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Figure 10. An aerial and ground view of Trombetas (Picture A and B, respectively) show the recovery of biomass (pictures from 
Lamb et al. (2005)). Picture A shows a part of the bauxite mine, and visible in the middle are small patches of regrowth. Picture 
B is a shot from a plot of land 10 years after replanting. 

For the time being, the planned monitoring of the area is for 30 years after the 

reforestation projects have ended, to ensure the success of the program (Hydro 2016b). The 

program may fall short as a sufficient time to assess the progression of reforestation efforts 

(Aide et al. 2000; Vesk et al. 2008; Jones and Schmitz 2009; Cunningham et al. 2015). Based on 

research (Table 6), it is advisable that Hydro continues to monitor the progression of 

reforestation up to 40 years at least. The first years of reforestation are fairly indicative of 

survival success (Saldarriaga 1985; Breugel et al. 2011)—a crucial time period for Hydro to 

ensure successful reforestation.  

4.5.2 Fauna 

Dr. Fridtjof Mehlum also stated that the recovery of fauna species could take up to 

150 years at the Paragominas location (Persson Hager 2014). Data from Liebsch et al. (2008) 

Vesk et al. (2008), Curran et al. (2014), and Cunningham et al. (2015) support Dr. Mehlum’s 

statement. Vesk et al. (2008) remarked that mature trees typically do not bear boughs or 

hollows until about 100 years of age. This means that a revival of arboreal mammals and 
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selected bird, bat, reptile, and amphibian species could take at least a century in the reforested 

area (Eyre et al. 2010; Cunningham et al. 2015). Observations by Parrotta et al. (1997) support 

this statement. Ten years after replanting in Trombetas, they found a scattering of individuals 

from species of tapir, armadillo, and deer, to name a few, that had returned to the area, but no 

confirmation of the two troops of red howler monkeys (Alouatta seniculus) that used to occupy 

the area prior to mining (Parrotta et al. 1997). 

In a study by Cunningham et al. (2015) reforested areas not designed for harvest are 

more probable to yield greater environmental benefits than those that are. Both the 

Paragominas and Trombetas mines are being reforested without the intention of future 

harvesting. Cunningham et al. (2015) graphically represent the revival time of different 

taxonomic groups in actively reforested areas in Figure 11. 

 

Figure 11. Taxonomic rehabilitation timeline adapted from Cunningham et al. (2015). 
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Fauna recovery in the two ecoregions where Trombetas and Paragominas are located 

is anticipated to take an average of 171 years over three different taxa—herpetofauna, 

mammals, and birds (Curran et al. (2014) as cited in Chaudhary et al. (2015)). Liebsch et al. 

(2008) studied reforestation efforts on 18 different forest areas in the Brazilian Atlantic Forest. 

They also concluded similar results to (Curran et al. 2014): 167 years are needed to reach a 

mature forest (Liebsch et al. 2008). 

Other important considerations for reforestation, such as soil fertility and basal 

diameter (Breugel et al. 2011), and the application of lime, nitrogen, phosphorous, and 

potassium (Evans et al. 2013), to name a few, are not included in this study. Soil organic matter, 

magnesium, and manganese are also important nutrients and elements for replanting on areas 

mined for bauxite (Ferraz 1993). Parrotta and Knowles (2001) explain that the handling of 

topsoil is an important aspect for reforestation, and the seedlings need a certain amount 

(unspecified) of topsoil to reach healthy growth (measured in tree basal area, crown cover, and 

height of canopy). Currently, topsoil at both Paragominas and Trombetas is removed and 

stored before being reused for reforestation purposes, although the topsoil may not retain its 

full amount of nutrients or an active seedbank at the time of replanting (two years after 

clearing for Paragominas) (Lamb et al. 2005; Hydro 2015b). 

4.5.3 Ecosystem services 

Both flora and fauna play an integral role in maintaining and underpinning ecosystem 

services, which adds to the complexity of when ecosystem services should return (MA 2003; 

Rey Benayas et al. 2009; Chazdon 2013; Science for Environment Policy 2015b). A “full” 

recovery may not be a copy of the original, primary forest and little research exists on a no net 

loss scenario of ecosystem services as such (Marin-Spiotta et al. 2007; Chazdon 2013). To my 

knowledge, there are no studies explicitly stating the time needed for a reforested area to fully 

provide the ecosystem services as it did in its original state.  

Based on the 40-year and 170-year time horizons for flora and fauna recovery, 

respectively, a full recovery of ecosystem services will likely occur between these two dates. 
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The secondary forests in this study were scored to hold 0.75 ecosystem services which was a 

value built upon literature. With an assumed primary forest in 1970, I do not know when the 

secondary forests had been modified, how old they were, or at what stage in their development 

they were in when modeled as rainforest land cover. Even so, a 50 year-old forest is still on 

the younger end of the 40–170 year spectrum for a return to ecosystem services.  

Because ecosystems are so complex, the precautionary principle should be adopted 

when addressing impacts to ecosystem services. Some ecosystem services may be present 

within 40 years, but some may take longer depending on location, extent of damage, presence 

of certain species of flora and fauna, and other factors (Alexander et al. 2016). Based on the 

information presented in this report, I assert that in order to provide the same ecosystem 

services as the original, deciduous, evergreen rainforest, the biomass of the reforested area 

would need to be mature and possess evidence of increasing faunal diversity. 

4.5.4 Rehabilitating areas containing tailings 

The rehabilitation of tailing ponds began in 1989 at the Trombetas mine (MRN 2012a). 

Excess water is siphoned out of the tailing ponds (assumed to be reused for further mining) 

once they have reached a solid content of 35–40% (MRN 2012a). Nitrogen-fixing plants, such 

as legumes, are first planted via a technique called hydroseeding (MRN 2012a). Native 

vegetation is then planted once the soil is suitable. Despite the efforts, however, rehabilitating 

tailings dams is still a very large challenge for retired mines and the hydroseeding efforts do 

not always work as well as anticipated (Personal communication Bernt Malme 2016). 

Despite no clear rehabilitation plan for tailing ponds, there are still ways to reduce 

potential impacts on ecosystem services. Ensuring the mechanical stability of the pond will 

help prevent breakage and leaks, excess rainwater or flooding runoff, leaching of toxic 

materials, and the spread of wind borne particles (Hansen n.d.). Reforesting on tailings dams 

requires special consideration due to potentially higher heavy metal content and other 

contaminants (Environmental Law Alliance Worldwide 2010).  
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5 CONCLUSION 

5.1 HYDRO’S IMPACT 

The quantitative results showed that Paragominas has a much higher impact on 

ecosystem services than Trombetas for several reasons. First, Paragominas has a higher ratio 

of mined area to bauxite output per year than Trombetas. This could be attributed to 

discrepancies in the data, such as not knowing the mining trends and outputs at Trombetas. 

However, the quantitative evaluation of ecosystem services provisioning in this study are 

purely environmental. Based on the ESR results, Trombetas has a larger cultural impact than 

Paragominas. This is especially important to consider alongside the quantitative results, as 

ecosystem services are anthropocentric in nature. Trombetas, to my knowledge, has more 

Quilombolas groups actively using the ecosystem services in the area than Paragominas.  

5.2 GREATEST AREA OF IMPROVEMENT AND NO NET LOSS OF ECOSYSTEM SERVICES 

Hydro’s inquiry into their impact on ecosystem services is to discover what ecosystem 

services were present, how they are being impacted, and how this can be improved. For the 

Hydro value chain (addressed previously), from Paragominas, to Alunorte, to Albras or 

Sunndalsøra, by and large the greatest area to improve ecosystem service provisioning is at 

Paragominas. A successful rehabilitation program for tailing ponds has yet to come to fruition 

(Personal communication Bernt Malme 2016). Because of this, a plan for no net loss of 

ecosystem services should focus not only on rehabilitation of mined lands, but could also look 

for alternative ways to further reduce the amount of waste that enters the tailing ponds. 

5.3 LCIA AND THE INCLUSION OF PLES 

Inherent to the CFs produced in this study are the differences in FFs from each mine. 

The Trombetas FF accounts for the 0.5 m2 of land needed per ton aluminum, whereas the 

Paragominas FF value is 3.3 m2 per ton aluminum. Using a global, average value of land per 

ton aluminum, such as 1 m2 per ton aluminum as suggested by IAI (2009a) may be more 
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applicable on a broader scale for a global FF. However, because this study is for, and specific 

to, Hydro, I opted for the most accurate values based on the data I calculated.  

Ideally, the concept behind the incorporation of ecosystem services into LCA should 

be the takeaway message. Here, I grouped the likely prevalence of all ecosystem services within 

a certain land cover instead of pulling apart select ones. Integrating ecosystem services in LCA 

at an ecoregion level, like in the case study, would be a remarkable challenge to apply to all 

terrestrial ecoregions around the world and would require tremendous amounts of region-

specific data. When introducing ecosystem services into LCA in a feasible manner, I suggest 

using the fourteen biomes that Olson et al. (2001) used to formulate the ecoregion data used 

for this study. The scoring of different land cover types should remain consist within each 

biome, as each reference state should be angled towards the reference state of that biome. For 

example, in this study, the reference state is the quantity of ecosystem services in a rainforest 

under a potential natural vegetation scenario, but for a grassland or tundra, the reference state 

on which to score the different land cover types should be relative to grassland or tundra.  

The PLES method does not address different time horizons, such as ReCiPe’s 

hierarchist or egalitarian perspectives (Goedkoop et al. 2009a), nor does it address the 

differences in land transformation and/or occupation impacts from an LCA perspective. As 

stated in a literature review by Othoniel et al. (2016), these are important considerations for 

developing a characterization factor for ecosystem services. The PLES also does not include 

seasonal variation, which may be important for coastal areas (Othoniel et al. 2016), but instead 

provides an average estimate on the state of the ecosystem services as a whole.  

As mentioned by Zhang et al. (2010b), a current knowledge gap exists in finding a 

method that reflects all ecosystem services. Despite its limitations, the PLES method may 

provide some further insight into the creation of region-specific characterization factors for 

ecosystem services. The PLES in this case study is spatially explicit for a rainforest biome, and 

different EF values would have to be created for other terrestrial biomes, such as coastal, 

grassland, and tundra, for example, to implement on a global scale. This would provide 
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applicable and comparable results in LCA across the globe and would likely be the most 

consistent way of evaluating impacts to ecosystem services overall. However, the methodology 

could be finely tuned to region- or site-specific cases, as it was for Paragominas.  

Site-specific data, as seen in the case study, is especially important to consider when 

evaluating ecosystem services. Here, the damages to ecosystem services were overestimated 

using the modeled land cover data compared to expert knowledge. In some cases, the damages 

may be underestimated depending on the accuracy of the model used. Regionalization is highly 

important to consider when evaluating ecosystem-related impacts Pfister et al. (2009); (de 

Baan et al. 2013; Hellweg and Milà i Canals 2014). 

Addressing impacts from a reference state or from the current state would be up to the 

discretion of the practitioner. In this case study, the reference state to which Hydro would like 

to return is natural vegetation cover (rainforest). However, the PLES encompasses the impacts 

created before Hydro’s operations (i.e. the change from rainforest cover to pasture lands 

several decades ago). For consistent and comparable results among other studies, it would be 

advisable to use the potential natural vegetation as the reference state. In an ever-changing 

world, the impacts that humans cause now will have different effects than if those impacts 

were caused 25, 50, or 100 years ago—a difference that the PLES methodology can account for. 
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S2. BIODIVERSITY, NATURAL CAPITAL, AND ECOSYSTEM SERVICES 

Two aspects that are highly interconnected to the concept of ecosystem services are 

natural capital and biodiversity. Natural capital is a natural stock delivering a flow of renewable 

and non-renewable goods and services (Costanza and Daly 1992). However, most studies and 

classifications of ecosystem services do not include abiotic, non-renewable capital as an 

ecosystem service (Costanza and Daly 1992; Costanza et al. 1997; Turner and Daily 2007; 

Haines-Young and Potschin 2013; Science for Environment Policy 2015a). 

Researchers argue that biodiversity should be excluded as an ecosystem service because 

it under pins and aids in ecosystem service evaluation rather than being a stand-alone 

ecosystem service (Daily 1997; Hanson et al. 2012; Mace et al. 2012; Schröter et al. 2014; 

Bartkowski et al. 2015; Science for Environment Policy 2015a). In their meta-analysis between 

the connection of the benefits of ecosystem restoration to ecosystem services and biodiversity, 

Rey Benayas et al. (2009) state that “[…] biodiversity is positively related to the ecological functions 

that underpin the provision of ecosystem services”, despite that the mechanisms and relationships 

of these underpinnings are still “[…] poorly defined.” The exclusion of biodiversity as an 

ecosystem service in international documents (MA 2005; Sukhdev et al. 2010; Haines-Young 

and Potschin 2011; Science for Environment Policy 2015a) go along with recent literature on 

the subject of how it should be classified alongside ecosystem services (Hanson et al. 2012; 

Mace et al. 2012; Schröter et al. 2014; Bartkowski et al. 2015). As a result, I have chosen to 

exclude biodiversity as an ecosystem service in this assessment.   
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S3. ESR RESULTS FOR PARAGOMINAS AND ALUNORTE 

Table S3. ESR in Brazil. This table comprises all ecosystem services that face a direct impact either at Paragominas and/or 
Alunorte. These results were derived from the ESR conducted during the summer of 2015. More information on the ESR is 
found in the SI-S1. The table format and listed ecosystem services are from the ESR, developed by Hanson et al. (2012). 

   ECOSYSTEM SERVICES DEPENDENCE AND IMPACT MATRIX 

 
 

PARAGOMINAS ALUNORTE 

Ecosystem services Dependence Impact Dependence Impact 

Provisioning             

Wild foods   ○ -       

Timber and other wood fibers   ?         

Fibers and resins             

Animal skins             

Biomass fuel ?           

Genetic Resources             

Biochemicals and natural 

medicines 
            

Freshwater ● ● - ● ● - 

Regulating             

Maintenance of air quality ? ? -   ● - 

Global climate regulation         ● - 

Regional/local climate regulation ?           

Regulation of water timing and 

flows 
● ● - ●     

Erosion control ? ●   ? ● - 

Water purification and waste 

treatment 
○ ?   ? ● - 

Cultural             

Recreation and ecotourism         ?   

Ethical and spiritual values         ?   

Supporting             

Habitat quality ? ? -   ● - 

 

Freshwater provisioning is undoubtedly affecting the local water supply due to the 

extensive amount that Hydro uses. Based on the ESR, this is the main provisioning service that 

needs investigation to see how far downstream the water use at Paragominas has on the 

Key 
    ●  High               +  Positive impact 
    ○  Low                 -  Negative impact 
                                 ?  Don't know 
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ecosystem. This would also be important to consider throughout the entire value chain. Water 

purification and waste treatment indicated a low level of company dependence and 

questionable impact because of the lack of knowledge regarding the purity of the water upon 

its return to the ecosystem. Due to the extensive use of electricity at Alunorte (including the 

primary production plant, Albras), there is likely to be an impact on air quality and global 

climate regulation.  

S4. REFERENCE STATE: POTENTIAL NATURAL VEGETATION 

The natural state of ecosystem services is based on suggested LCIA land use reference 

states in Goedkoop et al. (2009b), Koellner et al. (2013), and Chaudhary et al. (2015). In the 

ReCiPe life cycle impact assessment (LCIA) methodology developed by Goedkoop et al. 

(2009b), they suggest using potential natural vegetation (PNV). A concept promoted by 

Ramankutty and Foley (1999), PNV reflects the “[…] vegetation that would most likely exist now 

in the absence of human activities […]”. Chiarucci et al. (2010) argue that the dynamism of 

ecosystems cannot be captured by PNV because of the different synergies between large 

mammals, soils, and biological invasions that occurred before humans. Humans have also 

managed forests and wild fires which has limited the ability of practitioners to predict whether 

the current forest and vegetation states would actually have existed without human 

interference (Chiarucci et al. 2010).  
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S5. PLES LITERATURE REVIEW 

The following is an excerpt from the Master’s project that details the literature behind 

the PLES scoring system. Some additions have been made since then to strengthen the 

literature review supporting the PLES.  

In a study by Felipe-Lucia and Comín (2015) of ecosystem service provisioning and 

biodiversity in relation to different land use types in a riparian forest in north-east Spain. They 

not only found evidence that supports Balmford et al. (2002)’s conclusion of forests providing 

higher amounts of ecosystem services, but also gave greater detail on ecosystem service 

provisioning in mosaic landscapes. When looking at ecosystem services such as CO2 

sequestration, nutrient regulation, and habitat provisioning, Felipe-Lucia and Comín (2015) 

found that cropped and/or mosaic areas provided some ecosystem service benefits, but not as 

much as the riparian forests. Because cropped areas did provide ecosystems services, but not 

always to the full extent of forests (Felipe-Lucia and Comín 2015), these are weighted lower 

than riparian forests (Table 2). Additionally, in all the ecosystem services assessed, urban areas, 

which are most in line with Bartholomé and Belward (2005)’s “artificial surfaces and associated 

areas”, supported none of the ecosystem services mentioned above (Felipe-Lucia and Comín 

2015). 

Defining an appropriate weight for mosaic and cultivated land cover types is not easy, 

as these land cover types can vary in ecosystem service provisioning depending on geographic 

location, topographic location, amount of natural forest coverage remaining, and type of 

cultivation occurring (Felipe-Lucia and Comín 2015). Felipe-Lucia and Comín (2015) found 

that different types of agricultural use, such as fruit groves, poplar groves, dry cereal croplands, 

and irrigated croplands, provided various levels of ecosystem service provisioning. Grossman 

(2015) examined the impacts of agricultural practices in eastern Paraguayan forests on 

ecosystem services, and found that services such as net primary productivity and soil organic 

carbon (carbon sequestration) were reduced by almost 50% on largely cultivated lands. For this 

reason, I have weighted Bartholomé and Belward (2005)’s land cover type “cultivated and 
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managed areas” at 50%, i.e. we assume that half of the original ecosystem services persist. 

Grossman (2015) also included forest bird biodiversity as one of his supporting ecosystem 

services. 

The description of a “mosaic cropland” landscape provided by Fritz (2003), indicates that 

the majority of the area is cropland and the remaining forest or vegetation cover is of degraded 

quality. As a result, I have weighted mosaic cropland/tree cover and cropland/shrub at 75% 

and 60% for shrub cover. I presume that the tree cover will provide more ecosystem services, 

but not full ecosystem services because of its degraded state. Thus, the 75% accounts for the 

loss of ecosystem services as a result of forest degradation, but remains higher than the 50% 

decrease of agricultural land occupation. The cropland/shrub land cover type is lower than the 

mosaic cropland/forest because based on the presumed natural state of all rainforest, it is 

estimated that these areas of shrubs were once forests, but got deforested and became shrub 

lands. It is presumed that these shrub lands will provide a higher level of ecosystem services 

than agriculture, but not as high as the mosaic cropland/tree cover; hence, I have weighted 

this land cover category at 60% (i.e. 60% of services remaining). Herbaceous cover and 

regularly flooded shrub/herbaceous cover is given a weighting less than 100%, because they 

are presumed to have less ability to fully provide ecosystem services based on the 

aforementioned logic of the presumed natural state. 

Herbaceous cover (GIS ID 13), is weighted at 30%, because Bartholomé and Belward 

(2005) describe this land cover as “[…] plants without persistent stem or shoots above the ground”. 

Thus, the ability for CO2 sequestration, nutrient retention, erosion control, and other 

regulating and provisioning ecosystem services will decrease. Likely, the shoots in the soil are 

contributing to some erosion control, but are most likely not strong enough to prevent heavy 

erosion and/or landslides. The 30% is an arbitrary value derived from this pragmatic approach 

towards ecosystem service provisioning. The final land cover type to be addressed is the 

regularly flooded shrub/herbaceous cover (GIS ID 15), weighted at 75%. This is because the 

pixel with this GIS ID is adjacent to a 100% ecosystem service providing land cover type: tree 
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cover that is flooded regularly with salt water (GIS ID 8). Thus, I assume the area represented 

in the pixel was once cleared, but now remains mostly untouched by human activity. Since this 

pixel is representative of a wetland and potentially has a “sparse tree layer” (Bartholomé and 

Belward 2005), it is likely to have higher ecosystem service provisioning than just herbaceous 

or mosaic herbaceous land cover (Williams 2006). Thus, regularly flooded shrub/herbaceous 

cover is weighted at 75% due to its location and presumed potential to provide ecosystem 

services. 

Rodrigues et al. (2013) address the changes in Amazonian soil quality and functions 

after the changes from forest to agriculture. They noted a significant decrease in soil quality 

and an increase in biotic harmonization among microbes, which could have an impact further 

along the ecosystem web (Rodrigues et al. 2013). Tockner and Stanford (2002) indicated that 

the conversion of floodplains to agricultural land cover can alter the ecosystems so 

significantly, it renders them functionally extinct (Tockner and Stanford 2002). Hence, 

floodplains are allocated a full value in the PLES system, because if they are impacted, the 

resulting damage is likely to be very severe.  

Land cover type 14 is allocated 0.0 ability to hold ecosystem services, because the 

geographic data matched the mining area for Trombetas; therefore, I assumed land cover type 

14 to be open mine and have no ecosystem service provisioning. Land cover type 20 is also 

listed as a 0.0 because I am only focusing on terrestrial ecosystem services in this study. 

S6. FRESHWATER PROVISIONING  

For the most holistic overview of freshwater consumption, I used the average values 

from 2010-2014 because of a dip in production from the years 2013-2014, when Alunorte was 

not operating at full capacity. This ensures that the results reflect the average overall impact 

that Hydro has had, and is having, on ecosystem services in the watersheds. I used natural flow 

data from Verones et al (2013); natural flow, as defined by the Food and Agriculture 

Organization (FAO), is “the average annual amount of water that would flow into the country in 

natural conditions…without human influence.” (FAO 2003). The calculation of the natural flow 
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data from Verones et al (2013) fit the FAO definition with the inclusion of precipitation and 

river and stream flow (FAO 2003). Based on the information provided by Hydro, an average 

of 18,138,996 m3/yr of water is taken from surface water (SW) and 3,270,925 m3/yr year from 

rainwater (RW); 9,006,017 m3/yr are returned to the watershed from the tailings dam, totaling 

21,409,921 m3/yr in natural flow. The total water consumed, 12,608,728 m3/yr, is subtracted 

from the natural flow (Equation 1). This is then divided by the incoming river flow in order 

to find the impact in relative terms (percentage) in the watershed (Equation 2). These steps 

are repeated for every next, largest pixel along the river network to find the overall impact. 

 𝑟𝑖𝑣𝑒𝑟𝑜𝑢𝑡 =  𝑟𝑖𝑣𝑒𝑟𝑖𝑛 − (∑ 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑 −  ∑ 𝑟𝑒𝑡𝑢𝑟𝑛𝑒𝑑) (1) 

 
𝑟𝑖𝑣𝑒𝑟𝑜𝑢𝑡

𝑟𝑖𝑣𝑒𝑟𝑖𝑛
 (2) 

Based on the natural flow data from (Verones et al. 2013), the starting point has an 

annual flow of 13,167,846 m3/yr.  After I removed the net consumed water, I found that the 

return to a 95% or greater, natural flow rate happens just 4.6 kilometers northwest of the 

suggested point of extraction, well within the ADI. At that point, the river from which Hydro 

extracts joins a larger river. In fact, roughly around the edge of the ADA is where the increase 

from 4% to 95% occurs. At the northern most point of the ADI, the river flow reaches 99% of 

its original value- approximately 20 kilometers downstream from the extraction point (Lehner 

et al. 2006). Again, the models on which the calculations are based will have inherent 

uncertainties and assumptions which can propagate through this study. 
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Figure S1. Freshwater provisioning. The pixel wholly inside of the mine represents 4.2% of the original flow. However, the next 
pixels increase in darkness, with a starting value 95%. The darker, purple pixels represent higher percentages. As mentioned 
in the text, the flow data is visually not in line with the stream network (Lehner et al. 2006) because of offsets in the natural 
flow model. 


