triangle and tetrahedron.

Equivalence between FEM and VEM for prisms

When k = 1, we have from Definition A.6 that Q1(KP) consists of the polyno-
mials {1, x, y, z, xz, yz}. We now have the following result:

Lemma 3.23. Let KP be the reference prism. Then, V1(KP) = Q1(KP).

Proof. We follow the same procedure as in the previous proofs.
Since Q1(KP) consists of the polynomials {1, x, y, z, xz, yz}, it is clear that

all basis functions ϕVi

P satisfies (3.15a) and (3.15b). Moreover, the restriction
of Q1(KP) to a rectangular face Fr of KP is Q1(Fr), which we know from
Proposition 3.20 equals V1(Fr). Similarly, we know from Proposition 3.16 that
the restriction to a triangular face Ft is Q1(Ft) = V1(Ft). Thus, we have that
ϕVi

P

∣∣
∂KP

∈ V1(∂KP), so that all basis functions satisfy (3.15c) as well. Finally, we
recall that the nonlinear terms of Q1(KP) must satisfy (3.15d). We calculate

Π∇,KP

1 xz = Π∇,KP

1 yz = −1

3
z.

We can check that the integrals of xz + z/3 and yz + z/3 multiplied by any m ∈
M1(KP) over KP are zero, and it follows that all basis functions satisfy (3.15d).
It is thus clear that Q1(KP) ⊂ V1(KP), and since they have equal dimension,
we conclude that V1(KP) = Q1(KP).

As for quadrilaterals and hexahedra, we need the following special result in
order to proceed:

Lemma 3.24. Let K be a triangular prism such that the mapping G from KP to K in
Definition 3.13 is affine, and let vh be a function in V1(KP). Then,(

Π∇,KP

1 vh

)
◦G−1 = Π∇,K1 (vh ◦G−1).

Chapter 3. A Family of Bilinear Forms 59

Proof. We follow the same procedure as in the proof of Lemma 3.19, and recall
that we only need to consider kerΠ∇,KP

1 . First, we need a basis for kerΠ∇,KP

1 ,
and note that the restriction of Π∇,KP

1 to V1(KP) is a projection from a 6-
dimensional function space to a 4-dimensional function space, so that dim kerΠ∇,KP

1 =

2. We use the functions ϕV2

P and ϕV3

P to obtain a basis for kerΠ∇,KP

1 :

{ψ1, ψ2} =
{
−12

(
ϕV2

P −Π
∇,KP

1 ϕV2

P

)
,−12

(
ϕV3

P −Π
∇,KP

1 ϕV3

P

)}
= {4z + xz, 4z + yz} .

For a function vh ∈ kerΠ∇,KP

1 , it follows in the same manner as in the proof of
Lemma 3.19 that

aK
(
vh ◦G−1, p

)
= 0 ∀p ∈ P1(K).

Moreover we have that∫
∂K

Π∇,∂K1

(
vh ◦G−1

)
ds =

∑
FP⊂∂KP

|det(DG|FP
)|
∫
FP

Π∇,F1

(
vh ◦G−1

)
◦GdsP .

where F is a face of K, FP is a face of KP , and G|FP
is the restriction of G to

FP . We note that for a rectangular face Fr of KP , since V1(KP) = Q1(KP) con-
sists of the polynomials {1, x, y, z, xz, yz}, we have that vh|Fr

∈ V1(Fr). Hence,
denoting by F a quadrilateral face of K, we have from Lemma 3.19 that

Π∇,F1 (vh ◦G−1) ◦G = Π∇,Fr

1 vh.

Moreover, the restriction of vh to a triangular face Ft of KP is linear. Hence, we
have that∫

∂K

Π∇,∂K1

(
vh ◦G−1

)
ds =

∑
FP⊂∂KP

|det(DG|FP
)|
∫
FP

Π∇,FP

1 vh dsP . (3.20)

Now, since it is sufficient to consider the basis of kerΠ∇,KP

1 , we let vh be the
basis function ψ1. The restriction of ψ1 to each face of KP is{

ψ1|Fi

}
i

= {4z + xz, 4z + xz, 3z,−(x+ 4), x+ 4} .

For the rectangular faces F1, F2 and F3, we see that the integrals of the linear
terms vanish, while we recall from Example 3.11 that xz ∈ kerΠ∇,Fi

1 for i = 1
and 2. Moreover, for the triangular faces F4 and F5, we have have that the
integrals

−
∫
F4

(x+ 4) dsP and
∫
F5

(x+ 4) dsP

cancels. Hence, it is clear that (3.20), with ψ1 in place of vh, is zero, and we
have that ψ1 ◦ G−1 ∈ kerΠ∇,K . Arguing similarly, for ψ2, we get that if vh ∈

60 Chapter 3. A Family of Bilinear Forms

kerΠ∇,KP

1 , then vh ◦G−1 ∈ kerΠ∇,K1 . As in Lemma 3.19, we conclude that(
Π∇,KP

1 vh

)
◦G−1 = Π∇,K1 (vh ◦G−1) ∀vh ∈ V1(KP).

Combining this with the previous results of this chapter, we can prove the
final equivalence:

Proposition 3.25. Let K be a triangular prism such that the mapping G from KP

to K in Definition 3.13 is affine. Then, V1(K) = Q1(K), and their bases {φi}i and
{ϕVi}i are equal.

Proof. We denote the basis of Q1(KP) and Q1(K) by {ϕVi

P }i and {ϕVi}i, respec-
tively. We know from Definition A.6 that χj(ϕVi) = δij . Since Q1(KP) consists
of the polynomials {1, x, y, z, xz, yz}, and since G is affine, we know that all ba-
sis functions ϕVi satisfies (3.15a) and (3.15b). Moreover, the restriction of Q1(K)
to a rectangular face Fr is Q1(Fr), which we know from Proposition 3.20 equals
V1(Fr). Similarly, we know from Proposition 3.16 that the restriction to a tri-
angular face Ft is Q1(Ft) = V1(Ft). Hence, we have that ϕVi

∣∣
∂K
∈ V1(∂K) for

all basis functions, so that (3.15c) is satisfied. Finally, Lemma 3.23 tells us that
V1(KP) = Q1(KP). Using this, we know from Lemma 3.24 that(

ϕVi −Π∇,K1 ϕVi ,m
)

= |det(DG)|
(
ϕVi

P −Π
∇,KP

1 ϕVi

P ,m ◦G
)

= 0 ∀m ∈M1(K),

so that all basis functions satisfies (3.15d) as well. It is now clear that Q1(K) ⊂
V1(K), and since they have equal dimension, we conclude that V1(K) = Q1(K).
Moreover, since the degrees of freedom of their basis functions coincide, we
know from Proposition 2.32 that {φi}i = {ϕVi}i.

As for the other cell geometries, we have the following result:

Theorem 3.26. Let K be a triangular prism in R3 such that the mapping G in Def-
inition 3.13 from KP to K is affine. Then, for K, the local stiffness matrices of the
first order virtual element method, with the exact stability term (3.9), and the first order
finite element method, are equal.

The proof is equivalent to that of Theorem 3.21, but with Proposition 3.25 in
place of Proposition 3.20.

We note that there might exist triangular prisms K for which the mapping
G is not affine, but such that FEM and VEM have equal local stiffness matrices.
However, following Example 3.22, this is not true in general, since we could
have a case where two faces are similar to Kε, and, in turn, that Q1(K)|Kε =
Q1(Kε) 6= V1(Kε).

Chapter 3. A Family of Bilinear Forms 61

3.2.4 Some remarks

We take a moment to sum up what we have just shown. Given a first order
FEM, and a first order VEM with the exact stability term (3.9), we know that
their local stiffness matrices are

(i) equal for all triangles and tetrahedra,

(ii) equal for all quadrilaterals and hexahedra K for which the mapping G
from the reference element Kr to K is affine,

(iii) equal for all triangular prisms K for which the mapping G from KP to K
is affine.

As usual, G is the mapping from Definition 3.13. Note that for triangles and
tetrahedra, we know from Remark 3.14 that G is always affine.

One might also wonder exactly how large the group of quadrilaterals, hex-
ahedra and triangular prisms with equal first order FEM and VEM stiffness
matrices is. The answer lies in the property that parallel lines stay parallel after
an affine mapping. Thus, the quadrilateral resulting from an affine mapping
from Ks must necessarily have its opposite edges parallel. In other words, it
is a parallelogram. Similarly, the hexahedron resulting from an affine mapping
from KC is a parallelepiped, and the triangular prism resulting from an affine
mapping from KP is a triangular prism with parallelogram sides. Examples of
such cell geometries are shown in Figure 3.9.

Figure 3.9: Examples of cell geometries for which FEM and VEM can have
equal local stiffness matrices.

3.3 Equivalence with Finite Difference methods

Finite difference methods are based on Taylor series expansion, and due to its
simplicity, it is used in numerous applications. An example within subsurface
modelling is solving visco-acoustic wave propagation problems [26].

In the finite difference methods we analyse, we disregard the grid structure
we use in VEM, and care only about the vertices of the grid. This typically
results in a stencil, which is a geometric arrangement of the vertices in a certain
part of the grid. We consider a rectangular or cubical domain, covered by a grid
Th of equally shaped rectangular or cubical elements. For a first order virtual
element method, since we only use the vertex values as degrees of freedom, we
might as well view the resulting system of linear equations as a result of a finite

62 Chapter 3. A Family of Bilinear Forms

difference stencil. With this mindset, we will now investigate what choices of
the stability term sK that makes VEM equivalent to various finite difference
methods.

Before we proceed, we ease the notation with the following definition:

Definition 3.27. Let Ω denote the rectangular domain [−Hx, Hx]× [−Hy, Hy] in
R2, or the cubical domain [−Hx, Hx]× [−Hy, Hy]× [−Hz, Hz] in R3. We define
the regular Cartesian grid over Ω to be the grid of adjacent, non-overlapping
rectangles of equal dimensions 2hx × 2hy in R2, or non-overlapping cubes of
equal dimension 2hx×2hy×2hz in R3. We number the vertices by the multiindex
(i, j) in R2, and (i, j, k) in R3, which indicates their position along the coordinate
axes. A regular Cartesian grid in R2 is denoted by Thx,hy , and in R3 by Thx,hy,hz .
◦

Note that this gives a convenient mapping between the vertices and their
coordinates: Defining nξ := Hξ/hξ, we have the following relation in R2:

(i, j)↔ xi,j = (−Hx + 2ihx,−Hy + 2jhy)T , 0 ≤ i ≤ nx, 0 ≤ j ≤ ny.

Further, we will denote the value of a function u : Ω → R at vertex (i, j) by
ui,j := u(xi,j). The same applies in R3.

It is important to understand the difference between finite difference meth-
ods and VEM: The former is a direct discretization of the differential equation
using Taylor series expansion, while the latter is a discretization of the weak
formulation of the differential equation.

Again, we consider the Poisson equation

−∆u = f, x ∈ Ω, (3.21)

where Ω is a rectangular domain in R2, or a cubical domain in R3, and f ∈
L2(Ω). We will also assume that suitable boundary conditions are given.

3.3.1 Two dimensions

We consider the two finite difference stencils in Definition B.1. The stencils are
shown in Figure 3.10.

Obviously, any weighted average of these two stencils will also result in
a discretization of the Laplace operator. Using these discretizations in equation
(3.21), and multiplying both sides by 4hxhy , the right-hand side reads 4hxhyfi,j .
Further, we recall the VEM approximation of the right-hand side:

〈fh, φi〉 = (Π0f, φ
i)0,Ω.

If f is constant, we have that Π0f = f . For a rectangular cell K, we know from
Proposition 3.20 that Vk(K) = Qk(K). Using this, we find that the right-hand
side of the VEM formulation of (3.21) equals 4hxhyf for all basis functions with
compact support in Ω. That is, with f constant, the two methods yields the same
right-hand side.

Chapter 3. A Family of Bilinear Forms 63

y

x

i− 1 i i+ 1

j − 1

j

j + 1

hx

hy

(a) Stencil 1.

d1d2

i− 1 i i+ 1

j − 1

j

j + 1

(b) Stencil 2.

Figure 3.10: The two 2D finite difference stencils, along with their coordinate
axes.

Before we proceed, we recall that the global stiffness bilinear form can be
split as

ah(uh, vh) =
∑

K∈Thx,hy

aKh (uh, vh) ∀uh, vh ∈ Vh.

In the same manner, the global stiffness matrix A, which is defined by Ai,j =
ah(φi, φj), is built by assembling the local stiffness matrices AK . We will come
back to how this is done in Chapter 4. For now, it is sufficient to notice that for
two basis functions φi, φj only the cells K on which both φi and φj are nonzero
will have aK(φi, φj) 6= 0, and contribute to ah(φi, φj).

Theorem 3.28. Let Ω = [−Hx, Hx] × [−Hy, Hy] ⊂ R2, and Thx,hy be a regular
Cartesian grid over Ω. Let Fc and Fd be the finite difference matrices for the discrete
Laplacian, as defined in Definition B.1. Further, let A be the global stiffness matrix
obtained from the first order virtual element method on Thx,hy

, with local stability terms
sK given by

sK(u, v) = ûTQP−1Λ̃P−1QT v̂,

where the vector Q is given by (3.11), P = QTQ, and Λ̃ is the scaled eigenvalue
matrix

Λ̃ = 3wλ1 = 9w

(
1

h2
x

+
1

h2
y

)
, 0 < w ≤ 1.

Then, we have that
wFc + (1− w)Fd = A. (3.22)

For the Poisson equation (3.21), if f is a constant function, the methods are equivalent.

Notice the similarity between this stability term and the exact stability term
(3.9).

64 Chapter 3. A Family of Bilinear Forms

Proof. We number the vertices in the same way as in Figure 3.10, and start by
writing the finite difference approximation of (3.21) using Stencil 1:

ε(−ui−1,j + 2ui,j − ui+1,j) + ε−1(−ui,j−1 + 2ui,j − ui,j+1) = 4hxhyfi,j . (3.23)

Using Stencil 2, we get the equation

−1

4
(ε+ ε−1)(ui−1,j−1 + ui−1,j+1 − 4ui,j + ui+1,j−1 + ui+1,j+1)

+
1

2
(ε− ε−1)(ui,j−1 − ui−1,j − ui+1,j + ui,j+1) = 4hxhyfi,j .

(3.24)

We temporarily rename the VEM basis functions by the number of the vertex on
which they are equal to one. That is, if φi(xk,l) = 1, then φi = φk,l. Using Propo-
sition 3.20, we know our basis functions explicitly. We calculate the consistency
terms:

aK
(
Π∇φi,j , Π∇φi,j

)
= ε+ ε−1,

aK
(
Π∇φi,j , Π∇φi±1,j

)
=

1

2
(−ε+ ε−1),

aK
(
Π∇φi,j , Π∇φi,j±1

)
=

1

2
(ε− ε−1),

aK
(
Π∇φi,j , Π∇φi±1,j±1

)
=− 1

4
(ε+ ε−1).

Next, we know from (3.11) that

Q =

√
9

4hxhy


1
−1

1
−1

 .
Hence, the stability terms reads

sK
(
φi,j −Π∇φi,j , φi,j −Π∇φi,j

)
= w(ε+ ε−1),

sK
(
φi,j −Π∇φi,j , φi±1,j −Π∇φi±1,j

)
= −1

2
w(ε+ ε−1),

sK
(
φi,j −Π∇φi,j , φi,j±1 −Π∇φi,j±1

)
= −1

2
w(ε+ ε−1),

sK
(
φi,j −Π∇φi,j , φi±1,j±1 −Π∇φi±1,j±1

)
=

1

4
w(ε+ ε−1).

Chapter 3. A Family of Bilinear Forms 65

Summing the consistency and stability terms, we see that we the VEM left-hand
side reads

(1 + w)
(
(ε+ ε−1)ui,j −

1

2
ε(ui−1,j + ui+1,j)−

1

2
ε−1(ui,j−1 + ui,j+1)

)
+

1

2
(1− w)

(
− 1

2
(ε+ ε−1)(ui−1,j−1 + ui+1,j−1 + ui−1,j+1 + ui+1,j+1)

+ ε(ui,j−1 + ui,j+1) + ε−1(ui−1,j + ui+1,j)

)
.

Using that (1 + w) = 2(w + (1− w)/2), we can write this as

−w
(
ε(ui−1,j − 2ui,j + ui+1,j) + ε−1(ui,j−1 − 2ui,j + ui,j+1)

)
−(1− w)

(
1

4

(
ε+ ε−1)(ui−1,j−1 + ui+1,j−1 − 4ui,j + ui−1,j+1 + ui+1,j+1)

− 1

2
(ε− ε−1)(ui,j−1 − ui−1,j − ui+1,j + ui,j+1)

)
.

Now, we clearly recognize the first terms as equation (3.23) multiplied by w,
while we recognize the second term as equation (3.24) multiplied by (1− w). It
follows that equation (3.22) holds.

For the Poisson equation (3.21), if f is a constant function, we see that the
right-hand side of the two methods are equal as well, and the two methods are
equivalent.

Since we can scale the stability term sK by any positive constant, any w > 0
gives a perfectly valid virtual element method. However, from a finite differ-
ence point of view, only the choices of w with 0 ≤ w ≤ 1 makes sense. We
also note that the choice w = 0 corresponds to sK ≡ 0, resulting in an unstable
virtual element method. Hence, Stencil 2 is not stable, and must be combined
with Stencil 1. Thus, we have found an alternative way of proving convergence
of the finite difference scheme.

Finally, we observe that the exact stability term is obtained with w = 1/3.
Hence, using Theorem 3.21 we can conclude that with w = 1/3, the FEM global
stiffness matrix for (3.21) on Thx,hy is equal to

1

3
Fc +

2

3
Fd.

3.3.2 Three Dimensions

Again, we consider the Poisson equation (3.21), with Ω ⊂ R3 being a cubical
domain. We will consider three different stencils for the Laplace operator, which
arise from eight different coordinate systems, defined in Definition B.2. These
stencils are inspired by the ones presented in [26], which are used to solve visco-
acoustic wave propagation problems. The stencils using the coordinate systems
(x, y, z) and (x, ηx, ζx) are shown in Figure 3.11a and Figure 3.11b, while the
average stencil using the coordinate systems (d1, d2, d3), (d1, d2, d4), (d1, d3, d4)

66 Chapter 3. A Family of Bilinear Forms

and (d2, d3, d4) is shown in Figure 3.11c. Note that the z-axis points downwards,
as this is the standard in subsurface modelling.

Again, we have that if f is a constant, the right-hand side of these finite dif-
ference methods coincide with the right-hand side of the first order virtual ele-
ment method. Indeed; multiplying both sides of the equation obtained from the
finite difference discretizations of equation (3.21) by 8hxhyhz , gives the right-
hand side 8hxhyhzf . Since f is a constant function, we also have, using Propo-
sition 3.20, that

〈fh, φi〉 = (Π0f, φ
i)0,Ω = 8hxhyhzf

for all basis functions φi with compact support inside Ω.
We now have the following theorem:

Theorem 3.29. Let Ω = [−Hx, Hx]×[−Hy, Hy]×[−Hz, Hz] ⊂ R3, and let Thx,hy,hz

be a regular Cartesian grid over Ω. Let Fc, Fx and Fd be the finite difference matrices
for the discrete Laplacian, as defined in Definition B.2. Further, let A be the global
stiffness matrix obtained from the first order virtual element method on Thx,hy,hz

, with
local stability terms sK given by

sK(u, v) = ûTQP−1Λ̃P−1QT v̂, (3.25)

where the matrix Q is given in (3.13), P = QTQ, and Λ̃ is the scaled eigenvalue
matrix, with diagonal entries

λ̃1 = 3(3w1 + 2w2)

(
1

h2
x

+
1

h2
y

)
,

λ̃2 = 3(3w1 + 2w2)

(
1

h2
x

+
1

h2
z

)
,

λ̃3 = 3(3w1 + 2w2)

(
1

h2
y

+
1

h2
z

)
,

λ̃4 = 3(9w1 + 3w2 + 9w3)

(
1

h2
x

+
1

h2
y

+
1

h2
z

)
,

with 0 ≤ w1, w2, w3 ≤ 1, w1 + w2 + w3 = 1. Then, we have that

w1Fc + w2Fx + w3Fd = A. (3.26)

For the Poisson equation (3.21), if f is a constant function, the two methods are equiv-
alent.

Again, we notice the similarity between (3.25) and the exact stability term.

Proof. We start by writing out the equations obtained using the three different
stencils. For Stencil 1, we get the equation

−2hzεyx(ui−1,j,k − 2ui,j,k + ui+1,j,k)− 2hxεzy(ui,j−1,k − 2ui,j,k + ui,j+1,k)

− 2hyεxz(ui,j,k−1 − 2ui,j,k + ui,j,k+1) = 8hxhyhzfi,j,k.
(3.27)

Chapter 3. A Family of Bilinear Forms 67

j + 1
j
j − 1

i− 1
i i+ 1

k + 1

k

k − 1

xy

zhx

hyhz

(a) Stencil 1.

j + 1
j
j − 1

i− 1
i i+ 1

k + 1

k

k − 1

x

ηx ζx

(b) Stencil 2.

j + 1
j
j − 1

i− 1
i i+ 1

k + 1

k

k − 1

d1

d2

d3

d4

(c) Stencil 3.

Figure 3.11: The three 3D finite difference stencils, along with their coordinate
axes.

68 Chapter 3. A Family of Bilinear Forms

Stencil 2 yields

−1

3
hx

(
2εzy(ui,j−1,k − 2ui,j,k + ui,j+1,k)

+
1

2
(εzy + ε−1

zy)(ui,j−1,k−1 + ui,j−1,k+1 − 4ui,j,k + ui,j+1,k−1 + ui,j+1,k+1)

− (εzy − ε−1
zy)(ui,j,k−1 − ui,j−1,k − ui,j+1,k + ui,j,k+1)

)
−1

3
hy

(
2εxz(ui,j,k−1 − 2ui,j,k + ui,j,k+1)

+
1

2
(εxz + ε−1

xz)(ui−1,j,k−1 + ui−1,j,k+1 − 4ui,j,k + ui+1,j,k−1 + ui+1,j,k+1)

− (εxz − ε−1
xz)(−ui,j,k−1 + ui−1,j,k + ui+1,j,k − ui,j,k+1)

)
−1

3
hz

(
2εyx(ui−1,j,k − 2ui,j,k + ui+1,j,k)

+
1

2
(εyx + ε−1

yx)(ui−1,j−1,k + ui−1,j+1,k − 4ui,j,k + ui+1,j−1,k + ui+1,j+1,k)

− (εyx − ε−1
yx)(ui,j−1,k − ui−1,j,k − ui+1,j,k + ui,j+1,k)

)
= 8hxhyhzfi,j,k.

(3.28)

Finally, Stencil 3 yields

−1

4
(hxεzy + hyεxz + hzεyx)

(ui−1,j−1,k−1 + ui−1,j+1,k−1 + ui−1,j−1,k+1 + ui−1,j+1,k+1 − 8ui,j,k

+ ui+1,j−1,k−1 + ui+1,j+1,k−1 + ui+1,j−1,k+1 + ui+1,j+1,k+1)

+
1

2
hxεzy(ui−1,j,k−1 + ui−1,j,k+1 − 2ui,j−1,k − 2ui,j+1,k + ui+1,j,k−1 + ui+1,j,k+1)

+
1

2
hyεxz(ui−1,j−1,k + ui−1,j+1,k − 2ui,j,k−1 − 2ui,j,k+1 + ui+1,j−1,k + ui+1,j+1,k)

+
1

2
hzεyx(ui,j−1,k−1 + ui,j−1,k+1 − 2ui−1,j,k − 2ui+1,j,k + ui,j+1,k−1 + ui,j+1,k+1)

= 8hxhyhzfi,j,k.
(3.29)

As in the proof of Theorem 3.28, we temporarily rename the VEM basis func-
tions so that if φi(xk,l,m) = 1, then φi = φk,l,m. We calculate the consistency
terms:

aK(Π∇φi,j,k, Π∇φi,j,k) = hxεzy + hyεxz + hzεyx,

aK(Π∇φi,j,k, Π∇φi±1,j,k) =
1

2
(hxεzy + hyεxz − hzεyx),

aK(Π∇φi,j,k, Π∇φi,j±1,k) =
1

2
(−hxεzy + hyεxz + hzεyx),

Chapter 3. A Family of Bilinear Forms 69

aK(Π∇φi,j,k, Π∇φi,j,k±1) =
1

2
(hxεzy − hyεxz + hzεyx),

aK(Π∇φi,j,k, Π∇φi±1,j±1,k) =
1

4
(−hxεzy + hyεxz − hzεyx),

aK(Π∇φi,j,k, Π∇φi±1,j,k±1) =
1

4
(hxεzy − hyεxz − hzεyx),

aK(Π∇φi,j,k, Π∇φi,j±1,k±1) =
1

4
(−hxεzy − hyεxz + hzεyx),

aK(Π∇φi,j,k, Π∇φi±1,j±1,k±1) =− 1

8
(hxεzy + hyεxz + hzεyx).

Next, we know from (3.13) that

Q =

√
9

8hxhyhz



1 1 1 −
√

3

−1 −1 1
√

3

1 −1 −1 −
√

3

−1 1 −1
√

3

1 −1 −1
√

3

−1 1 −1 −
√

3

1 1 1
√

3

−1 −1 1 −
√

3


.

For simplicity, we write

sKl,m,n = sK
(
φi,j,k −Π∇φi,j,k, φl,m,n −Π∇φl,m,n

)
,

and obtain the stability terms

sKi,j,k =

(
3w1 +

5

3
w2 + w3

)
(hxεzy + hyεxz + hzεyx)

sKi±1,j,k =− 1

2
w1(hxεzy + hyεxz + 3hzεyx)− 1

6
w2(hxεzy + hyεxz + 5hzεyx)

− 1

2
w3(hxεzy + hyεxz + hzεyx),

sKi,j±1,k =− 1

2
w1(3hxεzy + hyεxz + hzεyx)− 1

6
w2(5hxεzy + hyεxz + hzεyx)

− 1

2
w3(hxεzy + hyεxz + hzεyx),

sKi,j,k±1 =− 1

2
w1(hxεzy + 3hyεxz + hzεyx)− 1

6
w2(hxεzy + 5hyεxz + hzεyx)

− 1

2
w3(hxεzy + hyεxz + hzεyx),

sKi±1,j±1,k =
1

4
w1(hxεzy − hyεxz + hzεyx) +

1

12
w2(hxεzy − 3hyεxz + hzεyx)

+
1

4
w3(hxεzy + hyεxz + hzεyx),

70 Chapter 3. A Family of Bilinear Forms

sKi±1,j,k±1 =
1

4
w1(−hxεzy + hyεxz + hzεyx)

+
1

12
w2(−3hxεzy + hyεxz + hzεyx) +

1

4
w3(hxεzy + hyεxz + hzεyx),

sKi,j±1,k±1 =
1

4
w1(hxεzy + hyεxz − hzεyx) +

1

12
w2(hxεzy + hyεxz − 3hzεyx)

+
1

4
w3(hxεzy + hyεxz + hzεyx),

sKi±1,j±1,k±1 =
1

8
(w1 + w2 − w3)(hxεzy + hyεxz + hzεyx).

Now, setting w1 = 1 and summing the consistency and stability terms yields
the VEM left-hand side

2hzεyx(−ui−1,j,k + 2ui,j,k − ui+1,j,k) + 2hxεzy(−ui,j−1,k + 2ui,j,k − ui,j+1,k)

+ 2hyεxz(−ui,j,k−1 + 2ui,j,k − ui,j,k+1),

which is the same as the left-hand side of (3.27).
Next, we set w2 = 1 and sum:

8

3
(hxεzy + hyεxz + hzεyx)ui,j,k

+
1

3
(hxεzy + hyεxz − 4hzεyx)(ui−1,j,k + ui+1,j,k)

+
1

3
(−4hxεzy + hyεxz + hzεyx)(ui,j−1,k + ui,j+1,k)

+
1

3
(hxεzy − 4hyεxz + hzεyx)(ui,j,k−1 + ui,j,k+1)

− 1

6
(hxεzy + hzεyx)(ui−1,j−1,k + ui−1,j+1,k + ui+1,j−1,k + ui+1,j+1,k)

− 1

6
(hyεxz + hzεyx)(ui−1,j,k−1 + ui−1,j,k+1 + ui+1,j,k−1 + ui+1,j,k+1)

− 1

6
(hxεzy + hyεxz)(ui,j−1,k−1 + ui,j−1,k+1 + ui,j+1,k−1 + ui,j+1,k+1).

(3.30)

We start by noticing that hxεzy = hxhz

hy
= hzε

−1
yx , so that we can write

hxεzy = αhxεzy + (1− α)hzε
−1
yx , α ∈ R . (3.31)

Similar relations holds for hyεxz and hzεyx. Summing the terms involving ui,j,k
in equation (3.28) yields

2

3

(
hx(3εzy + ε−1

zy) + hy(3εxz + ε−1
xz) + hz(3εyx + ε−1

yx)
)
.

Using relation (3.31) with α = 3/4 for all terms in (3.30) involving ui,j,k, we
obtain

8

3
(hxεzy +hyεxz +hzεyx) =

2

3

(
hx(3εzy + ε−1

zy) +hy(3εxz + ε−1
xz) +hz(3εyx + ε−1

yx)
)
,

Chapter 3. A Family of Bilinear Forms 71

and we see that the terms multiplied by ui,j,k are the same in both expressions.
Next, summing the terms in (3.28) involving ui±1,j,k yields

1

3

(
hy(εxz − ε−1

xz)− hz(3εyx − ε−1
yx)
)

while summing the terms (3.30) involving ui±1,j,k yields

1

3

(
hxεzy + hyεxz − 4hzεyx

)
.

Now, using relation (3.31) with α = 0 for the first term, and α = 3/4 for the last
term, we obtain

1

3

(
hzε
−1
yx + hyεxz − 3hzεyx − hyε−1

xz

)
=

1

3

(
hy(εxz − ε−1

xz)− hz(3εyx − ε−1
yx)
)
,

from which we see that the terms involving ui±1,j,k are also the same in both
expressions. The same applies to the terms involving ui,j±1,k and ui,jk±1. More-
over, we immediately see that the terms involving ui±1,j±1,k, ui±1,j,k±1 and
ui,j±1,k±1 are the same in both expressions. We thus have that equation (3.30)
equals the left-hand side of (3.28).

Finally, setting w3 = 1 yields

2(hxεzy + hyεxz + hzεyx)ui,j,k − hzεyx(ui−1,j,k + ui+1,j,k)

− hxεzy(ui,j−1,k + ui,j+1,k)− hyεxz(ui,j,k−1 + ui,j,k−1)

+
1

2
hyεxz(ui−1,j−1,k + ui−1,j+1,k + ui+1,j−1,k + ui+1,j+1,k)

+
1

2
hxεzy(ui−1,j,k−1 + ui−1,j,k+1 + ui+1,j,k−1 + ui+1,j,k+1)

+
1

2
hzεyx(ui,j−1,k−1 + ui,j−1,k+1 + ui,j+1,k−1 + ui,j+1,k+1)

− 1

4
(hxεzy + hyεxz + hzεyx)(ui−1,j−1,k−1 + ui−1,j+1,k−1 + ui−1,j−1,k+1

+ ui−1,j+1,k+1 + ui+1,j−1,k−1 + ui+1,j+1,k−1 + ui+1,j−1,k+1 + ui+1,j+1,k+1),

which we see equals the left-hand side of equation (3.29).
Now, we have that Stencil i can be obtained from VEM by setting wi = 1,

and the other weights equal to zero. Moreover, we note that stability term sK is
linear in the scaled eigenvalue matrix Λ̃ in the following sense: Let sK1 and sK2
be two different stability terms, differing in their scaled eigenvalue matrices Λ̃1

and Λ̃2, which are obtained from different choices of weights (w1, w2, w3). Then

sK1 (u, v) + sK2 (u, v) = ûTQP−1Λ̃1P
−1QT v̂ + ûTQP−1Λ̃2P

−1QT v̂

= ûTQP−1
(
Λ̃1 + Λ̃2

)
P−1QT v̂.

From this, we conclude that any weighted average of the finite difference Sten-
cils 1, 2 and 3 can be obtained from a first order virtual element method, with

72 Chapter 3. A Family of Bilinear Forms

stability term given by (3.25). It follows that (3.26) holds.
For the Poisson equation (3.21), if f is a constant function, we see that both

methods produces the same right-hand side as well, and are thus equivalent.

Note that any combination of the weights w1, w2 and w3 such that the di-
agonal elements of Λ̃ are strictly positive gives a valid virtual element method.
However, only the choices with 0 ≤ w1, w2, w3 ≤ 1 such that w1 + w2 + w3 = 1
makes sense from a finite difference point of view. We also observe that we
cannot have both w1 and w2 equal to zero, since this gives a scaled eigenvalue
matrix Λ̃ which is not positive definite, so that sK fails to be positive definite on
kerΠ∇, and the method is not stable. In other words, Stencil 3 is not stable, and
must be combined with the other two. Again, this gives an alternative way of
proving convergence of the finite difference scheme.

Finally, we observe that any choice of weights such that

3w1 + 2w2 = 1, 9w1 + 3w2 + 9w3 = 1, (3.32)

will give the exact stability term. From Theorem 3.21, we can then conclude that
the FEM global stiffness matrix for (3.21) on Thx,hy,hz

is equal to (3.26), with the
weights satisfying (3.32).

3.4 Final Remarks

The results presented here are interesting for several reasons. First of all, it nar-
rows down the number of parameters involved in choosing the stability term.
Moreover, once we have established equivalence between VEM and another
method, we can conclude that the virtual element method possesses all the
properties of that method. On the other hand, we can also derive useful infor-
mation of the other method from the properties of VEM, and it gives a natural
extension of the method to grids with more general cell geometries.

Regarding the procedure for obtaining the exact stability term in Theorem 3.10,
it should be mentioned that the process of determining a basis for kerΠ∇ is es-
sentially the same as explicitly determining the VEM basis functions. Indeed;
for a function vh ∈ Vk(K), we have that

vh = Π∇vh +
(
vh −Π∇vh

)
.

As we mentioned in Chapter 2, we are able to compute Π∇vh exactly. More-
over, it is clear that vh − Π∇vh ∈ kerΠ∇. Hence, if we determine a basis for
kerΠ∇, we are also able to compute the last term exactly. Thus, we can calcu-
late vh explicitly, and there is nothing virtual left in the virtual element method.
Moreover, in many cases, it might be very hard to determine an L2-orthonormal
basis of kerΠ∇. However, the theory presented here might be a good starting
point for choosing the stability term for more complex cell geometries as well.

Chapter 4

Implementing VEM for
Poisson Problems

All you really need to know for the moment is that the universe
is a lot more complicated than you might think, even if you
start from a position of thinking it’s pretty damn complicated
in the first place.

Douglas Adams, Mostly Harmless

We now have the necessary framework to implement the virtual element
method. However, as the reader might experience, the transition from theory to
a fully working implementation is not straightforward.

Section 4.2 to Section 4.5 describes in detail how to compute the local stiff-
ness matrix for Poisson problems in two and three dimensions, how to compute
the L2 projection, and how to compute the local load vector. These sections are
mainly based on what is found in [34], supplemented by remarks to empha-
size important aspects of the virtual element method. Moreover, we provide a
detailed proof of that the projection Π∇ can be calculated for any function in
the local virtual element space using its degrees of freedom. We also present a
way of constructing the local load term in order to reduce the use of numerical
integration. Finally, we describe the assembly procedure of the global stiffness
matrix, and discuss how to implement inhomogeneous boundary conditions.

Before we continue, it is useful to recall Definition 2.13 and Definition 2.29 of
the local virtual element spaces, and Definition 2.14 and Definition 2.30 of their
degrees of freedom.

4.1 Numerical Integration

In Chapter 2, we rely on that we are able to calculate integrals of polynomials
over polygons and polyhedra. As we will see, we will also have to calculate

73

74 Chapter 4. Implementing VEM for Poisson Problems

integrals of the source term f . Hence, before we start describing the imple-
mentation process, a short discussion of numerical integration techniques is in
order.

Let Ω be a subset of Rd, and let v be a continuous function. We will consider
numerical quadrature rules on the form∫

Ω

v dx ≈ |Ω|
n∑
i=1

wiv(xi),

where wi ∈ R are quadrature weights, xi ∈ Ω are quadrature points, and n
is the number of quadrature points. Notice that if v is a constant, a consistent
quadrature rule necessarily needs to have

∑
i wi = 1. If a quadrature rule is

exact for polynomials of degree less than or equal to k, we say that the quadra-
ture rule is of precision k. There exists a huge variety of numerical quadrature
rules, and it is difficult to decide which is better for a particular purpose. See,
for example [29, 30] for a description of quadrature rules used in finite element
methods, and [37] for construction of efficient quadrature rules for more general
polygons and polyhedra.

Remark 4.1. Recall from Section 2.5 that we have to calculate integrals of the
type

(∂np, φ
i)0,∂K , p ∈ Pk(K).

According to Remark 2.15, we can choose EK to be the values at k − 1 points
at each edge of K. As mentioned in [33, 34], a particularly suited quadrature
rule is then the Lobatto quadrature rule [29, Chapter 4.1.3], since it uses the
endpoints of the interval as quadrature points, along with k − 1 more points.
Thus, choosing the k − 1 points of EK to match the Lobatto quadrature points,
one can use the degrees of freedom VK and EK to evaluate φi at the quadrature
points. Moreover, a Lobatto quadrature rule using k + 1 points is of precision
2k − 1. Letting E be an edge of K, we have that p and φi|E are polynomials in
Pk(E), so that that φi∂np|E ∈ P2k−1(E). In other words, the quadrature rule is
exact. ◦

We will consider two techniques of numerical integration:

4.1.1 Using the Divergence Theorem

Consider a polynomial xα, defined on a domain K ⊂ Rd. This can be written
as

xα = xα1
1 xα2

2 · · ·x
αd

d =
1

αm + 1
∇ · (0, . . . , 0, xα1

1 xα2
2 · · ·xαm+1

m · · ·xαd

d , 0, . . . , 0).

Chapter 4. Implementing VEM for Poisson Problems 75

Using the divergence theorem, we have that∫
K

xα dx =
1

αm + 1

∫
K

∇ · (0, . . . , 0, xα1
1 xα2

2 · · ·xαm+1
m · · ·xαd

d , 0, . . . , 0) dx

=
1

αm + 1

∫
∂K

(xα1
1 xα2

2 · · ·xαm+1
m · · ·xαd

d)nm ds,

where nm is the m-th component of the normal vector of ∂K. In R2, if K is a
polygon, we can calculate the integral using a suitable quadrature rule on each
edge of the polygon.

In R3, if K is a polyhedron, we can apply the trick once to transform the
volume integral to a sum of surface integrals, and once more to reduce it to a
sum of line integrals. However, when applying the trick for the second time,
one must be careful when choosing the variable xm: The trick is not valid if we
are on a face perpendicular to the xm-axis, since then, xm is constant over the
domain of integration.

4.1.2 Mapping from a reference element

We will also need to evaluate the integrals of more general functions over poly-
gons and polyhedra. Since the anti-derivative of a function is not necessarily
easy to calculate, we will need to apply a more flexible method than the one
described above.

The idea is to construct a suitable quadrature rule for a reference element
Tr, which is a triangle in R2, or a tetrahedron in R3. Then, we partition, or
triangulate, our polygon or polyhedron into a set {Ti}i of non-overlapping tri-
angles or tetrahedra. Denoting the polygon or polyhedron by K, we have that∫
K
v dx =

∑
i

∫
Ti
v dx. If we let G be the affine mapping from Tr to Ti, we can

use change of variables, along with the quadrature rule for Tr, to obtain∫
Ti

v dx = |det(DG)|
∫
Tr

v ◦Gdxr

≈ |det(DG)||Tr|
∑

j
wj(v ◦G)(xjr).

As usual, DG is the Jacobian of G, and xr are the coordinates on Tr.

4.2 Computing the 2D local stiffness matrix

We recall the local form of the weak formulation of the Poisson equation (2.3) in
matrix form:

AKξ = bK .

The first step in assembling the virtual element method is to construct the local
stiffness matrixAK . We consider a polygon K, with n vertices, like the polygon
in Figure 4.1.

76 Chapter 4. Implementing VEM for Poisson Problems

VK

EK

PK

Figure 4.1: Example of a polygon K, with the degrees of freedom for V2(K)
indicated.

We recall that the dimension ofMk(K) for a polygon is nk = (k+1)(k+2)/2.
Moreover, from the discussion in Section 2.5, we recall that AK

i,j = aKh
(
φi, φj

)
,

and that

aKh
(
φi, φj

)
= aK

(
Π∇φi, Π∇φj

)
+ sK

(
φi −Π∇φi, φj −Π∇φj

)
. (4.1)

Since Π∇φi ∈ Pk(K), we can express this in the monomial basis. This will
give us the first term of (4.1), since we can easily compute aK

(
mα,mβ

)
for two

monomials mα and mβ . Moreover, since Pk(K) ⊂ Vk(K), we can always ex-
press Π∇φi in the canonical basis {φi}i. As we will see, this gives us the second
term. Hence, if we obtain matrix representations of Π∇ in the monomial basis
and the canonical basis, we have our matrix representationAK of aKh .

We start by computing the matrix representation of the projection operator
Π∇ in the monomial basis. We know thatMk(K) is a basis for Pk(K), so that
equation (2.12) in the definition of Π∇ can be written as

aK
(
vh −Π∇vh,mα

)
= 0, α = 1, . . . , nk.

Since Π∇vh ∈ Pk(K), we can write Π∇vh =
∑
β πβm

β , where πβ ∈ R for all β.
This yields

nk∑
β=1

πβa
K(mβ ,mα) = aK(mα, vh), α = 1, . . . , nk.

In our case, aK(u, v) = (∇u,∇v)0,K . Hence, α = 1 gives us a degenerate equa-
tion. The extra equation needed for a fully determined system can be obtained

Chapter 4. Implementing VEM for Poisson Problems 77

from equation (2.13):

nk∑
β=1

πβ

∫
∂K

mβ ds =

∫
∂K

vh ds for k = 1,

nk∑
β=1

πβ

∫
K

mβ dx =

∫
K

vh dx for k ≥ 2.

For simplicity, we write

ḡ =

{∫
∂K

g ds for k = 1,∫
K
g dx for k ≥ 2.

This gives the system
m̄1 m̄2 · · · m̄nk

0 aK(m2,m2) · · · aK(m2,mnk)
...

...
. . .

...
0 aK(mnk ,m2) · · · aK(mnk ,mnk)




π1

π2

...
πnk

 =


v̄h

aK(m1, vh)
...

aK(mnk , vh)

 ,
which we write compactly as

Mπ = b. (4.2)

It is clear thatM is computable, since we can evaluate integrals of polynomials
over K. Further, from the discussion in Section 2.5, we know that we are able to
compute b from the degrees of freedom. Indeed; we have that

aK(mα, vh) = −(∆mα, vh)0,K + (∂nm
α, vh)0,∂K .

Since mα ∈ Pk(K), we know that ∆mα ∈ Pk−2(K), so that ∆mα can be ex-
pressed in terms of the first nk−2 monomials:

(∆mα, vh)0,K =

nk−2∑
β=1

ξβ(mβ , vh)0,K = |K|
nk−2∑
β=1

ξβχ
(kn+β)(vh),

where ξβ ∈ R for all β, and we recall thatK has n edges. For the second term, we
recall that vh|E ∈ Pk(E), so that we can calculate this using a suitable quadra-
ture rule.

For each of the NK basis functions φi, we write Π∇φi =
∑
α π

i
αm

α. Further,
we replace vh with φi in (4.2), and denote the solution to this system by πi =

78 Chapter 4. Implementing VEM for Poisson Problems

(
πi1, . . . , π

i
nk

)T . We write this compactly as πi = M−1bi. Defining

B :=
[
b1, . . . , bN

K
]

=


φ̄1 · · · φ̄N

K

aK
(
m2, φ1

)
· · · aK

(
m2, φN

K)
...

. . .
...

aK
(
mnk , φ1

)
· · · aK

(
mnk , φN

K)

 , (4.3)

we get the matrix representationΠ∇∗ of the operator Π∇ in the monomial basis
Mk(K):

Π∇∗ = M−1B. (4.4)

Remark 4.2. We can now see why the definition of Π∇k differs for k = 1 and
k ≥ 2: For k ≥ 2 the values φ̄i are given from the degrees of freedom PK . This
is not the case for k = 1, since then, we only have the degrees of freedom VK .
However, since we know that φi|E ∈ P1(E) for each edgeE ofK, we are indeed
able to calculate the integral if φi over ∂K. ◦

For a function vh ∈ Vk(K), we use the interpolation identity (2.27) and the
linearity of Π∇ to write

Π∇vh = Π∇

NK∑
i=1

χi(vh)φi

 =

NK∑
i=1

χi(vh)Π∇φi =

NK∑
i=1

nk∑
α=1

χi(vh)πiαm
α.

As in Chapter 3, we denote the vector of degrees of freedom of vh by v̂h. Further,
we define the vector-valued functionmnk = (m1, . . . ,mnk). Then, we have that

Π∇vh = mnkΠ∇∗ v̂h.

It is now easy to justify the statement made in Remark 2.17 that Π∇vh is com-
putable for any function vh ∈ Vk(K) from the degrees of freedom. This is an
essential component of the virtual element method, and we state it as a theo-
rem:

Theorem 4.3. For any function vh ∈ Vk(K), we have that Π∇vh can be calculated
exactly.

Proof. We have already shown how to calculate the representation of Π∇ in the
monomial basis through (4.4), where B can be obtained using the degrees of
freedom. Therefore, the only thing left to do is to show that the matrix M is, in
fact, invertible, so that (4.4) makes sense. Let v = (v2, . . . , vnk

)T ∈ Rnk−1 be a
vector, and M̂ ∈ Rnk−1×nk−1 be the matrix

M̂α,β = aK
(
mα+1,mβ+1

)
.

Chapter 4. Implementing VEM for Poisson Problems 79

If M̂v = 0, this means that vTM̂v = 0. From the bilinearity of aK , we have

vTM̂v =

nk∑
α,β=2

vαa
K
(
mα,mβ

)
vβ

= aK

 nk∑
α=2

vαm
α,

nk∑
β=2

vβm
β

 =

∣∣∣∣∣
nk∑
α=2

vαm
α

∣∣∣∣∣
2

1,K

.

Now, we know that |u|1,K > 0 for all non-constant functions u ∈ H1(K). Hence,
if M̂v = 0, then

∑
α vαm

α must be constant. We express this in terms of the
constant monomial m1 as

Cm1 =

nk∑
α=2

vαm
α,

where C is constant. Since the monomialsMk(K) are linearly independent, it
follows that C = 0, and vα = 0 for all α. We conclude that M̂v = 0 implies that
v is zero, so that M̂ is invertible.

Finally, we have that m̄1 = |∂K| > 0 for k = 1 and m̄1 = |K| > 0 for
k ≥ 2. We consider the matrixM , and expand the determinant through the first
column:

det(M) = m̄1 det(M̂) 6= 0.

We conclude that M is invertible, so that Π∇vh can be calculated from the de-
grees of freedom for all vh ∈ Vk(K) by (4.4).

As mentioned earlier, we will also need the matrix representation of Π∇ in
the canonical basis. Using the interpolation identity (2.27), we can write

Π∇φi =

NK∑
j=1

χj
(
Π∇φi

)
φj , i = 1, . . . , NK .

Expressing Π∇φi in the monomial basis, and using the interpolation identity
again, we have

Π∇φi =

nk∑
α=1

πiαm
α =

nk∑
α=1

NK∑
j=1

πiαχ
j(mα)φj ,

from which we conclude that χj
(
Π∇φi

)
=
∑
α π

i
αχ

j(mα). We define the NK ×
nk matrixD such that (D)i,α = χi(mα), that is;

D =

 χ1(m1) · · · χ1(mnk)
...

. . .
...

χN
K

(m1) · · · χN
K

(mnk)

 ,

80 Chapter 4. Implementing VEM for Poisson Problems

and see that χj
(
Π∇φi

)
= (DΠ∇∗)j,i. Hence, the matrix representation of Π∇

in the canonical basis {φi}i is

Π∇ = DΠ∇∗ .

This time, writing φN
K

=
(
φ1, . . . , φN

K)
, we have for a function vh ∈ Vk(K)

that

Π∇vh =

NK∑
i=1

χi(vh)Π∇φi = φN
K

Π∇v̂h.

Remark 4.4. Using again the interpolation identity (2.27), we note that

(BD)1,β =
∑

i
φ̄iχi(mβ) =

∫
∂K

∑
i
φiχi(mβ) ds = m̄β for k = 1,

(BD)1,β =
∑

i
φ̄iχi(mβ) =

∫
K

∑
i
φiχi(mβ) dx = m̄β for k ≥ 2,

so that (BD)1,β = M1,β . Moreover,

(BD)α,β =
∑

i
aK(mα, φi)χi(mβ) = aK(mα,mβ) = Mα,β , α ≥ 2.

That is, once we haveB andD, we already haveM = BD. ◦

Remark 4.5. Note that if we choose EK to be the moments over the edges of K,
constructingD involves calculating

|E|−1
(
mα, µβE

)
0,E

∀µβE ∈Mk(E).

Hence, we need to construct a local coordinate system on each edge of K, and
calculate the moments using these. This can easily be done by mapping each
edge E to the unit interval.

We now have that

aK
(
Π∇φi, Π∇φj

)
=

nk∑
α,β=1

πiαa
K(mα,mβ)πjβ =

((
Π∇∗

)T
M̃Π∇∗

)
i,j
,

where M̃ coincides with M except for the first row, which is zero. Further, we
recall from Theorem 3.2 that a valid stability term is on the form

sK
(
u−Π∇u, v −Π∇v

)
=
(
û− Π̂∇u

)T
QΣQT

(
v̂ − Π̂∇v

)
,

where Σ is an nker×nker positive definite matrix, andQ = [ψ̂1, . . . , ψ̂nker] is the
matrix representation of kerΠ∇. Moreover, these matrices are such thatQΣQT

scales as 1. Replacing u and v with φi and φj , we have that

sK
(
φi −Π∇φi, φj −Π∇φj

)
=
((
I −Π∇

)T
QΣQT

(
I −Π∇

))
i,j
.

Chapter 4. Implementing VEM for Poisson Problems 81

Recall from Remark 2.40 that kerΠ∇ = Im(Id−Π∇). Hence, once we have
computedΠ∇, we can simply constructQ by picking the linearly independent
columns of I −Π∇. Finally, we arrive at the following expression for the local
stiffness matrix:

AK =
(
Π∇∗

)T
M̃Π∇∗ +

(
I −Π∇

)T
QΣQT

(
I −Π∇

)
.

Remark 4.6. We know from Lemma 3.1 that any NK × NK matrix S which is
symmetric and positive definite on kerΠ∇ can be written on the form QΣQT .
Hence, one can take the choice S = I , and avoid the process of determining
Q from the linearly independent columns of I −Π∇. This is the stability term
presented in [33, 3, 34]. ◦

4.3 Computing the 3D local stiffness matrix

VK

EK

FK

PK

Figure 4.2: Example of a polyhedron K, with the degrees of freedom for V2(K)
indicated.

We start by recalling that the dimension of Pk(R3) is nk = (k+ 1)(k+ 2)(k+
3)/6.

Consider a polyhedron with nV vertices, nE edges and nF faces. An exam-
ple polyhedron is shown in Figure 4.2. Obviously, we can proceed as in two
dimensions: Build the matrices B and D, construct the matrix representations
of our projection operator Π∇, and calculate the local stiffness matrix.

The computation of the matrix B is now slightly different from the 2D case.
First of all, we need the definition of ḡ to be

ḡ =

{∫
∂K

Π∇,∂Kg ds for k = 1,∫
K
g dx for k ≥ 2.

82 Chapter 4. Implementing VEM for Poisson Problems

Remark 4.7. It is now clear why we stated the definition ofΠ∇1 in R3 differently
from how we stated it in R2: In order to calculate the matrix representations of
Π∇1 , we need to calculate φ̄i for all basis functions φi. If we used the 2D defini-
tion of Π∇1 , this would involve calculating the integral of φi over the boundary
of K. But we do not know the shape of the basis functions on ∂K . However,
we are able to calculate their projections Π∇,∂K1 φi. As a matter of fact, since
φi|∂K ∈ V1(∂K), we have that∫

F

Π∇,F1 φi ds =

∫
F

φi ds ∀F ⊂ ∂K.

Hence, the definitions of Π∇1 in R2 and R3 are equal. ◦

Moreover, have that

aK(mα, φi) = −(∆mα, φi)0,K + (∂nm
α, φi)0,∂K

= −(∆mα, φi)0,K +
∑
F⊂∂K

(∂nm
α, φi)0,F .

(4.5)

Again, the first term can be computed directly from the degrees of freedom
PK . Recalling the ordering of the monomials, it is clear that for any α such
that α ≤ nk, the monomial mα belongs to Pk(K). Thus, for α ≤ nk−1, we
know that ∂nmα ∈ Pk−2, so that the last term can be computed directly from
FK . However, as we have already pointed out in Section 2.5, we are not able
to compute aK(mα, φi)0,K directly from the degrees of freedom whenever α >
nk−1. The solution is to utilize the definition of the local VEM space Vk(K):
Since φi|∂K ∈ Vk(∂K), we know that

(∂nm
α, φi)0,F =

(
∂nm

α, Π∇,Fφi
)

0,F
, nk−1 < α ≤ nk.

We have already seen how to compute the matrix representation ofΠ∇,F in two
dimensions. Hence, we are able to compute the last term of (4.5).

Remark 4.8. It is important to notice that the projection operator Π∇,F is the
projection onto the space of polynomials on the face F . Practically, this means
that, for each face F of K, we need to construct a local coordinate system. Us-
ing this, we can calculate the projection Π∇,Fφi of each basis function onto the
space of polynomials, and then evaluate the integrals

(
∂nm

α, Π∇,Fφi
)

0,F
in this

coordinate system. Moreover, similar to Remark 4.5, in order to constructD, we
have to calculate the moments over the edges and faces of K:

|E|−1
(
mα, µβE

)
0,E

and |F |−1
(
mα, µβF

)
0,F

,

where µβE ∈ Mk−2(E) and µβF ∈ Mk−2(F). This too involves constructing lo-
cal coordinate systems. A straight-forward construction procedure for the local
coordinate system on a face F is to choose the first edge of F as the first coordi-
nate axis, and construct the second coordinate axis by taking the cross product
of this with the normal vector of F . ◦

Chapter 4. Implementing VEM for Poisson Problems 83

We now know that we can compute Π∇vh for any function vh ∈ Vk(K) by

Π∇vh = mnkΠ∇∗ v̂h,

whereΠ∇∗ = (BD)−1B. Hence, we have the following theorem:

Theorem 4.9. For any function vh ∈ Vk(K), we have that Π∇vh can be computed
exactly.

Since we have shown how to compute the matrices B and D, and thereby
M = BD, the proof is equivalent to that of Theorem 4.3.

Once we have constructed the matrices B and D, we can proceed as in two
dimensions: We construct the matrices Π∇, Π∇∗ and Q, choose a positive def-
inite matrix Σ ∈ Rnker×nker such that QΣQT scales as hK , and finally, compute
the local stiffness matrix:

AK =
(
Π∇∗

)T
M̃Π∇∗ +

(
I −Π∇

)T
QΣQT

(
I −Π∇

)
.

As in R2, M̃ coincides with the matrixM except for the first row, which is zero.

Remark 4.10. Similar to Remark 4.6, we can choose QΣQT = hKI , and avoid
constructingQ. ◦

4.4 Computing the L2 projection

We recall Definition 2.9 of the L2 projection Π : For a function vh ∈ Vk(K), we
have that (

Πvh,m
α
)

0,K
=
(
vh,m

α
)

0,K
, α = 1, . . . , nk.

Expressing Πvh in the monomial basis as Πvh =
∑
β π̃βm

β , we get

nk∑
β=1

π̃β
(
mβ ,mα

)
0,K

=
(
vh,m

α
)

0,K
, α = 1, . . . , nk,

which we write in matrix form as
(
m1,m1

)
0,K

· · ·
(
m1,mnk

)
0,K

...
. . .

...(
mnk ,m1

)
0,K

· · · (mnk ,mnk)0,K


 π̃1

...
π̃nk

 =


(
vh,m

1
)

0,K
...

(vh,m
nk)0,K

 . (4.6)

Defining the matrixH ∈ Rnk×nk by

Hα,β =
(
mα,mβ

)
0,K

, (4.7)

we can write this compactly as Hπ̃ = c. In the same manner as for Π∇, we
replace vh in (4.6) by each of the basis functions φi in turn, and define the nk ×

84 Chapter 4. Implementing VEM for Poisson Problems

NK matrix C such that

Cα,i =
(
mα, φi

)
0,K

. (4.8)

This gives the matrix representation of Π in the monomial basis:

Π∗ = H−1C.

Reasoning similarly as in the first part of the proof of Theorem 4.3, we have
that H is invertible. Moreover, we observe that the first nk−2 rows of C are
given from the degrees of freedom PK , while the last rows are given from the
definition of Vk(K), since

(m,φi)0,K =
(
m,Π∇φi

)
0,K

, ∀m ∈M∗k−1(K) ∪M∗k(K).

Remark 4.11. Note that once we have computedD, we also have the first nk−1

columns and rows of H . Indeed; the last nk−2 rows of D are the first nk−2

moments of m1 to mnk over K. Any product of two monomials mαmβ, with
|α|, |β| ≤ nk−1 can be written as a product of two monomials mα̃mβ̃, with
|α̃| ≤ nk, |β̃| ≤ nk−2. Thus, all inner products (mα,mβ)0,K with α, β ≤ nk−1

are already computed (with a scaling factor |K|−1) inD. ◦

Remark 4.12. As mentioned, the first nk−2 rows of C are given from PK : For
simplicity, consider a polygon K, with n edges. Similar to what we found for
B, we have that Cα,i = |K|χ(kn+α)(φi), where n is the number of vertices of K.
Further, for the last rows, we have that

(
mα, Π∇φi

)
0,K

=
∑
β π

i
β(mα,mβ)0,K .

This gives that C can be computed using the degrees of freedom:

Cα,i =


|K|, 1 ≤ α ≤ nk−2, i = kn+ α,

0, 1 ≤ α ≤ nk−2, i 6= kn+ α,

(HΠ∇∗)α,i, nk−2 + 1 ≤ α ≤ nk.
.

The same is true in R3, but with different index limits for i. ◦

4.5 Computing the local load term

The next step is to compute the local load term bK . We recall from Defini-
tion 2.43 that fh = Πk−1f , so that

bKi =
(
Πk−1f, φ

i
)

0,K
=
(
f,Πk−1φ

i
)

0,K
. (4.9)

We denote (Π̃∗)α,i by π̃iα, where, Π̃∗ is the matrix representation of Πk−1 in the
monomial basisMk−1(K), and can be found by multiplying the inverse of the
first nk−1 rows and columns of H by the first nk−1 rows and all NK columns
of C, as defined in (4.7) and (4.8), respectively. From Section 4.4, it is clear that
Πk−1φ

i =
∑
α π̃

i
αm

α. The integrals (4.9) can then be computed using a suitable
quadrature rule, as described in Section 4.1.2. Note that from Remark 4.11 and

Chapter 4. Implementing VEM for Poisson Problems 85

Remark 4.12, once we have computed AK , we have done most of the work
involved in computing Π̃∗

In order to reduce the use of numerical integration, we could also approxi-
mate f by a function in Vk(K) by f ≈

∑
i χ

i(f)φi. This gives

Πk−1f = Πk−1

NK∑
i=1

χi(f)φi

 =

NK∑
i=1

χi(f)Πk−1φ
i =

nk−1∑
α=1

NK∑
i=1

χi(f)π̃iαm
α,

which leads to

bKi =

nk−1∑
α,β=1

NK∑
j=1

π̃jαχ
j(f)(mα, φi)0,K .

As usual, we denote the vector of degrees of freedom of f by f̂ , and write this
in matrix form as

bK = C̃T Π̃∗f̂ .

Here, C̃ the first nk−1 rows and all NK columns of C, and as above, Π̃∗ is
the matrix representation of Πk−1 in the basisMk−1(K). Note that using this
approach involves calculating the degrees of freedom of f . Hence, if we choose
EK to be the values at k − 1 points on each edge of k, this approach reduces
the number of numerical integrations by nV + nE(k − 1), where nV and nE
are the number of vertices and edges of K. Note that we must ensure that the
convergence properties of Theorem 2.44 still holds with this approximation of
the right-hand side. Using Proposition 4.3 in [33], which is a local version of the
interpolation error Proposition 2.24, we see that this is indeed the case.

We also recall from Section 2.7 that for k ≥ 3, we can choose fh = Πk−2f ,
and still have optimal convergence properties. This can be implemented in the
exact same way as described above.

It should be mentioned that we can compute the local load term in any way
we want, as long as we approximate it to the right order of magnitude. From
a practical point of view, the approximation should be adapted to the problem
we are solving .

4.6 Putting it all together

We can now construct the global stiffness matrix of our problem by a local to
global mapping. In order to do so, we need a consistent ordering of the degrees
of freedom, both locally and globally.

For a polygon K, with n vertices and edges, we order the NK degrees of
freedom of a function vh ∈ Vk(K) in the following way: The first n degrees of
freedom are VK , the values of vh at the vertices, in counter-clockwise direction,
the next n(k − 1) are EK , the first k − 1 moments of vh over each edge of K, in
counter-clockwise direction, and the last k(k − 1)/2 are PK , the first k(k − 1)/2
moments of vh over K.

86 Chapter 4. Implementing VEM for Poisson Problems

Globally, on a grid with NV internal vertices, NE internal edges and NP
polygons, we will have a predetermined ordering of the nodes, edges and cells.
We then have the following ordering of the N degrees of freedom of a function
vh ∈ Vh: The first NV degrees of freedom are V , the values at the internal ver-
tices, the next (k − 1)NE are E , the first k − 1 moments of vh over each of the
internal edges, and the last NP k(k − 1)/2 are the first k(k − 1)/2 moments of vh
over each of the NP polygons.

In R3 we adopt the same ordering, but with the degrees of freedom FK ,
which are the k(k−1)/2 moments over each face, after EK and before PK . Note
that for a general polyhedron, there is no natural way to order the nodes, edges
and faces, and we must simply decide one.

In order to construct the global stiffness matrix, we compute, for each ele-
ment K, the local stiffness matrix AK and load vector bK as described above,
and map it to the global stiffness matrixA and load vector b by a mapping

δ : K → (global degrees of freedom),

that, for a cellK, gives the corresponding global vertex numbers, edge numbers
and cell number of K. An illustration for a first order VEM in R2 is shown in
Figure 4.3.

2

3

4

5

1

4

6

7

1517

δ

Figure 4.3: The mapping δ, taking local degrees of freedom to global degrees of
freedom.

4.7 Boundary Conditions

Up to this point, we have only considered homogeneous Dirichlet boundary
conditions. As we will see, we can easily modify our method to incorporate

Chapter 4. Implementing VEM for Poisson Problems 87

both inhomogeneous Dirichlet and Neumann boundary conditions. To this end,
consider the following problem

−∆u = f, x ∈ Ω,

u = gD, x ∈ ΓD,

∂nu = gN , x ∈ ΓN ,

where Ω ⊂ R2 or R3, and ΓD and ΓN are the Dirichlet and Neumann bound-
aries, with

ΓD ∪ ΓN = ∂Ω, ΓD ∩ ΓN = ∅.

Moreover, f ∈ L2(Ω). We define the function spaces

U = {w ∈ H1(Ω) : w|ΓD
= gD, ∂nw|ΓN

= gN},
V = {w ∈ H1(Ω) : w|ΓD

= 0}.

We multiply by a function v ∈ V and integrate over Ω:

−(∆u, v)0,Ω = (∇u,∇v)0,Ω − (∂nu, v)0,∂Ω

= (∇u,∇v)0,Ω − (gN , v)0,ΓN
,

which leads to the weak formulation

Find u ∈ U such that a(u, v) = (f, v)0,Ω + (gN , v)0,ΓN
∀v ∈ V. (4.10)

The question is now how we can obtain a VEM implementation of this weak
formulation. We observe that the Neumann conditions are given by

bi = (f, φi)0,Ω + (gN , φ
i)0,ΓN

.

Further, the Dirichlet conditions can easily be imposed by settingAi,j = δij and
bi = χi(gD) whenever i is such that supp(φi)∩ΓD 6= ∅. Notice that the Neumann
conditions are incorporated into the model by adding a term to the right-hand
side, while the Dirichlet conditions are incorporated as absolute: We know the
exact solution values at the Dirichlet boundary ΓD, and construct our matrix
system such that the approximated solution is exact at ΓD. We say that Neu-
mann conditions are weakly imposed, while Dirichlet conditions are strongly
imposed.

Denoting the set of degrees of freedom that resides on the Dirichlet bound-
ary by the multiindex ιD, we have that the stiffness matrix and load vector for
(4.10) becomes

Ai,j =

{
ah(φi, φj), i /∈ ιD,
δij , i ∈ ιD,

(4.11)

bi =

{
〈fh, φi〉+ (gN , φ

i)0,ΓN
, i /∈ ιD,

χi(gD), i ∈ ιD.
(4.12)

88 Chapter 4. Implementing VEM for Poisson Problems

A straightforward approach to incorporate inhomogeneous boundary condi-
tions is then to calculate A and b as there were no boundary conditions, and then
change the rows ofA and the elements of b according to (4.11) and (4.12).

Remark 4.13. Note that in R2, it is easy to calculate (gN , φ
i)0,ΓN

, since ΓN is a
set of edges, and φi|E ∈ Pk(E) for all edge E. Hence, similar to Remark 4.1,
we can use a Lobatto quadrature and evaluate the integral. In order to preserve
the convergence rate of k + 1, we need the quadrature rule to converge with
rate k + 1. In R3, however, we cannot apply this approach, since ΓN is now a
collection of faces, and we do not know the shape of our basis functions φi on
∂K. The solution is then to approximate the integral by

(gN , φ
i)0,ΓN

≈
∑
F⊂ΓN

(
gN , Π

∇,Fφi
)

0,F
,

and then use the technique of triangulating each face F and apply a quadrature
rule, as described in Section 4.1.2. ◦

Chapter 5

Numerical Examples

Understanding is, after all, what science is all about – and
science is a great deal more than mindless computation.

Roger Penrose

Having thoroughly gone through the theoretical aspects of the virtual ele-
ment method for Poisson problems, and examined the implementation details,
we are now ready to test the method.

In this chapter, we will discuss some of the implementation details of the
MATLAB implementation of VEM done as part of this thesis. Then, we present
two simple model problems with known solutions, one in R2, and one in R3. For
these two problems, we will confirm the convergence rates predicted by the the-
ory. We will also look at how different choices of the stability term affects the so-
lution for a given problem. Next, we briefly review the most common methods
used in reservoir simulations; the two-point and mulitpoint flux-approximation
methods, abbreviated TPFA and MPFA, respectively, and the mimietic finite dif-
ference method (MFD). Finally, we compare these three methods with VEM for
some simple test cases. As we investigate the different examples, we will also
present some implementation details for VEM not mentioned in Chapter 4.

5.1 Implementation details

We have implemented the virtual element method using the open source MAT-
LAB reservoir simulation toolbox (MRST), developed at SINTEF ICT, see [19,
20] for a comprehensive introduction. The implementation is the author’s own
work, and can be downloaded from the author’s git repository [18].

The implementation supports first and second order, and is done as de-
scribed in Chapter 4. The degrees of freedom EK are chosen to be the values at
the Lobatto quadrature points on each edge, as mentioned Remark 2.15 and Re-
mark 2.31. The reason is better interpretability of the calculated solution. More-
over, the right-hand side is approximated using Πk−1f ≈

∑
i χ

i(f)Πk−1φ
i, as

suggested in Section 4.5.

89

90 Chapter 5. Numerical Examples

Choosing the stability term is also possible. By default, the matrix represen-
tation of the stability term sK for each cell K is taken to beQQT , whereQ is an
orthogonal basis of the columns of I−Π∇, as described in Section 4.2. One can
also choose the stability term to be QΣQT , where Σ is any nker × nker positive
definite diagonal matrix. Note that in theory, Σ could be any full, positive defi-
nite matrix. However, as we saw in Section 3.2 and Section 3.3, it was sufficient
with a diagonal matrix to make VEM equivalent to the finite element method
and finite difference methods. For regular Cartesian grids, one can also choose
Q to be as in Example 3.11 in R2 or Example 3.12 in R3, respectively.

For evaluation of integrals of non-polynomial functions over polygons and
polyhedra, we have applied the technique of triangulating the polygon or poly-
hedron, as described in Section 4.1.2. The quadrature rules used for triangles
are the ones described in [30], while the ones used for tetrahedra are described
in [37].

We believe this is the first implementation of higher-order VEM for Poisson
problems in three dimensions.

5.2 A 2D model problem

We will consider the following Poisson problem:

−∆u = 4(π2 − 1)e−2x cos(2πy), x ∈ Ω,

u = e−2x cos(2πy), x ∈ ΓD,

∂nu = 2 cos(2πy), x ∈ ΓN ,

(5.1)

where Ω = [0, 1]× [0, 1], and ΓN is the Neumann boundary:

ΓN = {(x, y) ∈ {0} × [0, 1]} ,

which we refer to as the western boundary. Further, ΓD = ∂Ω\ΓN is the Dirich-
let boundary, which is then the southern, eastern and northern boundaries of Ω.
The exact solution to this problem is

u = e−2x cos(2πy).

5.2.1 Estimating the L2-norm

We denote the approximated solution to (5.1) obtained from a k-th order VEM
on a grid Th by uh. We know from Theorem 2.44 that we expect the L2-norm of
the error u− uh to scale with hk+1. The L2-norm can be split as follows:

‖u− uh‖20,Ω =
∑
K∈Th

‖u− uh‖20,K .

Since we do not know the shape of uh on the interior of each polygon K, we
cannot evaluate this exactly. However, we do know its projection Π∇uh, and

Chapter 5. Numerical Examples 91

we approximate the L2-error by

‖u− uh‖20,Ω ≈
∑
K∈Th

∥∥u−Π∇uh∥∥2

0,K
. (5.2)

This can then be calculated using a suitable quadrature rule.

5.2.2 Numerical solutions

We now analyse the virtual element method by solving (5.1) using a first and
second order VEM on four grids. The stability term for each polygon is chosen
to be the default form QQT . The grids are generated by setting equally spaced
points on the boundary, along with random points inside the domain. A tri-
angulation is then made of these points. Finally, the dual grid of this triangle
grid is calculated. See [4] for details. The grids are shown in Figure 5.1, with
the number of polygons nK and mean diameter h indicated. The approximated
solutions uh to (5.1) are shown in Figure 5.2a.

(a) Grid 1: nK = 60, h ≈ 19 · 10−2. (b) Grid 2: nK = 250, h ≈ 9.6 · 10−2.

(c) Grid 3: nK = 1020, h ≈ 4.8 · 10−2. (d) Grid 4: nK = 4090, h ≈ 2.4 · 10−2.

Figure 5.1: The four grids used to solve (5.1).

92 Chapter 5. Numerical Examples

1

-1

1

0

u
h

y

0.5

x

1

0.5

0 0

1

-1

1

0

u
h

y

0.5

x

1

0.5

0 0

(a) Solutions to (5.1) using a first order (left column) and second order (right column)
VEM on grids 1 (upper row) and 3 (lower row) in Figure 5.1.

10 -1

h

10 -3

10 -2

10 -1

. . u!
&

r
u

h

. . 0
;+

Slope =2.063

Slope =2.0

10 -1

h

10 -6

10 -4

10 -2

. . u!
&

r
u

h

. . 0
;+

Slope =3.069

Slope =3.0

(b) Log-log plot of the approximated L2-norm of the error using a first order (right) and
second order (left) VEM.

Figure 5.2: Solutions and convergence rates for (5.1).

Chapter 5. Numerical Examples 93

In terms of visualization, we now see the advantage of choosing the degrees
of freedom EK to be the values at k − 1 points on each edge: We can use these
values when we plot the solution, and we see that for the first grid, the second
order solution is much smoother than the first order solution.

A log-log plot of the approximated L2-norm of the error using (5.2) with
respect to the mean grid diameter h is shown in Figure 5.2b. We observe that we
have convergence rates close to k+1, which is in accordance with Theorem 2.44.

5.3 A 3D model problem

We now consider the following Poisson problem:

−∆u = −
(
x2 + 2

)
yez, x ∈ Ω,

u = x2yez, x ∈ ΓD,

∂nu = x2ye, x ∈ ΓN ,

(5.3)

where Ω = [0, 1]× [0, 1]× [0, 1]. The boundary is split into the Neumann bound-
ary ΓN , defined as

ΓN := {(x, y, z) ∈ [0, 1]× [0, 1]× {1}} ,

that is, the top boundary. The Dirichlet boundary ΓD := ∂Ω \ ΓN , is then the
bottom, northern, southern, eastern and western boundaries. The exact solution
to this problem is

u = x2yez. (5.4)

Again, we can approximate L2-error using (5.2).

5.3.1 Computing averages

We would like to be able to plot the solutions uh to 3D problems on the grids
we use to solve them. For k ≥ 2, this is straight-forward, since the degrees of
freedom F gives the moments

|F |−1

∫
F

uh ds

for all faces F of the grid. These values are the averages of the approximated
solution over each of the faces, and we can simply plot these for all visible faces
of the grid to see what the solution looks like. However, these values are not
calculated for k = 1. The solution is then to use the definition of the VEM space
V1(K): For a function vh ∈ V1(K), we know that the restriction vh|F to a face F
of K is in V1(F), and it follows that∫

F

uh ds =

∫
F

Π∇,Fuh ds.

94 Chapter 5. Numerical Examples

Note that the same is true for the averages over the cells, since∫
K

uh dx =

∫
K

Π∇,Kuh dx.

Hence, for a first order solution, we are able to calculate the degrees of free-
dom F and P as for a second order solution using the projection operator Π∇.
Obviously, the same is true for P in R2.

5.3.2 Numerical solutions

As in the 2D case, we now analyse the virtual element method by solving (5.3)
using a first and second order VEM on four grids. See [4] on how these grids are
generated. The grids are shown in Figure 5.3, and the approximated solutions
uh to (5.1) using the first and last grids are shown in Figure 5.4a.

(a) Grid 1: nK = 125, h ≈ 3.6 · 10−1. (b) Grid 2: nK = 216, h ≈ 3.0 · 10−1.

(c) Grid 3: nK = 504, h ≈ 2.2 · 10−1. (d) Grid 4: nK = 1000, h ≈ 1.8 · 10−1.

Figure 5.3: The four grids used to solve (5.3).

Chapter 5. Numerical Examples 95

1
0

0.5z

y

00.5

0

x

0.5
1 1

0

0.5

1

1.5

2

1
0

0.5z

y

00.5

0

x

0.5
1 1

0

0.5

1

1.5

2

1
0

0.5z

y

00.5

0

x

0.5
1 1

0

0.5

1

1.5

2

1
0

0.5z

y

00.5

0

x

0.5
1 1

0

0.5

1

1.5

2

(a) Solutions to (5.3) using a first order (left column) and second order (right column)
VEM on grids 1 (upper row) and 4 (lower row) in Figure 5.3.

0.15 0.2 0.25 0.3 0.35 0.4
h

10 -2

. . u!
&

r
u

h

. . 0
;+

Slope =1.992

Slope =2.0

0.15 0.2 0.25 0.3 0.35 0.4
h

10 -4

10 -3

. . u!
&

r
u

h

. . 0
;+

Slope =3.051

Slope =3.0

(b) Log-log plot of the approximated L2-norm of the error using a first order (left) and
second order (right) VEM.

Figure 5.4: Solutions and convergence rates for (5.3).

96 Chapter 5. Numerical Examples

A log-log plot of the approximated L2-norm of the error (5.2) with respect
to the mean grid diameter is shown in Figure 5.4b. The As in 2D, we observe
that we have convergence rates close to k + 1, which is in accordance with The-
orem 2.44.

5.4 Effect of the stability term

As mentioned, the implementation supports choosing the stability term of the
method. We will now see how different choices of the stability term impacts
the approximated solution. Consider the domain Ω = [−1, 1] × [−1, 1], with a
unit point source placed at the origin. This can be described by the differential
equation

−∆u = δ(x), (5.5)

where δ is the Dirac delta function. The solution to (5.5) is know as the fun-
damental solution of the Laplace equation [15, Chapter 2.2.1]. In R2, it reads

u = − 1

2π
log (|x|) . (5.6)

Note that u is symmetric around the origin.

5.4.1 Implementing sources and sinks

In the VEM framework, the point source problem (5.5) gives the local source
term (δ, ·)0,K . In this case, we cannot apply the same approach as for a func-
tion f ∈ L2(K). Instead, we construct our grid Th such that the cell KS has
centroid xKS

= (0, 0)T , and approximate the Dirac delta function by a function
|KS |−1ιKS

(x), where

ιKS
(x) =

{
1, x ∈ KS ,

0, otherwise.

The right-hand side then reads

(δ, φi)0,K ≈ |KS |−1(ιKS
, φi)0,K =

{
|KS |−1

∫
KS

φi dx, K = KS ,

0, otherwise.

For k ≥ 2, this integral is given from the degrees of freedomPK , while for k = 1,
it can be computed using the method described in 5.3.1.

More generally, we can easily define a source or sink with flux rate Q, cen-
tered at a point c ∈ Ω: We simply constructing the grid such that xKS

= c, and
use the approximation

Qδ(x− c) ≈ Q|KS |−1ιKS
(x).

Sinks are naturally implemented as negative sources, with flux rate −Q. For
the implementation used here, a source or sink is thus defined by defining the

Chapter 5. Numerical Examples 97

source cell KS , along with its flux rate. The same is, of course, true in three
dimensions.

5.4.2 Solutions using different stability terms

We construct a Cartesian grid Thx,hy
over Ω, with aspect ratio hy/hx = 11/101.

In order to analyse the effect of different stability terms, we recall from Exam-
ple 3.11 that the exact stability term for rectangles reads sK = QP−1ΛP−1QT ,
where

Q =

√
9

4hxhy
(1,−1, 1,−1)T , P = QTQ, Λ = 3

(
1

h2
x

+
1

h2
y

)
.

We use this as a staring point, and remember the fact that the stability term can
be scaled by any positive constant. Thus, we find the constant w that minimizes
the error eh := uh − u in a suitable norm, and use

wQP−1ΛP−1QT (5.7)

as our stability term.
We seek to minimize the error in two norms: the approximated L2-norm

(5.2), and the Euclidean norm |êh|. For comparison, we also include two other
solutions: The solution using the default stability term QQT , with Q an or-
thonormal basis for I −Π∇ for each cell, and the solution with stability term
(5.7) and w = 1. From Proposition 3.20, we know that the latter is the well-
known finite element method. The results are shown in Figure 5.5a-5.5d, with
the scaled error norms indicated. Moreover, the scaled error norms with respect
to the weight w is shown in Figure 5.5e. In order to avoid contribution to the
error close to the singularity, we have excluded the cells with centroid inside a
circle of radius hy/2 centered at the origin when measuring the error.

For the solution using the default stability term, and the FEM solution, we
observe a strange dip along the line x = 0, and these solutions are obviously
not correct in the local sense. For the solutions optimal in the L2 norm and
euclidean norm, we see that this dip is not evident. Moreover, we observe that
the weight w minimizing the L2 error and the error in the Euclidean norm are
close to each other, and the solutions are visibly indistinguishable. Further, the
L2-norms of these solutions are very close to each other. Generally, we see that
the error in the two norms seems to follow the same trend with respect to the
weight w, but with the Euclidean norm being more sensitive to the choice of w.

5.5 Comparing with other methods

Having seen that the implementation of the virtual element method behaves
as expected, we now move on to compare it with other methods. First, we
give a brief review of some of the most common methods used in reservoir
simulations.

98 Chapter 5. Numerical Examples

(a) Default stability term.
‖eh‖0,Ω
‖u‖0,Ω

≈ 5.27 · 10−2, |êh|
|û| ≈ 4.90 · 10−2.

(b) Stability term (5.7), w = 1.
‖eh‖0,Ω
‖u‖0,Ω

≈ 4.94 · 10−2, |êh|
|û| ≈ 3.80 · 10−2.

(c) Stability term (5.7), w = 3.70.
‖eh‖0,Ω
‖u‖0,Ω

≈ 4.57 · 10−2, |êh|
|û| ≈ 2.11 · 10−2.

(d) Stability term (5.7), w = 4.14.
‖eh‖0,Ω
‖u‖0,Ω

≈ 4.57 · 10−2, |êh|
|û| ≈ 2.08 · 10−2.

0 2 4 6 8 10
w

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

S
ca

le
d

er
ro

r

Euclidean norm

L2-norm

(e) Scaled error norms with respect to the weighted stability term (5.7).

Figure 5.5: Approximation of the fundamental solution of the Laplace equation
using different stability terms.

Chapter 5. Numerical Examples 99

Similar to what we discussed in Section 2.2, we will consider the following
subsurface flow problem:

∇ · v = q, v = −K∇p, x ∈ Ω ⊂ Rd, (5.8)

where v is the fluid velocity, p is the fluid pressure, K is the permeability, q is a
source or sink, and d = 2 or 3. We assume that suitable boundary conditions are
given, but these are not essential in describing the framework of the methods.
Note that (5.8) is equivalent to the elliptic equation −∇ ·K∇p = q. Moreover,
we recognize the second equation as Darcy’s law.

In the discussion of the methods, we will assume that we have a grid Th
covering Ω, with NP polygons or polyhedrons.

5.5.1 Two-point flux-approximation

The two-point flux approximation (TPFA) is a finite volume method, and the
current industry standard in reservoir simulations [20]. There are several sources
covering the TPFA method, see for example [19, Chapter 6.4.1] or [20]. A brief
description will be given here. We consider a cell Ki, and use the divergence
theorem to obtain the following integral form of the first equation of (5.8):∫

∂Ki

v · nds =

∫
Ki

q dx. (5.9)

Next, we consider two cells Ki and Kj , with common boundary Fi,j . Note that
this gives a natural way to define half-faces: The half-face Fi,j is the common face
of cell Ki and cell Kj , with orientation given by the normal vector ni,j pointing
from cell Ki to cell Kj . In the same manner, Fj,i shares vertices and area with
Fi,j but is oriented with nj,i := −ni,j . The flux across each half-face is

vi,j :=

∫
Fi,j

v · n ds.

We denote the centroid of Fi,j by xi,j , and use the midpoint rule and Darcy’s
law to obtain

vi,j ≈ |Fi,j |v(xi,j) · ni,j = −|Fi,j | (K∇p) (xi,j) · ni,j . (5.10)

As the name indicates, we now want to approximate the flux over each half-face
by using the pressure at two points; one value at the cell centroid, and one at the
face centroid. We denote them by πi and πi,j , respectively. Assuming that the
pressure is linear in each cell, we the know that πi equals the average pressure
pi inside Ki. Then (5.10) can be approximated by

vi,j ≈ |Fi,j |K(pi − πi,j)
ci,j
|ci,j |2

· ni,j ,

100 Chapter 5. Numerical Examples

where ci,j is the vector from the cell centroid to the face centroid. Defining the
half-face transmissibilities

Ti,j = |Fi,j |Ki
ci,j
|ci,j |2

· ni,j ,

whereKi is the permeability associated with cell Ki, we can write this as

vi,j ≈ Ti,j(pi − πi,j). (5.11)

An illustration is given in Figure 5.6.

pj

πij
pi

Ki

Kjci,j ni,j

Figure 5.6: Illustration of the TPFA method.

We now impose two physical conditions: (i) continuity of fluxes across faces,
vij := vi,j = −vj,i, and (ii) continuity of face pressures, πij := πi,j = πj,i. This
gives the two equations

T−1
i,j vij = pi − πij , −T−1

j,i vij = pj − πij .

Defining Tij :=
(
T−1
i,j + T−1

j,i

)−1
, the transmissibility associated with the connec-

tion between Ki and Kj , and inserting the approximated face fluxes into (5.9),
we obtain the system

NP∑
j=1

Tij(pi − pj) = qi ∀Ki ∈ Th,

where qi =
∫
Ki
q dx is the flux density out of cell Ki. In a reservoir setting, this

is the rate at which fluid is produced in cell Ki.
It can be shown that the TPFA method is only convergent for so-called K-

orthogonal grids. A sufficient condition for K-orthogonality is that Kni,j is
parallel to ci,j for all cells in the grid. Due to this fact, the TPFA method can
suffer from significant gird-orientation effects [19, 20].

Chapter 5. Numerical Examples 101

A method that is consistent for K-orthogonal grids is the multipoint flux
approximation method (MPFA) is (see for example [1, 2, 20]). This method can
be derived in much the same way as the TPFA method, but uses the pressure
at several neighboring points in order to approximate the pressure gradient in
(5.10).

5.5.2 Hybrid formulation

Let Ki be a cell with nF faces. We assume that our method can be written on
the form

vi = Ti(eipi − πi),

where vi = (vi1, . . . , vinF
)T is the vector of fluxes across each face of Ki, ei =

(1, . . . , 1)T ∈ RnF , πi is the vector of face pressures, and Ti is a matrix of half-
face transmissibilities. Note that this is equivalent to (5.11) in vector form, and
in this case, Ti is the diagonal matrix with diagonal (Ti,1, . . . , Ti,nF

)T . However,
in the general case, Ti is a full matrix. We write this as

Mivi = eipi − πi, (5.12)

whereMi := T−1
i can be associated to local inner products.

Again, we will impose conditions (i) and (ii) of continuity of face fluxes and
face pressures. However, unlike in TPFA, we add them as separate equations.
This yields the matrix system B C D

CT 0 0
DT 0 0

 v
−p
π

 =

 0
q
0

 . (5.13)

Here, v are the outward fluxes for each half-face of the cell. This gives that
both vij and −vij appears in v for each face Fij . In the same manner, p and
π contains the cell and face pressures. The matrix B is block diagonal, with
diagonal (M1, . . . ,MNP

), where NP are the number of cells in the grid, and C
is a block diagonal matrix with diagonal (e1, . . . , eNP

). Finally, a column of D
corresponds to a unique face in the grid, and has two unit entries for each face.

We refer to (5.13) as the hybrid formulation of (5.8), see [20] for details. The
mimetic finite difference method (MFD) [35] is a method that can be stated in
this form [20].

In a first-order mimetic finite difference method, we approximate the pres-
sure by a function that is piecewise linear on each cell, such that pi = x · a + b
for some vector a and constant b. The flux across Fi,j and pressure drop from
the cell centroid to the face centroid is then

vij = −|Fi,j |nTi,jKia, pi − πij = cTi,ja.

We insert this into (5.12) to obtain the following consistency conditions for the
local inner products:

MNK = C, NK = TC, (5.14)

102 Chapter 5. Numerical Examples

where

N = (|Fi,1|ni,1, . . . , |Fi,nF
|ni,nF

)
T
, C = (ci,1, . . . , ci,nF

)T .

Fro simplicity, we have omitted the cell index i. It can be shown that CTN =
|K|I , see [7]. Multiplying the first consistency condition in (5.14) byK−1CTN ,
we get that

MN = |K|−1CK−1CTN .

Thus, a local inner product satisfying (5.14) can be written as

M = |K|−1CK−1CT .

Similar to VEM, we must add a term to ensure stability. Thus, any valid local
inner product can be written as

M = |K|−1CK−1CT +Ms,

whereMs is a matrix defined such thatMsN = 0 andM is symmetric positive
definite.

Remark 5.1. Notice the similarity between MFD and VEM: In both methods,
for a given order k, we ensure that the local inner product is exact for all poly-
nomials in Pk(K). For functions not in Pk(K), we add a stability term so that
we are approximating the local inner product to the right order of magnitude.
This is of course no coincidence; after all, MFD is the method from which VEM
has evolved.

As mentioned in Chapter 1, since we are free to choose the stability term
Ms, we can, like with VEM, obtain certain other methods from MFD. For ex-
ample, this is the case for TPFA, the Raviart-Thomas method [20], and some
MPFA methods, like MPFA-O and the local flux mimetic MPFA [16, 21]. In our
examples, we will consider the MPFA-O method.

The methods described above are all implemented in MRST. Note that these
methods gives the pressure values at the face centroids and cell centroids. We
know that for k ≥ 2, VEM gives the average pressure for each cell, and we know
from Section 5.3.1 that we can compute these averages for k = 1 as well. Hence,
we can use these values to compare the methods. Before we do so, we stress
the point that the TPFA, MPFA and MFD methods are all conservative in the
discrete sense, and thus well-suited for reservoir simulation. For VEM, we do
not have this property.

For simplicity, we will consider two-dimensional problems, and isotropic
permeability, so that K = I . We will use the default stability term for the VEM
methods. For the stability term Ms of the MFD method, we will use the MRST
inner product IP_SIMPLE, see [20] for details.

Chapter 5. Numerical Examples 103

0 1
x

0

1

y

10

20

30

40

50

60

70

80

90

(a) TPFA.

0 1
x

0

1

y

10

20

30

40

50

60

70

80

90

(b) MPFA-O.

0 1
x

0

1

y

10

20

30

40

50

60

70

80

90

(c) MFD.

0 1
x

0

1

y

10

20

30

40

50

60

70

80

90

(d) VEM.

Figure 5.7: Solutions to (5.15) using four different methods.

5.5.3 Pressure drop

First, we consider a problem similar to one described in [20]. This a pressure
drop problem, which we formulate as

∆p = 0, x ∈ Ω,

∂np = 0, x ∈ Γn ∪ Γs,

p = 100, x ∈ Γe,

p = 0, x ∈ Γw,

(5.15)

where Ω = [0, 1]×[0, 1], and the the subscripts n, s, e andw refers to the northern,
southern, eastern and western boundaries. We define a regular Cartesian grid
T0.2,0.2 over Ω, and use the MRST function twister to deform T0.2,0.2 into a grid
of quadrilaterals by adding 0.03 sin(πx) sin (3π(y − 0.5)) to the x coordinates of
the vertices, and subtracting the same quantity from the y coordinates. Note that
the resulting grid does not have Knij parallel to cij , so the sufficient condition
forK-orthogonality mentioned above is not satisfied. The resulting solutions to

104 Chapter 5. Numerical Examples

(5.15) using TPFA, MPFA, MFD and first order VEM using this grid are shown
in Figure 5.7.

Since there is a given pressure difference between the eastern and western
boundaries, no flow through the northern and southern boundaries, and no
sources or sinks, we expect the pressure drop to be linear, decreasing from the
eastern to the western boundary. We clearly see that the solution produced by
TPFA is incorrect, while MFD, MPFA and first order VEM seems to produce
correct solutions.

0 0.2 0.4 0.6
r

0

0.1

0.2

0.3

0.4

0.5

0.6

p

Exact solution
TPFA
MPFA
MFD
1st order VEM
2nd order VEM

(a) Solutions on Ω = [0, 1] × [0, 1].

0 1 2 3 4 5
r

-0.4

-0.2

0

0.2

0.4

0.6

p

Exact solution
TPFA
MPFA
MFD
1st order VEM
2nd order VEM

(b) Solutions on Ω = [0, 10] × [0, 1].

0 0.5 1
x

0

0.5

1

y

(c) Grid over Ω = [0, 1] × [0, 1]. Source cell in
red.

Figure 5.8: Solutions and grid for (5.16).

5.5.4 Point source

Again, we consider a unit point source, placed at the point c ∈ Ω ⊂ R2. In a
reservoir simulation setting, this is equivalent to a well with constant flux rate

Chapter 5. Numerical Examples 105

normalized to 1. We know from Section 5.4 that this can be stated as

−∆p = δ(x− c), x ∈ Ω

p = − 1

2π
log (|x− c|) , x ∈ ∂Ω.

(5.16)

We consider a rectangular domain Ω = [0, Hx]× [0, Hy], and place the point
source in the middle of the domain, so that c = (Hx/2, Hy/2)T . Next, we gener-
ate a grid of polygons over Ω, refined around c. Using this grid, we calculate the
solutions to (5.16) when Ω = [0, 1]× [0, 1]. From [4], it is clear that this grid does
indeed satisfy the mentioned sufficient condition of K-orthogonality. To study
aspect ratio effects, we also stretch the same grid in the x-direction, so that it
covers the domain Ω = [0, 10]× [0, 1]. This grid no longer satisfies the sufficient
K-orthogonality condition. We can exploit the radial symmetry of the exact so-
lution, and plot the cell pressures with respect to the distance r := |xK−c| from
the cell centroid to c. The results are shown in Figure 5.8.

For the first grid, the results produced by all methods are close to the ex-
act solution. The MPFA, MFD and VEM solutions are almost indistinguishable
from the exact solution, while the TPFA solution is slightly higher. For the sec-
ond grid, we see that the TPFA method suffers from the high aspect ratio, and is
obviously not correct. The MPFA method exhibits some grid orientation effect
as well. Slightly better is the first order VEM, but we do observe some of the
same behavior as we saw in Section 5.4. The MFD and second order VEM both
produce satisfactory solutions.

5.6 Final remarks

We have now seen that the MATLAB implementation behaves as expected with
respect to convergence for simple problems in two and three dimensions. More-
over, it produces satisfactory results when compared with other methods for
simple test cases. Since the implementation is compatible with MRST, this facil-
itates comparison of VEM with the industry standards of reservoir simulation,
both with respect to discretization methods and grids.

Finally, in light of Section 5.4, we note that there are several applications
when choosing the stability term is useful, and, in some cases, necessary, to
obtain an accurate solution. For example, in [26], it is described how the 3D
stencils from Appendix B, with hx = hy = hz , can be combined to solve 3D
visco-acoustic wave propagation problems while minimizing the dispersion.
Theorem 3.29 tells us how to choose the stability term in order to obtain any
combination of these stencils, and the same dispersion analysis thus applies to
VEM as well. Another possible usage of the stability term is to address the lack
of monotonicity of solutions in reservoir simulation. There exists several studies
addressing this issue, particularly for the MPFA method [24, 25]. If one can use
the stability term in VEM in order to ensure monotonicity for arbitrary grids,
this would be a great advantage. In general, we have the possibility of adjust-
ing the stability term in order to avoid unphysical solutions to the problem we
are solving.

Chapter 6

Conclusion and Closing
Remarks

Finally, after six months or so, you find the light switch, you
turn it on, and suddenly it’s all illuminated.

Andrew John Wiles

6.1 Conclusion

The most important theoretical aspects of the virtual element method for Pois-
son problems have been presented and summarized. The theory has also been
supplemented with definitions, remarks and theorems. In particular, we have
provided detailed proofs of the well-posedness of the projection operator Π∇,
and the fact that the projection of any function in the virtual element space can
be computed exactly.

We have also shown how to construct the exact stability term sK , which is
the stability term that makes the approximated bilinear form of the virtual ele-
ment method equal to the exact bilinear form. By analysing how the projection
operatorΠ∇ behaves under affine transformations, we have shown that we can
choose the stability term such that the local stiffness matrices of the first order
finite element and virtual element methods for Poisson problems are equal for
certain cell geometries. These are triangles, tetrahedra, parallelograms, paral-
lelepipeds and triangular prisms with parallelogram sides. We have also shown
how we can scale the exact stability term in order to make the linear system of
equations obtained from VEM equal to that of finite difference discretizations of
Poisson problems, both in two and three dimensions.

The implementation process of VEM for Poisson problems has been de-
scribed in detail, while justifying some of the choices in the definitions of the
VEM function spaces and projection operators. A method of approximating the

107

108 Chapter 6. Conclusion and Closing Remarks

local load term has been presented. Moreover, we have discussed how to im-
plement inhomogeneous Dirichlet and Neumann boundary conditions. Build-
ing upon this, VEM has been implemented in MATLAB using the open-source
MATLAB reservoir simulation toolbox (MRST). The implementation supports
two and three dimensions, and first and second order. We believe this is the first
implementation of higher-order VEM for Poisson problems in three dimensions.

The VEM implementation has been applied to two test cases, one in R2 and
one in R3, on randomly generated polygonal and polyhedral grids. The conver-
gence rates where found to be close to k+ 1, where k is the order of the method,
which is in accordance with the theory. We have also used the implementation
to see how the stability term can be used to minimize a given norm of the error
of the approximated solution. Finally, we have given a short introduction to
some of the most common methods used in reservoir simulations: TPFA, MPFA
and MFD, and the VEM implementation has been compared to these methods
for two test cases on polygonal grids. The solutions produced by VEM was
similar to or better than the solutions produced by TPFA, MPFA and MFD.

6.2 Closing Remarks

The virtual element method has opened a whole new world of interesting prob-
lems within numerical mathematics, both theoretical, and technical. One of the
most interesting features of VEM is the stability term, or rather the freedom in
choosing it. We have seen that it is possible to obtain both finite element and
finite difference discretizations from suitable choices of this term, and it is rea-
sonable to assume that it is possible to obtain several other methods from VEM
as well. Such equivalences are of particular interest, since we then know that
the properties of these methods also applies to VEM. Moreover, the equivalence
might provide useful information about the other method based on the existing
theory for VEM, and give a natural way to extend the method to more general
cell geometries.

In FEM simulations, a common way of obtaining a sufficiently accurate so-
lution to a problem is to refine the grid. This is usually done by refining the cells
with the largest contribution to the error [14, 29]. However, because of the re-
strictions on the cell geometries, this is not trivial. Due to the flexibility of VEM
with respect to cell geometries, it is well-suited for such refinement techniques.
Another approach is order refinement, in which one uses a discretization of
higher order on a subset of the cells where the error is expected to be large [29].
To preserve continuity of the calculated solution, it is then necessary to match
the degrees of freedom in neighboring cells. Again, since VEM is flexible with
respect to cell geometries, it is possible to split the common face of the neighbor-
ing cell with the lowest order into several faces in order to add more degrees of
freedom to this cell, and consequently match them with the degrees of freedom
of the neighboring cell.

Other interesting extensions of this work includes formulating VEM for more
general elliptic problems [34]. In particular, we saw in Chapter 2 that in reser-
voir simulations, the pressure equation is formulated using the operator∇·K∇.

Chapter 6. Conclusion and Closing Remarks 109

A first step in applying VEM to reservoir simulations is then to discretize this
operator in the VEM framework. Moreover, as mentioned in Chapter 1, it is
desirable with a conservative method in reservoir simulations. In light of this, it
would be interesting to investigate VEM in the framework of mixed and hybrid
finite element methods [6], in order to obtain a conservative VEM discretization.
However, due to the time available for writing this thesis, we will have to leave
these problems unexplored for now.

Appendix A

Finite Element Function
Spaces

The definitions given here can be found in [29]. For the sake of self-containedness,
they are also included here.

Definition A.1. The Lobatto shape functions are defined as follows:

l0(x) =
1− x

2
, l1(x) =

1 + x

2
, lk(x) =

√
2k − 1

2

∫ x

−1

Lk−1(ξ) dξ, k ≥ 2,

where Lk(x) are the Legendre polynomials,

Lk(x) =
1

2kk!

dk

dxk
(x2 − 1)k, k = 0, 1,

We also define the kernel functions κk(x), satisfying

lk(x) = l0(x)l1(x)κk−2(x).

◦

Definition A.2. Let Kt = {(x, y) ∈ R2 : −1 < x, y, x + y ≤ 0} ⊂ R2 be the
reference triangle in Figure 3.3. We denote the affine coordinates on Kt by

ξ1(x, y) = l1(y), ξ2(x, y) = 1− l1(x)− l1(y), ξ3(x, y) = l1(x).

finite element space for Kt is denoted Qk(Kt), and its basis functions are as
follows:

♦ Vertex interpolants {ϕVi
t }3i=1, which takes on the value 1 at one of the ver-

tices, and vanish at all the others. We express them through the affine
coordinates:

ϕV1
t (x, y) = ξ2, ϕV2

t (x, y) = ξ3, ϕV3
t (x, y) = ξ1.

111

112 Appendix A. Finite Element Function Spaces

♦ Edge functions {ϕEi,p
t }3,ki=1,p=2, whose trace coincides with the Lobatto

shape function lp on edge i, and vanishes at all the others. We express
the through the Lobatto shape functions as follows:

ϕE1,p
t (x, y) = ξ2ξ3κp−2(ξ3 − ξ2),

ϕE2,p
t (x, y) = ξ3ξ1κp−2(ξ1 − ξ3),

ϕE3,p
t (x, y) = ξ1ξ2κp−2(ξ2 − ξ1).

♦ Bubble functions {ϕB,p,qt }p+q≤k−1
p=1,q=1 , vanishing on the boundary:

ϕB,p,qt (x, y) = ξ1ξ2ξ3κp−1(ξ3 − ξ2)κq−1(ξ2 − ξ1).

◦

Definition A.3. Let KT = {(x, y, z) ∈ R3 : −1 < x, y, z, x+y+z < −1} be the
reference tetrahedron in Figure 3.4. We denote the affine coordinates on KT by

ξ1 = l1(y), ξ2 = 1− l1(x)− l1(y)− l1(z), ξ3 = l1(x), ξ4 = l1(z).

Note that ξi vanishes at face Fi. Using these, we define the local FEM space for
KT : The local finite element space for KT is denoted Qk(KT), and is defined as
follows:

♦ Vertex interpolants {ϕVi

T }4i=1, which takes on the value 1 at one of the ver-
tices, and vanish at all the others. We express them through the Lobatto
shape functions by

ϕVi

T (x, y, z) = ξi1 ,

where Fi1 corresponds to the only face not containing vertex Vi.

♦ Edge functions {ϕEi,p
T }4,ki=1,p=2, whose trace coincides with the Lobatto

shape function lp on edge i, and vanishes at all the others. Let Ei be the
edge from Vj1 to Vj2 , and let Fi1 and Fi2 denote the two faces sharing a
single vertex Vj1 or Vj2 with Ei. Then,

ϕEi,p
T (x, y, z) = ξi1ξi2κk−2(ξi1 − ξi2).

♦ Face functions {ϕFi,p,q
T }4,p+q≤k−1

i=1,p=1,q=1, whose trace is of polynomial order p+
q + 1 on face Fi, and vanishes at all the others. Let Va, Vb and Vc be the
vertices of face Fi, ordered such that a < b < c. Moreover, let ξa, ξb and ξc
be the affine coordinates such that ξa(Va) = ξb(Vb) = ξc(Vc) = 1. Then,

ϕFi,p,q
T (x, y, z) = ξaξbξcκp−1(ξb − ξa)κq−1(ξa − ξc).

Appendix A. Finite Element Function Spaces 113

♦ Bubble functions {ϕBp,q,rT }p+q+r≤k−1
p=1,q=1,r=1, vanishing on the boundary:

ϕB,p,q,rT (x, y) = κp−1(ξ1 − ξ2)κq−1(ξ3 − ξ2)κr−1(ξ4 − ξ2)

4∏
i=1

ξi.

◦

Definition A.4. Let Ks = [−1, 1] × [−1, 1] ⊂ R2 be the reference square in Fig-
ure 3.5. The local finite element space for Ks is denoted Qk(Ks), and can be
expressed through the Lobatto shape functions:

ϕp,qs (x, y) = lp(x)lq(y), 0 ≤ p, q ≤ k.

They are ordered as follows:

♦ Vertex interpolants {ϕVi
s }4i=1, which takes on the value 1 at one of the ver-

tices, and vanish at all the others:

ϕVi
s (x, y) = ldx(x)ldy (y),

where d = (dx, dy) is a multiindex defined as follows: Let Ex and Ey be
the two edges containing vertex Vi, oriented parallel to the coordinate axes
x and y, respectively. Then

dξ =

{
0, Vi is on the left of Eξ
1, Vi is on the right of Eξ

.

♦ Edge functions {ϕEi,p
s }4,ki=1,p=2, whose trace coincides with the Lobatto

shape function lp on edge i, and vanishes at all the others:

ϕEi,p
s (x, y) = ldx(x)ldy (y),

where d = (dx, dy) is a multiindex defined as follows:

dξ =


p, Ei is parallell to coordinate axis ξ,
0, Ei is on the left of Ks w.r.t. the remaining coordinate axis,
1, Ei is on the right of Ks w.r.t. the remaining coordinate axis.

♦ Bubble functions {ϕB,p,qs }k,kp=2,q=2, vanishing on the boundary:

ϕB,p,qs (x, y) = lp(x)lq(y).

◦

Definition A.5. Let KC = [−1, 1] × [−1, 1] × [−1, 1] ⊂ R3 be the reference cube
in Figure 3.6. The local finite element space for KC is denoted Qk(KC), and can

114 Appendix A. Finite Element Function Spaces

be expressed through the Lobatto shape functions:

ϕp,q,rC (x, y) = lp(x)lq(y)lr(z), 0 ≤ p, q, r ≤ k.

They are ordered as follows:

♦ Vertex interpolants {ϕVi

C }8i=1, which takes on the value 1 at one of the ver-
tices, and vanish at all the others:

ϕVi

C (x, y, z) = ldx(x)ldy (y)ldz (z)

where d = (dx, dy, dz) is a multiindex defined as follows: Let Ex, Ey and
Ez be the three edges containing vertex Vi, oriented parallel to the coordi-
nate axes. Then

dξ =

{
0, Vi is on the left of Eξ
1, Vi is on the right of Eξ

.

♦ Edge functions {ϕEi,p
C }12,k

i=1,p=2, whose trace coincides with the Lobatto
shape function lp on edge Ei, and vanishes at all the others:

ϕEi,p
C (x, y, z) = ldx(x)ldy (y)ldz (z),

where d = (dx, dy, dz) is a multiindex defined as follows: Let

dξ =


p, Ei is parallell to coordinate axis ξ,
0, Ei is on the left of KC w.r.t. the remaining coordinate axes,
1, Ei is on the right of KC w.r.t. the remaining coordinate axes.

♦ Face functions {ϕFi,p,q
C }6,k,ki=1,p=2,q=2, whose trace is of directional polyno-

mial orders p, q on face Fi, and vanishes at all the others:

ϕFi,p,q
C (x, y, z) = ldx(x)ldy (y)ldz (z),

where d = (dx, dy, dz) is a multiindex defined as follows:

dη =


p, Fi spans the plane (η, ζ),

q, Fi spans the plane (ξ, η),

0, Fi is on the left of KC w.r.t. the remaining coordinate axis,
1, Fi is on the right of KC w.r.t. the remaining coordinate axis.

♦ Bubble functions {ϕB,p,q,rC }k,k,kp=2,q=2,r=2, vanishing on the boundary:

ϕB,p,q,rC (x, y, z) = lp(x)lq(y)lr(z).

◦

Appendix A. Finite Element Function Spaces 115

Definition A.6. Let KP be the reference prism

KP = {(x, y, z) ∈ R3 : −1 < x, y, z, x+ y < 0, z < 1}

in Figure 3.8. We denote the affine coordinates on KP by

ξ1(x, y, z) = l1(y),

ξ2(x, y, z) = 1− l1(x)− l1(y),

ξ3(x, y, z) = l1(x),

ξ4(x, y, z) = l1(z),

ξ5(x, y, z) = l0(z).

Note that each of the affine coordinates vanishes at one of the faces of KP . The
local kth order finite element space for KP is denoted Qk(KP), and is ordered
as follows:

♦ Vertex interpolants {ϕVi}6i=1, which takes on the value 1 at one of the ver-
tices, and vanish at all the others. We express them through the affine
coordinates by

ϕVi(x, y, z) = ξi1ξi2 ,

where Fi1 and Fi2 corresponds to the only two faces not containing vertex
Vi.

♦ Edge functions {ϕEi,p}9,ki=1,p=2, whose trace coincides with the Lobatto
shape function lp on edge i, and vanishes at all the others. Let Ei be the
edge from Vi1 to Vi2 , and let Fj1 and Fj2 be the two faces sharing a single
vertex Vi1 or Vi2 with Ei, respectively. Let Fj3 be the face not containing
any of the vertices of Ei. The edge functions for edge Ei is then

ϕEi,p(x, y, z) = ξj1ξj2κk−2(ξj1 − ξj2)ξj3 .

♦ Triangular face functions {ϕFi,p,q}5,p+q≤k−1
i=4,p=1,q=1, whose trace is of local poly-

nomial order r on the triangular face Fi, with 3 ≤ r ≤ k and 1 ≤ p, q, p +
q ≤ r − 1, and vanishes at all the others. Let Va, Vb and Vc be the vertices
of face Fi, ordered such that a < b < c. Moreover, let ξa, ξb and ξc be the
affine coordinates such that ξa(Va) = ξb(vb) = ξc(vc) = 1. Let ξd be the
affine coordinate corresponding to the other triangular face. Then,

ϕFi,p,q(x, y, z) = ξaξbξcκp−1(ξb − ξa)κq−1(ξa − ξc)ξd.

♦ Rectangular face functions {ϕFi,p,q}3,k,ki=1,p=2,q=2, whose trace is of local di-
rectional polynomial order p, q, with 2 ≤ p, q ≤ k, and vanishes at all the
others. There is a unique pair of edges parallel to the xy-plane, belonging
to face Fi. We select the edge Ej going from Vj1 to Vj2 , belonging to the
bottom face F4. Further, we denote the pair of faces sharing a single vertex
Vj1 or Vj2 with edge Ej by Fi1 and Fi2 , respectively. The face function for

116 Appendix A. Finite Element Function Spaces

face Fi is then

ϕFi,p,q(x, y, z) = ξi1ξi2ξ4ξ5κp−2(ξi1 − ξi2)κq−2(ξ4 − ξ5).

♦ Bubble functions {ϕp,q,rB }p+q≤k−1,k
p=1,q=1,r=2, vanishing on the boundary:

ϕp,q,rB (x, y) = ξ1ξ2ξ3κp−1(ξ3 − ξ2)κq−1(ξ2 − ξ1)lr(z).

◦

Appendix B

Finite Difference Stencils

Definition B.1. Let Ω = [−Hx, Hx]× [−Hy, Hy] ⊂ R2, and let Thx,hy be a regular
Cartesian grid over Ω. We denote the aspect ratio by ε = hy/hx. Finally, let
u : Ω → R be a smooth function. We define the following two finite difference
stencils for the discrete Laplace operator:

(i) Stencil 1: The stencil using the usual Cartesian coordinate system. It is
shown in Figure 3.10a. The discretizations of the second order partial
derivatives are [

∂2u

∂x2

]
i,j

=
1

4h2
x

(ui−1,j − 2ui,j + ui+1,j),[
∂2u

∂y2

]
i,j

=
1

4h2
y

(ui,j−1 − 2ui,j + ui,j+1).

We denote the resulting matrix multiplied by the area 4hxhy by Fc.

(ii) Stencil 2: The stencil using the coordinate system (d1, d2), where di are
unit vectors parallel to the diagonals of the square. The stencil is shown
in Figure 3.10b. We have that[

∂2u

∂d2
1

]
i,j

=
1

4(h2
x + h2

y)
(ui−1,j−1 − 2ui,j + ui+1,j+1),[

∂2u

∂d2
2

]
i,j

=
1

4(h2
x + h2

y)
(ui−1,j+1 − 2ui,j + ui+1,j−1),[

∂2u

∂d1d2

]
i,j

=
1

4(h2
x + h2

y)
(ui,j−1 − ui−1,j − ui+1,j + ui,j+1),

and the Laplacian in the Cartesian coordinate system is

(d1, d2) : ∆ =
1

4
(ε+ ε−1)2

(
∂2

∂d2
1

+
∂2

∂d2
2

)
− 1

2
(ε2 − ε−2)

∂2

∂d1d2
.

117

118 Appendix B. Finite Difference Stencils

We denote the resulting matrix multiplied by the area 4hxhy by Fd.

◦

The following stencil is also defined for hx = hy = hz in [26].

Definition B.2. Let Ω = [−Hx, Hx]× [−Hy, Hy]× [−Hz, Hz] ⊂ R3, and Thx,hy,hz

be a regular Cartesian grid over Ω. Let

εyx =
hy
hx
, εxz =

hx
hz
, εzy =

hz
hy

express the aspect ratios. Finally, let u : Ω→ R be a smooth function. We define
the following three finite difference stencils for the discrete Laplace operator:

(i) Stencil 1: The stencil using the usual Cartesian coordinate system (x, y, z),
shown in Figure 3.11a. The discretizations of the second order partial
derivatives are[

∂2u

∂x2

]
i,j,k

=
1

4h2
x

(ui−1,j,k − 2ui,j,k + ui+1,j,k),[
∂2u

∂y2

]
i,j,k

=
1

4h2
y

(ui,j−1,k − 2ui,j,k + ui,j+1,k),[
∂2u

∂z2

]
i,j,k

=
1

4h2
z

(ui,j,k−1 − 2ui,j,k + ui,j,k+1).

We denote the resulting matrix multiplied by the volume 8hxhyhz by Fc.

(ii) Stencil 2: The average of three stencils using the coordinate systems (x, ηx, ζx),
(ξy, y, ζy) and (ξz, ηz, z), obtained by rotating the Cartesian coordinate sys-
tem counter-clockwise around one of its axes. The stencil using coordinate
system (x, ηx, ζx) is shown in Figure 3.11b. The discretizations of the sec-
ond order partial derivatives ∂2

x, ∂2
y , and ∂2

z are as for Stencil 1, and[
∂2u

∂η2
x

]
i,j,k

=
1

4(h2
y + h2

z)
(ui,j−1,k−1 − 2ui,j,k + ui,j+1,k+1),[

∂2u

∂ζ2
x

]
i,j,k

=
1

4(h2
y + h2

z)
(ui,j−1,k+1 − 2ui,j,k + ui,j+1,k−1),[

∂2u

∂ξ2
y

]
i,j,k

=
1

4(h2
x + h2

z)
(ui−1,j,k+1 − 2ui,j,k + ui+1,j,k−1),[

∂2u

∂ζ2
y

]
i,j,k

=
1

4(h2
x + h2

z)
(ui−1,j,k−1 − 2ui,j,k + ui+1,j,k+1),[

∂2u

∂ξ2
z

]
i,j,k

=
1

4(h2
x + h2

y)
(ui−1,j−1,k − 2ui,j,k + ui+1,j+1,k),[

∂2u

∂η2
z

]
i,j,k

=
1

4(h2
x + h2

y)
(ui−1,j+1,k − 2ui,j,k + ui+1,j−1,k),

Appendix B. Finite Difference Stencils 119

[
∂2u

∂ηxζx

]
i,j,k

=
1

4(h2
y + h2

z)
(ui,j,k−1 − ui,j−1,k − ui,j+1,k + ui,j,k+1),[

∂2u

∂ξyζy

]
i,j,k

=
1

4(h2
x + h2

z)
(ui−1,j,k − ui,j,k−1 − ui,j,k+1 + ui+1,j,k),[

∂2u

∂ξzηz

]
i,j,k

=
1

4(h2
x + h2

y)
(ui,j−1,k − ui−1,j,k − ui+1,j,k + ui,j+1,k).

The Laplacian in the Cartesian coordinate system is

(x, ηx, ζx) : ∆ =
∂2

∂x2
+

1

4
(εzy + ε−1

zy)2

(
∂2

∂η2
x

+
∂2

∂ζ2
x

)
− 1

2
(ε2zy − ε−2

zy)
∂2

∂ηxζx
,

(ξy, y, ζy) : ∆ =
∂2

∂y2
+

1

4
(εxz + ε−1

xz)2

(
∂2

∂ξ2
y

+
∂2

∂ζ2
y

)
− 1

2
(ε2xz − ε−2

xz)
∂2

∂ξyζy
,

(ξz, ηz, z) : ∆ =
∂2

∂z2
+

1

4
(εyx + ε−1

yx)2

(
∂2

∂ξ2
z

+
∂2

∂η2
z

)
− 1

2
(ε2yx − ε−2

yx)
∂2

∂ξzηz
.

We denote the resulting matrices multiplied by the volume 8hxhyhz by
Fx, Fy and Fz , respectively, and use its average Fx := (Fx + Fy + Fz)/3.

(iii) Stencil 3: The average of four stencils using the coordinate systems

(d1, d2, d3), (d1, d2, d4), (d1, d3, d4), (d2, d3, d4),

where di are unit vectors parallel to the main diagonals of the cube. The
average stencil is shown in Figure 3.11c. Defining h2 = h2

x + h2
y + h2

z , we
have that[

∂2u

∂d2
1

]
i,j,k

=
1

4h2
(ui−1,j−1,k−1 − 2ui,j,k + ui+1,j+1,k+1),[

∂2u

∂d2
2

]
i,j,k

=
1

4h2
(ui−1,j+1,k−1 − 2ui,j,k + ui+1,j−1,k+1),[

∂2u

∂d2
3

]
i,j,k

=
1

4h2
(ui−1,j−1,k+1 − 2ui,j,k + ui+1,j+1,k−1),[

∂2u

∂d2
4

]
i,j,k

=
1

4h2
(ui−1,j+1,k+1 − 2ui,j,k + ui+1,j−1,k−1),[

∂2u

∂d1d2

]
i,j,k

=
1

4h2
(ui−1,j,k−1 − ui,j−1,k − ui,j+1,k + ui+1,j,k+1),[

∂2u

∂d1d3

]
i,j,k

=
1

4h2
(ui−1,j−1,k − ui,j,k−1 − ui,j,k+1 + ui+1,j+1,k),[

∂2u

∂d1d4

]
i,j,k

=
1

4h2
(− ui,j−1,k−1 + ui−1,j,k + ui+1,j,k − ui,j+1,k+1),[

∂2u

∂d2d3

]
i,j,k

=
1

4h2
(− ui,j−1,k+1 + ui−1,j,k + ui+1,j,k − ui,j+1,k−1),

120 Appendix B. Finite Difference Stencils

[
∂2u

∂d2d4

]
i,j,k

=
1

4h2
(ui−1,j+1,k − ui,j,k−1 − ui,j,k+1 + ui+1,j−1,k),[

∂2u

∂d3d4

]
i,j,k

=
1

4h2
(ui−1,j,k+1 − ui,j−1,k − ui,j+1,k + ui+1,j,k−1).

The Laplacian in the Cartesian coordinate system is

(d1, d2, d3) :

∆ = h2

(
1

4

(
1

h2
y

+
1

h2
z

)
∂2

∂d2
1

+
1

4

(
1

h2
x

+
1

h2
y

)
∂2

∂d2
2

+
1

4

(
1

h2
x

+
1

h2
z

)
∂2

∂d2
3

− 1

2h2
y

∂2

∂d1d2
− 1

2h2
z

∂2

∂d1d3
+

1

2h2
x

∂2

∂d2d3

)
(d1, d2, d4) :

∆ = h2

(
1

4

(
1

h2
x

+
1

h2
y

)
∂2

∂d2
1

+
1

4

(
1

h2
y

+
1

h2
z

)
∂2

∂d2
2

+
1

4

(
1

h2
x

+
1

h2
z

)
∂2

∂d2
4

− 1

2h2
y

∂2

∂d1d2
+

1

2h2
x

∂2

∂d1d4
− 1

2h2
z

∂2

∂d2d4

)
(d1, d3, d4) :

∆ = h2

(
1

4

(
1

h2
x

+
1

h2
z

)
∂2

∂d2
1

+
1

4

(
1

h2
y

+
1

h2
z

)
∂2

∂d2
3

+
1

4

(
1

h2
x

+
1

h2
y

)
∂2

∂d2
4

− 1

2h2
z

∂2

∂d1d3
+

1

2h2
x

∂2

∂d1d4
− 1

2h2
y

∂2

∂d3d4

)
(d2, d3, d4) :

∆ = h2

(
1

4

(
1

h2
x

+
1

h2
z

)
∂2

∂d2
2

+
1

4

(
1

h2
x

+
1

h2
y

)
∂2

∂d2
3

+
1

4

(
1

h2
y

+
1

h2
z

)
∂2

∂d2
4

+
1

2h2
x

∂2

∂d2d3
− 1

2h2
z

∂2

∂d2d4
− 1

2h2
y

∂2

∂d3d4

)
.

We will denote the resulting matrices multiplied by the volume 8hxhyhz
by F1,F2,F3 and F4, and use its average Fd := (F1 + F2 + F3 + F4)/4.

◦

References

[1] I. Aavatsmark. “An introduction to multipoint flux approximations for
quadrilateral grids”. In: Computational Geosciences 6.3-4 (2002), pp. 405–
432.

[2] L. Agélas, C. Guichard, and R. Masson. “Convergence of finite volume
MPFA O type schemes for heterogeneous anisotropic diffusion problems
on general meshes”. In: International Journal on Finite Volumes (2010), vol-
ume–7.

[3] B. Ahmad et al. “Equivalent projectors for virtual element methods”. In:
Computers & Mathematics with Applications 66.3 (2013), pp. 376 –391.

[4] R. L. Berge. “Unstructured pebi grids adapting to geological feautres in
subsurface reservoirs”. MA thesis. Norwegian University of Science and
Technology, 2016.

[5] S. Brenner and R. Scott. The mathematical theory of finite element methods.
Vol. 15. Springer Science & Business Media, 2007.

[6] F. Brezzi and M. Fortin. Mixed and hybrid finite element methods. Vol. 15.
Springer Science & Business Media, 2012.

[7] Franco Brezzi, Konstantin Lipnikov, and Valeria Simoncini. “A family of
mimetic finite difference methods on polygonal and polyhedral meshes”.
In: Mathematical Models and Methods in Applied Sciences 15.10 (2005), pp. 1533–
1551.

[8] A. Cangiani and G. Manzini. “Flux reconstruction and solution post-processing
in mimetic finite difference methods”. In: Computer Methods in Applied Me-
chanics and Engineering 197.9 (2008), pp. 933–945.

[9] A. Cangiani et al. “Hourglass stabilization and the virtual element method”.
In: International Journal for Numerical Methods in Engineering 102.3-4 (2015),
pp. 404–436.

[10] T. K. Carne. Geometry and groups. 2012. URL: https://www.dpmms.
cam.ac.uk/~tkc/GeometryandGroups/GeometryandGroups.
pdf (visited on 06/06/2016).

[11] R. Courant, K. Friedrichs, and H. Lewy. “Über die partiellen Differen-
zengleichungen der mathematischen Physik”. In: Mathematische Annalen
100.1 (1928), pp. 32–74.

[12] R. Courant et al. “Variational methods for the solution of problems of
equilibrium and vibrations”. In: Bull. Amer. Math. Soc 49.1 (1943), pp. 1–
23.

121

https://www.dpmms.cam.ac.uk/~tkc/GeometryandGroups/GeometryandGroups.pdf
https://www.dpmms.cam.ac.uk/~tkc/GeometryandGroups/GeometryandGroups.pdf
https://www.dpmms.cam.ac.uk/~tkc/GeometryandGroups/GeometryandGroups.pdf

122 REFERENCES

[13] T. Dupont and R. Scott. “Polynomial approximation of functions in Sobolev
spaces”. In: Mathematics of Computation 34.150 (1980), pp. 441–463.

[14] K. Eriksson et al. Computational differential equations. Vol. 1. Cambridge
University Press, 1996.

[15] L. C. Evans. Partial Differential Equations. Graduate studies in mathemat-
ics. American Mathematical Society, 1998. ISBN: 9780821807729.

[16] R. A. Klausen and A. F. Stephansen. “Mimetic mpfa”. In: Proc. 11th Euro-
pean conference on the mathematics of oil recovery. 2008, pp. 8–11.

[17] Ø. S. Klemetsdal. “Higher-order virtual element methods for irregular
grids with application to reservoir simulation”. Master’s project.

[18] Ø. S. Klemetsdal. MATLAB implementation of the virtual element method.
2016. URL: https://strene@bitbucket.org/strene/the-virtual-
element-method.git (visited on 06/10/2016).

[19] K.-A. Lie. An introduction to reservoir simulation using MATLAB: User guide
for the Matlab reservoir simulation toolbox (MRST), SINTEF ICT. 2015.

[20] K.-A. Lie et al. “Open-source MATLAB implementation of consistent dis-
cretisations on complex grids”. In: Computational Geosciences 16.2 (2012),
pp. 297–322.

[21] K. Lipnikov, M. Shashkov, and I. Yotov. “Local flux mimetic finite differ-
ence methods”. In: Numerische Mathematik 112.1 (2009), pp. 115–152.

[22] G. R. Liu et al. “Theoretical aspects of the smoothed finite element method
(SFEM)”. In: International journal for numerical methods in Engineering 71.8
(2007), pp. 902–930.

[23] S. Natarajan, S. Bordas, and E. T. Ooi. “On the equivalence between the
cell–based smoothed finite element method and the virtual element method”.
In: arXiv preprint arXiv:1407.1909 (2014).

[24] J. M. Nordbotten and I. Aavatsmark. “Monotonicity conditions for con-
trol volume methods on uniform parallelogram grids in homogeneous
media”. In: Computational Geosciences 9.1 (2005), pp. 61–72.

[25] J. M. Nordbotten and G. T. Eigestad. “Discretization on quadrilateral grids
with improved monotonicity properties”. In: Journal of computational physics
203.2 (2005), pp. 744–760.

[26] S. Operto et al. “3D finite-difference frequency-domain modeling of visco-
acoustic wave propagation using a massively parallel direct solver: A fea-
sibility study”. In: Geophysics 72.5 (2007), SM195–SM211.

[27] B. N. Parlett. The symmetric eigenvalue problem. Vol. 7. SIAM, 1980.

[28] Society of Petroleum Engineers. SPE Reservoir Simulation Conference 2017.
2016. URL: http://www.spe.org/events/en/2017/conference/
17rsc/homepage.html (visited on 06/06/2016).

[29] P. Solin, K. Segeth, and I. Dolezel. Higher-order finite element methods. CRC
Press, 2003.

https://strene@bitbucket.org/strene/the-virtual-element-method.git
https://strene@bitbucket.org/strene/the-virtual-element-method.git
http://www.spe.org/events/en/2017/conference/17rsc/homepage.html
http://www.spe.org/events/en/2017/conference/17rsc/homepage.html

REFERENCES 123

[30] G. Strang and G. J. Fix. An analysis of the finite element method. Vol. 212.
Prentice-Hall Englewood Cliffs, NJ, 1973.

[31] N. Sukumar and A. Tabarraei. “Conforming polygonal finite elements”.
In: International Journal for Numerical Methods in Engineering 61.12 (2004),
pp. 2045–2066.

[32] V. Thomée. “From finite differences to finite elements: A short history of
numerical analysis of partial differential equations”. In: Journal of Compu-
tational and Applied Mathematics 128.1 (2001), pp. 1–54.

[33] L. Beirão da Veiga et al. “Basic Principles of the Virtual Element Method”.
In: Mathematical Models and Methods in Applied Sciences 23.01 (2013), pp. 199–
214.

[34] L. Beirão da Veiga et al. “The hitchhiker’s guide to the virtual element
method”. In: Mathematical Models and Methods in Applied Sciences 24.08
(2014), pp. 1541–1573.

[35] L. B. da Veiga, L. Lipnikov, and G. Manzini. Mimetic Finite Difference Method
for Elliptic Problems. Vol. 11. Springer, 2014.

[36] H. K. Versteeg and W. Malalasekera. An introduction to computational fluid
dynamics: the finite volume method. Pearson Education, 2007.

[37] H. Xiao and Z. Gimbutas. “A numerical algorithm for the construction of
efficient quadrature rules in two and higher dimensions”. In: Computers
& Mathematics with Applications 59.2 (2010), pp. 663 –676.

	Title Page
	Introduction
	The Virtual Element Method
	Notation
	A model problem
	Abstract framework
	The virtual element spaces and projectors
	The two-dimensional case
	The three-dimensional case

	Constructing the bilinear form
	Construction of the right-hand side
	L2 error estimate
	Final Remarks

	A Family of Bilinear Forms
	Constructing the stability term
	Equivalence with the Finite Element Method
	FEM for triangles and tetrahedra
	FEM for quadrilaterals and hexahedra
	FEM for triangular prisms
	Some remarks

	Equivalence with Finite Difference methods
	Two dimensions
	Three Dimensions

	Final Remarks

	Implementing VEM for Poisson Problems
	Numerical Integration
	Using the Divergence Theorem
	Mapping from a reference element

	Computing the 2D local stiffness matrix
	Computing the 3D local stiffness matrix
	Computing the L2 projection
	Computing the local load term
	Putting it all together
	Boundary Conditions

	Numerical Examples
	Implementation details
	A 2D model problem
	Estimating the L2-norm
	Numerical solutions

	A 3D model problem
	Computing averages
	Numerical solutions

	Effect of the stability term
	Implementing sources and sinks
	Solutions using different stability terms

	Comparing with other methods
	Two-point flux-approximation
	Hybrid formulation
	Pressure drop
	Point source

	Final remarks

	Conclusion and Closing Remarks
	Conclusion
	Closing Remarks

	Finite Element Function Spaces
	Finite Difference Stencils
	References

