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Summary

Getting the most out of a hydrocarbon reservoir is not a trivial task. It takes plenty
of interwoven decisions to make. There are many forms of tools that support en-
gineers to make correct decisions. The simplest ones would only display mea-
surements in a suitable way, and appoint the rest of the decision making process
to human knowledge and experience. Complex decision support tools may im-
plement model-based estimation and optimization. This work targets methods for
optimization-based decision support.

The objective of this study is to formulate, implement and test promising methods
of hydrocarbon production optimization through various test cases. To do this, a
various optimizations algorithm were applied to the simulated reservoir models
using the Matlab Reservoir Simulation Toolbox (MRST).
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Chapter 1
Introduction

Energy is inevitable for human life. The sustainability of modern societies depends
crucially on a secure and accessible supply of energy. The non-stop use of fossil
fuels is set to face numerous challenges, one of which is the seemingly inexorable
depletion of fossil fuel reserves. Oil remains the world’s leading fuel, accounting
for 33.1% of global energy consumption in 2012 (BP2, 2013), as shown in Figure
1.1.

Figure 1.1: World consumption of primary energy, million tons of oil equivalent(BP2,
2013).
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1.1 Report Structure

Most of the existing major oilfields are already at a mature stage, and the number
of new significant discoveries per year is decreasing (Brouwer, 2004). Smaller
fields are still regularly found, but at the current oil price it is often not economical
to exploit them. As a direct result it becomes more and more difficult to maintain
economic reserves at a desirable level.

In order to satisfy the growing worldwide demand for oil and gas, it is becoming
increasingly important to produce existing fields as efficiently as possible, while
simultaneously decreasing development and operating costs. Optimal control the-
ory is one possible approach that can be deployed to address these difficult issues
Sarma et al. (2005). The main benefit of the use of optimal control theory is its ef-
ficiency, which makes it suitable for application to real reservoirs simulated using
large models, in contrast to many existing techniques.

1.1 Report Structure

The rest of this report is organized as follows:

Chapter 2 presents background material for subsequent chapters. The chapter
gives an introduction to various solution techniques for optimization prob-
lems. It provides a comparison between local and gloabal optimization al-
gorithms as well as a brief description of linear and nonlinear programming.
The chapter also demonstrates the several necessary steps for derivation of a
mathematical model for two-phase flow through porous media. The model
is simplified by making a number of assumptions and then discretized to
become for numerical schemes. Further, it introduces the MATLAB-based
reservoir simulator which was implemented in this study. It gives descrip-
tions on the reservoir model and optimization algorithms implemented into
the toolbox. At the end of this chapter, based on the author’s experience with
the simulator, some of its positive and negative aspects are discussed.

Chapter 3 performs a literature review and presents state-of-the-art on methods
that include uncertainty, in particular robust optimization and closed loop
techniques.

Chapter 4 formulates, implements and tests promising methods on a simple ex-
ample as well as a more elaborate example, namely the five-spot model and
the egg model. The results are discussed and analyzed.

Chapter 5 offers concluding remarks and recommendations for further work.
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Chapter 2
Basic Theory and Background

2.1 An Overview of Optimization Techniques

This section aimes at giving the reader a basic overview of the various solution
techniques for typical optimization problems.

Before starting this review, it is useful to introduce the standard form of the gen-
eral optimization problem which will be solved using the techniques presented in
the upcoming sections. The standard form for a single-objective, non-linear, con-
strained optimization problem is (Nocedal and Wright, 2006)

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E
ci(x) ≥ 0, i ∈ I

(2.1)

where f is the objective function, while ci, i ∈ E are the equality constraints and
and ci, i ∈ I are the inequality constraints. The vector x has n ≥ 1 compo-
nents (sometimes referred to as design variables) and f and the functions ci are all
smooth, real-valued functions on a subset ofRn, and E and I are two finite sets of
indices.

In the general case, the objective and constraint functions can be linear or non-
linear and can be explicit or implicit functions. Implicit functions commonly ap-
pear when, for example, a numerical simulation (e.g., a finite element simulation)
is used to evaluate a response function (e.g., a pressure value). Also, the variables
vector x need not be continuous.
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2.1 An Overview of Optimization Techniques

Optimization problems can have some or all of the variables x restricted to inte-
ger or discrete values (Venter, 2010). These types of problems are referred to as
integer or discrete optimization problems. Generally, the local algorithms have
difficulty in solving optimization problems with integer and/or discrete variables,
while several global algorithms are well adapted to this class of problems.

Optimization techniques are algorithms used to find the solution to the problem
specified in (2.1). Their mission is to find the combination of design variable
x values that provide the best objective function value, while satisfying all the
equality and inequality constraints. Many problems have more than one optimum
(referred to as local or relative optima). Some algorithms aim at finding local
optima, while others seek to find the optimal solution among all possible solutions
(not just those in a particular neighborhood of values). The latter are called Global
optimization techniques (Venter, 2010).

There are many ways to classify the available optimization techniques. One way is
to divide the whole range of methods into Local and Global techniques. The rest
of this chapter covers a comparison of local and globoal algorithms followed by a
brief introduction to two broad classes of optimization problems, linear program-
ming (LP) and nonlinear programming (NLP).

2.1.1 Local Optimization Algorithms

Most local optimization algorithms are gradient-based (Venter, 2010). As sug-
gested by the name, gradient-based optimization techniques exploit gradient infor-
mation to find the optimum solution of (2.1). Gradient-based algorithms are used
for solving a broad range of optimization problems in engineering. These tech-
niques have gained popularity because of their efficiency (in terms of the number
of function evaluations required to find the optimum), ability to solve problems
with large numbers of design variables, and typically little problem-specific pa-
rameter tuning requirement. These algorithms, however, have several drawbacks
which include locating only local optimua (and not gloabal ones), having diffi-
culty solving discrete optimization problems, complexity of algorithms making
them difficult to implement efficiently, and susceptiblity to numerical noise.

Gradient-based algorithms typically implement a two-step process to find the op-
timum. This process can be explained by means of a physical example (Vander-
plaats, 2007). Consider a blindfolded boy on a hill. He wishes to find the highest
point on the hill (the objective function), while staying inside the two fences (the
constraints). Here, the design variables are the x and y coordinates of the boy.
Now, because of the blindfold, he cannot just look up the hill and go straight to the

2



2.1 An Overview of Optimization Techniques

“optimum” point. He may take a small step in the x direction and a small step in
the y direction. From this, he can sense the slope of the hill and then search in the
upward direction. In a mathematical sense, what he has done is calculate the direc-
tion of steepest ascent by calculating the gradient by finite difference methods. He
can then start walking in this direction until no more progress is made, which may
include reaching a fence. At this point the boy can again take two small steps to
determine a new direction that will take him uphill, while staying inside the fences,
and continue the process until he reaches the top of the hill.

The mathematical summarization of this two-step iterative process of finding the
optimum can be:

xk+1 = xk + αkpk, (2.2)

where the first step is to use gradient information for finding a search direction
pk in which to move. The second step is to move in this direction until no more
progress can be made. The size of this progression is determined by the step-length
αk. This algorithm is known as the Line Search Method. There are also gradient-
based algorithms that do not rely on a line search, such as the Trust Region Method.

Choosing the Search Direction

Line search methods can select among several choices for search directions pk
(Nocedal and Wright, 2006). The steepest descent method is a line search method
that moves along pk = −∇fk at every step. One advantage of this direction
is that it requires calculation of the gradient ∇fk but not the second derivative.
However, it can be agonizingly slow on complex problems. Another important
search direction is the Newton direction. It is derived from the second order Taylor
series approximation to f(xk + p), by simply setting its derivative with repect to
p equal to zero. As a result we get

pk = −(∇2fk)
−1∇fk. (2.3)

Methods that use the Newton direction have a fast rate of local convergence, typ-
ically quadratic. The main drawback of the Newton direction is the need for the
Hessian ∇2f(x). Explicit computation of this matrix of second derivatives can
sometimes be a cumbersome, error-prone, and expensive process. In order to avoid
such difficulties, Quasi-Newton search directions have been developed. They pro-
vide an attractive alternative to Newton’s method in that they do not require com-
putation of the Hessian and yet still attain a superlinear rate of convergence. In
place of the true Hessian ∇2fk, they use an approximation Bk, which is updated
after each step to take account of the additional knowledge gained during the step.

3



2.1 An Overview of Optimization Techniques

The updates make use of the fact that changes in the gradient provide information
about the second derivative of f along the search direction.

Calculating Derivatives

Many practical applications require the optimization of functions whose deriva-
tives are not readily available (Nocedal and Wright, 2006). Problems of this kind
can be solved, in principle, by approximating the gradient (and possibly the Hes-
sian) using finite differences. Finite difference gradients provide a flexible means
of estimating the gradient information. However, when used, they typically domi-
nate the total computing time required to complete an optimization study (Venter,
2010). When the designer has access to the function source code, automatic dif-
ferentiation (see e.g., (Griewank and Walther, 2008)) can be used to obtain the
required gradient information. Automatic differentiation is the generic name for
techniques that use the computational representation of a function to produce an-
alytic values for the derivatives. These techniques have the benefit of providing
gradient information accurate to working precision. To the contrary, finite differ-
ence calculations provide only an approximation to the gradient, with the accuracy
depending on the selected step size.

The KKT Conditions

When gradient information is available, the Karush-Kuhn-Tucker conditions or
KKT conditions can be used to determine if a constrained local optimum has been
found. The KKT conditions provide the first order necessary conditions for a local
optimum and can be summarized as:

1. x∗, the local solution of (2.1), must be feasible.

2. The gradient of the Lagrangian function for the general problem (2.1) must
vanish at this local solution x∗:

∇f(x∗)−
∑
i∈E∪I

λ∗i∇ci(x∗) = 0, (2.4)

where λi are the Lagrange multipliers (Nocedal and Wright, 2006) and we
have λ∗i∈I ≥ 0, whereas λ∗i∈E are unrestricted in sign.

3. For all i ∈ E ∪ I we have λ∗i ci(x
∗) = 0.

The KKT conditions are suitable for indicating whether a local optimum has been
found. However, they cannot identify global optima.

4



2.1 An Overview of Optimization Techniques

2.1.2 Global Optimization Algorithms

Many problems have multiple optima, with a simple univariate function as shown
in Figure 2.1. In this figure, point A represents a local (or relative) minimum, while
point B represents a global (or absolute) minimum in the feasible region. The local
algorithms discussed earlier will converge on any of these points, depending on
which one is encountered first.

Superficially, global optimization is just a stronger version of local optimization,
whose great usefulness in practice is undisputed (Neumaier, 2004). Instead of
searching for a locally unimprovable feasible point, one wants the globally best
point in the feasible region (point B in Figure 2.1). In many practical applica-
tions, such as problems in the petroleum industry, finding the globally best point
is desirable but not essential, since any sufficiently good feasible point is useful
and usually an improvement over what is available without optimization. For such
problems, there is little harm in doing an incomplete search1; and indeed, this
is all that can be achieved for many large-scale problems or for problems where
function values (and perhaps derivatives) are a available only through a black box
routine that does not provide global information. Global optimization is much
more difficult than convex programming or finding local minimizers of nonlinear
programs, since the gap between the necessary (Karush-Kuhn-Tucker) conditions

1An incomplete method uses clever intuitive heuristics for searching but has no safeguards if the
search gets stuck in a local minimum.

Figure 2.1: A function with several local optima (such as point A) and a global optimum
(point B) (Passaro and Starita, 2008).

5



2.1 An Overview of Optimization Techniques

for optimality and known sufficient conditions for global optimality is tremendous.

Evolutionary optimization algorithms are a large branch of global optimization
techniques and have gained popularity in the last couple of decades. In contrast to
the local techniques, where a single design point is updated (typically using gra-
dient information) at each iteration, these algorithms do not require any gradient
information and typically implement a set of design points (generally referred to
as a population) to find the global optimum. These methods are typically inspired
by some natural phenomena. Their advantages include being extremely robust,
having an increased chance of finding a global or near global optimum, being easy
to implement, and being well suited for discrete optimization problems. The big
drawbacks associated with evolutionary algorithms are high computational cost,
poor constraint-handling capabilities, problem-specific parameter tuning and lim-
ited problem size.

Currently, two of the most popular evolutionary algorithms are the more estab-
lished Genetic Algoithm (GA) (Holland, 1975), which was inspired by Darwin’s
principle of survival of the fittest, and Particle Swarm Optimization (PSO) (Kennedy
and Eberhart, 1995), which is based on a simplified social model.

The interested reader is referred to the excellent survey of global optimization
algorithms provided by Neumaier (2004) for more detailed information on evolu-
tionary as well as deterministic algorithms.

2.1.3 Linear Programming

The development of linear programming (LP) has been ranked among the most im-
portant scientific advances of the mid-20th century (Hillier and Lieberman, 2010).
Its impact since just 1950 has been extraordinary. Today it is a standard tool that
has saved many thousands or millions of dollars for most companies or businesses
of even moderate size in the various industrialized countries of the world.

A linear program is class of problems with a linear objective function and linear
equality and/or inequality constraints. The feasible region is a polytope2. The
contours of the linear objective function are planar, and the solution is at the inter-
section of contours with a subset of the linear constraints.

The standard form (Nocedal and Wright, 2006) of a linear program is usually stated
2A convex, connected set with flat polygonal faces.
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2.1 An Overview of Optimization Techniques

as follows:
min
x∈Rn

c>x

s.t. Ax = b,

x ≥ 0,

(2.5)

where c and x are vectors in Rn, b is a vector in Rm, and A is an m× n matrix.
Convexity of (2.5) ensures that the Karush-Kuhn-Tucker (KKT) conditions are
sufficient for a global minimum.

There are two classes of algorithms which have proven to be efficient for LP prob-
lems, namely the simplex and the interior-point methods.

The Simplex Method

The simplex method has a number of variants, but the one briefly described here is
known as the revised simplex method. The principle of this method is to move from
one vertex of the polytope to an adjacent one for which the basis3 differs in exactly
one component. On most steps (but not all), the value of the objective function c>x
decreases. Another type of step occurs when the problem is unbounded, where
one can move infinitely far without ever reaching a vertex. A major issue at each
simplex iteration is to decide which variable to remove from the basis and which
one to bring in from outside the basis, and different strategies exist (see (Dantzig
and Thapa, 2003) for a comprehensive discussion on simplex algorithms).

Interior-Point Methods

The primal-dual methods, a subclass of interior-point methods, have distinguished
themselves as the most efficient practical approaches, and proved to be strong com-
petitors to the simplex method on large problems (Nocedal and Wright, 2006).

Consider the linear programming problem in standard form (2.5). The KKT con-
ditions for the optimal solution of this problem are

A>λ + s = c, (2.6a)

Ax = b, (2.6b)

xisi = 0, i = 1, 2, . . . , n, (2.6c)

(x, s) ≥ 0, (2.6d)

3A set B or basis is defined for the problem at hand as a subset of the index set {1, 2, . . . , n}
such that B contains exactly m indices, and i /∈ B ⇒ xi = 0.
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2.1 An Overview of Optimization Techniques

where λ ∈ Rm and s ∈ Rn are the Lagrangian multipliers for the equality and
inequality constraints, respectively.

Primal-dual methods find solutins (x∗,λ∗, s∗) of this system by applying variants
of Newton’s method4 to the three equalities in (2.6) and modifying the search
directions and step lengths so that the inequalities (x, s) ≥ 0 are satisfied strictly
at every iteration5. The equations (2.6a), (2.6b), (2.6c) are linear or only mildly
nonlinear and so are not difficult to solve by themselves. However, the problem
becomes much more difficult when we add the nonnegativity requirement (2.6d),
which gives rise to all the complications in the design and analysis of interior-
point methods (see (Boyd and Vandenberghe, 2009) for an extensive discussion on
interior-point methods).

2.1.4 Nonlinear Programming

The general constrained optimization problem (2.1) is called a nonlinear program-
ming when the objective function f or the constraints ci are not linear. As LP prob-
lems are well studied over several decades, only some of the subclasses of NLPs
are equally well treated. Hence, there are no efficient methods for solving general
NLPs. Even simple looking ones with as few as ten variables can be extremely
challenging, while problems with a few hundred variables can be intractable.

NLP problems can be divided into two main classes, convex and non-convex prob-
lems. A convex optimization problem is one in which the objective function and
the feasible set are convex. The reason for dividing the NLP problems into these
groups is that for the convex ones, all local optimal solutions are also global op-
timal solutions. For the nonconvex problems however, this is not true, since there
is no way to characterize the global solution using only local information. It may
be hard to verify convexity for NLPs. In such cases it is necessary to assume that
they are non-convex.

The most popular solution methods for NLPs are interior-point (or barrier) meth-
ods and Sequential quadratic programming (SQP) algorithms. These methods are
generally considered the most powerful algorithms for large-scale nonlinear pro-
gramming. The principal ideas of interior-point methods and SQP are briefly de-
scribed below.

4Choosing a Newton direction (2.3).
5This is property is the origin of the term interior-point.
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2.1 An Overview of Optimization Techniques

Sequential Quadratic Programming

Sequential Quadratic Programming (SQP) is an efficient method for solving non-
linear constrained optimization. The approach can be used both in line search and
trust-region frameworks, and is appropriate for both small and large problems. The
idea behind the SQP approach is to approximate the NLP problem (2.1) by a con-
vex quadratic programming (QP) subproblem at the current iterate xk as follows:

min
p

1
2p
>∇2

xxL(xk,λk)p +∇f(xk)
>p (2.7a)

s.t. ∇ci(xk)>p + ci(xk) = 0, i ∈ E (2.7b)

∇ci(xk)>p + ci(xk) ≥ 0, i ∈ I (2.7c)

The solution of this QP problem, using for instance an active-set method, provides
a search direction p. The active-set method has several similarities to the simplex
method, which in turn is an active set method for LP problems. In essence, the
simplex method starts by making a guess of the optimal active set, then repeatedly
use dual information to drop one constraint from the current estimate of active
constraints, and add a new one, until optimality is detected. Active-set methods for
convex QPs differ from the simplex method in that the iterates are not necessarily
vertices of the feasible polytope. They finn a step from one iterate to the next by
solving a quadratic subproblem in which some of the inequality constraints, and
all equality constraints are imposed as equalities i.e. the active-set. The algorithm
terminates when the solution does not change from one iteration to the next, and
the Lagrangian multiplier for all the active inequalities are zero or negative.

Interior-Point Methods

Some of the key ideas, such as primal-dual steps, carry directly over from LP.
However, the treatment of non-convexity, the strategy for updating the barrier pa-
rameter in the presence of nonlinearities, and the need to ensure progress toward
the solution, are several of the important new challenges that arise. These include
the treatment of nonconvexity, the strategy for updating the barrier parameter in
the presence of nonlinearities, and the need to ensure progress toward the solution
(Nocedal and Wright, 2006; Boyd and Vandenberghe, 2009).

9



2.1 An Overview of Optimization Techniques

2.1.5 Production Optimization

The goal of production optimization problem is finding the right combination of
well settings, i.e., the BHP and the flow rates, to maximize an economic objective
function, namely the net present value (NPV).

The optimization problem can be formulated as follows:

u∗ = arg max
u

J (2.8)

s.t. f(xk+1, xk, uk) = 0, k = 1, . . . ,KT

g(uk) ≤ 0, x0 = x̂0

where J denotes the objective function and f the reservoir model. The initial
conditions are represented by x̂0, and g are the constraints corresponding to the
lower and upper bounds on the injection rates and the bhp. The optimal control
actions are denoted by u∗.

The discrete form of NPV is widely used and is defined by

J =

KT∑
k=1

roqo,k − rwqw,k − riqi,k

(1 + b)
tk
τt

∆tk (2.9)

where ro denotes the fixed oil price, and rw and ri are the water production and
the water injection costs, respectively, all of which are assumed to be constant. To
account for depreciation, the discount rate, b, is added for a certain reference time,
τt. The final time step is KT , and ∆tk denotes the time interval at the kth time
step. The oil production, water production and water injection rates are denoted
by qo,k, qw,k, and qi,k, respectively, at the time step k.

A variety of methods are available in the literature for solving problem (2.53).
If the gradient can be computed efficiently, gradient-based optimization becomes
promisingly efficient to deal with large-scale systems, e.g. production optimiza-
tion in oil reservoirs. The adjoint method has been used in many papers for similar
problems, see for example Jansen (2011). Of the few existing methods for cal-
culating gradients, adjoint techniques are the most efficient, especially for a large
number of controls, as the algorithm is independent of the number of controls
(Sarma et al., 2005).

In this study, the adjoint method developed into the MATLAB Reservoir Simula-
tion Toolbox (MRST) is used to determine the gradient of the objective function
with respect to the control settings. In the rest of this chapter, we first introduce
MRST briefly. Next, we present a brief derivation of the reservoir model equations

10



2.1 An Overview of Optimization Techniques

and the adjoint model implemented into the toolbox (See Krogstad and Gulbransen
(2011) for further details).

2.1.6 The Implemented Optimization Algorithm

The OptimizeObjective function under the adjoint module of MRST uses an ag-
gressive line search based on the given gradient. The algorithm handles box-
constraints and linear equality and (probably not) inequality constraints. It per-
forms on an iterative scheme, applying the constraints to the gradient until conver-
gence is achieved.

The algorithm makes use of the gradient projection method which is explained in
the following section.

The Gradient Projection Method

The gradient projection method is most efficient when the constraints are simple
in form–in particular, when there are only bounds on the variables (Nocedal and
Wright, 2006). A general form of this type of constraints is

l ≤ x ≤ u, (2.10)

where l and u are vectors of lower and upper bounds on the components of x.
The feasible region defined by 2.71 is sometimes called a “box” because of its
rectangular shape.

Each iteration of the gradient projection algorithm consists of two stages. In the
first stage, we search along the steepest descent direction from the current point
x. Whenever a bound is encountered, the search direction is “bent” so that it stays
feasible. This is illustrated in Figure 2.5.

We search along the resulting piecewise-linear path trying to locate the first local
minimizer of the objective function f , which we denote by xc and refer to as the
Cauchy point. The working set6 is now defined to be the set of bound constraints
that are active at the Cauchy point, denoted by A(xc). In the second stage of each
gradient projection iteration, we search on the face of the feasible box on which
the Cauchy point lies. To do this, we solve a subproblem in which the active
components xi for i ∈ A(xc) are fixed at the values xci .

6Primal active-set methods find a step from one iterate to the next by solving a quadratic sub-
problem in which some of the inequality constraints, and all the equality constraints, are imposed as
equalities. This subset is referred to as the working set and is denoted at the kth iterate xk by Wk.
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Figure 2.2: The gradient projection method (Nocedal and Wright, 2006).

Line Search Method

The gradient projection method projects the gradient according to constraints it-
eratively until a certain tollerance is met or a certain number of iterations is met
(where it returnes failure). The constraints are applied in the following order:

1. box constraints,

2. linear inequality constraints,

3. linear equality constraints.

The resulting norm of the projected gradient is used as stopping criteria.

Next, a line search is performed along the projected gradient. The step length α in
(2.2) for this line search is multiplied by three values [0 0.5 1] to get [α1 α2 α3].
Now, based on a comparison of the objective function values for the three new step
lengths, a decision is made:

(a) If the projected gradient is equal for α2 and α3, then we are on the boundary,
done.

12



2.2 Reservoir Modeling

(b) If the value of the objective function follows f(α1) ≤ f(α2) ≤ f(α3), then
multiply the current step size by 2 and go to (a).

(c) If f(α1) ≥ f(α2)), then multiply the current step size by 0.5 and go to (a).

(d) Find the minimum on the approximated quadratic curve through (α1, α2, α3),
done.

2.2 Reservoir Modeling

The primary objective of a reservoir study is to predict future performance of a
reservoir and find ways and means of increasing ultimate recovery. Classical reser-
voir engineering deals with the reservoir on a gross average basis (tank model)
and cannot account adequately for the variations in reservoir and fluid parame-
ters in space and time (Aziz and Settari, 1979). Reservoir simulation allows a
more detailed study of the reservoir by dividing the reservoir into a number of
blocks (sometimes several thousand) and applying fundamental equations for flow
in porous media to each block.

The physical system to be modelled must be expressed in terms of appropriate
mathematical equations. This process almost always involves assumptions. The
assumptions are necessary from a practical standpoint in order to make the problem
tractable.

In this work, as an example of a reservoir model we consider the flow of oil and
water through a heterogeneous porous medium. We make the strongly simplifying
assumptions that the reservoir is horizontal and of constant height, and that grav-
ity and capillary forces can be neglected. We also assume the reservoir is in its
secondary recovery phase where the pressures are above the bubble point pressure
of the oil phase. Therefore, two-phase immiscible flow, that is, no mass transfer
between the two liquid phases, is a fair assumption. We focus on water-flooding
cases for two-phase (oil and water) reservoirs. Further, we assume incompressible
fluids and rocks, no-flow boundaries, and isothermal conditions.

To implement the reservoir model, we do not develop an oil reservoir simulator
from scratch. Rather, we use an open source MATLAB toolbox described in sec-
tion 2.2.5. The assumptions stated earlier are covered in the toolbox.

13



2.2 Reservoir Modeling

2.2.1 Mass Balance

Let Ω ⊂ Rd(d ≤ 3) be a porous medium domain of volume V with boundary
∂Ω of area s, and let n be the outward pointing unit normal on the boundary as
illustrated in Figure 2.3.

Figure 2.3: Porous medium Ω in two dimensional space (d = 2).

Now, conservation of some quantity c can be formulated as

∂

∂t

∫
Ω
c dV +

∮
∂Ω

F ·n ds =

∫
Ω
q dV, (2.11)

Where F is the mass flux and q is the source/sink term. Equation (2.11) implies
that the rate of change inside Ω (the term on the left-hand side) is equal to the
rate of mass entering or leaving through the boundary ∂Ω and the rate of mass
contributed by sources or sinks (the terms on the right-hand side). Using Gauss’s
divergence theorem we get∫

Ω
(
∂c

∂t
+∇ ·F) dV =

∫
Ω
q dV, (2.12)

from which we can obtain the continuity equation

∂c

∂t
+∇ ·F = q. (2.13)

2.2.2 Immiscible Two-Phase Flow Formulations

In reservoir simulation, we are primarily concerned with modelling the displace-
ment, within a porous medium, of oil by either water or gas. While the displacing
fluid may be immiscible with the fluid being displaced, the displacement does not
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take place as a piston-like process with a sharp interface between the two fluids
(Peaceman, 1977). Rather, simultaneous flow of the two immiscible fluids takes
place within the porous medium.

In considering this simultaneous flow we assume no mass transfer between the two
fluids. One of the fluids wets the porous medium more than the other; we refer to
this as the wetting phase fluid, and we refer to the other as the nonwetting phase
fluid. In a water-oil system, water is most often the wetting phase.

Except in cases of steam flooding or in-situ combustion we can assume that reser-
voir flow is isothermal, which implies that we may disregard the energy balance
equation (Jansen et al., 2008). Moreover, the movement of fluids is usually so slow
that we can disregard inertial effects, and that instead of the momentum balance
equation we may use an empirical relationship between pressure drop and flow
velocity known as Darcy’s law.

We now write the continuity equation (2.13) for the case of a two-phase (oil-water)
flow. Here, the conserved quantity c is the mass of each phase ραφSα, where ρ is
fluid density, φ is porosity, S is fluid saturation of the pore space (0 ≤ S ≤ 1),
and the subscript α ∈ {o, w} indicates the oil and water phases, respectively. The
density and the porosity are independent of pressure as we assume that the rock
and the fluid are incompressible. Substituting for mass flux Fα = ραvα in (2.13),
where v is the (superficial) fluid velocity results in

∂(ραφSα)

∂t
+∇ · (ραvα) = q̃α. (2.14)

Darcy’s law can be expressed as

vα = −krα
µα

K(∇pα − ραg∇d), (2.15)

where K is the permeability tensor, µ fluid viscosity, kr relative permeability, p
pressure, g acceleration of gravity and d depth. The ratio krα/µα is called the
phase mobility λα. Employing the no gravity assumption, Darcy’s law will sim-
plify to

vα = −λαK∇pα. (2.16)

The permeability tensor K, whose elements have units of surface area, represents
how easily the fluids flow through the rock in different directions. Usually the
orientation of the coordinate system can be aligned with the geological layering in
the reservoir such that K is a diagonal matrix:

K = diag(kx, ky, kz), (2.17)
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where kx, ky, and kz are directional permeabilities in the x, y and z coordinate
directions. The dimensionless relative permeabilities krα are functions of Sα, and
are reduction factors that represent the increase in flow resistance caused by multi-
phase effects. The resistance to concurrent flow of oil and water is generally much
higher than the sum of the resistances to flow of the individual phases, and the rel-
ative permeabilities are therefore a major source of nonlinearity in the multi-phase
equations. Relative permeability data are obtained from laboratory experiments
using small portions of rock which do not generally represent the rock properties
of the whole reservoir. Hence, uncertainties are unavoidable. In this work we as-
sume the relative permeability follows the Corey model (Aziz and Settari, 1979)

SN,α =
S − Sαr

1− Swr − Sor
, (2.18a)

krα = k0
rα(SN,α)nα , (2.18b)

where SN,α is the normalized water saturation, Swr and Sor are the residual wa-
ter and oil saturations, k0

rα is the endpoint relative permeability for phase α, and
nα is the empirical coeffiecient for phase α. Typically, relative permeability is
considered a quadratic function of water saturation as shown in Figure 2.4.

Substituting (2.16) into (2.14) and noting that the porosity and density are independent
of pressure we get

φ
∂Sα
∂t

+∇ ·vα =
q̃α
ρα
. (2.19)

Equation (2.19) (one for each phase) contain four unknowns, pw, po, Sw and So,
two of which can be eliminated with aid of the relationships

Sw + So = 1, (2.20a)

po − pw = pc(Sw), (2.20b)

where pc(Sw) is the oil-water capillary pressure which is another source of non-
linearity in the flow equations. However, the no capillary assumption simplifies
(2.20b) to po = pw = p. It is common to choose the water saturation Sw as the
primary unknown variable and define it as a variable S. Now, the primary variables
are the pressure p and water saturation S.

Defining the total velocity as v = vo + vw and applying it to (2.16) and (2.19)
results in

v = −λtK∇p, within Ω (2.21a)

∇ ·v = q, within Ω (2.21b)

v ·n = 0, on ∂Ω (2.21c)
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where q is the total volumetric rate and λt is the total mobility defined as

q = qo + qw =
q̃o
ρo

+
q̃w
ρw

(2.22)

λt(S) = λo + λw =
kro
µo

+
krw
µw

. (2.23)

We refer to the combination of (2.21a) and (2.21b) with respective boundary con-
dition (2.21c) as the pressure equations, which is an elliptic PDE in this case. Now,
we obtain water velocity from (2.21a) as follows

vw = −λwK∇p = −λw
λt

v = − λw
λo + λw

v. (2.24)

Referring to λw
λo+λw

as the water fractional flow, denoting it by fw(S), and substi-
tuting (2.24) for the water phase of (2.19) we obtain

φ
∂S

∂t
+∇ · fw(S)v = qw. (2.25)

We refer to (2.25) as the saturation equation which is a hyperbolic PDE in this
case.

Figure 2.4: Typical relative permeability curves.
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2.2.3 Discritization Method

The pressure and saturation equations (2.21) and (2.25) are referred to as the state
equations. It is impossible to find an analytical solution of the state equations for
typical reservoir models. Hence, one approximates the solutions by some numer-
ical method. In reservoir simulation literature typical methods of choice are the
finite difference, finite-volume, and finite-element methods. We do not differen-
tiate the finite-difference and finite-volume method, in the sense that the finite-
volume method is a conservative finite-difference scheme that treats the grid cells
as control volumes (Aarnes et al., 2007).

However, before proceeding we need to select how to solve the state equations
using a sequential time step scheme. In the reservoir simulation literature both
implicit and explicit methods are applied. The implicit method is unconditionally
stable while the explicit is potentially more efficient but restricted by numerical
stability conditions. In addition to the most common fully implicit scheme, the
solution strategy which can be used in reservoir management is the IMPES (IM-
plicit Pressure and Explicit Saturation) method. However, in this work we use the
other way around, i.e., explicit-pressure and implicit-saturation. First, the strat-
egy computes relative permeabilities using the initial water saturation. Second,
the pressure equation is solved using the initial water saturation and the secondary
variables values. Third, with the obtained pressure solution, the velocity is com-
puted and is used to solve the saturation equation. This procedure is repeated until
the final time is reached.

We begin with the pressure equations (2.21). In this work we use a cell-centred
finite-volume method, which is known as the two-point flux-approximation (TPFA)
scheme. We discretize the domain Ω into a number of grid blocks (k) such that
Ωi ∈ Ω and i = 1, 2, . . . , k. After some rearrangement, (2.21) can be written as

∇ · (−λtK∇p) = q. (2.26)

The left-hand side of (2.26), after discretization, is called the transmissibilities.
(2.26) is a linear equation, A(S)p = q, the left-hand side of which is represented
by A, a symmetric matrix whose elements are given by

aik =

{∑
j tij if k = i,

−tik if k 6= i.
(2.27)

In a Cartesian grid, matrix A is a tridiagonal matrix for 1D, pentadigonal for 2D,
and heptadiagonal for 3D cases. Note that the discretization above is a spatial
discretization of the pressure equation. We need to discretize the equation in time
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as well. To perform temporal discretization for the pressure equation, we use a
finite difference operator and end up with

A(Sn−1)pn = Bun. (2.28)

Here, we have set the right-hand side as a function of a control input vector un

for time step n, which can either be well rates or well pressures (bottom hole
pressure/BHP). Also, matrix B is the arrangement matrix of the control inputs.

Now, we intend to discretize the saturation equation (2.25). We apply the finite
difference operator to obtain

φi
∆t

(Sn+1
i − Sni ) +

1

|Ωi|
∑
j 6=i

Rij(S
n+1) =

qw,i(S
n
i )

ρw
. (2.29)

The porosity in Ωi is denoted by φi and Rij is the approximation of the velocity at
the edge γij , which is

Rij ≈
∫
γij

(fw(S)ijvij) ·nij ds (2.30)

where nij is the normal vector. The water fractional flow at the edge is approxi-
mated by using upstream weighting, such that

fw(S)ij =

{
fw(Si) if v ·nij ≥ 0,

fw(Sj) if v ·nij < 0,
(2.31)

This gives the following discrete form of the saturation equation

Sn = Sn−1 + ∆tnD−1
PV (M(vn)fw(Sn) + q(vn)+). (2.32)

Here, ∆tn is the time step and DPV is the diagonal matrix containing the grid
block pore volumes. The matrix M(vn) is the sparse flux matrix based on the
upstream weighted discretization scheme, and q(vn)+ is the vector of positive
sources (in this setting, water injection rates) (Suwartadi et al., 2010). We note that
the matrix M and vector q are linear functions of vn, where vn = T(Sn−1)pn

and T(Sn−1) is a matrix containing the transmissibilities and well indices based
on Sn−1. We refer to (2.32) as the discretized saturation equation.

The discrete state equations (2.28) and (2.32) can be written in an implicit form
F(x̃, ũ) = 0 as

F(x̃, ũ) =

 F0(p1,S0,S1,u1)
...

FN−1(pN ,SN−1,SN ,uN )

 xnT = (pnT ,SnT ), n = 1, . . . , N,

x̃T = (x1T , . . . ,xNT ),

ũT = (u1T , . . . ,uNT ).
(2.33)
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The state vectors and control input vectors are stacked for all time instances from
n = 1, . . . , N .

2.2.4 Boundary Conditions

Due to no-flow boundary conditions, the driving forces of the reservoir models
are at the wells. Injector wells inject water while producer wells produce both oil
and water. At the wells we can either fix the rate or bottom-hole pressure (BHP).
The former amounts to the Neumann boundary condition while the latter gives the
so-called Dirichlet boundary condition.

In this study, the well rate is implemented by using the Peaceman well model
(Peaceman, 1983), that is

qt = λtWI(pwf − pgf ) (2.34)

where WI denotes the well index, pwf is the BHP, and pgf is the well-block pres-
sure. The well index is described by the following equation

WI = 2π
dz 3
√
kxkykz

Vgb(ln( rorw ) + S)
(2.35)

where dz is the well-segment length, Vgb the volume of the well grid block, rw
the radius of the well, kx, ky, kz are the permeabilities in the x, y, z directions,
respectively, and ro is the effective well radius which is expressed as

ro = 0.28

[√
kx
ky

(∆y)2 +
√

ky
kx

(∆x)2

] 1
2

4

√
kx
ky

+ 4

√
ky
kx

(2.36)

The grid block length in the x and y direction are denoted by ∆x and ∆y , respec-
tively.

2.2.5 The Implemented Reservoir Model

In order to build the case study models into the simulator, the following assump-
tions were considered:

1. two-phase, incompressible flow,
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2. no gravity,

3. zero capillary pressure,

4. No-flow at the outer boundary of the reservoir.

Assumption 1 neglects the presence of gas in the system. The pressure and satura-
tion equations for the model are given by:

∇.~v = q, ~v = −λ(sw)K∇p, (2.37)

φ
∂sw
∂t

+∇.[fw(sw)~v] = qw, (2.38)

where ~v denotes the Darcy velocity, λ = λo + λw is total mobility, sw is water
saturation, K is the permeability tensor, p is pressure, q is the fluid source term ,
φ is effective porosity, fw = λw/λ is fractional flow of water, and qw is the water
source term.

Let v denote the outward face fluxes and well-perforation rates, s saturation cell, p
pressure cell, and π face pressures and well pressures. The system corresponding
to the pressure equation (2.55) at time tn is written in the form B(sn−1) C D

C> 0 0
D> 0 0

 vn

−pn
πn

 =

 0
0
vnΓ

 (2.39)

where B(sn−1) and C are block diagonal matrices. The block B corresponding
to a cell i is [λ(sn−1

i )Ti]
−1 with an extended diagonal entry [λ(sn−1

i )WIi]
−1 for

every well perforating cell i. Here, Ti denotes the transmissibility matrix, while
WIi is the well productivity index. Each block in matrix C has an ni×1 vector of
ones, where ni is the number of faces plus the number of well perforations in cell
i. Further, each column of the matrix D corresponds to a unique face or well face,
and has unit entries in the positions of the face/well-face in the cell wise oredering.
The vector vnΓ has a zero entry corresponding to every face. Splitting the vector

πn> =
[
π̂n> πn>D

]
and the matrix D =

[
D̂ Dn

D

]
the system becomes

 B(sn−1) C D̂
C> 0 0

D̂> 0 0

 vn

−pn
π̂n

 =

 An
Du + bnD

0
An
Nu + bnN

 (2.40)

where An
D and An

N are sparse matrices and u denotes a control input vector of
piecewise constant pressures or rates for a given set of wells at timestep tn. The
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subscript D corresponds to bhp-controlled wells (Dirichlet boundary conditions)
while the subscript N corresponds to rate-controlled wells (Neumann boundary
conditions). The vectors bnD and bnN are all zeros except at entries corresponding
to non-controllable boundary conditions (see Lie et al. (2012) for more details).

Next, using the standard upstream weighted implicit finite-volume method, the
saturation equation 2.56 may be written in the following form

sn = sn−1 + δtnD−1
PV [A(vn)f(sn) + q(vn)+] (2.41)

where δtn is the timestep, DPV is the diagonal matrix containing the cell pore
volumes, A(vn) is the sparse flux matrix, and q(vn)+ is the vector of positive cell
sources (injection rates).

2.2.6 Application of the Adjoint Method

MRST implements an adjoint model consisting of a multi-scale pressure solver
and a saturation solver which works on flow-adapted grids (Lie et al., 2012). Let
xn = (vn,pn, πn, sn) and un be the state and control input variables, respectively.
Each time step of (2.58)-(2.59) can be re-written in a compact form as

Fn(xn,xn−1,un). (2.42)

The pressure and saturation equations (2.58)-(2.59) may be written in a compact
form as F (x,u). Let J(x,u) be an objective function with∇uJ being the gradient
of J with respect to u. Introducing an auxiliary function Jα as

Jα(x,u) = J(x,u) + α>F (x,u) (2.43)

where α = α(αv,αp,αs,απ̂) is a vector of Lagrange multipliers. The gradient
∇uJα is given by

∇uJ
>
α =

∂J

∂u
+
∂J

∂x

∂x

∂u
+ α>

∂F

∂u
+ α>

∂F

∂x

∂x

∂u
+ F>

∂α

∂u
(2.44)

which reduces to
∇uJ

>
α =

∂J

∂u
+ α>

∂F

∂u
(2.45)

while α satisfies the adjoint equation

∂F>

∂x
α = −∂J

>

∂x
. (2.46)
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In (2.64), ∂F∂x has a block structure with blocks of ∂Fn

∂xn on the main diagonal and
∂Fn+1

∂xn on the lower diagonal. Applying this to (2.64), the adjoint equation for time
step n is given by

∂Fn>

∂xn
αn +

∂Fn+1>

∂xn
αn+1 = −∂J

n>

∂xn
αn. (2.47)

(2.65) is solved backwards in time in order to obtain α. Now the gradient with
respect to time step n is computed from the follwoing equation

∇unJα =
∂J>

∂u
+
∂Fn>

∂un
αn (2.48)

Defining
g(v, s) = δtD−1

PV [A(v)f(s) + q(v)+] (2.49)

and substituting (2.58)-(2.59) into (2.65), the adjoint equations for time step n are
obtained as[

I− ∂g(vn, sn)

∂sn)

]>
αn
s = αn+1

s − ∂Jn>

∂sn
−
[
∂B(sn)vn+1

∂sn

]>
αn+1
v

(2.50) B(sn−1) C D̂
C> 0 0

D̂> 0 0

 αn
v

αn
p

αn
π̂

 =

 −∂Jn>

∂vn + ∂g(vn,sn)>

∂vn αn
s

0
0

 (2.51)

Once the adjoint equations have been solved, the gradient of the objective function
J at time step n is given by

∇unJ =
∂J>

∂un
−An>

D αn
v −An>

N αn
π̂ (2.52)

This gradients (2.70) can be used in any gradient based methods, one of which will
be discussed in the following chapters.

The rest of the sections in this chapter includes a definition of the production opti-
mization problem. Further, the simulator implemented in this study is introduced.
The simulator is part of the MATLAB Reservoir Simulation Toolbox (MRST).
Also, the reservoir model and the adjoint method developed into the simulator will
be presented. Finally, some of the positive aspects as well as shortcomings of
MRST will be discussed.
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2.3 Production Optimization

The goal of production optimization problem is finding the right combination of
well settings, i.e., the BHP and the flow rates, to maximize an economic objective
function, namely the net present value (NPV).

The optimization problem can be formulated as follows:

u∗ = arg max
u

J (2.53)

s.t. f(xk+1, xk, uk) = 0, k = 1, . . . ,KT

g(uk) ≤ 0, x0 = x̂0

where J denotes the objective function and f the reservoir model. The initial
conditions are represented by x̂0, and g are the constraints corresponding to the
lower and upper bounds on the injection rates and the bhp. The optimal control
actions are denoted by u∗.

The discrete form of NPV is widely used and is defined by

J =

KT∑
k=1

roqo,k − rwqw,k − riqi,k

(1 + b)
tk
τt

∆tk (2.54)

where ro denotes the fixed oil price, and rw and ri are the water production and
the water injection costs, respectively, all of which are assumed to be constant. To
account for depreciation, the discount rate, b, is added for a certain reference time,
τt. The final time step is KT , and ∆tk denotes the time interval at the kth time
step. The oil production, water production and water injection rates are denoted
by qo,k, qw,k, and qi,k, respectively, at the time step k.

A variety of methods are available in the literature for solving problem (2.53).
If the gradient can be computed efficiently, gradient-based optimization becomes
promisingly efficient to deal with large-scale systems, e.g. production optimiza-
tion in oil reservoirs. The adjoint method has been used in many papers for similar
problems, see for example (Jansen, 2011). Of the few existing methods for cal-
culating gradients, adjoint techniques are the most efficient, especially for a large
number of controls, as the algorithm is independent of the number of controls
(Sarma et al., 2005).

In this study, the adjoint method developed into the MATLAB Reservoir Simula-
tion Toolbox (MRST) is used to determine the gradient of the objective function
with respect to the control settings. In the rest of this chapter, we first introduce
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2.4 The MATLAB Reservoir Simulation Toolbox (MRST)

MRST briefly. Next, we present a brief derivation of the reservoir model equa-
tions and the adjoint model implemented into the toolbox (See (Krogstad and Gul-
bransen, 2011) for further details).

2.4 The MATLAB Reservoir Simulation Toolbox (MRST)

MRST is developed by SINTEF Applied Matemathics and is a result of their re-
search on the development of new (multiscale) computational methodologies. Ver-
sion 2013b which was used in this study, is available online for free download
under the terms of the GNU General Public License (GPL) (Lie et al., 2012).

The toolbox consists of two main parts: a core offering basic functionality and
single and two-phase solvers, and a set of add-on modules offering more advanced
models, viewers and solvers.

2.4.1 Core

The toolbox employs the following components for rapid prototyping of solvers
for flow and transport:

• Grids: a common data structure and interface for all types of grids.

• Parameters: a data structure for petrophysical parameters (and a few, very
simplified geostatistical routines); common interface for fluid models (there
are slight differences in the data structure of the fluid models created with
different modules which can be problematic– explained later in the chapter),
routines for setting and manipulating boundary conditions, sources/sinks,
well models, etc.

• Reservoir state: data structure for pressure, fluxes, saturations, . . .

• Solvers: the toolbox contains several flow and transport solvers (including
IMPES and fully implicit).

• Linear algebra: MRST relies on MATLAB’s builtin linear solvers.

• Eclipse input: routines for reading and processing input files created for
Schlumberger’s Eclipse simulator, supporting grids, petrophysical parame-
ters, fluid models, wells, boundary conditions, simulation setup, etc.
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2.5 Reservoir Model

• Units: MRST works in strict SI units but supports conversion to/from other
unit systems such as field units. Unless reading from an Eclipse input for-
mat, the user is responsible for explicit conversion and consistency of units.

2.4.2 Modules

MRST also contains a series of add-on modules, increasing the applicability of the
package. They include:

• Fully implicit solvers: This module contains a set of fully implicit solvers
for a variety of flow problems. The module uses automatic differentiation to
calculate Jacobians which makes prototyping of new models faster.

• IMPES solver: This module contains an implementation of a pressure/transport
solver using an Implicit Pressure, Explicit Saturation (IMPES) strategy for
compressible black-oil flow.

• Deck reader: The module contains support for input of complete simulation
decks in the ECLIPSE format, including input reading, conversion to SI
units, and construction of MRST objects for grids, fluids, rock properties,
and wells.

• Adjoint formulations: This module implements strategies for production
optimization based on adjoint formulations. This enables for instance net
present value optimization constrained by the bottom hole pressure in wells.

2.5 Reservoir Model

In order to build the case study models into the simulator, the following assump-
tions were considered:

1. two-phase, incompressible flow,

2. no gravity,

3. zero capillary pressure,

4. No-flow at the outer boundary of the reservoir.
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2.5 Reservoir Model

Assumption 1 neglects the presence of gas in the system. The pressure and satura-
tion equations for the model are given by:

∇.~v = q, ~v = −λ(sw)K∇p, (2.55)

φ
∂sw
∂t

+∇.[fw(sw)~v] = qw, (2.56)

where ~v denotes the Darcy velocity, λ = λo + λw is total mobility, sw is water
saturation, K is the permeability tensor, p is pressure, q is the fluid source term ,
φ is effective porosity, fw = λw/λ is fractional flow of water, and qw is the water
source term.

Let v denote the outward face fluxes and well-perforation rates, s saturation cell, p
pressure cell, and π face pressures and well pressures. The system corresponding
to the pressure equation (2.55) at time tn is written in the form B(sn−1) C D

C> 0 0
D> 0 0

 vn

−pn
πn

 =

 0
0
vnΓ

 (2.57)

where B(sn−1) and C are block diagonal matrices. The block B corresponding
to a cell i is [λ(sn−1

i )Ti]
−1 with an extended diagonal entry [λ(sn−1

i )WIi]
−1 for

every well perforating cell i. Here, Ti denotes the transmissibility matrix, while
WIi is the well productivity index. Each block in matrix C has an ni×1 vector of
ones, where ni is the number of faces plus the number of well perforations in cell
i. Further, each column of the matrix D corresponds to a unique face or well face,
and has unit entries in the positions of the face/well-face in the cell wise oredering.
The vector vnΓ has a zero entry corresponding to every face. Splitting the vector

πn> =
[
π̂n> πn>D

]
and the matrix D =

[
D̂ Dn

D

]
the system becomes B(sn−1) C D̂

C> 0 0

D̂> 0 0

 vn

−pn
π̂n

 =

 An
Du + bnD

0
An
Nu + bnN

 (2.58)

where An
D and An

N are sparse matrices and u denotes a control input vector of
piecewise constant pressures or rates for a given set of wells at timestep tn. The
subscript D corresponds to bhp-controlled wells (Dirichlet boundary conditions)
while the subscript N corresponds to rate-controlled wells (Neumann boundary
conditions). The vectors bnD and bnN are all zeros except at entries corresponding
to non-controllable boundary conditions (see (Lie et al., 2012) for more details).

Next, using the standard upstream weighted implicit finite-volume method, the
saturation equation 2.56 may be written in the following form

sn = sn−1 + δtnD−1
PV [A(vn)f(sn) + q(vn)+] (2.59)
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where δtn is the timestep, DPV is the diagonal matrix containing the cell pore
volumes, A(vn) is the sparse flux matrix, and q(vn)+ is the vector of positive cell
sources (injection rates).

2.6 Adjoint Method

MRST implements an adjoint model consisting of a multi-scale pressure solver
and a saturation solver which works on flow-adapted grids (Lie et al., 2012). Let
xn = (vn,pn, πn, sn) and un be the state and control input variables, respectively.
Each time step of (2.58)-(2.59) can be re-written in a compact form as

Fn(xn,xn−1,un). (2.60)

The pressure and saturation equations (2.58)-(2.59) may be written in a compact
form as F (x,u). Let J(x,u) be an objective function with∇uJ being the gradient
of J with respect to u. Introducing an auxiliary function Jα as

Jα(x,u) = J(x,u) + α>F (x,u) (2.61)

where α = α(αv,αp,αs,απ̂) is a vector of Lagrange multipliers. The gradient
∇uJα is given by

∇uJ
>
α =

∂J

∂u
+
∂J

∂x

∂x

∂u
+ α>

∂F

∂u
+ α>

∂F

∂x

∂x

∂u
+ F>

∂α

∂u
(2.62)

which reduces to
∇uJ

>
α =

∂J

∂u
+ α>

∂F

∂u
(2.63)

while α satisfies the adjoint equation

∂F>

∂x
α = −∂J

>

∂x
. (2.64)

In (2.64), ∂F∂x has a block structure with blocks of ∂Fn

∂xn on the main diagonal and
∂Fn+1

∂xn on the lower diagonal. Applying this to (2.64), the adjoint equation for time
step n is given by

∂Fn>

∂xn
αn +

∂Fn+1>

∂xn
αn+1 = −∂J

n>

∂xn
αn. (2.65)

(2.65) is solved backwards in time in order to obtain α. Now the gradient with
respect to time step n is computed from the follwoing equation

∇unJα =
∂J>

∂u
+
∂Fn>

∂un
αn (2.66)
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Defining
g(v, s) = δtD−1

PV [A(v)f(s) + q(v)+] (2.67)

and substituting (2.58)-(2.59) into (2.65), the adjoint equations for time step n are
obtained as[

I− ∂g(vn, sn)

∂sn)

]>
αn
s = αn+1

s − ∂Jn>

∂sn
−
[
∂B(sn)vn+1

∂sn

]>
αn+1
v

(2.68) B(sn−1) C D̂
C> 0 0

D̂> 0 0

 αn
v

αn
p

αn
π̂

 =

 −∂Jn>

∂vn + ∂g(vn,sn)>

∂vn αn
s

0
0

 (2.69)

Once the adjoint equations have been solved, the gradient of the objective function
J at time step n is given by

∇unJ =
∂J>

∂un
−An>

D αn
v −An>

N αn
π̂ (2.70)

The gradients (2.70) can be used in any gradient based methods, one of which will
be discussed in the following section.

2.7 Optimization Algorithm

The OptimizeObjective function under the adjoint module of MRST uses an ag-
gressive line search based on the given gradient. The algorithm handles box-
constraints and linear equality and (probably not) inequality constraints. It per-
forms on an iterative scheme, applying the constraints to the gradient until conver-
gence is achieved.

The algorithm makes use of the gradient projection method which is explained in
the following section.

2.7.1 The Gradient Projection Method

The gradient projection method is most efficient when the constraints are simple
in form–in particular, when there are only bounds on the variables (Nocedal and
Wright, 2006). A general form of this type of constraints is

l ≤ x ≤ u, (2.71)
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2.7 Optimization Algorithm

where l and u are vectors of lower and upper bounds on the components of x.
The feasible region defined by 2.71 is sometimes called a “box” because of its
rectangular shape.

Each iteration of the gradient projection algorithm consists of two stages. In the
first stage, we search along the steepest descent direction from the current point
x. Whenever a bound is encountered, the search direction is “bent” so that it stays
feasible. This is illustrated in Figure 2.5.

Figure 2.5: The gradient projection method(Nocedal and Wright, 2006).

We search along the resulting piecewise-linear path trying to locate the first local
minimizer of the objective function f , which we denote by xc and refer to as the
Cauchy point. The working set7 is now defined to be the set of bound constraints
that are active at the Cauchy point, denoted by A(xc). In the second stage of each
gradient projection iteration, we search on the face of the feasible box on which
the Cauchy point lies. To do this, we solve a subproblem in which the active
components xi for i ∈ A(xc) are fixed at the values xci .

7Primal active-set methods find a step from one iterate to the next by solving a quadratic sub-
problem in which some of the inequality constraints, and all the equality constraints, are imposed as
equalities. This subset is referred to as the working set and is denoted at the kth iterate xk by Wk.

30
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2.7.2 Line Search Method

The gradient projection method projects the gradient according to constraints it-
eratively until a certain tollerance is met or a certain number of iterations is met
(where it returnes failure). The constraints are applied in the following order:

1. box constraints,

2. linear inequality constraints,

3. linear equality constraints.

The resulting norm of the projected gradient is used as stopping criteria.

Next, a line search is performed along the projected gradient. The step length α in
(2.2) for this line search is multiplied by three values [0 0.5 1] to get [α1 α2 α3].
Now, based on a comparison of the objective function values for the three new step
lengths, a decision is made:

(a) If the projected gradient is equal for α2 and α3, then we are on the boundary,
done.

(b) If the value of the objective function follows f(α1) ≤ f(α2) ≤ f(α3), then
multiply the current step size by 2 and go to (a).

(c) If f(α1) ≥ f(α2)), then multiply the current step size by 0.5 and go to (a).

(d) Find the minimum on the approximated quadratic curve through (α1, α2, α3),
done.

2.8 Pros and Cons of Using MRST

A wide variety of hydrocarbon reservoir simulators have been developed to date
(see e.g., (Christie and Blunt, 2001)). Choosing the right simulator depends chiefly
on the problem at hand and the scope of the simulation. Some simulators are
developed for rapid modelling of small-scale problems and are good candidates
for research purposes. Others have more rigorous routines and algorithms built
into them and can be used for larger scale real life problems of the industry.

MRST is a MATLAB-based simulator which is mainly intended as a toolbox for
rapid prototyping and demonstration of new simulation methods and modeling
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concepts on unstructured grids. Despite this, many of the tools are quite efficient
and can be applied to surprisingly large and complex models (mrs, 2013).

MRST was the main tool for performing the case study simulations of this work.
Notwithstanding the fact that the toolbox functioned well under the diversified
conditions of the two case study problems, it brought about a number of compli-
cations and errors throughout the process. The focus of this section is to mention a
number of judgments on the toolbox which were formed by the author during the
course of the project.

2.8.1 Positive Aspects

Not a Black Box

The main advantage of using MRST over the currently popular hydrocarbon reser-
voir simulators, such as Eclipse and CMG, is that it is open source. This feature
adds a lot of flexibility to the toolbox, by providing the invaluable opportunity to
modify the existing routines for specific problems.

The ability to explore the toolbox makes it a potential candidate for academic
reservoir simulation courses, provided that students have the necessary MATLAB
and linear algebra background.

Ability to Import Data from Eclipse

Schlumberger’s Eclipse package is presently one of the most widely-used reservoir
simulators. Thus, a lot of models are created with input files suitable for this soft-
ware. MRST has sensibly exploited this fact by devoting a whole add-on module
to direct importing of Eclipse input data files. Although not all the features and
keywords of Eclipse are supported by this module, the essential parts of the input
files are covered and parsed using MATLAB.

2.8.2 Shortcomings

Insufficient Learning Material

The MRST webpage offers plenty of tutorials and examples for its core and mod-
ular environments (mrs, 2013). However, it can be argued that this is not enough.
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The tutorials use examples as teaching material rather than a describing general
cases. Some of the examples are too specific and the user needs to modify them
to work with a different case. Yet, most of the time this requires making changes
to lower level functions that constitute the main functions. Since there are no
descriptions for such functions, the user has to inverstigate the codes to figure out
the algorithms incorporated into them. This is quite a time consuming process.

For example, part of the description of the optimizeObjective function (under the
adjoint module) reads: “A linkage with an external optimizer or use of MATLAB’s
optimizer toolbox (e.g., fmincon) is recommended.” However, it does not been
explain how this linkage can be made. Since, the sructure of the arguments of
these two functions are quite different, this linkage does not seem straightforward
either.

A resolution to this problem could be composing a well-organized manual with
explanations to the algorithms in all the functions potential to go through changes
by users (see e.g., (Ecl, 2012)). An alternative could be provision of explanations
for each part of the codes in functions to facilitate their manipulation.

Inconsistent Data Structures

A major problem with MRST which causes numerious errors is that some of the
data structures are not consistent from module to module. Let us go through an
example.

Consider a user having an Eclipse input data file who wants to investigate an opti-
mization problem with MRST. He needs to call the deckformat, ad-fi and adjoint
modules. The deckformat module converts the data from Eclipse format to a format
suitable for the ad-fi module (which is a module with fully implicit solvers). How-
ever, the latter does not include an optimization function similar to optimizeObjec-
tive, thereby making the user call the adjoint module which contains this function.
Now, if the input arguments of optimizeObjective are created by the ad-fi module,
running the code will produce an error. The reason is that the structure of variables
such as “fluid” and “state” are different in ad-fi and adjoint environments.
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Chapter 3
Literature Review

Uncertainty is an issue which a lot of fields dealing with modeling and control
come across. Handling the uncertainty typically includes the implementation of
either or both of the following strategies (van Essen et al., 2009): decreasing the
uncertainty by incorporating measurements into the model, and decreasing the sen-
sitivity to the uncertainty.

3.1 Open Loop Reservoir Management

When no production data is available, history matching is no longer a feasible
choice for reducing geological uncertainty. However, one can still deal with this
situation by reducing the sensitivity to the uncertainty. Yet, this method can be inte-
grated with history matching and result in more accurate outcomes. A few authors
have previously addressed the optimization methods that include this strategy.

Yeten et al. (2004) considered the significant effects of uncertainty in geological
description of reservoir and reliability of downhole equipment, while presenting
a nonlinear CG algorithm for optimization of smart wells1. They introduced a
probabilistic model to account for hardware failure, and considered 5 geostatis-
tical realizations to include the effects of geologic uncertainty. They applied the
method to three scenarios with two-phase flow in a highly heterogeneous North

1The term smart (or intelligent) well is referred to nonconventional wells which possess down-
hole equipment. Completion components such as valves, inflow control devices and sensors are
installed on the production tubing to monitor and optimize production.
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Sea type reservoir. The results of the decision analysis suggested that optimized
smart wells, which have the possibility of equipment failure per se, can still com-
pensate for geological uncertainty by increasing the average net present value and
reducing its standard deviation. Moreover, they concluded that for their test cases,
the impact of geological uncertainty was dominant over that of equipment reliabil-
ity (or engineering uncertainty).

3.1.1 Robust Optimization

The method proposed by Yeten et al. (2004) was disputed by van Essen et al.
(2009) in that the former had deviated in a number of issues such as the optimiza-
tion method and the way they had incorporated the realizations in the objective
function.

van Essen et al. (2009), on the other hand, proposed a method called robus opti-
mization (RO). Prior to them, an ensemble of geological scenarios would be used
to determine the expected revenues for a specified production strategy. However,
such ensembles were still not implemented into optimization schemes for oil re-
covery methods. A suggested approach from the process industry, the RO tech-
nique was developed for problems that suffered from a high degree of uncertainty
and inadequate measurements. The principle underlying RO is to perform the op-
timization over a set of realizations.

Within the RO scheme, various objective functions can be used to account for
the effect of uncertainty in the set of realizations in different ways (Terwiesch
et al., 1998; Ruppen et al., 1995). The most clear-cut approaches consider the RO
objective as the expected outcome over the entire set of realizations as shown in
equation (3.1).

Jrob(q1:K) =
1

Nr

Nr∑
i=1

J(q1:K , θi) (3.1)

where Jrob is the robust objective function (usually expected NPV), q1:K is the
vector of conrol inputs (from 1 to K), θ is the vector of uncertain model parame-
ters, and Nr is the number of realizations. The RO problem is defined as:

max
q1:K

Jrob(q1:K) (3.2)

It follows from (3.1) that a linear operation is required to calculate the expected
NPV. Therefore, gradients of (3.1) are calculated by performing a linear operation
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on the gradients of each realization as follows:

dJrob
dqk

=
1

Nr

Nr∑
i=1

dJ(q1:K , θi)

dqk
(3.3)

Yang et al. (2011) presented a SAGD optimization workflow taking into account
geological uncertainties. They applied the procedure to a SAGD model with three
well pairs and 100 realizations. They concluded that robust optimization using 9
representative realizations was able to account for the uncertainty of 100 realiza-
tions. Robustness of such optimization was validated by applying the obtained
optimal well location and operating strategy to the full set of 100 realizations. The
results showed that the proposed robust optimization procedure was able to find
an optimal risk weighted solution that gace good performance for any realization
of the uncertainty in the given set. The results also indicated that the optimum
solution based on a single realization may lead to worse prediction results for cer-
tain realizations. Therefore, risk analysis following nominal optimization should
always be performed to assess the risk of applying the nominal optimal solution.

Chen et al. (2012) implemented the augmented Lagrangian method for constrained
robust optimization and applied it to estimate optimal well controls for waterflood-
ing projects in order to maximize the NPV of production. They concluded that es-
timating a good initial value of the penalty parameter and using scaling factors on
constraints improve the robustness of the optimization algorithm. They compared
two strategies namely “robust long-term alternating with short-term optimization”
and “robust sequential short-term optimization” and found out that the former in-
creases the short-term NPV without compromising the life-cycle NPV, while the
latter does not.

3.2 Closed Loop Reservoir Management (CLRM)

Closed-loop reservoir management (Brouwer et al., 2004; Sarma et al., 2006;
Jansen et al., 2009; Chen et al., 2009; Wang et al., 2009; Peters et al., 2010) is
perceived as an important concept to increase recovery from hydrocarbon reser-
voirs . On a conceptual level, CLRM can be understood as utilizing real-time data
from multiple sources and mathematical models to aid long term decision-making
and medium term operational decision-making. The objective function is typically
net present value, i.e. the net cash flow discounted back to its present value (Foss,
2012).

36



3.2 Closed Loop Reservoir Management (CLRM)

Figure 3.1: Multilevel control hierarchy(Foss and Jensen, 2011).

Closed-loop reservoir management has two major steps: data assimilation and pro-
duction optimization (Chen et al., 2012). The objectives of the data-assimilation
step are to reduce the uncertainty in the reservoir description by assimilating the
production data and/or seismic data and to enhance the accuracy of production
predictions. Usually, the uncertainty in the reservoir description is modeled by
generating a set ofNe plausible realizations of the reservoir. A popular choice
for data assimilation is the ensemble Kalman filter (Evensen, 1994, 2007; Naev-
dal et al., 2005; Aanonsen et al., 2009). In the production-optimization step, one
maximizes the hydrocarbon recovery or life-cycle NPV subject to some physical
constraints.

Long-term decisions include drainage strategies, technologies, and infrastructure
development, while medium-term decisions involve well location, well design,
and production and injection rates (Foss and Jensen, 2011). Shorter-term opera-
tional decisions, often called closed-loop production optimization, focus on rate
allocation between wells. Decisions operating on different time horizons may be
organized in a multilevel control hierarchy, as shown in Figure 3.1.

Maximum benefit from the measurement and control equipment of a smart field is
expected when used in an integrated monitoring and control approach (Brouwer,
2004), as depicted in Figure 3.2. The figure illustrates an optimizer, a plant (oil
reservoir), and state/parameter estimator or observer. Controlling an oil reservoir
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Figure 3.2: Reservoir management depicted as a closed-loop model-based controlled pro-
cess(Jansen et al., 2005).

is a complex time-consuming process because it cannot be seen and investigated
directly, as it lies deep in the Earth. Measurement devices ranging from sensors
in wells to seismic data acquisition systems are used to infer reservoir conditions.
But, still one is not able to describe the system accurately, since the parameters of
the system are known to varying degrees (Jansen et al., 2008): the fluid properties
can usually be determined quite well, but the reservoir properties are only really
known at the wells. As a consequence, the uncertainties in the model parameters
of the subsurface part of the system are very large. In addition, measurement de-
vices also introduce noise. The measurement data are used to close the loop (as
feedback) since the observer is connected to the optimizer as it uses updated reser-
voir models (Suwartadi, 2012). However, reservoir models do still have difficulties
fully representing the physics of the system.

As a particular example, let us consider a water flooding process with smart wells
as shown in Figure 3.3. The figure illustrates a schematic of a reservoir with a
horizontal, smart segmented injector along the left edge, and a horizontal, smart
segmented producer along the right edge. Upon injection, the water moves towards
the production well where fluids leave reservoir. The water displaces some of the
oil on its way. Generally, the oil-water front propagates at different speeds from
one place to the other towards the producer, as shown by the irregular shape of the
oil-water interface in Figure 3.3. This is, owing to the fact that the reservoir rock
properties generally varies in space. The oil-water front illustrated in the figure
is the result of a particular injection and production strategy, that is a particular
combination of valve-settings. It is possible to control the flow direction, and
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thereby the movement of this oil-water front in the reservoir to some degree by
manipulating the down-hole valves. The result would be reduced flow through
high permeability zones and increased flow outside these zones which will ideally
lead to displacement of oil everywhere in the reservoir. The right combination
of valve-settings would give the best displacement. Thus, one goal is to find out
which combination is the right one. Another goal is to find out what degree of
improvement is possible by optimizing the valve-settings. The answer to both of
these questions depends on the type of heterogeneity in the reservoir. Another
major factor in determining how much improvement is obtained by valve-setting
optimization is the physical and economical constraints on the wells and the valves
(Brouwer, 2004).

3.2.1 Reducing the Uncertainty by History Matching

The model of a hydrocarbon reservoir initially incorporates the engineer’s best es-
timate of reservoir description parameters (e.g. porosity and permeability). This
data, however, is not representative of the whole reservoir because of the uncertain-
ties in the estimates. Therefore, the data must be adjusted until the performance
of the model and the history of the reservoir have a minimized discrepancy. The
practice of modifying the reservoir model in expectation of reproducing the past

Figure 3.3: Schematic of horizontal reservoir with two horizontal, segmented smart wells
(Brouwer, 2004).
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behavior of a reservoir is called history matching.

Reservoir history matching is a complicated inverse problem. Conventionally,
this is done manually (see Crichlow, 1977, chap. 9). However, obtaining a de-
cent match by manually varying the reservoir description parameters is excruciat-
ingly cumbersome. Therefore, mathematical approaches based on Bayesian statis-
tics have been developed to systematically evaluate and characterize uncertainty.
Oliver et al. (1996) introduced a method into reservoir characterization which is
now commonly referred to az the randomized maximum likelihood (RML) method.
Many studies have used this technique to produce an estimate of the probability
density function (PDF) for reservoir models, given production or seismic data (see
e.g., Zhang et al., 2005).

Because of their time-saving characteristic over the traditional trail-and-error meth-
ods, computer aided history matching had been increasingly used by the oil and
gas industry (Tavassoli et al., 2004). Gradient based optimization techniques play
a crucial role in this process.The process of using gradient based optimization
techniques to perform history matching is usually referred to as automatic history
matching. It involves solution of a least-squares problem where the objective func-
tion represents the discrepancy between the model and the observed (measured)
behavior of the reservoir. Many studies have implemented the available solu-
tion methods for least-square problems such as Gauss-Newton and/or Levenberg-
Marquardt algorithms (see e.g., Landa and Horne, 1997; Li et al., 2003).

Many other methods have also been used for history matching such as stochas-
tic modeling techniques (Jimenez et al., 1997; Calatayud et al., 1994; Tyler et al.,
1993), optimal theory (Chavent et al., 1975; Wasserman and Emanuel, 1976), sen-
sitivity analysis techniques (Watson, 1989; Dogru and Seinfeld, 1981) and gradual
deformation method (Gallo and Ravalec-Dupin, 2000).
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Chapter 4
Case Study and Analysis

Water flooding scenarios where assessed for two test cases. The problems were of
different scales. The first test case was a small five spot model, while the second
one was a relatively large egg model.

In this study, three different approaches were applied to each of the two models: A
nominal control, a reactive control and and an optimal control strategy. Also, open
and closed loop control were applied separately, and the outcomes were compared.

4.1 Case Study 1 – The Five-Spot Model

The first case is a simple five spot model that effectively showcases the applicabil-
ity of adjoint-based optimization to well control. The schematic of the reservoir
and well configuration is shown in Figure 4.1. The model consists of one water
injector in the middle of the reservoir and four producers, one at each corner. Thus
there are two drive mechanisms: depletion drive and water injection. The reservoir
covers an area of 21000×21000 m2 and has a thickness of 10 m and is modeled by
a 21×21×1 horizontal 2D grid. The fluid system is an essentially incompressible,
two-phase, oil-water system, with a mobility ratio close to 2, connate water satu-
ration of 0.2 and residual oil saturation of 0.2. Figure 4.2 shows the heterogeneous
permeability field with the highest and lowest permeability around wells P4 and
P2, respectively.

This contrast in permeability near the production wells is around a factor of 30-40,
and it is this heterogeneity that makes the optimization results interesting.
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4.1 Case Study 1 – The Five-Spot Model

Figure 4.1: 5-Spot Model: Schematic of reservoir and wells.

Figure 4.2: 5-Spot Model: Permeability field.
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4.1 Case Study 1 – The Five-Spot Model

For the purpose of this case study, the base case is a constant rate/constant BHP
production strategy. On the part of optimization, the injector segment is placed
under rate control, and the producer segments are under BHP control. There is a
total injection constraint of 9000 Bbl/day (STBD). Further, there are also bounds
on the BHPs of the producers, which could for example correspond to bubble point
pressures or fracture pressures. The model is produced for 2500 days . This time
period is divided into ten control steps of 250 days each. Thus the total number of
controls is equal to 5(well segments)×10(time steps) = 50. All constraints in this
problem are linear with respect to the controls.

4.1.1 Comparison of Constant Control Scheme to Nominal Optimiza-
tion

In order to appreciate the benefit of any optimization process, it is usual to com-
pare the optimization results against a base or reference case (Sarma et al., 2005).
In the case of production optimization, such a base case would be a reasonable
production strategy that an engineer might devise given a simulation model and
a set of constraints. It is, however, very difficult (and often nonintuitive) to un-
derstand the implications of varying well controls on the optimization process. It
is thus usual for engineers to specify constant production/injection rates or BHPs
until some detrimental reservoir response such as water breakthrough is observed.

The objective of the optimization process is to maximize NPV. The NPV discount
factor is set to a reasonable value of 8%. The oil price is conservatively set at
100 $/m3, water injection costs at 10 $/m3, and water production costs at 10 $/m3.
It should be noted that it is relatively easy to vary these cost/prices with time and
even to implement uncertainty models for them (Sarma et al., 2005).

Starting from 80% oil saturation throughout the reservoir, Figures 4.3 and 4.4
demonstrate the final oil saturations for the uncontrolled and optimized case af-
ter 2500 days. It is clear that the optimization leads to a good improvement in the
sweep efficiency, leading to the increase in NPV of around 10% (Figure 4.5).

The reasons behind the better sweep in the optimized case can be easily explained
by analizing the optimized trajectories of the controls – BHPs of the producers–
as seen in Figure 4.6. Areas with higher permeability force water to move very
quickly toward the producers, resulting in early breakthrough and thus poor sweep.
It is obvious from the figure that the producer P4, which is completed in the high-
est permeability area, has the highest bottom hole pressure for the whole time,
preventing early breakthrough. For well P3, which is completed in an area with
higher than average permeability, it can be observed that the optimization process
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4.1 Case Study 1 – The Five-Spot Model

Figure 4.3: 5-spot Model: Final oil saturation map, reference case.

Figure 4.4: 5-spot Model: Final oil saturation map, optimized case.
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4.1 Case Study 1 – The Five-Spot Model

Figure 4.5: 5-spot Model: Comparison of NPV’s with 8% discount rate.

Figure 4.6: 5-spot Model: Comparison of BHP’s of producers.
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4.1 Case Study 1 – The Five-Spot Model

Figure 4.7: 5-spot Model: Comparison of total production rates.

tries to make a balance between a high BHP (late water breakthrough) and a low
BHP (high production). Producers P1 and P2, which are around the lowest perme-
able areas, are allowed to produce with their maximum allowed potential (lowest
BHP for the whole time).

Figure 4.7 demonestrates the field water injection rate, the oil production rate and
the water production rate for the base case and optimized case. In the optimized
case, for most of the time, the oil production rate is significantly higher than the
base case. Water production is also higher in the optimized case (due to a higher
injection rate), however the overall trade-off between oil and water production
results in a higher NPV for the optimized case.

Figure 4.8 shows that there is a noticeable increase in cumulative oil production
(23%) attributed to higher water injection rate and better water sweep. The Op-
timization process required 3 iterations of the optimization algorithm; the total
number of simulations required for the optimization was 16.

46



4.2 Case Study 2 – The Egg Model

Figure 4.8: 5-spot Model: Comparison of cumulatives.

4.2 Case Study 2 – The Egg Model

The “Egg Model” is a synthetic reservoir model consisting of an ensemble of 101
relatively small three-dimensional realizations of a channelized reservoir produced
under water flooding conditions with eight water injectors and four producers
(Jansen et al., 2013). It has been in numerious publications to demonestrate a
variety of aspects related to computer-assisted flooding optimization and history
matching.

Table 4.1: Geological and fluid properties, Egg model.

Property Value Unit
φ 0.2 –
ρo (at 1 bar) 900 kg/m3

ρw (at 1 bar) 1000 kg/m3

co 10−5 bar−1

cw 10−5 bar−1

µo 5× 10−3 Pa.s
µw 10−3 Pa.s
pcow 0 bar

The original stochastic model has 60×60×7 = 25, 200 grid cells of which 18,533
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4.2 Case Study 2 – The Egg Model

cells are active. The inactive cells are all at the outside of the model, leaving an
egg-shaped model of active cells. Because the model has no aquifer and no gas
cap, primary production is almost negligible. The production mechanism is water
flooding with the aid of eight injection wells and four production wells, as shown
in Figure 4.9.

Figure 4.9: Egg Model: The position of the injectors (blue) and producers (red)(Jansen
et al., 2013).

The fluid system is a two-phase oil-water system with low compressibility and
close to 5 mobility ratio. The relative permeabilities are the usual Corey type
curves.

The injectors are under rate control and the producers are under BHP control. The
reference case is again a constant rate/BHP case, with the injection rate set at 500
STBD for each injector and all producer BHPs at 395 bara (∼= 5800 psia). The
injection rate is constrained at a maximum rate of 2500 STBD per injector and the
producer BHPs at a minimum of 200 bara (∼= 3000 psia) and a maximum of 395
bara (∼= 5800 psia).
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4.2 Case Study 2 – The Egg Model

Figure 4.10: Egg Model: Permeability field for the first layer.

4.2.1 Comparison of Constant Control Scheme to Nominal Optimiza-
tion

In this section we only consider one of the geological realizaitons of the egg model.
The objective is to maximize the NPV over a period of around 9.5 years, divided
into 10 control periods. The NPV discount factor is set at 8%. The oil price
is conservatively set at 100 $/Bbl, water injection costs at 10 $/Bbl and water
production costs at 10 $/Bbl.

Figure 4.12 compares the injection, water production and oil production rates of
the optimized case to that of the reference case. There is a substantial decrease in
injection rate as expected. Due to the high water production costs, water injection
is reduced so that water production may be reduced. The main drive mechanism
thus changes from water injection in the reference case to depletion drive in the
optimized case.

Figure 4.13 compares the cumulative water injection, oil production and water
production of the base case and optimized case. It is clear that the significant
increase in NPV (Figure 4.14) is due to the huge reduction in water injection and
production, while the cumulative oil production is not much reduced.
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4.2 Case Study 2 – The Egg Model

Figure 4.11: Egg Model: Comparison of BHP’s of producers.

Figure 4.12: Egg Model: Comparison of total production rates.
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4.2 Case Study 2 – The Egg Model

Figure 4.13: Egg Model: Comparison of cumulatives.

Figure 4.14: Egg Model: Comparison of NPV’s with 8% discount rate.
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4.2 Case Study 2 – The Egg Model

Figure 4.15: Egg Model: Final oil saturation map, reference case.

Another remark on the NPV profiles as shown in Figure 4.14 is that the optimized
case increases the overall NPV in the long term which is a significant achievement.
However, the NPV profile for the optimized case is lower than that of the reference
case for the first half of the whole simulation time. It is important to have high
NPVs close to the beginning of the production period. In order to keep the NPV
profile relatively high from the beginning, one needs to make a balance between
short- and long-term decisions (van Essen et al., 2011).

It is interesting to compare the final oil saturation maps for the reference and op-
timized case, as seen in Figure 4.15 and 4.16. Unlike the previous case, the opti-
mization results in a decrease of the overall sweep, as the water injected is much
less.

The number of iterations for the optimization algorithm required for the above op-
timization was 5 which corresponds to 35-40 simulation runs. Average run time for
one simulation on a 2.4 GHZ machine with 12 GB RAM was around 1.5 minutes
and the total optimization time was 1 hour.
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4.2 Case Study 2 – The Egg Model

Figure 4.16: Egg Model: Final oil saturation map, optimized case.

4.2.2 Comparison of Nominal Optimization, Robust Optimization and
Reactive Control for Multiple Geologiacal Realizations

In this section, all of the 101 realizations embedded within the egg model were
used. Three different methods were used to obtain the final NPV of the reservoir
for the set of all realizations, namely nominal optimization, robust optimization,
and reactive control.

Nominal Optimization (NO). The NO approach uses a single realization. How-
ever, as mentioned at the beginning of the section, we have a set of 101 realization
available. In this case, the decision of which realization must be used in the NO
approach is an arbitrary one, since none of the realizations have priority over oth-
ers. To get an unbiased result, any decision incoporating potentially biased choices
must be avoided. Thus, the NO was applied on each of the 101 realizations. In
other words, 101 different optimized stratedies for production from the egg model
were generated.

The number of control parameter for the NO procedure for each of the realizations
was 120, which is equal to the number of injection and production wells (12)
times the number of timesteps (10). Nevertheless, the adjoint method runs only
one simulation to obtain the gradients pertaining to all control parameters. As a
result, the number of control parameter can not be an issue.
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4.2 Case Study 2 – The Egg Model

The rock and fluid properties were set the same as the previous section. A sin-
gle computer required, on average, half an hour for the optimization procedure to
converge to the solution for a single realization. The optimal flowrates for the in-
jection and production wells with the NO procedure are illustrated in Figure 4.17.
In this figure, the results are based on realization number 1.

Figure 4.17: Egg Model: The optimal injection and production flow rates resulted form
NO, based on realization number 1.

Running the NO algorithm on each of the 101 realizations resulted in 101 different
control strategies. Each of these strategies were applied on all of the realizations
generating 10201 values for our objective function (the NPV). These values are
illustrated in Figure 4.19 in terms of 101 PDF and CDF curves. Each run of the
NO algorithm took approximately 3 hours. The optimization procedure for the
whole set took 101 times longer, appraximately 2 weeks.

Reactive Control. The idea of reactive control, as described before, is simple.
Each production well continues to function until production from this particular
well is not cost-effective. This criterion for profitability is determined by a maxi-
mum allowed water cut. We consider a water cut of 87% as our threshold.

Since there are 8 injection and 4 production wells in the system, and due to the
incompressibility of the model, the flow rate of injection wells must be half of the
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4.2 Case Study 2 – The Egg Model

value for production wells in order to appreciate the mass balance. Initially, the
production wells are fixed at their maximum capacity of 60 m3/day, and thus the
injection wells have a flowrate of 30 m3/day.

One important note regarding the algorithm used for the reactive approach is that
when a production well is shut in (as a result of reaching the threshold water cut),
the injection rates are decreased with the same proportion, in order to honor the
mass balance.

A disadvantage of the reactive approach is that it usually does not lead to an opti-
mal strategy during the life of the reservoir. On the other hand, since this approach
is independent of the reservoir model, when applied to a real field, a wrong repre-
sentation of the geological realizations does not affect the results.

If the performance of the reactive approach and a model based strategy are simu-
lated on a set of realizations, we can evaluate and compare the performances. In
order to validate this assessment, the set of realizations must be a good representa-
tion of the true modeling uncertainty. Otherwise, the truth will not be reflected. In
case that the implemented set of realizations is not close to the reality, one could
not compare the control strategies in terms of their performance.

The reactive approach was applied to each of the 101 components of the set of
realizations. Figure 4.18 illustrates the water cut of the four production wells over
time as response to the reactive control approach. When the profitability thresh-
old of 87% is reached, the producer stops. For the reactive approach, every year
was divided into 16 timesteps in order to get more accurate results (as seen in Fig-
ure 4.18. The broad distribution in the time of water breakthrough represents the
degree to which the realizations introduce changeability.

Running the reactive conrol algorithm on each of the 101 realizations generated
101 values for our objective function (the NPV as before). These 101 values are
illustrated in Figure 4.19 in terms of their corresponding PDF and CDF. The cor-
responding expected value for NPV and its standard deviation are presend in Table
4.2.

Table 4.2: Results from Reactive control, NO and RO.

Reactive Control NO (average) RO
Expected NPV 268 million NOK 285 million NOK 291 million NOK
Std. Deviation 7.4 million NOK 6.2 million NOK 4.9 million NOK

Robust Optimization (RO). Implementing the RO approach means that the entire
set of realizations will be used to determine a single control strategy for maximiz-
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4.2 Case Study 2 – The Egg Model

Figure 4.18: Egg Model: Water cut of the four production wells over time as response
to the reactive control approach. When the profitability threshold of 87% is reached, the
producer stops.

ing the expected NPV over the whole set of realizations.

The same gradient-based optimization procedure and optimization parameters in
the NO strategy were used to determine the robust optimal control. Yet, there was
a big difference between the two approaches in terms of the computational time. In
order to calculate the robust gradient, we need to determine the gradient for each
realization separately. Therefore, 101 simulations must run in order to obtain the
gradient information for one timestep. In other words, the simulation time for RO
is approxiamely 100 times longer the time required for one NO run (i.e., almost 2
weeks).

We applied the resulting RO control strategy to each of the 101 realizations in
the set, and determined the value of objective function for each member. The
corresponding PDF and CDF are shown in Figure 4.19. The expected NPV and
standard deviation are presented in Table 4.2.
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4.2 Case Study 2 – The Egg Model

Figure 4.19: Egg Model: PDF and CDF of 101 realizations. Reactive control, RO, and
101 NO strategies are shown.

57



4.2 Case Study 2 – The Egg Model

4.2.3 Closed Loop Robust Optimization

All the strategies applied so far have been open loop, meaning that there was no
feedback involved. In this section feedback is introduced to our solution approach.
To avoid the state estimation problem, we will assume that the actual states are
known. For this reason we will consider the NO control sequence with the highest
expected NPV and use its corresponding state trajectories as the optimal states.
Then we use an MPC (Model Predictive Control) to make the states follow our
desired path.

In this case, at each timestep of the RO scheme, an optimization problem will
be solved to minimize the difference between the calculated states and control
values with the optimal ones. This means that the total computer time required
for this approach will be at least twice the openloop case. It took approximately 5
weeks for the algorithm to run on a 2.4 GHZ machine with 12 GB RAM. Figure
4.20 illustrates the difference between the PDF of RO in open- and closed-loop
schemes. Also, Table 4.3 presents the corresponding data.

Figure 4.20: Egg Model: PDF and CDF of 101 realizations. Reactive control, RO, and
101 NO strategies are shown.

The results show 2.4% higher expected NPV and 24.5% lower standard deviation
for the closed loop case. The reason for higher expected NPV is that each iteration
of the MPC tries to bring the controls and states toward the optimal trajectories
chosen. Now, the selected optimal trajectory was the NO strategy with the highest
expected NPV, and this explains the increase in the expected NPV from open- to
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4.2 Case Study 2 – The Egg Model

Table 4.3: Comparison of results between Open- and Closed-Loop RO.

Open Loop RO Closed Loop RO
Expected NPV 291 million NOK 298 million NOK
Std. Deviation 4.9 million NOK 3.7 million NOK

closed-loop RO. The other role that the feedback plays in this case is decreasing
the standard deviation resulted from the extra optimization relative to the open
loop RO in each iteration of the MPC.
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Chapter 5
Conclusions and Recommendations

The Robust Optimization scheme maximizes the revenues from oil recovery and
at the same time takes into account the geological uncertainty. Therefore, RO is
an approach that draws the attantion of the E&P industry. When implemented
within a closed loop system, it can honor the uncertainties to a greater degree. We
examined its expected performance against those of NO and reactive control. To
do this, a water flooding model with 101 geological realizations was simulated.
The following conclusions can be drawn from the obtained results:

• The particular geological realization chosen to base a Nominal Optimiza-
tion on, massivly affects the performance of the NO strategy. In the case
study, there is no reason to regard one geological realization as more likely
to occure. The results obtained from the Nominal Optimizations are very
different and consistently worse than the Robust Optimization scheme.

• Testing using a large set of realizations demonstrated that in comparison to
NO and recactive control strategies, Robust Optimization virtually enhances
the expected NPV. Also, the ranges of NPV outcomes is smaller in the RO
approach (reduced variance).

• Since reactive control approach is independent of the reservoir model, when
applied to a real field, a wrong representation of the geological realizations
does not affect the results. However, model based NO and RO strategies
suffer from a wrong representation of geological realizations. On the other
hand, the disadvantage of the reactive approach is that it usually does not
lead to an optimal strategy during the life of the reservoir.
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• Comparison between the results of open loop and closed loop RO shows
a higher expected NPV and a lower standard deviation for the closed loop
case. The reason for higher expected NPV is that each iteration of the MPC
tries to bring the controls and states toward the optimal trajectories chosen.
Now, the selected optimal trajectory was the NO strategy with the highest ex-
pected NPV, and this explains the increase in the expected NPV from open-
to closed-loop RO. The other role that the feedback plays in this case is de-
creasing the standard deviation resulted from the extra optimization relative
to the open loop RO in each iteration of the MPC.

• While applying any of the optimization strategies we had assumed that the
set of geological realizations is a good representative of the reservoir system
uncertainties. Therefore, the conclusion of enhanced performance of RO
versus NO and reactive control holds only if this assumption is right. If
otherwise, the truth is not reflected meaning that the implemented set of
realizations is not close to the reality, one could not compare the control
strategies in terms of their performance.

Further research can be done incorporating a more integrated approach, in which
measurements are employed to narrow down the set of geological realizations or
to enhance the quality of this set by means of history matching.
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