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The results showed that the shear stiffness modulus for the bond-slip models had a large impact on the 
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Preface 

All work related to this master’s thesis has been carried out in the spring 2016 at the department of 

structural engineering, and is the final work of a two-year long master’s degree program at the 

Norwegian University of Science and Technology (NTNU). The thesis was performed with 

Professor Max Hendriks as main supervisor and PhD-candidate Reignard Tan as co-supervisor. The 

work has been carried out over a period of 20 weeks and provides 30 credits per student.  

The aim of the thesis is to investigate cracking behaviour in reinforced concrete with bond-slip 

formulation implemented in the finite element model, with the aid of nonlinear analyses. 

Furthermore, the thesis aims at evaluating the influence of material properties and numerical iteration 

methods with respect to cracking.       

Our main motivation for taking on the work that this thesis had to offer was to establish a better 

understanding of how reinforced concrete behaves and how nonlinear analyses are performed for 

such structures. Both of us had quite good knowledge with respect to general design of concrete 

structures. Before we started our work with this thesis, we had no knowledge with respect to the 

procedure of performing nonlinear analyses. For this reason, a lot of research had to be done in order 

to get an overview over the different features and methods that a nonlinear analysis consists of. 

Neither of us were familiar with DIANA, but had heard about the program, and we saw this thesis as 

an opportunity to learn how to use a new FEM program.  

We would like to thank our supervisor Max Hendriks and our co-supervisor Reignard Tan for good 

supervision and expert advice underway. We would also like to thank PhD-candidate Morten Engen 

for good guidance regarding scripting in Python and general modelling in DIANA10.  

It is safe to say that we have learned a lot during this process.  
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Abstract 

This thesis aims to investigate the crack pattern of two reinforced concrete panels subjected to a 

tensile load. Numerical models for two reinforced concrete panels were established in the finite 

element program DIANA10. Results from the nonlinear analyses were compared with results from 

experiments performed by Dyngeland [8].  

An important aspect of this thesis is the implementation of bond-slip reinforcement instead of regular 

embedded reinforcement. Bond-slip reinforcement models are valid when it is assumed that there no 

longer exist a perfect bond between the concrete and the reinforcement bars. This results in slip, or 

relative displacement, between the concrete and the reinforcement. This slip causes interface 

tractions along the reinforcement bars. Two bond-slip models were assessed, one from fib Model 

Code 2010 and one model proposed by Dörr, which is called Cubic Bond-slip. It was seen that the 

two different slip-models described the bond stress-slip relation quite differently, which evidently 

had an impact on the crack patterns. It was also desirable to establish a basis for which material 

properties and iterative procedures that gave the best results. Important aspects related to discussion 

and evaluation are the experimental results, crack widths and crack spacing from the nonlinear 

analyses and theoretical crack widths and crack spacing calculated according to Eurocode 2 and fib 

Model Code 2010.  

It was discovered that the cubic bond-slip model by Dörr resulted in an earlier crack initiation stage 

for both panels. This is caused by the initial stiffness of the bond stress-slip curve, which is higher 

for the cubic bond-slip model than the fib Model Code 2010 bond-slip model. 

The results showed that the shear stiffness modulus for the bond-slip models had a large impact on 

the behaviour of the two panels.  

Of the tested numerical iteration methods, the Newton Raphson methods would result in divergence 

for both panels. It was concluded that a more sophisticated iterative procedure had to be used for the 

analyses of the two panels. The Broyden Quasi-Newton method gave stable results and all over load 

step convergence.  
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Sammendrag  

Hovedmålet med denne oppgaven er å studere rissoppførselen i armert betongpanel påkjent av 

strekklast. To numeriske modeller ble etablert og analysert med ikke-lineære analyser i 

elementmetodeprogrammet DIANA10. Resultater fra analysene ble så sammenlignet med resultater 

fra eksperimenter utført av Dyngeland [8].  

Et sentralt tema i denne masteroppgaven er implementeringen av «bond-slip» armering i stedet for 

«embedded» armering, og vurdere hvordan disse armeringsmodellene påvirker rissoppførselen i 

betongen. I korte trekk er «bond-slip» armering gyldig når perfekt heft mellom betong og armering 

ikke lenger er tilstede, noe som resulterer i at betongen kan «slippe» langs armeringen. Som følge av 

dette oppstår det en relativ forskyvning mellom betong og armering, noe som fører til 

heftespenninger langs armeringen. To formuleringer for bond-slip armering er vurdert i denne 

oppgaven: den ene formuleringen bygger på regelverket for fib Model Code 2010. Den andre 

formuleringen er kalt «cubic bond-slip» modell, og ble foreslått av Dörr. Dette er en forhåndsdefinert 

modell i DIANA10. De to bond-slip formuleringene er ganske forskjellige og dette gikk ut over 

rissmønstrene som oppstod. Det var også ønskelig å finne ut hvilke materialparametere og 

iterasjonsmetoder som gav best resultater. Rissvidde og rissavstand fra de eksperimentelle forsøkene 

og de numeriske resultatene blir diskutert og evaluert til slutt. Beregnede rissvidder og rissavstander 

ifølge Eurocode 2 og fib Model Code 2010 er også diskutert.  

Det ble oppdaget at cubic bond slip formulering av Dörr førte til tidligere rissdannelse for begge 

panelene. Dette skjer fordi den initielle stivheten til bond-slip kurven er høyere i cubic formuleringen 

enn for fib Model Code formuleringen. 

Resultatene viste at skjærstivhetsmodulen til bond slip modellne hadde stor innvirkning på 

oppførselen til panelene. 

Forskjellige iterasjonsmetoder ble utprøvd, og Broyden Quasi-Newton gav til slutt best resultat. 

Newton-Raphson metodene førte bare til divergens for begge panelene. 
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Introduction 

Finite Element Method (FEM)-computer programs are suitable tools for simulating reinforced 

concrete. At the institute of structural engineering at NTNU, the FEM-program DIANA is often 

used. In February 2016 a brand new version of DIANA, namely DIANA10 was launched, and was 

used in this thesis. DIANA10 has new features regarding the pre- and post-processing environment, 

and is compatible with python-scripting. Numerical simulations are vital in order to predict a 

satisfactory response of reinforced concrete subjected to a certain type of loading. In order to analyze 

the results provided in a good manner it is important to have a good understanding about linear and 

non-linear FEM in general. It is also of great importance to understand the theory implemented in the 

calculations performed by the finite element computer program that is being used. DIANA is a 

highly sophisticated program that provides many options regarding material models and numerical 

solution methods. A great deal of effort has for that reason been put into investigating the many 

choices the analyst is provided, and how the various material models and numerical solution methods 

influence the results. 

The motivation behind this thesis is the ongoing research project called “Durable Advanced Concrete 

Structures (DACS)”. DACS was initiated as an extension of the work done in “Concrete Innovation 

Center (COIN)” and is planned to be finished in 2019. The purpose of DACS is to develop 

knowledge, methods and tools which enables sustainable and competitive concrete structures that 

can withstand environmental stresses in an arctic-marine environment. The project is led by Kværner 

Concrete Solutions. Other participants are Multiconsult, Statens Vegvesen, Norcem, Concrete 

Structures, Norbetong, Skanska, Unicon, AF Gruppen, Mapei, Veidekke, St. Gobain Weber, Sintef 

Byggforsk and NTNU. DACS is divided into 4 “work packages”, where this master thesis is related 

to the first package: “Early age cracking and crack calculation in design”. The topic of this thesis was 

decided in cooperation with main supervisor Professor Max Hendrix and PhD-candidate Reignard 

Tan. 

The main motivation for this thesis was to establish a basis to evaluate the accuracy regarding design 

of reinforced concrete structures in the Serviceability Limit State with non-linear finite element 

analyses. These analyses were considered as virtual experiments that could help us predict crack 

behavior in the concrete. In order to assess the cracking behavior, numerical models for two 

reinforced concrete panels where established. One panel had horizontal reinforcement, and one panel 

had orthogonal reinforcement oriented in a 45-degree angle to the concrete. The structures were 

analyzed with different material models and numerical solution procedures in order to obtain the best 

possible results. An important aspect of this thesis is the implementation of bond-slip reinforcement 

in the models.  
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General 

This thesis is divided into five parts: Theory, Modelling, Results, Evaluation and Appendices. In the 

theory part, material models, iterative procedures and bond-slip models are described. Then follows 

the modelling part which contains a detailed description regarding the modelling procedure of the 

two models. Part III contains analyses details and relevant results. In part IV, the results are 

evaluated and a suggestion for further work will be stated. Part V consists of appendices where 

python scripts and calculations according to Euorcode 2 and fib Model Code 2010 are attached.  

Problem description 

The aim of this thesis is to investigate the cracking behavior in reinforced concrete panels subjected 

to tensile loading when bond-slip reinforcement is implemented in the finite element model. Bond-

slip reinforcement models are valid when there no longer is a perfect bond between the 

reinforcement and the concrete, resulting in a relative displacement between concrete and 

reinforcement nodes. Two different types of panels with bond-slip reinforcement will be modelled 

and analyzed using DIANA10. Furthermore, it is desirable to establish a basis regarding how the 

different bond-slip formulations influence the cracking behavior of the concrete, and which material 

parameters that are best suited to predict crack patterns when comparing numerical results with 

experimental results.  

Experiment description 

Experiments performed by Torbjørn Dyngeland are used as the basis for the numerical work of this 

thesis. Dyngeland [8] developed an analytical model for prediction of crack patterns. He also did 

experimental testing on several concrete panels with different loading and reinforcement layout. 

Some of these panels where loaded in pure tension until failure. When a stable crack pattern had 

developed, the cracks where measured and documented. The experimental test results and results 

from the analytical model where then compared.  
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Part I: Theory 
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1. Finite Element Method (FEM) 

In general FEM is a method for numerical solution of field problems (Cook et al. [6]). When dealing 

with a field problem, we must determine the spatial distribution of one or more dependent variables, 

e.g. distribution of displacements and stresses in a slab. The main principle for solving a FEM-

problem is the relationship between displacement, stiffness and load. This relationship can be 

expressed by the following equation: 

 

 

  

[𝐾] × {𝐷} = {𝑅} (1.1) 

where [K] denotes the system stiffness matrix, {D} the translation or rotation and {R} the external 

loading. Eq. (1) is solvable in a linear manner given constant stiffness, i.e. we have linear material 

behavior, and the outer and inner forces are in equilibrium.  

 

1.1 Nonlinear problems  

According to Cook et al. [6], in structural mechanics, types of nonlinearity include the following: 

Material nonlinearity 

 Material properties are functions of the state of stress or strain. Examples include nonlinear 

elasticity, plasticity and creep. 

Contact linearity 

 A gap between adjacent parts may open or close. 

 The contact area between parts changes as the contact force changes. 

 Frictional forces caused by sliding contact. 

Geometric nonlinearity 

 Deformations are so large that the equilibrium equations must be written with respect to the 

deformed structural geometry. 

 Loads may change direction as they increase. 

Problems in these categories above are nonlinear because the stiffness, and sometimes the loading, 

become functions of the displacement or deformation of the structure. Eq. (1.1) can be rewritten to 

the following:     

 [𝐾(𝐷)] × {𝐷} = {𝑅(𝐷)} (1.2) 

 

It cannot immediately be solved for {D} since the information required to establish [K] and {R} are 

not known in advance. This requires an iterative process in order to obtain {D} and its associated [K] 

and {R}, such that the left hand side of the equation ([K]{D}) is in equilibrium with the right hand 

side in the equation ({R}). Iterative procedures will be discussed in section 3.1.  
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2. Materials and Methods 

A literature study regarding numerical material models has been performed. Furthermore, it is 

chosen to present general aspects and mathematical statements with respect to concrete and steel 

with the intention of establishing a basis for how the different material models are implemented in 

DIANA10. In order to study plasticity models, crack models and bond-slip reinforcement models, 

literature such as De Borst et.al. [7], Tejchman and Bobinski [17] and TNO DIANA [18] have been 

used.   

 

2.1 Plasticity 

The theory of plasticity is one of the most well-developed theories in order to describe material non-

linearity (De Borst et.al. [7]). In the following sections, the essence of the theory of plasticity will be 

presented, the Flow Theory of Plasticity. The main ingredients of this theory is the Yield Function, 

the Flow Rule and the Hardening Behavior.     

 

2.1.1 Introducing a simple slip model 

In order to understand the non-linear behavior in a material, one should start with a simple model, 

e.g. a spring-sliding system.  

 

 

Figure 1 - Spring-sliding system with two degrees of freedom 

Figure 1 represents a simple spring-sliding system, and in this formulation the entire horizontal 

displacement of point A is initially caused by the spring deformation. This is due to the fact that for 

low force levels, the adhesion and the friction between the floor and the block prevent any sliding of 

the block. The block will only start sliding when the shear force exceeds what can be absorbed by 

bond and friction. From that moment on, the horizontal displacement of point A is composed of a 

contribution from the spring and a contribution from the sliding between the block and the floor. The 

total horizontal displacement of point A is now represented by u. The total displacement u can 

further be divided into two parts which represent the deformation of the spring and the sliding of the 

block, respectively. We can now write the total displacement u as: 

 

 𝑢 = 𝑢𝑒 + 𝑢𝑝 (2.1) 

  

The first term in eq. (2.1) represents the deformation of the spring, and is called elastic because when 

removing the force, the deformation in the spring also disappears. The second term in eq. (2.1) 

represents the sliding of the block. This displacement does not disappear during unloading and 

because of this permanent behaviour, it is denoted plastic. If it is assumed that the surface between 
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the sliding block and the floor is not perfectly smooth, which will result in horizontal and vertical 

displacement of the block, we can denote the plastic displacement by two displacement components: 

 

 𝒖𝑝 = (
𝑢𝑝

𝑣𝑝) (2.2) 

 

The elastic displacements may also be assembled in a vector: 

 

 𝒖𝑒 = (
𝑢𝑒

𝑣𝑒) (2.3) 

 

From eq. (2.3) it is seen that the term 𝑣𝑒 got no physical meaning and is equal to zero. An extension 

of eq. (2.2) to incorporate the vertical displacements may be written as follows: 

 

 𝒖 =  𝒖𝒆 + 𝒖𝑝 (2.4) 

 

Between the elastic displacement 𝑢𝒆 and the horizontal force H there is a unique relation. This 

relation can be written as follows: 

 

 𝑘𝑢𝑒 = 𝐻 (2.5) 

 

Between the deformations attributable to those that take place in the spring and those that take place 

in the sliding system, lies an important distinction regarding the uniqueness between strains and 

stresses or between displacement and force, as the current system describes. In eq. (2.5), k is the 

spring constant. The “elastic” displacement will be reduced to zero as the force H vanishes after 

reaching a non-zero value. For the plastic displacement 𝑢𝑝 however, such a relation is not physically 

possible. During a plastic deformation the inelastic deformation can be determined. It is now 

assumed that the ratio between plastic velocity in the horizontal direction and the plastic velocity in 

the vertical direction, respectively, may be obtained by: 

 

 tan(𝜓) =  
𝑣̇𝑝

𝑢̇𝑝
 (2.6) 

 

The direction of the plastic flow may be written as: 

 

 𝒖̇𝑝 = 𝜆̇𝒎 (2.7) 
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Where  

 𝒎 = (
1

tan (𝜓)
) (2.8) 

 

This m determines the direction of the plastic flow. 𝜆̇ is denoted the plastic multiplier. This constant 

may be determined by requiring the stresses to remain bounded during plastic flow. The transition 

between elastic and plastic states can be defined quite straightforward also for multi-dimensional 

stress states. The flow theory of plasticity will be described in the next section. For the deformation 

theory of plasticity, this convenient property does not apply, since the deformation theory of 

plasticity is built on the assumption that the plastic strain, and not the plastic strain rate, is 

determined by the values of the stresses. The force vector f is defined in a similar manner as the 

displacement vector stated in eq. (2.2) and eq. (2.3): 

 

 𝒇 = (
𝐻
𝑉

) (2.9) 

 

The elastic displacement vector can be related to the force vector by the following relation: 

 

 𝒇 =  𝑫𝑒𝒖𝑒 (2.10) 

 

Where De denotes the elastic stiffness matrix. In this case, the elastic stiffness matrix is defined as: 

 

 𝑫𝒆 = (
𝑘 0
0 0

) (2.11) 

     

By differentiating the fundamental decomposition, we obtain: 

 

 𝒖̇ =  𝒖̇𝑒 + 𝒖̇𝑝 (2.12) 

 

 

 

 

𝒇̇ =  𝑫𝒆𝒖̇𝑒 (2.13) 

 

Combining these results with the relation from eq. (2.11), the relation that states the direction of the 

plastic velocity, yields the following relation: 

 

 𝒇̇ =  𝑫𝒆(𝒖̇ − 𝜆𝒎̇) (2.14) 

   

There must be established a criterion that sets a border between the elastic displacements and when 

the plastic displacements occur, i.e. when the block starts sliding for the system being dealt with. The 
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assumption that the “block-sliding” starts when the Coulomb friction with adhesion is fully 

mobilized, results in: 

 
𝐻 + 𝑉 tan(𝜑) − 𝑐 = 0 

 
(2.15) 

 

Where:  

𝜑  Friction coefficent 

𝑐  Adhesion   

𝑉   Shear force 

 

In order for friction to be mobilized between the surface and the block, the force 𝑉 must act in a 

downward direction, i.e. 𝑉 must be less than zero.  

At the state when the expression in eq. (2.15) is less than zero, only elastic deformation takes place. 

The state where the expression in eq. (2.15) is greater than zero is physically impossible due to the 

fact that the horizontal force H is bounded by eq. (2.15). By assuming that 𝑐 and 𝜑 are constants and 

then differentiate eq. (2.15) we obtain: 

 

 
𝐻̇ + 𝑉̇ tan(𝜑) = 0 (2.16) 

 

Eq. (2.16) written with symbols gives: 

 

 
𝒏𝑇𝒇̇ = 0 (2.17) 

 

Where n denotes the introduced vector: 

 

 𝒏 = (
1

tan (𝜑)
) (2.18) 

 

 𝝀̇ =  
𝒏𝑇𝑫𝒆𝒖̇

𝒏𝑇𝑫𝒆𝒎
 (2.19) 

  

Eq. (2.19) is obtained by pre-multiplying eq. (16) by 𝒏𝑇 and the use of the fact that eq. (2.17) holds 

during plastic flow.  

The expression for the plastic multiplier 𝜆̇ inserted in eq. (2.14) yields: 
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𝒇̇ = (𝑫𝒆 −

𝑫𝒆𝒎𝒏𝑇𝑫𝒆

𝒏𝑇𝑫𝒆𝒎
 ) 𝒖̇ (2.20) 

 

Eq. (2.20) sets an explicit relation between the rate of the force vector 𝒇̇ and the velocity vector 𝒖̇. 

The expression from eq. (2.20) are denoted rate equations, and are non-symmetric in general due to 

the fact that 𝜑 ≠  𝜓.  

 

 

Figure 2 - Loading, unloading and reloading: Slip model, (De Borst et.al. [7]) 

The flow theory of plasticity only provides a relation between the rate of force/stress and the 

velocity/strain rate, and not the direct relation between force/stress and displacement/strain. It is of 

great importance that the incremental equations are integrated in an exact manner. To carry out this 

task, implicit integration schemes are best suited.   

A prominent feature for the theory of plasticity, and also for the slip model described, is that when 

the condition for continued sliding, represented by eq. (2.15), is no longer satisfied, purely elastic 

behaviour applies. This means that the process of unloading is purely elastic. The same applies for 

reloading. If eq. (2.15) again is satisfied, permanent contributions to the incremental displacement 

again occurs, as presented in Figure 2. 
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2.2 Flow Theory of Plasticity     

2.2.1 Yield function 

Mohr-Coulomb 

In the previous section a slip model for frictional sliding along a fixed plane was presented. This was 

done in order to establish a good base for the continuation, in which stresses rather than forces are 

being dealt with. The extension of Coulomb’s assumption, i.e. the sliding along a plane occurs when 

the shear force on a plane exceeds the normal force multiplied by a friction factor in addition to some 

adhesion, will lead to the search for the plane on which the combination of normal stress 𝜎 and shear 

stress 𝜏 is critical, expressed by the condition: 

 

 𝜏 + 𝜎 tan(𝜑) − 𝑐 = 0 (2.21) 

 

 

The condition expressed in eq. (2.21) must be satisfied in order for the extension of Coulomb’s 

assumption to be valid. In the expression above, c denotes the respective material’s cohesion. It is 

based on one-axial testing of the compression strength fc:  

 

 𝑐 =  
1 − sin(𝜑)

2 cos(𝜑)
𝑓𝑐 (2.22) 

 

We now consider a two-dimensional stress state. It is now possible to relate 𝜎 and 𝜏 to the principal 

stresses by utilizing Mohr’s Circle, which is shown in Figure 3 below: 

 

 

Figure 3 - Mohr's Circle, (de Borst et.al. [7]) 

 

 𝜎 = (
𝜎3 + 𝜎1

2
) + (

𝜎3 − 𝜎1

2
) sin (𝜑) (2.23) 
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And: 

 

𝜏 = (
𝜎3 − 𝜎1

2
) cos(𝜑) 

 

 

(2.24) 

By substituting the expressions for 𝜎 and 𝜏 into eq. (2.21) and multiplying with cos(𝜑) results in: 

 

 (
𝜎3 − 𝜎1

2
) + (

𝜎3 + 𝜎1

2
) cos(𝜑) − 𝑐 cos(𝜑) = 0 (2.25) 

 

Eq. (2.25) represents the two-dimensional state of the Mohr-Coulomb yield criterion. The Mohr-

Coulomb criterion may be extended to fully three-dimensional stress states. Eq. (2.24) is valid as 

long as 𝜎1  ≤  𝜎2  ≤  𝜎3. For instance, if 𝜎2  ≤  𝜎3  ≤  𝜎1, the shear stress on the plane on which 

combination of stresses becomes critical yields 𝜏 = 0.5(𝜎1 − 𝜎2) cos(𝜑) and the normal stress  

𝜎 = 0.5(𝜎1 + 𝜎2) + 0.5(𝜎1 − 𝜎2) sin(𝜑).  The yield condition may now be formulated in terms of 

𝜎1 and 𝜎2: 

 

 (
𝜎1 − 𝜎2

2
) + (

𝜎1 + 𝜎2

2
) sin(𝜑) − 𝑐 cos(𝜑) = 0 (2.26) 

   

Three-dimensional principal stress space Mohr-Coulomb yield criterion  

This condition is complemented by the following four conditions:  

 

 
1

2
(𝜎2 − 𝜎3) + 

1

2
(𝜎2  +  𝜎3) sin(𝜑) − 𝑐 cos(𝜑) =  0 

 

(2.27a) 

 

1

2
(𝜎1 − 𝜎3) + 

1

2
(𝜎1  +  𝜎3) sin(𝜑) − 𝑐 cos(𝜑) =  0 

 
(2.27b) 

        
1

2
(𝜎2 − 𝜎1) + 

1

2
(𝜎2  +  𝜎1) sin (𝜑) − 𝑐 cos(𝜑) =  0 

 
(2.27c) 

 

1

2
(𝜎3 − 𝜎2) + 

1

2
(𝜎3  +  𝜎2) sin(𝜑) − 𝑐 cos(𝜑) =  0 

 
(2.27d) 
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Figure 4 - Mohr-Coulomb and Drucker-Prager yield criteria, (de Borst. et.al [7]) 

Figure 4 shows the yield criteria for Mohr-Coulomb and Drucker-Prager in three-dimensional 

principal stress space. The figure shows the permutations of the 4 conditions stated above 

represented graphically in the three-dimensional principal stress space. Together, they form a cone 

which meet in the apex of the yield surface were 𝜎1 = 𝜎2 = 𝜎3 = 𝑐 cot(𝜑). This represents the 

yield surface of for Mohr-Coulomb. Stresses inside this contour causes elastic deformations, while 

stress states on the yield surface may cause elasto-plastic deformations. Stress states on the “outside” 

of the yield surface is by definition not possible.  

A loading function bounding all stress states may now be introduced:  

 

 𝑓(𝜎)  ≤ 0 (2.28) 

  

Eq. (2.28) holds for the stress states within the yield surface ( 𝑓(𝜎)  < 0 ) and for stress states at the 

yield surface ( 𝑓(𝜎)  =  0 ).  

 

 𝑓(𝜎) =  
1

2
(𝜎3 − 𝜎1) + 

1

2
(𝜎3  +  𝜎1) sin(𝜑) − 𝑐 cos(𝜑) (2.29) 

 

Eq. (2.29) is obtained by consideration of the Mohr-Coulomb yield function.  

Other well-known yield criteria may be considered as approximations of the Mohr-Coulomb yield 

criterion. 
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Von Mises 

The Von Mises yield function forms a circular cylinder in the principal stress space, and a circle in 

the π-plane. The von Mises yield function can be written, in terms of principal stresses, as:   

 

 𝑓(𝜎) =  √
1

2
 [(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎3 − 𝜎1)2] − 𝜎 (2.30) 

 

In terms of normal and shear stresses the von Mises yield functions becomes:  

 

 𝑓(𝜎) = √
1

2
[(𝜎𝑥𝑥 − 𝜎𝑦𝑦)2 + (𝜎𝑦𝑦 − 𝜎𝑧𝑧)

2 + (𝜎𝑧𝑧 − 𝜎𝑥𝑥)
2] + 3𝜎𝑥𝑦

2 + 3𝜎𝑥𝑦
2 +  3𝜎𝑥𝑦

2 − 𝜎̅ (2.31) 

 

The von Mises yield function, written in a different manner, reads:  

 

 𝑓(𝜎) = 𝑞 − 𝜎 (2.32) 

 

Where:  

 

 𝑞 =  √3 𝐽2 (2.33) 

 

Eq. (2.35) states the second invariant of the deviatoric stresses, and is proportional to the expression 

beneath the square root in eq. (2.33). 

 

2.2.2 Flow rule  

In order for plastic deformations to occur, the stress point must remain on the yield contour for a 

“short period of time”. When the stress point merely touches the yield surface and then jumps back 

inward again, no plastic flow will take place. Plastic straining will only take place if the following 

criteria is fulfilled:  

 

 𝑓 = 0 (2.34) 

 

The Prager consistency condition may be expressed as:  

 

 𝑓̇ = 0 (2.35) 
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The Prager consistency condition sates that the yield function f, must remain zero for a small time 

increment in order for plastic flow to occur. Within the elastic domain the relation 𝝈 = 𝑫𝑒: 𝜺  sets 

the stress and strain dependence. Such a relationship can only be set between the stress and the 

elastic strain: 

 

 𝝈 =  𝑫𝑒 ∶  𝜺𝑒 (2.36) 

 

The total strain reads:  

 

 𝜺 =  𝜺𝑒 + 𝜺𝑝 (2.37) 

 

From eq. (2.37) we can now write:  

 

 𝝈 = 𝑫𝑒 ∶ (𝜺 − 𝜺𝑝) (2.38) 

 

In three-dimensional stress space we have six equations with a total of twelve unknown components; 

six unknown stress components and six unknown plastic strain components. The plastic strain rate 

can be written as:  

 

 𝜺̇𝑝 = 𝝀̇𝒎 (2.39) 

  

𝝀̇  A variable that sets magnitude of plastic flow.  

𝒎  Sets the relative magnitude of the plastic flow components. 

 

The function f has been assumed to be a function of the stress tensor, the consistency condition stated 

in eq. (2.35) can be written as:  

 

 𝒏 ∶  𝝈̇ = 0 (2.40) 

 

 

 

 
𝒏 =  

𝜕𝑓

𝜕𝝈
 (2.41) 

 

which is the gradient of the yield function, perpendicular to the yield surface at the respective stress 

point.   

The magnitude of plastic flow may be written as:  
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𝜆̇ =  

𝒏 ∶  𝑫𝑒 ∶  𝜺̇

𝒏 ∶  𝑫𝑒 ∶ 𝒎
 (2.42) 

 

As for the introduced simple slip model, a linear relation between the stress rate and the strain rate 

may be established:  

 

 𝝈̇ =  ( 𝑫𝑒 − 
(𝑫𝑒:𝒎)⨂(𝑫𝑒: 𝒏)

𝒏 ∶  𝑫𝑒 ∶ 𝒎
 ) ∶  𝜺̇ (2.43) 

 

Mohr – Coulomb 

By utilizing eq. (2.29) and invoking the concept of an associated flow rule it can be derived that the 

plastic volumetric strain rate: 

 

 𝜀𝑣̇𝑜𝑙
𝑝 = 𝜀1̇

𝑝 + 𝜀2̇
𝑝 + 𝜀3̇

𝑝  (2.44) 

  

The plastic shear deformation rate becomes: 

 

 𝛾̇𝑝 = 𝜀3̇
𝑝 − 𝜀1̇

𝑝  (2.45) 

 

The volumetric strain rate and the plastic shear deformation is related in the following way: 

 

 

 
𝜀𝑣̇𝑜𝑙

𝑝
= 𝛾̇𝑝 sin 𝜑  (2.46) 

 

By introducing the Mohr-Coulomb plastic potential function, the plastic dilatancy can be avoided to 

some extent, and the prediction of the plastic volume change will be much better. The plastic 

potential function reads:  

 

 𝑔 = 
1

2
(𝜎3 − 𝜎1) + 

1

2
(𝜎3 + 𝜎1) sin 𝜓 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (2.47) 

 

Where: 

 

𝜓  Is the dilatancy angle. 
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𝜓 is an independent parameter. A relation between plastic volume change and plastic shear intensity 

can be stated as:  

 

 

 
𝜀𝑣̇𝑜𝑙

𝑝 = 𝛾̇𝑝 sin𝜓 (2.48) 

 

that opens for the possibility to match experimental data.  

 

2.2.3 Hardening behaviour 

According to Beson et.al. [2], mechanical energy transmitted to a material in any transformation, is 

only partly returned. The part which is not returned is dissipated under one of the following forms:  

 Temperature increase  

 Phase transformation 

 Heat production absorbed by the surrounding environment 

 Internal structural modification of the material, e.g. creation of new cracks, slip at grain 

boundaries etc.       

The rearrangement of the microstructure of the material during the transformation results in a new 

stage where mechanical properties can evolve. For perfect plasticity, and no hardening, the strain 

will leave the yield surface unchanged. If the strain leaves the yield surface smaller, negative 

hardening and softening occurs. On the other hand, if the yield surface is left bigger, positive 

hardening and stiffening occurs.  

Materials that are exposed to plastic strains often develops a change in material properties which will 

have an influence on the yield strength of the material. An example of such an effect is the 

occurrence of yielding in the reinforcement. When stresses exceed the yield strength of the 

reinforcement a change in the mechanical properties occurs.  

The yield function described earlier in this chapter was assumed only to be dependent on the stress 

tensor. By making the yield function dependent on a scalar measure of the plastic strain tensor as 

well, the yield function can be stated as:  

 

 𝑓 = 𝑓(𝝈, 𝜅)  (2.49) 

 

In eq. (2.49) 𝜅 denotes the scalared value hardening parameter. This parameter will depend on the 

strain history through invariants of the plastic strain tensor 𝜺𝑝. The hardening parameter may be 

defined by use of the work-hardening hypothesis:  

 

 𝜅̇ =  𝝈 ∶  𝜺̇𝑝 (2.50) 

 

The strain-hardening parameter can also be stated as: 
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 𝜅̇ =  √
2

3
 𝜺̇𝑝 ∶ 𝜺̇𝑝 (2.51) 

 

The yield function is only dependent on the strain-history through a scalar-valued hardening 

parameter. The yield surface can shrink or expand, but not rotate or translate in stress space. This 

type of hardening behaviour is called isotropic hardening, as seen in figure 5.  

  

 

Figure 5: Isotropic Hardening 

The general format for a yield function that includes isotropic and kinematic hardening may be 

written as:  

 𝑓(𝝈, 𝜿) = 0 (2.52) 

 

By introducing a hardening parameter in the yield function, the relation between the stress rate and 

the strain rate will change. The consistency condition, stated in eq. (2.35), may now be taken as 

follows:  

 𝒏𝑇𝝈̇ + ( 
𝜕𝑓

𝜕𝜿
 )𝑇 𝜿̇ = 0  (2.53) 

 

By introducing the hardening modulus, the consistency condition can be replaced with:  

 𝒏𝑇𝝈̇ − ℎ𝜆̇ = 0 (2.54) 

 

Where: 

ℎ  Hardening modulus. ℎ =  −(
𝜕𝑓

𝜕𝜿
)𝑇𝒑(𝝈, 𝜿)  
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The hardening modulus, h regulates the plastic strain velocity in a similar manner as Young’s 

Modulus of Elasticity, E, determines the elastic strain velocity. With Sherman-Morrison formula, the 

relation between the stress- and strain velocity can be expanded to:  

 

 𝝈̇ = ( 𝑫𝑒 − 
𝑫𝑒𝒎𝒏𝑇𝑫𝑒

ℎ + 𝒏𝑇𝑫𝑒𝒎
 ) 𝜺̇ (2.55) 

 

2.3 Integration of the Stress-Strain Relation 

2.3.1 Euler Forward Integration Rule 

In order to obtain stresses and strains in a structure that is combined with loading steps, eq. (2.55), 

must be integrated along the path of loading. A common way of doing this is to use a one-point Euler 

forward integration rule. This integration scheme is fully explicit, which means that the stresses and 

the value of the hardening modulus, h, are known at the beginning of the strain increment. This is 

very convenient because the tangential stiffness matrix may be directly evaluated. When the initial 

stress point, 𝜎0, is located on the yield contour, the stress increment may be calculated as:  

 

 ∆𝜎 = ( 𝑫𝑒 − 
𝑫𝑒𝒎0𝒏0

𝑇𝑫𝑒

ℎ0 + 𝒏0
𝑇𝑫𝑒𝒎0

 ) ∆𝜺 (2.56) 

  

The subscribt “0” means that the quantities are evaluated at the beginning of the load step. The stress 

estimate in iteration 𝑖 + 1 at the end of the loading step 𝜎𝑖+1 is given from:  

 

 𝜎𝑖+1 = 𝜎0 + ∆𝜎 (2.57) 

 

If the stress point initially lies inside the yield contour, the total strain increment must then be 

divided into a purely elastic part and a part that involves elasto-plastic straining. The stress increment 

may now be calculated by the following expression:  

 

 ∆𝜎 =  𝑫𝑒∆𝜺𝐴 + (𝑫𝑒 − 
𝑫𝑒𝒎𝑐𝒏𝑐

𝑇𝑫𝑒

ℎ𝑐+ 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

)∆𝜺𝐵 (2.58) 

 

The subscript c means that the quantities are evaluated at 𝜎 =  𝜎𝑐.  
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Figure 6 - Explicit integration scheme 

 

Figure 6 is a presentation of an explicit integration scheme where the total strain increment is divided 

into two parts; an elastic part and a plastic part. The latter is integrated by an Euler Forward Rule. 

The Euler Forward method has a disadvantage, namely that the contact stresses must be calculated 

explicitly. 

First, the elastic strain increment is calculated:  

 

 ∆𝜎𝑒 = 𝑫𝑒∆𝜺 (2.59) 

  

During this increment the location of the initial stress with respect to the yield contour is irrelevant. 

This stress increment can be viewed upon as a trial stress increment, and within this trial stress 

increment the assumption of purely elastic behaviour holds, i.e. eventual plastic straining is not 

considered.  

 𝜎𝑒  =  𝜎0 + 𝑫𝑒∆𝜺 (2.60) 

 

Eq. (2.60) states the expression for the total trial stress increment, which is given as the sum of the 

stress at the beginning of the load step and the elastic strain increment. It must be evaluated whether 

the trial stress violates the yield condition or not, given by 𝑓(𝜎𝑒 , 𝜅0) > 0. If the trial stress indeed 

violates the yield condition, a correction is applied. The direction and magnitude of the correction is 

governed by: 

 

 𝜎𝑗+1 − 𝜎𝑒 = −
𝒏𝑐

𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐+ 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

𝑫𝑒𝒎𝑐 (2.61) 

 

In the explicit Euler method, if the initial stress state is within the yield contour, the flow direction m, 

the hardening modulus h and the gradient to the yield surface n are computed either at the initial 

stress state or at the stresses at the intersection point at the elastic stress path with the yield contour 

𝜎𝑐. The correction process, called predictor-plastic corrector processor, obtain the following form:   
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 𝜎𝑗+1 = 𝜎𝑒 − ∆𝜆𝑫𝑒𝒎𝑐 (2.62) 

 

Where: 

 

∆𝜆  Amount of plastic flow within each step, and is given by:  

 

 

 

 
∆𝜆 =  

𝒏𝑐
𝑇𝑫𝑒∆𝜺𝐵

ℎ𝑐+ 𝒏𝑐
𝑇𝑫𝑒𝒎𝑐

 (2.63) 

 

This type of integration method is often referred to as a return-mapping algorithm. This is because, 

initially, a trial stress state is computed under the assumption of elastic behaviour. Next, the 

computed trial stress is “mapped” back, i.e. projected in the yield surface direction. A problem that 

arises for the Forward Euler Method is that there is no guarantee that the trial stresses are “mapped” 

back to the yield surface. An error with a magnitude dependent on the curvature of the yield surface 

is committed. Large errors arise with a steep curved yield surface. The accumulated errors become 

especially large during large loading steps. This results in a decrease of the accuracy and may lead to 

instability in the algorithm. Euler Forward algorithm stability is only ensured for small loading 

steps, and the Euler Forward Method is for this reason referred to as conditionally stable.  
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2.4 Tangent Stiffness 

The non-linear equations result in a tangential stiffness matrix that has an influence on the 

performance of the iteration method.  

The dependence of the stress increment on the prescribed strain increment, within the loading step, 

can be conceived as a total stress-strain relationship. When a return-mapping algorithm as the 

implicit Euler method is used, we have a deformation theory of plasticity within a finite loading step. 

The tangential stiffness relation between stress- and strain rate required for a Newton-Raphson 

method used at a structural level, has similarities with respect to the tangential operators from a 

deformation theory of plasticity.   

The total stress-strain relation can be formulated by the following expression:  

 

 𝝈̇ =  𝑫𝑒𝜀̇ −  𝝀̇𝑫𝑒𝒎 −  Δλ𝑫𝑒
𝜕𝒎

𝜕𝝈
𝝈̇ − Δλ𝑫𝑒

𝜕𝒎

𝜕𝜆
𝜆̇ (2.64) 

 

A pseudo-elastic stiffness matrix H given by: 

 

 𝑯 = 𝑨−1𝑫𝑒 (2.65) 

  

And: 

 

 𝑨 = 𝐼 +  Δ𝜆𝑫𝑒
𝜕𝒎

𝜕𝝈
 (2.66) 

  

The algorithmic tangential stiffness relation between stress and strain rate can be written as:  

 

 𝝈̇ = (𝑯 − 
𝑯𝒎̅𝒏𝑇𝑯

ℎ + 𝒏𝑇𝑯𝒎̅
) 𝜺̇ (2.67) 

 

Eq. (2.67) is called the consistent tangential stiffness matrix. The use of this consistent tangential 

stiffness matrix is meaningful when a full Newton-Raphson procedure is used to solve the set of non-

linear equation on a structural level. This is due to the fact that within each load step, the magnitude 

of the plastic strain enters the tangential stiffness matrix.  
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2.5 Crack models 

2.5.1 Introduction 

There exist two main approaches for modeling of the cracking behavior in concrete. These two 

approaches are called discrete cracking and smeared cracking. In the discrete cracking approach, 

fracture is assumed to occur when the nodal force normal to the element boundaries is larger than the 

tensile capacity. New degrees of freedom are created, and a geometrical discontinuity is assumed to 

develop between the old node and the new node from the newly developed degrees of freedom.  

For the smeared cracking approach, a cracked solid is imagined to be a continuum where the 

notations of stress and strain still are valid. The behavior of cracked concrete may then be described 

in terms of stress-strain relations, and after cracking, the isotropic stress-strain relations can be 

replaced by orthotropic stress-strain relations. As a result of this, the original finite element mesh is 

maintained after cracking. This is very efficient with respect to the computational time. The smeared 

cracking approach is the most used method when modeling crack behavior in concrete. For that 

reason, this section will describe the smeared cracking approach.  

The smeared crack models can be divided into two subgroups, namely fixed crack- and rotating 

crack models. For fixed crack models, the direction of the normal of a crack remains constant after 

crack initiation, while for the rotating crack models, the normal of the crack may rotate during crack 

propagation. 
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2.6 Smeared crack models 

2.6.1 Fixed crack models 

Fixed crack models may be evaluated by total strains or by a decomposition of strains. The concept 

of decomposition of strains are utilized by Multi-directional fixed crack models. The fundamental 

idea of these models is the decomposition of the total strain into an elastic strain and a crack strain. 

The decomposition of the strain opens up for the possibility of combining the crack model with other 

non-linear phenomena, e.g. creep and thermal effects. In this thesis such effects shall not be studied, 

and for that reason multi-directional fixed crack models will not be investigated in detail.  

Before cracking, it is in most cases sufficient to model concrete as an isotropic, linear elastic 

material, where the stresses depend on the strains in a linear manner. In a smeared crack approach, 

the nucleation of one or several cracks in a volume attributed to an integration point is interpreted as 

having a negative influence on the current stiffness and strength of that particular point. In general, a 

crack perpendicular to the principal stress direction will arise if the combination of stresses reaches a 

specific value, e.g. the principal stress reaches the tensile strength of the concrete. For a fixed crack 

model, the direction of the crack with respect to the principal stress direction will remain constant 

during cracking. After cracking, the isotropic stress-strain relation will be replaced by an orthotropic 

elastic-type relation with the axes of orthotropy, n and s. The n-axis is located normal to the crack 

direction. The s-axis is located in the tangential direction of the crack. The translation from a global 

x, y-coordinate system to a crack based n, s- coordinate system leads to an orthotropic stress-strain 

relation, with a plane stress situation which can be expressed by the following relation 

 

 

 

 
𝜎𝑛𝑠 = [

𝜎𝑛𝑛

𝜎𝑠𝑠

𝜎𝑛𝑠

] = 𝑫𝑛𝑠
𝑠  𝜺𝒏𝒔 = [

0 0 0
0 𝐸 0
0 0 0

] [

𝜀𝒏𝒏

𝜀𝒔𝒔

𝜀𝒏𝒔

] (2.68) 

 

𝑫𝑛𝑠
𝑠  is the secant stiffness matrix.  

In order to determine the stresses with respect to the global coordinate system x, y, the features of a 

transformation matrix T must be used. The total stress-strain relation can be written as: 

 

 

 
𝝈𝑥𝑦 = 𝑻𝑇(𝜙0)𝑫𝑛𝑠

𝑇 𝑻(𝜙0)𝜺𝑥𝑦 (2.69) 

 

T is the transformation matrix, and can be taken as:  

 

 

 

 

 

𝑻 =  [

𝑐𝑜𝑠2(𝜙0) 𝑠𝑖𝑛2(𝜙0) 2𝑠𝑖𝑛(𝜙0)𝑐𝑜𝑠(𝜙0)

𝑠𝑖𝑛2(𝜙0) 𝑐𝑜𝑠2(𝜙0) −2𝑠𝑖𝑛(𝜙0)𝑐𝑜𝑠(𝜙0)

−𝑠𝑖𝑛(𝜙0)𝑐𝑜𝑠(𝜙0) 𝑠𝑖𝑛(𝜙0)𝑐𝑜𝑠(𝜙0) 𝑐𝑜𝑠2(𝜙0) − 𝑠𝑖𝑛2(𝜙0)

] (2.70) 

 

𝜙0 is the angle between the x-axis and the s-axis. “0” indicates a fixed crack model where the angle  

is constant.  
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The tangential stiffness relation is obtained by differentiating eq. (2.76), and the result is given by the 

following relation: 

 

 𝝈̇𝑥𝑦 = 𝑻𝑇(𝜙0)𝑫𝑛𝑠
𝑇 𝑻(𝜙0)𝜺̇𝑥𝑦 (2.71) 

 

 

Eq. (2.68) describes the secant stiffness matrix without normal stiffness or shear stiffness. Because of 

ill-conditioning, the use of eq. (2.68) may result in convergence difficulties. We may also obtain 

distorted crack patterns by the use of this secant stiffness matrix. By introducing a shear modulus 𝛽 

into the secant stiffness matrix, one can not only reduce the difficulties related to the numerical 

solution procedures, but one may also aid the fixed smeared crack model to simulate the cracking 

process in a more realistic manner. The secant stiffness matrix with the shear modulus 𝛽 can be 

taken as:  

 

 𝑫𝑛𝑠
𝑠 = [

0 0 0
0 𝐸 0
0 0 𝛽𝐺

] (2.72) 

 

𝛽 is the shear retention factor. When choosing a 𝛽- value that equals 1,0, it is assumed that tensile 

strength is kept along the cracks, and no reduction when the tensile stresses reach the tensile strength 

is assumed. The use of the shear retention factor may help to represent the cracking pattern of the 

concrete more realistically because of the fact that when utilizing the shear retention factor, the 

locking effect and the friction in the crack can be represented in an indirect manner.  

Setting the stiffness normal to the crack in eq. (2.72) equal to zero will result in a sudden drop in 

stress from the tensile strength 𝑓𝑡, to zero at crack initiation. This, as well as the lack of the shear 

modulus, may cause difficulties with respect to the numerical solution procedure. By a gradual 

decrease of the tensile capacity, more appealing results as well as more stable computations are 

obtained. This gradual decrease in tensile carrying capacity can be stated as:  

 

 𝑫𝑛𝑠
𝑠 = [

𝜇𝐸 0 0
0 𝐸 0
0 0 𝛽𝐺

] (2.73) 

 

The motivation for introducing the reduced normal stiffness is that plain concrete is not a perfectly 

brittle material, but has some residual load-carrying capacity after reaching the tensile strength. This 

effect is called tension softening, and will be explained later on in this thesis.  

Smeared crack models can be seen as anisotropic damage models, where both normal stiffness and 

the shear stiffness are reduced. This leads to the following definition, which incorporates the 

decrease of the Poisson effect upon cracking: 
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 𝑫𝑛𝑠
𝑠 = 

[
 
 
 
 
 
 

(1 − 𝜔1)𝐸

1 − (1 − 𝜔1)𝜈2

(1 − 𝜔1)𝜈𝐸

1 − (1 − 𝜔1)𝜈2
0

(1 − 𝜔1)𝜈𝐸

1 − (1 − 𝜔1)𝜈2

𝐸

1 − (1 − 𝜔1)𝜈2
0

0 0
(1 − 𝜔2)𝐸

2(1 + 𝜈) ]
 
 
 
 
 
 

 (2.74) 

 

, where:  

 

1 − 𝜔1: Represents the degradation of the normal stiffness, which can be related to the 

normal reduction factor 𝜇.  

1 − 𝜔2: Represents the degradation of the shear stiffness, and is relatable to the factor 

𝛽.  

𝜈   Poisson’s ratio of the material. 

  

2.6.2 Rotating crack models 

In the previous section, the fixed crack model was described. The assumption for the fixed crack 

model is that the direction of the crack plane is fixed upon violation of the fracture criterion. During 

subsequent loading, shear strains along the crack plane can arise, which will result in an increase of 

shear stresses over the crack plane. The stress normal to the crack plane will be gradually reduced. 

However, the residual normal stress and the shear stress over the crack can cause principal values of 

the stress tensor that is higher than the tensile strength in a direction that differs from the normal to 

the crack plane. By introducing rotating crack models, this problem can be overcome.  

Rotating crack model is also a total stress-strain relation, like the fixed crack model. The difference 

for the rotating crack model is that the direction of the principal stress and the normal to the crack, 

always are aligned. The angle between the x- axis and the s-axis, 𝜙, will vary and is no longer 

constant. For rotating crack models there is no need to determine a secant shear stiffness because the 

shear stress 𝜎𝑛𝑠 is always zero. For this model, there is only one damage variable left, which is the 

factor 𝜔1. The secant stiffness matrix may now be written as:  

 

 

 

 

 

 

 

𝑫𝑛𝑠
𝒔 =  

[
 
 
 
 

(1 − 𝜔1)𝐸

1 − (1 − 𝜔1)𝜈2

(1 − 𝜔1)𝜈𝐸

1 − (1 − 𝜔1)𝜈2
0

(1 − 𝜔1)𝜈𝐸

1 − (1 − 𝜔1)𝜈2

𝐸

1 − (1 − 𝜔1)𝜈2
0

0 0 0]
 
 
 
 

 (2.75) 

 

The total stress-strain relation obtains the following form: 

 

 𝝈𝑥𝑦 = 𝑻𝑇(𝜙)𝑫𝑛𝑠
𝑇 𝑻(𝜙)𝜺𝑥𝑦 (2.76) 
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An important feature of the rotating crack model is that the local n,s coordinate system coincides 

with the coordinate system of the principal stresses. As a result of this, the shear stress 𝜎𝑛𝑠 is zero, as 

stated above. The property where the principal directions of the stress- and strain tensors coincide 

throughout the cracking process is called coaxiality between the stress and strain tensors. This 

assumption of coaxiality is a useful feature in the sense that one can determine a stress-strain relation 

with principal values in the same coordinate system.  

The tangential stiffness relation reads:  

 

 𝝈̇𝑥𝑦 = [ 𝑻𝑇(𝜙)𝑫𝑛𝑠𝑻(𝜙) +
𝜕𝑻𝑇(𝜙)

𝜕𝜙
𝝈𝑛𝑠

𝜕𝜙𝑇

𝜕𝜺𝑥𝑦
] 𝜺̇𝑥𝑦 (2.77) 

 

The tangential stiffness matrix for the rotating crack model is more complicated due to spin of the 

principal axes. The expression for the tangential stiffness matrix may be stated as follows: 

 

 𝑫𝑥𝑦 = [𝑻𝑇(𝜙)
𝜕𝝈𝑛𝑠

𝜕𝜺𝑛𝑠
𝑻(𝜙) + 

𝜕𝑻𝑇(𝜙)

𝜕𝜙
𝝈𝑛𝑠

𝜕𝜙𝑇

𝜕𝜺𝑥𝑦
] (2.78) 

 

The first term of eq. (2.85) is equal to the tangential stiffness that follows from the fixed approach, 

and may be considered as a material tangent stiffness. The second term follows from the principal 

axes spin, and can be considered as a function of the stresses and the angle 𝜙 between the crack 

coordinate system and the global coordinate stystem. (Feenstra and de. Borst [9]).  

The stress-strain relation in the n,s- coordinate system can be derived by: 

 

 [

𝜎𝑛𝑛

𝜎𝑠𝑠

𝜎𝑛𝑠

] =  [

𝜇𝐸 0 0
0 𝐸 0

0 0
𝜎𝑛𝑛 − 𝜎𝑠𝑠

2(𝜀𝑛𝑛 − 𝜀𝑠𝑠)

] [

𝜀𝑛𝑛

𝜀𝑠𝑠

𝜀𝑛𝑡

] (2.79) 

  

The tangential shear stiffness 
𝜎𝑛𝑛−𝜎𝑠𝑠

2(𝜀𝑛𝑛−𝜀𝑠𝑠)
 follows from the requirement of coaxiality between the stress 

and the strain tensors.  

The decision whether to choose a fixed crack model or a rotating crack model depends highly on the 

problem at hand. The rotating crack model is the preferred model in cases with localized cracking 

because it provides less stress-locking than the fixed crack model. For smeared cracking in 

reinforced concrete structures, shear across fixed cracks may be of relevance. If this is the case, then 

the fixed crack model provides more possibilities of modelling that. (Hendriks and Rots [12]).  
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2.7 Material models 

With today’s development of finite-element computer programs, the difficulty related to modelling 

the behavior of reinforced concrete remains one of the most challenging tasks in the field of 

structural concrete engineering. (Chen [4]). The stress-strain relationship of concrete is modeled in a 

separate manner for tension and compression. Hendriks et al. [11] suggests using a parabolic curve to 

describe the hardening and softening of concrete in compression. For the tensile behavior, an 

exponential softening diagram is preferred. The parameters for this material model are the tensile 

strength 𝑓𝑐𝑡, the fracture energy 𝐺𝑓 and the equivalent length ℎ𝑒𝑞. In absence of an exponential 

softening curve, a multi-linear approximation of the exponential uniaxial stress-strain diagram may 

be used. For the compressive behavior it is recommended a parabolic stress-strain diagram with a 

softening branch in order to limit the maximum compressive stress. The softening branch is 

recommended to be based on the compressive fracture energy 𝐺𝑐 in order to reduce mesh sensitivity.     

 

2.7.1 Concrete in tension 

The assumption of zero stiffness normal to the crack leads to a rapid decrease in tensile stresses from 

the tensile strength of the concrete, 𝑓𝑐𝑡 to zero at crack initiation. This rapid decrease in tensile 

stresses is somewhat unrealistic, and may just as well lead to numerical instability, as stated in 

section 2.6.1. Tests have shown that in plane concrete, the stress-strain graph will gradually decrease 

after cracking of the concrete. This phenomenon is called tension-softening, and is taken into account 

when modeling the tensile behavior of plane concrete.  

In DIANA10, the tensile behavior of reinforced concrete may be modeled by using different 

approaches. For the Total Strain crack model, six softening functions that are based on fracture 

energy is implemented. Some of these are shown in the figure below.  

 

 

Figure 7 - Predefined tension softening curves TSC model. (TNO DIANA [18]) 

A similar way of modelling the gradual decrease of the stress-strain diagram after concrete cracking 

is called tension stiffening. This phenomenon is related to the effect of concrete acting in tension 

between cracks on the stress of steel reinforcement. (Allam et.al. [1]). At the location of a crack, all 
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the internal tensile force is carried by the reinforcement. Between the cracks, some tensile force is 

transferred by bond to the concrete surrounding the bar. This results in an increase in reinforcement 

strains, and causes the reinforcement strains at the uncracked location to be less than the 

reinforcement strains at the cracked location.  

Both the tension softening and the tension stiffening models represent the gradual decrease of the 

stress-strain diagram of the concrete. However, the two models differ regarding the explanation of 

the phenomenon of decreasing tensile stress. The tension-softening model assumes a gradual 

decrease of tensile stresses caused by damage of concrete sections, while the tension stiffening model 

assume that the concrete between the cracks contribute to the stiffness, and is only valid for 

reinforced concrete structures.      

As mentioned previously, an exponential softening curve was recommended. This curve is provided 

in DIANA10 as the “EXPONE” curve in Figure 7. When choosing this curve for tension in 

DIANA10, the analyst is asked to provide the fracture energy 𝐺𝑓, the tensile strength 𝑓𝑐𝑡 and 

alternatively the crack bandwidth. Since the area under the curve should correspond to 
𝐺𝑓

ℎ
, where h 

denotes the crack bandwidth, it is sufficient to input the tensile strength and the fracture energy. The 

crack bandwidth is calculated automatically by DIANA10 since “EXPONE” is a so called predefined 

curve. According to (fib Model Code 2010 [11]), the fracture energy of concrete is defined as the 

required energy to propagate a tensile crack of unit area. It should be determined by tests, but in the 

absence of experimental data, the fracture energy 𝐺𝑓 can be calculated by the following expression: 

 

 𝐺𝐹 = 73 𝑓𝑐𝑚
0,18

  [N/m] (2.80) 

   

Where 𝑓𝑐𝑚 is the mean compressive strength: 

 

 
𝑓𝑐𝑚 = 𝑓𝑐𝑘 + ∆𝑓 

 
(2.81) 

And ∆𝑓 = 8 MPa.  

 

As an alternative, Hendriks et.al. [11] also proposes a calculation procedure for the fracture energy. 

The fracture energy can be calculated by the following formula: 

 

 

 𝐺𝐹 = 𝐺𝐹0  (
𝑓𝑐𝑚
𝑓𝑐𝑚0

)
0.7

   (2.82) 

 

, where the parameter 𝐺𝐹0 depends on the maximum aggregate size Dmax. Values for 𝐺𝐹0 are listed in 

Table. 1.  

 

 

 



29 

 

Table 1 - Values of  GF0 

Dmax [mm] GF0 [Nmm/mm] 

8 0,025 

16 0,030 

32 0,058 

 

DIANA calculates the crack bandwidth automatically, but the analyst is provided the opportunity to 

input the value for the crack bandwidth manually as well. The equivalent length, i.e. the crack 

bandwidth, should be based on the element dimensions and the directions of the cracks. For linear 

two-dimensional elements, the crack bandwidth can be taken as: 

 

 ℎ =  √2𝐴 (2.83) 

 

And for higher order two-dimensional elements: 

 

 ℎ =  √𝐴 (2.84) 

   

In eq. (2.83) and (2.84), A denotes the total area of the element. 
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2.7.2 Concrete in compression  

In a Total Strain crack model, the behavior of the concrete is in general nonlinear between the stress 

and the strain in a given direction. DIANA10 offers predefined compression curves, or the 

compressive behavior may be customized by the use of multi-linear curve.  

 

 

Figure 8 - Predefined compression curves for Total Strain models (TNO DIANA [18]) 

 

Figure 8 represents some of the predefined compressive curves. Hendriks et. al. [11] recommends a 

parabolic function in compression. The parabolic curve is based on the fracture energy by the 

definition of the crack bandwidth of the element, where DIANA10 assumes a value h with respect to 

the square root of the element area. The area under the parabolic curve should correspond to 
𝐺𝑐

ℎ
, 

where 𝐺𝑐 denotes the compressive fracture energy, which can be calculated with respect to the 

fracture energy 𝐺𝐹: 

 

 

 
𝐺𝑐 = 250𝐺𝐹 (2.85) 

 

Different factors in which have an influence on the compressive behavior may also be specified, i.e. 

a confinement model. Concrete subjected to compressive stresses exhibits a behavior that is 

dependent on the pressure, meaning that the strength and ductility increase with increasing isotropic 

stress. This effect is called lateral confinement. Furthermore, the compressive behavior may be 

influenced by lateral cracking. In order to simplify the compression curve, the confinement model 

can be neglected by selecting “no increase” for the confinement model.  
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2.8 Reinforcement 

The reinforcement used in the models is ordinary reinforcement. The nonlinear effect of strain 

hardening will be taken into account. The reinforcement is modeled individually as bar elements in 

each model. An important aspect of this thesis is to investigate the problem regarding bond-slip 

reinforcement, i.e. when we no longer have perfect bonding conditions between the reinforcing bar 

and the surrounding concrete. The basic theory regarding bond-slip reinforcement will be presented 

later on in the chapter, while the modelling procedure will be presented in part II of this thesis.  

 

2.8.1 Embedded reinforcement 

As default, DIANA10 assumes the reinforcement to be embedded, which means that the bond 

between the reinforcing bar and the surrounding concrete is “perfect”. The basic idea of embedded 

reinforcement is that the internal virtual work consists of two different contributions, where the 

stresses in the reinforcement and the concrete can be split into two separate parts. This results in a 

separate stress-strain relation for the reinforcement and the concrete. The reinforcement can be 

modelled with elasto-plastic models which includes hardening behavior, and the concrete can be 

modelled with any material model and include nonlinear effects such as cracking. The main 

assumptions regarding embedded reinforcement reads:  

- Embedded in structural elements 

- No degrees of freedom 

- Strains are computed from the displacement field of the structural element in which the 

reinforcement is embedded. With other words the reinforcing bar is exposed to the same 

strain situation as a concrete element aligned with the bar.  

These assumptions seem sufficient during the un-cracked stage, but may not be sufficient any longer 

when we enter the cracked stage.  

 

2.8.2 Bond-slip reinforcement 

General 

In order to describe the interaction and transfer of force between concrete and reinforcement, the 

term bond is used (fib Model Code 2010 [11]). The bond has a major influence on the performance 

of reinforced concrete structures. In the serviceability limit state, bond influences the width and 

spacing of transverse cracks, curvature and tension stiffening.  

When damage around bars take place in reinforced concrete structures the structural behaviour is 

changed and the bond between the concrete and the reinforcing bars are no longer perfect (Brisotto 

et.al. [3]). At the concrete-steel interface, two evident damage processes can be highlighted. The first 

occurs when the concrete close to the reinforcing bars is not sufficiently confined by pressure or 

transverse reinforcement, causing a so called splitting failure. This process is the result of the 

development of cracks emerging from the bar, along the length of the bar. Eventually these cracks 

will propagate outwards, which reduces the mechanical interlock due to rib bearing. Another source 

to splitting is the reduction of the bar diameter due to yielding in the steel. The second type of 

damage occurs when a good level of confinement is provided and is caused by concrete crushing 

between the ribs. The damage process is completed when the concrete in between the ribs is sheared 

off, and it is called pull-out failure. For this kind of failure, the bond stresses are much higher, and 

the failure occurs at a much higher level of slip than for the splitting failure. The failure by pull-out is 

for that reason considered to be less brittle than failure by splitting. 
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Different laws of bond-slip 

In the modelling procedure of reinforced concrete elements, different bond-slip laws may be 

assumed. There does not however, exist any fundamental law for modelling the bond-slip for 

reinforced concrete elements since it depends on the entire system’s boundary condition. (Tejchman 

and Bobinski [17]). In order to consider the bond-slip behaviour, it is assumed an interface with zero 

thickness along a surface, where a relationship between the slip and the shear traction is introduced. 

Several types of bond-slip laws may be applied. In this thesis, two types of bond-slip laws were 

investigated.  

One of the bond-slip laws that were investigated was proposed by Dörr. In DIANA10, this law is 

referred to as Cubic Function by Dörr. The following relation between the slip and the shear friction 

applies for this type of bond-slip law:  

 

 

 

 
𝜏 =  𝑓𝑡 [5 (

𝑢

𝑢1
) − 4.5 (

𝑢

𝑢1
)

2

+ 1.4 (
𝑢

𝑢1
)
3

]      𝑤ℎ𝑒𝑛 0 < 𝑢 ≤ 𝑢0 (2.86) 

  

And: 

 

 𝜏 =  𝜏𝑚𝑎𝑥 = 1.9 𝑓𝑡     𝑤ℎ𝑒𝑛 𝑢 > 𝑢1  (2.87) 

 

Where: 

 

𝜏:  Denotes the bond stress.  

𝜏𝑚𝑎𝑥  Is the bond resistance.  

𝑓𝑡  Tensile strength of the concrete. 

𝑢1  Displacement at which perfect slip occurs. Tejchman and Bobinski [17] recommends 

the value for 𝑢1 = 0.06 𝑚𝑚. 

 

Equation (2.86) and (2.87) describes the slip curve shown in Figure 9.  
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Figure 9 - Cubic function by Dörr, (Tejchman and Bobinski [17]) 

 

The second approach for the modelling of bond-slip corresponds to the local bond-slip relationship 

derived from fib Model Code 2010. In DIANA10, this approach is denoted user defined friction 

stress-slip diagram. According to fib Model Code 2010 [11], for monotonic loading, the bond 

stresses between the concrete and the reinforcing bar can be taken as a function of the relative 

displacement s, and may be derived by the use of the following formulas:  

 

For 0 ≤ 𝑠 ≤ 𝑠1: 

 𝜏0 = 𝜏𝑚𝑎𝑥 (
𝑠

𝑠1
)
𝛼

 (2.88) 

 

For 𝑠1 ≤ 𝑠 ≤ 𝑠2: 

 

 
𝜏0 = 𝜏𝑚𝑎𝑥 (2.89) 

 

For 𝑠2 ≤ 𝑠 ≤ 𝑠3: 

 

 

 

𝜏0 = 𝜏𝑚𝑎𝑥 − (𝜏𝑚𝑎𝑥 −  𝜏)
𝑠 − 𝑠2

𝑠3 − 𝑠2
 (2.90) 

 

For 𝑠3 < 𝑠:  

 

 

 

𝜏0 = 𝜏𝑓 (2.91) 

 



34 

 

 

Figure 10 - Bond stress-slip relationship, (fib Model Code 2010 [11]) 

 

In parts of the structure where the reinforcement is subjected to compression, and in un-cracked 

concrete parts subjected to tension, the concrete and the reinforcement strain are equal. In cracked 

parts of the structure, the tension forces in the crack are transferred by the reinforcing bar. The 

absolute displacements of the steel and the concrete between two cracks are in general different. Due 

to the relative displacements, bond stresses develop between reinforcement and concrete. The 

development of these stresses depend on the surface of the reinforcing steel, the slip s, the 

compressive concrete strength fcm and the localization of the reinforcing steel during casting. 

Furthermore, it is considered that a part of the tension force acting in the reinforcement between 

cracks, are transferred to the concrete by bond. This effect is called tension stiffening, and is 

described in section 2.7.1.  

In order to determine the stress-slip curve, a table consisting of various parameters was used. This 

table takes into account the failure mode that is being investigated, i.e. pull-out or splitting failure, 

and different parameters apply for these two failure modes. 

 

Table 2 - Parameters for defining mean bond stress-slip curve, (fib Model Code 2010, [11]) 

Pull-out failure 

 Good bonding conditions All other bonding conditions 

𝜏𝑚𝑎𝑥 2.5√𝑓𝑐𝑘 1.25√𝑓𝑐𝑘 

𝑠1 1.0 mm 1.8 mm 

𝑠2 2.0 mm 3.6 mm 

𝑠3 𝑐𝑐𝑙𝑒𝑎𝑟 𝑐𝑐𝑙𝑒𝑎𝑟 

𝛼 0.4 0.4 

𝜏𝑓 0.4𝜏𝑚𝑎𝑥 0.4𝜏𝑚𝑎𝑥 

 

𝑐𝑐𝑙𝑒𝑎𝑟: Clear distance between reinforcement bar ribs    
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2.9 Elements 

2.9.1 Plane stress elements 

Flat plane stress elements, also known as membrane elements are common to use for modelling of 

structures where the loading takes place in plane. The coordinates of the element nodes must be 

located in the x, y-plane of the element.  

 

 

Figure 11 - Characteristics of a plane stress element, (TNO DIANA  [18]) 

 

In plane stress elements, the stresses perpendicular to xy-plane, 𝜎𝑧𝑧, are equal to zero. These type of 

elements are only applicable for structures where no out-of-plane bending takes place.  

 

4-noded quadrilateral 

The Q8MEM as it is called in DIANA10, is a 4-noded quadrilateral plane stress element.   

 

 

Figure 12 - 4-Noded Quadrilateral Elemet, (TNO DIANA [18]) 
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The element has two translational degrees of freedom per node, and is based on Gauss integration 

and linear interpolation. The shape functions can be expressed as: 

 

 𝑢𝑖(𝜉, 𝜂) =  𝑎0 + 𝑎1𝜉 + 𝑎2𝜂 + 𝑎3𝜉𝜂 (2.92) 

 

A full gauss quadrature rule for this element would correspond to 2 x 2 integration points, and a 

reduced gauss quadrature rule wold correspond to 1 x 1 integration points. As a default, DIANA10 

applies 2 x 2 integration points, which correspond to the “Regular” integration scheme.  

 

8-noded quadrilateral 

In DIANA10, the 8-noded quadrilateral is denoted CQ16M. The element is an isoparametric plane 

stress element and has in total 8 nodes with two translational degrees of freedom per node.  

 

 

Figure 13 - CQ16M: 8-noded plane stress element. (TNO DIANA [18]) 

 

The element is based on quadratic interpolation and Gauss integration. The shape functions of the 

CQ16M element can be expressed as:  

 

 𝑢𝑖(𝜉, 𝜂) =  𝑎0 + 𝑎1𝜉 + 𝑎2𝜂 + 𝑎3𝜉𝜂 + 𝑎4𝜉
2 +  𝑎5𝜂

2 + 𝑎6𝜉
2𝜂 + 𝑎7𝜉𝜂

2  (2.93) 

 

The polynomial expressed in eq. (2.93) yields a strain 𝜀𝑥𝑥 which vary linearly in x-direction and 

quadratically in y-direction. The strain 𝜀𝑦𝑦 varies quadratically in y-direction and linearly in y-

direction. The shear strain 𝛾𝑥𝑥 varies quadratically in both x- and y-direction. The optimal sampling 

points for stresses corresponds to a 2 x 2 gauss quadrature rule, which is applied as a default by 

DIANA10.     
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2.9.2 Interface elements 

In DIANA10, modelling of geometric discontinuities like the bond-slip layers in reinforced concrete, 

is commonly carried out with the use of structural interface elements. The idea of these type of 

elements is that the forces acting on the interface are related to the relative displacements on each 

side of the interface, as shown in figure 14.  

 

 

Figure 14:Two-dimensional interface element, (TNO DIANA [18]) 

 

For the two-dimensional situation, the traction vector t is defined as:  

 

 

 
𝒕 =  { 

𝑡𝒏
𝑡𝒕

 } (2.94) 

 

The relative displacements, ∆𝑢, can further be taken as: 

 

 ∆𝒖 = {
∆𝑢𝒏

𝑑𝑡
} (2.95) 

 

The linear relation between the traction and the displacement vector is governed by the following 

equation:  

 

 { 
𝑡𝒏
𝑡𝒕

 } =  [
𝑘𝒏 0
0 𝑘𝒕

] {
∆𝑢𝒏

𝑑𝑡
} (2.96) 

 

The general constitutive relation, which is assumed linear between increments, can now be written 

as:  

 

 𝒕̇ = 𝑫 ∆ 𝒖̇ (2.97) 

 

D is the tangential stiffness matrix, 𝒕̇ is the traction vector and ∆ 𝒖̇ contains the relative 

displacements.  
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2.9.3 Bond-slip interface elements 

In the previous section, structural interfaces were presented. This was done in order to describe the 

idea behind interface elements and how the interface forces are related to the relative displacement. 

However, for bond-slip reinforcements in 2D, these structural interface elements are not utilized.  

According to DIANA [18], one of the differences between bond-slip reinforcement and embedded 

reinforcement is that bond-slip reinforcement must be defined as either beam or truss elements. This 

is accomplished by assigning Element Data. The implementation of the bond-slip interface from the 

.dat-file is seen in Figure 15. 

 

 

Figure 15: Bond-slip interface implementation in a .dat-file 

“DATA” represents the element data for the model. Element data 1 is assigned to the concrete 

elements, and applies “BUBBLE”, which is an integration scheme described in 5.4. Element data 2 

and 3 are assigned to the reinforcing bars. “BEGINN” denotes the start node of the reinforcement, 

and “ENDNOD” denotes the end node of the reinforcement. “INTERF” specifies the element type 

used to model bond-slip reinforcements, which in this case is truss. These truss elements are 

connected to the mother element, i.e. the concrete element. No integration schemes can be assigned 

to bond-slip reinforcements. The applied truss element for the bond-slip reinforcements uses the 

default integration scheme of a truss element. 

The type of element that is used for the bond-slip reinforcement is automatically determined by 

DIANA10:  

Table 3: Interface elements bond-slip reinforcement (TNO DIANA [18]) 

Mother Element INTERF TRUSS INTERF BEAM 

Q8MEM L4TRU L7BEN 

Q16MEM CL6TR CL9BE 

 

The mother element denotes the element type used for the concrete mesh. Q8MEM and Q16MEM 

are quadrilateral elements, described in 2.9.1.   
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2.9.4 Truss Elements 

Truss elements, or bars as the also may be named, must fulfil the condition that the dimension d 

perpendicular to the axis, are small compared to the length of the bar.  

 

 

Figure 16 - Truss element with corresponding coordinate system, (TNO DIANA [18]) 

 

The truss element may only be subjected to an axial deformation, and no shear nor bending 

deformation takes place. Truss elements are well suited for modelling discrete reinforcement bars.  

 

 

Four noded truss element 

The L4TRU is an enhanced truss element in the DIANA10 element library. In addition to the two 

degrees of freedom in x-direction, this element has two degrees of freedom in the y-direction. This 

makes the element useful in two-dimensional analysis. 

 

 The shape functions of the L4TRU element can be expressed as: 

 

 
𝑢𝑖(𝜉) =  𝑎0 + 𝑎1𝜉 

 
(2.98) 
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3. Numerical solution methods 

3.1 Iterative procedures 

In this section the general steps in an iterative procedure will be briefly discussed. " In all iterative 

procedures, the total displacement increment ∆𝑢 is adapted iteratively by iterative increments du until 

equilibrium is reached, up to a certain prescribed tolerance.” (TNO DIANA, [18]). The incremental 

displacements at iteration i + 1 is calculated as follows:  

 

 ∆𝑢𝑖+1 = ∆𝑢𝑖 + 𝛿𝑢𝑖+1  (3.1) 

 

There are several iteration procedures at hand. The difference between them is how 𝛿𝑢𝑖+1 is solved 

for. The iterative increments are calculated by using a “stiffness matrix” K, which represents a linear 

relation between the force vector and the displacement vector. The stiffness matrix can change every 

iteration, and the stiffness matrix being used in iteration i is denoted Ki.  

 𝛿𝑢𝑖 = 𝐾𝑖
−1𝑔𝑖  (3.2) 

 

Equation (3.2) describes a direct approach to determine the iterative increments. 𝑔𝑖 denotes the out-

of-balance force vector at the end of increment i.  

In the next section the different iteration methods that is available in DIANA10 will be described. 

The first three methods that are presented are the Newton-Raphson method, the Quasi-Newton 

method and the Constant Stiffness method. Furthermore, two variations, Continuation and Line 

Search will be described. These two variations can be used in combination with the three methods 

mentioned above.   

Within the class of Newton-Raphson methods, it is usually distinguished between two sub methods: 

Regular Newton-Raphson and Modified Newton Raphson.  Both methods can be used to solve for the 

iterative increment displacement vector. In general for a Newton-Raphson method, the stiffness 𝐾𝑖 

represent the tangential stiffness of the structure, and can be written as:  

 

 

 𝐾𝑖 =
𝜕𝑔

𝜕∆𝑢
  (3.3) 
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3.1.1 Regular Newton-Raphson 

In a regular Newton-Raphson method, the stiffness relation from eq. (3.3) is evaluated after every 

iteration.  

 

Figure 17 - Regular Newton-Raphson iteration, (TNO DIANA [18]) 

The regular Newton-Raphson method provides quadratic convergence, which means that the method 

needs few iterations in order to converge towards a “correct” solution. A regular Newton-Raphson 

method requires relatively few iterations, but the iterations are on the other hand time consuming.  

 

3.1.2 Modified Newton-Raphson 

In a modified Newton-Raphson method, the stiffness relation from eq. (3.3) is only evaluated at the 

start of the increment.  

 

Figure 18 - Modified Newton-Raphson iteration, (TNO DIANA [18]) 

The modified Newton-Raphson Method usually converges slower towards the «correct» solution 

than the Regular Newton-Raphson method. However, for the Modified Newton-Raphson method, it 

is not necessary to set up a new stiffness matrix after every iteration. This means that there will be 

more iterations, but the iterations are less time concuming.  
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3.1.3 Quasi-Newton 

The quasi-newton method, often referred to as the Secant Method, uses information of previous 

solution vectors and out-of-balance force vectors during the increment in order to accomplish a better 

approximation. Unlike the Regular Newton-Raphson method, the Quasi-Newton method does not 

establish completely new stiffness matrix every iteration.  

 

Figure 19 - Quasi-newton iteration, (TNO DIANA [18])  

Quasi-Newton usually converges slower than regular Newton-Raphson, but faster than Modified 

Newton-Raphson.  

 

The Quasi-Newton relation can be expressed as: 

 

 
𝐾𝑖+1𝛿𝑢𝑖 =  𝛿𝑔𝑖  (3.4) 

 

Where 𝑔𝑖 represents the change in out-of-balance force vector related to the increment: 

 

 
𝛿𝑔𝑖 = 𝑔𝑖+1 − 𝑔𝑖  (3.5) 

 

Now, with a stiffness matrix Ki that fulfills the requirements from eq. (3.4), the iterative 

displacement can be calculated from 

 

  𝛿𝑢𝑖 = 𝐾𝑖
−1𝑔𝑖. (3.6) 

 

Three different variations of the Quasi-Newton method are implemented in Diana10. These three are 

called Broyden, Broyden-Fletcher-Goldfarb-Schanno (BFGS) and Chrisfield methods. By substitution 

it can be shown that the matrices stated below satisfy the Quasi-Newton relation  

 

 𝐾𝑖+1 = 𝐾𝑖 + 
(𝛿𝑔𝑖 − 𝐾𝑖 𝛿𝑢𝑖) 𝑐

𝑇

𝑐𝑇𝛿𝑢𝑖
 (3.7) 
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𝐾𝑖+1 = 𝐾𝑖 + 

(𝛿𝑔𝑖 − 𝐾𝑖𝛿𝑢𝑖)𝑐
𝑇 + 𝑐(𝛿𝑔𝑖 − 𝐾𝑖𝛿𝑢𝑖)

𝑇

𝑐𝑇𝛿𝑢𝑖
−

(𝛿𝑔𝑖 − 𝐾𝑖𝛿𝑢𝑖)
𝑇𝛿𝑢𝑖  𝑐 𝑐

𝑇

(𝑐𝑇𝛿𝑢𝑖)2
 

 

(3.8) 

 

3.1.4 Broyden  

If c is substituted with 𝛿𝑢 and Ki+1 is inverted, the Broyden method results in: 

 

 𝐾𝑖+1
−1 = 𝐾𝑖

−1 + 
(𝛿𝑢𝑖 − 𝐾𝑖

−1 𝛿𝑔𝑖)𝛿𝑢𝑖
𝑇𝐾𝑖

−1

𝛿𝑢𝑖
𝑇𝐾𝑖

−1𝛿𝑔𝑖

 (3.9) 

 

 

3.1.5 Broyden-Fletcher-Goldfarb-Schanno(BFGS) 

Eq. (3.9) yields the following relation: 

 

 𝐾𝑖+1
−1 = ( 𝐼 + 

𝛿𝑢𝑖𝛿𝑔𝑖
𝑇

𝛿𝑢𝑖
𝑇𝛿𝑔𝑖

)𝐾𝑖
−1  (𝐼 −

𝛿𝑔𝑖𝛿𝑢𝑖
𝑇

𝛿𝑢𝑖
𝑇𝛿𝑔𝑖

 ) + 
𝛿𝑢𝑖𝛿𝑢𝑖

𝑇

𝛿𝑢𝑖
𝑇𝛿𝑔𝑖

 (3.10) 

 

The relation stated in eq. (3.10) is known as the BFGS method.  

For the BFGS method the secant stiffness matrices are not calculated explicitly. Instead the iterative 

displacements 𝛿𝑢 are calculated directly by substituting eq. (3.9) or eq. (3.10) into eq. (3.6). By use 

of eq. (3.9) and eq. (3.10), the correct secant stiffness matrix can be calculated from an update vector 

and 𝐾0. 𝐾0 denotes the stiffness matrix that is used at the beginning of the increment.  

3.1.6 Chrisfield method 

According to Chrisfield [5], it has been developed a range of “more efficient Modified Newton-

Raphson iterations or Secant-Newton techniques”, and these are relatable to the BFGS procedure 

presented in the previous section. These techniques were suggested in order to avoid increasing 

computational time required for Broyden og BFGS methods.  

All three Quasi-Newton methods can be utilized irrespectively of the stiffness matrix 𝐾0. 𝐾0 can in 

this case be the tangential stiffness matrix as used in Figure 19, but it could just as well be the linear 

elastic stiffness matrix. With respect to convergence rate, these methods usually lay between the 

convergence rate of the Regular Newton Raphson and the Modified Newton Raphson schemes. 

(TNO DIANA, [18]). This is also valid for the time consumption. For Broyden and BFGS schemes, 

the increase in number of iterations result in an increase in time consumption and memory.  
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3.1.7 Linear and constant stiffness iteration 

These iteration methods can be applied if the methods described above, i.e. Newton-Raphson 

become unstable.  

 

Linear stiffness iteration 

This iteration method uses the linear stiffness matrix at every iteration. This method might have the 

slowest convergence, but it is very “cheap” with respect to computational time since the stiffness 

matrix only need to be established once. The Linear Stiffness method is useful when it is desired that 

the linear stiffness matrix remains symmetric where the tangential stiffness matrix would become un-

symmetric.  

 

Figure 20 - Linear Stiffness iteration, (TNO DIANA [18]) 

 

Constant stiffness 

The Constant Stiffness method utilizes the stiffness matrix obtained from the previous increment. 

This means that if Newton-Raphson iterations are used during the first phase of an analysis, and 

Constant Stiffness iterations are used in the second phase, the stiffness in the latter would be equal to 

the stiffness calculated in the last step of the first analysis phase. If Constant Stiffness iterations are 

used for all steps it corresponds to the Linear Stiffness Method. 

 

3.1.8 Line Search 

There are variations that can be combined with ordinary iteration procedures in order to improve the 

Finite Element Solution. In DIANA10, it is possible to enable both Line Search and Continuation 

Iteration. The Line Search option is well suited for situations involving rapid changes in tangent 

stiffness, i.e. in a reinforced concrete analysis where the concrete cracks or the reinforcement starts 

to yield. The basic idea of the line search method is to apply an improvement to the original 

incremental displacement vector by scaling it by a multiplier, and in that way arrive at the point of 

lowest potential energy along the search direction. (De Borst et.al. [7]). Continuation Iteration is well 

suited for continuous deformation processes. The Line Search method does not only accelerate the 

iterative process, but they may also provide convergence where it would be impossible to obtain 
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convergence without line search. (Mathisen [14]). This option is highly recommended and it may be 

applied in all types of Newton methods, i.e. standard, modified and quasi Newton methods.   

 

3.2 Convergence criteria 

A convergence criterion is a measurement of the accuracy of the obtained solution, or how well the 

obtained solution satisfies equilibrium. In nonlinear finite element analysis, the convergence criteria 

are based on some norm of either displacements, residuals, force or energy. The convergence criteria 

have the ability to terminate a step when convergence occurs, but they are also capable of controlling 

that the iterative procedures stop during a step if a certain amount of iterations have been exceeded 

or the iterative procedures leads to divergence. Also, in DIANA10, the analyst is provided with the 

option that the iterative procedures continue although convergence is not obtained within the 

respective step.  

When setting up the analysis with the convergence criteria, one should proceed with caution. 

According to Mathisen [14], the displacement based convergence criterion is in general not advisable 

due to the fact that a slow convergence rate can lead to a misleadingly satisfaction of the criteria. On 

the other hand, the residual based criteria are by far more reliable than the displacement criteria as 

they monitor that equilibrium has been obtained within a prescribed tolerance in the current 

increment. The energy based criterion combined with both displacement criterion and residual 

criterion is possible, although the energy criterion should not be applied when line search is used.  

Convergence criteria and tolerances should be set up and chosen in such a way that the solution is 

accurate, and at the same time “economical”. The balance lies between a “too strict” and a “too 

loose” convergence criteria. With a strict criterion, the results obtained will be very accurate, but at 

the same time the computational time needed to obtain this “unnecessarily” accurate solution may be 

large. With a loose criterion the results will be inaccurate. The number of load steps also play an 

important role when it comes to accuracy.   
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3.3 Load versus Displacement Control 

The process where the load is applied to the structure in a number of steps is called load control. 

Another way of analyzing the response of the structure is to prescribe displacements in increments. 

This is called displacement control. These prescribed displacements cause a development of stresses 

within the specimen. These stresses will in turn result in nodal forces at the nodes where the 

displacements are prescribed. (De Borst et.al.[7]). By summing all of the nodal forces the total 

reaction force is obtained. The total reaction force equals the external load that would be caused by 

the prescribed displacement. 

For many cases a prescribed displacement will be the natural choice. When there is no preference for 

either of the two from a physical point of view, the latter, displacement control, is often to be 

preferred. The main reasons why displacement control is preferred are:  

- For displacement control there is often faster convergence in the iterative procedure than for 

load control. This is related to the fact that the tangential stiffness matrix is better conditioned 

for the displacement control option.  

- The tangential stiffness matrix becomes singular at a limit point in the load-displacement 

diagram for load control. This will happen not only for global failure, but also for maximum 

local along the curve as seen in figure 21. For displacement control however, the tangential 

stiffness matrix does not become singular.  

 

Figure 21 – Load control and displacement Control, (TNO DIANA [18]) 

 

An important difference, and an advantage for displacement control with respect to load control, is 

that load control requires the inversion of the matrix K. On the other hand, for displacement control, 

only the reduced stiffness matrix has to be inverted.   

When applying displacement control to the analysis, the external force vector is not increased 

directly. In order to obtain a proper prediction of the initial displacements, we must incorporate the 

prescribed displacements in the external force vector. By rewriting eq. (3.4) and splitting the 

displacement increment vector into two parts, the effective force may be calculated. We now get the 

following relation:  

 

 

 

 

 

[
𝑲𝑢𝑢 𝑲𝑢𝑐

𝑲𝑐𝑢 𝑲𝑐𝑐 ]
0
 {

∆𝒖𝑢

∆𝒖𝑐}
0

= {
𝒈𝑢

𝒈𝑐}
0

 (3.11) 

The unknown displacement ∆𝒖𝑢 is calculated by the first row from eq. (3.11): 
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∆𝒖𝑢
0 = (𝑲𝑢𝑢)−1 {−𝑲𝑢𝑐

0∆𝑢𝑐 + 𝒈𝑐
𝟎
} 

 
(3.12) 

In eq. (3.15), the term (−𝑲𝑢𝑐
0∆𝑢𝑐) is considered as the effective force vector. The iterative 

increments of the prescribed displacements in subsequent iterations are zero, and for that reason the 

effective force vector vanishes.  

For the finite element analyses performed in this thesis, the displacement control option was found to 

be the more reliable compared to load control, hence displacement control was used in the analyses 

of the concrete panels.  
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4. Calculation of crack width and crack spacing 

This section describes how cracking of concrete is being dealt with by different regulations. Two 

codes were used to illuminate the rules that apply for cracking in reinforced concrete. By considering 

two different codes, more data that could be compared with the calculation of crack widths based on 

the results from the nonlinear analyses would be obtained. 

 

4.1 Eurocode 2 

Rules regarding cracking of reinforced concrete is described in chapter 7 in Eurocode 2 [16]. It is 

stated that cracking shall be calculated in order to prevent that the structure’s functionality or 

resistance is injured, or that it leads to an unacceptable appearance.  

In section 7.3.4 in Eurocode 2, it is given formulas for how to calculate the crack width, 𝑤𝑘:  

 

 

 

𝑤𝑘 = 𝑠𝑟,𝑚𝑎𝑥 (𝜀𝑠𝑚 − 𝜀𝑐𝑚) (4.1) 

 

𝑠𝑟,𝑚𝑎𝑥:  Is the maximum crack spacing. 

𝜀𝑠𝑚: Denotes the average strain in the reinforcement including the effect of applied 

deformations where the influence of an increase in stiffness between cracks are taken 

into account.    

𝜀𝑐𝑚:  Is taken as the average strain in the concrete between cracks. 

 

The value of 𝜀𝑠𝑚 − 𝜀𝑐𝑚 can be calculated as follows: 

 

 
𝜀𝑠𝑚 − 𝜀𝑐𝑚 = 

𝜎𝑠 − 𝑘𝑡  
𝑓𝑐𝑡,𝑒𝑓𝑓

𝜌𝑝,𝑒𝑓𝑓
 (1 + 𝛼𝑒 𝜌𝑝,𝑒𝑓𝑓)

𝐸𝑠
 ≥ 0,6 

𝜎𝑠

𝐸𝑠
 

(4.2) 

 

𝜎𝑠:   The stress in the longitudinal reinforcement under the assumption of a cracked cross-

section.  

𝛼𝑒:  The relationship between the modulus of elasticity in steel and concrete, 𝐸𝑠/𝐸𝑐𝑚 

𝜌𝑝,𝑒𝑓𝑓:  With bar reinforcement only: 𝜌𝑝,𝑒𝑓𝑓 = 𝐴𝑠/𝐴𝑐,𝑒𝑓𝑓 

𝐴𝑐,𝑒𝑓𝑓  Effective tension area of the concrete.  
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𝑘𝑡:  A factor that is dependent on the duration of the loading.  

 𝑘𝑡 = 0,6 short term loading 

 𝑘𝑡 = 0,4 long term loading  

 

Figure 22 - Effective tension area. (Eurocode 2, [16]) 

 

The maximum crack spacing, 𝑠𝑟,𝑚𝑎𝑥 is calculated by:  

 𝑠𝑟,𝑚𝑎𝑥 = 𝑘3𝑐 + 𝑘1𝑘2𝑘4  
𝜙

𝜌𝑝,𝑒𝑓𝑓
 (4.3) 

 

𝜙:   Bar diameter. 

c:   The cover of the longitudinal reinforcement. 

𝑘1:  Coefficient which takes into account the bond properties of the bonded reinforcement:  

 𝑘1 = 0,8 for high bond bars. 

 𝑘1 = 1,6 for bars with effectively plain surfaces e.g. prestressing 

reinforcement. 

𝑘2:  Coefficient that takes into account the strain distribution 

 𝑘2 = 0,5 for bending 

 𝑘2 = 1,0 for pure tension 

𝑘3, 𝑘4: Values for these coefficients should be taken from the National Annex. The 

recommended values are however 3,4 and 0,425, respectively 
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Figure 23 - Crack width at concrete surface relative to distance from reinforcing bar (Eurocode 2,[16]) 

In the case that the spacing of the bonded reinforcement exceeds 5 ( 𝑐 +
𝜙

2
 ) or there is no bonded 

reinforcement within the tension zone, one can calculate an upper bound of the crack width with the 

assumption of a maximum crack spacing: 

 

 𝑠𝑟,𝑚𝑎𝑥 = 1,3 (ℎ − 𝑥) (4.4) 

  

For members with orthogonal reinforcement, or where the angle between the axes of principal stress 

and the direction of the reinforcement is significant, the crack spacing 𝑠𝑟,𝑚𝑎𝑥 may be calculated as 

follows: 

 

 
𝑠𝑟,𝑚𝑎𝑥 = 

1

cos𝜙
𝑠𝑟,𝑚𝑎𝑥,𝑦

+ 
sin𝜙

𝑠𝑟,𝑚𝑎𝑥,𝑧

 
(4.5) 

   

Where:  

𝜙:  is the angle between the direction of the principal tensile stress and the 

reinforcement in the y-direction. 

𝑠𝑟,𝑚𝑎𝑥,𝑦, 𝑠𝑟,𝑚𝑎𝑥,𝑧:  the crack spacing calculated in the y-direction and the z-direction respectively, 

from eq. (4.3). 
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4.2 fib Model code 2010 

“It should be ensured that, with adequate probability, cracks will not impair the serviceability and 

durability of the structure” (fib Model Code 2010, [11]). 

Cracks do not necessarily indicate a lack of durability or serviceability in reinforced concrete 

structure. Cracking may be inevitable in reinforced concrete structures due to tension, shear, bending 

or torsion caused by direct loading or restraint of imposed deformations. The design of crack widths 

can satisfy requirements regarding functionality, durability or appearance.   

The calculation of crack width is based on the basic case of a prismatic reinforced concrete bar 

subjected to pure tension only. In total, four stages of behavior are distinguished during the increase 

of tensile strain:  

- Uncracked stage 

- Crack initiation stage 

- Crack stabilizing stage 

- Yielding of steel stage 

 

Figure 24 - Load-strain relation centrically reinforced member subjected to tension (fib Model Code 2010 

[11]) 

Figure 24 describes a simplified representation of the cracking behaviour. In stage (2) the normal 

tensile force does not increase because of “fall-back behaviour” when new cracks develop. In this 

stage, the maximum crack width is obtained any time that the tensile force reaches the cracking load. 

If such a large amount of cracks has developed that there are no more undistributed areas, the tensile 

strength of the concrete between the cracks cannot be reached anymore, and this results in no new 

crack development. This initiates the crack stabilizing stage, stage (3). For calculation of the crack it 

is necessary to determine which stage that applies, whether it is the crack formation stage of the 

stabilized cracking stage, which is the stage where no new cracks develop, but the existing cracks 

propagate. The figure above shows a simplified representation of the different cracking stages, and 

according to this simplification, the stabilized cracking stage is applicable when the load N is larger 

than the cracking load 𝑁𝑟. For imposed deformation, the crack formation stage is applicable when 

the strain satisfies 

 

 

 

 
𝜀 ≤

𝑓𝑐𝑡𝑚 (0,6 + 𝛼𝑒)

𝐸𝑠 𝜌
 (4.6) 
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Where: 

𝛼𝑒:   the modular ratio, 𝛼𝑒 = 
𝐸𝑠

𝐸𝑐
. 

𝑓𝑐𝑡𝑚:   the mean tensile strength [MPa]. 

If eq. (4.6) is not fulfilled, the stabilized cracking stage applies. If only imposed deformation occurs, 

the crack formation stage applies.  

The cracking load, 𝑁𝑟 is taken as follows: 

 

 

 

𝑁𝑟 = 𝐴𝑐𝑓𝑐𝑡𝑚(1 + 𝛼𝑒𝜌𝑠,𝑒𝑓𝑓)   (4.7) 

 

In Figure 24, the crack formation stage is represented by a horizontal curve, corresponding with the 

constant cracking force, 𝑁𝑟. This curve would more accurately be represented by an inclined curve, 

within the range of 𝑓𝑐𝑡,0.05 to  𝑓𝑐𝑡,0.95. Many uncertainties are involved when calculating the crack 

widths, e.g. accuracy regarding reinforcement placement, real tensile strength of the concrete etc., 

and therefor this approximation with the horizontal curve is considered to be accurate enough.  

For all stages of cracking, the design crack width may be calculated according to: 

 

 𝑤𝑑 = 2𝑙𝑠,𝑚𝑎𝑥 ∙ ( 𝜀𝑠𝑚 − 𝜀𝑐𝑚 − 𝜀𝑐𝑠 ) (4.8) 

 

 𝑙𝑠,𝑚𝑎𝑥 =  𝑘 ∙ 𝑐 +
1

4
∙
𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

∙
∅𝑠

𝜌𝑠
  (4.9) 

 

Where:  

𝑙𝑠,𝑚𝑎𝑥:   De-bonding length. Length where slip between concrete and steel occurs: within this 

length, steel and concrete strains occur, and these will contribute to the crack width.  

𝜀𝑠𝑚:   Average steel strain over the length 𝑙𝑠,𝑚𝑎𝑥.     

𝜀𝑐𝑚:   Average concrete strain over the length 𝑙𝑠,𝑚𝑎𝑥.  

𝜀𝑐𝑠:   Concrete strain caused by shrinkage 

𝑘:  Factor that takes into account the influence of concrete cover. As a simplification, this 

factor can be set equal to 1,0.  

𝑐:  Concrete cover 
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Figure 25 - Transmission of forces in a distributed area next to a crack, (fib Model Code 2010 [11]) 

Part (a) of figure 25 shows a centrically reinforced tensile member with crack. Part (b) describes the 

discontinuity area. Further the steel stress development in discontinuity area is shown in part (c). 

Concrete stress development in discontinuity area and development of bond stress in discontinuity 

area are presented in part (d) and part (e), respectively.  

In general, the value for the maximum crack width may be calculated by the following expression 

 

 𝑤𝑑 = 0,5 ∙
∅𝑠

𝜌𝑠,𝑒𝑓
∙
𝑓𝑐𝑡𝑚
𝜏𝑏𝑚

∙ ( 𝜎𝑠 −  𝛽 ∙ 𝜎𝑠𝑟 + 𝜂𝑟 ∙ 𝜀𝑟 ∙ 𝐸𝑠 ) (4.10) 

 

 

 𝜎𝑠𝑟 = 
𝑓𝑐𝑡𝑚
𝜌𝑠,𝑒𝑓

( 1 + 𝛼𝑒𝜌𝑠 ) (4.11) 

 

 

 

 

𝜌𝑠,𝑒𝑓 = 
𝐴𝑠

𝐴𝑐,𝑒𝑓
 (4.12) 

, where: 

 𝜎𝑠:  Steel stress in a crack. 

 𝜎𝑠𝑟:  Maximum steel stress in a crack in stage 2 (crack formation stage). 

𝐴𝑐,𝑒𝑓:  Effective area of concrete. 

𝜏𝑏𝑚:   Mean bond strength between concrete and reinforcement.  

𝛼𝑒:  Modular ratio (𝐸𝑠 /𝐸𝑐) 

𝛽:  Coefficient to assess main strain over the length 𝑙𝑠,𝑚𝑎𝑥 

𝜂𝑟:  Coefficient that takes into account the influence of shrinkage 
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Values for 𝜏𝑏𝑚, 𝛽 and 𝜂𝑟 depend on the loading conditions and the relevant cracking stage and are 

stated in the table below:  

 

Table 4 – Values for 𝜏𝑏𝑚, 𝜂𝑟 𝑎𝑛𝑑 𝛽 for deformed reinforcing bars. (fib Model Code 2010 [11]) 

Loading type Crack formation 

stage 

Stabilized cracking 

stage 

Short term, 

instantaneous 

loading 

 

𝜏𝑏𝑚 = 1,8fctm(t) 

𝛽 = 0,6 

𝜂𝑟 = 0  

𝜏𝑏𝑚 = 1,8fctm(t)  

𝛽 = 0,6 

𝜂𝑟 = 0  

Long term, 

repeated loading 

 

𝜏𝑏𝑚 = 1,35fctm(t)  

𝛽 = 0,6 

𝜂𝑟 = 0  

𝜏𝑏𝑚 = 1,8fctm(t)  

𝛽 = 0,4 

𝜂𝑟 = 1,0 

 

4.2.1 Reinforcement with an angle to the principal stress axis  

When a member is reinforced in two orthogonal directions, and the cracks are expected to develop in 

an angle that is much larger than the angle of the reinforcement, one may assess approximations 

when calculating the value for the length, 𝑙𝑠,𝑚𝑎𝑥. The following expression may be assessed: 

 

 
𝑙𝑠,𝑚𝑎𝑥 =

1

cos (𝜃)
𝑙𝑠𝑥,𝑘

+ 
sin (𝜃)
𝑙𝑠𝑦,𝑘

 
(4.13) 

 

And following the calculation of the crack width: 

 

 𝑤𝑑 =  2 ∙ 𝑙𝑠,𝑚𝑎𝑥,𝜃 ∙ (𝜀⊥ − 𝜀𝑐,⊥) (4.14) 

 

Where:  

𝜃:  The angle between the reinforcement in x-direction and the direction of the principal 

tensile stress. 

𝑙𝑠𝑥,𝑘,  𝑙𝑠𝑦,𝑘: Slip lengths in orthogonal directions. These two can be calculated from eq. (4.9). 

𝜀⊥, 𝜀𝑐,⊥: Total mean strain and the total mean concrete strain.  
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Part II: Modeling 
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General 

Part two of this thesis will be about all the modeling challenges and decisions that were made. Both 

of the two models will be described. In order to get an overview over the entire modelling procedure, 

the geometry, supports/boundary conditions, finite element mesh and load attachment of the two 

panels will be described. Next, the material properties chosen in the two different models will be 

presented.  

5. Concrete panels TP1 and TP2 

 

5.1 Python scripting 

The compatibility with python scripts is one of the new features implemented in DIANA10. Another 

new feature in DIANA10 is that both pre-processing and post-processing may be carried out in the 

same working environment. The new post-processor is called DIANA Native. The modelling 

procedure was mainly performed with the use of python-scripting. The reason for this is that it makes 

editing of geometry, material parameters, analysis settings etc. more convenient. With the use of 

python-scripting, changing parameters becomes easier and the analyst has full control over what is 

happening with the model. All the python scripts used in this thesis is attached in Appendix A. 

Python was used to establish the numerical models. In earlier versions of DIANA10 the .dat file was 

normally used to change parameters. Instead of importing a .dat-file, you can now run a python script 

and the model will be built up piece by piece on screen. When importing a .dat file in DIANA10 you 

end up in a state where you can no longer edit the geometry. After running a python script, you can 

still edit geometry and material properties with the user interface. Python scripting has a huge 

advantage over the .dat-file method at this point.  

The TP1 panel with horizontal reinforcement was modeled only with the use of python-scripts. The 

process of parameter study would go like this. The original python script was made. The script was 

run in DIANA10, and would appear on screen. The user interface could then be used to change 

aspects of the model like geometry, supports, loads and so on. DIANA10 writes python codes in the 

command console every time a parameter is changed. The python code would then be copied and 

pasted into the original python script. After changing several parameters, it would simply be a matter 

of commenting out the code that was unwanted in the current version of the model. When a model 

was ready to be analyzed, a second python script would be prepared. This script would contain all 

the analysis settings that were needed. This would include the load steps, iteration method, post 

processing and other necessary settings. Running this second script would make DIANA10 start the 

analysis and when it finished it would write the displacement and reaction forces to two separate text 

files. Results from the text files were copied into excel and a graph was made to represent the load 

displacement curve. 

For TP2 with diagonal reinforcement the same procedure was followed, but the tying functions were 

impossible to implement into the python scripts. Instead, the model had to be exported to a .dat file, 

the tying commands were written manually, and then imported back into DIANA10. After that, a 

script with analysis settings could be run to start the analysis.  

 

 

 



57 

 

5.2 Geometry 

TP1 

The concrete panel denoted TP1 is the panel with horizontal reinforcement only. “TP” is short for 

“Tension Panel”, and the dimensions of the panel are: B x H x T = 630x630x100mm. The geometry 

of panel TP1 with reinforcement positions is shown in figure 26. The concrete panel was modelled as 

one single sheet. The reinforcement bars were modeled as seven lines, starting and ending on the 

edge of the sheet. Although the modelling was performed in two dimensions, a thickness has to be 

prescribed nonetheless. This thickness is then prescribed to the element geometries.   

 

Figure 26 - Geometry TP1 

TP2 

The panel denoted TP2 is the panel with the orthogonal reinforcement grid oriented in a 45-degree 

angle. Both of the panels have the same external dimensions, it is only the reinforcement layout that 

differs. As for TP1, the reinforcement spacing P2 is also 90 mm. Figure 27 shows the geometry of 

panel TP2. A for loop was used to place all of the bars at the right places.  

 

Figure 27: Geometry TP2 
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5.3 Supports and tyings 

TP1 

All the reinforcement bars of TP1 are restrained against translation in the global x- and y-direction. 

When assigning bond-slip reinforcement, the reinforcement bars obtain degrees of freedom for 

themselves, unlike for the default setting of embedded reinforcement, in which the reinforcement 

bars have no degrees of freedom. The fact that the reinforcement bars obtain own degrees of freedom 

after meshing makes it possible to attach a loading directly to the reinforcing bar.  

 

TP2 

For TP2, the support conditions are a bit more complicated. Figure 27 shows which reinforcement 

start or end node that is restrained against translation in x- and y- direction. The other start and end 

nodes are not exactly pinned, which would mean that translation can take place. Instead they are tied 

to nearby concrete nodes with an option called tyings. In DIANA [18], tyings are defined as linear 

constraints. These linear constraints are user specified linear dependencies between degrees of 

freedom of the system of equations. These linear dependencies are specified in the input table 

“TYINGS” in the .dat file. A Single point tying was used for the reinforcement nodes on the upper 

and lower edge of the panel. A recipe for assigning tyings between the reinforcement and the 

concrete nodes can be found in “Modelling Script TP2”.  

 

5.4 Mesh and element types 

In the finite element models for TP1 and TP2 the same element sizes and element types are used. For 

a 2D analysis of this case with tension loading only, there are mainly two choices for element type 

that seem relevant. The first one is a four node linear element with added incompatible displacement 

modes. The incompatible displacement modes are added to the shape functions of the element with 

the function bubble in DIANA10. This is an element data property, which is related to integration 

schemes of the element. The bubble-function adds four incompatible strain modes to the elements. 

The purpose of adding the bubble-function to the 4-noded quadrilateral linear element is to prevent 

shear locking in the elements, and to make sure that the obtained solution is not too stiff. The second 

option is the 8 node quadratic element. The 8-noded element has in total 16 degrees of freedom 

opposed to the 4-noded element with only 8 degrees of freedom. In a fine mesh the increasing 

number of degrees of freedom requires many more equilibrium equations, and the computational 

time also increases. Only 4-noded elements with bubble-function were used in the analyses because 

of good performance and low computational cost. 

The meshing was done with an element size that was set to h/60, resulting in an element size of 10,5 

mm. this decision was in compliance with Hendriks et.al [12], who recommends a maximum element 

size: 

min (
𝑙

50
 ,

𝑏

50
).  
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5.5 Loads 

The load is applied in the x-direction on the right hand side in the reinforcement end-nodes, as seen 

in figure 28. In order to recreate the laboratory experiment performed by Dyngeland [8] in the best 

and most accurate way possible, it was chosen to attach the loading to the reinforcement bars only. 

Furthermore, to ensure an as stable analysis as possible, displacement control was used, i.e. attaching 

a prescribed displacement to the reinforcement end nodes. As mentioned earlier, when using bond-

slip reinforcement, independent reinforcement nodes are created after the meshing procedure is 

performed, and it is then possible to attach a loading to these particular nodes. If embedded 

reinforcement is used, the reinforcement bars obtain no degrees of freedom, and no load can be 

attached directly to the reinforcement.  

 

Figure 28 - Load attachment TP1 and TP2 
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5.6 Material properties 

In this section follows an overview over which material properties that were used for both concrete 

and steel in the two numerical models for the concrete panels TP1 and TP2. The concrete is given 

properties regarding behavior in tension and compression. The reinforcement is assigned a yield 

strength and hardening parameters.  

 

5.6.1 Reinforcement 

In Dyngeland [8], KS400 reinforcement was used in both tension panels. The elastic modulus 𝐸𝑠 of 

the reinforcement was set to 210000 MPa. The yield stress 𝑓𝑦 was set to 403 MPa. There were no 

measurements of the ultimate strength of the reinforcement. Graphs describing the stress-strain 

relation for KS400 was found in Svenska Cementföreningen [15]. Base on those graphs a simplified 

bilinear stress-strain relation shown in Figure 29  

 

Figure 29:  Stress-Strain relation KS400 

 

Table 5: Tabulated values Stress-strain curve KS400 

KS400 

Elastic Modulus 𝐸𝑠 210000 Mpa 

Yield Strength 𝑓𝑦𝑑 403 Mpa 

Ultimate strength 𝑓𝑢 555 Mpa 

Ultimate strain 𝜀𝑢 0,1 
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5.6.2 Bond slip reinforcement 

A user defined bond-slip model was chosen for the reinforcement. The bond-slip curve was 

calculated according to fib Model Code 2010 [11]. It was assumed good bonding conditions, and the 

stress-slip diagram below was calculated by eq. (2.96) -eq. (2.99), see 2.8.2. Also, the cubic bond-

slip relation by Dörr was also investigated. The cubic bond-slip formulation will be compared with 

the fib Model Code 2010 bond-slip formulation. For this bond-slip model the values for the slip and 

bond stress had to be calculated. In the area of 0 mm slip to 1,0 mm slip, values for the slip and bond 

stress were calculated for every 0,1 mm. This gave a nice shape on the bond stress-slip curve. For the 

fib Model Code2010 bond-slip model requires the clear distance between ribs to be supplied. 

According to Svenska Cementföreningen [15], for 8 mm bars, the rib distance is 6,0 mm.  

For the concrete panel TP1 and TP2, the following user defined bond-slip curves were used:  

 

Figure 30: Bond-slip Diagram TP1 and TP2 

 

The bond-slip diagrams in figure 33 are defined by the tabulated values seen in table. 6.  

Table 6: Tabulated values Bond-slip diagram TP1 and TP2 

 

 

 

 

 

 

 

 

 

 

 

 Slip [mm] Bond stress [MPa] 

 TP1 TP2 

0 0 0 

0,1 4,78 4,71 

0,2 6,30 6,21 

0,3 7,41 7,31 

0,4 8,32 8,20 

0,5 9,09 8,97 

0,6 9,78 9,64 

0,7 10,4 10,25 

0,8 10,98 10,82 

0,9 11,50 11,34 

1,0 12,0 11,83 

2,0 12,0 11,83 

6,0 4,80 4,73 

10,0 4,80 4,73 
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The bond-slip diagrams are also defined with negative slip values and negative bond stresses. These 

values correspond with the values stated in table 6, only with a negative sign.  

 

The cubic bond-slip curve proposed by Dörr is a predefined curve in DIANA10.  

 

Figure 31: Cubic bond-slip curve (TNO DIANA [18]) 

 

The value at which the curve reaches its plateau had to be defined. The recommended value for Δ𝑢𝑡
0 

from DIANA [18] is 0.06 mm. The maximum value for the shear traction 𝑡𝑡 equals 1,9 ∙ 𝑓𝑡,  where 𝑓𝑡 

is the tensile strength of the concrete.  

Bond slip was introduced to the numerical model by defining a bond slip material. “Bond-slip 

reinforcement” was selected from the “Reinforcement and pile foundations” material class. Either 

the user defined slip curve or the Dörr formulation was applied. The bond slip reinforcement also 

needed to be set to either truss or beam elements. This was done using the following python code. 

 

  

 

As well as element type, start and end nodes had to be applied. This is to mark the start and end of 

the reinforcement bars. The python script above shows how it was done.   

 

5.6.3 Shear stiffness and normal stiffness 

Regardless of the bond-slip model that is being used, DIANA10 demands values for certain relations, 

namely the shear stiffness DSSX and the normal stiffness DSNY. According to TNO DIANA [18], 

DSSX is the linear stiffness modulus D11, which sets the relation between the shear traction 𝑡𝑡 and 

the relative shear displacement ∆𝑢𝑡 in the x-direction of the reinforcement. This stiffness modulus 
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has the annotation stress per length, e.g. N/mm3. Furthermore, the linear stiffness modulus DSNY, or 

D22, sets the relation between the normal traction 𝑡𝑛 and the relative normal displacement ∆𝑢𝑛 in the 

y-direction of the reinforcement. The annotations are the same as for DSSX. DSNY is interpreted as 

the stiffness related to crushing of the concrete by the reinforcing bar. DSSX is interpreted as the 

slope of the bond slip curve at zero slip. The value for DSSX is calculated as the slope between zero 

and the first sampling point in the bond slip curve from fib Model Code 2010. This results in DSNY 

being much larger than DSSX.  

The values for DSSX for the two panels with the bond-slip model from fib Model Code 2010 were 

taken as:  

 

 𝐷𝑆𝑆𝑋𝑃1  =  
4,78 

0,1
=  47,8 

𝑁
𝑚𝑚2

𝑚𝑚
  (5.1) 

   

 
𝐷𝑆𝑆𝑋𝑃2  =  

4,71 

0,1
=  47,1 

𝑁
𝑚𝑚2

𝑚𝑚
 

 

 

(5.2) 

For the cubic bond-slip formulation, the shear stiffness is calculated at the plateau of bond-slip curve, 

which corresponds to a slip of 0,06. In TNO DIANA [18], formulas for calculating DSSX for the 

cubic formulation are given by:  

 𝐷𝑆𝑆𝑋𝑃1 =  5
1,9 ∙ 𝑓𝑡
∆𝑢0

𝑡 = 5 ∙
1,9 ∙ 2,51

0,06
=  397 

𝑁
𝑚𝑚2

𝑚𝑚
 (5.3) 

 

 𝐷𝑆𝑆𝑋𝑃2 =  5
1,9 ∙ 𝑓𝑡
∆𝑢0

𝑡 = 5 ∙
1,9 ∙ 2,44

0,06
= 386 

𝑁
𝑚𝑚2

𝑚𝑚
 (5.4) 

 

The normal stiffness is assumed to be equal regardless of bond-slip formulation. In an older DIANA 

manual, release 9.4.2, formulas for the normal stiffness are stated as: 

 

 𝑘𝑛 = 
𝐸

𝑙𝑓𝑟
 (5.5) 

  

Where E denotes the modulus of elasticity of concrete and 𝑙𝑓𝑟 the free length.  

This free length was found hard to relate to. Together with supervisor Max Hendriks an alternative 

approach for the normal stiffness has been applied.  
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Figure 32: Illustration DSNY 

Figure 32 illustrates the thought behind the normal stiffness. The figure shows a reinforcing bar 

surrounded by concrete. DSNY is assumed as the concrete resistance of the reinforcement 

penetrating and crushing the concrete. DSNY was calculated as follows per reinforcement bar:  

 

 

 𝐷𝑆𝑁𝑌 =  
𝐸𝑐

2𝑅
∙ 103   

𝑁
𝑚𝑚2

𝑚𝑚
 

(5.6) 

  

A great deal of uncertainty was related to DSSX and DSNY. For this reason, a sensitivity study of 

these two inputs was carried out. This can be read about in section 8.1.  

5.6.4 Concrete 

Different choices for material properties available in DIANA10 were presented in section 2.6. For 

the concrete, both a rotating total strain crack model and a fixed total strain crack model was 

assigned in the modelling process in order to compare these two models.     

Table 7 - Material Properties panel P1 and P2 

Property TP1 TP2 Annotation 

Modulus of elasticity 𝐸𝑐 21900  23625 MPa 

Tensile strength 𝑓𝑡 2,51  2,44 MPa 

Compressive strength 𝑓𝑡  23,50  22,40 MPa 

Tensile fracture energy 𝐺𝐹 0,129  0,128 N/mm 

Compressive fracture energy 𝐺𝑐 32,25 31,94 N/mm 

 

Table 7 shows the concrete material properties for panel TP1 and TP2. The modulus of elasticity, the 

tensile strength and the compressive strength were taken from Dyngeland [8], where cylinder 

strength, cube strength and modulus of elasticity was determined by testing. Only one tensile test 

was performed in total. The tensile strength for the other specimen was calculated from the average 

compressive strength and the ratio between tensile and compressive strength. 

The tensile fracture energy was calculated by eq. (2.80), see 2.7.1 , and divided with a factor 103 in 

order to obtain the annotation [N/mm]. 

 

 𝐺𝐹.𝑃1 = 73 ∙ 23,500,18 ∙ 0,001 = 0,129 𝑁/𝑚𝑚  (5.7) 
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The same applies for TP2: 

 

 

 
𝐺𝐹.𝑃2 = 73 ∙ 22,400,18 ∙ 0,001 = 0,128 𝑁/𝑚𝑚 (5.8) 

   

The compressive fracture energy depends on the tensile fracture energy, as stated in 2.7.2. For 

concrete panel TP1, the compressive fracture energy is calculated by:  

 

 
𝐺𝑐.𝑃1 =  250𝐺𝐹.𝑃1 = 32,25 𝑁/𝑚𝑚 (5.9) 

 

And for the concrete panel TP2, the compressive fracture energy is calculated by:  

 

 
𝐺𝑐.𝑃1 =  250𝐺𝐹.𝑃2 = 31,94 𝑁/𝑚𝑚 (5.10) 

 

The values for the compressive fracture energy are valid for the parabolic curve in compression.   

The behavior of concrete in tension was chosen to follow the exponential curve. The tensile fracture 

energy from eq. (5.7) and eq. (5.8) was used. The area under the exponential curve is equal to the 

tensile fracture energy divided by the crack band width. The default mesh size was set to H/60, but a 

mesh size of H/100 was also investigated. The two mesh sizes would result in two different crack 

bandwidths as stated in the equations below.  

 

 
ℎ =  √2𝐴 = √2(

630

60
)
2

≈ 14,85 

 

 

(5.11) 

 ℎ =  √2𝐴 = √2 ∙ (
630

100
)
2

≈ 8,91 (4.12) 

 

Analyses with both fixed and rotating total strain crack model were carried out in order to study the 

difference. When the fixed option was used, properties for the shear behaviour was assigned to the 

concrete. A constant shear retention function was assumed with 𝛽 = 0,01. (TNO DIANA [18]). For 

the rotating crack model, a shear retention function is not needed.  
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Part III: Analysis and results 
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6. Reference model 

In this section follows a description of the reference models. These reference models were 

established in order to study the effect of changing variables, for instance the normal stiffness DSNY 

and the shear stiffness DSSX.  

The reference models for TP1 and TP2 were modeled with the following inputs: 

 

Mesh properties  

- Mesh order  

o 4-noded linear quadrilateral elements with bubble function 

- Element size H/60 

 

Material properties  

- Total strain crack model 

o Rotating crack model 

- Exponential curve in tension 

o Fracture energy calculated according to fib Model Code 2010 [11] 

- Parabolic curve in compression 

o Compressive fracture energy based on tensile fracture energy 

- Reduction due to lateral cracking: Reduction model proposed by Vecchio and Collins 

- Poisson’s ratio reduction: Reduction model Damage Based 

- Stress Confinement: Confinement model proposed by Selby and Vecchio 

- Reinforcement: Bond-slip reinforcement 

o Bond-slip relation from fib Model Code 2010 

 TP1 - DSSX and DSNY calculated by eq. (5.1) and eq. (5.6), respectively. 

 TP2 - DSSX and DSNY calculated by eq. (5.2) and eq. (5.6), respectively.  

 

Analysis settings 

- Iteration method: Quasi Newton, Broyden 

- Load step size: 0,01mm 

- Number of load steps 

o TP1: 200 load steps 

o TP2: 400 load steps 

- Convergence criteria 

o Force based, tolerance: 0,01 

o Residual based, tolerance: 0,01 

- Line Search option switched on 

- Solver: Sparse Cholesky 

- Total strain based cracking, tangent: Consistent 
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For the parameter study, the following input in the numerical models was changed:  

Mesh  

- Element sizes 

o H/20  

o H/100  

 

Material properties 

- Total strain crack model 

o Fixed crack model 

- Reinforcement: Bond-slip 

o Cubic function by Dörr 

o DSSX 

o DSNY 

Naming scheme 

Here follows an overview over the different versions of the panels: 

- Reference - TP1/TP2 reference model 

 

- Cubic - TP1/TP2 with cubic bond-slip 

 

- Fixed - TP1/TP2 with fixed crack model 

 

- H/20 - TP1/TP2 with mesh H/20  

 

- H/100 - TP1/TP2 with mesh H/100 

 

- xHyH - TP1/TP2 with high DSSX and high DSNY  

o DSSX is given the same value as DSNY, calculated from eq. (5.6) 

 

- xLyL - TP1/TP2 with low DSSX and low DSNY  

o DSNY same value as DSSX, calculated from eq. (5.1) or eq. (5.2)  

 

- xHyL - TP1/TP2 with high DSSX and low DSNY  

o DSSX calculated from eq. (5.6) and DSNY calculated from eq. (5.1) or eq. (5.2) 
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6.1 Loading procedure 

Both panels were subjected to a prescribed displacement loading of total 4,0 mm. The total loading 

procedure of TP1 was divided into two parts. First, 100 steps of 0,01 mm per step were prescribed to 

the model, followed by 100 steps of 0,03 mm per step, resulting in a total displacement of 4,0 mm 

after 200 load steps. TP2 was prescribed 400 load steps of 0,01 mm displacement per step. Figure 35 

illustrates the two different loading procedures.  

 

Figure 33: Loading Procedure TP1 and TP2 
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7. Results 

In this chapter the analysis results for TP1 and TP2 will be presented. To start with, the results from 

the reference models will be presented. The two reference models were described in section 6. 

Furthermore, relevant results from the parameter study will be presented. For the reference cases, the 

following analysis output will be highlighted: 

- Load-displacement curve 

- Stress-average strain curve 

- Total displacement 

- Cauchy total stresses 𝜎1 

- Total strains 

- Crack widths 

- Reinforcement stresses 

- Reinforcement interface relative displacement    

The analysis output stated above will be presented for a certain number of points along the load-

displacement curve. Typical for these points is that is that they reflect a change in the global behavior 

of model, e.g. crack initiation or reinforcement yielding.  

The load-displacement curve represents the relation between displacement loading and the reaction 

forces at the reinforcement start node. For each step, DIANA10 writes a displacement and a total 

reaction force in the x-direction. The total reaction force is the sum of the reaction forces acting in 

every reinforcement start node, i.e. all the reinforcement nodes at the left side of the panels. 

In order to assess the global behavior of TP1 and TP2, stress-average strain curves were plotted and 

compared with the experimental stress-average strain curves from Dyngeland [8]. The panels with 

horizontal reinforcement are denoted S1 and S2. The panels with orthogonal reinforcement are 

denoted S3 and S4. TP1 was plotted against an average of S1 and S2, and TP2 was plotted against an 

average of S3 and S4. 
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7.1 TP1 Reference model 

In this section follows the results of the reference analysis for panel TP1.  

7.1.1 Load-displacement curve 

Figure 34 shows the load-displacement curve for the reference model for TP1. The orange curve 

represents the numerical solution, while the blue curve represents the experimental results. By 

comparing the two curves the global behavior of the model can be evaluates. It is seen that the initial 

stiffness is a bit off.  

 

 

Figure 34: Load-displacement TP1 vs. S1/S2 

7.1.2 Stress-Average strain 

The values on the y-axis in the stress-average strain curve is established by dividing the total reaction 

force due to prescribed displacement load by the total area of the panel: 

 

 

 
𝜎𝑖 = ∑

𝐹𝑥𝑖

𝐴𝑡𝑜𝑡

7

𝑖=1

 (7.1) 

 

Where 𝐹𝑥𝑖 reaction force in reinforcement start node i and 𝐴𝑡𝑜𝑡 is the total area. (𝐴𝑡𝑜𝑡 =
63000𝑚𝑚2). The strain was calculated by the following formula: 

 

 𝜀𝑖 =
∆𝑢𝑖

𝐿
  

 
(7.2) 

 

Where ∆𝑢𝑖 is the prescribed displacement in load step i, and L is the length of the panel. 
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Figure 35: Stress-average strain curve TP1 vs. S1/S2 

7.1.3 Plots panel TP1 – reference analysis 

In Figure 36 36 three circles are marked. These circles correspond to the load steps that are 

investigated. At the first point crack initiation occurs, i.e. the tensile strength of the concrete is 

exceeded somewhere in the panel. The second point corresponds to an experimental stress level 

which is stated in Table 10. In the laboratory experiments, the average crack widths and spacing 

were documented at this stress level, which is set to approximately 3,66 MPa. For the reference test, 

a stress level of 3,66 MPa corresponded to a load step just after crack initiation where no stabilized 

crack patterns had developed. For that reason, the second point corresponds to the experimental 

strain of 1,3 ‰, which takes place in load step 82 for the reference test. In the third point, the yield 

stress in all bars is exceeded. 

 

Figure 36: Load-displacement TP1 reference - interesting points 
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1. Load Step 27 

Total displacement 

 

Cauchy total stresses 
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Total Strains 

 

Crack widths 
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Reinforcement Stresses 

 

 

Reinforcement interface relative displacement 
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2. Load step 82 

Total displacement 

 

Cauchy total stresses 
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Total Strains  

 

Crack widths 
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Reinforcement Stresses  

 

Reinforcement interface relative displacement 
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3. Load step 150 

Total displacement 

 

 

Cauchy total stresses 
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Total Strains 

 

Crack widths 
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Reinforcement Stresses 

 

Reinforcement interface relative displacement 
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Load step 27 

At load step 27, cracks start to propagate in the panel as a result of the tensile stresses exceeding the 

tensile strength of the concrete. In the load-displacement curve, this point marks the end of the linear 

domain, where the concrete behaves in a linear elastic manner. From the Total Cauchy Stress contour 

plot it is seen that the maximum principal stresses in the middle of the panel, 𝜎1, equals 2,639 MPa, 

which is larger than the tensile strength of the concrete (𝑓𝑡 = 2,51 MPa). As a result of this, cracks 

start to propagate in the middle of the panel. Furthermore, it is seen that the maximum reinforcement 

stresses are located at the reinforcement start and end nodes, and equal approximately 243 𝑀𝑃𝑎. The 

yield strength of the reinforcing bars was set to: 𝑓𝑦 = 403 MPa. A slip between the reinforcement 

and the concrete is also seen, and indicates that the bond-slip formulation indeed has been 

implemented into the model. The slip is largest at the start and end of the reinforcing bars, where we 

also have the largest interface tractions.  

 

Load step 82 

Load step 82 corresponds to the experimental strain state in which a stabilized crack pattern would 

develop, and average crack widths and crack spacing were assessed. For the numerical model of 

TP1, a stabilized crack pattern has developed at this load step. With reference material properties and 

numerical solution method, two distinct cracks propagate in the panel. By comparing the crack strain 

plot with the plot for the reinforcement stresses, it is seen that the largest reinforcement stresses 

occur at the locations where the two cracks propagate. This seems plausible given the fact that in a 

crack, all the cross sectional forces must be carried by the reinforcement. The slip is largest at the 

cracks, and this also seems reasonable, given the fact that large relative displacements between 

reinforcement and concrete nodes will take place in a crack.  

 

Load step 150 

In load step 150, which corresponds to a displacement of 2,5 mm, yielding occurs in all the 

reinforcing bars, which indicates a hardening domain where the reinforcement is responsible for the 

capacity of the panel. The crack pattern stabilizes around load step 82 for the reference test, and from 

load step 82 load step 150, no new crack patterns develop. There is only seen a widening of the 

existing cracks.  

In order to compare the crack patterns obtained from the nonlinear finite element analyses to those 

obtained experimental, mean crack spacing and crack widths were calculated. The numerical average 

crack widths can be found in Table 8.  
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7.2 Parameter study TP1 

TP1 with cubic bond-slip  

In this section the results from the cubic bond-slip analysis will be presented.  

 

As seen from the load-displacement curve, the global behavior is quite similar when comparing fib 

Model Code bond-slip formulation with the cubic bond-slip formulation. In the load-displacement 

curve for the cubic bond-slip formulation, a drop in reaction force occurs around 0,44 mm as a result 

of no convergence in step 44.  

 

The figure above illustrates the total concrete strains at load step 100, where a stabilized crack 

pattern finally starts to develop. When comparing this plot with the total strain plot from the 

reference model in 7.1.3, it is noted that an additional crack propagates in the middle of the panel.  
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TP1 with fixed crack model 

 

 

 

As seen from the load-displacement curve above, the global behavior of the panel quite similar for 

the fixed crack model compared with the rotating crack model. The load-displacement curve for the 

fixed crack model flattens out around crack initiation unlike the load-displacement curve for the 

rotating crack model.   

 

 

For the fixed crack model, the crack pattern of the panel looks quite different than the crack pattern 

obtained with a rotating crack model. For the fixed crack model, an additional crack propagates in 

the middle of the panel.   
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TP1 with mesh H/20 and H/100 

The mesh sensitivity study that was carried out included in addition to the reference mesh H/60, two 

additional mesh sizes of H/20 and H/100.  

 

It seems that the numerical model for panel TP1 to some extent is mesh sensitive given the load-

displacement paths in the interval 0,3 mm to 1,0 mm. With mesh size H/20, which was considered as 

a course mesh, no distinct crack pattern developed, as seen in the picture to the left below.  

 

 

 

The figure to the right shows the contour plot of the principal total strains E1 for load step 88 for 

mesh H/100, which is the first step with a stabilized crack pattern. Compared with the reference, the 

crack patterns are quite similar in appearance, but the total strains are smaller for the case with mesh 

H/100 at load step 88, compared with the total strains for the reference test at load step 82.  

The reinforcing bars starts to yield around load step 97, which corresponds well with the reference 

test.  
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TP1 with high DSNY and high DSSX (xHyH)  

 

From the load-displacement curve a sudden drop around 2,6 mm is observed. This is caused by no 

convergence at load step 153. It is also seen that the initial stiffness is higher for the case “xHyH” 

than for the reference case, as expected.  

 

 

 

As seen from the figure above, the crack pattern differs a lot from the crack pattern of the reference 

test. Instead of two distinct cracks it may now be observed 5-6 cracks in the panel.  
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TP1 with low DSSX and low DSNY (xLyL)  

As seen from the load-displacement curve, the global behavior of the reference test compared with 

the “xLyL” case seem to correspond rather well.  

 

 

From the total strain plot shown below, it is observed that the crack pattern of the “xLyL” case looks 

very similar to the reference crack pattern. For the “xLyL” case, only two cracks propagate during 

the analysis, as for the reference case.   
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TP1 with high DSSX and low DSNY (xHyL)  

From the load-displacement curve a quite different global behavior is observed for the “xHyL” case 

compared to the reference case. For the “xHyL” case, the slope of the load-displacement curve is 

steeper than for the reference case. An all over lower load response is also observed for the “xHyL” 

case.   

 

 

From the total strain plot, a crack pattern that looks very similar compared with the “xHyH” case is 

observed.  
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7.3 TP2 Reference model 

In this section follows the results of the reference analysis for panel TP2.  

7.3.1 Load displacement 

The figure below describes the load-displacement curve for the reference model width orthogonal 

reinforcement. The reference panel is represented with an orange curve and the experimental results 

for the same panel is the blue curve. The initial stiffness seems to be a bit off, but after cracking the 

two curves corresponds better.  

 

 

Figure 37: Load-Displacement TP2 vs. S3/S4 

 

7.3.2 Stress – average strain 

The values along the y-axis in the stress-average strain curve were established by dividing the total 

reaction force due to prescribed displacement load by the total area of the panel: 

 𝜎𝑖 = ∑
𝐹𝑥𝑖

𝐴𝑡𝑜𝑡

10

𝑖=1

 (7.3) 

  

Where 𝐹𝑥𝑖 is the reaction force in start node 𝑖 and 𝐴𝑡𝑜𝑡 is the total area (𝐴𝑡𝑜𝑡 = 63000 𝑚𝑚2). The 

strain was calculated by the following formula: 

 

 
𝜀𝑖 = 

∆𝑢𝑖

𝐿
 (5.4) 

 

Where ∆𝑢𝑖 is the prescribed displacement in load step 𝑖 and 𝐿 denotes the length of the panel. 
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Figure 38: Stress-Average strain TP2 vs. S3/S4 

7.3.3 Plots panel TP2 - reference 

From the load displacement curve three points where selected to be looked at closer. These points are 

located at load step 55, 175 and 214.  

Load step 55 where selected as it describes the panel right after the first period of cracking.  

Load step 175 where selected as it describes the panel right after the second cracking period.  

Load step 214 has stress level of 3,65 which represents the stress level where the experimental cracks 

were documented. 

 

Figure 39: Load-displacement TP2 reference-interesting points 
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1. TP2 Reference model, load step 55 

Total displacement 

 

Cauchy total stresses 
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Principal strains 

 

Crack widths 
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Reinforcement cross section forces  

 

Reinforcement interface relative displacement 
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2. TP2 Reference model, load step 175 

Total displacement 

 

Cauchy total stresses 
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Principal strains 

 

Crack widths 
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Reinforcement cross section forces  

 

Reinforcement interface relative displacement 
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3. TP2 Reference model, load step 214 

Total displacement 

 

Cauchy total stresses 
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Crack strains 

 

Crack widths 
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Reinforcement cross section forces  

 

Reinforcement interface relative displacement 
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Load step 55 

Load step 55 is the first step on TP2 that was investigated. The reason why this step is interesting is 

that the first period of cracking ends right before step 55. At this load step the total load on the panel 

is approximately 102 kN. This load corresponds to a stress level of 1,62 MPa and an average strain 

of 0,87 ‰. Crack initiation occur in the middle of the upper and lower concrete edge around load 

step 40. These cracks propagate in an arc towards the middle as two more cracks are initiated. The 

two latest cracks propagate from the center towards the concrete edge. On load step 55 the two latest 

cracks reach the concrete edge. As more load is applied, the crack pattern is fairly stable. 

 

Load step 175 

Load step 175 is the second step that was investigated. Before this load step, there has been new 

cracks developing and the crack pattern has stabilized. The applied loading is at this point 

approximately 194 kN. The corresponding stress and strain is 3,09 MPa and 2,79 ‰, respectively. 

The latest period of cracking starts around load step 150 and lasts until load step 175 where it 

stabilizes. Between load step 55 and 150 three distinct cracks are completely crossing the concrete 

panel. Right before step 150 two cracks are initiating. After step 150 these two crack initiations enter 

a period of rapid growth and at step 175 they have almost crossed the whole concrete panel.  

 

Load step 214 

This load step corresponds to the stress level at which cracking results were documented in the 

experimental work of Dyngeland [8]. This stress level is 3,65 MPa and leads to a strain level of 

3,34‰. The applied load at this time is 229kN. Not much has changed since load step 175, except for 

a little crack growth in the center of the panel.  
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7.4 Parameter study TP2 

TP2 with cubic bond slip 

 

From the load displacement curve above it can be seen that the cubic bond-slip model has, to some 

extent, an influence with respect to the global behavior. The initial stiffness is slightly higher than for 

the reference model and instead of two periods of cracking, there is just one for the cubic bond slip 

model. The cubic bond-slip model is described in chapter 2.8.2 and DSSX is calculated in eq. (5.4). 

 

Above is a plot of the principle strain for the model with cubic bond slip formulation. After the first 

period of cracking between load step 35 and 75, there are three distinct cracks crossing the concrete 

panel. Because there are no second period of cracking the panel reaches a stress level of 3,65 MPa 

earlier than the reference panel. From load step 75 to 198 there has been crack growth in the three 

main cracks but also smaller parallel cracks have occurred.  
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TP2 with fixed cracking 

 

The beginning of the load displacement curve for the model with fixed cracking is almost identical to 

the reference model. Also after the first cracking period the curves are fairly similar. The model with 

fixed cracking reaches a stress level of 3,65 after 226 load steps and has a corresponding strain of 

3,59‰. 

 

Above, a plot of the principle strain at load step 226 is shown. This model with fixed cracking has a 

completely different crack pattern than the other models that are studied. At load step 41, four 

individual cracks initiate, and by step 48 their combined length and position correspond to one crack 

over the height of the panel. As more load is applied there is a combination of crack width growth, 

crack propagation and initiation of new cracks. The crack pattern of this model is very chaotic and 

the number of cracks is hard to determine.  
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TP2 with mesh H/20 

 

The load displacement curve for the model with mesh size of H/20 is quite different from the 

reference model curve. Initial stiffness is higher and the model enters a cracking period much earlier 

than the reference model. The cracking period seems to last much longer than for any other of the 

modes that have been studied. The duration of the cracking period makes the model appear softer 

although the stiffness after cracking is about the same for both models.  

 

Above is a plot of the principal strain in the H/20 model at load step 252. No proper crack pattern 

can be seen from any load step of this model. Instead of strain localization and crack initiation, strain 

increases from the left and right side and makes a checkered pattern inwards towards the middle. 

Around load step 60 there are some localization on the upper and lower edge but no proper crack 

develops form these points.  

Because there is no proper crack pattern, this model with H/20 is neglected and will not be discussed 

any further. 
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TP2 with mesh H/100 

 

The load displacement curve for the reference panel and the H/100 panel looks very similar. They 

both have two periods of cracking occurring at about the same stress level. The behavior after 

cracking is also similar.  

 

 

The principle strain plot is taken from load step 219 and clearly displays the formation of five cracks. 

After the first cracking period there are two complete cracks crossing the height of the panel. 

Between the cracking periods the crack width of the existing cracks is increasing. During the second 

cracking period, two of the cracks are merging in addition to the creation of two separate cracks 

crossing the panel on the left and right side.   
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TP2 with high DSSX and high DSNY (xHyH) 

 

Compared to the reference curve, the model xHyH curve is very jagged. That is because those points 

are non-converging load steps. Despite the non-converged load steps the load displacement curves 

are not very different.  

 

The principal strain plot from load step 209 is plotted above. The first crack initiation occurs around 

load step 30 and develops into three main cracks crossing the panel by load step 100. After load step 

100 smaller cracks and cracks along the reinforcement bars develop.  
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TP2 with low DSSX and low DSNY (xLyL) 

 

The initial stiffness of the two cases are almost identical. An all over corresponding global behavior 

is observed. All load steps have converged, even around load step 150 where it is seen a big drop in 

the reaction force.   

 

 

Principal strain plot from load step 222 is shown above. Between load step 42 and 46 two cracks 

initiate and propagate across the whole panel. Around load step 100, two previously initiated cracks 

propagate into two more cracks that crosses the panel on the outer left and right side. From this load 

step and until 222 two minor cracks slowly propagates and merges with the two first cracks. 
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TP2 with high DSSX and low DSNY (xHyL) 

 

The load displacement curve from the reference and xHyL model can be seen above. Unlike the 

reference model, the xHyL only has one period of cracking. Overall the global behavior is quite 

similar. 

 

Principal strain from load step 211 is plotted above. It shows large areas with a checkered pattern. 

These areas develop before any crack initiation from the concrete edges. Between load step 30 and 

50, eight small cracks initiate and propagate at different places but no continuous cracks are formed. 

Onward towards step 211 new cracks develop but still no continuous crack develops.  
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7.5 Crack widths and crack spacing TP1 and TP2 

Table 8 shows a listing of average crack widths and average crack spacing calculated from the finite 

element analyses of the panels. Method 1 is based on the total displacement at a given load step. 

Displacements “TDtX”, i.e. total displacement in x-direction, was collected for all concrete nodes 

along the left and right edges of each panel. An average displacement for each edge was then 

calculated by dividing all nodal displacements by the number of nodes along the respective edge. 

Lastly, the difference in average nodal displacement between left and right edge was divided by the 

number of observed cracks. Method 2 is based on the total concrete principal strain, which was 

sampled at the element integration points. All strains were collected and divided by the number of 

nodes per element times the number of elements. This would correspond to an average element 

principal strain. This average strain was multiplied with the crack bandwidth, resulting in an average 

crack width. This method works best with models where the strain is concentrated to one element 

width and not spread across a large area. Results from TP2 “xHyL” for example will underestimate 

the crack widths substantially. To avoid large areas of increased strain, only strain levels above 

0,0067 where sampled. 0,0067 corresponds to a crack width of 0,1 mm when multiplied by the crack 

band width. This results in an average crack width for the cracks that have a width of 0,1 mm or 

higher. 

Table 8: Average crack widths and spacing from Nonlinear Analyses 

Specimen Stress 

 

 

 

[MPa] 

Average 

crack width, 

method 1 

Displacement 

[mm] 

Average 

crack width, 

method 2 

 

[mm] 

Average 

Spacing 

 

 

[mm] 

Number 

of cracks 

TP1 Reference 4,13 0,273 0,159 315 2 

TP1 Cubic 4,13 0,248 0,196 210 3 

TP1 Fixed 4,13 0,232 0,168 210 3 

TP1 H/100* 4,28 0,273 0,158 315 2 

TP1 xHyH 4,13 0,162 0,162 126 5 

TP1 xLyL 4,13 0,265 0,194 315 2 

TP1 xHyL 4,13 0,153   0,160 126 5 

      

TP2 Reference 3.66  0,307 0,374 105 6 

TP2 Cubic 3.66  0,567 0,268 210 3 

TP2 Fixed 3.66  0,322 0,319 105 6 

TP2 H/100 3.66  0,367 0,358 126 5 

TP2 xHyH 3.66  0,355 0,369 126 5 

TP2 xLyL 3.66  0,370 0,420 126 5 

TP2 xHyL 3.66  0,313 0,194 105 6 

*No stabilized crack pattern at stress level 4,13 MPa.  
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Table 9: Crack widths and spacing according to Eurocode 2 and fib Model Code 2010 

Specimen Average 

reinforcemet 

strain* 

Eurocode 2 fib Model code 2010 

𝒔𝒓,𝒎𝒂𝒙** 

[mm] 

𝒘𝒅 

[mm] 

𝒍𝒔,𝒎𝒂𝒙*** 

[mm] 

𝒘𝒅 

[mm] 

TP1 Reference 0,00167 219,16 0,37 79,62 0,27 

TP1 Cubic 0,00170 219,16 0,37 79,62 0,27 

TP1 Fixed 0,00147 219,16 0,32 79,62 0,23 

TP1 H/100 0,00142 219,16 0,31 79,62 0,23 

TP1 xHyH 0,00164 219,16 0,36 79,62 0,26 

TP1 xLyL 0,00182 219,16 0, 39 79,62 0,29 

TP1 xHyL 0,00158 219,16 0,35 79,62 0,25 

      

TP2 Reference 0.001664 115,60 0,19 44,49 0,15 

TP2 Cubic 0,001656 115,60 0,19 44,49 0,15 

TP2 Fixed 0,001746 115,60 0,20 44,49 0,16 

TP2 H/100 0,001841 115,60 0,21 44,49 0,16 

TP2 xHyH 0,001714 115,60 0,20 44,49 0,15 

TP2 xLyL 0,001780 115,60 0,21 44,49 0,16 

TP2 xHyL 0.001714 115,60 0,20 44,49 0,15 

*  Average strain in reinforcement in cracks, sampled from nonlinear analyses 

**  Maximum crack spacing. 

***  Length where slip between concrete and steel occurs.  

The table above shows the calculated crack widths for TP1 and TP2 according to Eurocode 2 and fib 

Model Code 2010. Both codes state that a certain distance is to be multiplied with an average strain. 

Eurocode 2 operates with a maximum crack distance, while fib Model Code 2010 uses a de-bonding 

length. The calculation of these may be found in Appendix B. The average strain consists of the 

average strain in the reinforcement minus the average strain in the concrete. The latter was neglected 

in the calculations due to difficulties regarding the sampling of the concrete strains between cracks.  

Table 10 contains experimental average crack widths and spacing and average crack widths and 

spacing obtained from nonlinear analysis results. The average crack widths for TP1 and TP2 are 

taken as the average of Method 1 and Method 2 in Table 8.  

 

Table 10: Experimental crack widths and spacing 

Specimen  Stress level 

[MPa] 

Average crack width 

[mm] 

Spacing 

[mm] 

S1   3,76 0,11 112 

  S2   3,56 0,08 99 

S3 3,80 0,19 78 

S4 3,49 0,20 77 

TP1   3,66 0,22 315 

TP2 3,65 0,34 105 
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Part IV: Evaluation and conclusion 
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8. Evaluation 

In the previous chapter, results from the finite element analyses of the concrete panels TP1 and TP2 

were presented. From the parameter study the most important aspects of the analyses were presented. 

For both panels, results from analyses of a reference test, cubic bond-slip, fixed crack model, mesh 

size h/20, mesh size h/100 and a “xHyH”-, “xLyL”- and “xHyL” case was presented. In this section 

follows an evaluation of the obtained results from the finite element analyses linked to the various 

numerical model inputs.     

8.1 Bond-slip models  

It seems that the fib Model Code 2010 bond-slip model, hereafter denoted MC10 bond-slip model, 

describes the interface between concrete and reinforcing steel in a more complex manner compared 

to the cubic bond-slip model. This is due to the fact that for the MC10 bond-slip model, the distance 

between the reinforcement ribs are taken into account.  

TP1 

When comparing the reference case with the cubic bond-slip case, a different crack behavior is 

observed. For the reference case, only two cracks develop during the entire loading procedure, while 

for the cubic bond-slip case, three cracks develop in the panel. Crack initiation starts at load step 27 

for the reference case while for the cubic bond-slip case, crack initiation starts at step 20. This makes 

sense, since the initial stiffness of the cubic bond-slip curve is larger than the initial stiffness of the 

MC10 bond-slip curve, which results in a quicker transfer of force to the concrete. Reinforcement 

yielding occur approximately at the same load step for both cases. However, for the cubic bond-slip 

case, yielding occurs on three locations at the reinforcing bars, compared to the reference case where 

yielding only occurs on two locations. This indicates a development of an additional crack in the 

middle of the panel. A larger reinforcement interface relative displacement, i.e. the relative 

displacement between reinforcement and concrete nodes, is observed for the MC10 bond-slip model. 

This results in less transfer of force between reinforcement and concrete, resulting in slower crack 

initiation for the reference case. 

The parameter study of DSSX and DSNY showed that different values for these stiffness moduli had 

a large impact on the crack patterns. The “xHyH” case and “xHyL” case showed a crack pattern that 

differed a lot from the reference case crack pattern. The “xLyL” case was more moderate with 

respect to the crack pattern, compared with the reference case.  

For the “xHyH” case, where both DSSX and DSNY are prescribed high values, crack initiation starts 

already at load step 2. Already at this load step, the tensile strength is exceeded somewhere in the 

panel. This phenomenon occurs at the start and end nodes of the reinforcement, where the 

reinforcement stresses are largest. When DSSX is prescribed a such a high value as in this case, it 

results in an unrealistically high stiffness between the concrete and the reinforcement, which will 

result in local cracking early in the analysis in elements around the reinforcement start and end 

nodes. The interface tractions are much lower for the “xHyH” case. At load step 82, the maximum 

interface traction stresses for the reference case is approximately 5,319 MPa, while for the “xHyH” 

case, the maximum interface traction stresses are only 0,246 MPa. Also, the interface relative 

displacements are significantly small compared to the reference case. At load step 82, the maximum 

relative displacement is approximately 0,135 mm, compared with the xHyH case where the 

maximum relative displacement is approximately 0,0051 mm. 
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For the “xLyL” case, cracks start to propagate right after load step 28, which corresponds well to the 

reference case. At load step 82, an almost identical interface relative displacement when comparing 

with the reference case, is observed. This also applies for the reinforcement interface tractions, 

although slightly higher interface tractions are observed for the “xLyL” case. The crack patterns for 

the the “xLyL” case and the reference case are very similar.  

 

The “xHyL” case is very similar to the “xHyH” case. Also here crack initiation starts at step 2 by the 

same mechanism, i.e. high stresses in the concrete elements close to the reinforcement start and end 

nodes.  For this case also, very low values for the interface relative displacements and the interface 

tractions are seen.  

 

TP2 

For the model with cubic bond slip, cracking initiates slightly sooner than the reference model. 

Initiation starts at step 35 and happens at the same places but at a later stage for the reference, at step 

42. At load step 75 the maximum interface traction is reached with cubic bond slip. Instead of 

developing new cracks, the areas with maximum interface traction is increasing along the bars as 

more load is applied. The number of places along the bars where the maximum interface traction is 

reached also increases. The increased DSSX is suspected to be the reason for earlier cracking, as the 

cubic has a value of 386 𝑁 𝑚𝑚3⁄  compared to 47.1 𝑁 𝑚𝑚3⁄  for the reference. Compared to the bond 

slip curve from MC2010, the maximum interface traction is much lover, 4,636 MPa compared to 

11,83 MPa. At load step 198 for both models, the reference model has a much higher maximum 

interface traction meaning more of the stresses in the reinforcement is transferred to the concrete.  

In the xHyH panel, cracks initiates at load step 31 at the concrete upper and lower edge as well as in 

the center of the panel. This initiation happens much sooner than for the reference panel. Relative 

displacement between the reinforcement and concrete in X-direction is much lover for this model. 

Maximum 0,094 mm resulting in an interface traction of 4,44 MPa compared to 0,14 mm and 5.31 

MPa for the reference model. The crack pattern also shows more cracks following the reinforcement 

compared to the reference model. It should be noted that this model experienced load steps without 

convergence that can have taken effect on the crack pattern. 

For the xLyL panel cracks initiate slightly later than for the reference panel. The panel also reaches 

much higher interface relative displacement than the reference at the same stress level. This leads to 

higher interface tractions. The effect of a low DSNY is best seen at the supports in the reinforcement. 

At these points the relative displacement of the interface elements in the Y-direction to the concrete 

is 0,172 mm, compared to 1,83*10-5 mm for the reference case. When comparing the crack patterns 

with the reference, there are some differences. Reference case have 6 cracks while xLyL have 5 

cracks. Common for the panels is that the cracks cross the whole panel and areas of increased strain 

is limited.  

The model with xHyL got several small cracks spread across the panel. The first cracks initiate 

earlier than for the reference panel, at load step 35. Before these cracks initiates, there are large areas 

of increased strain making a checkered pattern in the strain plots. These areas develop from the left 

and right edge where the reinforcement reaches the panel edge. Biggest relative displacement of 

0.010 mm in x-direction resulting in an interface traction of only 0,479 MPa in the reinforcement at 
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the left and right edge at load step 211. Crack pattern differs from the reference panel in the length of 

the individual cracks and the large areas with increased strain. 

  

8.2 Material models 

A total strain crack model has been applied in all analyses. An investigation regarding the fixed and 

rotating crack model was conducted in order to study the impact on the cracking behavior. In section 

2.6, the difference between the rotating and the fixed crack model was presented. For the fixed crack 

model, the direction of the crack plane is fixed upon violation of the fracture criterion, and during 

subsequent loading, shear strains may arise along the crack plane which results in an increase in 

shear stress along the crack plane. For a rotating crack model, the normal to the crack and the 

direction of the major principal stress is aligned at all time.  

TP1 

By comparing the crack patterns for the reference case and the case where a fixed crack model is 

utilized, it is seen that the two patterns differ to some extent. Crack initiation for the case with a fixed 

crack model is load step 27, which corresponds well to the reference case. At this load step all 

stresses and strains are equal for both cases as expected. As the loading increases, the tensile 

principal stresses increase more rapidly for the fixed crack model case than for the reference case, 

resulting in a crack propagating in the middle of the panel for the fixed case. From the load-

displacement curve presented in section 7.2. with a fixed crack model vs. the reference case, it is 

seen that the curve for the fixed crack model flattens out around load step 34, while for the reference 

case, the curve continues to increase. The flattening of the curve implies low increase in 

reinforcement force as the load increases. This might explain the more rapid increase in concrete 

stresses for the fixed crack model. The behavior of the panel seems to depend highly on the crack 

model that is being used. For the fixed crack model, small micro cracks seem to propagate along the 

reinforcement bars.  
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TP2 

The crack pattern for the model with fixed crack model is quite different from the reference model. 

Cracks in this model are following the reinforcement bars, making a zigzag pattern.  

 

The image above shows the crack propagation direction on top of a plot of the crack strain Eknn in 

load step 49. As the crack strains appeared in the elements around load step 40, the strains where 

aligned in the same direction. As more load is applied the crack strains for the reference model 

rotates as the direction of the principal strain changes. The crack strains for the fixed model remain 

in the same direction. Cracks then propagates along the reinforcement bars.  

 

8.3 Mesh properties and sensitivity  

In all analyses, a linear meshing order was used, and DIANA10 interpret this as 1.st order elements. 

4-noded quadrilateral elements with incompatible modes were used in all analyses. The choice to add 

incompatible modes to the shape functions of the element would decrease the chance for the 

elements to exhibit locking behavior, and seemed reasonable. Given the loading situation of the 

panels, plane stress elements were thought to be well suited to reproduce results. It was assumed that 

a relatively fine mesh was needed in order to obtain crack contour plots. An element size equal to 

H/60 was used in the reference case, and was in correspondence with Hendriks et.al. [13]. It was of 

interest to investigate whether the numerical models were sensitive to mesh size change. Two 

additional meshes were evaluated. One with element size H/20, which will be denoted “coarse” and 

one mesh with element size H/100 which will be denoted “fine”. Although the modelling was 

performed in 2D, an increasing computational time occurred for mesh refinement. 

 

TP1 

A quite different global behavior was observed for the coarse and the fine mesh compared with the 

reference case. The coarse mesh shows a linear behavior upon crack initiation, then a sudden drop in 

reaction force in the load-displacement curve is observed. This sudden drop may be caused by a 

sudden force re-distribution along the reinforcing bars as a result of a sudden crack development in 

the middle of the panel. The reinforcement starts to yield already at load step 68. This is caused by 

the increasing crack in the middle of the panel, resulting in large reinforcement stresses in the 

cracked cross section. The coarse mesh shows a quite different crack pattern compared to the 

reference case. Also, this particular mesh seems a bit too course for the study of the development of 

crack patterns. For the fine mesh, crack initiation starts at load step 24, i.e. the crack initiation stage 

does not differ much from the reference case. A stabilized crack pattern develops around load step 

88, which differs much from the course mesh, but correspond to some extent with the reference case. 
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Reinforcement yielding occurs around load step 101. For the reference case, reinforcement yielding 

takes place around load step 94. On the other hand, the fine mesh seems to correspond better with the 

reference case with respect to the crack pattern than compared to the course mesh. 

 

TP2 

The mesh size study showed that the TP2 model is mesh depended. The coarse mesh H/20 did not 

have any localization propagating into a proper crack. Instead, strain was distributed over a large 

area making a checkered pattern. This pattern started on the left and right side and spread inward 

towards the center. Some localization happened at the lower and upper edges but no propagation 

occurred.  

The fine mesh H/100 got a crack pattern with five distinct cracks across the panel. Initiation stated 

around load step 50. The end result shows clearly defined cracks with small areas of increased strain 

in the concrete. The interface traction and relative displacement are higher for this model then the 

reference with 5,874 MPa at 0,178 mm displacement.  
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8.4 Numerical iterative procedures 

In DIANA10, one may choose between Newton-Raphson and Quasi-Newton iteration methods for 

the nonlinear analysis. All analyses performed in this thesis were first tried with the Newton Raphson 

methods. However, when using these types of iteration methods, divergence would occur. When 

divergence occurred, DIANA10 would automatically abort the entire analysis. It is uncertain why the 

Newton-Raphson methods were unable to obtain convergence, but it might have to do with the 

complexity of the numerical models. When implementing bond-slip reinforcement for instance, the 

reinforcement bars are also meshed and obtain degrees of freedom. This results in many more 

equilibrium equations that need to solved. Because of the problem related to divergence, the Quasi-

Newton methods were used. The Broyden version of the Quasi-Newton methods was used in the 

analyses, and this iteration gave quite stable results. For TP1 and TP2, the line search option was 

switched on in every analysis. As stated in section 3.1.8, this method is highly recommended, and 

may be used in combination with all iteration methods. It was seen that convergence was more easily 

obtained by using the line search method.  

For the analyses of TP1, each step in every analysis converged, except for the (xHyH) case and the 

cubic bond-slip case, where no convergence occurred in load step 152 and load step 44, respectively. 

For most of the analyses, convergence in each step was obtained after 10-30 iterations. In critical 

steps, the number of iterations needed to obtain convergence would sometimes exceed 30 iterations.  

For the TP2 panel only two models experienced steps with no convergence. The panel with cubic 

bond had no convergence in step 339, resulting in a sudden drop in reaction forces. Cracks for this 

panel where studied at load step 198 so this had no effect on the crack pattern. Panel with xHyH had 

a total of 7 steps without convergence. This might have had an effect on the crack pattern that was 

observed. In general convergence where often reached within 10 iterations, but some steps needed 

more time.  
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8.5 NLFEA versus Eurocode 2 and fib Model Code 2010 

A great deal of time was spent on calculating mean crack widths and crack spacing for the two 

concrete panels. The aim was to compare calculations that were based on results from the nonlinear 

finite element analyses with calculations based on the Eurocode 2 and fib Model Code 2010, as well 

as the experimental results from Dyngeland 1989 [8]. DIANA10 calculates the crack width in an 

element by multiplying the over strain over the element by a crack bandwidth, while the crack widths 

from the codes are based on a length (maximum spacing or de-bonding length), multiplied with the 

difference in average strain between the reinforcement and the concrete.  

In Table 8, the calculated crack widths based on the results from the nonlinear analyses are shown. It 

is seen that method 1, which is based on the difference in displacement between the left and the right 

edge, divided by number of cracks, in most cases estimates a larger crack width then method 2, 

which is based on the average principal strain of an element multiplied with the crack bandwidth of 

the element. This is valid both for TP1 and TP2. The problem with this approach is that it is based on 

the number of cracks that develops in the panels. This number is not always easily defined, 

especially for TP2. Nonetheless, some tendencies may be observed. For TP1, the lowest crack width 

is calculated for the “xHyL” case. The largest crack width is derived from the reference case. For 

TP2 the smallest crack width is also derived from the “xHyL” case when method 1 is being used. 

The largest crack width for TP2 with method 1 is derived from the “xLyL” case. It would have been 

convenient if the calculated crack widths for the two methods corresponded. Sadly, this is not the 

case. For TP1, and with the largest crack width calculated by method 2 is derived from the cubic 

bond-slip case and the lowest crack width is derived from the case with mesh H/100. For TP2, the 

“xLyL” case gives the highest crack width, while the “xHyL” case gives the lowest crack width. It 

seems that DSSX have a large influence on the crack widths. It was found very difficult to establish a 

general way of calculating the crack widths from the nonlinear analyses results, and the two 

methods, displacement based and average strain based, are at best a pointer for the crack widths 

given the assumptions that the methods are based on.  

In Table 9 calculated crack widths and associated crack spacing according to Eurocode 2 and fib 

Model Code 2010 are shown. It is observed that the crack widths according to Eurocode 2 in general 

are larger than those calculated by fib Model Code 2010. This is valid, especially for TP1, where the 

maximum crack spacing 𝑠𝑟,𝑚𝑎𝑥 is quite large. This large maximum crack spacing derives from a 

large effective tension area of the cross section, resulting in a small reinforcement ratio which 

evidently impacts the maximum spacing of the cracks. It is also noted that for TP1 the crack widths 

calculated from nonlinear analyses results, both method 1 and method 2, all over are smaller than 

those calculated from Eurocode 2 and fib Model Code 2010. For TP2, the crack widths calculated 

from the codes are all over smaller than those calculated from nonlinear analysis results in Table 8. 

The contribution from the concrete, i.e. the average concrete strain between cracks, was neglected, 

and may cause some over estimation of the crack widths calculated from the codes. The average 

concrete strain between cracks was neglected because of difficulties with respect to the sampling.  

When assessing at the calculated crack widths and spacing for TP2, a much better correspondence 

between the two codes are observed. However, because of the small maximum crack spacing and de-

bonding length, the code crack widths correspond rather poorly with respect to the nonlinear analysis 

crack widths. For TP2, an under estimation are seen from the codes. 
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8.6 Comparison of numerical and experimental crack patterns 

 

 

The two figures above shows the experimental crack pattern for panel S3 and the numerical crack 

pattern for TP2 reference sampled at load step 214. By comparing the dark lines within the red 

square with the principal strain plot some similarities are seen.  
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8.7 Sources to error 

The numerical models were established with the aim of reflecting the experimental panels as good as 

possible. However, it was quickly discovered that it was a challenging task to re-create the 

experimental panels exact. There exist many sources of error with respect to the numerical models 

and the obtained results of this thesis.  

In reality, the concrete panels have different dimensions than the numerical models. Only a part of 

the experimental panels were modelled, illustrated by the red square in Figure 40. In the experiments, 

the strains were sampled within this are, and this area is also where the experimental crack widths 

and spacing were sampled. When modelling only the area marked in red, it is possible that the 

numerical results suffer from edge disturbances.  

 

Figure 40: Panel S3/S4, experimental 

Also, a source of error is related to the load application. In the numerical models, the reinforcement 

end nodes were subjected to point loads. In the experiment, the reinforcing bars were welded to steel 

plates on each edge of the panel. To these steel plates five loading arms were connected. The loading 

arms were attached to a loading jack that pulled in the horizontal direction. This may have caused 

some loading in the concrete as well. In the numerical models it seemed reasonable to apply point 

loads in the reinforcement bars only, and no loading was applied to the concrete.  

Another source of error related to the boundary conditions. For the case with horizontal 

reinforcement, all the reinforcing bars are welded to the steel loading plates. In the numerical model, 

this is re-crated with translational constraints in x- and y-direction. For the case with orthogonal 

reinforcement, the reinforcing bars are welded to the steel loading plates along the vertical edges, 

and along the horizontal edges, welded to small, separate steel plates. The latter weld situation was 

re-created with tyings in the numerical model. The tying function may not represent the displacement 

of the reinforcement bars in a realistic manner compared with the experiment.  

Lastly, exact measurements were not available regarding the position of the reinforcing bars for the 

case with orthogonal reinforcement, which results in small differences in the reinforcement position 

of the numerical model compared to the experimental panel.  
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9. Conclusion 

In this thesis, nonlinear analyses of two reinforced concrete panels have been performed. The aim 

has been to study the cracking behavior of the concrete when the reinforcement bars are given bond-

slip reinforcement properties.  

The bond-slip model from MC10 resulted in the highest interface reinforcement tractions. This is due 

to the fact that the MC10 bond-slip curve is defined with a higher bond stress plateau compared with 

the cubic bond-slip model.  

The cubic bond-slip model lead to an earlier crack initiation stage for both panels due to the initial 

stiffness which is higher for the cubic bond-slip model than the MC10 bond-slip model.  

A high value for DSSX and DSNY resulted in a significant decrease in both interface tractions and 

interface relative displacement for both panels. Furthermore, the high prescribed values for the 

stiffness moduli resulted in a much earlier crack initiation for TP1 compared to the reference case. 

The same applies for panel TP2. Five cracks developed in panel TP1 as a result of the large stiffness 

moduli. Only two cracks propagated for the reference model. For TP2, fewer clear cracks developed 

as a result of high stiffness moduli. However, the crack pattern was quite different.    

A high value for DSSX and a low value for DSNY differed insignificantly with respect to the case 

with a high DSSX and a high DSNY for panel TP1. A high shear stiffness modulus and a low normal 

stiffness modulus resulted in crack initiation a few load steps later for panel TP2 compared with the 

reference case. It also resulted in a spread of small cracks all over the panel.  

A low DSSX and a low DSNY had no significant impact on the panel TP1 with respect to the 

reference case. For the panel TP2, a low value for both of the stiffness moduli resulted in much 

higher interface tractions and interface relative displacements. Also, for panel TP2, fewer cracks 

developed in as a result of low stiffness moduli.  

The value of the shear stiffness moduli, DSSX has a large influence on the cracking behavior of the 

two panels. With horizontal reinforcement only, the effect of a high DSSX is best seen with respect 

to the crack pattern. With orthogonal reinforcement, the crack pattern did not change drastically, but 

a difference is present. However, the interface tractions and relative displacements decreases 

drastically when the stiffness modulus is prescribed a high value, compared to the reference case.  

For the case with horizontal reinforcement only, changing the parameter DSNY has small and almost 

negligible effect. Furthermore, with orthogonal reinforcement, the normal stiffness plays a more 

important role, since the reinforcement to some extent will try to penetrate the concrete.  

It was attempted to analyze the two panels with Regular Newton Raphson and Modified Newton 

Rapson, but all analyses ended in divergence after a varying number of steps. The bond slip 

formulations seem to require numerical iterative methods that are more sophisticated, and it is 

concluded that a Quasi-Newton method is best suited for the task. The Broyden type Quasi-Newton 

method worked well for both panels.  

For the reference case with a rotating crack model, two straight cracks develop in a certain distance 

from the center of the panel for TP1. For TP2, six relatively straight cracks develop in the panel. For 

the fixed crack model, three cracks propagate for TP1. For TP2, the estimated number of cracks 

remained unchanged. However, both for TP1 and TP2, very different crack patterns were observed 

as cracks would develop along the reinforcement bars. For the fixed crack model, the normal to the 

crack remain unchanged during cracking while the principal direction of the stress changes. This 

causes an increase in shear stresses at the crack surface and may explain cracking along the 

reinforcement bars.   
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For TP2 the optimal crack pattern with respect to the experimental crack patterns was obtained with 

the reference case. With orthogonal reinforcement and reference loading situation, the rotating crack 

model simulates the experimental cracking behavior more accurate than the fixed crack model.  
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10. Suggestions to further work 

The analyses performed in this thesis have been useful with respect to obtaining crack patterns for 

the different bond-slip model implemented in the numerical models. However, uncertainties have 

arisen underway that may be of interest to investigate more in depth.  

To get a deeper insight regarding bond-slip and how it affects the behavior of the model, the two 

other bond-slip models available in DIANA10, Power law and Shima et.al. may be assessed. A 

straightforward answer to what values DSSX and DSNY should be assigned for different bond-slip 

models was not managed to be established in this thesis, and might be an interesting field to look 

further into.  

All of the analyses were carried out with first order quadrilateral plane stress elements with a bubble-

function. The influence of performing the analyses with second order quadrilateral plane stress 

elements can be interesting to investigate. In addition, it could be of interest to model in 3-D and use 

volume elements. Also, a deeper investigation of the “tying” function may be of interest. For TP2 the 

start/end node of a reinforcing bar was applied the same displacements as the closest concrete node. 

When the reinforcement start/end node is located between two concrete nodes, a linear interpolation 

could for instance be assessed.  

Obtaining convergence with the Newton Raphson methods was not managed in this thesis. Only the 

Broyden version of the Quasi-Newton methods was utilized in the analyses. It may be of interest to 

assess the Chrisfield version and the BFGS version of the Quasi-Newton methods.   

 

 

  



123 

 

 

  



124 

 

11. References 

[1]   Allam, S.M, Shoukry, M.S, Rashad, G.E. and Hassan, A.S. (2013). Evaluation of tension 

stiffening effect on the crack width calculation of flexural RC members.  

Available from:  

http://www.sciencedirect.com/science/article/pii/S1110016813000045. [Read 10.05.2016] 

[2]   Besson J., Cailletaud G., Chaboche J.L., Forest S. and Blétry M. (2010). Non-Linear Mechanics 

of Materials – Solid Mechanics and its application. Volume 167. Springer Publisher.  

[3]   Brisotto, D.D.S., Bittencourt, E., Bessa, V.M.R.d’A.(2012). Simulating bond failure in 

reinforced concrete by a plasticity model. Available from: 

http://www.sciencedirect.com/science/article/pii/S0045794912001046. [Read 05.04.2016] 

[4]   Chen, W.F. (2007). Plasticity in Reinforced Concrete. J. Ross Publishing. 

[5]   Chrisfield, M.A. (1991). Non-Linear Finite Element Analysis of Solids and Structures. Volume 

1: Essentials. John Wiley and Sons. 

[6]   Cook, R.D., Malkus, D.S., Plesha, M.E. and Witt, R.J (2001) Concepts and applications of finite 

element analysis. 4th ed.  

[7]   De Borst, R., Chrisfield, M.A., Remmers, J.J.C. and Verhoosel, C.V. (2012). Nonlinear Finite 

Element Analysis of Solids and Structures. 2nd edition. John Wiley & Sons Ltd. 

[8]   Dyngeland, T. (1989). Behavior of Reinforced Concrete Panels. Doktor ingeniøravhandling 

1989:19, Institutt for betongkonstruksjoner, NTH, Trondheim.     

[9]   E.A, de Souza Neto, D. Peric, DRJ. Oven(2008). Computational Methods for Plasticity – 

Theory and applications. 1.st edition. John Wiley and Sons.     

[10] Feenstra, P.H. and de Borst. R. A Comparison of different crack models applies to plain and 

reinforced concrete.  

Available from: 

https://scholar.google.no/scholar?rlz=1C1AVNE_enNO681NO681&ion=1&espv=2&bav=on.2,

or.&bvm=bv.121421273,d.bGs&biw=1280&bih=884&dpr=1&um=1&ie=UTF-

8&lr&q=related:hf8pH2vvQAGGDM:scholar.google.com/. [Read 09.05.2016] 

[11] fib Model Code for Concrete Structures 2010. International Federation for Structural Concrete 

(fib).  

[12] Hendriks, M.A.N., den Uijl, J.A., de Boer, A., Feenstra, P.H., Belletti, B. and Damoni C. (2012)    

Guidelines for nonlinear finite element analysis of concrete structures 

[13] Hendriks, M.A.N and Rots, JG (2002). Finite Elements in Civil Engineering Applications – 

Proceedings of the Third DIANA World Conference. Tokyo, Japan, 9-11 October 2002.  

[14] Mathisen, K.M. (2012). Solution Methods for Nonlinear Finite Element Analysis (NFEA).  

Lecture 11: Geilo Winter School.  

[15] Svenska Cementföreningen (1970). Armering – Handbok i armeringsteknik för 

betongkonstruktioner. 

[16] Standard Norge. NS-EN 1992-1-1:2004 + NA: 2008. Eurocode 2: Design of concrete structures        

– Part 1-1: General rules and rules for buildings.  

[17] Tejchman, J. and Bobinski, J. (2013). Continuous and Discontinuous Modelling of Fracture in 

Concrete Using FEM. Springer-Verlag Berlin Heidelberg. 

[18] TNO DIANA (2015) User’s Manual. Release 10.  

 

http://www.sciencedirect.com/science/article/pii/S1110016813000045
http://www.sciencedirect.com/science/article/pii/S0045794912001046
https://scholar.google.no/scholar?rlz=1C1AVNE_enNO681NO681&ion=1&espv=2&bav=on.2,or.&bvm=bv.121421273,d.bGs&biw=1280&bih=884&dpr=1&um=1&ie=UTF-8&lr&q=related:hf8pH2vvQAGGDM:scholar.google.com/
https://scholar.google.no/scholar?rlz=1C1AVNE_enNO681NO681&ion=1&espv=2&bav=on.2,or.&bvm=bv.121421273,d.bGs&biw=1280&bih=884&dpr=1&um=1&ie=UTF-8&lr&q=related:hf8pH2vvQAGGDM:scholar.google.com/
https://scholar.google.no/scholar?rlz=1C1AVNE_enNO681NO681&ion=1&espv=2&bav=on.2,or.&bvm=bv.121421273,d.bGs&biw=1280&bih=884&dpr=1&um=1&ie=UTF-8&lr&q=related:hf8pH2vvQAGGDM:scholar.google.com/


125 

 

Part V: Appendices  
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Appendix A – Python Scripts TP1 

Modelling Script TP1 

""" 

Python Script created by Magnus Eriksen and Magnus Kolstad for their Master's 

thesis 2016 

Concrete panel TP1 

""" 

closeProject() 

newProject( "TP1", 100 ) 

setModelAnalysisAspects( ["STRUCT"] ) 

setModelDimension( "2D" ) 

setDefaultMeshOrder( "LINEAR" ) 

setDefaultMesherType( "HEXQUAD" ) 

setUnit( "LENGTH", "MM" ) 

setUnit( "FORCE", "N" ) 

 

#GEOMETRY 

SHAPELIST = [] 

SHAPENUMBER = 1 

SELTOL = 0.01 

HEIGHT = 630 

WIDTH = 630 

THICKNESS =100 

"""Geometry is created, and panel name stored in SHAPELIST. """ 

createSheet("Tension panel", [[0,0,0],[WIDTH,0,0],[WIDTH,HEIGHT,0],[0,HEIGHT,0]]) 

SHAPELIST=["Tension panel"] 

fitAll() 

 

#REINFORCEMENT 

"""Importing function for pi. Reinforcement diameter set to 8 mm. Reinforcement 

area and 

perimeter calculated for two bars in depth.""" 

import os 

from math import pi 

DIAMX = 8 

ASX = pi/4*DIAMX**2*2 

PERIM = pi*DIAMX*2 

COVER = 45 

 

#CONCRETE PROPERTIES 

YOUNGSMOD = 21900 #Modulus of elasticity concrete 

POISSONRATIO = 0.2 

FCT = 2.51 #Tensile strength 

FC = 23.05 #Compressive strength 

GF = 73*FC**0.18*0.001 #Fracture energy (MC10) 

GC = 250*GF #Compressive fracture energy 

 

#REINFORCEMENT PROPERTIES 

ES = 210000 #Modulus of elasticity reinforcement 

FY = 403 #Yield stress reinforcement 

FU =555 #Ultimate stress reinforcement 

EPSMAX = 0.1 #Ultimate strain 

 

#CREATE REINFORCEMENT 

"""SPACING is the distance between the bars in the y-direction""" 

SPACING = 90 

"""NUMBEROFBARS and SNUM are counters to be used in "for" loops. REINFBARS is a 

list of 
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reinforcement names.""" 

NUMBEROFBARS=7 

SNUM=1 

REINFBARS=[] 

"""Y-coordinates are generated for the reinforcement startin from the bottom of 

the panel 

and all the way to the top of the panel.""" 

YBAR=[COVER] 

for i in range (1,NUMBEROFBARS): 

YBAR.append(YBAR[i-1]+SPACING) 

"""Coordinates P1 and P2 are created. A reinforcement name is made. Reinforment 

bars are 

created from point P1 to P2 and reinforcement name is stores in REINFBARS.""" 

for i in range(0,len(YBAR)): 

P1=[0,YBAR[i],0] 

P2=[WIDTH,YBAR[i],0] 

LINENAMEY='BARY{}'.format(SNUM) 

createLine( LINENAMEY, P1,P2) 

REINFBARS.append(LINENAMEY) 

SNUM=SNUM+1 

 

#CONCRETE PROPERTIES 

"""Material properties for the concrete are applied to a material named 

"Concrete". 

Exponential and parabolic curve for concrete in tension and compression.""" 

addMaterial("Concrete", "CONCR", "TSCR", []) # 

setParameter( MATERIAL, "Concrete", "LINEAR/ELASTI/YOUNG", YOUNGSMOD ) 

setParameter( MATERIAL, "Concrete", "LINEAR/ELASTI/POISON", POISSONRATIO ) 

setParameter( MATERIAL, "Concrete", "MODTYP/TOTCRK", "ROTATE" )  

setParameter( MATERIAL, "Concrete", "TENSIL/TENSTR", FCT ) 

setParameter( MATERIAL, "Concrete", "TENSIL/TENCRV", "EXPONE" ) 

setParameter( MATERIAL, "Concrete", "TENSIL/GF1", GF ) 

setParameter( MATERIAL, "Concrete", "COMPRS/COMCRV", "PARABO" ) 

setParameter( MATERIAL, "Concrete", "COMPRS/COMSTR", FC ) 

setParameter( MATERIAL, "Concrete", "COMPRS/GC", GC ) 

"""Reduction due to lateral cracking by Vecchio and Collins, damage based 

poisson's reatio 

reduction and confinement model by Selby and Vecchio.""" 

setParameter( MATERIAL, "Concrete", "TENSIL/REDUCT/REDCRV", "VC1993" ) 

setParameter( MATERIAL, "Concrete", "TENSIL/POISRE/POIRED", "DAMAGE" ) 

setParameter( MATERIAL, "Concrete", "COMPRS/CONFIN/CNFCRV", "VECCHI" ) 

"""Geometry property is crated to assign the thickness of the the panel.""" 

addGeometry("Concrete", "SHEET", "MEMBRA", []) 

setParameter( GEOMET, "Concrete", "THICK", THICKNESS ) 

"""Material properties and geometry properties are assigned to the geometry.""" 

assignMaterial("Concrete", "SHAPE", SHAPELIST) 

assignGeometry("Concrete", "SHAPE", SHAPELIST) 

 

#REINFORCEMENT PROPERTIES 

"""The reinforcement geometry is assigned as reinforcement in DIANA10""" 

setReinforcementAspects( REINFBARS ) 

RMATNAME = "Steel Reinforcement" 

"""The reinforcement is given material properties. REBOND sets bond-slip 

reinforcement. The 

material is given hardeneing parameters and bond-slip parameters.""" 

addMaterial( RMATNAME, "REINFO", "REBOND", [] ) 

setParameter( MATERIAL, RMATNAME, "REBARS/ELASTI/YOUNG", ES ) 

setParameter( MATERIAL, RMATNAME, "REBARS/PLATYP", "VMISES" )  

setParameter( MATERIAL, RMATNAME, "REBARS/PLASTI/TRESSH", "KAPSIG" ) 

setParameter( MATERIAL, RMATNAME, "REBARS/PLASTI/KAPSIG", [] ) 

setParameter( MATERIAL, RMATNAME, "REBARS/PLASTI/KAPSIG", [ 0, FY, EPSMAX, FU ] ) 
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setParameter( MATERIAL, RMATNAME, "RESLIP/DSNY", 48 ) #Normal stiffness 

setParameter( MATERIAL, RMATNAME, "RESLIP/DSSX", 48 ) #Shear stiffness DSSX 

 

 

 

 

 

# Model Code bond-slip curve Bond-slip Curve 

# Good bond conditions 

"""Bond-slip model from Model Code 2010. DUSTSX is a list that defines a curve 

with bond 

stress and slip.""" 

setParameter( MATERIAL, RMATNAME, "RESLIP/SHFTYP", "DUSTSX" ) 

setParameter( MATERIAL, RMATNAME, "RESLIP/SLIP1/DUSTSX", [ -100, -4.80, -6.0, -

4.80, -2.0, - 

12.00, -1, -12.00, -0.9, -11.50, -0.8, -10.98, -0.7, -10.40, -0.6, -9.78, -0.5, -

9.09, -0.4, 

-8.32, -0.3, -7.41, -0.2, -6.30, -0.1, -4.78, 0,0, 0.1, 4.78, 0.2, 6.30, 0.3, 

7.41, 0.4, 8.32 

, 0.5, 9.09, 0.6, 9.78, 0.7, 10.40, 0.8, 10.98, 0.9, 11.50, 1.0, 12.00, 2.0, 

12.00, 6.0, 4.80 

, 100, 4.80 ]) 

"""Reinforcement geomtry is added. The reinforcement area and perimeter is 

assigned to the 

geometry. REITRU denotes TRUSS.""" 

addGeometry( RMATNAME, "RELINE", "REBAR", [] ) 

setParameter( GEOMET, "Steel Reinforcement", "REITYP", "REITRU" ) 

setParameter( GEOMET, "Steel Reinforcement", "REITRU/CROSSE", ASX ) 

setParameter( GEOMET, "Steel Reinforcement", "REITRU/PERIME", PERIM ) 

"""Material properties and geometry are assigned to the reinforcement bars.""" 

assignMaterial( RMATNAME, "SHAPE", REINFBARS ) 

assignGeometry( RMATNAME, "SHAPE", REINFBARS ) 

 

#ELEMENT DATA 

"""Element data for the concrete is added and assigned. Integration scheme is set 

to 

regular.""" 

addElementData( "Element data 1" ) 

setParameter( DATA, "Element data 1", "INTEGR", "REGULA" ) 

"""Bubble function added. This adds incompatible modes to the shape functions.""" 

setParameter( DATA, "Element data 1", "./BUBBLE", [] ) 

assignElementData( "Element data 1", SHAPE, SHAPELIST ) 

 

#START AND END NODES REINFORCEMENT BARS 

"""The loop creates start and end nodes for the reinforcement bars as well as 

assigning 

element data to all reinforcement bars. ELEMENTDATANAME is a list of element 

datas. 

Interface elements are created, and teinforcement bars are set to TRUSS.""" 

REINFNODESTART=((HEIGHT/ELEMENTSIZE)+1)**2 

ELEMENTDATANAME=[] 

ELEMENTDATANUM=2 

ENDNODE_GROUP=[] 

STARTNODE_GROUP=[] 

for i in range (1,NUMBEROFBARS+1): 

ZZZZ='Element data {}'.format(ELEMENTDATANUM) 

ELEMENTDATANAME.append(ZZZZ) 

addElementData( ELEMENTDATANAME[i-1] ) 

setParameter( DATA, ELEMENTDATANAME[i-1], "INTERF", "TRUSS") 

STARTNODE=REINFNODESTART+(HEIGHT/ELEMENTSIZE)*(i-1)+i 

ENDNODE=REINFNODESTART+(HEIGHT/ELEMENTSIZE)*(i)+1 +i-1 
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ENDNODE_GROUP.append(ENDNODE) 

STARTNODE_GROUP.append(STARTNODE) 

setParameter( DATA, ELEMENTDATANAME[i-1], "BEGINN", STARTNODE ) 

setParameter( DATA, ELEMENTDATANAME[i-1], "ENDNOD", ENDNODE ) 

assignElementData( ELEMENTDATANAME[i-1], SHAPE, REINFBARS[i-1] ) 

ELEMENTDATANUM=ELEMENTDATANUM+1 

 

 

 

 

 

# Parameter Study 

"""Input for the parameter study is presented. For instance, if cubic bond-slip 

is to be 

investigated, simply remove the "#" in front the command below.""" 

 

"""Cubic bond-slip""" 

#setParameter( MATERIAL, RMATNAME, "RESLIP/SHFTYP", "BONDS1" ) 

#setParameter( MATERIAL, RMATNAME, "RESLIP/BONDS1/SLPVAL", [ FCT, 0.06 ] ) 

 

"""Fixed Cracking""" 

#setParameter( MATERIAL, "Concrete", "MODTYP/TOTCRK", "FIXED" ) 

#BETA = 0.01 

#setParameter( MATERIAL, "Concrete", "SHEAR/SHRCRV", "CONSTA" ) 

#setParameter( MATERIAL, "Concrete", "SHEAR/BETA", BETA ) 

 

"""xHyH""" 

#setParameter( MATERIAL, RMATNAME, "RESLIP/DSNY", 5475000 ) 

#setParameter( MATERIAL, RMATNAME, "RESLIP/DSSX", 5475000 ) 

 

"""xLyL""" 

#setParameter( MATERIAL, RMATNAME, "RESLIP/DSNY", 48 ) 

#setParameter( MATERIAL, RMATNAME, "RESLIP/DSSX", 48 ) 

 

"""xHyL""" 

#setParameter( MATERIAL, RMATNAME, "RESLIP/DSNY", 48 ) 

#setParameter( MATERIAL, RMATNAME, "RESLIP/DSSX", 5475000) 

 

"""Mesh size""" 

#ELEMENTSIZE = HEIGHT/20 

ELEMENTSIZE = HEIGHT/60 

#ELEMENTSIZE = HEIGHT/100 

 

#MESHING 

"""Element size set to all shapes in SHAPELIST, i.e. 1 sheet. Element class type 

MEMBRA: 

Plane stress elements. """ 

setElementSize( SHAPELIST, ELEMENTSIZE ) 

setElementClassType( SHAPELIST, "MEMBRA") 

"""Mesh generator. All shapes are meshed; concrete and reinforcement bars.""" 

generateMesh( shapes()) 

"""Adds load case DEFROMLOAD: Prescribed displacements. Adds SUPPORTSET: Supports 

for start 

and end nodes of reinforcement bars.""" 

addLoadCase( "DEFORMLOAD" ) 

addSet( SUPPORTSET, "SUPPORT_REBAR" ) 

"""Loop attaches supports and load to start and end nodes of the reinforcement. 

Load= 0.01 

mm per load step i x-direction on each reinforcement end node. Support: 

Restrained against 

translation in x- and y-direction for reinforcement start and end nodes.""" 



v 

 

for i in range(len(ENDNODE_GROUP)): 

addDeformationLoad( "DEFORMLOAD", 0.01, 1, TR, str(int(ENDNODE_GROUP[i])) ) 

addSupport( "SUPPORT_REBAR", TR, [ 1, 2 ], str(int(ENDNODE_GROUP[i])) ) 

addSupport( "SUPPORT_REBAR", TR, [ 1, 2 ], str(int(STARTNODE_GROUP[i])) ) 
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Analysis Script TP1 

""" 

Python Script created by Magnus Eriksen and Magnus Kolstad for their Master's 

thesis 2016 

Analysis Script Concrete panel TP1 

""" 

 

"""Adding an analysis named Nonlinear Analysis. Command: Structural Nonlinear.""" 

analysis = "Nonlinear analysis" 

command = "Structural nonlinear" 

addAnalysis( analysis ) 

addAnalysisCommand( analysis, "NONLIN", command ) 

"""Number of load steps and maximum number of iterations are set as analysis 

details. 1 and 

3 denotes 1*0.01mm displacement per load step for 100 load steps and 3*0.01mm per 

load steps 

for 100 load steps, respectively.""" 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/LOAD/STEPS/EXPLIC/SIZES", 

"1(100) 

3(100)" ) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/MAXITE", 100 ) 

"""Different convergence criterion and tolerances. CONTIN: no convergence in step 

"i", move 

on to step "i+1".""" 

""" 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/CONVER/ENERGY", 

True ) 

#Energy based convergence criteria 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/ENERGY/TOLCON", 0.001 ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/ENERGY/NOCONV", 

"CONTIN" ) 

""" 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/CONVER/FORCE", 

True ) 

 

#Force based convergence criteria 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/FORCE/TOLCON", 0.01 ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/FORCE/NOCONV", "CONTIN" 

) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/CONVER/RESIDU", 

True ) 

 

#Residual based convergence criteria 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/RESIDU/TOLCON", 0.01 ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/RESIDU/NOCONV", 

"CONTIN" ) 

#Total strain based cracking: Tangent: Secant 

#Solver for system of equations: Sparse Cholesky 

#No substructuring 

"""Nonlinar effects: Total strain cracking, Tangent: CONSISTENT. Solver for 

system of 

equations: Sparse Cholesky. No substructuring.""" 

setAnalysisCommandDetail( analysis, command, "TYPE/PHYSIC/TOTCRK/TANGEN", 

"CONSIS" ) 
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setAnalysisCommandDetail( analysis, command, "SOLVE/TYPE", "CHOLES" ) 

setAnalysisCommandDetail( analysis, command, "SOLVE/CHOLES/SUBSTR", False ) 

 

#LINESEARCH 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/ITERAT/LINESE", True ) 

 

#Arc Length 

#setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/LOAD/STEPS/EXPLIC/ARCLEN", True ) 

 

#LOGGING 

"""Full report written to the .out-file.""" 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/LOGGIN/REPORT/AMOUNT", 

"FULL" ) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/LOGGIN/REPORT/TERMIN", 

"STEP" ) 
 

#Crack strain, Green, sampled at integration points (LOCATI: INTPNT) 

#Crack width local coordinates, Green, sampled at integration points 

#Crack width, Green prinicipal, sampled at integration points 

#Total principal strains , sampled at integration points 

#Total principal stresses 

 

#OUTPUT 

"""Setting the output of the analysis. Crack Strain, Crack width, total principal 

strains 

and total principal stresses.LOCATI: Sampling points: Integration Points.""" 

setAnalysisCommandDetail( analysis, command, "OUTPUT(2)/SELTYP", "USER" ) 

addAnalysisCommandDetail( analysis, command, "OUTPUT(2)/USER" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(1)/CRACK/GREEN") 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(1)/CRACK/GREEN/LOCATI", 

"INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(2)/CRKWDT/GREEN/GLOBAL") 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(2)/CRKWDT/GREEN/GLOBAL/LOCATI","INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(3)/CRKWDT/GREEN/LOCAL" ) 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(3)/CRKWDT/GREEN/LOCAL/LOCATI","INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(4)/CRKWDT/GREEN/PRINCI" ) 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(4)/CRKWDT/GREEN/PRINCI/LOCATI","INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(5)/TOTAL/GREEN/PRINCI" ) 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(5)/TOTAL/GREEN/PRINCI/LOCATI","INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRESS(1)/TOTAL/CAUCHY/PRINCI" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRESS(2)/TOTAL/CAUCHY/LOCAL" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(6)/TOTAL/GREEN/LOCAL" ) 

"""Different iteration methods. Regular and modified Newton Raphson and Quasi 

Newton, 

Broyden.""" 
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#REGULAR NEWTON RAPSON 

""" 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/ITERAT/METHOD/METNAM", "NEWTON" ) 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/ITERAT/METHOD/NEWTON/TYPNAM", "REGULA" ) 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/ITERAT/METHOD/NEWTON/START", "PREVIO" ) 

""" 

 

#MODIFYED NEWTON RAPSON 

""" 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/METHOD/METNAM", 

"NEWTON" ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/NEWTON/TYPNAM", 

"MODIFI" ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/NEWTON/START", 

"PREVIO" ) 

#setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/NEWTON/START", 

"LINEAR" ) 

""" 

 

#SECANT BROYDEN PREVIOUS 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/METHOD/METNAM", 

"SECANT" ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/SECANT/TYPNAM", 

"BROYDE" ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/SECANT/START", "PREVIO" 

) 

"""All analysis details are set. runSolver starts the analysis "Nonlinear 

Analysis".""" 

runSolver( analysis ) 

showView( "RESULT" ) 

setViewPoint( "TOP" ) 

setViewSettingValue( "result view setting", "DEFORM/MODE", "ABSOLU") 

 

# FIND LOAD DISPLACEMENT CURVE 

#DISPLACEMENT 

"""DISPNODE = Random Reinforcement end node. The reinforcement node numbers vary 

with the 

mesh size. First, run Tension Panel script with desired mesh. Activate mesh nodes 

and mark a 

random reinforcement end node. Switch on "Show id", and type in the respective 

node number 

in DISPNODE""" 

 

#Mesh h/60 

DISPNODE = [4026] 

""" 

#Mesh h/20 

DISPNODE = [525] 

""" 

""" 

#mesh h/100 

DISPNODE= [10302] 

""" 
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#MAKE A LIST WITH NODES WITH REACTIONFORCES (FORCENODES) 

"""FORCENODES: List with reinforcement start nodes""" 

FORCENODES = [] 

VVVV=[HEIGHT/ELEMENTSIZE] 

#First reinforcement node numner 

UUUU=[(HEIGHT/ELEMENTSIZE+1)**2+1] 

 

 

"""The loop dumps all reinforcement start nodes into FORCENODES.""" 

for i in range (0,7): 

#FORCENODES.append(int(UUUU[0])+1+(i-1)*(int(VVVV[0]))) 

FORCENODES.append(int(UUUU[0])+(i*(1+int(VVVV[0])))) 

 

#highlight(NODE, 170) 

highlight(NODE, FORCENODES) 

showIds( NODE, FORCENODES ) 

 

#DISPLACEMENT 

DISPLACEMENTS = [] 

LASTCASE = len(resultCases(analysis,'')) 

for i in range(0,LASTCASE): 

DISPLACEMENTS.append(resultData([analysis,"Output",resultCases(analysis,"Ou

tput")[i], 

"Total Displacements","TDtX"],DISPNODE)[0][1]) 

 

#REACTIONFORCES 

REACTIONS = [] 

FORCE = 0 

for i in range(0,LASTCASE): 

for j in FORCENODES: 

FORCE = FORCE + 

resultData([analysis,"Output",resultCases(analysis,"Output")[i], 

"Reaction Forces","FBX"],(j,))[0][1] 

REACTIONS.append(FORCE) 

FORCE = 0 

 

#WRITE TO FILE 

"""f: writes a text file with displacements.""" 

f = open('ResultDisplacementS1.TXT','w') 

"""g:writes a text file with reaction forces.""" 

g = open('ResultReactionforceS1.TXT','w') 

"""Sets the accuracy (Number of digits) in the text files""" 

for i in range(0,len(REACTIONS)): 

f.write('{0:20.5f}\n'.format(DISPLACEMENTS[i])) 

g.write('{0:20.6f}\n'.format(REACTIONS[i])) 

f.close() 

g.close() 

 

"""In order to write the load-displacement curve, all of the user output 

(OUTPUT(2)) must be 

commented out. DIANA10 provides a defalt output.""" 
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Appendix B – Python Scripts TP2 

Modelling Script TP2 

""" 

Python script created by Magnus Eriksen and Magnus Kolstad for their master 

thesis at NTNU 

2016 

Concrete panel TP2 

Explanation: If this script is run in DIANA the reference panel is created. To 

change 

propperties to perform our parameter sudy the "#" in different places needs to be 

removed. 

""" 

#PROJECT SETTINGS 

closeProject() 

newProject( "TP2", 10 ) 

setModelAnalysisAspects( [ "STRUCT" ] ) 

setModelDimension( "2D" ) 

setDefaultMeshOrder( "LINEAR" ) 

setDefaultMesherType( "HEXQUAD" ) 

setUnit( "LENGTH", "MM" ) 

setUnit( "FORCE", "N" ) 

 

#GEOMETRY 

HEIGHT=630 

WIDTH=630 

THICKNESS=100 

"""Geometry are created, and panel name stored in SHAPELIST. """ 

createSheet("Tension panel", [[0,0,0],[WIDTH,0,0],[WIDTH,HEIGHT,0],[0,HEIGHT,0]]) 

SHAPELIST=["Tension panel"] 

fitAll() 

 

#REINFORCEMENT PROPERTIES 

"""Importing function for pi. Reinforcement diameter set to 8mm. Reinforcement 

area and 

perimeter calculated for two bars in depth.""" 

import os 

from math import pi 

DIAMLONG=8 

ASL=pi/2*DIAMLONG**2 

PERIM=DIAMLONG*pi*2 

FY = 403 #yield stress 

FU = 555 #ultimate stress 

EPSMAX = 0.1 #strain at ultimate stress 

DSNY = 5906250 #normal stiffnes of interface 

DSSX = 47.1 #shear stiffness of interface 

 

#CONCRETE PROPERTIES 

EC = 23625 #Youngs modulus 

POISSONRATIO = 0.15 #Poissons ratio 

FC = 22.4 #Compressive strength 

FCT = 2.44 #Tensile strength 

GF = 73*FC**0.18*0.001 #Fracture energy tension, formula from MC10 

GC = 250*GF #Fracture energy compression 

 

#CREATE REINFORCEMENT 

"""SPACING is the distance between bars in the X-direction. INIBARDISPX and 

INIBARDISPY are 

initial "displacement" to place reinforcement in the rigth place in relation to 

the 
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concrete.""" 

SPACING=127 

INIBARDISPX=122 

INIBARDISPY=58.5 

""" NUMBEROFBARS and SNUM are counters to be used in "for" loops. Asbars is a 

list of the 

reinforcement-names.""" 

NUMBEROFBARS=10 

SNUM=1 

ASBARS=[] 

"""X-coordinates are generated for the reinforcement starting in bottom left 

going up to the 

right(XBAR).""" 

XBAR=[-WIDTH+INIBARDISPX] 

for i in range (1,NUMBEROFBARS-1): 

XBAR.append(XBAR[i-1]+SPACING) 

"""Coordinates P1 and P2 are created. Reinfircement bars are created from point 

P1 to P2. A 

reinforcement name is made and stored in ASBARS""" 

for i in range(0,len(XBAR)): 

P1=[XBAR[i],0,0] 

P2=[XBAR[i]+WIDTH,HEIGHT,0] 

LINENAMEX='BARX{}'.format(SNUM) 

createLine( LINENAMEX, P1,P2) 

ASBARS.append(LINENAMEX) 

SNUM=SNUM+1 

"""X-coordinates are generated for the reinforcement starting in top left going 

down to the 

right(YBAR).""" 

YBAR=[-WIDTH+INIBARDISPY] 

for i in range (1,NUMBEROFBARS): 

YBAR.append(YBAR[i-1]+SPACING) 

"""Coordinates P3 and P4 are created. Reinfircement bars are created from point 

P1 to P2. A 

reinforcement name is made and stored in ASBARS""" 

for i in range(0,len(YBAR)): 

P3=[YBAR[i],HEIGHT,0] 

P4=[YBAR[i]+WIDTH,0,0] 

LINENAMEY='BARY{}'.format(SNUM) 

createLine( LINENAMEY, P3,P4) 

ASBARS.append(LINENAMEY) 

SNUM=SNUM+1 

 

#CONCRETE PROPERTIES 

"""Material properties for the concrete are applied to a material named 

"Concrete". 

Exponental and parabolic curve for concrete in tension and compression. """ 

addMaterial( "Concrete", "CONCR", "TSCR", [] ) 

setParameter( MATERIAL, "Concrete", "LINEAR/ELASTI/YOUNG", EC ) 

setParameter( MATERIAL, "Concrete", "LINEAR/ELASTI/POISON", POISSONRATIO ) 

setParameter( MATERIAL, "Concrete", "MODTYP/TOTCRK", "ROTATE" ) 

setParameter( MATERIAL, "Concrete", "TENSIL/TENSTR", FCT ) 

setParameter( MATERIAL, "Concrete", "TENSIL/TENCRV", "EXPONE" ) 

setParameter( MATERIAL, "Concrete", "TENSIL/GF1", GF ) 

setParameter( MATERIAL, "Concrete", "COMPRS/COMCRV", "PARABO" ) 

setParameter( MATERIAL, "Concrete", "COMPRS/COMSTR", FC ) 

setParameter( MATERIAL, "Concrete", "COMPRS/GC", GC ) 

"""Reduction due to lateral cracking by Vecchio and Collins, damage based 

poissons ratio 

reduction and confinement model by Selby and Vecchio.""" 

setParameter( MATERIAL, "Concrete", "TENSIL/REDUCT/REDCRV", "VC1993" ) 
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setParameter( MATERIAL, "Concrete", "TENSIL/POISRE/POIRED", "DAMAGE" ) 

setParameter( MATERIAL, "Concrete", "COMPRS/CONFIN/CNFCRV", "VECCHI" ) 

"""Geometry property is created to assign the thicknes of the panel""" 

addGeometry( "Concrete", "SHEET", "MEMBRA", [] ) 

setParameter( GEOMET, "Concrete", "THICK", THICKNESS ) 

"""Material properties and geometry properties are assigned to the geometry""" 

assignMaterial( "Concrete", "SHAPE", SHAPELIST ) 

assignGeometry( "Concrete", "SHAPE", SHAPELIST ) 

 

#RIENFORCEMENT PROPERTIES 

"""The reinforcement geometry is defined as reinforcement in DIANA""" 

setReinforcementAspects( ASBARS ) 

"""Renamed the reinforcement to RMATNAME for easier use""" 

RMATNAME = "Steel Reinforcement" 

"""Reinforcement is defined as bond slipp reinforcement and properties applied to 

RMATNAME""" 

addMaterial( RMATNAME, "REINFO", "REBOND", [] ) 

setParameter( MATERIAL, RMATNAME, "REBARS/ELASTI/YOUNG", 210000 ) 

setParameter( MATERIAL, RMATNAME, "REBARS/PLATYP", "VMISES" ) 

setParameter( MATERIAL, RMATNAME, "REBARS/PLASTI/TRESSH", "KAPSIG" ) 

setParameter( MATERIAL, RMATNAME, "REBARS/PLASTI/KAPSIG", [ 0, FY, EPSMAX, FU ] ) 

setParameter( MATERIAL, RMATNAME, "RESLIP/DSNY", DSNY ) 

setParameter( MATERIAL, RMATNAME, "RESLIP/DSSX", DSSX) 

"""Bond slip cureve is defined""" 

setParameter( MATERIAL, RMATNAME, "RESLIP/SHFTYP", "DUSTSX" ) 

setParameter( MATERIAL, RMATNAME, "RESLIP/SLIP1/DUSTSX", [ -100, -4.73, -6, -

4.73, -2, -11.83 

, -1, -11.83, -0.9, -11.34, -0.8, -10.82, -0.7, -10.25, -0.6, -9.64, -0.5, -8.97, 

-0.4, -8.20 

, -0.3, -7.31, -0.2, -6.21, -0.1, -4.71, 0, 0, 0.1, 4.71, 0.2, 6.21, 0.3, 7.31, 

0.4, 8.20, 

0.5, 8.97, 0.6, 9.64, 0.7, 10.25, 0.8, 10.82, 0.9, 11.34, 1.0, 11.83, 2, 11.83, 

6, 4.73, 100, 

4.73 ] ) 

"""Geometry propperties are defined for the reinforcement""" 

addGeometry( RMATNAME, "RELINE", "REBAR", [] ) 

setParameter( GEOMET, RMATNAME, "REITYP", "REITRU" ) 

setParameter( GEOMET, RMATNAME, "REITRU/CROSSE", ASL ) 

setParameter( GEOMET, RMATNAME, "REITRU/PERIME", PERIM ) 

"""Material properties and geometry properties are applied to reinforcement """ 

assignMaterial( RMATNAME, "SHAPE", ASBARS ) 

assignGeometry( RMATNAME, "SHAPE", ASBARS ) 

 

#ELEMENT DATA 

"""Integration scheme and bubble function to add incompatible strain modes to the 

concrete 

elements. """ 

addElementData( "Element data 1" ) 

setParameter( DATA, "Element data 1", "INTEGR", "REGULA" ) 

setParameter( DATA, "Element data 1", "./BUBBLE", [] ) 

assignElementData( "Element data 1", SHAPE, SHAPELIST ) 

 

#START AND END NODES 

"""To apply element data to the reinforcement, the start and end nodes must be 

defined. 

There where no easy way to find these by python script so they have been found 

manually and 

put in a list. The node numbers dependent on the mesh size.""" 

#mesh is H/20 

#STARTNODEREINF=[442,450,466,490,522,543,575,599,615,623,627,639,659,687,723,759,

787,807,819] 
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#ENDNODEREINF= 

[449,465,489,521,542,574,598,614,622,626,638,658,686,722,758,786,806,818,822] 

#mesh H/60 

STARTNODEREINF=[3722,3746,3794,3866,3962,4023,4119,4191,4239,4263,4275,4311,4371,

4455,4563, 

4671,4755,4815,4851] 

ENDNODEREINF= 

[3745,3793,3865,3961,4022,4118,4190,4238,4262,4274,4310,4370,4454,4562,4670, 

4754,4814,4850,4862] 

#mesh H/100 

#STARTNODEREINF=[10202,10242,10322,10442,10602,10703,10863,10983,11063, 

11103,11123,11183,11283,11423,11603,11783,11923,12023,12083] 

#ENDNODEREINF= [10241,10321,10441,10601,10702,10862,10982,11062,11102, 

11122,11182,11282,11422,11602,11782,11922,12022,12082,12102] 

 

"""A for loop is used to generate a spesific element data for each reinforcemnet 

bar and 

applies it. The element date defines the reinforcement as truss-bond-slip-

reinforcement and 

applies the start and end node to the first and last node in each bar""" 

 

ELEMENTDATANAME=[] 

ELEMENTDATANUM=2 

for i in range (1,len(STARTNODEREINF)+1): 

ZZZZ='Element data {}'.format(ELEMENTDATANUM) 

ELEMENTDATANAME.append(ZZZZ) 

addElementData( ELEMENTDATANAME[i-1] ) 

setParameter( DATA, ELEMENTDATANAME[i-1], "INTERF", "TRUSS") 

setParameter( DATA, ELEMENTDATANAME[i-1], "BEGINN", STARTNODEREINF[i-1] ) 

setParameter( DATA, ELEMENTDATANAME[i-1], "ENDNOD", ENDNODEREINF[i-1] ) 

assignElementData( ELEMENTDATANAME[i-1], SHAPE, ASBARS[i-1] ) 

ELEMENTDATANUM=ELEMENTDATANUM+1 

 

#PARAMETE STUDY 

"""CUBIC BOND SLIP""" 

#setParameter( MATERIAL, RMATNAME, "RESLIP/SHFTYP", "BONDS1" ) 

#setParameter( MATERIAL, RMATNAME, "RESLIP/BONDS1/SLPVAL", [ FCT, 0.06 ] ) 

 

"""FIXED CRACKING""" 

#setParameter( MATERIAL, "Concrete", "MODTYP/TOTCRK", "FIXED" ) 

#BETA = 0.01 

#setParameter( MATERIAL, "Concrete", "SHEAR/SHRCRV", "CONSTA" ) 

#setParameter( MATERIAL, "Concrete", "SHEAR/BETA", BETA ) 

 

"""xHyH""" 

#DSSX = 5906250 

#DSNY = 5906250 

 

"""xHyL""" 

#DSSX = 5906250 

#DSNY = 47.1 

 

"""xLyL""" 

#DSSX = 47.1 

#DSNY = 47.1 

 

"""MESH SIZE""" 

#ELEMENTSIZE=HEIGHT/20 

ELEMENTSIZE=HEIGHT/60 

#ELEMENTSIZE=HEIGHT/100 
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#MESHING 

"""Mesh size is applied and mesh is generated. Membran type is selected""" 

setElementSize( SHAPELIST, ELEMENTSIZE ) 

setElementClassType( SHAPELIST, "MEMBRA" ) 

generateMesh(shapes()) 

 

#LOADS AND SUPPORTS 

"""Load case and support set are created""" 

addLoadCase( "DEFORMLOAD" ) 

addSet( SUPPORTSET, "SUPPORT_REBAR" ) 

"""Loads and supports are applied to the reinforcement crossing the left and 

right side of 

the panel.""" 

for i in range(4): 

addSupport( "SUPPORT_REBAR", TR, [ 1 ], str(int(STARTNODEREINF[i])) ) 

addSupport( "SUPPORT_REBAR", TR, [ 2 ], str(int(STARTNODEREINF[i])) ) 

addSupport( "SUPPORT_REBAR", TR, [ 1 ], str(int(ENDNODEREINF[i+5])) ) 

addSupport( "SUPPORT_REBAR", TR, [ 2 ], str(int(ENDNODEREINF[i+5])) ) 

addDeformationLoad( "DEFORMLOAD", 0.01, 1, TR,str(int(ENDNODEREINF[i+5])) ) 

for i in range(5): 

addSupport( "SUPPORT_REBAR", TR, [ 1 ], str(int(STARTNODEREINF[i+9]))) 

addSupport( "SUPPORT_REBAR", TR, [ 2 ], str(int(STARTNODEREINF[i+9]))) 

addSupport( "SUPPORT_REBAR", TR, [ 1 ], str(int(ENDNODEREINF[i+14])) ) 

addSupport( "SUPPORT_REBAR", TR, [ 2 ], str(int(ENDNODEREINF[i+14])) ) 

addDeformationLoad( "DEFORMLOAD", 0.01, 1,TR,str(int(ENDNODEREINF[i+14])) ) 

 

#highlight(NODE, STARTNODEREINF) 

#showIds( NODE, ENDNODEREINF ) 

 

# APPLICATION OF TYINGS 

"""To apply the styings, the python script must be run in DIANA and then exported 

to a .DAT 

- file. Then one of the tying-sets below must be pasted into the .DAT file. This 

must be 

pasted in between the 'LOADS'-sectiomn and the 'SUPPOR'-section in the .DAT-file. 

The tyings 

are dependent on the mesh size, so the right tying-set must be copied from 

below.""" 

"""The tying applies a master slave relation between one reinforcement node and 

one concrete 

node. In this case an equal displacement relation in X and Y direction is 

applied. 

 

""" 

#H/60: 

""" 

'TYINGS' 

NAME SET_1 

EQUAL TR 1 2 

4274 69 

4023 75 

4310 81 

4119 87 

4370 93 

4191 99 

4454 105 

4239 111 

4562 117 

4563 235 
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3745 229 

4671 223 

3793 217 

4755 211 

3865 205 

4815 199 

3961 193 

4851 187 

4022 1 

3962 3 

""" 

 

#H/20: 

""" 

'TYINGS' 

NAME SET_1 

EQUAL TR 1 2 

626 25 

543 27 

638 29 

575 31 

658 33 

599 35 

686 37 

615 39 

722 41 

723 79 

449 77 

759 75 

465 73 

787 71 

489 69 

807 67 

521 65 

819 63 

522 3 

542 1 

""" 

 

#H/100: 

""" 

'TYINGS' 

NAME SET_1 

EQUAL TR 1 2 

10703 123 

10863 143 

10983 163 

11063 184 

11122 112 

11182 132 

11282 153 

11422 173 

11602 193 

11923 351 

11603 391 

10241 382 

11783 371 

10321 362 

10441 341 

12023 330 

10601 321 
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12083 310 

11923 351 

10602 3 

10702 1 

""" 
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Analysis Script TP2 

""" 

Python script created by Magnus Eriksen and Magnus Kolstad for their master 

thesis at NTNU 

2016 

Concrete panel TP2 

""" 

 

#mesh is H/20 

#STARTNODEREINF=[442,450,466,490,522,543,575,599,615,623,627,639,659,687,723,759,

787,807,819] 

#ENDNODEREINF= 

[449,465,489,521,542,574,598,614,622,626,638,658,686,722,758,786,806,818,822] 

 

#mesh H/60 

STARTNODEREINF=[3722,3746,3794,3866,3962,4023,4119,4191,4239,4263,4275,4311,4371,

4455,4563, 

4671,4755,4815,4851] 

ENDNODEREINF= 

[3745,3793,3865,3961,4022,4118,4190,4238,4262,4274,4310,4370,4454,4562,4670, 

4754,4814,4850,4862] 

 

#mesh H/100 

#STARTNODEREINF=[10202,10242,10322,10442,10602,10703,10863,10983,11063, 

11103,11123,11183,11283,11423,11603,11783,11923,12023,12083] 

#ENDNODEREINF= [10241,10321,10441,10601,10702,10862,10982,11062,11102, 

11122,11182,11282,11422,11602,11782,11922,12022,12082,12102] 

 

# SET UP ANALYSIS 

analysis = "Nonlinear analysis" 

command = "Structural nonlinear" 

addAnalysis( analysis ) 

addAnalysisCommand( analysis, "NONLIN", command ) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/LOAD/STEPS/EXPLIC/SIZES", 

"1(10)" ) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/MAXITE", 100 ) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/CONVER/DISPLA", 

False ) 

""" 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/CONVER/ENERGY", 

True ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/ENERGY/TOLCON", 0.001 ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/ENERGY/NOCONV", 

"CONTIN" ) 

""" 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/CONVER/FORCE", 

True ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/FORCE/TOLCON", 0.01 ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/FORCE/NOCONV", "CONTIN" 

) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/CONVER/RESIDU", 

True ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/RESIDU/TOLCON", 0.01 ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/CONVER/RESIDU/NOCONV", 
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"CONTIN" ) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/CONVER/SIMULT", 

False ) 

addAnalysisCommandDetail( analysis, command, "EXECUT(1)/SOLVE/CHOLES" ) 

#LINESEARCH 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/ITERAT/LINESE", True ) 

#Arc Length 

#setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/LOAD/STEPS/EXPLIC/ARCLEN", True ) 

#LOGGING 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/LOGGIN/REPORT/AMOUNT", 

"FULL" ) 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/LOGGIN/REPORT/TERMIN", 

"STEP" ) 

 

#ITERATION METHOD 

#MODIFYED NEWTON RAPSON 

""" 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/METHOD/METNAM", 

"NEWTON" ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/NEWTON/TYPNAM", 

"MODIFI" ) 

#setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/NEWTON/START", 

"PREVIO" ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/NEWTON/START", 

"LINEAR" ) 

""" 

 

#REGULAR NEWTON RAPSON 

""" 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/ITERAT/METHOD/METNAM", "NEWTON" ) 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/ITERAT/METHOD/NEWTON/TYPNAM", "REGULA" ) 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/ITERAT/METHOD/NEWTON/START", "PREVIO" ) 

""" 

 

#SECANT BROYDEN PREVIOUS 

setAnalysisCommandDetail( analysis, command, "EXECUT(1)/ITERAT/METHOD/METNAM", 

"SECANT" ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/SECANT/TYPNAM", 

"BROYDE" ) 

setAnalysisCommandDetail( analysis, command, 

"EXECUT(1)/ITERAT/METHOD/SECANT/START", "PREVIO" 

) 

setViewSettingValue( "result view setting", "DEFORM/MODE", "ABSOLU" ) 

 

#Physical nonlinear - Total Strain based cracking, TANGENT CONSISTENT 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"TYPE/PHYSIC/TOTCRK/TANGEN", "CONSIS" ) 

 

#substructure off 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"EXECUT(1)/SOLVE/CHOLES/SUBSTR", False ) 
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#SPARSE CHOLESKY solution method 

setAnalysisCommandDetail( "Nonlinear analysis", "Structural nonlinear", 

"SOLVE/TYPE", 

"CHOLES" ) 

 

#OUTPUT USER 

"""The selected output""" 

setAnalysisCommandDetail( analysis, command, "OUTPUT(2)/SELTYP", "USER" ) 

addAnalysisCommandDetail( analysis, command, "OUTPUT(2)/USER" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(1)/CRACK/GREEN") 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(1)/CRACK/GREEN/LOCATI", 

"INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(2)/CRKWDT/GREEN/GLOBAL") 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(2)/CRKWDT/GREEN/GLOBAL/LOCATI","INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(3)/CRKWDT/GREEN/LOCAL" ) 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(3)/CRKWDT/GREEN/LOCAL/LOCATI","INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(4)/CRKWDT/GREEN/PRINCI" ) 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(4)/CRKWDT/GREEN/PRINCI/LOCATI","INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(5)/TOTAL/GREEN/PRINCI" ) 

setAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(5)/TOTAL/GREEN/PRINCI/LOCATI","INTPNT" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRESS(1)/TOTAL/CAUCHY/PRINCI" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRESS(2)/TOTAL/CAUCHY/LOCAL" ) 

addAnalysisCommandDetail( analysis, command, 

"OUTPUT(2)/USER/STRAIN(6)/TOTAL/GREEN/LOCAL" ) 

 

#STARTING THE ANALYSIS 

runSolver( analysis ) 

showView( "RESULT" ) 

setViewPoint( "TOP" ) 

setResultPlot( "contours", "Cauchy Total Stresses/mappedintegrationpoint", "S2" ) 

setViewSettingValue( "result view setting", "DEFORM/MODE", "ABSOLU") 

 

# FIND LOAD DISPLACEMENT CURVE 

"""To make the load displacement date the outputblock above must be commented 

out.""" 

 

#DISPLACEMENT 

"""The end of one af the reinforcement bars are selected to sample displacements 

from""" 

DISPNODE = [int(ENDNODEREINF[7])] 

 

#highlight(NODE,DISPNODE) 

 

#MAKE A LIST WITH NODES WITH REACTIONFORCES (FORCENODES) 

FORCENODES=[] 

for i in range(4): 

FORCENODES.append(int(STARTNODEREINF[i])) 

for i in range(5): 

FORCENODES.append(int(STARTNODEREINF[i+9])) 
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highlight(NODE, DISPNODE) 

showIds( NODE, FORCENODES ) 

 

#SAMPELING OF DISPLACEMENTS 

DISPLACEMENTS = [] 

LASTCASE = len(resultCases(analysis,'')) 

for i in range(0,LASTCASE): 

DISPLACEMENTS.append(resultData([analysis,"Output",resultCases(analysis,"Output")

[i], 

"Total Displacements","TDtX"],DISPNODE)[0][1]) 

 

#SAMPELING OF REACTION FORCES 

REACTIONS = [] 

FORCE = 0 

for i in range(0,LASTCASE): 

for j in FORCENODES: 

FORCE = FORCE + resultData([analysis,"Output",resultCases(analysis,"Output")[i], 

"Reaction Forces","FBX"],(j,))[0][1] 

REACTIONS.append(FORCE) 

FORCE = 0 

 

#WRITE TO FILE TEXT FILES 

f = open('Result45DisplacementS2.TXT','w') 

g = open('Result45ReactionforceS2.TXT','w') 

for i in range(0,len(REACTIONS)): 

f.write('{0:20.5f}\n'.format(DISPLACEMENTS[i])) 

g.write('{0:20.6f}\n'.format(REACTIONS[i])) 

f.close() 

g.close() 

"""Warnings are ignored. One unwanted load is removed by diana when analysis 

starts, wich is 

OK. Error in the end is ignored. """ 
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Appendix C – Calculations according to Eurocode 2 and Model Code  

In this appendix follows simplified calculations of crack widths and maximum crack spacing for 

panel TP1 and panel TP2.  

 

Material Properties 

𝑓𝑐𝑡.𝑇𝑃1 = 2,51 𝑀𝑃𝑎, tensile strength TP1 

𝑓𝑐𝑡.𝑇𝑃2 = 2,44 𝑀𝑃𝑎, tensile strength TP2 

𝐸𝑠 = 210000 𝑀𝑃𝑎, Elastic modulus reinforcing steel  

𝐸𝑐.𝑇𝑃1 = 21900 𝑀𝑃𝑎, Elastic modulus of concrete TP1 

𝐸𝑐.𝑇𝑃2 = 23625 𝑀𝑃𝑎, Elastic modulus of concrete TP2 

 

Reinforcement  

𝑓𝑦 = 403 𝑀𝑃𝑎, yield limit reinforcement 

𝜙 = 8𝑚𝑚, diameter of reinforcing bar 

𝐴𝑠1 = 14 ∙ 𝜋 ∙ (8𝑚𝑚)2 ∙ 0,25 = 703,716 𝑚𝑚2 Total amount of reinforcement in TP1 

𝐴𝑠2 = 38 ∙ 𝜋 ∙ (8𝑚𝑚)2 ∙ 0,25 = 1910,088 𝑚𝑚2 Total amount of reinforcement in TP2 

 

Cover 

𝑐𝑇𝑃1 = 𝑐𝑇𝑃2 = min(45,10)𝑚𝑚 = 10𝑚𝑚, cover taken in the thickness direction of the panel.  

 

Eurocode 2 

𝑘1 = 0,8 

𝑘2 = 1,0 

𝑘3 = 3,4 

𝑘4 = 0,425 

ℎ𝑐,𝑒𝑓𝑓,𝑇𝑃1 = (10 + 8 + 20)𝑚𝑚 = 38𝑚𝑚 

ℎ𝑐,𝑒𝑓𝑓,𝑇𝑃2 = ℎ𝑐,𝑒𝑓𝑓,𝑇𝑃1 = 38𝑚𝑚 

𝐴𝑐,𝑒𝑓𝑓,𝑇𝑃1 = 𝐴𝑐,𝑒𝑓𝑓,𝑇𝑃2 = ℎ𝑐,𝑒𝑓𝑓 ∙ 𝑏 = 23940  

𝜌𝑝,𝑒𝑓𝑓,𝑇𝑃1 =
7 ∙ 𝜋 ∙ (4𝑚𝑚)2

𝐴𝑐,𝑒𝑓𝑓
= 0,01469 

𝜌𝑝,𝑒𝑓𝑓,𝑇𝑃2 =
10 ∙ 𝜋 ∙ (4𝑚𝑚)2

𝐴𝑐,𝑒𝑓𝑓
= 0,020996 



xxii 

 

𝑠𝑟,𝑚𝑎𝑥,𝑇𝑃1 = 𝑘3 ∙ 𝑐 + 𝑘1 ∙ 𝑘2 ∙ 𝑘4 ∙
𝜙

𝜌𝑝,𝑒𝑓𝑓,𝑇𝑃1
= 219,160𝑚𝑚 

𝑠𝑟,𝑚𝑎𝑥,𝑦,𝑇𝑃2 = 𝑠𝑟,𝑚𝑎𝑥,𝑧,𝑇𝑃2 = 𝑘3 ∙ 𝑐 + 𝑘1 ∙ 𝑘2 ∙ 𝑘4 ∙
𝜙

𝜌𝑝,𝑒𝑓𝑓,𝑇𝑃2
= 163,548 𝑚𝑚 

𝑠𝑟,𝑚𝑎𝑥,𝑇𝑃2 =
1

cos (𝜑)

𝑠𝑟,𝑚𝑎𝑥,𝑦,𝑇𝑃2
+

sin (𝜑)

𝑠𝑟,𝑚𝑎𝑥,𝑧,𝑇𝑃2

= 115,646 𝑚𝑚  

 

Model code 2010 

𝑘 = 1,0 

𝜏𝑏𝑚,𝑇𝑃1 = 1,8 ∙ 𝑓𝑐𝑡,𝑇𝑃1 = 4,518 𝑀𝑃𝑎 

𝜏𝑏𝑚,𝑇𝑃2 = 1,8 ∙ 𝑓𝑐𝑡,𝑇𝑃2 = 4,392 𝑀𝑃𝑎 

ℎ𝑐,𝑒𝑓𝑓 = min (2,5 ∙ (𝑐 +
𝜙

2
) ,

𝑡

2
) = 35  t=100mm 

𝐴𝑐,𝑒𝑓𝑓 = ℎ𝑐,𝑒𝑓𝑓 ∙ 𝑏 = 22050 𝑚𝑚2 

𝜌𝑠,𝑒𝑓𝑓,𝑇𝑃1 = 
7 ∙ 𝜋 ∙ (4𝑚𝑚)2

𝐴𝑐,𝑒𝑓𝑓
= 0,01596 

𝜌𝑠,𝑒𝑓𝑓,𝑇𝑃2 = 
10 ∙ 𝜋 ∙ (4𝑚𝑚)2

𝐴𝑐,𝑒𝑓𝑓
= 0,02278 

𝑙𝑠,𝑚𝑎𝑥,𝑇𝑃1 = 𝑘 ∙ 𝑐 +
1

4
∙

𝑓𝑐𝑡,𝑇𝑃1

𝜏𝑏𝑚,𝑇𝑃1
∙

𝜙

𝜌𝑠,𝑒𝑓𝑓,𝑇𝑃1
= 79,618 𝑚𝑚 

𝑙𝑠,𝑚𝑎𝑥,𝑥,𝑇𝑃2 = 𝑙𝑠,𝑚𝑎𝑥,𝑦,𝑇𝑃2 = 𝑘 ∙ 𝑐 +
1

4
∙

𝑓𝑐𝑡,𝑇𝑃2

𝜏𝑏𝑚,𝑇𝑃1
∙

𝜙

𝜌𝑠,𝑒𝑓𝑓,𝑇𝑃2
= 58,776 𝑚𝑚 

𝑙𝑠,𝑚𝑎𝑥,𝑇𝑃2 =
1

cos (𝜑)
𝑙𝑠,𝑚𝑎𝑥,𝑥,𝑇𝑃2

+
sin (𝜑)

𝑙𝑠,𝑚𝑎𝑥,𝑦,𝑇𝑃2

= 44,490 𝑚𝑚 

 

Calculation of crack widths 

- Eurocode 2:  

o 𝑤𝑑 = 𝑠𝑟,𝑚𝑎𝑥 ∙ (𝜀𝑠 − 𝜀𝑐) 

 

- Model Code 2010 

o 𝑤𝑑 = 2 ∙ 𝑙𝑠,𝑚𝑎𝑥 ∙ (𝜀𝑠 − 𝜀𝑐) 

 

 


