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Supplementary material contains contains four parts: 

A) Notes on methodological differences compared to pre-sequel studies

B) Additional sampling site and source data description

C) Extended output and additional analyses, including residual plots for the mixed
effect modelling

D) Additional analyses and residual plots for supplementary trend analyse (using
regression slopes as modell inputt for correspondence with previous studies)

A) Notes on methodological differences compared to pre-sequel
studies 

The current study builds upon previous studies demonstrating increases in DOC of 
boreal lakes and rivers (de Wit et al. 2007, Monteith et al. 2007). These studies have 
used concentrations of SO4 analyzed from water same samples as proxy for Sulphur 
deposition. Here, we use atmospheric Sulphur deposition directly as input variable. 
The rationale for this is that SO4 in water partly is controlled by the same drivers as 
DOC (hydrology not the least), which could induce spurious correlations. Climate, 
and notably hydrology, will affect oxidation and mobilization of Sulphur in soils and 
bogs that also contribute to SO4 in recipient waters (Hongve et al. 2004), implying 
that there, at least on annual scales, will be deviations between input and output of 
SO4 from catchments. Deposition of SO4 is, however, calculated by interpolating 
data from a number of monitoring stations (see below), while SO4 in water is 
measured with high accuracy. Secondly, previous studies are mainly based upon 
correlations between observed trend metrics (slopes) of DOC and driver variables 
over time. We here apply a regression-based model with yearly mean values as 
input. Additionally, we used ln DOC as dependent variable (hereafter termed ln TOC 
in the supplementary, see material and methods in main text), where the anti-log of 



the regression coefficients can be interpreted as relative change from one year to 
the next. Utilizing individual data-points furthermore increase the statistical power 
of the analyses and enables inspections of time-lags. We provide a replication of the 
analyses using trend metrics (slopes) in supplementary material, section D). 
Although trend metrics still provide a significant effect of vegetation, the relative 
importance of vegetation is here less due to the inherent between year variation 
climate variation induce in vegetation measures. The long term trends of climate on 
vegetation proxies hence become weaker than the relatively linear decrease in 
Sulphur deposition experienced throughout the last decades. 

B) Additional sampling site and source data description

Lake chemistry data 

The data in this analysis are obtained from a Norwegian lake monitoring program 
from 70 lakes covering the Norway mainland and with annual samples from 1986 to 
2013. These lakes constitutes a subset of the 1000-lake acidification survey of 1995 
(Henriksen et al. 1998, Ambio 27:80-91), and represents acid sensitive, headwater 
lakes on granitic or gneissic bedrock with negligible local pollution sources. Water 
samples are collected annually at the outlet after the autumn circulation period and 
where analysed at the Norwegian Institute of Water Research (Skjelkvåle et al. 
2001,Hydrol. Earth Syst. Sci. 5:327-338). The original dataset (available from URL 
http://vannmiljo.miljodirektoratet.no/)contains information from 78 lakes, but 
eight lakes where excluded from the present study due to incomplete catchment 
data. Catchments crossing national borders did not have complete data on runoff 

(provided by The Norwegian Water Resources and Energy Directorate).  

Table S1: List of study sites (lakes) included in the present study. The table is 
given with lakeID corresponding to the official lake numbering given by the 
Norwegian Water Resources and Energy Directorate, http://www.nve.no/en/, 
latitude and longitude (EPSG:4326) of lake centroid, lake area (square kilometers), 
catchment area (square kilometres) and mean lake TOC concentration. 

LakeID Latitude Longitude lakeArea catchmentArea TOC 

69 59.83574 8.737854 1.82 10.33 0.81 

282 61.15767 11.627560 1.14 5.67 6.78 

331 59.10063 11.522082 1.15 7.91 5.43 

368 60.09764 11.902080 1.16 34.97 11.22 

716 65.06711 13.168821 2.78 10.93 1.14 

806 66.75356 15.410483 2.60 46.24 0.73 

1001 68.08597 16.045089 1.41 6.29 2.29 

1094 59.58272 7.563858 1.15 7.50 0.34 

1174 58.74887 7.308764 0.96 5.53 2.60 

http://www.nve.no/en/


1373 58.63211 6.976235 0.27 11.50 5.59 

1431 58.48877 6.735423 1.20 6.51 1.03 

1545 58.56277 5.867287 0.53 8.08 1.06 

1651 61.34421 6.493807 1.27 22.51 0.38 

1935 61.98776 6.183566 1.04 21.18 1.38 

2430 70.34170 30.859106 2.74 8.08 1.14 

2437 69.94011 29.118845 1.79 7.40 0.78 

2456 69.27195 28.954739 2.60 8.76 2.06 

2474 69.69150 30.667201 3.59 19.82 1.17 

3238 59.77423 11.762489 0.52 2.95 3.67 

3555 59.11542 11.677879 0.24 2.12 8.15 

3838 60.55665 11.665238 0.46 20.99 12.49 

5114 60.10521 10.757073 0.55 7.85 3.53 

5269 59.97221 10.145206 0.31 1.44 6.03 

5742 59.63713 10.103627 0.36 5.22 7.59 

5828 59.40272 11.001102 0.29 3.08 4.89 

5844 59.34441 10.969082 0.20 3.28 16.68 

5961 59.89208 9.305583 0.08 4.67 10.66 

7272 60.36662 9.730464 0.23 4.55 11.46 

9219 58.74638 7.954483 0.33 8.84 3.94 

9534 58.69217 8.963088 0.22 3.70 7.00 

10127 58.59644 8.544524 0.31 2.28 4.12 

10305 58.54989 7.204447 0.26 3.32 8.20 

10926 58.38866 7.973851 0.29 3.81 4.42 

11078 58.31903 7.679679 0.24 13.03 7.44 

11095 58.30425 7.158552 0.34 10.37 5.21 

11147 58.29347 7.924448 0.22 10.80 5.68 

11292 58.22903 6.992603 0.23 1.06 2.16 

11373 58.20758 7.452243 0.75 3.81 2.44 

11592 58.11910 7.665664 0.45 18.69 4.99 

13194 59.62932 8.116062 0.41 2.26 1.49 

13592 59.49601 7.114335 1.50 16.54 0.26 

14277 59.29748 7.715758 1.27 4.01 0.86 

14367 59.27227 8.843790 0.11 4.95 8.84 

14534 59.20990 7.242493 0.69 9.22 0.50 

15100 59.07598 7.445520 0.70 5.59 2.23 



15177 59.05965 7.378440 0.61 33.68 2.43 

21049 58.52418 6.419590 0.38 2.07 1.07 

21186 58.48700 6.188944 0.36 1.51 0.80 

21438 58.41618 6.212963 0.29 1.74 0.68 

21797 58.28628 6.493815 0.67 12.41 1.29 

22101 59.87227 5.430483 0.26 4.62 2.32 

22548 59.54436 6.024239 0.43 16.94 1.42 

23386 59.81531 6.353889 1.09 26.72 0.45 

26267 60.72892 5.505261 0.43 2.89 0.67 

28197 61.67410 5.164808 0.70 2.76 0.74 

31047 62.04337 5.786375 0.56 1.90 0.35 

31186 62.82214 7.522910 0.31 4.82 3.43 

34660 62.27806 8.843371 0.60 50.15 0.34 

35326 62.60575 11.897614 1.37 4.94 1.91 

36436 63.29230 8.770949 0.50 7.95 1.64 

40844 64.28040 10.974211 1.01 3.61 2.90 

45724 67.75659 15.958838 1.07 8.75 1.84 

48048 68.05404 13.326508 1.20 6.37 0.95 

50879 69.24335 17.316576 0.70 18.07 0.89 

63664 69.86779 29.185201 0.69 2.53 0.90 

64217 69.70881 30.601720 0.41 1.76 0.63 

64278 69.70551 29.746762 0.97 2.94 1.57 

64684 69.57107 29.813285 0.45 6.90 2.11 

64713 69.55057 30.779834 0.18 6.75 2.39 

64799 69.53605 29.459653 0.22 3.32 1.75 

Environmental drivers 

Lake catchments where delineated from a 10m digital terrain model (available 
from The Norwegian Mapping Authority). Time series of annual mean catchment 
vegetation biomass/productivity (NDVI), runoff, temperature and sulphur 
deposition where then extracted using the raster library (Hijmans 2015, raster: 
Geographic Data Analysis and Modeling. R package version 2.4-15) in R v. 3.2.1 (R 
Core Team 2015, R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-
project.org/). 

We used NDVI (Normalized Difference Vegetation Index; GIMMS NDVI3g) as proxy 
for catchment vegetation biomass/productivity (Fensholt and Proud 2012, Remote 
Sensing of Environment 119:131-147; Pinzon and Tucker 2014, Remote Sensing 

http://www.r-project.org/
http://www.r-project.org/


6:6929-6960). The NDVI is a radiometric measurement of the fraction of 
photosynthetically active radiation (~ 400 to 700 nm) absorbed by chlorophyll in 
the leaves of a vegetation canopy (Myneni et al. 1995, Trans. Geosci. Rem. Sens. 
33:481-486). Although care should be taken before interpreting NDVI changes 
directly as net changes in primary production, the index has previously proven a 
good surrogate of photosynthetic activity and for capturing long-term changes in 
vegetation (Myneni et al. 1997, Nature 386:698-702; Forkel et al. 2013, Remote 
Sensing 5:2113-2144). The NDVI3g data set has a pixel resolution of 8 x 8 km. The 
maximum NDVI value over a 15-day period is used to represent each 15-day 
interval to minimize bias due to cloud contamination and variations in atmospheric 
turbidity, scan angle, and solar zenith angle (Holben 1986, Int. J. Rem. Sens. 7:1417-
1434; Pinzon and Tucker 2014, Remote Sensing 6:6929-6960). This scheme results in 
two maximum-value NDVI composites per month. Here, we used the mean NDVI3g 
record for the main snow free period (June - August) averaged annually from 1982 
to 2011 and over each catchment area. Other measurements, such as maximum 
yearly NDVI3g and June - August maxima gave similar results in terms of temporal 
dynamics, and were therefore not included in further analyses. 

Time series of temperature and runoff for individual catchment were extracted 
using gridded data from 1980 to 2013 (1 km2 resolution from the Norwegian 
Meteorological Institute and the Norwegian Water Resources and Energy 
Directorate (Mohr 2008, New Routines for Gridding of Temperature and Precipitation 
Observations for http://www.seNorge.no). The original data with a daily resolution 
were aggregated to June to August means for individual catchments, corresponding 
to the NDVI time series. 

Time series of S deposition at the catchment level was interpolated from EMEP 
deposition raster temporal composite (1980, 1985, 1990, and annually from 1995 to 
2011) (Schulz et al. 2013, Transboundary acidification, eutrophication and ground 
level ozone in Europe in 2011. Norwegian Meteorological Institute) using 
recalculations if available. Total S deposition was used in the present study, 
comprising both dry and wet deposition. Each type of deposition was modelled 
using regression kriging using EMEP precipitation as a linear regression model 
predictor, with residuals fitted using a linear variogram model with no nugget. Using 
the variogram model and linear model, deposition flux over the catchment area was 
predicted using block kriging with the target geometry being the catchment 
polygon. Missing values from 1985-1990 and 1990-1995 where estimated within 
each catchment using loess regression. 

C) Extended output and additional analyses

Data standardization and software 

All pre-processing and analyses was done in R v. 3.2.1 (R Core Team 2015). Prior to 
the analyses, TOC where log transformed, and the data where standardized by 

http://www.senorge.no/


detracting mean and dividing on standard deviation using the scale function of the 
base library. 

We first tested for overall temporal trends in the time series of lake TOC and each of 
the catchment drivers using a regional Kendall trend test using the rkt library 
(Marchetto 2015, rkt: Mann-Kendall Test, Seasonal and Regional Kendall Tests). Each 
individual lake was used as block (Helsel and Frans 2006, Env. Sci. Tech. 40:4066-
4073). 

To test for effects of vegetation development (NDVI) after correcting for other 
known drivers of TOC, we included effects of S deposition, catchment NDVI, runoff, 
and air temperature as driver variables in a linear mixed effect model with lake TOC 
as dependent variable using the nlme library (Pinheiro et al. 2012, nlme: Linear and 
Nonlinear Mixed Effects Models. R package version 3.1-104). Year was included in the 
full model as a controlling variable (Freckleton 2002, J. Anim. Ecol. 71:542-545). 
Selection of random structure where done on a full fixed model structure (fitted by 
REML) by model comparison (Zuur et al. 2009, Mixed effects models and extensions in 
ecology with R. Springer, New York). This resulted in a full model including lake-ID as 
random intercept and year nested within lake-ID as random slope (???AIC > -76.65 
in favor of the selected random structure). By introducing lake ID as random factor, 
we model between-lake variation in TOC caused by catchment variables not 
considered in the current study. For example static land cover properties that not 
are expected to change on the investigated time frame such as bogs and wetlands, 
catchment size, lake size. Temporal autocorrelation (AR1) was initially also tried, by 
entering year nested within lake-ID, but proved redundant in the initial selection of 
the random structure. There was no signs of multicollinearity (variance inflation 
factors, all VIF < 1.96, (Zuur et al. 2009) and maximum correlation between 
predictors where -0.61. 

Catchment vegetation is expected to influence lake TOC with time lags (see main 
text). Due to catchment-specific properties such as fractions of alpine areas, forests 
and bogs, as well as inter-annual variability in climate and runoff, the time-lag 
between terrestrially fixed C (inferred as NDVI) and export of TOC may vary 
substantially. Based on visual inspection of cross-correlation plots between the 
dependent variable (TOC) and time lags of the explanatory variables, it was 
apparent that NDVI and runoff affected lake TOC with a considerable time lag. In 
comparison, there were no clear time-lags in the effect of S deposition or 
temperature. 



Figure S1: Inspecting for delayed response (time-lags) between drivers and 
response Here, we do a visual inspection of cross-correlation plots between the 
dependent variable (TOC) and time lags of the explanatory variables. The 
correlations are given as means across all lakes, and solid line represent a loess 
fitted curve for illustrational purposes. 

NDVI and runoff affected lake TOC a considerable time lag. In comparison, there 
were no clear time-lags in the effect of Sulphur deposition or temperature. In order 
to avoid data-dredging issues, we selected a priori a one year time lag for NDVI and 
runoff as the input for our analyses. We subsequently performed sensitivity 
analyses on the effect of time-lag chosen by re-running the final model with 
different time-lags (see below). The main predictions were mainly insensitive to 
choice of time-lag, and hence only 1 year time lags are presented in the results of the 
main text. S deposition and temperature where entered without time lags. 

Model selection and multi-model inference 

Model selection and model averaging on fixed effect structure where done by model 
comparison using the MuMIn library (Grueber et al. 2011, J. Evol. Biol. 24:699-711). 
We compared all possible combinations of fixed factors and ranked candidate 



models according to the Akaike information criterion (AIC), and also calculated 

delta AIC ( i) in relation to the highest ranked model, as well the Akaike Weigths 
(wi). There was no clear top-ranked candidate model, and we applied Akaike 
weigth-based averaging over the 95% confidence model set (cumulative AIC 

weights of models  0.95) for estimating coefficients for the candidate models as 
well as their 95% confidence intervals. The relative influence (RI) of each variable 
was given as the summation of wi across all models including that variable in the 
95% confidence model set (Johnson and Omland 2004, Trend. Ecol. Evol. 19:101-108). 

Residuals of the final selected models were visually inspected for deviations from 
normality, heteroscedasticity, and spatial or temporal autocorrelation without 
finding evidence for violation of model assumptions (see below). 

To quantify the relative strength of the different catchment drivers of TOC, we 
included effects of S deposition, catchment NDVI, runoff, and air temperature as 
driver variables in a linear mixed effect model with lake TOC as dependent variable 
(nlme library; Pinheiro et al. 2012). Year, was included in the full model as a 
controlling variable (sensu Freckleton 2002). There was no signs of 
multicollinearity (variance inflation factors, all VIF < 1.96, (Zuur et al. 2009) and 
maximum correlation between predictors where 0.61 (see figure below). 



 

Figure S2:Scatter plot matrix of explanatory variables included in the 
analyses. 

 

Analyses (R-code), for results as apparing in main text: 

# comparing random structure 
library(nlme) 
library(MuMIn) 
f1 <- formula(lnTOC ~ ndvi.summer_lag1 + q.summer_lag1 + sdep_pred + 
tm.summer+year)  
 
m1 <- gls(f1, data = data.std2, na.action = na.fail,method="REML")  
m2 <- lme(f1, data = data.std2, random= ~1 | 
as.factor(vatn_lnr),na.action = na.fail,method="REML")  
m3 <- lme(f1, data = data.std2, random= ~year | 
as.factor(vatn_lnr),na.action = na.fail,method="REML")  
 
m4 <- lme(f1, data = data.std2, random= ~ 1 | as.factor(vatn_lnr),  
          corAR1(form = ~ year | 



as.factor(vatn_lnr)),method="REML",na.action = na.fail)  
m5 <- lme(f1, data = data.std2, random= ~ year | as.factor(vatn_lnr),  
          corAR1(form = ~ year | 
as.factor(vatn_lnr)),method="REML",na.action = na.fail)  
 
#Choosing random structure 
AIC(m1,m2,m3,m4,m5) 

# refitt model and model selection  
m1 <- lme(f1, data = data.std2, random= ~ year | 
as.factor(vatn_lnr),method="ML",na.action = na.fail)   
 
dregde_mod <- dredge(m1,rank="AIC") 
 
summary(m1) 

avgmod.95p <- model.avg(dregde_mod, cumsum(weight) <= .95,fit=T) 
dregdetable <- subset(dregde_mod, cumsum(weight) <= .95) 

Table S2: Model selection tables of TOC against NDVI, runoff (Q), S deposition, 
temperature and year. The tables show parameter estimates for model terms 
included in the models, log likelihood (LogLik), AIC, AIC difference from best model 
(delta), and Akaike weigths (weigths). Only models from the top 95% confidence 

model set shown (cumulative AIC weight of models  0.95). 

 Intercept NDVI Q S dep Tempr year df logLik AIC delta weight 

24 -0.15 0.05 -0.06 -0.1 NA 0.15 9 -189.69 397.39 0.00 0.63 

32 -0.15 0.05 -0.06 -0.1 -0.01 0.15 10 -189.56 399.11 1.72 0.26 

23 -0.15 NA -0.07 -0.1 NA 0.14 8 -192.94 401.89 4.50 0.07 

22 -0.15 0.06 NA -0.1 NA 0.15 8 -193.38 402.77 5.38 0.04 

 

Table S3: Summary result for model averaging of fixed effects from the 95% 

confidence model set (cumulative Wi  0.95) of of TOC against NDVI, runoff (Q), S 
deposition, temperature and year. 

 Estimate Sd.Error adj.SE -95%CI +95%CI 

Intercept -0.15 0.11 0.11 -0.36 0.06 

NDVI 0.05 0.02 0.02 0.01 0.08 

Q -0.06 0.02 0.02 -0.10 -0.02 

S dep. -0.10 0.02 0.02 -0.14 -0.05 

year 0.15 0.04 0.04 0.07 0.22 

Tempr -0.01 0.02 0.02 -0.04 0.02 

 



Checking residual structure of final model 

Figure S3: Residual plot of final model. Plotting predicted values for lnTOC 
against residuals from averaged modell (upper left pannel), observed against 
predicted lnTOC (upper rigth pannel), autocorrelation function (acf) for residuals 
(lower left pannel) and semivariogram for residuals (lower rigth pannel). Values are 
on standarized scale.Note pattern in residuals with a cluster of values in the lower 
end of the TOC scale (upper rigth pannels). Those are adressed below. 



Re-running model without year as controlling variable 

# comparing random structure 
library(nlme) 
library(MuMIn) 
f1 <- formula(lnTOC ~ ndvi.summer_lag1 + q.summer_lag1 + sdep_pred + 
tm.summer)  

m1 <- gls(f1, data = data.std2, na.action = na.fail,method="REML") 
m2 <- lme(f1, data = data.std2, random= ~1 | 
as.factor(vatn_lnr),na.action = na.fail,method="REML") 
m3 <- lme(f1, data = data.std2, random= ~ 1 | as.factor(vatn_lnr), 

   corAR1(form = ~ year | 
as.factor(vatn_lnr)),method="REML",na.action = na.fail) 

#Choosing random structure 
AIC(m1,m2,m3) 

# refitt model and model selection  
m1 <- lme(f1, data = data.std2, random= ~ 1 | 
as.factor(vatn_lnr),method="ML",na.action = na.fail) 

dregde_mod <- dredge(m1,rank="AIC") 

summary(m1) 

avgmod.95p <- model.avg(dregde_mod, cumsum(weight) <= .95,fit=T) 
dregdetable <- subset(dregde_mod, cumsum(weight) <= .95) 

 Table S4: Model selection tables of TOC against NDVI, runoff (Q), S deposition, 
temperature. The tables show parameter estimates for model terms included in the 
models, log likelihood (LogLik), AIC, AIC difference from best model (delta), and 
Akaike weigths (weigths). Only models from the top 95% confidence model set 

shown (cumulative AIC weight of models  0.95). 

Intercept NDVI Q S dep Tempr df logLik AIC delta weight 

8 -0.05 0.05 -0.04 -0.22 NA 6 -235.38 482.75 0.00 0.52 

6 -0.05 0.06 NA -0.22 NA 5 -237.32 484.63 1.88 0.20 

16 -0.05 0.05 -0.04 -0.22 0.00 7 -235.36 484.72 1.97 0.19 

14 -0.05 0.06 NA -0.22 0.01 6 -237.21 486.43 3.67 0.08 



Table S5: Summary result for model averaging of fixed effects from the 95% 

confidence model set (cumulative Wi  0.95) of of TOC against NDVI, runoff (Q), S 
deposition, temperature. 

 Estimate Sd.Error adj.SE -95%CI +95%CI 

Intercept -0.05 0.11 0.11 -0.27 0.17 

NDVI 0.05 0.02 0.02 0.02 0.09 

Q -0.04 0.02 0.02 -0.08 0.00 

S dep. -0.22 0.01 0.01 -0.24 -0.20 

Tempr 0.00 0.02 0.02 -0.03 0.03 

 

Rerunning model exluding outliers 

Outliers identified in residual plots (see above, standarized lnTOC < -2.5). The 
outliers are clusters of low TOC values. We have no knowlegde about potential 
causes for the outliers, and hence no a priori reason for exluding them from the 
analyses. One potential hypoteshis is, however, that this results from TOC beeing 
close to the detection limits of the instruments. We consecvently rerun the model 
selection process without these datapoints to check for influence. Although the 
relative importance of NDVI became sligtly lower, the main results of the model 
selection is similar, albeith a sligthly lower relative importance of NDVI. Hence, our 
conclution is that these outliers don't have any significant effect of our overall 
conclutions. 

Analyses (R-code): 

library(nlme) 
library(MuMIn) 
 
f1 <- formula(lnTOC ~ ndvi.summer_lag1 + q.summer_lag1 + sdep_pred + 
tm.summer+year)  
 
# re-running model exluding outliers 
m1subset <- lme(f1, data = data.std2, random= ~ year | 
as.factor(vatn_lnr),method="ML",na.action = na.fail,subset=lnTOC>-2.5)   
 
dregde_mod_subset <- dredge(m1subset,rank="AIC")  
avgmod.95p.subset <- model.avg(dregde_mod_subset, cumsum(weight) <= 
.95,fit=T) 
dregdetable <- subset(dregde_mod_subset, cumsum(weight) <= .95) 

 

Table S6: Model selection tables model re-run without outliers. (TOC against NDVI, 
runoff (Q), S deposition, temperature and year). The tables show parameter 



estimates for model terms included in the models, log likelihood (LogLik), AIC, AIC 
difference from best model (delta), and Akaike weigths (weigths). Only models from 

the top 95% confidence model set shown (cumulative AIC weight of models  0.95). 

 Intercept NDVI Q S dep Tempr year df logLik AIC delta weight 

24 -0.14 0.03 -0.06 -0.09 NA 0.15 9 -80.93 179.86 0.00 0.50 

32 -0.14 0.03 -0.06 -0.09 -0.01 0.15 10 -80.56 181.12 1.25 0.27 

23 -0.14 NA -0.06 -0.09 NA 0.14 8 -82.68 181.36 1.50 0.24 

 

Table S7: Summary result for model averaging of (model re-run without outliers) 

fixed effects from the 95% confidence model set (cumulative Wi  0.95) of of TOC 
against NDVI, runoff (Q), S deposition, temperature and year. 

 Estimate Sd.Error adj.SE -95%CI +95%CI 

Intercept -0.14 0.10 0.10 -0.34 0.06 

NDVI 0.03 0.02 0.02 0.00 0.06 

Q -0.06 0.02 0.02 -0.10 -0.02 

S dep. -0.09 0.02 0.02 -0.13 -0.05 

year 0.15 0.04 0.04 0.07 0.22 

Tempr -0.01 0.01 0.01 -0.04 0.02 

Re-running model selection with different time lags for NDVI and 
runoff(Q) 

We performed sensitivity analyses on the effect of chosing of time-lag by re-running 
the final model with different time-lags. Model selection was run through all 
combinations of NDVI and runoff(Q) lags from 0 to 5, and the relative importance of 
NDVI in the model recorded. The main predictions were mainly insensitive to choice 
of time-lag, and hence only 1 year time lags are presented in the results of the main 
text. S deposition and temperature where entered without time lags. 



 

Figure S4: Visual presentation of support for NDVI effect using different time 
lags for NDVI and runoff. The effect of different time-lags on the relative 
importance of NDVI visualized by plotting the relative importance of NDVI along 
different time lags of runoff (Q) and NDVI. Range in relative importance is from 0.22 
(dark green) to 0.99 (red). All time-lag combinations investigated included NDVI in 
the top ranked models (delta AIC < 2). 

Substituting S deposition with SO4 

We then illustrate the effect of substituting SO4 with NDVI in the original model. No 
major differences on model selection results by subtituting S deposition with SO4 
measured in water. NDVI had for all practical purposes the same importance as in 
the orignal model using S deposition model. Hence, the two explanatory variables (S 
deposition and SO4) yielded comparable results with respect to model output. 

Analyses (R-code): 

library(nlme) 
library(MuMIn) 
 
f1 <- formula(lnTOC ~ ndvi.summer_lag1 + q.summer_lag1 + SO4 + 



tm.summer+year)  
 
m1subset <- lme(f1, data = data.std2, random= ~ year | 
as.factor(vatn_lnr),  
          method="ML",na.action = na.fail)   
 
dregde_mod_subset <- dredge(m1subset,rank="AIC")  
avgmod.95p.subset <- model.avg(dregde_mod_subset, cumsum(weight) <= 
.95,fit=T) 
dregdetable <- subset(dregde_mod_subset, cumsum(weight) <= .95) 

Table S8: Model selection tables model on re-run substituting S deposition with 
SO4. (TOC against NDVI, runoff (Q), SO4, temperature and year). The tables show 
parameter estimates for model terms included in the models, log likelihood 
(LogLik), AIC, AIC difference from best model (delta), and Akaike weigths (weigths). 
Only models from the top 95% confidence model set shown (cumulative AIC weight 

of models  0.95). 

 Intercept NDVI Q S dep Tempr year df logLik AIC delta weight 

24 -0.07 0.05 -0.06 -0.20 NA 0.08 9 -169.78 357.56 0.00 0.55 

32 -0.07 0.05 -0.06 -0.20 0.00 0.08 10 -169.78 359.56 2.00 0.20 

8 0.02 0.05 -0.06 -0.24 NA NA 8 -172.15 360.30 2.74 0.14 

16 0.02 0.05 -0.06 -0.24 0.01 NA 9 -172.08 362.16 4.61 0.06 

23 -0.07 NA -0.07 -0.20 NA 0.08 8 -173.26 362.51 4.96 0.05 

 

 

 

 

Table S9: Summary result for model averaging of (model re-run with S deposition 
substituted with SO4) fixed effects from the 95% confidence model set (cumulative 

Wi  0.95) of of TOC against NDVI, runoff (Q), SO4, temperature and year. 

 Estimate Sd.Error adj.SE -95%CI +95%CI 

Intercept -0.15 0.11 0.11 -0.36 0.07 

Q -0.05 0.02 0.02 -0.09 -0.01 

SO4 -0.11 0.02 0.02 -0.15 -0.06 

year 0.14 0.04 0.04 0.07 0.21 

NDVI 0.01 0.02 0.02 -0.02 0.05 



D) Trend analyses

In this part of the supplementary, we investigated for the relative correspondence 
between the temporal trends in lake TOC and catchment drivers by using the Theil-
Sen's slopes for lake TOC as dependent variable and slopes for mean catchment 
specific NDVI, runoff, atmospheric S deposition as explanatory variables using 
generalized least-squares (gls). We also tested for the inclusion of spatial 
autocorrelation structure comparing models with and without (fitted by REML) 
using Akaike's information criterion (AIC) (Zuur et al. 2009). However, no support 
for inclusion of a spatial autocorrelation was apparent (∆AIC > 4.00 in support of 
model without spatial autocorrelation). The the tests is also repeated using relative 
trends (% change), as well as absolute change for sensitivity puroposes. We 
additionally present analyses where S deposition where substituted with SO4 as 
dependent variable, and finally re-run with trends expressed as percent change 
instead of slopes. 

Trends (Theil-Sen's slopes) and S deposition as predictor 

Table S10: Model selection tables for slopes of TOC against NDVI, runoff (Q) S dep. 
and temperature. The tables show parameter estimates for model terms included in 
the models, log likelihood (LogLik), AIC, AIC difference from best model (delta), and 
Akaike weigths (weigths). Only models from the top 95% confidence model set 

shown (cumulative AIC weight of models  0.95). 

Intercept NDVI Q S dep Tempr df logLik AIC delta weigth 

5 0 NA NA -0.26 NA 3 232.66 -459.33 0.00 0.35 

6 0 0.08 NA -0.27 NA 4 233.12 -458.23 1.09 0.20 

7 0 NA -0.20 -0.26 NA 4 232.87 -457.74 1.58 0.16 

13 0 NA NA -0.26 0.18 4 232.72 -457.44 1.88 0.14 

8 0 0.08 -0.15 -0.27 NA 5 233.23 -456.47 2.86 0.08 

14 0 0.08 NA -0.27 0.10 5 233.13 -456.27 3.06 0.08 



Table S11: Model selection tables for slopes of TOC against NDVI, runoff (Q) S dep. 
and temperature. The tables show parameter estimates for model terms included in 
the models, log likelihood (LogLik), AIC, AIC difference from best model (delta), and 
Akaike weigths (weigths). Only models from the top 95% confidence model set 

shown (cumulative AIC weight of models  0.95). 

Estimate Sd.Error adj.SE -95%CI +95%CI 

Intercept 0.00 0.00 0.00 -0.01 0.00 

S dep. -0.26 0.03 0.03 -0.32 -0.21 

NDVI 0.08 0.09 0.09 -0.10 0.26 

Q -0.19 0.32 0.33 -0.83 0.46 

Tempr 0.15 0.55 0.56 -0.94 1.25 

Using trends (Theil-Sen's slopes) but with measured SO4 in lake water 
samples as predictor 

Figure S5: Geographical distribution of site-specific Theil-Sen’s slope of total 
atmospheric oxidized sulphate deposition (catchment) and SO4-S concentration 
(lake). Figure created in R v. 3.2.1 (R Core Team, 2015; URL http://www.R-
project.org/) using the libraries raster (Hijmans, 2015) and sp (Bivand et al. 2013, 
Applied spatial data analyses with R Springer, NY).  

http://www.r-project.org/
http://www.r-project.org/


Table S12: Model selection tables for slopes of TOC against NDVI, runoff (Q), SO4 
and temperature. The tables show parameter estimates for model terms included in 
the models, log likelihood (LogLik), AIC, AIC difference from best model (delta), and 
Akaike weigths (weigths). Only models from the top 95% confidence model set 

shown (cumulative AIC weight of models  0.95). 

 Intercept NDVI Q SO4 Tempr df logLik AIC delta weigth 

5 0 NA NA -0.2 NA 5 231.41 -452.82 0.00 0.38 

13 0 NA NA -0.2 0.37 6 231.62 -451.23 1.59 0.17 

6 0 -0.04 NA -0.2 NA 6 231.48 -450.96 1.86 0.15 

7 0 NA -0.10 -0.2 NA 6 231.47 -450.93 1.89 0.15 

14 0 -0.06 NA -0.2 0.45 7 231.78 -449.55 3.27 0.07 

15 0 NA -0.09 -0.2 0.35 7 231.66 -449.32 3.50 0.07 

Table S13: Summary result for model averaging of fixed effects from the 95% 

confidence model set (cumulative Wi  0.95) of slopes of TOC against NDVI, runoff 
(Q), SO4 and temperature. 

 Estimate Sd.Error adj.SE -95%CI +95%CI 

Intercept 0.00 0.01 0.01 -0.01 0.01 

SO4. -0.20 0.04 0.05 -0.29 -0.11 

NDVI 0.39 0.58 0.59 -0.77 1.54 

Q -0.04 0.10 0.10 -0.24 0.16 

Tempr -0.10 0.32 0.32 -0.74 0.54 

 



Using relative slopes (% change) with S deposition as driver 

 

 

Figure S6: Site-specific percent change of S deposition, runoff, summer NDVI, and 
lake TOC concentration, relative to the mean of all years available at each lake and 
catchment.  Figure created in R (R Core Team, 2015) R v. 3.2.1 (R Core Team, 2015; 
URL http://www.R-project.org/) using the libraries raster (Hijmans, 2015) and sp 
(Bivand et al. 2013, Applied spatial data analyses with R Springer, NY).  

 

Table S14: Model selection tables for relative slopes (percent change) of TOC 
against NDVI, runoff (Q), S deposition and temperature. The tables show parameter 
estimates for model terms included in the models, log likelihood (LogLik), AIC, AIC 
difference from best model (delta), and Akaike weigths (weigths). Only models from 

the top 95% confidence model set shown (cumulative AIC weight of models  0.95). 

 Intercept NDVI Q S dep Tempr df logLik AIC delta weight 

13 -61.79 NA NA -0.89 -4.77 4 -340.88 689.75 0.00 0.49 

14 -76.80 0.5 NA -0.97 -4.56 5 -340.57 691.14 1.39 0.24 

15 -62.21 NA -0.05 -0.89 -4.75 5 -340.87 691.74 1.99 0.18 

16 -77.10 0.5 -0.04 -0.97 -4.55 6 -340.57 693.14 3.38 0.09 

 

http://www.r-project.org/


Table S15: Summary result for model averaging of fixed effects from the 95% 

confidence model set (cumulative Wi  0.95) of slopes (percent change) of TOC 
against NDVI, runoff (Q), S deposition and temperature. 

 Estimate Sd.Error adj.SE -95%CI +95%CI 

Intercept -66.89 31.34 31.89 -129.39 -4.39 

S dep. -0.91 0.19 0.19 -1.29 -0.53 

Tempr -4.69 1.77 1.80 -8.22 -1.17 

NDVI 0.50 0.66 0.67 -0.82 1.81 

Q -0.05 0.48 0.48 -1.00 0.90 

 




