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Problem Description

Explore the possibilities to use non standard numeral systems in a radio receive chain.

(RNS, etc)
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Abstract

This thesis explores the residue number system and how it can be used in a radio re-

ceiver. In this number system the numbers are divided up into several residues. Each

of these residues is associated with one particular modulus. The main advantage of

this number system is that, during arithmetic operations like addition and multipli-

cation, the calculation for each residue can be done in parallel, independent of one

another. This advantage can be utilised to improve the performance of several of the

operations done in a radio receiver.

In this thesis the operations FIR filtering, both using real and complex coeffi-

cients, and scaling is implemented using the residue number system for scaling and

real FIR filter and the quadratic residue number system for the complex filter. In ad-

dition are RNS to binary and binary to RNS converters implemented. Both the RNS

implementations of all these operations and their corresponding binary implemen-

tation are run through simulations to get data on their power consumption and area

usage. The simulations are done for ASIC using a 55 nm technology library.

The results illustrate that the chosen implementation of FIR filters, both real and

complex, does not provide an advantage over the binary implementation unless the

dynamic ranges required in the filter are very large. For filters covering dynamic

ranges above 32-bit, the area per tap is less for the RNS filter than for the binary. The

power consumption per tap is assumed to be lower for filters with dynamic ranges

above 24-bit. The overhead by conversion increases as the dynamic ranges increases

and thus counteracts the increased gain per tap in the same situation. The overhead

by scaling is shown to be minimal, in therms of both area usage and power consump-

tion, compared to the other components implemented in this thesis.
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Sammendrag

Denne oppgaven undersøker residytallsystemet og hvordan det kan brukes i en ra-

diomottaker. I dette tallsystemet er numrene delt opp i flere residyer. Hver av disse

residyene er assosiert med en bestemt modulus. Den største fordelen ved dette tall-

systemet er at, for aritmetiske operasjoner som addisjon og multiplikasjon, kan kalku-

lasjonen for hver residy bli gjort i parallel, uavhengig av hverandre. Denne fordelen

kan bli benyttet til å forbedre ytelsen til flere av operasjonene brukt i en radiomot-

taker.

I denne oppgaven blir operasjonen FIR filtrering, både ved bruk av reelle og kom-

plekse koeffisienter, og skalering implementert ved bruk av residytallsystemet for

skalering og reelle FIR filter og det kvadratiske residytallsystemet for komplexe fil-

tre. I tillegg er RNS til binær og binær til RNS konverterere implementer. Både RNS

implementasjonene av alle disse operasjonene og deres tilsvarende binære imple-

mentasjoner er kjørt gjennom simuleringer for å få data på deres effektforbruk og

arealbruk. Simuleringene er gjort for ASIC ved bruk av et 55 nm teknologibibliotek.

Resultatene viser at den valgte implementasjonen for FIR filtre, både reelle og

komplekse, gir ingen fordel over den binære implementasjonen med mindre det påkrevde

dynamiske område er veldig høy. For filtre, som dekker et dynamisk område over 32-

bit, er arealet per filter tap er mindre for RNS filtre enn for de binære. Effekforbruken

per tap er antatt å være mindre for filtre med et dynamisk område på over 24-bit.

Ekstrakostnadden for konverteringen øker når det dynamiske området øker. Dette

motvirker den økte gevinsten per tap i den samme situasjonen. Ekstrakostnadden til

skaleringen har vist seg å være minimal, både når det gjelder effektforbruk og areal-

forbruk, sammenlignet med de andre komponentene presentert i denne oppgaven.
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Chapter 1

Introduction

1.1 Motivation

Radios and radio receivers are active areas of study both in academia and in the in-

dustry. As typical for the field of electronics there is an eternal pursuit for higher

performance, lower cost and improved energy usage. One suggested way to achieve

this is to do the calculations using number systems other than the standard binary.

Among them are the Residue Number System. This system has received a lot of inter-

est due to the fact that normal arithmetic can be done in a more efficient manner if it

is implemented using RNS. The reason for the improved arithmetic is that a number

in Residue Number System is made up of residues associated with different moduli

and these residues can be calculated in parallel when doing addition and multipli-

cation. This parallelism will lead to less carry propagation, which will lead to lower

energy usage and lower latency. It can also lead to a simpler multiplication blocks

that will provide an area gain in systems where a lot of multiplication is preformed.

A big part of the operations, which are done in a radio receive chain, involves digital

signal processing. Signal processing, in turn, involves a lot of addition and multipli-

cation. Therefore one can assume that a lot of gain can be made by implementing a

radio receive chain using RNS.

There is, however, some challenges in using this number system, which has pre-

vented it from becoming the preferred number system used in the design of com-

mercial radios. The challenges includes: a great overhead by the conversion to and

from this number system and that operations, aside from arithmetic operations, are

1



2 CHAPTER 1. INTRODUCTION

difficult to do in an efficient manner.

This thesis will explore the trade off between the challenges and gains by using

this number system and will try to identify cases in which it will be beneficial to im-

plement a system or a part of a system in the RNS domain instead of in the binary

domain. It will use common building blocks in an radio receive chain as the basis

of this exploration and will see how the area and energy are effected by being imple-

mented in an other number system.

The potential gain in power consumption and area usage by using RNS in the

receiver of a radio will be welcome in all applications where radios are used. Lower

energy usage is one of the main goal for all radios used in mobile applications. This

includes radios used in mobile phones and in the upcoming "Internet of Things"

marked. Area usage is always sought after, as it will decrease the price of an integrated

circuit. This thesis will, as a result of its goal to identify when and how RNS can be

used to provide gains in these tow, act as a tool for those who are looking for ways

improve the power consumption and area usage of their design.

1.2 Goals

The overall goal of this thesis is to explore how the residue number system can be

used in a radio receive chain, which effect it will have on the area and power usage

and which cases are most suited for using this number system.

1.3 Approach

This thesis will have a empirical approach in exploring the viability of the residue

number system. The method can be described by the following steps.

• Implement common building blocks of a radio receive chain using the residue

number system.

• Do a netlist simulation on each of those building blocks to get their area usage

and power consumption.

• Do the same simulations on reference designs. These reference designs per-

form the same mathematical operation as the RNS building block only that
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they are implemented using the 2’s complement binary number system.

• Use the results from the netlist simulations of both the RNS designs and ref-

erence designs to discuss the suitability of the residue number system in a re-

ceiver and identify in which cases RNS is advantageous compared to conven-

tional number systems.

1.4 Constraints

When researching alternative number systems, one have to focus on one or some

of the many available number system, as focusing on everything would be to much

work for one master thesis. In this thesis only the residue number system and the re-

lated quadratic residue number system is explored. This is because it is preferable to

go into dept of a few number systems rather than exploring a small bit of many num-

ber systems. As the goal is to say something about how suited this number system is

in digital receivers, the thesis will look at how the number system can be used in rela-

tion to this. This thesis will not study radio receivers in itself but rater study specific

operations, which are used in radio receivers, manly in the DSP domain. The opera-

tions studied in this thesis are: FIR filtering, both with real and complex coefficients,

scaling and conversion to and from RNS. These operations are not exclusive for radio

receivers and the results from this thesis will be applicable for other applications as

well.

For each of the operations presented in this thesis, there are many ways they can

be implemented. To keep the thesis limited and to be able to do a thorough analysis

of the chosen implementations, there will only be focused on a few specific methods

of implementation. This puts a serious limitation on the scope of thesis, as the results

is only directly applicable to these particular implementations. However it is argued

in the thesis that the result has a transferability to other methods of implementation,

which are not discussed in this thesis.

Lastly the simulation setup also puts a constraint on the scope of this thesis. The

simulation is only done on a particular ASIC technology, using a a particular simula-

tion tool and only some parameters from this tools are used in this thesis. This is due

to the simulations being so time consuming that the limitation had to be set at this

point.
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1.5 Contribution

This thesis has to be seen in conjunction with all other work done in this subject. The

residue number system has been an active field of research for a long time. This is

also the case for the subject of using RNS in digital circuits[Mohan (2012)]. Despite

this there is still some challenges, which need to be solved, for this number system to

be used in commercial applications[Mohan (2012)]. This thesis aims to expand the

knowledge in this field of research and offers the following contributions to the field:

• This thesis will provide new empirical data on the use of the residue number

system for both FIR filtering and a scaling and will provide data on the overhead

by input and output conversion.

• While the designs presented in this thesis are not novel, do the setup of the

simulations and presentation of the simulation data lead to a more thorough

understanding in what the power consumption and area usage is for these sys-

tems than what earlier work do.

• The presented complex RNS FIR filter is a novel design based on the hybrid

RNS/binary methodology, which is adapted to the quadratic residue number

system.

• The thesis presents novel mathematical models for the area usage and power

consumption of RNS FIR filters and both are found to fit well with the empirical

data.

1.6 Report Structure

The report will be structured as follows: Chapter 2 goes through the theoretic frame-

work of this thesis and mentions previous works, which has ben done on the topic of

RNS. Chapter 3 describes how the RNS operations, which are explored in this thesis,

are implemented. Chapter 4 describes how the simulations of these implementa-

tions are done and presents the results from these simulations. Chapter 5 discusses

the results and discusses the viability of RNS in a radio receiver. Chapter 6 concludes

this thesis and suggests future research that can be done to supplement the findings

of this thesis.



Chapter 2

Theory and Background

This chapter will go through the theoretic framework of this thesis and also discuss

some of the previous works, which have been done on this topic. It will start by going

through the mathematical foundations of the Residue Number System. Here a def-

inition of the number system will presented and an efficient RNS code can be con-

structed is thereafter discussed. Next the chapter will go through how arithmetic is

done using the Residue Number System. The chapter will also mention some other

operations and go into depth of one method to do the two operations scaling and

sign extension. These operations are mentioned in detail, because both are essential

to the construction of the scaler, which is implemented as part of the thesis. Also

the Quadratic Residue Number System is explained. QRNS is a way to represent a

complex number in the residue number system. Using this system, complex multi-

plication can be done in a simpler manner, using only two multipliers instead of four.

Thus a significant gain can be achieved in systems with lots of complex multiplica-

tion. The chapter will also explain two methods of input- and output conversion and

how they can be implemented. The topic of DSP in the RNS domain is also discussed.

Earlier work on this topic will be presented. The focus is on FIR filters and how they

can be constructed using RNS and what the gain of doing this is. The next section

will discuss earlier work on the topic of using RNS in a radio receiver, which methods

have been used and what result they have gotten.

5



6 CHAPTER 2. THEORY AND BACKGROUND

2.1 RNS - Residue Number System

The study of the residue number system has it roots in the Chinese remainder theo-

rem presented by the third century mathematician Sun Tzu in the book Suan-ching[Taylor

(1984)] and has been an active field of study since then. Due to the number systems

applications in digital electronics, it has received increased attention the last 50 years.

Garner (1959) describes how this number system can be used to accelerate arithmetic

operations.

Garner (1959) explains this number system in therms of linear congruence, which

is expressed as

A ≡ a mod b (2.1)

and is read, A is congruent to a modulo b[Garner (1959)]. This means that the equa-

tion

A = a + tb (2.2)

is valid for some value t . Where A, a, b and t are integers. a is called the residue

and b is called the base or the modulus of A. All the following examples are valid

congruences.

10 ≡ 7 mod (3) (2.3a)

10 ≡ 4 mod (3) (2.3b)

10 ≡ 1 mod (3) (2.3c)

The validity of these congruences can easily be seen, as all of them satisfies the equa-

tion 2.2. To take the example 2.3c. A is 10, a is 1 and b is 3. If these are inserted in

to equation 2.2, and t is chosen to be 3, this equation is satisfied as 1+3·3 = 10. The

same can be done for the other examples.

It is evident that, for a given modulus b, a number A can have several residues

b. In the A residue number for a particular natural number is formed from its least

positive residues with the respect to a number of bases. The least positive residue is

the residue a for which 0 < a < b in regards to equation 2.1. In the example used in

equation 2.3 1 is the least residue for the number 10 when the base is 3.

Another and maybe simpler way to explain the residues, is as the remainder a of

the integer division
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t = A

b
(2.4)

This is equivalent with the modulo operation used in programming. Often written

a = A%b.

For an efficient residue code, the moduli must be relatively prime. If the moduli

are not relatively prime, redundancy will be introduced in the code and the range of

numbers, which can be represented by this code, is lower. The number of unique

codes for a set of moduli is the lowest common multiplier of all moduli. If the moduli

are pairwise primes, the number of unique codes is as following.

M =
N−1∑
i=0

mi (2.5)

Where M is the number of unique codes, mi is the modulus and N is the num-

ber of moduli. Numbers being pairwise primes means that any two numbers, of the

moduli set, has no common prime factor. Consider two different residue code im-

plementations. One using the two moduli 2 and 6, and one using the moduli 4 and 3.

2 and 6 are not pair wise primes, but 3 and 4 are. In table 2.1 one can see that using

the residues associated with the moduli 2 and 6 provides 6 unique codes, whereas

the residues associated with the moduli 3 and 4 provides 12 unique codes. This cor-

responds to the mentioned fact that residues associated with moduli, which are not

pairwise prime, introduces redundancy. One can see that the residue associated with

the base 2 is 1 only when the residue associated with 6 is an odd number. No such

property exists in the base pair 3 and 4 and therefore a larger number of unique num-

bers can be represented using this base pair. The number of unique codes repre-

sented by the moduli set 2 and 6 is equal to the product of the prime factors, of the

two numbers, which are not common.

For most applications, especially those that exploit the arithmetic advantages of

RNS, being able to represent a as large number of unique numbers as possible using

as few bits as possible is preferable. However, redundancy can be exploited to make

the code more fault tolerant. For example, using the moduli 2 and 6, as shown in

table 2.1, a code in which the residue associated with the base 2 is 1 and the residue

associated with the base 6 is an even number is an invalid code and indicates that an

error has occurred.
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Number
Least positive residue

mod 2 mod 6 mod 3 mod 4
0 0 0 0 0
1 1 1 1 1
2 0 2 2 2
3 1 3 0 3
4 0 4 1 0
5 1 5 2 1
6 0 0 0 2
7 1 1 1 3
8 0 2 2 0
9 1 3 0 1

10 0 4 1 2
11 1 5 2 3

Table 2.1: Demostration of two different residue codes. Numbers taken from [Taylor
(1984)]

2.2 RNS arithmetic

The main disadvantage with 2’s complement and other kinds of fixed radix, weighted

number systems, is that the carry information that must be passed from digits of

lesser significance to those with higher significance.[Taylor (1984)] The RNS is carry

free in the sense that the carry does not have to be passed from one digit of the RNS

number to another. This can be exploited to speed up arithmetic performance.

As a consequence of the structure of the residue number system and the prop-

erties of congruence, multiplication and addition are valid as long as the number

of unique states of the residue number is large enough to represent the respective

product or sum. [Garner (1959)] Both operations, multiplication and addition, are

done parallel on all residues of the residue number. Take the three residue numbers

X = {X1, . . . , XL}, Y = {Y1, . . . ,YL} and Z = {Z1, . . . , ZL} where Z is either the sum or the

product of X and Y . A multiplication or addition will be given by

Z = {Z1, . . . , ZL} = X oY = {X1oY1 mod (p1), . . . , XLoYL mod (pL)} (2.6)

where o represents either operation + or · [Taylor (1984)]. To exploit the parallelism,

circuits that can efficiently do the X oY mod (p) has to be used[Taylor (1984)]. There

is no conventional ways to do these operations for the general case. However Ver-
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gos and Efstathiou (2008) propose a way to do efficient modulo addition if the bases

are chosen to be 2n − 1, 2n or 2n + 1. If this problem is to be solved for the general

case, the most common method is to replace the arithmetic operations with lookup-

tables[Taylor (1984)]. Another way to implement it, is to implement it directly using

adders or multipliers for the adding or multiplication operations and doing a modulo

operation on the result.

While the carry free nature of the residue number system speeds up the perfor-

mance of addition, multiplication and subtraction, does it come short of conven-

tional 2’s complement in other regards. The operations that are difficult to do in an

efficient manner using RNS includes [Garner (1959)]

• Algebraic comparison

• Dynamic range extension

• Division

• Sign detection

However there has been done research on how to conduct these operations more ef-

ficiently. For instance does Jullien (1978) present two ways to do a scaling operation.

2.2.1 Scaling

He claims that, although scaling is difficult to do using RNS, it is preferable to include

scaling in many applications where RNS is suitable. An example is the use of scaling

in aa digital correlator. If scaling is not used in the correlator, the dynamic range

of the used RNS code needs to be large enough to avoid overflows. This means the

complexity of the RNS code has to be larger than what is necessary for most of the

calculation. However, if scaling is used, the RNS code can be less complex and the

signal, in the calculation chain, can be scaled in those cases that overflow would be

a problem. The argument here is that the gain of using a less complex RNS code is

greater than the overhead of the scaling operation. Jullien argues that applications

which mainly consists of subtraction, addition and multiplication and a few scaling

operations may be beneficial to do in RNS. In general, one can say that, applications

that include a lot of easy operations and few difficult operations are beneficial to do

in RNS.



10 CHAPTER 2. THEORY AND BACKGROUND

Jullien (1978) proposed method for scaling is based on division. As mentioned

earlier, division is a difficult operation in the RNS. Unlike multiplication and addi-

tion, division can not be done isolated on the separate digits of the RNS code. How-

ever Jullien (1978) uses the following equation to calculate the result of the division:

yi = |Y |mi =
∣∣∣|X −|X |K |mi ·

∣∣∣ 1

K

∣∣∣
mi

∣∣∣
mi

(2.7)

Here Y is the result of the division X
K , which means that Y is scaled by the factor

K .
∣∣∣ 1

K

∣∣∣
mi

is the multiplicative inverse of K , and can be defined by the equation

∣∣∣K ·
∣∣∣ 1

K

∣∣∣
mi

∣∣∣
mi

= 1 (2.8)

by choosing K as one of the moduli m0, the equation can be written as

yi = |Y |mi =
∣∣∣|X −|X |m0 |mi ·

∣∣∣ 1

m0

∣∣∣
mi

∣∣∣
mi

=
∣∣∣|X −x0|mi ·

∣∣∣ 1

m0

∣∣∣
mi

∣∣∣
mi

(2.9)

This function can be realized using look up tables. However, large tables has to be

used if the whole function is to be realized. It is possible to only realize
∣∣∣ä ·

∣∣∣ 1
m0

∣∣∣
mi

∣∣∣
mi

using a look up table and then realize |X − |X |m0 |mi by doing the modulo operation

on the result of X − x0. This will lead to a smaller table, but will increase the logic

needed for the arithmetic operations.

The problem of using this method is, the residue for the modulo m0 can not be

calculated this way. However, since Y is divided by m0, its dynamic range is is limited

by

Y < ∏
i 6=0

mi (2.10)

Therefore the residue y0 can be calculated by doing a base extension on Y .

2.2.2 Base Extension

Both Jullien (1978) and Shenoy and Kumaresan (1989) describe a method for base

extension they call the Szabo-Tanaka method first presented in Szabo and Tanaka

(1967). This method uses a recursive way to calculate the residue of the extended

base. Take a RNS number X , coded with the moduli {m1,m2, . . . ,mn}. This number

is limited by x < ∏n
i=0 mi . This number is to be base extended to also include the
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residue of the modulo mn+1. This residue is given by the formula.

|x|mn+1 =
∣∣∣x0 +

n∑
k=1

ai

k−1∏
i=0

mi

∣∣∣
mn+1

, (2.11)

where ai can be calculated by

ai =
∣∣∣∣∣∣R(i−1)

i −ai−1

∣∣∣
mi

·
∣∣∣ 1

mi−1

∣∣∣
mi

∣∣∣
mi

, (2.12)

R(k+1)
i can be calculated using the equation

R(k+1)
i =

∣∣∣∣∣∣R(k)
i −ak

∣∣∣
mi

·
∣∣∣ 1

mk

∣∣∣
mi

∣∣∣
mi

(2.13)

The corner cases R(0)
i and a0 is defined as following: R(0)

i = |X |mi and a0 = |X |m0 .
∣∣∣ 1

x

∣∣∣
mi

is the multiplicative inverse to x associated with the modulo mi . And is defined by

equation 2.8. The structure of this algorithm is shown in figure 2.1. Where the residue

X5 is found based on the residues {X0, ..., X4}.

To explain this method, a simple example is presented. Take a Number X =
127, which is represented by a residue code using the following moduli {4,5,7}. The

residue code for this number is thus {3,2,1}. This code is to be extended to include

the residue associated with the modulo m3 = 3. Note that X is lower than the product

of the three moduli {4,5,7} and can therefore be uniquely presented by this modulo

set. Equation 2.11 gives

|X |m3 =
∣∣∣x0 +a1m0 +a2m1m0

∣∣∣
m3

=
∣∣∣3+a1 ·4+a2 ·5 ·4

∣∣∣
3

(2.14)

a1 and a2 is found with equation 2.12.

a1 =
∣∣∣∣∣∣R(0)

1 −a0

∣∣∣
m1

·
∣∣∣ 1

m0

∣∣∣
m1

∣∣∣
m1

=
∣∣∣∣∣∣2−3

∣∣∣
5

·4
∣∣∣
5
= 1 (2.15)

a2 =
∣∣∣∣∣∣R(1)

2 −a1

∣∣∣
m2

·
∣∣∣ 1

m1

∣∣∣
m2

∣∣∣
m2

=
∣∣∣∣∣∣R(1)

2 −1
∣∣∣
7

·3
∣∣∣
7

(2.16)

To solve a2, R(1)
2 must be found using equation 2.13.

R(1)
2 =

∣∣∣∣∣∣R(0)
2 −a0

∣∣∣
m2

·
∣∣∣ 1

m0

∣∣∣
m2

∣∣∣
m2

=
∣∣∣∣∣∣1−3

∣∣∣
7

·2
∣∣∣
7
= 3 (2.17)
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Figure 2.1: Block diagram for base extension algorithm
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Which means a2 = 6. a1 and a2 is inserted into equation 2.14

|X |m3 =
∣∣∣3+1·4+6·5·4

∣∣∣
3
= 1 (2.18)

Where 1 is the residue for the extended base m3 = 3.

The advantage of using this method for base extension is that the partial calcula-

tions for all ai and R(k)
i can be done using look up tables. The look up tables will, if

the chosen moduli is small, be of limited size.

The look up tables for equation 2.12 can be addressed by the result of the modular

subtraction
∣∣∣R(i−1)

i − ai−1

∣∣∣
mi

, for which it is mi different result. Therefore a look up

table of size mi is needed for this function. The look up tables for equation 2.13 can

be addressed by the result of the modular subtraction
∣∣∣R(k)

i −ak

∣∣∣
mi

. This subtraction

does also have mi different results and the size of the look up tables are mi for this

equation as well. Equation 2.11 can be implemented as the modular sum of several

products, where each product is calculated from look up tables. As it is a modular

product, each product can be limited by the modulus mn+1. Therefore the size of

these look up tables can be limited to mn+1.

This means that, the sizes of all look up tables used, are determined by the size

of the moduli used for the RNS code. Therefore this is an efficient method for base

extension for RNS codes with small moduli.

2.2.3 Signed Scaling

The explained method of scaling does only work for unsigned numbers. The algo-

rithm can be extended to work for signed numbers by subtracting the maximum

value of the post division residue number form the result of the scaling, in the cases

which the number before scaling is also a negative number. This property comes di-

rectly from how a signed number is represented in RNS, where the negative numbers

occupies the upper half of the RNS number space and the positive numbers the lower

half. When the number is scaled, the dynamic range of the RNS numbers are reduced

with the scaling factor. For example take a number X which is represented using a

RNS code allowing M different values. The number is a signed number and therefore

the positive numbers are represented by numbers 0 to M
2 −1 in the RNS, whereas the

negative numbers are represented by the numbers M
2 to M . After the scaling, the pos-

itive numbers will occupy the range 0 to M̂
2 −1 and the negative from M̂

2 to M̂ , where
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M̂ = M
K and K is the scaling factor. For the negative numbers to be represented prop-

erly in the post scaled number, the negative numbers must be moved to the numbers

from M − M̂
2 to M . This can be done by the operation M + Ŷ − M̂

2 when the result is

negative, where Ŷ is the number after scaling.

To use this method it must be detected whether the resulting number is positive

or not. This can be done by looking whether the residue number is higher or lower

than M
2 . The problem with this method is that a comparison in the RNS domain is dif-

ficult without converting to 2s complement. However, one can reduce the dynamic

range of the RNS number by scaling it. The value M
2 is scaled by the same factor as

the overall number. If the number is scaled sufficiently, so that the dynamic range of

the resulting number is less than one of the moduli, finding out whether the number

is larger or smaller than a given value is trivial. To be able to calculate this exactly,

without introducing rounding errors, the dynamic range M of the RNS number as

well as the scaled number has to be even. The easiest way to do this is to scale by

division and divide repetitively using the moduli as divisors.

To illustrate this method, take a number X with the dynamic range M where 0 to
M
2 − 1 is positive numbers and M

2 to M represents negative numbers. The number

is a residue number with the moduli {m1, ..mn} where m1 is an even number. If the

number X is divided subsequently by each modulo mi where i 6= 1, the resulting

number X̂ has a dynamic range of M̂ = m1. Due to m1 being even, it can be shown

that if X̂ is bigger than equal M̂
2 then X is bigger than or equal M

2 and X is negative.

When implementing the sign detector, one can use the fact that the form of the

base extension equations (2.12) and (2.13) are identical to the equation (2.7). The

base extension algorithm can be seen as multiple division by the moduli mi and the

ai s are the resulting residues for the modulo mi divided on the moduli {m0, ..,mi−1}.

The structure of the base extension in figure 2.1, can be used to explain this relation

between division and the base extension. In each row ri , a division by the modulus

mi−1 is done for all residues Xn , for which n ≥ i . For example is the result form the

blocks in the first row, the result of the number represented by the residues {X0, ..., X 4}

divided by m0 as a residue number based on the moduli {m1, ...,m4}. The same is

the case for the other rows, and the number of residues used in the residue code

representing the number is decreased by one for each row. In he last row, the result

will be described with only one modulus mN and aN is thus the original number

divided on all moduli except mn . If mN is chosen to be an even number, as explained



2.3. QUADRATIC RNS 15

in last paragraph, the original number is a negative number when aN ≥ mN
2 .

2.3 Quadratic RNS

The Residue Number System allows to represent complex numbers in a more effi-

cient manner. One efficient way is using the Quadratic Residue Number System. This

system has particular large advantage when it comes to complex multiplication. Us-

ing only two multiplications, as opposed to 4 or 3 when using normal 2’s comple-

ment.

The property of the RNS, which allows the efficient complex representation, is

that j =p−1 can be represented differently for residues associated with moduli on a

particular form. The residues have to be on the form, such that the equation

x2 +1 = 0 (2.19)

is valid for one integer x[Omondi and Premkumar (2007)]. As the modulo mi is con-

gruent with 0, is this valid for all moduli in which

0 = |k2 +1|mi (2.20)

for an integer k. The quadratic residue number represented by the two values X and

X* and which is calculated from the complex RNS number (x + j y) in the following

way

X = x + j y (2.21a)

X ∗ = x − j y (2.21b)

The value of both X and X ∗ can be found as a real number due to, the fact that j can

be found by equation 2.19. An example is given. Take a residue code with one moduli

mi = 5. j is the result of equation 2.20 solved for k. For this particular modulo, j is 2,
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as j 2 = 4 ≡−1 mod (5). Thus X and X ∗ are calculated as

X = x +2y (2.22a)

X ∗ = x −2y (2.22b)

As said previously the main advantage of using the QRNS is that a complex mul-

tiplication can be done using only two multipliers. Arithmetic in QRNS is done the

following way

(X , X ∗)± (Y ,Y ∗) = (X ±Y , X ∗±Y ∗) (2.23a)

(X , X ∗) · (Y ,Y ∗) = (X ·Y , X ∗ ·Y ∗) (2.23b)

Which means that addition is as complex using QRNS as using ordinary RNS. How-

ever, multiplication is easier. Note that QRNS works the same way as RNS in that the

number is divided into several residues. The different way to represent the number,

as described by equation 2.21, is isolated to a particular residue. This means that this

equation must be applied to each of the residues to generate the QRNS number. The

numerical values of j = p−1 for each residue is different, and must be considered

when calculating the QRNS values.

The QRNS number can be calculated directly from a RNS number using the equa-

tion 2.21. This equation is divided into two parts calculating the complex and com-

plex conjugate of the number. Both is calculated by using a multiplication by a con-

stant and an addition or a subtraction. This leads to a fairly simple implementation of

a QRNS to RNS converter, as both multiplication by a constant and addition and sub-

tractions are trivial operations, especially for operands with low word widths, which

is the case in the RNS domain. For each residue, two constant multipliers, one adder

and one subtractor is needed. Thus for a QRNS number with N residues, a total of

2N constant multipliers, N adders and N subtractor are needed to convert a number

form RNS to QRNS.

The calculation form QRNS to RNS can be done by equation 2.24[Omondi and
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Premkumar (2007)]

x =
∣∣∣ |X +X ∗|mi

2

∣∣∣
mi

(2.24a)

y =
∣∣∣ |X −X ∗|mi

2 j

∣∣∣
mi

(2.24b)

This equation can be written, using multiplicative inverses instead of division, as:

x =
∣∣∣|2−1|mi |X +X ∗|mi

∣∣∣
mi

(2.25a)

y =
∣∣∣|2−1|mi | j−1|mi |X −X ∗|mi

∣∣∣
mi

(2.25b)

This equation is done independently on each of the residues. Therefore one has to

do the calculation of the real and imaginary part for each of the residues.

The only part of these equations, which is not constant, is the results from the

addition and subtraction X ±X ∗. Therefore the equations can be implemented using

two look up tables with the results from this addition or subtraction as address. Al-

ternatively one can use the result from a modulo addition and subtraction using the

same operands. The look up tables using the non modular addition and subtraction

will have 2mi −1 entries, where mi is the modulo this residue is associated to. Using

the modular addition and subtraction, the look up tables will have mi entries, but

modular adders and subtractors have to be used, which are more complex than the

non modular ones. However, the modular adder and subtractors can be constructed

relatively simply, as the operations has 2mi −1 possible results, due to the operands

can max be mi −1. Therefore a correction of ±mi can be used to get the modulo value

of the result of the addition or subtraction.

To conclude are the benefits the QRNS the ease of doing multiplication. While

the disadvantages are the overhead of converting from ordinary RNS to QRNS and

the reduced flexibility regarding the choice of residues when using QRNS.
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2.4 Input and Output Conversion

The limitations of the residue number system prevent its general usage. However, as

the RNS can be used to speed up arithmetic calculation, it can be used to comple-

ment convectional number systems. Therefore there is a need to be able to convert

to and form RNS in an efficient manner. As stated earlier, the main overhead by us-

ing RNS is the input and output conversion. A lot of literature has been published to

solve this problem, as seen by the large number of references in chapter 3 and 7 in

this book[Omondi and Premkumar (2007)], by making the overhead as low as possi-

ble.

2.4.1 Input Conversion

The task of an input converter is, given an integer input X to and a series of mod-

uli or bases {m1,m2, . . . ,mL}, to produce a residue code consisting of L numbers,

where each number is the residue associated with each modulo on the form xn = X

mod mn . Likewise is the task of the output convert to, given L residues {x1, x2, . . . , xL}

associated with L moduli {m1,m2, . . . ,mL}, to produce an integer X for that corre-

sponds to this unique set of residues.

One method of input conversion is described by Jenkins and Leon (1977) in the

following manner: Consider a binary number of the form

X =
t∑

j=0
B j ∗2 j (2.26)

where B j is the bit at position j of a t + 1 length binary number. Then the residue

associated with mi is

|X |mi =
∣∣∣Bt (mi −|2t |mi )+

t−1∑
j=0

B j |2 j |mi

∣∣∣
mi

(2.27)

|X |mi is another way to write "X mod mi ". If the function F (J ) is defined as follow-

ing:

F ( j ) =
|2 j |mi , if j = 0,1, . . . , t −1

mi −|2t |mi , if j = t
, (2.28)
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equation 2.27 can be written as

|x|mi =
∣∣∣ t∑

j=0
B j F ( j )

∣∣∣
mi

(2.29)

|x|mi can be calculated by using look-up tables to get the values from the function

F ( j ) and calculate the sum
∣∣∣∑t

j=0 B j F ( j )
∣∣∣
mi

using modulo adders. Jenkins and Leon

(1977) presents the structure shown in figure 2.2 to do this operation. This structure

does the operation in a serial manner and uses a latch to store the partial sum from

the modulo adder. The residues associated with each modulo is calculated in paral-

lel, where the calculation for each of them is identical apart from the implementation

of the F ( j ) function.

The operation can be altered by using several of the bits of the input word to ad-

dress the results in the ROM. Using this method, less modulo adders are needed to

calculate the resulting residue. Consider that the ROM of a converter for a 8-bit input

word is divided in two functions.

fu(B7,B6,B5,B4) =
∣∣∣ 7∑

j=4
2 j B j

∣∣∣
mi

(2.30)

and

fu(B3,B2,B1,B0) =
∣∣∣ 3∑

j=0
2 j B j

∣∣∣
mi

(2.31)

Only two modulo adders are needed, but larger ROM is needed to calculate the residue

for a particular modulo.

2.4.2 Output Conversion

The output conversion is even more of a limiting factor, for the wider use of the

residue number system, than what the input conversion is[Omondi and Premkumar

(2007)]. The main methods of output conversion are based on the Chinese Remain-

der Theorem and the Mixed-Radix Conversion technique. All other methods are vari-

ants of these two methods[Omondi and Premkumar (2007)]. Some methods of out-

put conversion are based on specific moduli sets an other are method for the general

case.

The Chinese remainder theorem can be written in the following manner[Burgess
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Figure 2.2: Converter structure. Taken from [Jenkins and Leon (1977)]

(2001)].

n =
∣∣∣ k∑

j=1
n j ·B j

∣∣∣
M

(2.32)

where n is the result of the conversion, n j is the j th residue of n, and M is the unique

number of codes that can be represented by a residue number system with k moduli

and B j is the function

B j = M

m j

∣∣∣( M

m j

)−1∣∣∣
m j

(2.33)

where m j is the j th modulo of the residue code.

Due to the big overhead by division and the fact that both M and m j are con-

stant for a given set of moduli, the B j function is often realised using look up tables.

Burgess (2001) realises the entire n j ·B j function using a addressable look up table,

where the number of addresses are equal the number of possible n j values. For small

modulo, the realization of this function in look up table is efficient both in speed and

area, making the modulo summation the biggest reason it is difficult to do output

conversion in an efficient manner using the Chinese Remainder Theorem. This is

particularly the case if the unique number of residue codes M are large, as modulo

addition is extremely inefficient for these cases.
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One can argue that the look up tables for the function n j ·B j is relatively small by

looking at which values, that need to be stored in the ROM. As the B j is constant, the

look up tables needs to have the n j ·B j for each possible n j . If one assumes that n j

is positive, which it is due to the way residues are represented in RNS, the number

of values in the look up table is n j max. Each value can be limited due to the fact

that when doing modulo arithmetic, with respect to a modulo m, the value of each

operand x can be limited to |x|m , as the resulting value, after the final modulo, is the

same both using x and |x|m .

Several methods has been proposed as a solution to the mentioned problem of

the modulo summation in equation 2.32. Burgess (2001) proposes a way using a SRT

division-like architecture. This method is based on the fact that equation 2.32 can be

written like

n =
k∑

j=1

∣∣∣n j ·B j

∣∣∣
M
−R(n) · M (2.34)

where R(n) is known as the rank function[Burgess (2001)]. The rank function is used

to determine how many times M has to be subtracted to the sum
∑k

j=1

∣∣∣n j ·B j

∣∣∣
M

to

get a result, which is the unique number, that has the residue n1 . . .n J associated with

the moduli m1 . . .m J and is between 0 and M .
∑k

j=1

∣∣∣n j ·B j

∣∣∣
M

will also give a number

with these residues for these particular moduli, but this number is not necessarily

between 0 and M . The reason this number can be transformed to a number with the

exact same property and is between 0 and M by subtracting a multiple of M from the

number, is because M mod mi is 0 for all m1 . . .m J and thus subtracting a multiple

of M from the number will not change the residues associated with these particular

moduli.

When using this method, the problem is finding a good way to calculate R(n). For

this 2.32 proposes the following method. First a partial sum and carry are calculated

using a carry save adder. An estimate ñ of R(n) is calculated using the most significant

of the sum and carry form the carry save adder. The estimate must be good enough

so that ñ = R(n) or R(n)+1 optionally ñ = R(n) or R(n)+1. One can chose between

the two possibilities by looking at the LSB of the each of them and determine which

n · M can be subtracted from the number so that the LSB of result of the subtraction

matches the LSB of the real result. For this to work one has to know what the LSB of

the real result is. Therefore one need to propagate the LSB from the input conversion
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alongside the RNS calculations all the way to the output conversion. It is argued that

the gates needed for this propagation are a small fraction of a full length subtractor,

and the gain of doing this outweighs the cost of the subtractor[2.32]. Lastly R(n) is

used to chose the correct multiple of M form a look up table, which is subtracted from

the partial sum and carry using a carry save adder. And the carry and sum from this

adder are added together using a carry propagate adder. It is to be noted that, if this

method is used, the moduli has to be chosen so that no moduli is an even number.

2.5 DSP in RNS

Due to the residue number systems weaknesses, it is not suited for general purposes.

However, it is very well suited for applications in which there are a lot of multipli-

cation, addition and subtraction and few comparisons, divisions, etc. One such ap-

plication is in digital signal processing. The use of RNS in FIR filters is very well ex-

plored in literature[Nannarelli et al. (2001) , Cardarilli et al. (2000),Freking and Parhi

(1997),Ibrahim (1994)].

The main advantage of using the residue number system for FIR filters is the pos-

sibility to do the calculation in parallel for each residue of the residue number. The

main draw back, however, is the overhead introduced by the input and output con-

version[Nannarelli et al. (2001)].

Nannarelli et al. (2001) compare error free FIR filters with a word length of 20

bits implemented in both RNS and conventional 2’s complement. They come to the

conclusion that for transpose filters, if the number of taps is greater than 8 the fil-

ter implemented using RNS will be faster and, if the number of taps is greater than

40, it will use less area and energy. For direct FIR filters the RNS implementation is

slightly faster and the area is smaller for filters having more than 16 taps. These re-

sults are valid for both filters with programmable coefficients and with constant coef-

ficients. Nannarelli et al. (2001) also suggest that the supply voltage for calculation of

residues, not in the critical path can be reduced as a way to further reduce the power

consumption of RNS filters. This result agrees with the results form another article

the same authors have published[Cardarilli et al. (2000)]. In this article the RNS fil-

ter and the traditional filter are implemented using 0.35µm technology. The results

show that the RNS filter has a large overhead due to the conversion to and from RNS

number, but the lower area and power increase at a slower rate as the number of taps
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Figure 2.3: Hybrid FIR filter for a digit of the residue number. Taken from[Ibrahim
(1994)]

increases, as shown in table 2.5.

Filter cycle Latency Area Power
[ns] (cycles) (gate equiv.) [mW]

Trad. 5.0 N + 1 230 +1250N 14.9 + 13.5N
RNS 5.0 N + 3 2910 + 745N 51.0 +6.9N

Table 2.2: Comparison of a traditional and a RNS FIR filter. Taken form [Cardarilli
et al. (2000)]

Ibrahim (1994) presents a way to construct FIR filters using a hybrid RNS-binary

arithmetic method. Using this method the binary number is converted into RNS.

Each digit of the residue number is calculated in parallel using convectional binary

arithmetic instead of modulo arithmetic. In essence it will be n FIR filters calculating

n results in parallel. After the calculation is done, the digit will be on a non RNS

binary form and is converted back to RNS. The filters consist of cells consisting of a

n bit multiplier, a 2n+1 bit adder, a 2n and a 2n bit multiplexer. To avoid overflow in

the calculation chains of the filters, −m2 is added to the partial sum if the carry from

the previous partial sum calculation is 1. Here m is the modulo used for this digit.

Since m2 mod m = 0, this addition will not effect the final sum of the calculation for

this particular modulo. Figure 2.3 shows the general structure of one of these parallel

filters and figure 2.4 shows a single cell in this filter. Ibrahim (1994) claims that this

architecture has a better performance and reduced cost, compared to conventional

RNS arithmetic, for large moduli.

Freking and Parhi (1997) explore the use of RNS to reduce the power consumption

of FIR filter, utilizing the method presented by Ibrahim (1994). Because RNS is used,

the speed of the calculations is increased compared to a similar FIR filter designed

using conventional binary numbers. Thus the supply voltage can be reduced while
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Figure 2.4: One cell of the filter in figure 2.3. Taken from[Ibrahim (1994)]

the speed of the operation is maintained. They show that, by using these techniques,

the power per tap can be reduced for filters with word lengths as low as 8-bit and

that, when the power overhead for the I/O conversion is taken into account, a FIR

filter with 16-bits coefficients has a lower power consumption for filters with more

than 20 taps.

2.6 Radios using RNS

The use of RNS in radio application is researched for example by Ramírez et al. (2002).

In their paper the receiver consisting of a direct digital synthesizer (DDS) and a deci-

mation filter is constructed. This receiver is implemented using field programmable

logic.

The direct digital synthesizer is implemented using look up tables. These tables

are addressed using the results from a phase accumulator and has a quarter wave

symmetry to reduce the number of LUTs needed. The LUTs calculates the sine and

cosine values for the given phases. The sine and cosine signals are then multiplied

with the input signal of the receiver.

The decimation filter is a programmable RNS filter the products in the filters are

calculated using a series of modulo adders, while the sum is calculated using a regular

adder tree followed by a modulo stage.

In addition to the synthesizer and the filter, the receiver has a input and a output

converter. This way the receiver will look like a normal binary receiver seen from the
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outside. Two output different types of converters are explored in this paper. One is

based on the CRT algorithm and the other is based on the ε-CRT algorithm.

The receiver was implemented for a RNS codes with a number of dynamic ranges,

ranging from 34- to 37-bit, and filters of varying lengths, form 8 to 64 taps. The result

of the implementation shows that it is possible to increase the throughput and reduce

the complexity of a receiver with certain dynamic ranges and filter lengths.
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Chapter 3

Implementation

This chapter will present the implementation of different building block, which will

be used in the continuation of this thesis. The implemented building blocks are: A

FIR filter, an input converter, an output converter, a scaler, a complex FIR filter, a RNS

to QRNS converter and a QRNS to RNS converter. The FIR filter and the scaler are im-

plemented in the RNS domain and the complex FIR filter is implemeted in the QRNS

domain. The different converters are of course an interface between two different

domain and thus can not be said to be implemented in a particular domain. The

input and output converters are interfaces between the binary and the RNS domain

and the RNS to QRNS and QRNS to RNS converters are interfaces between the RNS

and QRNS domain. The different design will be discussed in detail in each section

and the energy, timing and area impact of these implementations relative to conven-

tional implementations are discussed. Each section will also have a explanation of

why this implementation is included, where the usefulness of doing the particular

implementation in the RNS/QRNS domain is discussed based on the mathematical

properties of the number system.

3.1 FIR filter

Chapter 2.5 discusses how RNS can be used in digital signal processing. In this chap-

ter FIR filters are discussed in detail. The reason for the focus on FIR filters is that

it is very well suited regarding the use of RNS. This is because FIR filters consists of

registers, multipliers and adders. Registers are constructed the same way in the RNS

27
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domain as in the conventional binary domain. Although the RNS codes have some

more redundancy in terms of the numbers of bits used for representing the same

number. If the moduli used in the particular code is carefully selected, the number

of extra bits needed is not that large as it will have a determinable effect on the RNSs

suitability in the FIR filter. However, it may be significant enough to affect which set

of FIR filters that are suitable for this number system. Multiplication and addition, as

discussed in chapter 2.2, may be done more efficiently in the RNS domain compared

to the conventional binary domain. This is especially the case when the word width

of the operands are large enough. This is because the the parallelism of the RNS can

be exploited more in these cases. It is believed that the gain of multiplication and

addition is more significant than the disadvantage, due to the extra registers needed,

for a big set of FIR filters. Especially those with large word lengths.

The advantages of using RNS in filter design must be weighed against the over-

head introduced by the conversion to and from the RNS domain. The RNS filter can

be implemented by itself or as a part of a bigger system implemented in the RNS do-

main. For the first case, when the signal is converted form binary to RNS run through

a FIR filter and then converted back to binary, the gain/overhead of using RNS can be

seen as the gain from the RNS FIR filter over the binary FIR filter minus the overhead

from the conversion. The gain of the filter is believed to increase as the filter order

increases, thus it is interesting to see at which order the gain outweighs the overhead.

For the other case, when the filer is implemented as part of a larger system in the RNS

domain, the gain or overhead of the other parts of the system must also be taken into

account when deciding whether it is best to implement it in the RNS domain or the

binary domain.

The implemented FIR filter is based on the method presented by Ibrahim (1994)

and explained in chapter 2.5. The reason this method is chosen for the implementa-

tion is: Firstly, because the gains due to the less complex arithmetic units, as modulo

arithmetic is not needed in for this construct. Secondly, because the abundance of

modulo arithmetic units allows a more flexible selection of moduli. Modulo arith-

metic units are most effective for moduli on the form 2n − 1, 2n and 2n + 1. As the

used method is effective for other moduli, it allows a broader selection of moduli.

The filter is constructed as several filters that run in parallel where each filter cor-

responds to one modulo. The possibility to construct the filter as several smaller

filter in parallel is due to the properties of the RNS and is explained more in chapter
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Figure 3.1: Block diagram of a FIR filter designed in the RNS domain

2. Each of the parallel filters are in turn made up of several filter cell that are joined

together to construct the complete filter. The cell is one tap of the complete filter and

is based on the cell in figure 2.4 on page 24. Each of the cells are connected together

as seen in figure 2.3 on page 23 with a binary to residue converter to convert from the

intermediate representation back to the residue representation.

To further optimize the power and area usage of the filter, constant coefficients

are chosen instead of programmable coefficients. If we take the equation for a FIR

filter:

Y =∑
xi ·di (3.1)

It is evident that the multiplication xi ·du accounts for a large portion of the complex-

ity. Multiplication using constant coefficients reduces this complexity significantly

and thus the complexity of the entire system is significantly reduced.

If the filter only consists of real coefficients. A fir filter for a complex signal can be

realised by using two parallel filters. One for the real signal component and one for

the imaginary. This is evident if we consider the complex multiplication as

Z = X ·Y = (Xr ·Yr −Xi ·Yi )+ j (Xr ·Yi +Xi ·Yr ) (3.2)

If the coefficients Y are exclusively real, the multiplication will look like:

Z = X ·Y = (Xr ·Yr )+ j (Xi ·Yr ) (3.3)

And we see that the real output is not dependent on the imaginary input signal, and

similarly is the imaginary output not dependent on the real input signal. As filters
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consisting of only real coefficient are suitable for most application as well as the com-

plexity of such a filter is significantly lower than a filter using complex coefficients,

the coefficient for the filters presented is chosen to be exclusively real.

3.2 Input Converter

Due to the limitations of the residue number system, it is unlikely that a entire system

is designed using it. However, as it is very well suited for some special operations, it

is most likely to be used in systems utilizing both RNS and conventional binary num-

ber system. For such systems one need to be able to convert from binary to RNS to

be able to transfer data from the binary domain to the RNS domain. There is a possi-

bility to use binary and RNS in the same system, but the two systems has to be used

in parallel and data can not transferred between the two domains. For a such system

to work, an entire calculation has to be done in the RNS domain. The RNS calcula-

tion chain can for example have comparators or sign detector, to extract logic values,

which are used in other parts of the circuit. However, these approaches are very in-

flexible, and the cases, which this will have a benefit over a combined RNS/binary

system, are very limited. Another argument for the importance of input converter is,

that a modern system will be made up of different IP blocks, which may be designed

by different people or different companies. Data has to be transferred between these

blocks. As 2’s complement binary form is the standard way to represent a number, is

the data, which is transferred between the IP blocks, most likely required to be on this

form. And therefore, when the calculations in a block are done in the RNS domain,

there will be a need for input and output converters in the system.

The task of the input converter is to take one input word, with a limited value

range, and convert it into a set of residues, each associated with one of the predefined

moduli. The operation can be explained by the following equation

X ⇒ {x1, x2, ..., xN } (3.4)

where xi is given by

xi = X mod mi (3.5)

The block diagram of a general input converter is shown in figure 3.2.
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Figure 3.2: Block diagram of general input converter

An input converter is implemented based on the approach described by Jenkins

and Leon (1977). However, their implementation is done in a sequential manner, but

the implementation used is fully concurrent. This is done to avoid the extra delays

that is introduced when by a sequential converter. The possibility to use a concurrent

converter instead of the serial one is because of advances in technology, which means

both that the whole calculation can be done fast enough to be executed in one clock

cycle as well as that the converter occupies a smaller die area.

The converter is realized using a series of ROM, which stores the function F ( j ),

from equation 2.28, for each bit of the number that is to be converted. The values of

each ROM is chosen depending on whether the bit on each position j is one or zero.

The F ( j )s, whose bit B j is one, are added together using modulo adders to obtain the

resulting residue for the used modulo. The modulo adders are made using a simple

approach. The two numbers are added. If the result is higher or equal to the modulo

m, the m is subtracted from the result. Otherwise the result is unchanged. The adder

is explained by equation 3.6.

|a +b|m =
a +b, if a +b ≤ m

a +b −m, if a +b > m
(3.6)

Figure 3.3 shows what one of the cells in this converter looks like. As seen in equation

2.28 on page 18, the number of values, which need to be added together, are equal

to the bits in the input word t . This means that the cell has to be connected t times

in concession, where the partial sum out is the partial sum in of the next cell. The
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Figure 3.3: Single cell of a input converter

partial sum in of the first is set to zero and the part ial sum out of the last cell is the

resulting residue for the modulo mi . The value F (n) comes from the ROM for the

F ( j ) values discussed earlier and Bn is the bit at position n of the input word.

3.3 Output converter

The output converter solves the same problem as the input converter, only the out-

put converter converts from the RNS domain to the binary domain. The arguments

for using an output converter are mainly the same as for a input converter. However,

there is cases, in which one has to include an input converter and not an output con-

verter or vice versa. One example is if one receives a signal, which already is on RNS

form, but has to convert it back into binary form for further use in the system. This

happens if the system includes an ADC, which converts the analogue signal directly

into RNS or if one has a communication channel, in which the data is transmitted on

RNS form. An example of a case, where an input converter is used and not an output

converter, is when the signal is on binary form, is converted into RNS, the calculation

is done in the RNS domain and the output of the calculation is a logic value provided

by a comparison. Even though a comparison is difficult to do in the RNS domain,

it may be preferable to convert the values to a binary form and do the comparison

in this domain. Of these two, the case of having an input converter but no output



3.3. OUTPUT CONVERTER 33

Figure 3.4: Block diagram of general output converter

converter is the most likely. This is because both RNS ADCs and transmission of data

in RNS format are very unusual, but having the logic value of a comparison as the

output of a calculation is not unusual.

The output converter, as the therm suggests, converts a signal on RNS form to a

signal on binary form, as shown in the following equation

{x1, x2, ..., xN } ⇒ X (3.7)

The block diagram of a general output converter is shown in figure 3.3.

An output converter is implemented using the Chinese remainder theorem method.

In this particular implementation, the
∣∣∣n j ·B j

∣∣∣
M

function from equation 2.34 on page

21 is implemented in ROM, as J different look up tables, where J is the number of

moduli used for the RNS code. The ROM is addressed by the residue n j associated

with modulo m j , choosing multiple of B j , where B j is as explained by equation 2.33

on page 20, that is to be used in the conversion.

Thus, from the ROM, there are J different
∣∣∣n j ·B j

∣∣∣
M

values, which have to be

added together using a modulo adder. The modulo adder is on the form shown in

equation 2.34. The limited number of moduli limits the number of possible R(n)s.

If it is assumed the RNS code used in the converter has 5 different moduli, maxi-

mum result from the sum
∑k

j=1

∣∣∣n j ·B j

∣∣∣
M

is 5M−5, as the max number for each of the

operands of the sum is limited to M −1 due to the modulo operation. The minimum

value is 0, which is in the case all n j s are 0. This means that the possible values of



34 CHAPTER 3. IMPLEMENTATION

R(n) ranges from 0 to 4 if the output from the alternative modulo addition is to be

between 0 and M −1. To choose between these 5 possible values a form of a binary

search tree is constructed.

Firstly, a partial sum and carry are calculated using a carry save adder tree. Then

the correction of half the maximum value of the sum described in last paragraph is

subtracted from this value using an additional carry save adder. The sum and carry

of this adder is added together using a carry propagate adder. Now the overflow bit of

this sum is checked to see if the resulting number is positive or negative. If depending

on whether it is positive or negative a new correction is added to or subtracted from

this value. This is done until a value is gotten, which is between 0 and M − 1. The

form of this conditional correction circuit resembles that of a binary search tree.

This value has to be converted into a signed form between −M
2 to M

2 − 1. As a

signed residue code is made so that the values 0− M
2 −1 are the positive values 0 to

M
2 − 1 and the values M

2 to M − 1 are the negative values −M
2 to −1. To obtain the

output value of the converter on this form, the values are left as they are if the result

is between 0 and M
2 −1 and M is subtracted from the result if the result is between M

2

to M −1.

3.4 Scaling

One of the disadvantages of using a residue number system, is that the scaling oper-

ation is difficult. The scaling operation described in this section is down scaling. Up

scaling is trivial in the context of RNS, as it would be the same as multiplication by a

scaling factor. Similarly is down scaling the same as division by a scaling factor and

can be described by equation 3.8

Y = X

K
(3.8)

where Y is the value of X scaled by the factor K . Division is, as explained in chapter

2.2, very difficult to execute in an efficient manner in the RNS system. For this reason

there must be as few scaling steps as possible in a system using RNS. However, there

are many applications where the advantage of having a scaling operation outweights

it overhead.

A common use case of scaling in a DPS system is to compress the amplitude of
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Figure 3.5: A scaled signal occupies a smaller portion of the dynamical area

the signal, so it occupies smaller portion of the dynamic area. For example in a sys-

tem having several filter stages, it is wanted to scale the output signal form one filter

before it arrives in the next filter. In a binary system it is possible to add new bits to

the signal to increase the dynamic range of its representation and to shift the bits to

reduce the amplitude of the signal. The bit shifting is similar to a power of 2 division,

and therefore works like scaling by a power of 2. Both the scaling and the range ex-

tension are trivial to implement in the binary domain. Scaling can be implemented

using the bit shifting method mentioned and by doing this the second filter can have

a lower word width without experiencing overflow. Additional bits can be added to

the word to increase the dynamic range of the signal as far as it is necessary.

A scaling will cause a loss of precision, as the least significant bits are removed.

This loss of precision is not significant for many applications, because the most in-

teresting aspect of the signal out of the filter is the relative amplitude of the samples.

A trade off between how high precision is needed and the complexity of the circuit

has to be made. The weighting of each of these aspects depends on the application

and how the filter is used. Although the example discussed addresses a filter, the

same elements are relevant for different applications, both in and outside the DPS

domain.

When implementing the same system in the RNS domain, the difficulty of doing

a division in the RNS domain has to be addressed. A naive solution to this problem

is to convert the signal form a RNS form into a binary form, do the scaling in the

binary domain and convert the signal back into RNS form. This, however, has a large
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overhead due to the input and output conversion. Chapter 2.2.1 discusses a method

of scaling that reduces this overhead by not conducting the full conversion into a

binary number.

The implemented scaler is realized using this method. This implementation is

split into two parts. One for the calculation of the scaled residues {x1, . . . , xn−1} as-

sociated with the moduli {m1, . . . ,mn−1} and another one for the calculation of the

residue associated with the moduli mn .

The calculation of the residues {x1, . . . , xn−1} is done using look up tables. It is, as

described in chapter 2.2.1, based on the equation

∣∣∣|xi −xn |mi ·
∣∣∣ 1

mn

∣∣∣
mi

∣∣∣
mi

(3.9)

Note that the division factor is chosen to be mn . This is because, by using this factor,

the residue xn can be used in the subtraction. If a factor, which was not a part of the

moduli set is chosen, for example K , the subtraction value xK has to be calculated as

xK = X mod K , which increases the complexity of the scaling operation.

The realisation of the look up tables for equation 3.9 is quite simple, as
∣∣∣ 1

mn

∣∣∣
mi

is constant and the multiplication and final modulo operation can be done in one

step. The input to each of the tables is the result of the subtraction xi − xn . The

value of xi is between 0 and mi − 1 while the value of xn is between 0 and mn − 1.

This means that the number of possible results of the subtraction is mi + mn − 1,

which also is the number of entries in the look up tables. The result of the modulo

subtraction |xi − xn |mi could also be used to address the look up tables. This would

reduce the number of entries in the table, as the result from this operation is between

0 and mi −1, which is mi different values. However, modulo subtraction is far more

complex than normal subtraction, and therefore the gain to the size of the tables

using this value as address is nullified, which makes this methods inferior to the one

used.

The output from these look up tables is the residue code of the scaled value for

the moduli {m1, . . . ,mn−1}. The last residue must be found by doing a base extension

of the number represented by these residues. The algorithm for the base extension

is explained in chapter 2.2.1. The implementation of this algorithm is mostly done

using look up tables, using the structure shown in figure 2.1 on page 12. The calcula-

tions of R(K )
i and ai are on the same form as 3.9 and therefore are implemented the
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Figure 3.6: Block diagram of implemented scaler using a base extender to get the
scaled value of the final residue
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same way. The final sum of products is implemented as several look up tables for the

products and a modulo adder tree for the sum. The modulo adder in the adder tree

is on the same form as in figure 3.3.

The block diagram of the entire scaling operation is shown in figure 3.6. One can

see the two steps this operation is divided into, the scaling of the first n −1 residues

and the base extension to get the scaled value of the final residue.

The moduli used in the scaler is {3,4,5,7,11}. 11 is used the scaling factor in this

scaler. This is because 11 is the largest of the moduli and therefore the scaling op-

eration can be used less frequently. This reduces the overhead from this operation.

This means that the residues associated with the moduli {3,4,5,7} is calculated using

equation 3.9. Similarly is the residue associated with the modulo 11 calculated using

base extension. One thing to note, in this modulo set, is that modulo 4 arithmetic is

easier to implement than modulo arithmetic using the other moduli. For this reason

the residues associated with this modulo are used in the longest calculation chain

for the base extension. That means, looking at figure 2.1, the rightmost column. The

calculations associated with the other moduli is done in the shorter chains.

3.5 Complex Filter

A complex filter is implemented to explore how QRNS can be used to improve the

performance of complex mathematics. The complex filter will be entirely imple-

mented using the quadratic residue number system. The main idea is, that the com-

plex multiplication can be implemented using only two multipliers, as opposed to 4

or 3, depending on implementation, using conventional complex numbers. As the

multipliers represent a big part of both the complexity and power usage of the sys-

tem, the reduced numbers of multipliers will cause considerable benefit in both ar-

eas. However, the disadvantages regarding the less flexible choice of moduli and the

extra conversion stage will reduce this benefit.

One complex filter is implemented using the moduli set {13,17,37}. This set has

relatively large moduli values compared to those used in the conventional FIR filter,

due to the limitations in the choice of moduli. The j values for this set is {8,4,6},

which are used in the conversion to and from QRNS.

The filter itself is constructed the same way as the conventional FIR filter. The

complex and the complex conjugate values, for each of the residues, are calculated
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in separate paths. This means there are 6 calculation paths, which are the complex

and complex conjugate path for each residue. The hybrid RNS/binary filter imple-

mentation is also used for this filter.

Figure 3.7: Block diagram for a complex filter using QRNS

Figure 3.7 shows how a subfilter for one residue of a complex FIR filter is imple-

mented. For the whole filter, several of these subfliter are run in parallel, one for each

residue of the RNS code. In this implementation the complex RNS number xi + j yi is

converted to the QRNS form (Q,Q∗), does the filtering in two different paths, one for

Q and one for Q∗, and converts back to the complex RNS form. From this figure it is

evident that the way the Q and Q∗ part are run as two different filters differs from how

it is done in a regular complex filter. In a regular complex filter the real and imaginary

parts of the output is dependent on the both the real and imaginary parts of the in-

puts. For this reason, one can not run the complex filter as two separate paths using

conventional complex RNS.

3.6 RNS to QRNS Converter

To use the quadratic residue number system, the signal has to be on QRNS form. For

most cases this means that one has to convert it to QRNS form, either from a RNS

form or from a binary form. As QRNS is just a special case of the residue number

system, the conversion to QRNS from the binary form goes via RNS. Thus both when

converting from RNS and binary form, one has to do the RNS to QRNS conversion.
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Figure 3.8: Block diagram RNS to QRNS converter

This is because the quadratic form only is valid in the RNS space, due to the imagi-

nary value j 2 = −1 can not be found in using conventional binary numbers. As the

binary to RNS conversion is described in another chapter, only the RNS to QRNS

conversion implementation is discussed in this chapter.

The implementation of the conversion comes straight from how QRNS are de-

fined. QRNS is defined as the set (Q,Q∗), where Q and Q∗ are defined as

Q = xr + j · xi (3.10)

Q∗ = xr − j · xi (3.11)

in which xr and xi are the real and imaginary part of the complex signal X . The Q and

Q∗ parts are, as usual in the RNS domain, are divided in n different residues, where

the j value is unique for each of the residues in the residue number. Therefore one

implementation of each of these two equations has to exist for each residue.

This equations are implemented directly using look up tables and adders. The

inputs are xr and xi , j · xi is calculated using look up tables with xi as input and the

result of xr + j ± xi is calculated using an adder or a subtractor. Both the complex

and the complex conjugate result use the same j · xi and therefore the same look-up

table can be be used in both calculation. For the final adding or subtraction of the

two operands, a separate adder subtractor is needed for each Q and Q∗. In total, to
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convert the complex RNS values (xr , xi ) to the QRNS values (Q,Q∗), a xi max sized

look-up table, one adder and one subtractor are needed.

3.7 QRNS to RNS converter

To make use of the QRNS values outside the QRNS domain, one has to convert the

values back from QRNS to RNS and therefore a QRNS to RNS converter is needed.

The reasoning to why the the conversion is done from QRNS to RNS and not to binary

is the same for the QRNS to RNS converter as for the RNS to QRNS converter. As with

the input- and output converter, there are cases where one has to do the RNS to QRNS

conversion but not the QNRS to RNS conversion and the other way around.

The formula for converting is explained in chapter 2.3. This formula is imple-

mented using look-up tables, having the result from the modular addition or sub-

traction
∣∣∣Q ±Q∗

∣∣∣
mi

as address. This means that the size of the tables is equal to mi .

The result associated with one modulus is independent of the other modulus and

the parallelism in the filters is therefore preserved in the QRNS to RNS converter. Us-

ing this implementation one need one modular adder, one modular subtractor and

two mi entry look up tables for each residue in the residue number. Due to this sim-

plicity, the overhead by introducing a QRNS to RNS converter is extremely low and,

due to only needing adders and look up tables, the reduced number of multipliers

needed for complex multiplication in the QRNS domain is believed to outweight this

overhead after only a few taps of a complex filter.
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Chapter 4

Simulations and Results

This chapter presents the simulation setup used for all simulation. Afterwards it goes

through the tree main classes of simulations done. These is the simulation of the reg-

ular FIR filters, simulation of the quadratic FIR filter and the simulation of the scaler.

For each of these classes of simulation, the specific simulation setup is explained and

the results from these simulations are presented. For the regular FIR filter, a model of

both the are usage and the power consumption is presented and it is discussed how

well this model fits the simulation results.

4.1 Simulation Setup

The goal of the simulation is to produce power and area data of the designs described

in chapter 3. The data is used to discuss the pros and cons of RNS contra other num-

ber systems. To achieve data that is good enough to be used in this discussion, the

simulations have to be set up in a way that makes comparison between different im-

plementations and number systems possible. This requires the use of an as similar

as possible setup for each of the simulations. This thesis focuses on how the RNS

can be used to improve the implementation of the receiver of a radio, therefore the

designs using RNS are compared to the types of designs they are intended to replace.

As 2’s complement binary is the most used number system in digital electronics, the

reference design will be using this number system. The reference designs are to solve

the same task as the RNS designs and from the results of the simulations one will

therefore be able to directly tell whether this task is best implemented using this par-

43
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Figure 4.1: Simulation setup

ticular RNS implementation or binary implementation. However, the field of digital

radios is a very mature field and thus there is a lots of different ways to design a radio

receiver or the parts that makes up a radio receiver, excluding the choice of number

system. In this thesis very straight forward implementations are used in the reference

design used in the implementation. Despite this, it is believed that results will have

some validity for implementations using techniques which are not discussed in this

thesis.

The simulations are done on netlists, to get more accurate results. The netlist

are generated using the tool Design Compiler1 by Synopsis. The technology library

is for 55nm in the slow corner at 125 ◦C. To get the correct switching activity in the

estimations, a simulation is done on using the tool Questasim2 by Mentor Graphics.

From this simulation one will get the static switching information of this particular

circuit. The stimuli used in the simulation is generated using Matlab3. This is done

to achieve a better control over how the generated stimuli looks in therms of value

range and shape, to get equivalent stimuli for the RNS design and the reference de-

1Version 1409-sp4
2Version 10.4c
3Version r2013a
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sign and to calculate the expected output, which is used to verify correct behavior of

the circuit. When the timing information of the design is generated, the Design Com-

piler tool is used again, this time in topographical mode. This uses the RTL code as

input. The difference by applying this compared to the first use of Design Compiler is

that the switching information is added this time. From Design Compiler we will get

estimation of the power and the area usage of the design, which is the result that is

presented in this chapter and will be used further in the discussion part of this thesis.

The setup of the simulation can be seen in figure 4.1.

4.2 Simulation of FIR Filters

The implemented FIR filters are run through synthesis and simulation to get their

power and area data. The filters are implemented as described in chapter 3.1. The

implementations are simulated using different dynamic ranges and different filter

orders. The different dynamic ranges requires different sets of moduli, which makes

the changes to the implementation non trivial. This means that the results, from the

filters with different dynamic ranges, are not as easily comparable with each other

in the sense that the power usage and area usage increase in a predictable manner

as the dynamic range increases. However, it is assumed that there will be a general

trend with increased area and power usage for the larger dynamic ranges. The filter

order, also called number of taps, is highly parametrizable. Each tap of filters, us-

ing the same moduli set, is designed the same way and therefore it is assumed that

the area and power usage will increase in a very predictable manner as the filter or-

ders increase. The results from the different filter orders, for filters having the same

dynamic range, is assumed to have a very high predictive power in regards to filter

orders outside the scope used in the simulations. The results from the different dy-

namic ranges will have a lower predictive power.

To make the results from the simulations of these designs comparable to the de-

signs they are to replace, the simulations is set up so that the RNS implementation

and the reference implementation do the same calculation only the way the calcula-

tion is done is different. For the FIR filters this means the input and the output will

be in binary form. In the RNS filter the signal has to be converted to RNS before the

filtering and from RNS to binary after the filtering. To take into account the different

ways to implement an input and output converter and to make the changes in power
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Figure 4.2: Setup of RNS FIR filter simulation

usage, due to increased filter order, independent from the types of converters used,

a pipelineing stage is inserted between each of the input and output converters and

the filter. This will prevent glitching caused by the filter to propagate through the

output converter and glitching caused by the input converter to propagate through

the filter. By doing this the results will be applicable for a more general case, as it is

independent of the types of input and output converter used. Figure 4.2 shows how

the simulation setup is for the RNS FIR filter.

The reference FIR filter is constructed in a straight forward manner. Each of the

references is constructed to have a dynamic range, which is as close as possible to

that of the RNS FIR filter it is a reference for. Since the reference design is imple-

mented using 2’s complement binary, it does not need any input and output conver-

sion steps and therefore no pipeline steps as well. Figure 4.3 shows the setup of the

simulation of the reference FIR filter. One can see that the lack of input and output

converters makes the FIR filter the only component of the setup. The signal out and

signal in in this figure are exactly the same as for the RNS FIR filter, thus both can

directly replace each other without altering the logic behaviour of the circuit. In this

setup all of the area and power usage will come from the filter compared to for the

RNS filter, where the input and output conversion accounts for a large part of energy

and area usage.

4.2.1 16-bit FIR Filter

The first dynamic range used in the simulation is the one that can be represented by

16 bits using the 2’complement binary representation. The moduli set used for RNS
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Figure 4.3: Setup of the reference FIR filter simulation

Figure 4.4: Area 16-bit FIR filter

implementation with the same range is 5,7,11,13,16, providing a dynamic range of 80

080 compared to the dynamic range of 65 536 of a 16-bits 2’s complement represen-

tation. These are comparable filters, as the RNS has a large enough dynamic range

to represent the same amount as the binary one. These filters will be referred to as

16-bit binary and 16-bit RNS filters from now on. The area usage of both these filter

implementations are shown in figure 4.4.

It can be seen that the area increases in a linear fashion, as the filter order in-

creases, for both the binary and the RNS filter. Using linear regression the growth of

the Area of the RNS filter can be described using the function:

y = 1570x +4580 (4.1)
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The same can be done for the binary filter using the function :

y = 1010x −210 (4.2)

The constant and non constant value in each of the equations is the area occupied

by each tap of the filter while the constant value of the RNS filter is the area used by

the input and the output converter. The negative offset value of the binary filter is

due to the growth of the area not being perfectly linear and is so small that it can be

discarded.

The area per tap is significantly lower for the binary filter than for the RNS filter.

This is contrary to the assumption stated in chapter 3.1, where it is argued that the

use of many smaller multipliers will have a smaller area usage than one big, due to the

area of the multipliers is proportional with the square of the input word. However, the

lower area per tap for the binary filter can be due to the fact that the word size of the

reference filter is so low, so that the effect increased parallelism in the RNS domain

is not large enough to offset the increased complexity of using hybrid RNS/binary

arithmetic compared to regular binary arithmetic. The overhead by input and output

conversion in the RNS filter is 4580 NAND equivalents. This is equal to about 3 taps

of the filter, which means that the overhead by conversion is not too big for filters of

high order if a sufficient large gain per tap can be achieved.

The power consumption of the filter is shown in figure 4.5. The RNS filter has a

power consumption, which has super linear proportion with the filter order. Due to

the power consumption in each tap of the filter, one would expect a linear increase

in power consumption relative to the filter order. The super linearity is due to two

factors. One is, due to the increased length of the filter, glitches caused in earlier parts

of the filter will propagate longer and the dynamic power consumption increases.

The other one is the glitches this tap causes and propagates through the remainder of

the filter. These two are in essence the same thing, where the difference is which tap

is used as reference. The internal power consumption for each tap is linear, while the

glitching that propagates through the following taps is proportional with the number

of taps multiplied with the number of following taps. Because of this one can divide

the power consumption up in two parts: the internal part and the part caused by

glitch propagation.
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Figure 4.5: Power 16-bit FIR filter

Pi nter nal = ai nter nal ∗n (4.3)

Pg l i tchi ng =
n∑

i=0
ag l i tchi ngi ∗ i (4.4)

Here n is the filter order and ai nter nal and ag l i tchi ng are the internal power coeffi-

cient and glitching power coefficient. The internal power coefficients represents the

power consumption a tap uses due to glitching caused internally in this tap, result

propagation and static power usage. The glitching power coefficient represents the

amount of glitching caused on the output of a tap multiplied with the average energy

consumed per glitch for each tap these glitches propagates through. Equation 4.4

can be simplified by assuming that the glitching constant is the same for all the taps

in the filter and for all filter orders. This assumption is not necessarily true because

each glitch on the input of a tap does not always propagate to the output. There-

fore a glitch will cause a lower power consumption if the distance between where the

glitch is caused and the tap is larger than in the cases where distance is smaller. The
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simplified from is given as

Pg l i tchi ng = ag l i tchi ng
1

2
n(n +1) (4.5)

If it is taken into account that a glitch on the input of a tap may cause additional

glitches to occur on the output of the tap, the glitches on the output of one tap can

be described as a factor p times the glitches on the input. The glitch on the output

can thus be described as:

gout = gi n ∗p (4.6)

If this equation is applied to several taps in succession, the total power consumption

caused by a glitch on the output of one tap of a filter can be described by the following

equation:

Pg l i tch =
n−1∑
i=0

g · p i ·k (4.7)

where g is the amount of glitches on the output of the particular tap, n is the amount

of taps after this tap and k is the power consumption a particular glitch causes. Con-

sidering that each tap of the filter causes glitching to propagate through the following

taps, the total power consumption due to glitching is the sum of the power consump-

tion due to glitching for each tap in the filter. This gives the following equation

Pg l i tchi ng =∑
Pg l i tch =

n−2∑
i=0

j=i∑
j=0

g · p i ·k (4.8)

This component of the power consumption will lead to the overall power consump-

tion having an exponential growth as this component becomes more significant than

the linear component Pi nter nal . However, in figure 4.5 one can notice that the equa-

tion becomes linear as the filter size approaches 31, which is the max filter size used

in the simulations. This indicates that the glitches does not propagate through all the

following i taps of the filter or that the propagation of glitches is reduced as it goes

through several taps. This may be due to some glitches being suppressed by other

glitches, which will have a large effect when the filter sizes are big. One way to model

it is solely to have the glitching propagate through a max number of taps. Another

is to have a factor that approaches zero when the tap is far from where the glitch is
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caused. Using the first method the model will look like equation 4.9. An equation

using the second method is not derived.

Pg l i tchi ng =∑
Pg l i tch =

n−2∑
i=0


∑ j=i

j=0 g · p i ·k, if i < L∑ j=L
j=0 g · p i ·k, otherwise

(4.9)

If we also consider a constant power consumption due to the input and output

conversion, we have two equations to describe the power consumption of the RNS

filter given a basic form of

P = Pi nter nal +Pg l i tchi ng +Pconver si on (4.10)

Namely the one using the simplified glitching constant

P = ai nter nal ∗n +ag l i tchi ng
1

2
n(n +1)+Pconver si on (4.11)

in which ai nter nal , ag l i tchi ng and Pconver si on are constants. If one writes the Pg l i tchi ng

part of the equation as as

1

2
ag l i tchi ng n2 + 1

2
ag l i tchi ng n (4.12)

one can write equation 4.11 the following way

P = 1

2
ag l i tchi ng n2 + (

1

2
ag l i tchi ng +ai nter nal )n +Pconver si on (4.13)

Here the equation is on a second order equation, for which the constants can be

found using a regular second order regression.

Figure 4.6 shows the fitted second order equation to the estimated power of the

RNS filter. The equation describing the fitted line is

P = 0,00087n2 +0,00097n +0,055 (4.14)

This equation fits well with the measured results for most of the samples. How-

ever, the slope does not match for the filter orders approaching zero, meaning the

first order component of the equation is not correct and suggests that the power con-

sumption can not be described by a second order equation.

Figure 4.7 shows a fitted graph using the equation 4.9 to describe the power con-
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Figure 4.6: 2nd order regression of power consumption

Figure 4.7: Graph fitted to the power consumption of the RNS filter using the pre-
sented model
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sumption due to glitching. The equation used to describe it is:

P = 0.04+0.008n +0.0004·
n−2∑
i=0


∑ j=i

j=0 1.16 j , if j < 19∑ j=19
j=0 1.16 j , otherwise

(4.15)

It fits very well for lower filter orders but the slope is a bit off for filter orders of around

30. This is due to equation 4.15 is fully linear when n is larger than 16, while the mea-

sured results are slightly above linear. Due to this functions good fit for lower filter

orders, it is more appropriate to describe the power consumption than the second

order equation.

Of the suggested models of the power consumption of the RNS FIR filter, the

model described by equation 4.15 fits best with the simulation result. Therefore the

equation on the genral form shown in equation 4.16 will be used to model the power

consumption of the RNS FIR filter in the continuation of this thesis.

P = K +a ·n + c ·
n−2∑
i=0


∑ j=i

j=0 p j , if i < L∑ j=L
j=0 p j , otherwise

(4.16)

Figure 4.8 shows a second order approximation to the power consumption of the

reference filter. The equation used for this approximation is:

P =−4,6·10−6 ·n2 +0.00566·n −0.00456 (4.17)

It is evident that this approximation is dominated by the first order component.

This suggests that the glitching, on the output of each tap, does not account for a

big part of the power consumption of the filter. This is a big difference from what is

seen in the RNS filter, where the main part of the power consumption is perceived

to be due to the glitching. This may be due to the difference in implementation be-

tween these two filters. The path, which the glitches propagate through, is the sum-

mation of the products. In the reference filter this path only consists of successive

adders, while in the RNS filter this path consists of the correction elements, which

purpose is to avoid overflow. The reduced complexity, in this path, for the reference

filter compared to the RNS filter means that each time a glitch is generated, it causes

less transistors to switch and thus less energy is consumed. Because of this a linear

equation is used to model the power consumption of the reference FIR filter in the
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Figure 4.8: Regression of power consumption of reference filter
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Figure 4.9: Area 24-bit FIR filter

continuation of this thesis.

4.2.2 24-bit FIR Filter

For the RNS filter with a 24-bit dynamic range, the moduli set {5,7,9,11,13,16,17} is

used. The dynamic range of a RNS number using this moduli set is 12252240 com-

pared to a 24-bit binary number, which has 16777216. The binary 24-bit number has

a slightly higher dynamic range, but the ranges are close enough to make this filter

comparable to a 24-bit binary filter. Therefore a 24-bit binary filter is used as a refer-

ence for this particular RNS filter.

Figure 4.9 shows the area usage for both the RNS filter and the reference filter.

Both the RNS and the reference filter has a linear increase in area usage as the filter

order increases. The areas of the RNS filter can be described by the equation:

A = 2655n +9253 (4.18)

And the area of the reference filter can be described by the equation :

A = 2329n −769 (4.19)
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Figure 4.10: Power 24-bit FIR filter

In both equations A is the area used and n is the number of taps. For these filters the

reference has a slightly lower area per tap than the RNS variant. Thus the increased

parallelism is not high enough to offset the increased complexity by using hybrid

RNS/binary arithmetic for the filter with 24-bit dynamic range. The total overhead

by binary to RNS- and RNS to binary conversion is 9253 NAND equivalents, which is

somewhere between 3 and 4 filter taps.

Figure 4.10 shows the power usage of the RNS and reference filters. The power

usage of the RNS filter has a similar form as the one with 16-bits dynamic range.

The same approximation is used to fit an equation to the power data form this filter.

Figure 4.11 shows the resulting graph from this approximation superimposed on the

measurement data. The equation describing this approximation is

P = 0.11+0.014n +0.00067·
n−2∑
i=0


∑ j=i

j=0 1.18 j , if j < 17∑ j=17
j=0 1.18 j , otherwise

(4.20)

The approximation fits very well in the lower bounds but diverts from the measured

data for high filter orders. This is also the case for the approximation done to the

16-bit RNS filter and is due to simplifications done in the approximation equation in

this case as well.
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Figure 4.11: Graph fitted to the power consumption of the RNS filter using the pre-
sented model

The power usage of the reference filter is difficult to describe using an equation.

One can recognize a linearity for parts of it. For example is the power consumption

for the first 11 filter orders quite linear. The same is the case for the filter orders from

22 to 31. For the filter orders between 11 and 22 the power usage switches from fol-

lowing the same linear projection as the first 11 orders and the same as the orders

from 22 to 31. The reason for this may be the inner workings of the synthesis tool

used (Design Compiler) or due to the simulation setup. The first case, is unlikely, as

there are no indication of differences in synthesis on the area usage graph. It is more

likely that the simulation setup is faulty and thus gives wrong answers for some of

the filter orders. The effect of a incorrect simulation setup, which can lead to wrong

power consumption data, is that there may be a part of the signal which is not propa-

gated through the entire circuit, which lower the total power consumption of the cir-

cuit, or that some additional toggling may be caused, which leads to a higher power

consumption.

The equation describing this power consumption for the reference filter is

P = 0.015n −0.006 (4.21)

using a linear approximation of the power data from filter orders 1 to 11 and

P = 0.012n −0.043 (4.22)
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using a linear approximation of the power data from filter orders 22 to 31. Looking at

these two equations, the first one seems like a better approximation, as the constant

component is closer to zero compared to the second one. This is the case if it is

assumed that the power consumption will increase linearly with the filter order, as is

the case with the 16-bit filter.

The power consumption of the RNS filter has a linear component of 0.014 mW

per tap and the power consumption of the reference filter has a linear component

of 0.015 mW per tap. This means, given the assumptions made are correct, and if

the power consumption due to glitch propagation is excluded, the growth of power

consumption is lower for the RNS filter than the reference filter as the filter orders

increase.

4.2.3 32-bit FIR filter

For the RNS filter covering a 32-bit dynamic range, the moduli set {3,5,7,13,16,17,19,

23,29} is used. The dynamic range of a RNS number using this moduli set is

4705231440 compared to that of a 32-bit binary number, which is 4294967296. The

RNS number has a slightly higher dynamic range, but the difference is small enough

to make filters using these two number systems comparable.

Figure 4.12 shows the area usage of these filters as the filter orders increases. As

the case is for the 24-bit and 16-bit filters, have the both the 32-bit binary and "32-bit"

RNS filter a linear increase in area as the filter order increases.

The linear equation describing the relationship between area and filter orders for

these two filters are as following:

A = 3824n +19814 (4.23)

for the RNS filter and

A = 3904n +78 (4.24)

for the reference filter. The RNS filter has a slightly lower area per tap than the ref-

erence. The difference in area per tap is only 80 NAND equivalents. To make up for

the overhead by input and output conversion 248 taps is needed. Therefore, for most

practical applications, the reference filter will have a lower area usage. However, the
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Figure 4.12: Area 32-bit FIR filter

difference in area between the two is low for most filter orders. For example for filter

order 16 the RNS filter has an area usage, which is only 30% higher than the reference

filter. This means that, in case the gains in other areas is high enough, the higher area

of the RNS filter is not decisive for the choice of filter type.

Figure 4.13 shows the power consumption of these two filters. Both the graph for

reference and RNS filter have a similar shape as for the other dynamic ranges. Using

the same approximation for this RNS filter gives the graph seen in figure 4.14.

The equation describing this graph is :

P = 0.31+0.022n +0.0014·
n−2∑
i=0


∑ j=i

j=0 1.14 j , if j < 18∑ j=18
j=0 1.14 j , otherwise

(4.25)

The graph for the power consumption of the reference filter can be fitted linearly

using the equation

P = 0.016n −0.0062 (4.26)

The linear part of the RNS filter is higher than that of the reference filter. This is con-

trary to what was the case for the 24-bit filters, for which the linear component of the
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Figure 4.13: Power 32-bit FIR filter

Figure 4.14: Graph fitted to the power consumption of the RNS filter using the model
presented in this thesis
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Figure 4.15: Area 12-bit FIR filter

RNS filter was lower than that of the reference. One would assume, given the higher

gain due to parallelism for higher word widths, that the RNS filter in this case would

also have lower linear power component than the reference and that the difference

would be larger.

4.2.4 12-bit FIR filter

For the RNS filter covering a dynamic range corresponding a 12-bit binary number,

the moduli set {3,4,5,7,11} used. A RNS number using this moduli set has a dynamic

range of 4620 compared to a 12-bit number, which has a dynamic range of 4096. The

RNS number has a slightly higher dynamic range, but the ranges are so close that the

number systems are comparable.

Figure 4.15 shows the area usage of the RNS and reference filters. The shape of

the graphs is the same as for the other dynamic ranges and can be explained with the

following linear equations.

A = 1167n +2934 (4.27)

for the RNS filter and
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Figure 4.16: Power 12-bit FIR filter

A = 622n −1 (4.28)

for the reference filter. The reference filter has a clearly lower area usage than the RNS

filter. This finding is as expected since this is the lowest dynamic range presented in

this thesis and the gain in area will be most prominent where the increased paral-

lelism of the RNS number system can be exploited most, which is for large dynamic

ranges.

Figure 4.16 shows the power consumption of these filters. The shapes are also

similar in this case as for the other dynamic ranges. Thus the graph fitted to the

measurements of the RNS filter can be found the same way. Figure 4.17 shows this

graph. The equation describing this graph is :

P = 0.026+0.005n +0.00021·
n−2∑
i=0


∑ j=i

j=0 1.21 j , if j < 17∑ j=17
j=0 1.21 j , otherwise

(4.29)

Likewise can the graph fitted to the measurements of the reference filter be found the

same way as for the other dynamic ranges. Giving the equation
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Figure 4.17: Graph fitted to the power consumption of the RNS filter using the model
presented in this thesis

P = 0.004n −0.0022 (4.30)

The linear component of the power consumption is 0.005 mW per tap for the RNS

filter and 0.004 mW per tap for the reference filter. Thus is the internal power usage a

bit higher for the RNS filter than for the reference filter in this case.

4.3 Simulation of Quadratic FIR Filter

The quadratic FIR filter is implemented as described in chapter 3.5. The same sim-

ulation setup is used for the quadratic filter as for the regular FIR filters. Only one

modulo set is used for the quadratic FIR filter simulation, namely the set {13,17,37}.

This set gives the RNS number a dynamic range comparable to a 12-bit binary num-

ber. Due to similarities between the quadratic filters and regular FIR filters, the re-

sults from the simulations of the regular FIR filters can be compared to these results.

A pipelining stage between the converters and the filter is used in this case as it is

for the regular FIR filters. The motivation for doing this is the same here as in those

cases. The structure of the quadratic FIR filters used in the simulation is shown in

figure 4.18.

As reference a complex binary filter is used. The reference filter is constructed
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Figure 4.18: Simulation setup of the quadratic FIR filter

Figure 4.19: Area usage of the quadratic FIR filter

in a straight forward manner, where the general structure are the same as for the

regular FIR filter. The only difference is that complex multiplication is done instead

for regular multiplication.

Figure 4.19 shows the area usage of the QRNS filter and the reference complex

FIR filter. As for the regular FIR filters these filters also have linear growth. However,

for the QRNS filter, there is a jump in area between filter order 26 and filter order 27.

Before and after this the growth is linear. The growth rate is larger after the 26th filter

order than before. Making the liner function fitting the filter orders 1 to 26:

A = 1978n +4425 (4.31)

and for the filter orders 27 to 31:
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A = 2230n +891 (4.32)

When the constant component of both equations is compared to the regular RNS

FIR filter covering a 12-bit dynamic range, one can see that the first equation has

a higher, 4425 NAND equivalences compared to 2934, and the second has a lower,

891 compared 2934. The constant components are the overhead due to conversion.

Due to the additional QRNS to RNS conversion and larger moduli, the QRNS filter is

predicted to have a larger conversion overhead than regular RNS FIR filters, making

the 4.31 the linear approximation that describes the relationship of the area and filter

orders for this filter. The reference filter can be described by the function.

A = 716n +288 (4.33)

The area usage of the reference filter is clearly lower than that of the QRNS filter.

When compared to the regular FIR filter covering a 12-bit dynamic rage, the refer-

ence filter in this case has a slightly higher linear component area usage, 716 NAND

equivalents compared to 622, while the QRNS filter has a significantly higher, 1978

compared to 1167. When it is taken into consideration how the linear components

of the area growth rate changes as the dynamic ranges changes, one can expect that

the growth rate of the area for the reference filter will increase at a higher rate than

for the QRNS filter, but, due to the fact that the 12-bit quadratic filter having a worse

area growth rate in relation to its reference than the regular RNS filter, the dynamic

range will have to be even higher for the QRNS filter to have a lower area than the

reference.

Figure 4.20 shows the power consumption of the QRNS filter. The power con-

sumption graph has a different slope for this filter than for the regular RNS filters.

This suggests that there are some errors in the simulation, but from what one should

expect due to the much higher area usage of the QRNS filter and the power consump-

tion data, the conclusion that the power consumption of the QRNS filter is higher

than for the reference filter is believed to be true.
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Figure 4.20: Power consumption of the quadratic FIR filter

4.4 Simulation of Scaler

The scaler is implemented using the same moduli as the 12-bit FIR filter. The setup is

the same except that the scaler is added between the last filter tap and the converter.

To isolate the power consumption of the scaler from the rest of the circuit, registers

are put before and after the it. Figure 4.21 shows the area of the scaler compared to

the same circuit without a scaler. It can be seen that the overhead due to scaling is

minimal.

Figure shows the same graph for the power consumption. As one can see there

is next to no difference in the power consumption of the circuit with scaler and that

without. These results are in line with the result from the area measurements, and

that there is next to no overhead in terms of power as well.
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Figure 4.21: Area usage of the FIR filter with and without a scaler

Figure 4.22: Power consumption of the FIR filter with and without a scaler
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Chapter 5

Discussion

5.1 Validity of Results

Considering that the measurement data is very dependent on particularities of both

measurement setup and the implementation of the designs used in the tests, it is

hard to say whether the result provided in this thesis can be used in a general consid-

eration of the validity of the residue number system. However it is believed that the

data from this thesis can be used alongside other data to get a full overview on how

and in which cases the residue number system can be used. This thesis has dealt

with a specific type of implementation both when it comes to the FIR filters, where

the hybrid RNS/binary method is used, and when it comes to the input and output

converters. It is to be taken into consideration that the methods of implementation

used in this thesis is not necessarily the best methods. Despite this, the conclusion

taken based on the results from the simulations of these implementations can be

used to make prediction on other designs if these differences are taken into account.

Another aspect of the validity of the results is errors during simulation. Some of the

data points presented in the result chapter departs from what is expected. This is in

particular the case when it comes to the power estimations. The power estimations

are dependent on the stimuli used and simulation setup and small errors during the

simulations can have big impacts on the resulting power data. A third aspect is the

specific simulation setup. Different setup can cause different result on the estimated

power and it not given that two instances of the same implementation used in differ-

ent simulation setups will lead to the same findings.
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5.1.1 Transferability to Other Implementation Methods

As mentioned is the FIR and quadratic FIR implementations based on the hybrid

RNS/binary approach. This approach has some particular aspects that have an effect

on the resulting power and area usage of the circuit. Most notable is the use of the

correction logic in the summation path. This logic makes the power usage due to

glitching more prominent. In the result chapter it can be seen that glitching causes

a big part of the power consumption for the RNS filter. For the regular FIR filter, the

power consumption due to glitching is very low, which makes sense since it does not

have the same correction logic. If the same simulation is done on RNS filters not

using the hybrid approach, the power consumption due to glitching is expected to

be lower.

The benefit of the hybrid approach is that simpler arithmetic units can be used.

This leads to a lower area usage and lower power consumption internal to each tap.

A RNS filter using a modulo arithmetic approach is expected to have a higher power

consumption internal to each tap. This means, considering the shape of the power

graphs in chapter 4.2, the linear component of the power consumption is higher and

the nonlinear component is lower for nonhybrid RNS filters.

Also the different possible implementations of the input or output converters

may lead to different power consumption and area usage. Only one version of each of

the input and output converters are presented in this paper. There is a lot of literature

describing different ways of constructing these converters, as seen in the references

listed in chapter 3 and 7 in [Omondi and Premkumar (2007)]. From the results in

chapter 4.2 it is easy to extract the area occupied by the converters and the power

consumption caused by them. As such, if the power or area usage is to be estimated

using other converters, one can subtract the constant power and area component

and add a power consumption and area usage from the new converters. Due to this

it is argued that the results of this thesis is very general in terms of converters used.

One aspect that is crucial to the implementation of filter is whether the filter are

implemented in a serial or parallel manner. In this thesis the filters are implemented

in a parallel manner. Despite the filters themselves being serial, pipelining stages

is used between the filters and the converters to isolate the power consumption of

the converters from that of the filter. The difference in a serial and a parallel has a

lot to say in regards to whether the filter is best implemented using RNS or binary.
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In a parallel filter there will be a longer path in which the glitching will propagate. In

contrast, glitching in a serial filter will only propagate inside each tap, as each tap will

be separated by registers. As stated earlier in this chapter, is the power consumption

due to glitching a major part of the total power consumption of the RNS filter. In

this chapter it is made an effort to separate what we have called the "internal" power

consumption with the power consumption due through glitch propagation. Using

this separation it is possible to use the results of the parallel implementation to make

prediction of the validity of the use of RNS in serial filters.

5.1.2 Estimation Errors

As always are the results from the simulation prone to errors. As the results comes

from simulations of net list using industry standard simulation tools, the errors are

more likely to stem from errors in simulation setup or logical implementation than

from errors in the simulation tool. Due to the synthesis being deterministic, simu-

lations using the same RTL code and the same simulation setup will have the same

results. Therefore there is no need to take into account random variation in the sim-

ulations.

The results are, for the simulations of the FIR filters and quadratic FIR filter, done

using the same base structure, where the filter orders are taken in as a parameter.

This provides one result of each of a series of similar implementations. From these

series of implementations it is possible to identify values which do not fit with the

trend derived from the other values. A form of errors that would not be detected as

easily by comparing simulation results to each other is systematic errors. Systematic

errors stems from faulty simulation setup and implementations. Because of a the

chance of having systematic errors all measurement results have to be looked at in

conjunction to what the expected values is for the same design. However, since only

the relative performance between the proposed designs and the reference designs

is relevant, the systematic errors is not necessarily determinant for the conclusion

derived from the results.
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RNS Reference
Dynamic range K a K a

12-bit 2934 1167 -1 622
16-bit 4580 1570 -210 1010
24-bit 9253 2655 769 2329
32-bit 19814 3824 78 3904

Table 5.1: Coefficient for the model of the area usage for the RNS filter and for the
reference filter

5.2 Findings

In chapter 4 the results from the simulations are presented and briefly discussed.

In this section the main takeaways from the result will be discussed and it will be

discussed what the main predictions one can make from these results are.

5.2.1 FIR filters

The area, for each of the dynamic ranges, has been described by a linear equation.

Table 5.1 shows the coefficients used in the linear equation, which is on the form as

shown in equation 5.1. How this equation is derived is explained in chapter 4.2.1.

A = a ·n +K (5.1)

Figure 5.1 shows the linear component of the area usage for both the reference

and RNS filters. It increases monotonically for both types of filters as the dynamic

ranges increases, but the reference filter starts at a lower point and increases at a

faster rate. This is as expected, because the main source of area usage for both filters

are the multipliers and the size of multipliers are proportional with the square of

the word width. The gain from having many smaller parallel multipliers, which is

the case for RNS number, is larger for the larger dynamic ranges, as the parallelism

of the RNS number is exploited more for them than for the lower dynamic ranges.

For dynamical ranges corresponding to 32-bits, the linear part of the area usage is

higher for the reference filter than for the RNS filter. It is assumed that this trend will

continue to be present as the dynamic ranges increases beyond 32.

Figure 5.2 shows the constant component for the area usage for both the reference

and RNS filters. It shows that the equation for the area usage reference filter has
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Figure 5.1: Linear component of the area usage model

almost no constant component. This is as expected since there is no conversion or

other kinds of overhead for this type of filters. However, the equation for the RNS filter

has a constant component which increases as the dynamic range increases. This is

the overhead due to conversion. As expected the overhead is larger the larger the

dynamic area is. This is because the conversion step is more complex as the RNS

numbers covering a larger dynamic area uses more and/or larger moduli.

If one looks at the area usage of the converters compared to the area usage of the

area usage of the taps, the area of the converter at 12 bits is about 2.5 times the area of

a tap, while the area at 32 bits is about 5.2 times the area of a tap. This is opposite from

the effect of the measurements for regarding area per tap. However, since the area per

tap is only larger for the reference filter when the dynamic ranges are large, the only

situations where the total area of the reference filter is larger than the RNS filter is

when the dynamic ranges is large enough. The used converters are not necessarily

the most optimal ones in terms of area and the overhead by conversion can therefore

be lessened by using a more optimal solution.

The power consumption of the reference filters has been described using a linear

equation, while the power consumption of the RNS filter has been described using
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Figure 5.2: Constant component of the area usage model

a more complex function. The coefficients of both functions is shown in table 5.2.1.

The equation for the power consumption of the reference filter is on the form shown

in equation 5.1 and the equation for the power consumption of the RNS filter is on

the form shown in equation 5.2. How this equation is derived is explained in chapter

4.2.1.

P = K +a ·n + c ·
n−2∑
i=0


∑ j=i

j=0 p j , if i < L∑ j=L
j=0 p j , otherwise

(5.2)

Figure 5.3 shows the linear component of the equation describing the power con-

sumption of both the RNS and reference filters. This is what is considered the in-

ternal power consumption for each tap, which means that the power consumption

due to the glitching on the output of each tap is not described by this component.

The diagram shows that the linear component of the power consumption of the RNS

filter increases at a steady rate as the dynamic range increases. The linear compo-

nent of the power consumption of the reference filter, however, does not increase

at a steady rate. The linear component increases very much between the dynamic
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RNS Reference
Dynamic range K a c p K a
12-bit 0,026 0,005 0,0022 1.21 0,004 0,0022
16-bit 0,04 0,008 0,0004 1.16 -0,00456 0,00566
24-bit 0,11 0,014 0,00067 1.18 -0,006 0,015
32-bit 0,31 0,022 0,0014 1.14 -0,0062 0,016

Table 5.2: Coefficient for the model of the power consumption for the RNS filter and
for the reference filter

ranges 16 and 24 but not so much between 24 and 32. This indicates that some of

the estimated values are incorrect. If one looks at figure 4.10 showing the measured

power data of the reference filter, it shows that the linear approximation to the the

measured power consumption is not unambiguous. This can indicate that the linear

growth rate of the power consumption of the reference filter is to high for the dy-

namic range of 24-bits. However, if one looks at how the linear power components

of the reference filters change in relation to the same components of the RNS filters,

one can see that the component is a bit below half of the reference filter for the dy-

namic range of 12 bits, for 16 bits it is a bit below three fourths, for 24 bits its linear

power component is higher for the reference than for the RNS filter and for 32 bits

the it is a bit below three fourths of that of the RNS filter. Given the increase in the

linear power component relative to the RNS filter from 12 bits to 16 bits, the esti-

mated linear component for 24 bits fits the projection one can derive from these data

points. Especially considering the distance from 16 to 24 is twice that from 12 to 16

and the expected development of power usage due to the RNS increased ability to

exploit parallelism for higher dynamic ranges. Considering this the estimation for 32

bits seems to be too low. However, it is hard to make any final conclusion, as there

is only 4 data points. The same estimations has to be done for other dynamic ranges

to conclude how the linear component of the power consumption changes as the

dynamical ranges changes.

Figure 5.4 shows the constant component of the power consumption for each

of the dynamic ranges. The constant component of the power consumption of the

reference filter is close to zero for all dynamic ranges. As for the area usage, this is as

expected, because the reference filter have no conversion step. The constant part of

the power consumption increases as the dynamic range increases. This can also be

seen in conjunction to the area usage, where the area also increases as the dynamic
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Figure 5.3: Linear component of the power consumption model

range increases. For the power consumption the more complex conversion steps for

higher dynamic ranges is believed to be the reason for the increase as well. One can

recognize that the relation between the overhead due to conversion and the linear

component is worse for the power than for the area, with the conversion overhead

being 5 times that of the linear power component at 12-bit and increasing to 15 times

at 32-bit. This means that one must have a big number of filter taps for the gain in

using RNS arithmetic to overtake the overhead by conversion.

5.2.2 Quadratic FIR Filters

The quadratic filters are only simulated for one dynamic range. Therefore there is

not a as complete result for this filter as for the regular FIR filters. However, due to

similarities in structure between the quadratic and the regular FIR filters, the result

from the simulation of the regular FIR filters can supplement the results from the

quadratic FIR filters.

The resulting area usage shows the same trend as for the regular FIR filters, hav-

ing a linear growth for both the reference and the QRNS filter. The growth for the
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Figure 5.4: Constant component of the power consumption model

QRNS filter is steeper than that of the regular RNS filters covering the same dynamic

ranges. This is due to the limited flexibility in the choice of moduli when using the

QRNS number. The regular RNS FIR filter uses the moduli set {3,4,5,7,11} while the

QRNS filter uses the set {13,17,37}. The difference between these moduli is that the

regular FIR filter has a higher number moduli with lower values, while the quadratic

one has fewer moduli with higher values. The limited flexibility is due to the prop-

erty the modulo numbers has to satisfy, which is described in chapter 2.3. The area

usage of the quadratic filter is expected to follow the same trend as the nonquadratic

one as the dynamic ranges increases. The higher area usage at 12-bit is assumed to

be present at other dynamic ranges as well and thus lead to the dynamic ranges be-

ing even higher before the area per tap for the RNS filter is better than that of the

reference filter. One thing that speaks in favor of the quadratic RNS filters, is that

the complexity of the multipliers is what increases fastest as the dynamic ranges in-

creases. Due to the QRNS filter can be designed using only 2 multipliers, compared

to 4 of a non RNS complex filter, it can be argued that the effect of this will lead to

area gains for higher dynamic ranges. Further tests has to be done, covering higher
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dynamic ranges, to achieve a final conclusion.

The power consumption of the QRNS filter compared to the reference is also

worse in this case than for the regular FIR filters. It has to be said that the form of

the graph describing the power consumption suggest that not all of the data points

are correct. Especially the 15 highest filter orders seam to have a flatter slope than the

regular FIR filter. If only the 16 lowest filter orders are taken into account, the result is

in line with what one can expect from the results of the area usage, which is that the

power consumption relative to the reference is clearly worse for QRNS filter than for

regular FIR filters.

In general this specific implementation of a quadratic FIR filter is disadvanta-

geous in terms of area usage and power consumption compared to the reference fil-

ter. This is mainly because of the moduli chosen and differences in the choice of

moduli may have effects which are not reflected in the results in this thesis.

5.2.3 Scaler

The imagined scenario, in which a scaler is used, is when one has a system having a

particular dynamic range. If an overflow is expected in this system, one can either use

a higher dynamic range or insert a scaler in the calculation path. From chapter 5.2.1

and from the results in chapter 4.4 one can see that the increased power consumption

and area usage of using a higher dynamic range is far greater than inserting a scaler.

If the overhead of the scaler is as favorable for other dynamic ranges as for the

12-bit dynamic range, the same type of scaler can be used in the same situations for

those cases as well. It is not believed that the overhead of the scaler relative to for

example the power consumption or area usage of a filter tap will vary significantly

depending on the dynamic range. This is because the same structure is used and this

structure does not have a large dependency on the number of moduli and sizes of

each moduli.

5.3 Cases where RNS is beneficial

In general the results from the tests do find no benefit by using the residue number

system instead of a conventional binary number system. However, one can use the

results to point at which aspect of the RNS implementations that must be improved
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to make its usage viable and in which cases it is most likely to be viable.

The results show that the filter taps can be constructed with a lower area usage

and a lower power consumption, if the filter requires a high enough dynamic range.

This is especially the case if the filter is constructed in a serial manner, as the power

consumption due to glitching will be reduced. However, the requirements for the

dynamic ranges and filter order must be very high for this to make the RNS the pre-

ferred number system. In many situations where DPS systems are constructed, the

requirements for dynamic ranges and filter orders are one of the first things one tries

to reduce, as this will have a very large effect on the power consumption. This make

the situations, whit high filter orders and high dynamic range requirements, very un-

likely to occur.

The implementations presented in this chapter are just some of the many ways

to implement the RNS systems. It is believed that some of the aspects, which leads

to the RNS systems not having the expected gain over the conventional implemen-

tation, can be improved by using more favorable ways to implement these systems.

Ibrahim (1994) states that the method presented in their paper, which is the one used

for the FIR filters in this thesis, provides the gains superior to other methods to im-

plement RNS arithmetic if the moduli sizes are big. The designs presented in this

paper tries to use as small as possible moduli sizes. This may be one of the reasons

why the result are not as positive, in terms of the viability of RNS, as expected.

The latency of the implementations is not estimated. The latency is in itself a

interesting value, as it can describe how fast a system can be run and at what rate

it can be clocked. However, a lower latency can also be exploited to reduce power

consumption. Cardarilli et al. (2000) suggest, due to the reduced latency of the RNS

system, to use a lower supply voltage for the RNS, which increases the latency but

lowers the power consumption. This can be used in cases where the clock rate is

given, but the latency is lower than the clock rate.
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Chapter 6

Conclusion

In this thesis the viability of the residue number system in radio receivers was re-

searched. The main motivation was to see if the advantages of doing arithmetic op-

erations using this number system can be used to improve the performance of DSP

operations in area usage and power consumption.

Several circuits were constructed using this number system, including FIR filters,

both using linear and complex filter coefficients, input and output converters and

a scaler. Both the linear and complex FIR filters were constructed using a hybrid

RNS/binary approach. The complex FIR filters were designed using the quadratic

residue number system, the input converter was designed using look up table based

approach, returning the modular sum of the residue for the particular modulo for

each of the digit in the binary input word, the output converter was constructed using

a Chinese reminder theorem based approach and the scaler was constructed using a

multiplicative inverse together with base extension.

These implementations were run through a simulation to find their area usage

and power consumption. The simulations are done on netlists generated using De-

sign Compiler, with switching information generated by Questasim using Matlab gen-

erated stimuli. All designs are simulated for 55nm technology at 125◦C. For each of

the simulations, the same simulation is done on a reference design, which is imple-

mented using a conventional binary number system, so that the performance of RNS

relative to this number system is found.

Mathematical models to describe the power consumption and area usage of the

RNS and binary FIR filter were derived. These models were found to fit well with
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the results from the simulations. Using this models one can separate the different

components of both the area usage and power consumption of the filters.

The results show that the implemented RNS FIR filters have a worse area usage

and power consumption than the reference FIR filters for most application. However,

it becomes better as the required dynamic ranges of the signals increases. It is argued

that RNS filters with a dynamic rage requirement of more than 32-bits have a lower

area per tap than the reference filter. And the RNS filters a dynamic rage requirement

of more than 24-bits has a lower power consumption per tap, if the power consump-

tion due to glitching is not included. The quadratic/complex RNS filters also perform

worse than the references in terms of both area usage and power consumption. The

overhead due to input and output is significant for all dynamic ranges and becomes

worse as they increase, which counteracts the increased gains of RNS FIR filters. The

overhead by scaling is shown to be minimal, in therms of both area usage and power

consumption, compared to the other components implemented in this thesis.

The main conclusion of this thesis is that RNS DSP circuits, using the same meth-

ods of implementations used here, will perform worse than the equivalent binary

circuits. However, the latency of the designs is not found. Therefore the conclusion is

not final, as the latency decides whether the RNS designs can be run at a faster clock

rate than the binary designs and whether it is possible to reduce the supply voltage

resulting in reduced power consumption.

6.1 Future Work

This thesis touches only a small part of the field of research revolving the residue

number system. Here the focus is put at how it is suited for certain DPS operations.

For future work, the same simulations which are done for these operation can be

done for other operations including IIR filters, sine and cosine synthesis and com-

parison.

In this thesis only some of many different methods of implementations are used

when designing the RNS circuits. The same circuits can be designed using other

methods, which can lead to different result than the ones designed in this thesis. One

particular method of implementation, which is expected to lead to a lower power

consumption and area usage, is using look up tables for the modulo arithmetic in-

stead of the hybrid RNS/binary method. Other cases which would be interesting
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to investigate is: different ways to implement the input and output converters and

to study how they can be improved, using different simulation setups, implement-

ing the filters as a pipeline or in a serial manner and using different parameters for

the same implementations used in this thesis, for example moduli sets and dynamic

ranges.

One last ting that would be interesting to study is whether the latency of the cir-

cuit can be reduced using RNS and if this can be used to lower the power consump-

tion by using a lower supply voltage.
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