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Abstract

The purpose of this thesis is to simulate fluid flows in aquifers used for natural
gas storage. An introduction is given to aquifer flow modelling, and two models
are developed that describe two-phase flow in porous media. The first model is
constructed using the standard equations for Darcy flow and conservation of mass.
The second model is then developed by integrating these equations in the vertical
direction, and using the assumption of a sharp-interface and vertical equilibrium
to evaluate the integrals.

These two models were tested by running simulations on the aquifer model of
Stenlille, a major gas storage facility in Denmark. The specifics of the aquifer
model, such as the grid, fluid properties and so on, were based upon an existing
ECLIPSE model. The goal was to improve the capability the simulations had
in predicting pressures and water production rates for the wells in the aquifer.
To this end, the ECLIPSE model of the aquifer was transferred into the MRST
framework, where it was easier to experiment with the models themselves.

The simulations run in MRST, using both the black-oil model and the VE model,
were found to give successful predictions of the well pressures. As the VE model
is two-dimensional, run-times were significantly lowered when this model was uti-
lized. Neither the simulations run in MRST nor ECLIPSE were found to give
successful predictions of water production rates.



Sammendrag

Målet med denne oppgaven er å simulere fluidflyt i et akvifer som brukes til å lagre
metan. En introduksjon vil bli gitt ang̊aende modellering av akviferer, og to mod-
eller vil bli utviklet for to-fase flyt i porøse medier. Den første modellen er basert
p̊a en konserveringslov og et standard utrykk for Darcy flyt. Den neste modellen
videreutvikles basert p̊a denne, ved å integrere ligningene vertikalt. Antagelser om
vertikalt ekvilibrium og en skarp overgang mellom de to fluidfasene brukes til å
evaluere integralene.

De to modellene ble testet ved å bruke dem til å simulere fluidflyt i Stenlille
akviferet, som er et stort metanlager i Danmark. Den spesifikke modellen for dette
akviferet ble basert p̊a en tidligere utviklet ECLIPSE modell. Målet er å forbedre
evnen simuleringene basert p̊a denne modellen har til å forutsi trykkforandringer
og vannproduksjon i brønnene.

For å kunne eksperimentere friere med selve akvifer modellen, ble den reimple-
mentert i MRST rammeverket. Simuleringer ble s̊a kjørt ved å bruke denne
modellen. Det ble konkludert med at b̊ade standard-modellen og VE modellen,
slik de ble implementert i MRST, kunne predikere trykkforandringer med rimelig
nøyaktighet. Siden VE modellen i praksis er to-dimensjonal, hadde VE simulerin-
gene betydelig lavere kjøretid. Hverken simuleringer i ECLIPSE, eller i MRST,
klarte å predikere vannproduksjon i brønnene.
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Chapter 1

Introduction

Natural gas is a vital fuel source in the world economy. The gas itself is a hy-
drocarbon mixture that consists primarily of methane. When burned, it gives off
considerable amounts of energy, and can therefore be efficiently used for electricity
generation, heating and cooking. In 2013, it supplied an estimated 15.1 % of the
worlds total energy consumption, a percentage that is close to that of electricity
and surpasses coal [1].

The gas is primarily created deep underground, where the pressure and earth
temperature is high enough to cook organic matter. The gas created in this process
has low density compared to other fluids, and will therefore slowly rise towards the
surface. Its upwards migration will continue until it eventually reaches the earths
surface and dissipates, unless it meets a geological formation capable of trapping
it along the way. Such a formation would consist of a layer of porous rock where
the gas can reside, that is topped by a denser, impermeable rock in the shape of
an inverted saucer.

If undisturbed, natural gas can reside can be trapped in such a formation for
millions and millions of years. When such a reservoir is discovered, wells can be
drilled into it to bring the gas to the surface, and the gas can then be directed via
pipelines to the place where it will be used as fuel. This process of transporting
natural gas is difficult and costly compared to other fossil fuels [5]. Furthermore,
the consumption rate often exhibits strong seasonal variations, and it is not always
possible to match the production rate with the consumption rate. This immedi-
ately raise the question - how can one store gas in a manner that is both efficient
and safe?

The answer comes as a surprise to many people: The earth itself can be used
efficiently for storage. Gas has already been stored for millions of years in under-

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: A schematic representation of the Stenlille gas storage facility. Figure
from [11]

ground aquifers, and the same method of storage will do equally well in the short
term. Perhaps even more surprising, this is by no means a new invention; it was
utilized for the first time over a 100 years ago, with major developments happening
since the 1940s [8].

The Stenlille gas storage facility is located in Denmark, and is the largest storage
facility in Scandinavia. The gas is stored roughly 1500 meters below the surface,
in a sandstone aquifer that is separated into distinct storage zones by thin layers
of impermeable claystone.

A total of thirteen different wells have been drilled down into the aquifer, of which
three are observation wells that flank it. The main operational restraint during
injection is that the injection rate and pressure must be kept beneath the over-
burden pressure of the rock, and low enough to not push gas out of the structure.
During withdrawal, the withdrawal rate per well must be kept low due to risk of
water coning and sand production.

So far, the injection and production rates have been set based on operational
experience, reservoir simulations in ECLIPSE and comparisons with other aquifer
gas storage facilities. The numerical simulations have been able to predict the well
pressures with reasonable success, along with the large-scale migration of gas in
the aquifer. However, simulations have so far been unsuccessful in predicting when
large production rates lead to water being produced instead of gas. This bring us
to the topic of this thesis - numerical simulations of natural gas storage. With
the hope of discovering improvements that can be made upon the simulations, the
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ECLIPSE model of the aquifer has been transferred into the Matlab Reservoir
Simulation Toolbox (MRST) framework, where it is easier to experiment with the
model itself.

The MRST model will seek to improve both the accuracy of the simulation pre-
dictions, and reduce the run-time of the simulations themselves. The latter will be
done by using Vertical Equilibrium (VE) models, in which case the dimension of
the model equations can be reduced from three to two, and the simulation run-time
is dramatically cut.

On one hand, the work done for this thesis is motivated by the goal of improving
the predictive success of simulations, so that they can be more aptly used to make
engineering decisions. On the other hand, they are also motivated by the fact that
there is valuable scientific knowledge to be gained from simulations of gas storage.
The wells in Stenlille provide high precision, high frequency data, gathered over
the course of several years, where the cycle of injection and production has been
repeated several times. This data can be used to experiment with and validate
models of fluid flow in porous media.

The future of natural gas as a fuel source, and thereby also the relevance of aquifer
gas storage, is difficult to predict. In the hope of combatting climate change, large
efforts are currently being made to phase out fossil fuels completely. However,
this process is proving to be slow and ardous, and will likely take decades to
complete [19]. Furthermore, natural gas is the ”cleanest” of all fossil fuels in the
sense that it emits the least CO2 when burned. This has in several cases motivated
a switch from coal to natural gas, as a first step in reducing CO2 emissions [21].

It is also possible that natural gas will continue as an important co-star on the
world energy stage, also after a shift has been made to renewable energy sources.
Solar and wind generators will naturally yield variable energy outputs, and so far
there are no good options for full-scale storage of this energy. Natural gas on the
other hand can already be efficiently stored, and can therefore serve as a flexible
back-up in the future energy system [28].



Chapter 2

Aquifer Flow Modeling

2.1 An Introduction to Aquifers

All rocks and soils will consist of a certain percentage of solid and a certain percent
of void space. Dry rocks on land will have this pore space filled with air, whereas
aquifers will have it filled by water. The ”voidness” of a rock is specified by its
porosity, which is defined by the relation

porosity φ =
void volume

total volume
.

As was mentioned in the introduction, the Stenlille aquifer consists mainly of sand-
stone, with thin layers of silt and clay dividing it into distinct layers. Sandstone
has a relatively large porosity, somewhere in the 15-40 % range, which explains
the large storage potential of the Stenlille aquifer.

Claystone is composed of very fine particles and has small pores, which results
in lower porosity, usually in the 6-12 % range. However, we know that the silt
and clay layers are semi-impermeable or fully impermeable to the gas, and that
some of the folds and domes in these layers hence are capable of serving as a
caprock against the gas plume. Given the non-zero porosity of the caprock, it is
safe to assume that porosity can not be the only factor affecting the flow of gas
through a porous medium. This brings us to the next important concept, that of
permeability.

Permeability describes the ease with which fluid can flow through a rock. There
are two factors that affect it, namely the porosity of the rock, and the specific
layout of the pore networks spread through it. As an illustrative example, imagine

4



2.2. POROUS MEDIA FLOW 5

a rock that has large pores, but these form fluid pathways that wind and curve
strongly. This rock will have high porosity, but not high permeability.

Going back to using Stenlille as an example, we will see in Chapter 4 that the
claystone caprocks do indeed have lower permeability than the sandstone layers
in the aquifer. However, the permeability is also non-zero in most areas, so this
still does not suggest that the caprock can act as an effective seal against the gas
plume. To explain why this is so, one more concept needs to be introduced.

Imagine you are adding a cube of sugar to your morning cup of coffee, and decide to
carefully touch a corner of it to the surface of the hot fluid. If you watch carefully,
you will see the fluid being drawn up and into the sugar cube. This motion is
driven by the stronger attraction the surface of the sugar cube pores have to water
compared to the attraction they have to air. The same mechanism is at work in
aquifers; water tends to be more strongly attracted to the rock than gas is. The
fluid with the strongest attraction is therefore commonly called the wetting fluid,
while the one with the weakest attraction is denoted the non-wetting fluid.

With these concepts defined, the caprock can now be seen as a low porosity and
low permeability rock, where the gas pressing upwards from below is unable to
penetrate because of the caprock’s preference for water. Keeping the mental image
of how fluids flow through the pore space in rocks, we are now ready to move on
to give an introduction to the mathematical model of fluid flow in porous media.

2.2 Porous Media Flow

2.2.1 Law of Mass Conservation

Aquifer modelling is characterized by vast differences in scale. Our discussion of
the concepts of porosity, permeability and wetting/non-wetting fluids was based
on considerations of how fluid flows through the pore networks in a rock. While
a specific rock pore might be a few micrometers thick, the aquifers we seek to
model often span a square kilometer or more in the horizontal plane. Considering
individual pore networks in the aquifer would therefore quickly prove to be an
exercise in futility. Instead, we shift focus to continuum mechanics, where the
model is based instead on representative elementary volumes (REVs) of the rock.

A REV is often defined to be the smallest volume over which measurements will
yield values that are representative of the whole. E.g., lab measurements of the
porosity of a rock would oscillate strongly with small samples. These oscillations
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would dampen out as the sample size became larger and larger, and a representa-
tive elementary volume could be defined when the measurements gave consistent
readings.

The law of mass conservation is based on the fact that for any REV we must have
that{

Change of

mass in the RVE

}
=

{
Mass flowing

into the RVE

}
−
{

Mass flowing

out of the RVE

}
+

{
Mass created

in the RVE

}
.

If we denote the region contained in the REV by Ω, and the boundary of Ω as ∂Ω,
this is expressed mathematically by the relation

d

dt

∫
Ω

ρφ dV +

∫
∂Ω

ρφ~u · ~n dA =

∫
Ω

q dV, (2.1)

where m is the mass of the substance in the region Ω, ~u is the fluid velocity, ρ is
the density of the substance, q is a source or sink, and ~n is the unit vector normal
to the surface ∂Ω in the outward direction. The two terms on the left hand side
are multiplied with φ because the fluids only reside in the pore space.

If the functions involved are bounded and sufficiently smooth, the derivative can
be transferred into the integral,∫

Ω

∂(φρ)

∂t
dV +

∫
∂Ω

ρφ~u · ~n dA =

∫
Ω

q dV (2.2)

and by using the divergence theorem this simplifies to∫
Ω

[
∂(ρφ)

∂t
+∇ · (ρφ~u)− q

]
dV = 0. (2.3)

Since this equation holds for every sufficiently smooth and bounded region Ω, the
integral content must necessarily be zero almost everywhere. The conservation of
fluid mass in porous rocks can then be succinctly stated by the relation

∂

∂t
(ρφ) +∇ · (ρ~v) = q, (2.4)

where ~v is the Darcy velocity, defined as ~v = ~u/φ. The term velocity is perhaps a
bit misleading as ~v is actually a weighted flux, where the division by φ is motivated
by the fact that fluid only flows through the pore space. The term fluid velocity
can instead be interpreted to mean the velocity at which a tracker would be carried
along with the flow.
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2.2.2 Darcy’s Law

The next step in developing the aquifer model is to find an expression for the Darcy
flow ~v. Given the name, it will likely not come as a surprise that it was the French
engineer Henry Darcy who first succeeded in doing so, based on his experimental
observations of water flowing through sand. Today, it is usually stated on the form

~v =
k

µ
(∇p− ρg∇z), (2.5)

where k denotes the rock permeability, µ the viscosity of the fluid and p pressure.
If the rock is anisotropic, k will be a tensor. Pressure can be applied in three
directions, resulting in a three dimensional permeability, and the tensor is therefore
realized using a 3× 3 matrix.

This relation can be interpreted as describing the forces that act on the fluid, and
how the result in fluid flux. The first term shows that fluid flux can be driven
by pressure differences across the aquifer, and the second that it can be driven
by gravitational forces acting on it. The flux is impeded by the k/µ term, which
accounts for ”friction” in the system, where friction is interpreted as the resistance
the fluid and rock put up against motion.

2.2.3 Two-Phase Flow in Porous Media

Two different fluids, namely brine and natural gas, reside in the Stenlille aquifer.
Since Darcy’s law only takes into account one fluid phase, a natural next step is
now to extend it to take into account two-phase flow.

Before stating the extended Darcy’s law, it is necessary to define some new con-
cepts. The first is the concept of saturation sα, defined to be the fraction of total
pore space occupied by fluid phase α. The second is that of relative permeability;
if pore space is already occupied by one fluid, it will inhibit the other fluid from
flowing through that pore space. This reduction is accounted for using the relative
permeability kr,α, which will naturally lie in the range between 0 and 1.

The multiphase version of Darcy’s law is now ready to be stated. It is given by
the relation

~vα = −kλα (∇pα − ρα~g), α = {n,w}, (2.6)

where λα is the phase mobility, defined as

λα =
kr,α
µα

, (2.7)
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and the subscripts n and w denote the non-wetting and wetting fluids respectively.

Next, we need to consider that capillary forces between the two fluid phases can
support non-zero stresses. This allows the two fluids to coexist at different pres-
sures. The difference in phase pressures is given by the capillary pressure, i.e.

pcap := pn − pw. (2.8)

Lastly, the saturations must of course add up to one, so we have the relation

sw + sg = 1. (2.9)

Now, using mass conservation given for each phase exactly as before, i.e.,

∂

∂t
(φραsα) +∇ · (ρα~vα) = 0, α = {n,w} (2.10)

we have a complete set of equations governing two-phase flow in porous media.

However, a quick inventory shows that the four equations (2.6),(2.8), (2.9) and
(2.10) have introduced a total of ten unknown variables. The final step will there-
fore be to introduce the relations necessary to close the system. This is commonly
done by choosing the saturations sα and phase pressures pα as the primary vari-
ables, and assuming that the capillary pressure pcap, densities ρα, viscosities µα
and relative permeability functions kr,α are all known functions of either one of
these.

More specifically, we will close the system by introducing the relations ρα = ρα(pα),
pcap = pcap(sw) and kr,α = kr,α(sα). A short discussion of each of these is now in its
place, as they touch on several important concepts that we have not yet discussed.

The first relation is simply a statement of fluid compressibility, where only density
changes due to pressure have been taken into account, and the effect of tempera-
ture ignored. In many cases where the density changes are relatively small, it is
sufficient to use the fluid compressibility factor

cf =
1

ρ

dρ

dp
, (2.11)

which may easily be obtained from laboratory experiments.

The rock volume similarly tends to vary with pressure, which motivates the use of
an analogous rock compressibility factor

cr =
1

φ

dφ

dp
. (2.12)
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(a) An idealized example of realtive per-
meability curves, using a Corey correla-
tion with power 1, where the residual sat-
uration of both fluids has been assumed
to equal zero.

(b) Relative permeability curves from a
more realistic scenario where residual sat-
uration is taken into account. The thick
and dotted curves apply to drainage and
imbibition scenarios respectively.

Figure 2.1: Relative permeability curves, for an idealized case and for a more
realistic case.

The equations (2.11) and (2.12) can easily be solved to yield the relations

ρ(p) = ρ0e
cf (p−pref) (2.13)

Vpore(p) = V0e
cr(p−pref) (2.14)

where pref is a reference pressure the compressibility factor is determined for, and
V0 and ρ0 are the volume and density values at the same reference pressure.

The relation kr,α = kr,α(sα) is commonly determined using a relative permeability
curve for the fluid. These curves can be obtained from analytic expressions, or
extrapolated from the results of laboratory measurement on core samples from the
aquifer. Most analytic expressions have similarly been constructed using simplified
models obtained from experimental data.

Figure 2.1a shows a typical example of a curve obtained from the first method,
using the simplest form of the Corey correlation, which is a power law in the water
saturation. Figure 2.1b shows a more realistic example that has been constructed
using core samples from Stenlille. By comparing the two, we can observe several
interesting discrepancies between them, both in the shape of each curve, and in
their endpoints. To understand why the endpoints of an idealized curve an a
realistic curve can differ, we need first to define the concept of residual saturation.
If one were to observe gas being injected into an aquifer at pore-scale, one would
observe gas intruding into pore networks and displacing parts of the resident brine.
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At a certain saturation, the residual water will exist as small immobile droplets
trapped in the rock. This leads to the concept of a residual saturation, which is
defined as the highest saturation value at which the fluid is immobile.

Figure 2.1a uses a Corey correlation where the residual saturation of each fluid is
assumed zero, which is why the relative permeability start or end in either (0,1)
or (1,0). We can easily use the endpoints in Figure 2.1b to note the residual
saturations for this case, but first we should explain why this figure contains two
sets of curves, one dotted and one thick.

The thick curves are for the case of imbibition, where the wetting fluid displaces
the non-wetting fluid. The opposite case, that of drainage, takes place when
the wetting fluid is being displaced by the non-wetting fluid. The two cases are
governed by different relationships between saturation and relative permeability,
where the difference is caused by the different affinity that each fluid has for the
rock.

Now that we have a clear understanding what case each of the curves in Figure
2.1b represents, we can note the residual saturations for each case. In case of
imbibition, we see that wetting phase has a residual of 0.25, and the non-wetting
phase a residual saturation of 1-0.7=0.3. In the case of drainage, the same values
are given by 0.25 and 0 respectively.

The last closing relation, pcap = pcap(sw), gives the relationship between the cap-
illary pressure and saturation. Due to surface tension, there will generally be a
pressure difference between two fluid phases in contact with each other. The exact
relation is specified similarly as to that of relative permeability, this time using
capillary pressure curves.

2.2.4 The Black Oil Model

The standard model used by the petroleum industry for oil and gas simulations is
called the black-oil model. In essence, it describes conservation laws for a three-
phase, multicomponent system, where dissolution of gas into oil is also taken into
consideration. The model is given by the equations

∂t(φbαρ
s
αsα) +∇ · (bαρsα ~vα) = qα, α = {o, w} (2.15)

∂t(φ(bgSg − borsoSo)) +∇ · (bg ~vg + borso ~vo)− (bgqg + borso)qo = qo, (2.16)

where the subscript o refers to the oleic phase, g to the gas phase and w to
the water phase. The density variable ρ(p) used in (2.10) has been abandoned in
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favour of using a constant surface density ρs for each fluids along with an reciprocal
formation volume factor b = b(p). The inverse formation volume factor is simply
given by b = V s/V (p), and a table relating it with different pressure values can be
found easily with laboratory experiments.

The variable rso = V s
g /V

s
o relates the volume of gas dissolved into oil with the

volume of oil at surface conditions, and is used to take into account that gas can
dissolve into oil. For the case of natural gas stored in an aquifer, only the two
phases α = {g, w} will be needed, and the oleic phase ignored completely. The
equations then simplify to essentially the same set of transport equations as the
ones we have already introduced, i.e.,

∂t(φbwρ
s
wsw) +∇ · (ρw ~vw) = qw, (2.17)

∂t(φbgρ
s
gsg) +∇ · (ρn ~vg) = qg, (2.18)

except that the density variable has been exchanged in favor of a reference density
and the formation value factor.

2.2.5 Model Reformulations

This section is devoted to showing two manipulations of the set of equations (2.6)-
(2.9). Both of these rewrites are commonly referred to as the fractional flow
formulation in phase pressures, one for a simplified incompressible case, and one
for the more complicated compressible case.

The first rewrite will be useful for later discussions of the vertical equilibrium
model, where we will perform a similar rewrite and make use of the similarities
between the two. The second rewrite, for the compressible case, serves the purpose
of clarifying the nature of the system (2.6)-(2.9). The observations made will come
in handy in later discussions of the numerical solution, which will exploit the nature
of the system to develop faster solution methods.

Incompressible case:
One starts by defining total velocity ~v = ~vw+~vn, total source term q = qw+qn and
total mobility λ = λw + λn. Adding together (2.10) for α = {w, n} and assuming
incompressibility yields an elliptic Poisson-type equation

∇ · ~v = q, (2.19)

where the total velocity is given by

~v = −(λk)∇p+ λw∇pc + (λnρn + λwρw)~g∇z. (2.20)
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The time derivative vanished since the saturations of each phase add up to one,
and incompressibility implies that the fluid densities are constant.

Next, by using Darcy’s law for λn~vw−λw~vn and simplifying, we have the relation

λn~vw − λw~vn = λwλnk[∇pc + ∆ρg∇z], (2.21)

where ∆ρ = ρw − ρn. Solving for ~vw and inserting this back into (2.10) yields the
so-called saturation equation

φ
∂sw
∂t

+∇ · [fw(~v + λn∆ρg∇z + λnp
′
cap∇sw)] = qz, (2.22)

where fw is given by fw = λw/(λn + λw) and P ′cap = ∇(pcap/sw).

Compressible case: The first step is to expand the accumulation term in (2.10)
by using the chain rule, and then rewriting using the expression for fluid compress-
ibility (2.11), which yields

∂

∂t
(φραSα) = ραSα

∂φ

∂t
+ φSα

∂ρα
∂t

+ φρα
∂Sα
∂t

(2.23)

= ραSα
∂φ

∂t
+ φSα

dρα
dpα

∂pα
∂t

+ φρα
∂Sα
∂t

(2.24)

= ραSα
∂φ

∂t
+ φSαcα

∂ρα
∂t

+ φρα
∂Sα
∂t

. (2.25)

By inserting this into (2.10), then summing the equations for α = {n,w}, and
then simplifying, we get

∂φ

∂t
+ φcnSn

∂pn
∂t

+ φcwSw
∂pw
∂t

+
1

ρn
∇ · (ρn~vn) +

1

ρw
∇ · (ρw~vw) = qn + qw (2.26)

where some of the accumulation terms have disappeared or been simplified by
using the relation sn + sw = 1.

For aquifer simulations in general, including simulations of Stenlille, the capillary
pressure will be small compared to the reservoir pressure. The dubious reader
is invited to compare the capillary pressure shown in Figure 4.9 and the initial
conditions shown in Chapter 4.1.4 to see that this is in fact the case. When
examining the nature of the pressure equation, it is therefore natural to ignore
capillary forces and simply set p = pn = pw.

By using the chain rule ∇(ρα~vα) = ρα∇~vα + ~vα∇ρα, and the fact that the spatial
density variations will normally be small, we can make the additional assumption
that ∇ρ = 0. Equation (2.26) can then be simplified to

φc
∂p

∂t
+∇ · (Kλ∇p− ρ~g) = q (2.27)
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where λ is the total mobility λ = λw + λn, q is the total source term q = qw + qn,
ρ is the total density ρ = ρn + ρw, and the rock compressibility from (2.12) has
been used when defining the total compressibility c = (cr + cnSn + cwSw).

Furthermore, the spatial density variations will normally be small, in which case
we can set ∇ρα = 0. This then simplifies to

φc
∂p

∂t
−∇ · (K∇p) = q̂, (2.28)

q̂ is a combined source term that accounts for both volumetric source terms and
pressure variations with depth.

The equation (2.28) is parabolic. However, compressibility tends to decrease with
increasing pressure. At the conditions found in a typical aquifer, it will therefore
have a strong elliptic character.

2.3 A Vertical Equilibrium Model for Aquifer

Flow

Long simulation run-times are a common issue when working with aquifers, caused
by the large number of grid cells and time steps needed to resolve the effect of great
differences in spatial and temporal scales. The horizontal extent of a reservoir is
often somewhere in the 0.1-1 km2 range, while an aquifer can potentially extend
several kilometres in the same directions. The properties of the REVs however,
arise from considering physical processes that occur on a scale of micrometers.
The result of this duality is a challenging multiscale problem that requires both
clever upscaling methods and a large amount of grid cells in the discretization.

The assumption of vertical equilibrium (VE), i.e., no vertical flow makes it possible
to reduce the three-dimensional black-oil equations to a set of two-dimensional
equations, which drastically cuts simulation run times. The dimension reduction
is done by integrating the set of equations (2.10) and (2.6), and then using the
VE assumption to reformulate the governing equations into their two-dimensional
version. This type of model has been successfully used to model long-term storage
of CO2 in aquifers [19], for which the three-dimensional black-oil model is rendered
an intractable option by the large time-scales involved.

Stenlille has the potential to be a good candidate for a VE model, as the horizontal
scale of the aquifer is large compared to the vertical scale, and the density difference
between the two fluid phases is quite large. Due to the differences in the horizontal
and vertical scale, the vertical flows will in many cases be negligible compared
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to the horizontal flows, which motivates the simplifying assumption of vertical
equilibrium. The density of natural gas at 1500 m depth will be about 115 kg/m3,
which is small compared to the density of brine at around 1100 kg/m3. Buoyancy
forces will therefore rapidly cause natural gas and brine to separate into two layers,
separated by a thin transition zone. If the interface is thin enough, it can be
approximated well by a sharp interface between the two fluids.

2.3.1 Deriving the Vertically Integrated Model

Figure 2.2: The coordinate system used when setting up the vertical-equilibrium
formulation of the model. The interface between brine and CO2 is given by h(x, y).
The region between h(x, y) and hmax(x, y) contains residually trapped CO2, that
left behind when the CO2 plume travelled through it. Figure taken from [15].

The derivation given here will follow roughly the same steps as the derivation given
in [15].

Assume the spatial coordinates of an aquifer are known. The aquifer might be
tilted at an angle, so we define a coordinate system (x, y, z) that is aligned so that
the plane spanned by x and y is roughly tangential with the main flow direction.
The aquifer is described by a top surface Z(x, y), and the height in the z direction
given by H(x, y).



2.3. A VERTICAL EQUILIBRIUM MODEL FOR AQUIFER FLOW 15

We start by simply integrating (2.10) vertically, from the top to the bottom of
the aquifer, which yields the relation∫ Z+H

H

∂

∂t
(φbαsα)dz +

∫ Z+H

H

∇ · bα~vαdz =

∫ Z+H

H

qαdz. (2.29)

If φsα is sufficiently smooth, the time derivative and the integral on the left hand
side can be interchanged. The spatial derivatives require using Leibnitz’s rule,
which yields

∂

∂t

∫ Z+H

H

φbαsαdz +∇‖ ·
∫ Z+H

H

bα~vαdz = Υ, (2.30)

where the new source term Υ on the right hand side is given by

Υ =

∫ Z+H

H

qαdz. (2.31)

The ”parallel to” subscript signifies a reduction to the plane spanned by x and y,
so for example ∇‖ = ∂

∂x
~ex+

∂
∂y
~ey. Any terms multiplied by vz disappeared since

the vertical flow was assumed to be zero.

The next step is to utilize the VE and sharp interface assumption in computing
these integrals, in order to put them in a form that can be easily evaluated at each
time step. The compressibility term bα poses some difficulty, in that it significantly
complicates the computation of the integrals in (2.30).

For a full derivation of the VE equations with variable density, the reader is refer-
enced to [18]. This article examined the effect compressibility had on the results
CO2 storage simulations was examined, and concluded that it was small in most
cases. It further found that the semi-incompressible models, i.e., models where
only lateral variations in density are allowed, were sufficient to capture most of
the effects from compressibility. This is partly due to the small height of the a
typical CO2 plume, which makes the density differences over each column quite
small. Another factor is that temperature increases with depth below the earth
surface, and increasing temperature decreases density, thus offsetting some of den-
sity increase that is caused by an increase in pressure.

It is assumed that the same holds true for Stenlille, i.e. that a simplified semi-
incompressible model will capture the most prominent effects of compressibility.
This was justified by noting that the density differences in a column of gas in
Stenlille were in fact small, usually less than one percent. Furthermore, the effects
of temperature on the density of methane were found to be smaller thah the effect
on CO2.
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Using now the assumption of a sharp interface between natural gas and water, the
aquifer will be cleanly split into three sections as shown in Figure 2.2, given by:

• The natural gas plume between Z and Z + h, where the brine saturation is
equal to the residual brine saturation sw,r, the natural gas saturation is given
by 1− sw,r and the natural gas mobility is given by λn,e = λn(1− sw,r).

• The residual natural gas plume between Z + h and Z + hmax, where the
natural gas saturation is equal to the residual natural gas saturation sn,r,
the brine saturation is given by 1 − sn,r and the brine mobility is given by
λw,e = λn(1− sn,r). The natural gas mobility is of course equal to zero since
there are only residual drops left in this region.

• The region between Z + hmax and Z +H completely filled with brine.

Armed with this knowledge it is now possible to find an easily evaluable expression
for each term in Equation (2.30). Using the assumption of semi-incompressibility,
we will have bα = bα(x, y). The difference in porosity will similarly be ignored in
the vertical direction, so that φ = φ(x, y). For the first term it is then easy to see
that

∂

∂t
Φn =

∂

∂t

∫ Z+H

H

φbnsndz =
∂

∂t
φbn
[
h(1− sw,r) + (hmax − h)sn,r

]
, (2.32)

∂

∂t
Φw =

∂

∂t

∫ Z+H

H

φbwswdz =
∂

∂t
φbw
[
sw,rh+ (hmax − h)(1− sn,r) + (H − hmax) · 1

]
.

(2.33)

The vertical equilibrium assumption makes it possible to calculate the pressure at
any given point. If the pressure at the top surface Z(x1, x2) is denoted PZ , the
pressure will be given by

p(z) =

{
PZ + ρngz(z − Z), if Z ≤ z ≤ Z + h,
PZ + ρngzh+ ρwgz(z − Z − h), if Z + h ≤ z ≤ Z +H.

(2.34)

Vn and Vw are defined to be the vertically averaged Darcy velocities, i.e.

Vα =

∫ Z+H

H

~vαdz, α = {w, n}. (2.35)

Integrating Darcy’s law vertically yields∫ Z+H

H

~vαdz =

∫ Z+H

H

−kλα(∇p− ρα~g)dz, α = {w, n}. (2.36)
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In order to formulate Darcy’s law in two dimensions, the quantities

K =
1

H

∫ Z+H

H

k‖dz, (2.37)

Λn(h) =
1

H

[ ∫ Z+h

Z

λn,ek‖dz
]
K−1, (2.38)

Λw(h, hmax) =
1

H

[ ∫ Z+hmax

Z+h

λw,ek‖dz +

∫ Z+H

Z+hmax

λw(1)k‖dz
]
K−1, (2.39)

are defined. This yields expressions for the vertically integrated Darcy velocities
given by

~Vn = −HΛnK(∇‖(PZ − ρngzZ)− ρn~g‖), (2.40)

~Vw = −HΛwK(∇‖(PZ − ρwgzZ)− gz∆ρ∇‖h− ρw~g‖), (2.41)

where ∆ρ = ρw − ρn. If φ and K are constant in the z-direction, the upscaled
mobilities can be calculated as

Λn(h) = hλn,e, (2.42)

Λw(h, hmax) = (hmax − h)λw,e + (H − hmax)λw(1). (2.43)

The final upscaled equation is on the form

∂

∂t
Φα +∇‖ · Vα = Υα. (2.44)

2.3.2 Rewriting Into a Fractional Flow Formulation

Rewriting the VE model equations into the fractional flow formulation in phase
pressure will allow us to see some similarities they bear with the standard black-
oil model equations. To this end, first define the upscaled total Darcy flux ~V =
~Vn + ~Vw. Adding together (2.44) for α = n and α = w yields

∇‖ · ~V = Q, (2.45)

~V = −HΛK
[
∇‖Pz − (ρnFn + ρwFw)(~g‖ + gz∇‖Z)− Fwgz∆ρ∇‖h

]
, (2.46)
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where Λ(h, hmax) = Λw(h, hmax) + Λn(h) and Fα(h, hmax) = ΛαΛ−1. The time
derivative vanished since sn + sw = 1 always.

The transport equation is formed by using (2.44) again for α = n and manip-

ulating the second term to be a function of ~V . This yields

∂

∂t
Φ +∇‖ ·

[
Fn
~V + ∆ρKΛwFn(g‖ + gz∇‖(Z + h))

]
= Q, (2.47)

where
Φ(h) = φ(1− sw,r)h+ φ(1− sn,r)(hmax − h), (2.48)

Λn(h) = hλn,e, (2.49)

Λw(h, hmax) = (h− hmax)λw,e + (H − hmax)λw(1). (2.50)

This is often called the h-formulation of the model.

One can further derive the so called S-formulation by introducing the fractional
content S = h/H of gas in a column. S then serves the role of saturation. The
fractional content of gas in a column is given by

S(h, hmax) =
h(1− sw,r) + (hmax − h)sn,r

H
, (2.51)

Smax(hmax) =
hmax(1− sw,r)

H
. (2.52)

A simple inversion yields

h(S, Smax) = H
S(1− sw,r)− Smaxsn,r

(1− sw,r)(1− sw,r − sn,r)
, (2.53)

hmax =
HSmax

(1− sw,r)
. (2.54)

Finally, shifting the coordinate system so that Z = 0 lets one evaluate the integrals
describing the mobility, i.e.

Λn(S, Smax) =
1

H

[ ∫ h

0

λn,ek‖dz
]
K−1 =

h(S, Smax)

H
λn,e, (2.55)

Λw(S, Smax) =
1

H

[ ∫ hmax

h

λw,ek‖dz +

∫ hmax

H

λw(1)k‖dz
]
K−1, (2.56)

=
hmax(Smax)− h(S, Smax)

H
λw,e +

H − hmax(S, Smax)

H
λw(1). (2.57)
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The equations (2.45) and (2.47) are now formally similar to the standard flow
formulation as stated in (2.19) and (2.22) when S plays the role of saturation.
The only difference between them is the formulation of the mobility function and
capillary pressure function.



Chapter 3

Numerical Methods and
Implementation

The previous chapter we gave an introduction to aquifer flow modelling, and de-
veloped two different models for two-phase flow in porous media. With this con-
cluded, the question of finding a solution follows naturally - how can we best
solve the model equations numerically, and how should we implement the solution
method? This chapter is devoted to answering those questions.

The first section in this chapter will introduce the discretization of the model
equations, which uses a standard two point finite-volume approximation. The
next section then describes the Newton-Rhapson method used to solve the system
of discretized equations, and gives a short introduction to the concept of automatic
differentiation, which is used for the construction of the Jacobian of the system.
This is then followed by an introduction to well equations used to model the
relationship between well pressure and well rate. Finally, an overview is given of
the solution strategy used for solving the final system of linear equations.

The final section will then be spent introducing the MATLAB Reservoir Simu-
lation Toolbox (MRST) [2], which serves as the framework where the numerical
techniques and methods are implemented.

3.1 Discretization

The model equations will be discretized using finite-volume methods. In finite
volume methods, the partial differential equations are integrated, and any terms
containing a divergence operator are converted to surface integrals by use of the

20
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divergence theorem. This integration has the advantage of making the numerical
schemes conservative, in that the physical quantities are conserved over the cell
volumes. Furthermore, it shifts the focus to the cell averages of each quantity,
which removes most problems with discontinuity [14].

It will be convenient to start simple, in order to motivate and define some of the
central concepts, before stating the full discretization of the model equations.

In the case of a one-phase, incompressible fluid model, the model equations will
be given by

∇ · ~v = q, (3.1)

~v = −k∇p, (3.2)

which are assumed to hold on the domain Ω ⊂ Rd. We start by simply integrating
this equation over a cell i, and manipulating the left hand side using the divergence
theorem, which yields ∫

∂Ωi

~v · ~n ds =

∫
Ωi

qd~x. (3.3)

The left hand side can then be split up and evaluated on each edge of the cell
individually. Let us denote the flux across the face shared by the cells i and k, in
the direction from cell i to cell k, as vi,k. Using the midpoint rule, the flux across
this face can be approximated by

vi,k =

∫
Γik

~v · ~nds ≈ Ai,k~v(~xi,k) · ~ni,k, (3.4)

where Γik is the face between the two cells, ~xi,k this face’s centroid, ~ni,k its normal
vector and Ai,k its area.

This expression can be further evaluated using Darcy’s law, ~v = −k∇p. The next
step is now to express the gradient of p, by using a one-sided finite difference
between the pressure at the centroid of the cell and the pressure at the centroid
of the face. To do this, we make the simplifying assumption that the pressure is
linear in each cell. In this case, the average pressure will equal the pressure at the
centroid, and we will denote both by pi. Using the notation shown in the figure,
the flux vi,k is now given by

vi,k = Ai,kki
(pi − πi,k)~ci,k
|~ci,k|2

· ~ni,k = Ti,k(pi − πi,k), (3.5)

Here we have introduced the direction-specific transmissibility Ti,k. Next, we will
define the (direction-independent) transmissibility Tik, which is interpreted as the
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pi
pj

Ωi

Ωjπi,k

~ni,k~ci,k

Γi,k

Figure 3.1: An illustration of two cells used to define the TPFA of the Laplace
operator.

effective communication between to cells, and given as the harmonic average of
the direction-specific transmissibilities, i.e.,

Tik = [T−1
i,k + T−1

k,i ]−1. (3.6)

Using then that the fluxes across the face must be continous, so that ~vi,k = −~vk,i,
and that the face pressures must be equal, πi,k = πk,i = πik, we finally have

~vik = Tik(pi − pk). (3.7)

Inserting this back into (3.3), we get the two-point flux approximation (TPFA)
scheme ∑

k

Tik(pi − pk) = qi, ∀Ωi ⊂ Ω. (3.8)

Next, let us introduce the concepts of discrete flux and divergence operators. Writ-
ing a variable in bold font will now be used to denote values per cell or flux, and
a square bracket is used to evaluate it on a specific cell or face.

In this spirit, let v ∈ Rnf denote a discrete flux and v[f ] its restriction onto face
f with orientation from N1(f) to N2(f). The divergence operator, denoted div,
maps from faces to cells [16]. The divergence of a flux v from cell c is given by

div(v)[c] =
∑
f∈F (c)

v[f ] 1c=N1(f) −
∑
f∈F (c)

v[f ] 1c=N2(f), (3.9)

where 1expr is the indicator function.

The gradient operator, similarly denoted grad, maps from cell pairs to faces.
Restricted to one face f it is defined as

grad(p)[f ] = p[N2(f)]− p[N1(f)], (3.10)
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for any p ∈ Rn
c .

The value in introducing these operators becomes apparent when we can succinctly
rewrite the discretization (3.8) as

div(v) = q, (3.11)

v = −T grad(p). (3.12)

Furthermore, these operators are well suited for implementation in Matlab, as they
can each be represented as a sparse matrices. In the case of e.g. a variable vector
p with a value for each grid cell, its gradient can be found by multiplying p with
a matrix C. The matrix C will then be composed of ones and zeros, with a one in
row i and column k if the cells i and k share a face, and zero if they do not.

Moreover, the grad operator is in fact the negative adjoint of the divergence
operator, as ∫

Ω

p∇ · ~vdΩ = −
∫

Ω

~v · ∇pdΩ. (3.13)

The proof that this holds in a discrete setting is given in [14]. Following this
relation, the matrix C used to for the gradient operator will in fact be the transpose
of the divergence operator CT .

We are now ready to state the discretization of the black-oil model equations. Let
us first simply recall that they are given by

∂t(φbαsα) +∇ · (bα ~vα) = bαqα , α ∈ {n,w}, (3.14)

~vα = −kλα (∇pα − ρα~g) , α ∈ {n,w}. (3.15)

The discretization itself is constructed using the same method as the one described
for the single-phase, incompressible model. Using a first order implicit scheme,
each phase α ∈ {n,w} is discretized as

(φ (p[c]) b(p[c])s[c])n+1 − (φ(p[c]) b(p[c])s[c])n

∆t
+div (b(p[c]) v) [c]n+1−(bq) [c]n+1 = 0,

(3.16)
where

v[f ] = −upw (λ) [f ]T[f ] (grad (p− pnwc )[f ]− g avg (ρ) [f ]grad(z) [f ]) ,
(3.17)

λ = bkr/µ and pnwc = pw − pn is the capillary pressure between the gas and water
phase.
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Two new discrete operators were used here that have not yet been defined, namely
an averaging function and an upwind function. The first of these, avg(ρ)[f ], is
the face-valued density computed as an arithmetic average over the pressures in
the two adjacent cells. The second of them is upw, the upwind function, given by

upw(λ[f ] =

{
λ[N1(f)], if grad(p− powc )[f ]− g avg(ρ)[f ]grad(z)[f ]) > 0,

λ[N2(f)]), otherwise.

3.2 Newtons Method and Automatic Differenti-

ation

The system of equations made up by (3.16) and (3.17) will be highly non-linear,
for which Newton’s method is often the chosen solution method.

Newton’s method itself is fairly straight-forward. First, let the system of equations
to be solved at each time step be denoted G, so that we want to solve G(pi+1; pi) =
0. Newton’s method is then to iterate through

∂G(pi)

∂pi
δpi+1 = −G(pi+1), pi+1 ← pi + δpi+1, (3.18)

for i = 1, 2, 3, .., where J(pi) = ∂G(pi)/∂pi is the Jacobian matrix of G. The ∂pi+1

term is often referred to as the Newton update, as the new solution approximation
in each time step is constructed by adding the Newton update to the approximation
found in the previous time step. The iterations are stopped when the residual is
found to be sufficiently small.

The Jacobian has to be constructed based on each model, and will depend on both
the coupling of variables and the choice of linearizations, i.e. which quantities are
evaluated at step i and which are evaluated at step i + 1. Therefore, if a change
is made to either the model or the linearization, the Jacobian would have to be
recalculated. The process of deriving and implementing the Jacobian is often a
bottleneck in the simulation work flow, as it is both time-consuming and highly
prone to errors.

This is where the beauty of automatic differentiation enters the stage. In MRST,
automatic differentiation is implemented by the use of an ADI class that keeps
track of both a variable and its derivatives [16]. Whenever an operation is applied
to an ADI variable, the corresponding operation is applied to its derivative. For
example, if we denote by 〈f, fx〉 an ADI variable f and its derivative fx, addition
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and multiplication would be defined as

〈f, fx〉+ 〈g, gx〉 = 〈f + g, fx + gx〉 (3.19)

〈f, fx〉 ∗ 〈g, gx〉 = 〈gf, fgx + fxg〉 (3.20)

Operator overloading is used to implement this functionality. Whenever Matlab
encounters an expression on the form f+g, the correct operator is chosen according
to the type of f and g.

3.3 Well Equations

In real life, wells are normally controlled by specifying either a surface rate or a
bottom-hole pressure at which they should they be operating. Here, the bottom-
hole pressure is defined to be the pressure at the bottom-most perforation made
in the well, and a perforation is a hole made in the well casing, through which the
well can inject or produce fluid.

A straightforward way to model the well injection and extraction of fluids from
the aquifer would be to simply assign the desired well rates as a source term q in
the model equations. However, the matter is complicated by the fact that the size
of a typical grid cell will most often dwarf the size of the well itself. The localized
pressure differences around the wells will therefore not be picked up upon, in which
case it will be troublesome to assign the well pressure to equal the cell pressure,
or the other way around.

This problem is often solved by utilizing a well model, where Peaceman’s model is
the standard choice [19]. Let us for simplicity assume that only one fluid is flowing
in the immediate area around the well. Peaceman used Darcy’s law for radial flow
to model the source term

q =
2πhkb

µ

pc − pwell

ln(ro/rwell)
, (3.21)

where h is the formation thickness, pwell is the bottom-hole well pressure, rwell

is the wellbore radius and pc is the cell radius. The variable ro is defined to be
the radius at which the analytic steady state pressure p in the well is equal to
the pressure pc for the well cell. For anisotropic permeabilities, it is often defined
as [22]

ro =
(
√
Ky/Kx∆x

2 +
√
Ky/Kx∆y

2)
1
2

(Ky/Kx)
1
4 + (Ky/Kx)

1
4

. (3.22)
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If we now define the well index to be

Wi =
2πh

ln(ro/rw)
(3.23)

and extend the model to two-phase flow, we have following equation to model the
relationship between well pressure and well flow,

qα = Wiλα(pc,α − pwell). (3.24)

3.4 The Solver

Given an aquifer with two fluid phases and nwells wells, the final system of dis-
cretized equations will consist 2+3nwells equations, namely

• A water equation and a gas equation, given by (3.16),

• 2nwells equations that for the two phases set the well surface rate to the sum
of the perforation contributions,

• nwells well control equations that ensures that the well operates at the pre-
scribed rate,

where a well perforation is a hole punched in the casing of the well to connect it to
the reservoir. The primary variables are chosen to be the wetting phase pressure
ps, the wetting phase saturation sw, the well source terms for the wetting fluid
qWs, the well source terms for the non-wetting fluid qGs, and the bottom hole
pressures pbh.

Using the discretization outlined in Section 3.1, and Newtons method as proposed
in Section 3.2, this results in a linear system on the form

Ax = b (3.25)

that needs to be solved. The backslash operator in Matlab has been found to
provide satisfactory efficiency for small systems. For larger systems however, as the
one that arises when modeling Stenlille, a Constrained Pressure Residual (CPR)
preconditioned Generalized Minimal Residual (GMRES) method is more efficient
[16].

3.4.1 The GMRES Method

The GMRES method is an example of a Krylov subspace method, meaning that
it works by looking for solution approximations that are constricted to lie in the
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nth Krylov subspace of the problem. If we denote the nth Krylov subspace by Kn,
which is given by

Kn = span{b, Ab,A2, ..., An−1b}, (3.26)

we can more succinctly state that the GMRES method works by minimizing rn =
Axn − b when xn ∈ Kn.

There are several different Krylov subspace methods for solving linear equations,
the difference between them lying in the way that the basis for the approxima-
tion space is built and the preconditioners used when solving the system. The
vectors b, Ab,A2, ..., An−1b cannot be used as a basis, as they may not be linearly
independent.

The GMRES method uses an Arnoldi iteration to find such a basis q1, q2, ..., qn for
the nth Krylov subspace. The basic idea of the algorithm is that beginning with
an arbitrary vector v0, at each step the previous Arnoldi vector vj is multiplied
by A, before being orthonormalized against all prevous basis vectors vi’s using the
Gram-Schmidt procedure. For full details the reader is referred to [23].

After a basis has been found using Arnoldi iterations, we must have that any vector
in the space x0 + Kn can be written as x = x0 + Vmy, where the matrix Vm is
composed of the basis vectors vi. A matrix referred to as the Hessenberg matrix,
composed of certain variables from the Gram-Schmidt orthonormalization in each
step, has several interesting properties. Using these it is possible to show that this
y also minimizes the Euclidean norm of the residual

rn = H̃nyn − βe1, (3.27)

where β = ‖b−Ax0‖ and Hessenberg matrix H̃ is known from the Arnoldi iteration
[23]. This is a linear least squares problem, for which the solution method is well
known.

3.4.2 The CPR Preconditioner

Using a Constrained Pressure Residual (CPR) preconditioner improves the effi-
ciency and stability of the iterative solution method described above [16]. By
definition, a preconditioner P of a matrix A has the quality that P−1A has a
smaller condition number than A. In other words, P−1A is less sensitive to small
variations in the input variable. This improves both stability and convergence rate,
as convergence rate tends to increase as the condition number of A decreases.

The CPR preconditioner is a two-step preconditioning method. The first step is
to extract a pressure equation from the implicit matrix, which is then iteratively
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solved for the pressure correction. This pressure correction is then used to form a
new residual. The next step is to apply an inexpensive implicit preconditioner to
this residual. Finally, the sum of the two steps is used as the approximate solution.

In more detail, the CPR method implemented in MRST follows the following
steps [10]:

1. Eliminate well rate and bottom hole-hole pressure variables. This results in
a system Jx = b, where the Jacobian J consists of a large 2 x 2 block system
and x consists of the two primary variables, i.e. x = (p, sw).

2. Set the first block-row in the system equal to the sum of the two block-rows,
i.e., J(1,m) =

∑
n J(n,m). J(1, 1) will then resemble the pressure equation

(2.26), which we have seen is close to elliptic. Any equations that harm
desired diagonal dominance in J(1, 1) are left out.

3. A two-stage pre-conditioner M−1
2 M−1

1 is then set up.

(a) M−1
1 is set up to solve the near elliptic subsystem J(1, 1)δpi+1 = −rip to

obtain the pressure update δpi+1. For large systems an algebraic multi-grid
solver is preferable.

(b) M−1
2 is based on an incomplete LU-decomposition LU ≈ J of the full

system, and is set up to perform a variable update δxi+1 on the full set of
variables by solving LUδxi+1 = −rix.

4. Solve the full system with GMRES using M−1
2 M−1

1 as a pre-conditioner.

5. Recover rate and bottom-hole pressure variables.

Some terms were used here that deserve further explanation. Multigrid methods
are useful in solving elliptic PDEs, by using a hierarchy of different discretizations.
The main idea of is that the convergence of the basic iterative method can be
improved by a global correction of the fine grid solution, which is found by solving
the coarser grid. The iterative method for solving on the coarser grid can be
similarly obtained by using a global correction, that is again found from a coarser
grid. This recursive process is repeated until the cost of direct solution on the
coarsest grid is negligible compared to doing another relaxation sweep.

For algebraic multigrid methods, the hierarchy of discretizations is found solely
from the system matrix [17]. It therefore does not need any information about the
system of the geometrical problem, which makes it highly useful as a black-box
solver for certain classes of sparse matrices. Furthermore, for an aggregation-
based algebraic multigrid method, the coarsening is obtained by aggregation of the
unknowns [20].
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3.5 The MATLAB Reservoir Simulation Tool-

box

The MATLAB Reservoir Simulation Toolbox (MRST) is an open source toolbox
developed by SINTEF Applied Mathematics. The motivation behind its creation
was to enable rapid prototyping and testing of new methods in reservoir simula-
tion. It contains routines for grid processing, rock and fluid modeling, numerical
discretization, solvers and visualization.

MRST consists of two main parts parts; a core that offers basic functionality and
a set of add-on modules. The MRST core uses a set of common components,
implemented using simple structs, that together define a full model:

• Grid : Defines the cells, faces and nodes in the grid. The struct also contains
reference mappings between a cell and its faces, a cells neighbours, face
normals, cell volumes and so on.

• Rock : Defines the rock porosity and permeability in each cell.

• Fluid : Contains the fluid properties, such as relative permeability, density,
viscosity and compressibility.

• Boundary conditions : Contains the types (rates/pressure), values and cells
each boundary condition applies to.

• Sources : The location and value of a source.

• Wells : Defines the physical properties of a well and also its control, i.e. the
prescribed rate or bottom hole pressure that controls injection and produc-
tion at each time step.

• State(s): Contains the state variables, such as pressure, saturation and flux
values.

The basic structure of an MRST simulation script can be seen in Figure 3.2. The
grid, fluid struct and rock struct are passed into a function that creates the desired
model of the problem. Most models in MRST inherit the properties of a general
reservoir model, but define their own set of constitutive equations in order to
implement the desired model.

The sources, wells and boundary conditions are passed into a struct denoted as the
schedule. It is named so after the similar data structure in Eclipse, which contains
the ”schedule” by which the system should be operated. The schedule contains
the value of each time steps, along with information about which driving forces
are at work during each time step.
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FluidGrid Rock

Model

Solver

Initial State Schedule

Sources

Wells

Boundary
Conditions

States

Figure 3.2: The basic structure of an MRST simulation script. A red ellipse
indicates a simple struct, a green ellipse indicates a function, and a blue rectangle
indicates an instance of a class.

The reservoir model is complete when the initial state, model and schedule have
been fully specified. The next step of the simulation is to pass it on to a solver
function, which will pass back the results in the form of a states struct when it is
done

The solver is an example of functions that are normally not contained in the core,
but chosen from an appropriate module for the problem. MRST contains a number
of such modules, that add to or override functions and methods contained in the
core. Several modules were extensively used in this thesis, most notably:
• The ad-core module, which contains the framework for fully implicit simula-

tions using ADI
• The black-oil modules, that contain the necessary routines to create black-oil

models
• The deckformat module, used to transfer Eclipse models into the MRST

framework, see 3.5.1
• The co2lab module that supports the use of VE models, see 3.5.2.
• AD core module [10], short for automatic differentiation, ensures that no

analytical derivatives have to be calculated or programmed explicitly, see
3.2
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• The AGMG module used to increase the speed of the linear solver, using the
method explained in 3.4

3.5.1 Integration of Eclipse Models

ECLIPSE constitutes the industry-standard simulator for oil and gas reservoirs,
developed by Schlumberger and in wide use across the petroleum industry. En-
erginet.dk have developed an extensive ECLIPSE model of Stenlille, which has
been used with relative success to predict pressure distribution in the aquifer.
Since their model will form the basis for the model used in this thesis, an intro-
duction to ECLIPSE input files will be useful here for later reference.

A reservoir model is constructed by setting up the ECLIPSE data file, which
comprises of the following seven sections [25]

• Runspec: Contains specifications for the simulation, such as the name of
the reservoir, the dates for which the simulation is run, which phases are
involved, the dimensions of the grid and so forth.

• Grid : Contains information about the grid and petrophysics, e.g. the poros-
ity and permeability.

• Props : The properties of the rock and fluids, e.g. relative permeabilities,
density and compressibility.

• Regions : Defines regions of the grid, for example so that different rel.perm.
curves can be applied in different regions.

• Solution: Defines initial conditions under the assumption of vertical equilib-
rium.

• Summary : What results should be output after running a simulation.

• Schedule: Defines how and when the different wells should inject, produce
or observe.

The deckformat module contains routines for transferring an ECLIPSE model into
the MRST framework.

3.5.2 The co2lab module

The co2lab module [4] contains the functions and routines necessary to perform a
VE simulation in MRST.
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Grid

Rock

2D Grid

2D rock

VE Fluid
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topSurfaceGrid()
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Figure 3.3: The basic structure used when converting a traditional black-oil model
into a VE model.

The basic routine used for constructing a VE model is shown in Figure 3.3.
First, the function topSurfaceGrid() in this module is used to construct the two-
dimensional version of the grid that is utilized in the VE model. This new grid
describes the top surface Z(x, y) as shown in Figure 2.2, and also stores information
about the height H of each column in the three-dimensional grid.

The function averageRock() is then used to construct the two-dimensional version
of the rock model, by simply found by taking averages of the rock properties in
each column. Finally, the VE fluid can be constructed using one of the models
implemented in the module, and a full VE model in MRST constructed.



Chapter 4

Description of the Stenlille Model

Recall our discussion of aquifer flow modelling in Chapter 2, where we derived
two sets of model equations for two-phase flow in porous media. In Chapter 3 we
then outlined specific numerical methods capable of solving these equations, and
introduced the MRST framework in which both model and methods will be imple-
mented. With these two chapters to build on, we are ready to give a description
of the model of Stenlille that will be used in later simulations.

The simulations performed for this thesis used MRST, while earlier simulations
were run primarily using ECLIPSE. Substantial work has gone into developing the
ECLIPSE model of Stenlille, where we now understand the term ECLIPSE model
to mean the specific grid, rock properties, fluid properties and well models that
have been created for the Stenlille aquifer. The MRST model will be constructed
by transferring each of these elements into the MRST framework.

The MRST model will be constructed so as to mimic the ECLIPSE model as
closely as possible. This was highly useful for the process of debugging and under-
standing the limitations of the MRST model. When the two models were similarly
constructed, their simulation results should also be similar, and the two can be
compared to validate the implementation of the MRST model.

The first section of this chapter is devoted to describing the three-dimensional
model that will be utilized for black-oil simulations. This section is further split
into five subsections, that each correspond with one of the basic structures of
an MRST model, as they were shown in Figure 3.2. The second section will
then describe the results of transforming this model into its two-dimensional VE
counterpart.

33
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4.1 The Three-Dimensional Model

4.1.1 Grid and Boundary Conditions

Before introducing the grid and boundary conditions we will use for the Stenlille
model, we should first understand the situation we are aiming to model. It will
therefore be useful to give some general remarks on the structure of the Stenlille
aquifer.

Figure 4.1 shows a schematic cross section view of the different layers the aquifer
is made up of. Impermeable or semi-impermeable layers of silt and clay split the
aquifer into six different storage zones, of which Zone 5 has the largest storage
potential. The simulations in this thesis have for this reason been chosen to focus
on this storage zone.

Zone 5 is separated from the zone above by an impermeable layer of clay, capable
of acting as a caprock the prevents the gas plume from escaping. This layer is also
thought to separate Zone 5 hydraulically from the zones above. Conversely, the
layer that separates Zone 5 from the storage zone beneath it is understood to be
semi-permeable, and is thought to allow hydraulic contact between Zones 5 and 6.

Figure 4.2 shows the grid used in ECLIPSE simulations, that will also be utilized
in MRST. Storage zone 6 is included in the grid since it is hydraulic contact with
zone 5, and they are indicated using blue and red cells respectively. The cells
belonging to the layer that separates them are indicated in green.

Although it is impossible to see from the figure, the three regions of the grid are
separated by a small but non-zero distance that disconnects them from each other.
Hydraulic connectivity is instead taken into account in the ECLIPSE model by
the inclusion of aquifer connections.

An aquifer connection in ECLIPSE connects selected cells in the grid with analytic
aquifers, which are used to model the complex pressure changes that occur along
the boundaries of the grid. The areas right above and below the grid are made
up of semi- or impermeable layers, so it makes sense to have no-flow boundary
conditions on the top and bottom boundary faces. The boundaries faces on the
east, west, north and south side, however, are in contact with the rest of the
aquifer. When gas is produced, the pressure in the gridded portion will sink,
driving an influx of water into it from the rest of the aquifer. Conversely, when
gas is injected, the increase in pressure will drive the water back out. This is the
effect that is modelled by using analytic aquifer connections along the boundary.
In the case of Stenlille, the aquifer connections also connect storage zones 5 and 6
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Figure 4.1: A schematic cross section view of the different layers of the Stenlille
aquifer. Layer 5 has the largest storage potential and will therefore be the object
of study in this thesis. It is sealed from the layer above it by an impermeable
layer of clay. However, the layer of clay that separated it from the zone below
is semi-permeable, which allows for hydraulic contact between the two. Figure
from [12].
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Figure 4.2: The grid used in black-oil simulations of Stenlille. Storage zones 5 and
6 are indicated in red and blue respectively, and the layer that separates them is
indicated in green.

hydraulically.

The ECLIPSE model of Stenlille connects the cells along the east, west, south and
west boundary of the grid with Carter-Tracy aquifers. The Carter-Tracy model
expresses the pressure drop at the aquifer boundary as

pa − p̄ =
Qa

β
PID(tD), (4.1)

where Qa is the aquifer inflow rate, p̄ is the average water pressure on the aquifer
boundary, β is an aquifer influx constant, PID(tD) is interpolated from a table,
and tD is given by tD = t/Tc, where Tc is a time constant [26]. The time and
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aquifer influx constants are more specifically given by

Tc =
µwφact,ar

2
o,a

kac1

, (4.2)

β = c2haθctr
2
o, (4.3)

where ka is permeability of the analytic aquifer, φa is its porosity, ro,a is its inner
radius, ha is its height, ct,a its total compressibility, and c1 and c2 are constants.
The average inflow rate from the analytic aquifer to a specific grid block i over the
time interval (t, t+ ∆t) is further given by

Q̄ai = αi (a− b(pi(t+ ∆t)− pi)) (4.4)

where αi is the area fraction for each connection and the variables a and b are
given by

a =
1

Tc

β∆pai −Wα(t)PI′D(t+ ∆t)D
PID(t+ ∆t)D − tDPI′D(t+ ∆t)D)

, (4.5)

b =
β

Tc(PID(t+ ∆t)D − tDPI′D(t+ ∆t)D)
. (4.6)

Here, ∆pai is the pressure drop pa0 + ρg(di− da)− pi(t), where di is the grid block
depth, and da is the datum depth of the aquifer.

MRST does not currently support the addition of analytic aquifers to the model, so
some changes were made to the grid in an attempt to imitate the effects they will
have on simulations. The volume and rock porosity of the cells shown in yellow in
Figure 4.3 were multiplied by a factor of a 1000, allowing them to provide pressure
and flow support to the rest of the grid. Additionally, they were defined to be
neighbours of the cells indicated in blue, so that the two zones were in hydraulic
contact with each other.

Examining the grid in Figure 4.3 again, it is possible to see darker columns towards
the top. These are caused by the local grid refinements made around each well in
the model, which make the cells so small that the area appears black when viewing
the grid as a whole.

The refinements are seen more clearly in the closeup in Figure 4.10. They were
added to increase the resolution of the solution in the area around each well. Each
local grid refinement was constructed using a column of 11 cells, that included the
well cells themselves, as host cells. The cells in this column were then refined,
with a refinement factor of 11 in the horizontal directions, and 2 in the vertical
direction.
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Figure 4.3: The grid used in MRST simulations. The cells indicated in yellow
have had their volume blown up 10.000 times, in an effort to imitate the effect
from the analytic aquifers used in ECLIPSE simulations. They have also been
defined to neighbour the cells shown in blue, with the purpose of enabling hydraulic
connectivity between storage zones 5 and 6.
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Figure 4.4: A closeup view of the local grid refinements made around each well.
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4.1.2 Rock Properties

The process of transferring the rock model from ECLIPSE to MRST was straight-
forward; the porosity and permeability value for each cell in the MRST grid were
simply assigned the corresponding vlaue in ECLIPSE.

Two scatter-plots, showing the porosity and permeability values for all cells in
the grid, can be seen in Figure 4.5. The plots are color coded, using the same
color convention as in Figure 4.2. The average value porosity or permeability for
each layer is also indicated with a triangle on the right-hand side axis. Figure 4.5b
shows the values for the horizontal permeabilities. The vertical permeabilities have
been set to equal 10% of the horizontal permeability.

From Figure 4.5a we can see that the the cells in the grid typically have porosity
values ranging between 0.15 and 0.3, with no major distinctions between each
zone. From Figure 4.5b however it is clear that the permeability values differ
greatly from zone to zone, with the semi-impermeable layer between them having
the lowest values, which is as expected.

Rock compressibility was also included in the model, by using Equation (2.14)
with a reference pressure given by pref = 158 bars and a rock compressibility given
by cr = 10−14.



4.1. THE THREE-DIMENSIONAL MODEL 41

(a) A scatterplot of the porosity value in each cell.

(b) A scatterplot of the permeability values kx values in each cell.

Figure 4.5: Scatter-plots showing the porosity and permeability for each cell in the
grid. The values indicated in red and blue belong to Zones 5 and 6 respectively,
and the values indicated in green belong to the semi-impermeable layer between
them. The average porosity and permeability values for each are indicated, by the
use of triangles on the right-hand axis. The horizontal permeabilities were set to
equal each other in the model, so that ky = kx The vertical permeability was set
to equal 10% of the horizontal permeability, to give a better model fit.
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Table 4.1: The fluid properties used in the Stenlille model. Some properties are
assigned using analytic functions, others are assigned by tabulating from a table.
If the latter is the case, the entry for that property contains a reference to a figure
showing a plot of the table data.

Brine Natural gas
Density ρw(pw) = ρw,s + [1 + cw(p− pref)] ρn(pn) = b(pn)ρn,s,

ρn,s = 0.7681 kg/mm3 ρw,s = 1116 kg/m3

cw = 1.92 · 10−5 b(pn) tab. from Figure 4.6
pref = 155.1 bars

Viscosity µw = µw,ref + cv(p− pref) Tab. from Figure 4.7
cv = 1.87 · 10−5

pref = 155.1 bars

Rel. permeability Tab. from Figure 4.8a Tab. from Figure 4.8b

Cap. pressure Tab. from Figure 4.9 Tab. from Figure 4.9

4.1.3 Fluid Properties

The fluid properties were taken directly from the ECLIPSE model with no alter-
ations. The ECLIPSE model utilizes PVT functions for the fluid properties, i.e.,
functions that are assumed to depend solely on the pressure, temperature and vol-
ume of the fluid. Assuming further that the temperature in the aquifer is constant,
and that volume can be modelled as a function of pressure, this reduces to the
assumption stated in Section 2 that all fluid properties depend solely on pressure
(or equivalently on saturation).

The fluid properties are summarized in Table 4.1. Some properties are modelled
using an analytic function, and the function constants are then given in the table
as well. If this is not the case, the table entry contains instead a reference to a
figure showing the values for which it was tabulated from.

Examining this table, it is clear that water properties are calculated using analytic
expressions more often than gas properties are. This is easily explained by noting
that water is nearly incompressible, which implies that the water volume does not
change much with pressure. In this case, many properties can be more accurately
modelled using a constant rate of change.

Figure 4.8 shows the relative permeability curves for water and gas. Two different
curves are given for each fluid phase, where one applies in cases of imbibition,
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Figure 4.6: A plot of the entries in the tabulation table used to calculate the
inverse formation volume factor bg for gas as a function of phase pressure pn.

Figure 4.7: A plot of the entries in the tabulation table used to calculate the
viscosity of natural gas µn as a function of phase pressure pn.

while the other applies in the case of drainage.
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(a) A plot of the relative permeability
curve for water, kr,w in Stenlille

(b) A plot of the relative permeability
curve for gas, kr,n in Stenlille

Figure 4.8: Plots showing the relative permeability curves for water and curves.
The curves applying in the case of imbibition are shown in red, and the curves
applying to the case of drainage is indicated in blue.
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Figure 4.9: A plot of the capillary pressure function pcap, as a function of gas
saturation sn.

4.1.4 Initial Conditions

For the ECLIPSE simulations, initial conditions were set based on the results of
a prior simulation covering the time span from the very beginning of gas injection
into Stenlille, up to the start date of the simulation. These results were not
available from the summary file, and could therefore not be used in the MRST
simulations.

Instead, it was assumed that the initial conditions were static, so that the flux is
zero in all cells. In this case, Darcy’s law simplifies to

dpα
dz

= ρα(pα)g, (4.7)

for each phase α = {n,w}. The solution section of the ECLIPSE data file con-
tained information on appropriate initial conditions for this case; the reference was
assumed to be pref = 158.795 bar at a reference depth zref = 1500 meters, and the
gas-water contact located at 1510.95 m below the surface.

Since the reference depth is above the gas-water contact, this equation should be
first solved for all cells containing gas. This is easily done using an ODE solver
in Matlab. Thereafter, assuming water to be incompressible, the pressure can be
easily evaluated for cells containing water, by the relation

pw = ρwg(z − zref) + pref . (4.8)
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4.1.5 Wells

While Figure 4.4 gave a sneak peek of the wells used in the Stenlille model, we
will now take a moment to discuss them in in more detail.

Figure 4.10 shows an overview of the wells that extend down into storage zone
5, with the observation wells indicated in blue, and injection/production wells
indicated in red. All wells have a tube diameter equaling 0.216 m. The three
observation wells have a reference depth of 1610 m, while the injection/production
wells have their reference depth set as the height of the bottom-most perforation
in the well. The location of the cells that contain a well perforation can be seen
more clearly in Figure 4.10, where they are indicated by the use of a thicker line
on the well illustration.

Figure 4.10: An overview of the wells that extend down into storage zone 5.
Injection/production wells and observation wells are indicated in read and blue
respectively.
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Figure 4.11: The top-surface grid used in the VE model.

4.2 The Two-Dimensional Model

The purpose of this section is to show the results of transforming the three-
dimensional model of Stenlille into its two-dimensional counterpart, which will
be employed when running VE simulations.

First, the three-dimensional grid has to be transformed into a two-dimensional
grid suitable for the VE model. This is done by constructing a top-surface grid
z(x, y) that describes the caprock surface, and also contains information about the
vertical height of each column. The results of doing this for the Stenlille grid can
be seen in Figure 4.11. The figure shows a three-dimensional plot of the Stenlille
top-surface grid, along with an indication of the column height H of each cell. It
was necessary to remove the local grid refinements before constructing the top-
surface grid, as the topSurfaceGrid() function assumes a regular cartesian grid as
input.

The two-dimensional rock structure was constructed by simply taking a harmonic
average the rock properties in each column of the original grid. The vertically av-
eraged porosity this resulted in is shown in Figure 4.12, and the vertically averaged
permeability is shown in Figure 4.13. The cells that appear bright yellow in the
porosity figure have been chosen as aquifer support cells, and had their porosity
multiplied by a factor of a 1000.

The initial pressure was set similarly as in the three-dimensional model, using
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Figure 4.12: The vertically averaged porosity. The cells appearing in bright yellow
have had their original porosity value multiplied by a factor of 1000, in order
to imitate the pressure- and flowsupport from the analytic aquifers used in the
ECLIPSE model.

the tactic explained in Chapter 4.1.4. The only alteration made was in the in-
tepretation of z in Equations (4.7) and (4.8), which was now intepreted to be the
depth z(x, y) of cells in the top-surface grid, instead of the vertical coordinate of
the cell centroid. The reference pressure was also increased slightly, to a value of
pref = 160.9 bar at zref=1500 m.

The construction of initial saturation values needed more thought. In the case
of no residually trapped water or gas, the saturation terms in the VE model are
simply interpreted to be the the fractional height of the gas or water column.
More specifically, the gas saturation will then be given by sn = h/H, and the
water saturation will be given by sw = (H − h)/H. The initial saturations used
in the three-dimensional model, however, accounted for residual water trapped in
the gas column. In this case, the saturations will be given by

sn =
h

H
sn,r, (4.9)

sw =
1− h
H

+
h

H
(1− sn,r). (4.10)

The initial saturations could then be computed, using the same location of the
gas-water interface as before.
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Figure 4.13: The vertically averaged permeability. The darker blue rectangles
were caused by changes made to the permeability values in the original ECLIPSE
model, made with the intent of improving the history-matching capabilities of the
model. These changes made the vertically averaged permeability appear peculiar
when plotted, but was not found to be problematic.

The state struct used in VE simulations also contains a variable denoted sn,max,
which was not needed in the black-oil model. This variable stores the maximal gas
saturation ever experienced by each cells, and is used to model hysteresis. If the
gas saturation value in a cell is smaller than the historical maximum sn,max, the
difference is assumed to be residually trapped. For the VE model, it was initially
set to equal sn,max = sn,init.

Next, the VE fluid model of Stenlille needs to be constructed. Recall the observa-
tion made in Chapter 2.3.2, where we saw that the fractional flow formulation in
phase pressure of the VE model was formally similar to the same reformulation of
the three-dimensional black-oil model, given by (2.45) and (2.47). The difference
between the two lay in the formulations of the mobility and capillary pressure; the
VE model used the upscaled versions of the mobility term, given by (2.57), and a
modified capillary pressure term.

The VE fluid model for Stenlille can therefore use the same gas inverse formation
volume factors bn(p), the same compressibility of water cw and the same viscosities
µn(p) and µw(p) as the ones for the black-oil fluid model, as they were summa-
rized in Table 4.1. Then, the VE fluid model was simplified to assume no capillary
pressure, so that the modified capillary pressure term found in Equation (2.47)
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could be used directly. The relative permeability curves were also simplified. The
residual saturation was assumed to be the same as before, but the relative perme-
ability curve of each fluid was assumed linear for the saturation values where the
fluid is mobile.

Lastly, the well models had to be adapted to fit the VE grid, a process that was
largely straightforward. Each well was placed in the correct cell in the top-surface
grid, more specifically the cell which in its column contained the cells where the
three-dimensional well was placed. The radius was kept the same, but the well
indexes found for the three-dimensional well were summed together, to account
for the effect of each perforation.



Chapter 5

Simulation Results

Recall our derivation of two different sets of constitutive equations to model aquifer
flow in porous media, which was followed by an introduction to a numerical strat-
egy capable of solving them. With this mathematical background to build upon,
we then introduced the Stenlille implementation of these models specifically. At
this point, the stage is finally set to show and discuss the simulation results ob-
tained from utilizing these two models.

We will examine the results of three different simulations, each run over the same
simulation scenario. The first simulation will use the three-dimensional black-oil
model we described in Chapter 2.2.4, and the second and third will use its two-
dimensional VE counterpart, as we derived it in Chapter 2.3.1. The results will be
analyzed by comparing them with either historical data, other simulation results,
or a combination of the two.

The Simulation Scenario:
The simulations will be run covering the time period 01.09.11-01.06.12, with the
goal of successfully simulating the fluid flow caused by injection and production
of gas in this time period.

The wells in Stenlille are rate-driven, meaning that they are controlled by speci-
fying rates at which they should inject or produce gas. It was therefore natural to
use rate-controlled well schedules in the simulation as well, so that the well rates
were treated as a given at each time step. The well schedule rates were set using
historical data, and are plotted individually for the time period 31.07.11-01.06.12
in Figure C.1 in Appendix C.1.

The simulation start date of 01.09.11 was not set arbitrarily. Recall our discussion
of initial conditions in Chapter 4.1.4, where discussed how the simulations would
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Figure 5.1: The total injection/production rate for Stenlille in the time period
31. July 2011 to 30. June 2012. Positive rates are interpreted as injection and
negative rate interpreted as production.

need to be initialized using the assumption of a static starting state. Figure 5.1
shows the total injection and production rate of gas in Stenlille, over the time
period 31.07.11-01.06.12., indicated in blue. The figure also shows the total volume
of gas residing in the aquifer, this time indicated in red. From the figure it is clear
that no gas was injected or produced in the time 31.07.11-30.08.11, allowing the
aquifer to settle into a state close to no-flow at 01.09.11.

Validation Methods:
We will use comparisons of well pressures and water production rates as the pri-
mary way to judge the success of each model, along with observations of how the
gas-water interface moves over the course of each simulation.

The comparison of well pressures is motivated by the fact that the wells in Stenlille
are rate-driven, and that the prescribed flow rates are obtained by introducing
pressure changes in each well. The specific magnitude of these pressure changes
will depend on both the well model and the aquifer model as a whole. Comparing
simulation well pressures, against both historical values and values obtained from
other simulations, will therefore be a powerful tool in judging the validity of each
model.

For Simulation A, we will primarily compare the results with those from a similar
ECLIPSE simulation. As they both utilize the black-oil model, the results will are
expected to correlate well, but not perfectly as some aspects of the MRST model
have been changed compared to the ECLIPSE model of Stenlille. To further judge
to what degree these simplifications pose a problem for simulations of Stenlille, it
will be useful to compare them against historical values.
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Unfortunately, the comparison of well pressure results from MRST simulations
against their historical counterpart is not a straightforward process. The wells in
Stenlille record values for the Tubing Head Pressure (THP), defined as the pressure
measured at the tubing head, which is located at the surface end of the well. In
the context of simulation it is more natural to be concerned with the Bottom-Hole
Pressure (BHP), defined as the pressure measured at the bottom-most perforation
made in the well. Since these measurements are much less accessible, they are in
practice often not measured at all. In Stenlille, the observation wells ST 10-5 and
ST 15-5 are the only wells that record its value.

The lack of BHP measurements is a common issue in reservoir engineering, and
is dealt with in ECLIPSE by employing Vertical Flow Performance (VFP) tables
to convert between it and the THP. However, MRST does not currently support
the use of VFP tables. Before presenting the simulation results, we will therefore
stop and give a short discussion on the validity of ECLIPSE simulation results,
and compare the results for THP and BHP. The observations made here will then
be made use of later in the discussions of the MRST simulation results.

On a final note, recall that there are 13 wells with perforations in storage zone 5
in Stenlille, of which ten are active and can produce water. The number of wells
poses a slight difficulty when it comes to presenting the results in a space efficient
manner, as each simulation will result in ten plots of water production rates, and
thirteen plots of the well pressures. In order to not disrupt the flow of discussion,
the full set of results from each simulation will therefore be given in the appendix.
The results section this chapter will contain a reference to the appendix where the
full set of results is given, along with a set of representative figures from it.
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Table 5.1: A table showing the percentage of successful simulation prediction by
ECLIPSE of the THP for each well. A simulation value was seen as successful it
it lay within 10% of the historically recorded value.

Well Successful time-steps
ST-02 98.40%
ST-07 98.86%
ST-08 98.86%
ST-13 99.08%
ST-14 97.94%
ST-16 98.86%
ST-17 87.99%
ST-18 97.83%
ST-19 96.91%
ST-20 93.36%

5.1 A Note on the ECLIPSE Simulation Results

At this point a comparison of ECLIPSE simulation results and historical data will
be given, which will be useful when later seeking to determine the success of the
MRST simulation results.

The full set of the ECLIPSE results is given in Appendix C.2.1. Figure C.2 shows
the ECLIPSE simulation results for the tubing head pressure and bottom-hole pres-
sure for each individual well, along with the historical tubing head pressure. The
three curves are plotted in solid blue, dashed blue and solid black respectively. The
simulation prediction and historically recorded values for water production rates
are plotted in Figure C.3, this time using dashed blue and solid black respectively.
Please note that the simulated and historical water production rates have been
plotted on different y-axes.

Wells ST-13 and ST-20 were chosen as representative examples for this discussion,
and their well pressures are plotted again in Figure 5.2 on the next page. From
the figure it seems that the simulation results correspond reasonably well with the
historical values, at least in the sense that that the relative error stays small for
most time steps. If we further define a simulation value for the THP to be successful
if it is within 10% of the historically measured value, we can see from Table 5.1
that the majority of time steps were successful in predicting well pressures.

Going back to examining the plots for the simulated and historically measured
values for tubing head pressures, it is clear that the simulation pressures tend
to lie slightly higher than the historically measured value. Examining e.g. the
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(a)

(b)

Figure 5.2: Well pressure results for wells ST-13 and ST-20, as they were found in
the ECLIPSE simulation. The tubing hole and bottom-hole well pressures from
ECLIPSE are plotted in solid blue and dashed blue respectively. The historically
measured tubing head pressure is plotted in black.

well pressure results for well ST-13, we see that it experiences consistent pressure
differences as high as 2 bar. However, considering that this still yields a small
relative error, this was not found to be of great importance.

Examining again the plot for well ST-13, we see that the simulated and historical
well pressures for this well consistently follow the same trend with few major
discrepancies. Nonetheless, there appears to be a factor difference between the
pressure changes needed to achieve certain flow rates; from the figure it appears
that the simulation well pressures ”underreact” with a factor of two compared
with the historical results.

Examining now the plot for well ST-20, it is easy to see that there are several



56 CHAPTER 5. SIMULATION RESULTS

(a)

(b)

Figure 5.3: The water production rates predicted for wells ST-13 and ST-20. The
rates predicted by the ECLIPSE simulation are shown in dashed blue, and the
historically recorder water production is shown in black.

places where the historically recorded pressure drops suddenly. If the plots were
zoomed out, the reader would see that the pressure drops extremely low, often
down to 1 bar. It is not entirely clear what causes this behaviour, but it is highly
possible these sudden dips occur whenever the well has been closed off. This would
cause the well pressure to be isolated from the rest of aquifer pressure, in which
case it would quickly decrease. The ECLIPSE simulation results do not mirror
this behaviour, perhaps because the simulation well pressure is always measured
as if the well were open.

The simulation predictions for water production rates by wells ST-13 and ST-20 are
plotted in Figure 5.3, together with the water rate that was observed historically.
From the figure, it is clear that the two bear close to no resemblance, neither in
shape nor the scale of the production rate. The results of Simulation A will shed
more light on this discrepancy, and we will therefore postpone the discussion of
these results until the next section.
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Figure 5.4: The initial gas saturation used in Simulation A. The gas-water interface
was assumed to be flat and located at a height of zwater = 1510.95. The pore space
of the cells above this point were assumed filled with gas and residual water,
yielding a saturation of sn = 0.75. The cells below this point were assumed
completely filled with water.

5.2 Simulation A: Black-Oil Model of Stenlille

The goal of Simulation A is simply to recreate the results of an ECLIPSE sim-
ulation, covering the time period 01.09.11-15.07.12, in order to validate the the
MRST model of Stenlille has been implemented correctly. The term MRST model
refers here to the model implemented in MRST as was described in the previous
chapter.

Simulation Set Up:
The MRST model was set up as described in Chapter 4, with the grid shown in
Figure 4.2, the rock properties shown in Figure 4.5 and the wells shown in Figure
4.10 and the fluid properties given in Table 4.1.

The initial saturation was set as shown in Figure 5.4, with a flat gas-water interface
located at 1510.95 meters below the surface. The pore space of the cells above this
point was assumed filled with gas and residual water from the drainage process,
yielding a gas saturation of sn = 0.75. The location of the gas-water interface was
chosen so that the total volume of gas in place would equal 10.74 Sm3, matching
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Figure 5.5: The initial pressure used in Simulation A. The aquifer was assumed to
be in vertical equilibrium at the start of the simulation, with a reference pressure
pref = 159.9 bar at a reference depth of zref = 1500 m.

the resident gas volume given in Figure 5.1 for the starting date of the simulation.

The initial pressure was calculated using the method outlined in Chapter 4.1.4,
with a reference pressure of pref = 159.5 bars at a reference height of zref = 1500
m. The initial pressure this resulted in is plotted in Figure 5.5.

The fluid model was set up as described in Chapter 4.1.3. The MRST fluid model
only allowed one relative permeability curve to be defined for each fluid phase,
which made it necessary to decide ahead of time if the curves for imbibition or
drainage should be used. Examining Figure 5.1 again, it is clear that there are
rough seasonal variations in the well rates. Production was most common in the
time period from simulation start to mid March, after which injection was most
common until the end time of the simulation. Therefore, the MRST simulations
will use the imbibition curves from Figures 4.8a and 4.8b in the first time period,
and the drainage curves in the second time period. This implementation of the
relative permeability curves differs from the one used in the ECLIPSE model, and
is a possible cause of errors.

Comparison and Results:
The full set of results for this simulation is given in Appendix A. Figures A.1 and
A.2 show the simulated bottom-hole pressures at each time step, together with the
simulated pressure found in the ECLIPSE simulation. Figure A.3 shows the water
production rate predicted for each well, also together with the values prediction
found in the ECLIPSE simulation. The simulation had a total run time of 7 hours
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(a)

(b)

Figure 5.6: The bottom-hole well pressures calculated in Simulation A for wells
ST-07 and ST-20. The results from Simulation A are plotted in red, and their
ECLIPSE counterpart is plotted in blue.

and 34 minutes.

Wells ST-07 and ST-20 were chosen as representative examples for this simulation,
and their well pressures are plotted on the next page in Figure 5.6. The simulated
well pressures were found to agree reasonably well, at least in the sense that they
consistently followed the same trend. However, it seemed for several of the wells
that the pressure found in Simulation A ”overreacted” compared to the simulated
pressure in ECLIPSE. More specifically, the MRST simulation wells often required
a bigger pressure difference than the ECLIPSE simulation, in order to inject or
produce gas at the prescribed rate.

There are three aspects we know have been implemented differently in the MRST
model of Stenlille; it utilized static initial conditions, a simplified version of the an-
alytic aquifer connections, and a simplified method for picking the relevant relative
permeability curve for each time step. Judging from the figures showing the well
pressure results, it does not seem that this first change had a significant impact,
as the relative error in the first time step is quite small for all wells. The same is
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thought of the use of simplified aquifer connections, as each of the wells follow the
correct trend, which indicates that the aquifer connections are providing a suitable
pressure and flow support.

This last statement is supported by observations made during the debugging pro-
cess, where it was seen that intentionally or unintentionally altering the aquifer
support did not have much impact on the results. More specifically, it was found
that different cells could be chosen to have their volume increased, and this fac-
tor could be made smaller or larger, without observing noticeable changes in the
results. Furthermore, it was observed that the link between the two storage zones
could be forgotten completely, without having a significant impact on the well
pressure curves. The most important thing seemed to be to provide some form
pressure- and flow support to the grid. The specifics of this support were found to
be of little importance.

It is possible that this last statement holds true only if the simulations span a
time period of less than a year. It seems reasonable that the hydraulic connectivity
between the two storage zones, and the specific way the rest of the aquifer provides
pressure and flow support, is of much higher importance when running simulations
that span the entire operational lifetime of Stenlille.

In any case, the observation made about the irrelevance hydraulic connectivity
between the two storage zones for shorter simulations, proved to be quite useful in
the debugging process. The grid cells not belonging to storage zone 5 could then
be removed, reducing the number of grid cells by nearly half. The simulation run
times using this reduced grid were found to be less than half of the simulation run
times experienced when using the full grid.

Returning to our discussion of the discrepancy between the MRST simulation re-
sults and ECLIPSE simulation results, we believe at this point that the simplified
initial conditions and simplified aquifer connections are not the main culprits be-
hind them. This leaves us with the possibility that is was the simplified method
for choosing the relative permeability curves that causes the difference between
the two simulation well pressure results.

Returning back to Figure 5.6, it is clear that while the well pressures simulated
by MRST follow the correct trend, they appear to either underreact or overreact
compared with the equivalent ECLIPSE results. According to Darcy’s law, as it
was stated in Equation 2.6, the flow caused by pressure differences is proportional
to the permeability tensor and the relative permeability of the fluid. It is therefore
likely that a factor error is caused by differing values for either of these two.

The permeability values in each cell are believed to have been set exactly as in
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Figure 5.7: Typical relative permeability curves for a non-wetting phase, with
the scanning curve also indicated. sn,max is the maximum gas saturation, sn,cri

is the critical gas saturation, sn,crt is the trapped critical saturation. Illustration
from [26].

the ECLIPSE simulation, which leaves us with the possibility that the relative
permeability curves are causing the discrepancy between the simulation results.
As has already been mentioned, the MRST simulations of Stenlille used a quite
simple method to calculate the relative permeability values, where the relevant
curve was chosen according to if the time step belonged to production season or
injection season. As some of the wells inject during production season, or vice
versa, this method will undoubtedly cause errors.

The ECLIPSE simulations employed a much more sophisticated scheme for deter-
mining the relative permeability curve. First of all, the ECLIPSE simulations chose
the correct flow scenario by examining the flow direction in each cell. Secondly,
the relative permeability curves shown in Figure 4.8 are interpreted by ECLIPSE
to be the primary drainage curve and the pendular imbibtion curve for the model.

The primary drainage curve applies to a drainage process which starts at the max-
imum wetting phase saturation and decreases all the way down to the minimum
wetting phase saturation. Similarly, the pendular imbibition curve is used if the
initial wetting saturation is at the minimum possible value and increases upwards
to the maximum value [26]. If either the drainage process or the imbibition process
is reversed at some point, ECLIPSE does not simply run back over its previous
values, but uses a scanning curve to make the switch [27]. A typical example of
such a scanning curve is shown in Figure 5.7. The ECLIPSE model of Stenlille
utilizes a Killough scanning curve specifically [9]. For more information on the
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(a)

(b)

Figure 5.8: The water production rates calculated for wells ST-07 and ST-20
in Simulation A. The results from Simulation A are plotted in blue, and their
ECLIPSE counterpart is plotted in red.

implementation of scanning curves in ECLIPSE, the reader is referenced to the
ECLIPSE Technical Description.

To conclude, the MRST simulations used a highly simplified scheme to calculate
the correct relative permeability curves, and it is highly likely that this simplifi-
cation is one of the major causes of the discrepancy between the two simulation
results. However, if we go back and look at the accuracy of the ECLIPSE sim-
ulation results in predicting the historic pressure, this error does not seem so
troublesome after all. All things considered, it was therefore concluded that al-
though the MRST simulation results were not perfect, large portions have been
implemented correctly, and the results were good enough.

Figure A.3 show the predictions of water production from each well, as they were
found in Simulation A, plotted against the corresponding water production rate in
ECLIPSE. Wells ST-07 and ST-20 were again chosen as representative examples,
and were therefore also plotted in Figure 5.8.

The overall validity of these results was drawn into question after examining the
saturation around the well perforations for different time steps. Figure 5.9 shows
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the saturation in a cross section of the local grid refinement around Well ST-20 for
assorted time steps, along with the location of the well and its perforation. From
the figure, it seems highly improbable that well ST-20 should be producing water
at all, as the location of the gas-water interface is always a minimum of five meters
away from the well perforations.

It is possible that the predicted water production rate is simply caused by the
residual error allowed by the solver. This theory is strengthened by noticing the
very small scales of the water rate found in the MRST simulation results. There
large factor discrepancy between the ECLIPSE and MRST simulation results can
possibly be explained by noting that the VFP table can alter the water production
rates as along with the well pressures. It is feasible that this table has been set up
so as to increase the scale of the predicted water rates, with the intent of bringing
them closer to the historically recorded values.

We noted in the previous section that there was close to no correlation between the
historical and simulated water production rates. We have so far gotten no further
on the way to achieve successful predictions of water production, only sown doubt
about the validity of the results that we already have. We will therefore conclude
this section by venturing two theories for why the simulated results are so far
off from the historical values. One possibility is that the square, uniform grid
refinements made around the wells cause erroneous numerical results. It might
improve the situation to replace this grid refinement with one that gets finer and
finer the closer the cell is to the well.

Alternatively, it is possible that the water production is due to some process that
occurs on a smaller scale than what we use in the Stenlille model. As seen in
Figure 5.9, the location of the gas-water interface was found to lie consistently
several meters below the well perforations in Simulation A. Imagine now that
there exists cracks or other small pathways in the rock where water is allowed to
travel nearly uninhibited, so that water could be ”smuggled” above the gas-water
interface. This effect would not be reproduced in the Stenlille model, where the
permeability of is considered constant in each cell, and the cells around the wells
have the rough dimension of 10× 10× 1 cubic meters.



64 CHAPTER 5. SIMULATION RESULTS

Figure 5.9: The saturation profile around Well ST-20 for different time steps,
visualised using a cross section of the local grid refinement around the well. The
local grid refinement itself can be seen more clearly in Figure 4.10.
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Figure 5.10: The initial gas saturation used in Simulation B.1. The gas-water in-
terface was assumed to be flat and located at a height of zwater = 1510.95. Residual
water was assumed to be trapped in the gas plume, yielding a gas saturation of
sn = (1− sw,r)h/H

5.3 Simulation B.1: VE Model of Stenlille

The purpose of this simulation is to examine the validity of using a VE model for
Stenlille, by running the VE equivalent of Simulation A and comparing the results.

Simulation Set Up:
The two-dimensional model of Stenlille was set up as described in Chapter 4.2,
with the top-surface grid shown in Figure 4.11 and the rock properties shown in
Figure 4.12 and 4.13. The simulations used the fluid properties shown in Figure
4.1, with the alterations described in Chapter 4.2.

The gas-water interface was assumed to be flat and located at a depth of 1510.95
meters, with residual water trapped in the gas column, exactly as in Simulation A.
The initial saturation this resulted in for the VE simulation can be seen in Figure
5.10.

The initial pressure was set similarly as in Simulation A, using the method outlined
Chapter 4.1.4, with the exception that the reference pressure was assumed to be
slightly higher. The reference pressure was in this case set to pref = 160.9 bar at
a reference depth of zref = 1500 m.
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Figure 5.11: The initial pressure used in Simulation B.1. The aquifer was assumed
to be in vertical equilibrium at the start of the simulation, with a reference pressure
pref = 159.9 bar at a reference depth of zref = 1500 m.

Comparison and Results:
The full set of results for this simulation is given in Appendix B. Figures B.1 and
B.2 in this appendix show the bottom-hole pressures found for each well, plotted
together with the results from running the full three-dimensional model. Figure
B.3 shows the predictions for the water production rates found for this well, also
plotted together with the results from running the three-dimensional model. The
simulation took 52 minutes to run, which is a considerable improvement upon the
run-time experienced in Simulation A.

Figure 5.12 shows the well pressure results for wells ST-08 and ST-16, which were
chosen as representative examples for this discussion. The simulated well pressures
were found to agree very nicely with the ones from the black-oil simulation, es-
pecially during production season. In fact, the simulated pressures for well ST-08
made a near perfect match with each other.

In the cases where the well pressures made a less favourable match, the VE simu-
lated pressure generally overreacted compared to the pressure found in Simulation
A. Well ST-16 was included to showcase the worst match made by all the wells,
its well pressures were found to overreact with a factor of two compared with the
non-VE results.

If the reader were to examine the well pressure results for the observation wells,
as they are given in Figure B.2 in Appendix B, the results might initially seem
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(a)

(b)

Figure 5.12: The bottom-hole well pressures calculated in Simulation B.1 for wells
ST-08 and ST-20. The results from Simulation B.1 are plotted in magenta, and
the corresponding results from Simulation A are plotted in blue.

troubling. However, the discrepancy between the VE and non-VE results can be
easily explained. They clearly follow the same trend with decent accuracy, but
are separated by a near constant difference of roughly 10 bar. This is due to the
fact that the observation wells have their reference pressure set at a much deeper
reference depth than the other wells. Since the top-surface grid contains only one
cell per column, the well model is unable to adjust the pressure to fit the reference
depth, leading to a near constant pressure difference between them.

Figure 5.13 shows the water production predicted by each well in the VE simula-
tion, together with the rate that was predicted in Simulation A. From the figure,
it is easy to see that they follow the same trend, but that the VE results overreact
with a factor of 1000. While this may seem dramatic, it is not unexpected, and is
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(a)

(b)

Figure 5.13: The water production rates calculated for wells ST-07 and ST-20 in
Simulation B.1. The results from Simulation B.1. are plotted in magenta, and
their ECLIPSE counterpart is plotted in blue.

due to a shortcoming in the well model utilized for the VE simulation. The water
saturation variable in the VE model is interpreted as the fractional height of the
water column, and all columns are at least partially filled with water. From the
viewpoint of the well model, all cells in the grid therefore contain water, which
leads to water being produced in significant quantities.
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5.4 Simulation B.2: VE Simulations on Refined

Grid

Recall the simulated water rates found in Simulation B.1. We concluded that
these rates were completely off, due to a shortcoming in the well model used for
the simulation. Recall also that the shortcoming was specifically caused by the
standard well model misinterpreting the meaning of the saturation values in each
cell. Since the VE model operates with the fractional water column height as the
water saturation variable, and all cells contain at least some water, the well model
produces considerable amounts of water along with gas.

A simple workaround for this problem would be to examine the height of the gas
plume in each cell, and only allow water production if the gas-water interface is at
a certain height. However, the grid used in Simulation B.1 is quite coarse, with the
cells each spanning an area of roughly 100 × 200 square meters. In order to capture
the dynamics of the movement of the gas water interface, a higher resolution of
the solution is needed. This leads us to the topic of this simulation, which is VE
simulations on a refined grid.

The construction of a refined top-surface grid was not a straightforward process, as
MRST does not so far support grid refinement, although it contains a whole module
for grid coarsening. This ties in nicely with the observation we have made earlier,
about how long simulation run-times are a common issue in reservoir simulation.
Routines and methods for grid coarsening and upscaling have therefore been given
higher priority in MRST, than routines and methods for grid refinement. This
problem was solved by creating a custom method for constructing a refined top-
surface grid.

Refinement of the Top-Surface Grid
The method created for refining a top-surface grid is outlined in the form of a

flow-chart in Figure 5.14. At first glance this method might seem unnecessarily
circuitous, but it was nevertheless found to be successful, as it made efficient use
of pre-existing functions in both Matlab and MRST.

First, the cell centroids (x,y), depths z and formation heights H were extracted
from the unrefined grid. Then, the scatteredInterpolant function in Matlab was
used to create interpolations z(x, y) and H(x, y) of the top and bottom surfaces
of the aquifer. The centroids of the cells in the refined grid were then calculated,
and the interpolations z and H evaluated at these points.

At this point, all the information necessary for an Atlas file has been created.
Here, the term Atlas file is used to refer to the file format employed in the CO2
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Top Surface Grid ’Gts’

H(x, y) z(x, y)

Atlas File Format Refined grid points

G

Refined Gts

scatteredInterpolant(x, y, H) scatteredInterpolant(x, y, z)

convertAtlasTo3D(...)

makeTopSurfaceGrid(G)

Figure 5.14: A flow-chart showing how a top-surface grid can be refined. The
variables (x,y), H, and z are cell-wise centroid, depths and formation heights re-
spectively. Using a scattered interpolant, interpolations z(x, y) and H(x, y) can
be created of the top-surface grid and cell heights. By evaluating the interpola-
tions H(x, y) and z(x, y) at the centroids of the cells in the desired refined grid,
all the ingredients necessary for an Atlas file are constructed. The function con-
vertAtlasTo3D() can then be used to generate a three-dimensional, refined grid
from this information. Finally, a refined top-surface grid is created by from the
three-dimensional refined grid.
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Storage Atlas created by the Norwegian Petroleum Directorate [6]. It was created
with the goal of furthering research on CO2 storage, and contains an open-source
atlas of the height-maps and depths for potential storage sites in the North Sea.

The final step is to construct the grid itself, and this can be done using a func-
tion in the co2lab module. The function convertAtlasTo3D(..) generates a three-
dimensional grid from an atlas file, using its data points for the top and bottom
surface of the aquifer. Lastly, the refined top-surface grid can be constructed from
the refined three-dimensional grid.

If each cell in the top-surface grid of Stenlille is refined say 10 times in each direc-
tion, the number of cells in this refined grid will rival that of the three-dimensional
grid used in Simulation A. Consequently, the run-times of simulations using this
grid will also rival the run-time of Simulation A. The run-time could be reduced
again by re-coarsening the refined grid, using the functionality implemented in the
grid coarsening module in MRST [3].

The result of refining the Stenlille top-surface grid with a factor of 5 in each
direction, and then re-coarsening all cells that are initially filled with water, is
shown in Figure 5.15. The three-dimensional grid has to plotted instead of the
top-surface grid, as the the grid visualisation function in MRST does not work
well for the very specialized case of a coarsened top-surface grid.

Simulation Set Up:
The simulation was set up exactly as explained and shown for Simulation B.1. The
initial conditions and fluid model required no alterations from before. The refined
rock model was constructed by assigning the porosity and permeability of each
cell the same value assigned to their coarse mother cell. The wells were assigned
to the refined cell found in the middle of the coarse mother cell.

Comparison and Results:
Results showing the location of the gas-water interface for different time steps
can be seen is in Figure 5.16. The results did not turn out as expected. The
gas-water interface was expected to undulate up and down as the wells injected
or extracted gas from the aquifer. Some undulation was seen, especially when
the wells were injecting gas. However, these undulations were small compared to
other disturbances of the gas-water interface, which were especially large close to
the boundary. It was concluded that these peculiar results must be caused by one
or several errors in the simulation.

After some investigation, it was discovered that the initialization of a initial flat
gas-water interface was problematic, as the pressures in the VE model equations
are defined to be the pressure at the top surface. Since the top-surface itself is not
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Figure 5.15: The result of refining the top-surface grid of Stenlille 5 times in each
direction, and then re-coarsening the cells that were initially filled with water. The
three-dimensional version of the top-surface grid, with only one cell in the vertical
direction, has to be used for plotting purposes instead of the top-surface grid. This
is because the grid visualisation function in MRST does not work for a top-surface
grid that has been coarsened.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.16: The vertical depth of the gas-water interface found by Simulation
B.2, shown for assorted time steps.
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flat, it was therefore impossible to construct a static, flat gas-water interface.

To verify this, Simulation B.2 was run with all well rates set to zero, to see what
equilibrium it would settle into. The pressure this resulted in at the final time step,
for all cells that initially contained gas, is shown in Figure 5.17a. The depth of
these same cells are shown in Figure 5.17b, and it is clear they correlate perfectly.
However, the perturbation of the interface depths did not correlate perfectly with
the depth of the top-surface grid, so this cannot be the only issue. It was concluded
that there must be another effect at play that warps the results, but it is so far
unclear what this effect is.

Recall that two assumptions were made when developing the VE equations: First
that of vertical equilibrium, and then that of a sharp interface between gas and
water. If any of these assumptions can be shown to be wrong, that can go a long
way in explaining the peculiar simulation results. Figure 5.18 shows a scatterplot
of the fractional value vver/vhor for each time step and each well. Here, vver was
chosen to be the flow velocity through one of the horizontal faces on the cell that
contains the bottom-most well perforation, and vhor is the flow velocity through
one of the vertical faces on the same cell. The motivation behind comparing
the flow velocities through these faces specifically is that the vertical equilibrium
assumption will hold the least true for the cells containing well perforations. By
examining the figure, it is clear that the vertical flow is generally small compared
to the horizontal flow, and that the vertical equilibrium assumption is valid at
least for the majority of time steps.

From [7] we have an equation for estimating the segregation time scale, which
is necessary for the sharp interface assumption. The time scales for achieving a
sharp interface was calculated for the cells containing the wells, and the results
are summarized in Table 5.2. The resulting time scales were generally found to be
much higher than the time-scales of the simulation steps, which were all smaller
than one day. It was concluded that the assumption of a sharp interface is likely
invalid, and that this might be the cause of the peculiar simulation results for the
location of the gas-water interface.

Both the problems we have found can potentially be fixed. If the pressure term in
the VE model equations were taken to be the pressure at the gas-water interface
instead, it would be possible to create the flat interface that was desired in the
VE simulations. The problem with the assumption of a sharp interface could be
remedied by taking into account the effect of a capillary fringe between the two
fluid phases, i.e., a smooth transition zone between the two [13].
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(a) The pressure at the top-surface cells that contain gas, at
the end of a simulation that used the same initial conditions
but with the well rates set to zero.

(b) The vertical depth z of the cells in the refined top-surface
grid that contained gas at the start of the simulation.

Figure 5.17: The result after running a simulation on the refined top-surface grid,
that utilized the same initial conditions as before, but had all well rates set to zero.
It is clear that the aquifer then settled into an equilibrium where the pressure at
the top-surface grid correlated with the vertical depth of each cell, even though it
was not initialized with this pressure.
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Figure 5.18: The fractional value vver/vhor for each time step and each well, where
vver is the flow velocity through one of the horizontal faces on the cell that contains
the bottom-most cell perforation, and vhor is the flow velocity through one of the
vertical faces on the same cell.

Table 5.2: A table showing the time scale of fluid segregation ts, for the cells
containing the perforations for each well.

Well ts [Days]
ST-02 67
ST-07 117
ST-08 159
ST-13 92
ST-14 92
ST-16 129
ST-17 136
ST-18 147
ST-19 65
ST-20 85



Chapter 6

Conclusions

In this thesis, we have simulated fluid flows in an aquifer used for gas storage,
during injection and production of said gas. We have utilized two different models
for the simulations; first a standard black-oil model, and then a simplified VE
model. The former was constructed by assuming vertical equilibrium and then
integrating the black-oil model equations in the vertical direction.

The models were tested by examining their success in simulating gas storage in
the Stenlille aquifer, in the time period 31.07.2011-01.06.2012. The goal was to
improve upon the results from earlier simulations performed in ECLIPSE. More
specifically, the goal was to reduce run times, and improve upon the ability of the
simulations to predict well pressures and water production rates.

To this end, the ECLIPSE model of Stenlille was transferred into the MRST frame-
work, where it was easier to experiment with the models themselves. Simulations
were then carried out using both the black-oil model and the VE model. The
results were validated by comparing them against historical data, the results from
other simulations, or a combination of the two.

Results of Using the Black-Oil Model
One simulation was run using this model, with the purpose of verifying that the
MRST model of the Stenlille had been implemented correctly.

The simulation results were compared with the results from an ECLIPSE simula-
tion run over the same scenario. The simulated well pressures were found to match
reasonably well with each other, with the exception of a factor difference in the
well pressure response to flow rates. It was theorized that this factor difference
was caused by a simplified method used in the MRST model to determine the rel-
ative permeability of each fluid phase. When comparing the discrepancy between
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the two simulation results for the well pressure, against the discrepancy between
simulated pressures and historical values, the model was nevertheless concluded to
have been implemented with sufficient accuracy.

The MRST simulation results for the water production rates of each well were
found to match poorly with the corresponding ECLIPSE simulation results. How-
ever, after examining the saturation values around the wells, the validity of the
ECLIPSE results themselves were drawn into question. The gas-water interface
was seen to stay consistently below the well perforations, in which case there should
be no mobile water in the well cells. It was therefore suggested that the non-zero
water production rates were solely caused by the residual error allowed by the
solver.

Furthermore, the simulations results for the water production rates were found
to bear no resemblance to the values that have been measured historically. Two
theories were ventured to explain this discrepancy; (1) that rectangular grid re-
finement around the wells produced erroneous numerical results, or (2) that the
water production was due to a phenomenon that occurred on a much smaller scale
than the grid cells.

Results of Using the VE Model
Two simulations were running use the VE model. The first was run with the
intent to verify that a VE model could be successfully used for Stenlille. It used
the two-dimensional versions of the grid, rock model, fluid model and wells from
the black-oil simulation. The simulation results this yielded for the well pressures
were then compared with those found in the black-oil simulation, and they were
found to match each other reasonably well. It was concluded that the VE model
can be successfully used to simulate the well pressures in Stenlille. This method
offered a substantial reduction in the run-time of the simulation, reducing it to
less than 10% of the run-time for the black-oil simulation.

The VE simulations were found to give meaningless results for the water produc-
tion rate of each well, due to a misinterpretation by the well model of what the
saturation values signify. A fix for this problem was proposed, that involved check-
ing if the gas-water interface had reached the well before allowing it to produce
water.

Since the top-surface grid used in the first simulation was too coarse to capture the
movements of the gas-water interface, a method to refine the grid was proposed.
The grid was then refined in the areas containing gas at the first time step, and a
VE simulation was carried out using this refined grid.

This simulation was deemed unsuccessful, as it produced highly peculiar results
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for the depth of the gas-water interface at each time step. One problem was
identified, concerning the VE pressure being defined at the top surface, which made
it impossible for the gas-water interface to lie flat at equilibrium. This problem
can potentially be fixed by changing the pressure used in the VE equations, so
that they are defined to be the pressure at the gas-water interface instead.

However, it was then concluded that this problem could not fully account for the
peculiar simulation results. Therefore, the assumptions that went into the VE
model were examined, in order to say something about their validity. It was found
that the assumption of negligible vertical flow was decent, but that the assumption
of a sharp interface was problematic. It was suggested that the simulation results
could be improved by introducing a capillary fringe between the two fluid phases.
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Appendix A

Results of Simulation A

A.1 Well Bottom-Hole Pressures

(a)

(b)
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(c)

(d)

(e)

(f)
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(g)

(h)

(i)

(j)

Figure A.1: Well pressure results found in Simulation A, for each of the injection/produc-
tion wells in Stenlille. The bottom-hole pressures found in the Simulation A are plotted
in blue, and the bottom-hole pressures found from a similar ECLIPSE simulation are
plotted in red.
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(a)

(b)

(c)

Figure A.2: Well pressure results found in Simulation A, for each of the observation wells
in Stenlille. The bottom-hole pressures found in the Simulation A are indicated using
a blue curve, and the bottom-hole pressures found from a similar ECLIPSE simulation
are indicated in red.
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A.2 Water Production
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(d)

(e)

(f)

(g)



(h)

(i)

(j)

Figure A.3: Water production rates from Simulation A. The water production rates
found in the Simulation A are plotted in blue, and the water production rates found
from a similar ECLIPSE simulation are plotted in red.
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Appendix B

Results of Simulation B

B.1 Bottom hole pressures

(a)

(b)
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(i)

(j)

Figure B.1: Well pressure results found in Simulation B.1, for each of the injection/pro-
duction wells in Stenlille. The bottom-hole pressures found in the Simulation B.1 are
plotted in magenta, and the bottom-hole pressures found from Simulation A are plotted
in blue.
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(a)

(b)

(c)

Figure B.2: Well pressure results found in Simulation B.1, for each of the observation
wells in Stenlille. The bottom-hole pressures found in the Simulation B.1 are plotted in
magenta, and the bottom-hole pressures found from Simulation A are plotted in blue.
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B.2 Water Production
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(d)
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Figure B.3: The predicted water production rates from Simulation B.1. The water pro-
duction rates found in the Simulation B.1 are plotted in blue, and the water production
rates found in Simulation A are plotted in magenta.
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Appendix C

Other Plots

C.1 Individual Well Schedules
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(i)
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Figure C.1: The injection/production rates for the wells in Stenlille, given for the time
period 31.07.11-30.06.12
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C.2 Comparison of ECLIPSE Simulation Results

and Historical Values

C.2.1 Tubing Head Pressures

(a)

(b)
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(d)
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(h)

(i)

(j)

Figure C.2: Well pressure results found in an ECLIPSE simulation, for each of the
injection/production wells in Stenlille. The simulation was over the same scenario as
the ones used in Simulations A, B.1 and B.2. The tubing hole and bottom-hole well
pressures from ECLISPE are plotted in solid blue and dashed blue respectively. The
historically measured tubing head pressure is plotted in black.
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C.2.2 Water Production Rate
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(f)

(g)

(h)

(i)

(j)

Figure C.3: The water production results for an ECLIPSE simulation, for each of the
injection/production wells in Stenlille. The simulation was over the same scenario as
the ones used in Simulations A, B.1 and B.2. The predicted water production from
the ECLIPSE simulation is shown in dashed blue, and the historically recorder water
production is shown in black.
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