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Abstract

In the last decade, cloud storage systems has experienced a rapid
growth to account for an important part of cloud-based services. Among
them, OpenStack Swift is a open source software to implement an object
storage system. Meanwhile, storage providers are making great effort to
ensure the quality of their services. One of the key factors of storage
systems is the data durability.

Fault tolerance mechanisms play an important role in ensuring the
data availability. Existing approaches like replication and RAID are
used to protect data from lost, while with their own drawbacks. Erasure
coding comes as a novel concept applied in the storage systems for the
concern of data availability. Studies showed that it is able to provide
fault tolerance with redundancies while reducing the capacity overhead,
offering a tradeoff between performance and cost.

This project did an in-depth investigation on the OpenStack Swift and
the erasure coding approach. Analysis on erasure coded and replication
systems are performed to compare the features of both approaches. A
prototype of custom erasure code is implemented as an extension to Swift,
offering data storage with promising reliability and performance.
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Chapter1Introduction

1.1 Motivation

Cloud storage services have experienced a significant growth in recent years. Since a
prototype of cloud storage service first appeared in 1980s, more and more companies
are making efforts to bring products to either commercial or private users, such as
Amazon S3, Microsoft Azure Storage, Google Drive and Dropbox. According to a
recent market research report, the global cloud storage market is expected to grow
from USD 18.87 billion in 2015 to USD 65.41 billion by 2020[1], at the annual rate
of 28.2%.

Contents which are being stored in cloud storage services may vary, including
private digital data such as photos and videos, as well as critical business related
data, databases and backups. To deliver a satisfying cloud storage service, storage
capacity or price are not the only things that users care about. Instead, ensuring
good reliability and availability of data is really important to the clients.

To protect data from the system failures, simple approach of replication was
applied widely. By using replication, copies of data are replicated and stored in
different locations of hardware devices, which provides the protection when a single
copy is lost or damaged. However, replication also brings extra cost for the additional
storage space for the replicas. Another approach of Redundant Array of Independent
Disks (RAID) was also introduced to save the overhead of storage space, while it
does not scale so well when dealing with high rate of failures.

Erasure coding could provide protection against data lost, as well as reduce the
storage overhead comparing to replication. The concept of erasure coding is to
process the original data and generate several parity data fragments according to a
certain scheme. Those parity data fragments could be further used to reconstruct
the source data when needed. Meanwhile, it only requires a relatively lower overhead
to store the parity data fragments. With such advantage, erasure coding has been
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2 1. INTRODUCTION

applied in many large commercial and open source cloud storage systems, such as
Microsoft Azure Storage[2], Facebook[3] and Google[4].

1.2 Scope and Goals

This thesis is motivated by studying the erasure coding used in cloud storage systems.
The project intends to compare the fault tolerance mechanisms provided by erasure
coding with the traditional approaches of simple replication and RAID. Performances
of different erasure coding schemes will also be tested and analyzed on an open source
platform called Swift from OpenStack.

The goals of the project are identified as below:

– Theoretically analysis the erasure coding, and compare it with other existing
approaches to enhance data availability.

– Install the OpenStack Swift framework and build a benchmark testing environ-
ment.

– Test and compare erasure coding schemes in different scenarios, as well as
against the simple replication.

– Extend OpenStack Swift to support an erasure coding scheme provided by
NTNU, and perform necessary tests on such implementation.

1.3 Outline

Chapter 2 presents the relevant background information and important key concepts
for the project. The chapter introduces existing approaches in terms of enhancing
data availability and durability. The concept of erasure coding is explained, along
with brief introduction of several well-known erasure codes.

Chapter 3 introduces OpenStack platform, and the object storage system Swift,
as the focus of this project. This chapter describes the fundamental concepts and
architecture of Swift. The integration of erasure coding technology in Swift is also
introduced. The chapter ends with examples of installation, configuration and basic
operations.

Chapter 4 performs comparison test on erasure coding against simple replication.
Different schemes of both approaches are tested to compare the data durability as
well as the performance. Analysis of the test results are discussed afterwards.

Chapter 5 presents a plugin for extending OpenStack Swift to support using a
custom erasure coding scheme, and applying it in a backup storage system using
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Duplicity. The design and implementation of the prototype is presented and analyzed
as well.

Chapter 6 concludes the project. The achievements and limitations are discussed,
with the future work plan of the project.





Chapter2Background

This chapter will firstly introduce and analyze the existing data protection approaches
in Section 2.1. After that, the erasure coding is introduced as the focus of the project
in Section 2.2. The concept and idea of design for erasure codes will be explained,
and ending with a brief introduction of several common erasure codes.

2.1 Traditional Data Protection Approaches

2.1.1 Replication

To protect data from being lost, the simplest way is to use replication in the storage
system to provide redundancy for the data. One or more copies of the original data
will be generated and stored, which are called replicas. Whenever there is something
wrong happens to the original data such as disk failures, the data could be restored
from the replicas, as an additional tolerance to avoid data loss.

The replication process happens at the stage of data write. The original data is
duplicated into two or more replicas, which are then sent to different locations. To
ensure best data durability, replicas are usually stored in different hardware drives,
hosts, or even different geographical locations. To avoid performance disturbance,
caching is usually applied so that the server could rapidly response to the client
after one replica is completed, while generating and transferring redundant replicas
in the background. On the other hand, the restore process of replication is as
straightforward as simply pick an available replica and serve the request, since each
replica is exactly the same.

The overhead of replication is quite obvious. It requires 2x or more storage space
of the original data, depending on the replica factor, which is how many replicas are
stored.

Replication is widely used since it is quite simple to implement. It is suitable

5



6 2. BACKGROUND

to be applied in cluster or distributed systems, with low sensitive of storage space.
Moreover, there is no extra management cost for applying replication. Hadoop File
System (HDFS) uses triple replication as default storage policy, with replica factor
being three[5].

2.1.2 Redundant Array of Independent Disks (RAID)

The term ‘RAID’ is the short of ‘Redundant Array of Inexpensive Disks’, which
was first invented in 1988[6]. At the beginning, the idea of RAID was to get high
performance using parallel operations with multiple general disk drives. With the
development of hardware disk drives, nowadays more effort has been put on applying
RAID in order to achieve better reliability by configuring for redundancy.

Different configurations in RAID are used to achieve different goals, which are
called levels. Each RAID level employs striping, mirroring or parity to get better
performance or reliability. Below lists the brief introduction of the two basic RAID
levels, RAID-0 and RAID-1, together with several other common levels. More RAID
levels are standardized by the Storage Networking Industry Association (SNIA) in
the Common RAID Disk Drive Format (DDF) standard[7].

– RAID-0 uses striping to split data evenly to two or more disks. Thus, the
overall throughput could be improved with concurrency to n times higher than
a single disk. However, there is no redundancy provided by RAID-0. Oppositely,
the data durability is worse than single disk scenario, as a failure on any disk
in the stripe will cause the unrecoverable data loss.

– RAID-1 applies mirroring among several disks. To the contrary of RAID-0, it
provides redundancy as data is copied to several pieces and stored on each disk.
The data is available as long as any one piece of data is survived. RAID-1 is
quite similar to a disk-level replication in concept.

– RAID-5 acts as a tradeoff between the cost and data availability. It consists of
a distributed parity block that could be used to restore original data when a
single disk failure occurs. It can be considered as a balance between RAID-0
and RAID-1.

– RAID-6 enhanced data protection based on the mechanism used by RAID-5.
Another parity block is added and working separately with the parity block
implemented by RAID-5, thus, more redundancy is provided.

To meet variety requirements of storage systems, it is possible to apply nested
RAID levels or even create customized configurations. However, the drawbacks
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of RAID are quite obvious as well. The cost of applying RAID is relatively high
since usually several hardware disk drives are required. Besides, for the performance
concern a hardware RAID controller is required to manage the read and write, which
also adds the cost. Meanwhile, disk drives with large storage capacity may take days
or even weeks to rebuild, which increases the chance of a second disk failure during
rebuild.

2.2 Erasure Coding

2.2.1 Concepts

Erasure coding is a technology that been widely used to ensure data availability by
using coding theory. The idea of erasure coding comes from Forward Error Correction
(FEC) techniques, which intend to provide the ability to reconstruct missing data
with some added redundant information. The theory is based on the use of error
detection and correction codes, which have been well studied and widely used in
many fields such as multi-cast transmission[8][9], sensor network[10] and online video
streaming[11].

Luigi Rizzo introduced the basic concept of erasure codes used in data storage in
[12]. Figure 2.1 shows the graphical encoding and decoding process of erasure coding.
The encoder reads the one block of source data, and divided in to k fragments. In
addition, another m fragments are generated according to the encoding algorithm,
acting as the redundancy of the source data. The same process applies to the
following blocks until the entire source data is encoded. Thus, n = k + m fragments
are encoded as outcome. The k fragments are called data fragments and the m
fragments are called parity fragments, while the coding scheme can be represented
using a tuple (k,m).

Likewise, the source data can be decode from the encoded data, as shown in
Figure 2.1. Sufficient encoded fragments are passed to the decoder, and the reversed
computations are performed on the parity fragments to rebuilt the missing data. With
sufficient data and parity fragments provided, the entire source could be reconstructed
successfully.

With such encoding technique, data redundancy is provided for enhanced data
durability. Conceptually the erasure codes are able to tolerate the data loss of a
certain amount of fragments. The fault tolerance ability of an erasure code is defined
by Hamming distance. Any set of failures strictly less than the Hamming distance
can be tolerated[13]. In other words, the source data could be reconstructed with a
subset of the encoded data, which is the main advantage of erasure coding. As there
are a large number of disks and nodes in a storage system, distributing fragments
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Figure 2.1: Process of encoding and decoding of erasure codes[12]

across the entire set of disks could effectively ensure the data availability in case of
disk failures.

2.2.2 MDS and non-MDS codes

There are two types of erasure codes, with different designs in concept. The most
common one is Maximum Distance Separable (MDS) codes. MDS codes can tolerate
any m lost fragments using m redundant elements, thus it is optimally space-
efficient[14]. The Hamming distance of a MDS code is equal to m+ 1. Oppositely,
non-MDS codes are non-optimal, as they are not able to tolerate all possible sets of
m fragments lost. Several examples of both MDS and non-MDS codes are introduced
in the following content.

Reed-Solomon (RS) Codes

Reed-Solomon codes are one of the most typical family of erasure codes[15], firstly
being introduced in 1960[16], and widely used in the field of data transmission as
well as storage systems. A Reed-Solomon code is MDS code, thus it delivers optimal
fault tolerance with the space for redundancy. One of the most important feature
of Reed-Solomon codes is that they can work with any k and m specified. The
encoding algorithm of a Reed-Solomon code is based on XOR operations as well
as multiply operations in a Galois filed GF(2w)[17], provided as a n * k generator
matrix. For example, there is always a Reed-Solomon defined with arithmetics in
GF(28) for any storage system containing 256 disks or less[18]. Another example of
a (4,2) Reed-Solomon code is demonstrated in Figure 2.2.
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Figure 2.2: Coding process of a (4,2) Reed-Solomon code[19]

Cauchy Reed-Solomon (CRS) Codes

Comparing to regular Cauchy Reed-Solomon codes, Cauchy Reed-Solomon codes use
Cauchy matrices instead of Vandermonde matrices. As every square sub-matrices of a
Cauchy matrix is invertible, it can be transformed into multiple XOR operations[20]
thus it reduces the computational cost with optimized implementation. More details
about the theory of Cauchy Reed-Solomon codes are out of the scope of this project
and could be found in [21].

Flat XOR codes

Flat XOR codes are one of the non-MDS codes. The Hamming distance of flat XOR
codes is less than m, but certain failures at or over Hamming distance may also
be tolerated. The encoding computations are based on simple exclusive or (XOR)
operations instead of Galois Field arithmetic. Each parity fragment is simply the
XOR of a subset of data fragments[14]. Meanwhile, the reconstruction process is
more complicated, since there could more than one recovery equations for each data
fragment. Using flat XOR codes could significantly reduce the computational cost
comparing to the Reed-Solomon codes, especially with a dense generator matrix.
However, such performance benefits come at the price of storage overhead.

2.2.3 Comparison with Replication and RAID

Erasure codes could be considered as a superset of simple replication and RAID
techniques[22]. For example, the triple replication used in HDFS could be described
as a (1,2) erasure code, and RAID-5 with four disk drives could also be described as
a (3,1) erasure code.
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However, there is a huge difference between erasure coding and RAID, as the
former is per object level based instead of disk level based. Hence, erasure coding
could provide more flexibility when configuring the policy.

Comparing to replication, erasure coding could offer the same level of fault
tolerance with a relatively low space overhead. However, such benefits come at
a price, the performance penalty. According to the theory, the parity fragments
will be computed every time the data is written or updated. Extra computational
cost is also required when decoding the data. Although there are performance
overheads, applying erasure coding is suitable for large and rarely accessed data, for
example, backup files. Early studies showed that it is computationally expensive to
implement erasure codes[12], but the cost has been reduced with growing performance
capacity and hardware based optimization solution (such as Intel Intelligent Storage
Acceleration Library (ISA-L)).



Chapter3Introduction to OpenStack Swift

OpenStack Swift is the platform used in the project. The first two sections Section 3.1
and Section 3.2 of this chapter will introduce the components and infrastructures of
both project. Section 3.6 will present how erasure coding works in Swift. Section 3.4
and Section 3.6 will demonstrate the configuration of Swift and usage of erasure
codes in practical.

3.1 OpenStack

OpenStack[23] is a open source software platform for building and managing cloud
computing, mostly deployed as an Infrastructure-as-a-Service (IaaS), as comparable
to Amazon EC2. It was first launched in 2010 as a joint project between Rackspace
Hosting and NASA, which intended to provide cloud computing services on top of
general hardware platforms. Currently OpenStack is managed by a non-profitable
corporate and benefits from active collaborators from the community.

OpenStack provides a variety of functionalities by a series of components running
on top of the platform, such as Nova for compute, Neutron for networking, Swift
for object storage, and Glance for image service. Each component provides a
set of Application programming interfaces (APIs) to the users as the frontend,
as well as for communicating with other components. Such architecture makes
OpenStack highly extensible so that it is possible to make modifications while
keeping the interoperability. All the service components work on top of a well-
managed virtualization layer so that there is no need for the users to be aware of the
underlying details.

With the great functionality, scalability and extensibility it brings, OpenStack
attracts hundred of large companies to work with it and build their public or private
cloud services, including PayPal, Yahoo and Intel.

11



12 3. INTRODUCTION TO OPENSTACK SWIFT

Figure 3.1: Architecture of Swift[25]

3.2 Swift

In this project, the focus is the OpenStack Object Storage component called Swift. It
is designed to provide redundant and scalable distributed data storage using clusters
of servers. The following descriptions in this section are partly summarized from the
official documentation in [24] and [25].

As other components in OpenStack, Swift export a set of RESTful APIs to
access the data objects. Operations like create, modify or delete can be done with
standard Hypertext Transfer Protocol (HTTP) and Hypertext Transfer Protocol
Secure (HTTPS) calls. It is also possible to integrate the operations with language-
specific APIs such as Python and Java, which are wrappers around Representational
State Transfer (REST)-ful APIs.

Figure 3.1 illustrates an overview of the architecture of Swift. Some of the key
components are introduced below.
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Figure 3.2: Hierarchy of entities in Swift[25]

3.2.1 Object Storage

As for object storage, the data stored is managed as individual objects[26]. Each
object consists of not only the data, but also the metadata and an unique identifier.
Object-based storage can be regarded as the convergence of file storage and block
storage[27], which provides the advantages from both technologies: high level of
abstraction as well as fast performance and good scalability.

Figure 3.2 shows that the Swift object storage system is organized in a three
level hierarchy, which are Accounts, Containers and Objects from top to bottom,
respectively. Objects are stored as binary files along with the metadata in the local
disk. A container lists and maintains the references of all objects in that container, and
a account lists and maintains the references of all containers. Each object is identified
using a access path with the format as /{account}/{container}/{object}. Note
that such hierarchical structure is not the same to how the objects are stored
physically. Instead, the actual locations are maintained by the rings.

3.2.2 Rings

Since the data is distributed across the cluster, Swift uses the rings to determine
the actual location of all the entities, including accounts, containers and objects.
Conceptually, here is how the ring structures in Swift work: each ring has a list
of the devices on all the nodes in the cluster. A number of partitions are created
using the method of consistent hashing[28], and mapped to the devices in the list.
Once an object needs to be stored or accessed, the hash value of the path to the
object is computed with the same method, and then used as the index to indicate the
corresponding partition. For the data availability concern, Swift support to isolate
the partitions with the concepts of virtual regions and zones, so that replicas of
entities will be assigned to different physical devices.

With the use of the ring structure, the storage system could have better scalability,
especially for adding the storage capacity. It is possible to dynamically add or remove
a node to the ring, without interrupting the whole service. Besides, since the structure
is fully distributed, it helps to avoid the single point failure of centralized controllers
in many other distributed file systems.
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3.2.3 Proxy Server

The proxy server acts as the front-end of the Swift component and exposes the APIs
to the users. It handles all the incoming requests, and looks up in the rings to locate
the entities, then routes the requests to the entities transparently.

3.3 Erasure Coding in Swift

The support for erasure coding was added into Swift 2.3.0 since the Kilo release of
OpenStack in 2015[29], as an alternative solution to replication for ensuring data
durability.

Erasure coding support is implemented as a storage policy in Swift. Policies
are used to specify the behaviors of the ring at the container level. There is one
ring for each storage policy. As for erasure codes, the ring is used to determine the
location of the encoded fragments. Such design allows different configurations such
as replication counts or the allocation of devices, in order to meet different demands
of performance and durability. Moreover, the storage policy is transparent from the
application perspective, decoupling the underlying storage layer with the logistics in
the applications.

There is no natively integrated support for encoding or decoding object data with
erasure codes in Swift. Instead, Swift uses PyECLib as the backend library, which
provides a well-defined Python interface. PyECLib supports a series of well-known
erasure coding libraries, such as liberasurecode, Jerasure[30] and Intel ISA-L. Another
good thing of PyECLib is the extensibility it provides so that it is possible to integrate
custom erasure code implementations as a plugin.

The encoding and decoding of erasure codes are executed at the proxy server. For
the write request, the proxy server continuously reads data from the HTTP packets
and buffers into segments. PyECLib library is called to encode each segment into
several fragments. The fragments are then sent to the locations specified by the ring,
followed by fragments that are generated from the next segment. Similarly, when
receiving a read request, the proxy server simultaneously requests the storage nodes
for the encoded fragments. Note that not all the fragments are transferred, but only
minimum k pieces of fragments which is specified by the erasure code scheme. The
fragments are decoded by PyECLib to raw data and returned to the client.

The reconstruction occurs at different stages, which is executed at lower level
on storage nodes of object servers, instead of the proxy server. The data stored is
managed by the auditor as it routinely checks the fragments and metadata. Whenever
an error is found (such as broken disks, flipped bit in data or mis-placed object), the
auditor would call the object reconstructor to try to restore the missing fragments.
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Other than acquiring all the fragments left, the reconstructor starts at asking the
neighbor nodes for the fragments that are needed. As soon as enough fragments are
gathered, PyECLib would be called to reconstruct the missing fragments.

3.4 Installation of Swift

As discussed in Section 3.6, the erasure coding support in Swift replies on PyECLib
and a set of third party libraries, so first thing to do is to install these dependencies.
Below is a list of the dependencies of Swift:

– liberasurecode1 is an Erasure Code API library written in C with pluggable
Erasure Code backends.

– Jerasure2 is a library in C that supports erasure coding in storage application.

– GF-Complete3 is a comprehensive library for Galois Field Arithmetic.

– ISA-L4 is a erasure coding backend library written in ASM from Intel. This
library comes with optimization for operation acceleration on Intel instruction
sets including AES-NI, SSE, AVX and AVX2[31].

– PyECLib5 provides Python interface for erasure coding support, based on
liberasurecode.

After completion of installing the dependencies, a well-defined document of
Swift All In One (SAIO)[32] provides a tutorial of installation of Swift development
environment and setups to emulate a four node Swift cluster. Note that in order to
setup an environment on single host, loopback devices should be set for storage.

3.5 Tutorial of basic Swift operations

The following tutorial is based on the SAIO environment setuped in Section 3.4.

The first step is to check whether Swift is running normally, and get X-Storage-Url
as the public Uniform Resource Locator (URL) to access the object storage, and
X-Auth-Token used for authentication. This can be done with command:

1liberasurecode: https://bitbucket.org/tsg-/liberasurecode/
2Jerasure: http://jerasure.org/
3GF-Complete: http://jerasure.org/
4ISA-L: https://01.org/zh/intel%C2%AE-storage-acceleration-library-open-source-version
5PyECLib: https://pypi.python.org/pypi/PyECLib

https://bitbucket.org/tsg-/liberasurecode/
http://jerasure.org/
http://jerasure.org/
https://01.org/zh/intel%C2%AE-storage-acceleration-library-open-source-version
https://pypi.python.org/pypi/PyECLib
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$ curl -v -H ’X-Storage-User: test:tester’ -H ’X-Storage-Pass:
testing’ http://127.0.0.1:8080/auth/v1.0↪→

The authentication system in Swift will handle the request, validate the account
and password pair in the header, and grant the access to the service. Figure 3.3
is example of the output from the server. The X-Storage-Url and X-Auth-Token
obtained can be used in further interactions with Swift.

swift@swift-VirtualBox:~/bin$ curl -v -H ’X-Storage-User: test:tester’ -H
’X-Storage-Pass: testing’ http://127.0.0.1:8080/auth/v1.0↪→

* Hostname was NOT found in DNS cache
* Trying 127.0.0.1...
* Connected to 127.0.0.1 (127.0.0.1) port 8080 (#0)
> GET /auth/v1.0 HTTP/1.1
> User-Agent: curl/7.35.0
> Host: 127.0.0.1:8080
> Accept: */*
> X-Storage-User: test:tester
> X-Storage-Pass: testing
>
< HTTP/1.1 200 OK
< X-Storage-Url: http://127.0.0.1:8080/v1/AUTH_test
< X-Auth-Token-Expires: 86378
< X-Auth-Token: AUTH_tk38696483cfdd401084be4b9563d5aea3
< Content-Type: text/html; charset=UTF-8
< X-Storage-Token: AUTH_tk38696483cfdd401084be4b9563d5aea3
< Content-Length: 0
< X-Trans-Id: tx24b3541db8024074accfb-005743fda4
< Date: Tue, 24 May 2016 07:07:16 GMT
<
* Connection #0 to host 127.0.0.1 left intact

Figure 3.3: Example output of granted token

The example above shows the way to call the standard REST-ful Swift APIs
using cURL. Alternatively, there is also a command-line interface to the OpenStack
Swift API provided by python-swiftclient\cite{swiftclient}. For example,
the statistics of an account could be displayed with command:

$ swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K
testing stat -v↪→

Figure 3.4 shows the output statistics of the command, as -A denotes for the
authentication URL, -U denotes for the username, -K denotes for the key.
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swift@swift-VirtualBox:~/bin$ swift -A http://127.0.0.1:8080/auth/v1.0 -U
test:tester -K testing stat -v↪→
StorageURL: http://127.0.0.1:8080/v1/AUTH_test
Auth Token: AUTH_tk38696483cfdd401084be4b9563d5aea3

Account: AUTH_test
Containers: 0

Objects: 0
Bytes: 0

X-Put-Timestamp: 1464075341.07031
X-Timestamp: 1464075341.07031
X-Trans-Id: txde129cb60969435a95c9a-005744044d

Content-Type: text/plain; charset=utf-8

Figure 3.4: Example output of swift command for statistics

3.6 Tutorial of using Erasure Coding in Swift

As introduced in section 3.6, erasure coding support is enabled in Swift as a storage
policy. The storage policies are defined in /etc/swift/swift.conf. Figure 3.5
showes a sample configuration file of storage policies after configured as documented
in section 3.4.

[swift-hash]
# random unique strings that can never change (DO NOT LOSE)
# Use only printable chars (python -c "import string; print(string.printable)")
swift_hash_path_prefix = changeme
swift_hash_path_suffix = changeme

[storage-policy:0]
name = gold
policy_type = replication
default = yes

[storage-policy:1]
name = silver
policy_type = replication

[storage-policy:2]
name = ec42
policy_type = erasure_coding
ec_type = liberasurecode_rs_vand
ec_num_data_fragments = 4
ec_num_parity_fragments = 2

Figure 3.5: Sample configuration of storage polices

As shown in Figure 3.5, the third policy defines an erasure code policy. It
is configured to use the Vandermonde Reed-Solomon encoding implemented by



18 3. INTRODUCTION TO OPENSTACK SWIFT

liberasurecode library. The coding scheme is also defined as k = 4 and m = 2.

Next step to do is to create the corresponding object ring for the erasure code
policy. The template of the ring create command with swift-ring-builder is:

$ swift-ring-builder <builder_file> create <part_power> <replicas>
<min_part_hours>↪→

Note that in order to apply erasure coding policy, the value of replicas should
be set to the sum of ec_num_data_fragments and ec_num_parity_fragments in
the policy, which is 6 in this case. Therefore, the command used to create a object
ring for the ‘ec42’ policy (with the index of 2) is:

$ swift-ring-builder object-2.builder create 10 6 1

After the ring is built successfully, the devices should be added into the ring.
Here the loopback devices are used, as listed in Figure 3.6. The rebalance command
should be executed after adding the devices, so as to initialize the ring.

swift-ring-builder object-2.builder add r1z1-127.0.0.1:6010/sdb1 1
swift-ring-builder object-2.builder add r1z1-127.0.0.1:6010/sdb5 1
swift-ring-builder object-2.builder add r1z2-127.0.0.1:6020/sdb2 1
swift-ring-builder object-2.builder add r1z2-127.0.0.1:6020/sdb6 1
swift-ring-builder object-2.builder add r1z3-127.0.0.1:6030/sdb3 1
swift-ring-builder object-2.builder add r1z3-127.0.0.1:6030/sdb7 1
swift-ring-builder object-2.builder add r1z4-127.0.0.1:6040/sdb4 1
swift-ring-builder object-2.builder add r1z4-127.0.0.1:6040/sdb8 1
swift-ring-builder object-2.builder rebalance

Figure 3.6: Commands to add loopback devices to the ring

As previously introduced, the storage policy applies at the container level. So as
to test with the erasure code policy, next step is to create a corresponding container
for it. The storage policy of the container could be determined in the HTTP header,
as specified in ‘X-Storage-Policy’ filed. The following commands show the process
of creating a container using the ‘ec42’ policy and then upload a 1MB randomly
generated test file into it:
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$ curl -v -X PUT -H ’X-Auth-Token:
AUTH_tk6ad03f8b33a3427190514f751c24801e’ -H "X-Storage-Policy:
ec42" http://127.0.0.1:8080/v1/AUTH_test/ec_container

↪→

↪→

$ dd if=/dev/urandom of=test.tmp bs=1k count=1000
$ curl -v -X PUT -T test.tmp -H ’X-Auth-Token:

AUTH_tk6ad03f8b33a3427190514f751c24801e’
http://127.0.0.1:8080/v1/AUTH_test/ec_container/

↪→

↪→

swift-get-nodes command helps to read the object ring file and display the
underlying detailed information of the stored objects. As shown in Figure 3.7, the
encoded fragments are placed at six devices, out while sdb5 and sdb8 are idle.

According to the theory, the (4, 2) Reed-Solomon code in use suppose to be able
to tolerate any two missing fragments. To verify the data durability of erasure codes,
two loopback devices folders are manually deleted to simulate the case of a two disks
failures. Afterwards, the test file has been downloaded from Swift. The result of
diff command shows that the original data has been restored successfully. The
process of the verification is demonstrated in Figure 3.8.
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swift@swift-VirtualBox:~$ swift-get-nodes /etc/swift/object-2.ring.gz AUTH_test
ec_container test.tmp↪→

Account AUTH_test
Container ec_container
Object test.tmp

Partition 930
Hash e893ebb4364585e15e9cfa0dbb986af0

Server:Port Device 127.0.0.1:6030 sdb7
Server:Port Device 127.0.0.1:6020 sdb6
Server:Port Device 127.0.0.1:6040 sdb4
Server:Port Device 127.0.0.1:6010 sdb1
Server:Port Device 127.0.0.1:6030 sdb3
Server:Port Device 127.0.0.1:6020 sdb2
Server:Port Device 127.0.0.1:6040 sdb8 [Handoff]
Server:Port Device 127.0.0.1:6010 sdb5 [Handoff]

curl -I -XHEAD "http://127.0.0.1:6030/sdb7/930/AUTH_test/ec_container/test.tmp" -H
"X-Backend-Storage-Policy-Index: 2"↪→

curl -I -XHEAD "http://127.0.0.1:6020/sdb6/930/AUTH_test/ec_container/test.tmp" -H
"X-Backend-Storage-Policy-Index: 2"↪→

curl -I -XHEAD "http://127.0.0.1:6040/sdb4/930/AUTH_test/ec_container/test.tmp" -H
"X-Backend-Storage-Policy-Index: 2"↪→

curl -I -XHEAD "http://127.0.0.1:6010/sdb1/930/AUTH_test/ec_container/test.tmp" -H
"X-Backend-Storage-Policy-Index: 2"↪→

curl -I -XHEAD "http://127.0.0.1:6030/sdb3/930/AUTH_test/ec_container/test.tmp" -H
"X-Backend-Storage-Policy-Index: 2"↪→

curl -I -XHEAD "http://127.0.0.1:6020/sdb2/930/AUTH_test/ec_container/test.tmp" -H
"X-Backend-Storage-Policy-Index: 2"↪→

curl -I -XHEAD "http://127.0.0.1:6040/sdb8/930/AUTH_test/ec_container/test.tmp" -H
"X-Backend-Storage-Policy-Index: 2" # [Handoff]↪→

curl -I -XHEAD "http://127.0.0.1:6010/sdb5/930/AUTH_test/ec_container/test.tmp" -H
"X-Backend-Storage-Policy-Index: 2" # [Handoff]↪→

Figure 3.7: Example of detail information of an object (partly)

swift@swift-VirtualBox:~$ rm -rf /srv/3/node/sdb3/ /srv/2/node/sdb6/
swift@swift-VirtualBox:~$ mv test.tmp test.original
swift@swift-VirtualBox:~$ swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K

testing download ec_container test.tmp↪→
test.tmp [auth 0.028s, headers 0.060s, total 0.065s, 28.342 MB/s]
swift@swift-VirtualBox:~$ diff test.original test.tmp && echo Same || echo Different
Same

Figure 3.8: Test process to verify restore file from subset of fragments



Chapter4Analysis on Erasure Coding
comparing to Replication

As discussed in Chapter 2, erasure coding is considered to be an alternative approach
to provide data protection and ensure data availability, as an addition to replication
and RAID. The ideas behind erasure coding and RAID are quite similar in concept,
as RAID acts on the disk level. On the other hand, replication is equal to a erasure
code with the number of data fragments set to one, and the same number of parity
fragments as replica factor. To find out the differences between replication and
erasure coding, a system comparison will be performed on the common erasure codes
used in practice with the replication approach. In particular, Reed-Solomon codes
are analyzed in this comparison, since they are the most widely-used erasure coding
families in practice.

This chapter consists of the analysis for data availability, space overhead and
performance in Section 4.1, Section 4.2 and Section 4.3, respectively. Section 4.4 will
conclude and discuss the results.

4.1 Availability

There are two situations that may happen affecting the data availability: the perma-
nent loss of data, and the temporary unavailable. Temporary unavailable data may
be caused by several factors such as broken links or crashes on servers. In this thesis,
data unavailability refers to the cases that data is completely lost and unaccessible.
Let p be the overall availability of the data, and α be the average availability of
a single disk. To simplify the analysis, we assume the availability of each disk is
independent from another.

4.1.1 Replication

In replication systems, the data availability is ensured by keeping several copies of
the original data on different disks. Let k be the replica factor, which is the number

21
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of the copies. Therefore, the overall availability with a given replica factor k could
be calculated as:

p = 1 − (1 − α)k (4.1)

4.1.2 Erasure Coding

According to the concept of erasure coding, a (k,m) erasure coded system divides
the original data into k data fragments. In addition, m parity fragments are erasure
encoded with the data fragments. The total number of fragments encoded is denoted
by n = k + m. With such configuration, the system should be able to tolerate
data loss less than m fragments. In other words, at least m fragments are required
to ensure the data to be available from being reconstructed. Assume that all the
encoded fragments are stored independently across all disks. Therefore, the overall
availability is equal to the sum of probability of disk failures less than m, which is
given as:
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(4.2)

4.2 Space Overhead

The space overhead of replication systems is quite obvious, which is determined by
the replica factor k. A storage system keeping k replicas of data has (k − 1) ∗ 100%
overhead. For example, HDFS has space overhead of 200%, with the default triple
replication scheme in use. Thus, the space efficiency of 3x replication is 33%.

In erasure coding storage systems, the space overhead is caused by the extra
storage space consumed by the parity fragments. A (k,m) erasure code has space
overhead of m

k ∗ 100%. For example, a Reed-Solomon code with 6 data fragments and
3 parity fragments (RS-(6,3) in short) has the space overhead of 50% (alternatively
66.67% space efficiency).

It is worthing that, although increasing number of parity fragments in erasure
coding system do provide better data availability, however, it comes at a cost.
Consider two erasure codes, RS-(6,3) and RS-(12,6). The space overhead of both
systems are the same, 50%. However, the second system requires more disks to be
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involved in the system, which increases the probability of disk failures. Another
consequence might be the increased latency. The encoded fragments are distributed
across different disks, usually in different clusters or even different geographically
locations. Since numbers of fragments are required to decode the data, the increasing
cost on the communication over the links would cause the increasing latency of the
service.

Table 4.1 shows the corresponding data durability and storage efficiency of several
data protection schemes, assuming each single disk in use has the average availability
of 0.995. The configurations of replication systems and erasure coded systems are
picked as they are widely used in practice. For example, HDFS uses 3x replication
by default, and Google uses RS-(6,3) in their clusters. As shown in the table, the
result show that, with the same data availability provided, erasure coding approaches
are able to cut the space overhead to roughly half of the one provided by replication
approaches.

Policy
Maximum Disk
Failures
Tolerated

Data
Availability

Number of
Nines

Space
Overhead

flat storage 0 0.995 2 0
2x replication 1 0.999975 4 100%
3x replication 2 0.999999875 6 200%
4x replication 3 0.9999999994 9 300%
RS-(4,2) 2 0.999997528 5 50%
RS-(6,3) 3 0.9999999228 7 50%
RS-(10,2) 2 0.9999734134 4 20%

Table 4.1: Comparison of availability and space overhead on schemes of replication
and erasure codes

4.3 Performance

In this section, two sets of experiments are completed to compare the performance
of replication and erasure coding systems. The experiments are designed to evaluate
the performance with read operations and write operations.

4.3.1 Test Setup

The tests are performed in OpenStack Swift, which is mentioned in chapter 3. A
single node Swift All In One virtual machine running on a Macbook Pro was used as
the platform. Detailed performance specifications of the virtual machine are listed in
Table 4.2 as the baseline.
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CPU Cores 2
Memory Size 4096 MB
Operating System Ubuntu (64bit)
memcpy Speed1 6739.96 MB/s
Disk I/O - Write Speed2 329 MB/s
Disk I/O Speed3 864 MB/s

Table 4.2: Test platform performance specification

The open source benchmarking tool ssbench (SwiftStack Benchmark Suite)[33]
is used in the performance test. It is designed as a benchmarking tool for the
OpenStack Swift with flexibility and scalability. In ssbench, there is a concept
of ssbench − worker, acting as individual process to perform the requests to the
Swift system. There could be one or more ssbench− worker running either on the
same host or across several client servers in the cluster. All the ssbench− worker

processes are using sockets to cooperate with the others and be managed by the
ssbench−master process. In this experiment, as the platform is a single-node virtual
machine, all the tests are performed using one ssbench − worker. The version of
ssbench suite in use is 0.3.9.

The tests are designed to simulate sending requests to Swift with a bunch of files.
As files of different sizes may affect the performance, four categories of file sizes are
involved in the test:

1. Tiny: files of size 4KB.

2. Small: files of size 128KB.

3. Middle: files of size 4MB.

4. Large: files of size 128MB.

The files used for the tests are generated by ssbench, which are defined in the
scenario files. For each category of file sizes, two scenarios are defined to perform
tests for both PUT and GET operations. The crudprofile option in the scenario
defines the distribution of each type of operation in the test, which are create, read,
update and delete. Figure 4.1 shows an example of scenario file, describing a test
that send PUT requests with 4KB files.

1measured with command: mbw -b 4096 32 | grep AVG
2measured with command: dd if=/dev/zero bs=1024 count=1000000 of=test_1GB.data
3measured with command: dd if=test_1GB.data of=/dev/null bs=1024
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{
"name": "4K write-only",
"sizes": [{

"name": "tiny",
"size_min": 4000,
"size_max": 4000

}],
"initial_files": {

"tiny": 10
},
"crud_profile": [100, 0, 0, 0],
"container_base": "ssbench",
"container_count": 100

}

Figure 4.1: Example of scenario: 4KB files write

To compare the performance of replication and erasure coding, schemes of both
approaches are picked with the same reason described in section 4.2 (except for the
flat storage). The relevant policies of each scheme are defined in Swift, with the
corresponding object rings created. In particular, liberasurecodersvand is chose for
the implementation of the erasure codes, as it is the default option for erasure codes
used in Swift. Tests of each policy are performed at the same duration of 30 seconds.
The metrics of latency, throughput and operation performed within the period are
recorded for analysis. The command used for test is listed below:

ssbench-master run-scenario -f <test_scenario_file> -u 1 -r 30
--pctile 50 -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K
testing --policy <policy_name>

↪→

↪→

4.3.2 Results

Figure 4.2 shows the average first byte latency of read operations on both systems,
which could be considered as the measurement of the response speed of the system.
The result shows that in general replication systems has much better read performance
than the erasure coded systems. The main reason is that when serving the read
requests, the proxy server of Swift needs to fetch enough data fragments and decode
into raw data, which is pretty time consuming. On the contrary, the replication
system just needs to hand one of the stored replica from the storage node to the
client, without any extra effort. As shown in the graph, the latencies of the erasure
coded systems grow with the size of the files, while there is no significant change in
replication systems.
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Figure 4.2: Average first byte latency of read operations of replication and erasure
codes

Figure 4.3: Average read operations completed per second of replication and erasure
codes
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Figure 4.4: Average last byte latency of write operations of replication and erasure
codes

Figure 4.3 shows the average read operations completed per second in both
systems. With the growth of the file size, the values of replication systems drops from
slightly over 100 operations per second for 4KB files, to 0.7 for 128MB files. Note
that the replication systems completed around 23 operations per second on 4MB
files, which is around 32 times of the operations on 128MB files, while the difference
of file sizes is also 32x. The reason might be it achieved the system performance
bottleneck. On the other hand, the operations of erasure codes were getting close to
the replication as the growth of file size, which means the computation overhead of
decoding became relatively smaller when comparing to the disk I/O.

Figure 4.4 shows the performance of write operations. The metric of last byte
latency is recorded, which is equal to the total time used of a write operation. The
results show that, the overall performance of replication system is slightly better
than erasure coding. However, for 4MB and 128MB files, the three erasure codes
outperformed the 4x replication. The trend of the reducing gap illustrates that
erasure coded systems are good at writing large files. As for replications, several
copies of original data are required to be written on the disks, which brings extra I/O
overhead. The bigger size the file has, the more time would be consumed. While the
single host environment might affect the results, same impact applies on distributed
systems with the restriction of network bandwidth when dealing with large files and
high replica factors. On the other hand, the extra parity data of erasure codes is
relatively small, as the storage overhead is usually less than 100% as explained in
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Figure 4.5: Average write operations completed per second of replication and
erasure codes

section 4.2.

Figure 4.3 shows the average write operations completed per second. Similar
pattern could be found as the read operations: the replications do better on small
files, but erasure codes could achieve close or even the same performance on large
files.

4.4 Discussion

As shown in the results, the erasure coding could be considered as an alternative
approach to the replication to be used in some scenarios, although not a substitute.

The main benefits that erasure coding brings is the data durability. The theoretical
analysis for the data availability provided by both erasure coding and replication
showed that, the erasure coding approach could provide sufficient data durability as
replication, while significantly reduce the required storage space for replicas. This
feature can be quite important as it can save the investment on hard drives and
reduce the management cost as well.
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There is certainly shortcoming of erasure coding, which is the computational cost.
Additional resources are consumed to encode and decode data, which affects the
bandwidth and memory usage. However, the results of the tests showed the trend of
reducing performance difference between erasure coding and replication, with the
growth of the size of files. Therefore, erasure coding may achieve almost the same
performance as replication, in the cases of writing huge data.

In conclusion, the results showed that erasure coding is good at processing huge
data. The reduced storage overhead is an important feature, and the performance
cost would be affordable if the data is not being read frequently. Thus, it might be a
good idea to apply erasure coding on the storage of huge and hardly-updated data,
such as system backups and digital images.





Chapter5Backup Storage with Swift

With the growing for the digital market, great importance has been given to the data
itself. Digital data could play an important role in private life, such as photos and
videos, or business field like commercial database, or even military area. It would
be a irreversible disaster if data is lost. To avoid this, backup is used as a double
insurance to the original data. The backups of data could be stored locally like Time
Machine provided by Apple, usually at different hardware disks or devices. In recent
decades, more and more backups are being stored in cloud storage providers such as
Dropbox. Regardless of where the data is stored, the key idea is to keep the backups
properly, and ensure the availability when they are needed.

In this chapter a prototype of backup storage system is demonstrated. The system
utilizes the object storage provided by OpenStack Swift. The goal of the system
is to ensure the data availability, while keeping the extra cost and overhead as low
as possible. Two key features of the backup storage, data reliability and security,
are the focus in design and implementation. To achieve good availability, a custom
erasure code is implemented for the use in the prototype.

Section 5.1 presents Duplicity software for the use of generating the backups. The
design and implementation of the custom erasure code is explained in Section 5.2.
Section 5.3 demonstrates the usage of the prototype, and Section 5.4 presents the
analysis of the system.

5.1 Duplicity

Duplicity[34] is an open source software suite which is able to create backups for the
data. One advantage of Duplicity is that it supports incremental backup scheme.
It generates a backup in the first place, and instead of updating the whole backup,
Duplicity is able to update only the changes of the original data since last backup.
Such ability is achieved by using rsync algorithm[35], which is a tool for detecting
and synchronizing the changes of files and directories. As Duplicity only transfers
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part of data for each backup, it could save a lot of cost on time and bandwidth,
and most importantly, storage space. Duplicity supports to transfer backups to a
variety of destinations, including remote hosts using SSH/SCP, FTP servers, and
commercial cloud storage providers like Amazon S3, Dropbox, and OpenStack Swift
as repository as well.

Another good feature of Duplicity is that it supports encryption of the backups
to ensure the confidentiality and integrity of the data, which is utilized in this system.
Duplicity uses GNU Privacy Guard (GnuPG)[36] to perform encryption on data,
which implements the OpenPGP standard as defined by RFC4880[37]. More details
of Duplicity and its encryption mechanism can be found in Håkon’s thesis[38].

Duplicity supports both symmetric and asymmetric encryptions, with a variety
of algorithms. Asymmetric encryption do provide more protection. However, the
encrypted backups can never be restored if the private key is lost, which is pretty
likely to happen in a system failure. Thus, the symmetric encryption is chosen in
the system.

5.2 Erasure Code

As previously discussed in the thesis, the erasure coding mechanism is able to provide
good data availability while reducing the storage space overhead. Moreover, the
performance cost of erasure codes is relatively close to the replication when processing
large data. Since normally backups require high data availability and consist of
hundreds of gigabytes or even terabytes of data, such features make erasure coding
an ideal choice for the backup storage to ensure data durability.

5.2.1 Design

The erasure code used in the system is provided by Danilo Gligoroski, the supervisor
of this thesis project. It is a XOR based code with (4,4) scheme (denoted by XOR-
(4,4) in the following context). The four parity fragments with redundant information
(denoted by yn in the following context) could be calculated with XOR operations
from corresponding subset of the data fragments (denoted by xn in the following
context). The equations of the encoding of parity fragments are listed in Table 5.1:

y1 = x1 ⊕ x3

y2 = x2 ⊕ x4

y3 = x1 ⊕ x2 ⊕ x3

y4 = x2 ⊕ x3 ⊕ x4

Table 5.1: Equations of encoding a custom XOR-(4,4) erasure code
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The decoding process of the XOR-(4,4) code is different from the Reed-Solomon
code previously introduced. As the XOR codes is not optimal codes, for one data
fragment there could be one or more decoding equations, with different combinations
of other data fragments and parity fragments. With the decoding equations listed in
Table 5.2, data fragments x1 and x4 could be restored with two equations, while x2
and x3 have two more restoration equations. With larger k value selected for the
XOR codes, more complicated decoding equations may appear, consisting of more
elements.

x1 = x3 ⊕ y1

= x2 ⊕ x3 ⊕ y3

x2 = x4 ⊕ y2

= x1 ⊕ x3 ⊕ y3

= x3 ⊕ x4 ⊕ y4

= y1 ⊕ y3

x3 = x1 ⊕ y1

= x1 ⊕ x2 ⊕ y3

= x2 ⊕ x4 ⊕ y4

= y2 ⊕ y4

x4 = x2 ⊕ y2

= x2 ⊕ x3 ⊕ y4

Table 5.2: Equations of decoding a custom XOR-(4,4) erasure code

Unlike MDS erasure codes, the XOR codes do not promise to tolerate any k

fragments lost. As for the XOR-(4,4) code used here, it can tolerate any two fragments
lost, but with potentially ability to tolerate three or four lost fragments depending
on the loss pattern. Like many other XOR-based erasure codes, every set of the
fragments are required to be enumerated for measuring the fault tolerance[39]. For
example, if fragments {x1, y1, y3, y4} are available, the remaining data fragments
can be restored with them, and so as for the lost parity fragment. However consider
another example of fragments {x1, x2, x3, y1} are available, there is no chance to
restore fragment x4 as there is no redundancy for this data fragment.

The main advantage of using the XOR codes is the performance. Both encoding
and decoding processes of XOR codes can be fulfilled with simple XOR operations,
which can be done in sub-linear time. With such benefits, storage systems imple-
mented with XOR-based erasure codes could reduce the computational overhead when
encoding and decoding, while keeping the ability to provide extra data availability.
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5.2.2 Implementation

The erasure code module in the system is implemented as a plugin in PyECLib, so
that it can be utilized in Swift. As PyECLib is written in Python and has a highly
extensible infrastructure so that it is possible to implement the XOR-(4,4) code
mentioned in Section 5.2.1 as a custom backend of erasure code.

As for the erasure coding backends supported by PyECLib such as liberasurecode
and Jerasure, a class ECDriver is used to manage and coordinate the third party
libraries. For example, a RS-(4,2) erasure code module implemented by liberasurecode
could be initialized as:

ec_driver = ECDriver(k = 4, m = 2, \
ec_type = "liberasurecode_rs_vand")

Thus, to support the custom erasure code, ‘ntnu_erasurecode’ is defined as a new
erasure code type, as well as class ‘NTNU_EC_Driver’ is defined to perform the
functions. The following content of this section explains the three major functions
of NTNU_EC_Driver: encode, decode and reconstruct. The entire source code of
NTNU_EC_Driver could be found in Appendix A.

Encode

As the basis of the XOR-based erasure codes, the XOR operations are implemented
with the Python’s built-in cryptography toolkit Crypto library. As mentioned in [38],
strxor() function in Crypto provided optimal performance. Listing 1 shows the
modified function to perform XOR operations on two pieces of data with different
length.

Listing 1 Source code of sxor() function for XOR operations
1 def sxor(s1, s2):
2 s1_len = len(s1)
3 s2_len = len(s2)
4 if s1_len > s2_len:
5 s2 = s2.ljust(s1_len,’ ’)
6 elif s2_len > s1_len:
7 s1 = s1.ljust(s2_len,’ ’)
8 return Crypto.Util.strxor.strxor(s1,s2)

The implementation of encode function is quite straightforward, as listed in Listing
2. The function takes raw data as input, calculates the length of each fragment
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according to the parameter k of erasure code. After the data is divided into data
fragments, the parity fragments are generated according to the encoding equations,
with the use of sxor() function.

Listing 2 Source code of encode() function in NTNU_EC_Driver
1 def encode(self, data_bytes):
2 data = []; parity = []; output_fragments = []; offset = 0
3 # Calculate fragment size and divide data
4 fragment_size = int(math.ceil(len(data_bytes) / float(self.k)))
5 for i in range(self.k - 1):
6 fragment = data_bytes[offset : offset + fragment_size]
7 data.append(fragment)
8 offset += fragment_size
9 # Append last fragment

10 last_fragment = data_bytes[offset:]
11 data.append(last_fragment)
12 data_x1, data_x2, data_x3, data_x4 = data
13

14 parity_y1 = sxor(data_x1, data_x3)
15 parity_y2 = sxor(data_x2, data_x4)
16 parity_y3 = sxor(sxor(data_x1, data_x2), data_x3)
17 parity_y4 = sxor(sxor(data_x2, data_x3), data_x4)
18 parity = [parity_y1, parity_y2, parity_y3, parity_y4]
19

20 # Add indexes to fragments as metadata
21 for i in range(len(data)):
22 indexed_fragment = self._add_fragment_index(data[i], i)
23 output_fragments.append(indexed_fragment)
24 for i in range(len(parity)):
25 indexed_fragment = self._add_fragment_index(parity[i],

i+self.k)↪→

26 output_fragments.append(indexed_fragment)
27 return output_fragments

The implementation of decode function is more complicated, as there could be
several decoding equations for a single data fragments in XOR codes. With the
ability to tolerate several fragments lost, the fragments passed to the function could
be a subset of all fragments encoded. Thus, the idea of decoding is to restore as
many missing data fragments from other data fragments and the redundant parity
fragments as possible. Thus, each decoding equation for the missing data fragments
needed to be inspected recursively, until there is no possible restoration. If all the
data fragments are available after process, the data could be decoded and returned.
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Otherwise an exception of insufficient fragments will be threw as the decoding is
failed. Listing 3 shows the decode function, and Listing 4 shows the process of
recursively attempting to restore the x1 fragment.

Listing 3 Source code of decode() function in NTNU_EC_Driver
1 def decode(self, fragment_payloads, ranges=None,
2 force_metadata_checks=False):
3 if len(fragment_payloads) < self.k:
4 raise ECInsufficientFragments( \
5 "Insufficient fragments given to decode." )
6

7 fragments = [None] * (self.k + self.m)
8 all_data_index = set(range(self.k))
9 available_fragment_index = set()

10

11 # extract indexes from fragments
12 for indexed_fragment in fragment_payloads:
13 index, fragment = self._get_fragment_index(indexed_fragment)
14 fragments[index] = fragment
15 available_fragment_index.add(index)
16

17 # recursively restore data fragments
18 # until all data fragments are available
19 # or no further restoration possible
20 while(len(available_fragment_index & all_data_index) != self.k):
21 pre_fragments_count = len(available_fragment_index)
22 self._fix_data_fragment(fragments, available_fragment_index)
23 post_fragments_count = len(available_fragment_index)
24 if post_fragments_count == pre_fragments_count:
25 raise ECInsufficientFragments( \
26 "Insufficient fragments given to decode." )
27 return
28

29 # All data fragments are guaranteed to be repaired by now
30 for index in all_data_index:
31 assert fragments[index] is not None
32

33 # decode original data
34 data_bytes = ’’
35 for i in all_data_index:
36 data_bytes += fragments[i]
37 return data_bytes



5.2. ERASURE CODE 37

Listing 4 Source code of _fix_data_fragment() function in NTNU_EC_Driver
(partly)

1 def _fix_data_fragment(self, all_fragments,
available_fragment_index):↪→

2 all_data_index = set(range(self.k))
3 missing_data_index = all_data_index - available_fragment_index
4

5 if x1 in missing_data_index:
6 if x3 in available_fragment_index \
7 and y1 in available_fragment_index:
8 all_fragments[x1] = sxor(all_fragments[x3],

all_fragments[y1])↪→

9 available_fragment_index.add(x1)
10 elif x2 in available_fragment_index \
11 and x3 in available_fragment_index \
12 and y3 in available_fragment_index:
13 all_fragments[x1] = sxor(sxor(all_fragments[x2],

all_fragments[x3]), all_fragments[y3])↪→

14 available_fragment_index.add(x1)
15

16 # for x2 x3 x4 ...

The reconstruction process is quite similar to the decoding process. In addition
to restoring all the data fragments with the recursive process mentioned previously,
reconstruct function also attempts to generate the missing parity fragments, exactly
as the encode function does.

Limitations

While the goal of the prototype is to implement and apply the XOR-(4,4) code to
Swift, there is clearly some drawbacks and limitations of the implementation, due to
the scope of the project.

As introduced previously, PyECLib calls backend libraries for performing erasure
coding processes. Most of the backend libraries current available are written in
C language. However, in this erasure code module prototype, the process is fully
implemented with Python, as a plugin to PyECLib. Thus, there are inherently
performance drawbacks for the prototype comparing to the C-written backends.

Additionally, the recursive decoding and reconstruction logics are not optimal,
as there might be duplicate conditional judgments inside loops. One way to fix this
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problem is to hard code a bitmap for each data pattern and generate corresponding
decoding procedures.

5.3 Results

As a prerequisite, the plugin of the implemented XOR-(4,4) code is compiled and
integrated into PyECLib and Swift. The storage policy is defined and the corre-
sponding ring is built with eight loopback devices. A container named ‘ntnu-xor’ is
created with the storage policy specified. Moreover, a 200MB test file is generated
as the data to backup.

To enable the interaction between Duplicity and Swift, the credential information
of Swift should be set in the environment variable, which can be done as:

export SWIFT_USERNAME=test:tester
export SWIFT_PASSWORD=testing
export SWIFT_AUTHURL=http://127.0.0.1:8080/auth/v1.0
export SWIFT_AUTHVERSION=1

Duplicity is a command line based tool, so it can be triggered with simple
commands in terminal. To generate a full backup of the target data, full option
need to be specified in the command. As Duplicity supports to use Swift as backend
repository, it uses swift:// as suffix scheme to specify the remote destination as
Swift, following with the container name. The encryption is enabled by default,
thus a passphrase is requested to generate the encryption key. Figure 5.1 shows the
execution process of backup using Duplicity.

Consequently, the original data is processed by Duplicity and sent to Swift for
storage. All the generated files are demonstrated in Figure 5.2. Note that the files are
not the fragments from erasure coding, but generated by Duplicity. The original data
is sliced into eight parts, and two extra files are created as manifest and signature
used for detecting incremental backup. Each file is then erasure coded by Swift and
organized in the object ring.

The restore is similar to the reverse process of backup. Duplicity retrieves the
decoded data from Swift, assembles the segments and then decrypts it with the same
passphrase as used in encryption. Figure 5.3 shows the process of restoring and
verifying a backup.



5.4. SYSTEM ANALYSIS 39

swift@swift-VirtualBox:~/duplicity_test$ duplicity full ./backup/ swift://ntnu-xor
Local and Remote metadata are synchronized, no sync needed.
Last full backup date: none
GnuPG passphrase:
Retype passphrase to confirm:
--------------[ Backup Statistics ]--------------
StartTime 1464728109.06 (Wed Jun 1 04:55:09 2016)
EndTime 1464728122.59 (Wed Jun 1 04:55:22 2016)
ElapsedTime 13.54 (13.54 seconds)
SourceFiles 2
SourceFileSize 204804096 (195 MB)
NewFiles 2
NewFileSize 204804096 (195 MB)
DeletedFiles 0
ChangedFiles 0
ChangedFileSize 0 (0 bytes)
ChangedDeltaSize 0 (0 bytes)
DeltaEntries 2
RawDeltaSize 204800000 (195 MB)
TotalDestinationSizeChange 206073223 (197 MB)
Errors 0
-------------------------------------------------

Figure 5.1: Sample process of perform a full backup with Duplicity to Swift

5.4 System Analysis

A set of tests are performed to analyze the prototype of backup storage system. The
implemented erasure code is compared with several other erasure coding schemes in
terms of data durability and performance. The impact of encryption to the overall
performance is also investigated in this section.

5.4.1 Test Setup

The tests are performed in the same SAIO virtual machine as introduced in Sec-
tion 4.3.1. Detailed performance baseline is exactly the same as listed in Table 4.2.
The version of Duplicity used in the tests is 0.6.23.

Together with the implemented XOR-(4,4) erasure code, alternative storage
policies are also involved in the test, as listed in Table 5.3. The parameters of replica
factor and erasure coding schemes are set to achieve similar data durability as the
implemented XOR-(4,4) code provides. Note that there is (k,m) restriction for the
flat_xor_hd_3 code. This test uses the scheme (5,5).
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swift@swift-VirtualBox:~/duplicity_test$ swift -A http://127.0.0.1:8080/auth/v1.0 -U
test:tester -K testing list --lh ntnu-xor↪→

1.1M 2016-05-31 20:55:23 application/octet-stream
duplicity-full-signatures.20160531T205500Z.sigtar.gpg↪→

470 2016-05-31 20:55:23 application/octet-stream
duplicity-full.20160531T205500Z.manifest.gpg↪→

25M 2016-05-31 20:55:10 application/octet-stream
duplicity-full.20160531T205500Z.vol1.difftar.gpg↪→

25M 2016-05-31 20:55:11 application/octet-stream
duplicity-full.20160531T205500Z.vol2.difftar.gpg↪→

25M 2016-05-31 20:55:13 application/octet-stream
duplicity-full.20160531T205500Z.vol3.difftar.gpg↪→

25M 2016-05-31 20:55:15 application/octet-stream
duplicity-full.20160531T205500Z.vol4.difftar.gpg↪→

25M 2016-05-31 20:55:17 application/octet-stream
duplicity-full.20160531T205500Z.vol5.difftar.gpg↪→

25M 2016-05-31 20:55:19 application/octet-stream
duplicity-full.20160531T205500Z.vol6.difftar.gpg↪→

25M 2016-05-31 20:55:21 application/octet-stream
duplicity-full.20160531T205500Z.vol7.difftar.gpg↪→

21M 2016-05-31 20:55:22 application/octet-stream
duplicity-full.20160531T205500Z.vol8.difftar.gpg↪→

197M

Figure 5.2: Sample Duplicity backup files stored in Swift

swift@swift-VirtualBox:~/duplicity_test$ duplicity restore swift://ntnu-xor
./restore; diff ./restore/backup.img ./backup/backup.img && echo Same || echo
Different

↪→
↪→

Local and Remote metadata are synchronized, no sync needed.
Last full backup date: Wed Jun 1 04:55:00 2016
GnuPG passphrase:
Same

Figure 5.3: Sample process of restore a full backup with Duplicity from Swift

5.4.2 Data Availability

As the implemented XOR based (4,4) code is not a MDS code, thus it is not optimal.
It is guaranteed to tolerate any two missing fragments. However, in some cases
it is also recoverable with three or four missing fragments, depending on the data
loss pattern. With three fragments missing, the code is able to reconstruct the
entire data in 52 out of 56 combinations of available fragments. With four fragments
missing, the code is able to reconstruct the entire data in 45 out of 70 combinations
of available fragments. The probability of a successful reconstruction for different
count of available fragments are listed in Table 5.4.

To quantitatively compare the data availability provided by XOR-(4,4) code with
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Storage Policy Description
XOR-(4,4) XOR-based erasure code implemented in this project.
3x Replication Simple replication with three replicas.

RS-(6,3) Reed-Solomon erasure encoding using Vandermonde
matrices, implemented by liberasurecode.

XOR_HD_3-(5,5) Flat-XOR based HD combination codes[14],
implemented by liberasurecode.

Table 5.3: Storage polices used in the test as comparisons

Available fragments Probability of
successful reconstruction

n = 6, 7, 8 1.0
n = 5 52

56
n = 4 45

70
n = 0, 1, 2, 3 0.0

Table 5.4: Probability distribution of successful reconstruction for XOR-(4,4)

the competitors, similar approaches as listed in Section 4.2 are used. Assume that
the availability of a single disk is 0.995 and the disk failure is independent. The
overall availability is calculated based on Equation 4.2, together with the probability
of successful reconstruction as the weight. The overall availability and the overhead
of each storage policy are listed in Table 5.5. The results show that, the implemented
XOR-(4,4) code is able to cut half of the storage overhead while keeping similar
data durability when comparing to the 3x replication policy. However, due to the
inherently designs, the XOR-based erasure codes are not as space efficiency as the
Reed-Solomon codes.

Policy
Guaranteed
Failures
Tolerated

Data
Availability

Number of
Nines

Space
Overhead

XOR-(4,4) 2 0.9999994969 6 100%
3x Replication 2 0.999999875 6 200%
RS-(6,3) 3 0.9999999228 7 50%
XOR_HD_3-(5,5) 2 0.9999861168 4 100%

Table 5.5: Availability and space overhead of storage policies used for Duplicity
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5.4.3 Performance

The performance of test scenarios are tested by measuring the execution time for
performing a full backup and restoration. The execution time of backup is collected
from the backup statistics generated by Duplicity, and bash command time is used
to measure the time for restoration. In order to avoid the interrupt of requesting
passphrase for encryption, the passphrase is pre-defined in the system environment
variables. Each iteration of test is forced to set as a full backup, targeting an empty
container with corresponding storage policy in Swift.

Performance of encryption

Duplicity uses symmetric encryption by default, which provides basic data protection
at a relatively high speed. Alternatively, Duplicity also supports to use asymmetric
encryption or generate backups without encryption. As the encryption is involved in
the backup process, there might be extra computational overhead. Three tests are
performed to test the performance impact, with symmetric encryption, asymmetric
encryption and no encryption respectively. As for the asymmetric encryption, a
2048 bit long RSA-RSA key is generated with GnuPG for the use of encryption
in Duplicity (no sign is involved). No replication or erasure coding mechanism is
enabled in this test in order to avoid disturbance. The test data in use is a randomly
generated 200MB file.

The execution time of backup and restoration for different test scenarios are
demonstrated in Figure 5.4. The results show that enabling encryption does have
extra computational cost, especially for the decrypt process when restoring the
backups. Moreover, it is worth noting that there is hardly any performance gap
between symmetric and asymmetric encryptions in Duplicity.

Performance of erasure codes

A set of tests are performed to evaluate the performance of the implemented XOR-
(4,4) code, comparing to the competing schemes listed previously. A 1GB randomly
generated file is used as the test data, in order to simulate a backup image in real
scenarios, which is generally a single large file. All the tests are performed with
encryption disabled. The execution time of both backup and restoration are recorded,
and presented in Figure 5.5.

The results show that the backup time are almost the same for each storage policy.
One explanation of that is that Duplicity segments the original file before handing to
Swift. As listed previously, the data is sliced into a bunch of small compressed file,
with size of 25MB. Thus, the backup of a large single file turns to writing a series of
small files.
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Figure 5.4: Execution time of Duplicity using different encryption options

Figure 5.5: Execution time of Duplicity using different storage policies



44 5. BACKUP STORAGE WITH SWIFT

As for the restoration process, the simple replication approach has the best
performance, which is reasonable since there is no extra computational cost required
for decoding. Both XOR-based erasure codes outperforms the Reed-Solomon code,
which conforms to the theory that simple XOR operations save more time than the
multiply operations in Galois field. Between two XOR codes, there is also an obvious
difference in restoration time. This might be caused by unoptimized Python-based
implementation of XOR-(4,4) code, which is discussed in Section 5.2.2.

Another factor that may have disturbance on the performance results is that, the
incomplete support for the XOR-based erasure codes in Swift. In order to response
as fast as possible, Swift uses the mechanism to call the erasure code library with a
certain number (equal to k in most cases) of fragments, which are the first arriving at
the proxy server, while the others are discarded. This works for optimal MDS codes.
However, non-optimal codes like XOR based codes do not promise to reconstruct
from m fragments missing. Instead, in some cases the original data is not possible to
be recovered. Therefore, more attempts are made, until the decoder has sufficient
fragments for decoding. This defect causes potentially extended decoding time for
non-optimal codes, which certainly affects the performance.

5.4.4 Discussion

The results of the analysis demonstrated the quality of the custom XOR erasure
code implemented. The mathematical analysis proved that it is able to provide
similar data durability as comparing to triple replication, while significantly reduce
the storage overhead at the same time. The results of real tests also showed the
performance promising towards Reed-Solomon codes, although the gap is not that big.
However, consulting the C-written flat_xor_hd code implemented by liberasurecode,
the proposed XOR-(4,4) code could be expected to gain a performance improvement
after proper optimization.
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This project investigated the erasure coding technique, with the usage in OpenStack
Swift.

Erasure coding is a novel approach applied in storage systems in order to provide
additional data reliability. The main advantage of erasure coding is the improved
data availability with relatively low extra cost on the storage space. There are
different types of erasure codes, with different implementations. Thus, erasure codes
are highly flexible as it can be adjusted with different schemes to meet the variety of
requirements including data availability, performance and storage space. With such
features, erasure coding can be considered as an alternative choice to the replication
approach, and applied in real use cases.

The report demonstrated different stages of fulfilling the objectives listed in
Chapter 1:

– The background information of the project was explained in Chapter 2. A study
was performed for two widely-used approaches of enhancing data availability:
replication and RAID. The pros and cons of both approaches were analyzed.
Erasure coding was then explained with the concepts and designs behind.
Several erasure code families were also introduced in this chapter.

– Chapter 3 introduced OpenStack Swift, which is another focus of this project.
The basic concepts and fundamental infrastructures were firstly introduced.
Two tutorials showed the configuration of Swift, and the integration of erasure
coding to Swift.

– Chapter 4 performed a system comparison between replication and erasure
coding. The data durability and overhead provided by both approaches were
calculated mathematically. A series of tests analyzed the performance of both
systems in different aspects.

45
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– An implementation of a custom erasure code scheme is presented in Chapter 5.
It was used together with Duplicity to build a prototype of backup storage
system as a real scenario, followed with analysis of the system.

Discussion and Future Works

The project presents erasure coding in different areas both theoretically and practically.
The outcome of the project could prove the feasibility of applying erasure codes in
OpenStack Swift and other storage systems. Meanwhile, the implemented erasure
code module could also be used in further investigation and development. As shown
in the analysis, the erasure coding is suitable in certain use cases. Although it does
have limitations on the computational cost, erasure coding comes as a tradeoff to
provide balance between the performance and price. As concluded in the report,
erasure codes suit the environments where the storage capacity is sensitive with huge
amount of rarely-accessed data.

However, there are some limitations of the project. First of all, this project
focused on the common Reed-Solomon codes and the XOR-based code implemented.
Yet some other types of erasure codes with different designs are also studied and used,
such as the Local Reconstruction Codes (LRCs) used by Microsoft[2]. Besides, due
to the limited scope, the tests in this project were performed on single host. There
might be other factors affecting the results in a multi-node cluster environment.

There could be several works as the follow-up of this project. One thing is to
rewrite the prototype of erasure code module in C language, in order to achieve
better performance. Meanwhile, it is also interesting to study the feasibility and
implementation of a storage system with the hybrid of both replication and erasure
codes, so that it could have rapid read performance through replicas and benefit
from erasure codes for serious data loss.



References

[1] marketsandmarkets.com, “Cloud storage market by solutions (primary storage
solution, backup storage solution, cloud storage gateway solution, and data
movement and access solution) - global forecast and analysis to 2020,” August
2015. Last Accessed: May 2016.

[2] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li, and
S. Yekhanin, “Erasure coding in windows azure storage,” in Presented as part of
the 2012 USENIX Annual Technical Conference (USENIX ATC 12), pp. 15–26,
2012.

[3] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R. Vadali,
S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure codes for big data,”
in Proceedings of the VLDB Endowment, vol. 6, pp. 325–336, VLDB Endowment,
2013.

[4] D. Ford, F. Labelle, F. I. Popovici, M. Stokely, V.-A. Truong, L. Barroso,
C. Grimes, and S. Quinlan, “Availability in globally distributed storage sys-
tems.,” in OSDI, pp. 61–74, 2010.

[5] D. Borthakur, “Hdfs architecture guide.” https://hadoop.apache.org/docs/r1.2.1/
hdfs_design.html#Data+Replication. Last Accessed: May 2016.

[6] D. A. Patterson, G. Gibson, and R. H. Katz, A case for redundant arrays of
inexpensive disks (RAID), vol. 17. ACM, 1988.

[7] SNIA, “Common raid disk data format (ddf).” http://www.snia.org/tech_
activities/standards/curr_standards/ddf. Last Accessed: May 2016.

[8] J. Nonnenmacher, E. W. Biersack, and D. Towsley, “Parity-based loss recovery
for reliable multicast transmission,” Networking, IEEE/ACM Transactions on,
vol. 6, no. 4, pp. 349–361, 1998.

[9] A. Fujimura, S. Y. Oh, and M. Gerla, “Network coding vs. erasure coding: Reliable
multicast in ad hoc networks,” in Military Communications Conference, 2008.
MILCOM 2008. IEEE, pp. 1–7, IEEE, 2008.

47

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Data+Replication
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html#Data+Replication
http://www.snia.org/tech_activities/standards/curr_standards/ddf
http://www.snia.org/tech_activities/standards/curr_standards/ddf


48 REFERENCES

[10] N. Bhatnagar, K. M. Greenan, R. Wacha, E. L. Miller, and D. D. Long, “Energy-
reliability tradeoffs in sensor network storage,” in In Proceedings of the 5th
Workshop on Embedded Networked Sensors, Citeseer, 2008.

[11] N. He, J. Cao, Z. Li, and Y. Ren, “Jvec: Joint video adaptation and erasure code
for wireless video streaming broadcast,” in Communications (ICC), 2010 IEEE
International Conference on, pp. 1–5, IEEE, 2010.

[12] L. Rizzo, “Effective erasure codes for reliable computer communication protocols,”
ACM SIGCOMM computer communication review, vol. 27, no. 2, pp. 24–36, 1997.

[13] K. M. Greenan, D. D. Long, E. L. Miller, T. J. Schwarz, and J. J. Wylie, “A
spin-up saved is energy earned: Achieving power-efficient, erasure-coded storage.,”
in HotDep, 2008.

[14] K. M. Greenan, X. Li, and J. J. Wylie, “Flat xor-based erasure codes in storage
systems: Constructions, efficient recovery, and tradeoffs,” in Mass Storage Systems
and Technologies (MSST), 2010 IEEE 26th Symposium on, pp. 1–14, IEEE, 2010.

[15] A. G. Dimakis, P. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” Information Theory, IEEE
Transactions on, vol. 56, no. 9, pp. 4539–4551, 2010.

[16] I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Journal
of the society for industrial and applied mathematics, vol. 8, no. 2, pp. 300–304,
1960.

[17] Y. Fu, J. Shu, and Z. Shen, “Ec-frm: An erasure coding framework to speed up
reads for erasure coded cloud storage systems,” in Parallel Processing (ICPP),
2015 44th International Conference on, pp. 480–489, IEEE, 2015.

[18] J. S. Plank, “Erasure codes for storage systems: A brief primer,” Usenix magazine,
vol. 38, December 2013.

[19] J. S. Plank, J. Luo, C. D. Schuman, L. Xu, Z. Wilcox-O’Hearn, et al., “A
performance evaluation and examination of open-source erasure coding libraries
for storage.,” in FAST, vol. 9, pp. 253–265, 2009.

[20] K. M. Greenan, E. L. Miller, and J. J. Wylie, “Reliability of flat xor-based
erasure codes on heterogeneous devices,” in Dependable Systems and Networks
With FTCS and DCC, 2008. DSN 2008. IEEE International Conference on,
pp. 147–156, IEEE, 2008.

[21] J. Bloemer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D. Zuckerman,
“An xor-based erasure-resilient coding scheme,” 1995.

[22] H. Weatherspoon and J. D. Kubiatowicz, “Erasure coding vs. replication: A
quantitative comparison,” in Peer-to-Peer Systems, pp. 328–337, Springer, 2002.

[23] OpenStack, “Openstack open source cloud computing software.” http://www.
openstack.org/. Last Accessed: May 2016.

http://www.openstack.org/
http://www.openstack.org/


REFERENCES 49

[24] OpenStack, “Openstack swift documentation.” http://swift.openstack.org. Last
Accessed: May 2016.

[25] OpenStack, “Openstack administration guide - object storage.” http://docs.
openstack.org/admin-guide/objectstorage.html. Last Accessed: May 2016.

[26] M. Factor, K. Meth, D. Naor, O. Rodeh, and J. Satran, “Object storage: The
future building block for storage systems,” in Local to Global Data Interoperability-
Challenges and Technologies, 2005, pp. 119–123, IEEE, 2005.

[27] M. Mesnier, G. R. Ganger, and E. Riedel, “Object-based storage,” Communica-
tions Magazine, IEEE, vol. 41, no. 8, pp. 84–90, 2003.

[28] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,
“Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web,” in Proceedings of the twenty-ninth annual
ACM symposium on Theory of computing, pp. 654–663, ACM, 1997.

[29] J. Dickinson, “Erasure codes now a part of openstack kilo.” https://swiftstack.com/
blog/2015/04/30/erasure-codes-now-a-part-of-openstack-kilo/. Last Accessed:
May 2016.

[30] J. S. Plank and K. M. Greenan, “Jerasure: A library in c facilitating erasure
coding for storage applications–version 2.0,” tech. rep., Technical Report UT-
EECS-14-721, University of Tennessee, 2014.

[31] T. L. (Intel), “Intel® intelligent storage acceleration library performance
under xen* project hypervisor.” https://software.intel.com/en-us/articles/
intel-isa-l-library-performance-under-xen-project-hypervisor. Last Accessed: May
2016.

[32] OpenStack, “Saio - swift all in one.” http://docs.openstack.org/developer/swift/
development_saio.html. Last Accessed: May 2016.

[33] S. Inc., “ssbench - benchmarking tool for swift clusters.” https://github.com/
swiftstack/ssbench. Last Accessed: May 2016.

[34] B. Escoto, K. Loafman, et al., “Duplicity.” http://duplicity.nongnu.org/. Last
Accessed: May 2016.

[35] A. Tridgell, P. Mackerras, et al., “Rsync - an utility that provides fast incremental
file transfer..” https://rsync.samba.org. Last Accessed: May 2016.

[36] W. Koch et al., “The GNU privacy guard.” https://gnupg.org. Last Accessed:
May 2016.

[37] J. Callas, L. Donnerhacke, H. Finney, D. Shaw, and R. Thayer, “OpenPGP
Message Format,” RFC 4880, RFC Editor, November 2007. http://www.rfc-editor.
org/rfc/rfc4880.txt.

[38] H. N. Matland, “Intelligent scheduled backup using duplicity,” 2015.

http://swift.openstack.org
http://docs.openstack.org/admin-guide/objectstorage.html
http://docs.openstack.org/admin-guide/objectstorage.html
https://swiftstack.com/blog/2015/04/30/erasure-codes-now-a-part-of-openstack-kilo/
https://swiftstack.com/blog/2015/04/30/erasure-codes-now-a-part-of-openstack-kilo/
https://software.intel.com/en-us/articles/intel-isa-l-library-performance-under-xen-project-hypervisor
https://software.intel.com/en-us/articles/intel-isa-l-library-performance-under-xen-project-hypervisor
http://docs.openstack.org/developer/swift/development_saio.html
http://docs.openstack.org/developer/swift/development_saio.html
https://github.com/swiftstack/ssbench
https://github.com/swiftstack/ssbench
http://duplicity.nongnu.org/
https://rsync.samba.org
https://gnupg.org
http://www.rfc-editor.org/rfc/rfc4880.txt
http://www.rfc-editor.org/rfc/rfc4880.txt


50 REFERENCES

[39] J. J. Wylie and R. Swaminathan, “Determining fault tolerance of xor-based
erasure codes efficiently,” in Dependable Systems and Networks, 2007. DSN’07.
37th Annual IEEE/IFIP International Conference on, pp. 206–215, IEEE, 2007.



AppendixASource code of NTNU_EC_Driver
class

1 import Crypto.Util.strxor
2

3 x1 = 0
4 x2 = 1
5 x3 = 2
6 x4 = 3
7 y1 = 4
8 y2 = 5
9 y3 = 6

10 y4 = 7
11

12 def sxor(s1, s2):
13 s1_len = len(s1)
14 s2_len = len(s2)
15 if s1_len > s2_len:
16 s2 = s2.ljust(s1_len,’ ’)
17 elif s2_len > s1_len:
18 s1 = s1.ljust(s2_len,’ ’)
19 return Crypto.Util.strxor.strxor(s1,s2)
20

21 class NTNU_EC_Driver(object):
22

23 def __init__(self, k, m, hd, ec_type=None, chksum_type=None,
24 validate=False):
25 with open("/home/swift/log.txt", "a") as fpp:
26 fpp.write("-init\n")
27 fpp.close()
28

51
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29 if ec_type !=
PyECLib_EC_Types.get_by_name("ntnu_erasurecode"):↪→

30 raise ECBackendNotSupported(
31 "%s is not a supported type." % ec_type)
32

33 if k != 4 or m != 4:
34 raise ECBackendNotSupported(
35 "NTNU code only supports scheme (4, 4).

(%d, %d) is given." % (k, m))↪→

36

37 if chksum_type != None:
38 raise ECBackendNotSupported(
39 "No checksum implemented. Should set to

None.")↪→

40

41 self.k = k
42 self.m = m
43 self.ec_type = ec_type
44

45 # hd & validata ignored
46 # self.hd = hd
47 # self.validate = validate
48

49 def _add_fragment_index(self, fragment, index):
50 #

---------------------------------------------------------↪→

51 # WORKAROUND
52 # Add index in front of each fragment, as metadata
53 # with format: "%d,%s" % (index, data)
54 # for (4,4) ntnu code the length of index is 1

(one-digit)↪→

55 return "%d,%s" % (index, fragment)
56

57 def _get_fragment_index(self, indexed_fragment):
58 #

---------------------------------------------------------↪→

59 # WORKAROUND
60 # Extract index from the indexed fragment
61 # return a tuple: (index, fragment)
62 separator = indexed_fragment.index(",")



53

63 index = int(indexed_fragment[:separator])
64 fragment = indexed_fragment[separator+1:]
65 return (index, fragment)
66

67 def _fix_data_fragment(self, all_fragments,
available_fragment_index):↪→

68 all_data_index = set(range(self.k))
69 missing_data_index = all_data_index -

available_fragment_index↪→

70

71 if x1 in missing_data_index:
72 if x3 in available_fragment_index and y1 in

available_fragment_index:↪→

73 all_fragments[x1] = sxor(all_fragments[x3],
all_fragments[y1])↪→

74 available_fragment_index.add(x1)
75 elif x2 in available_fragment_index and x3 in

available_fragment_index and y3 in available_fragment_index:↪→

76 all_fragments[x1] = sxor(sxor(all_fragments[x2],
all_fragments[x3]), all_fragments[y3])↪→

77 available_fragment_index.add(x1)
78 if x2 in missing_data_index:
79 if x4 in available_fragment_index and y2 in

available_fragment_index:↪→

80 all_fragments[x2] = sxor(all_fragments[x4],
all_fragments[y2])↪→

81 available_fragment_index.add(x2)
82 elif x1 in available_fragment_index and x3 in

available_fragment_index and y3 in available_fragment_index:↪→

83 all_fragments[x2] = sxor(sxor(all_fragments[x1],
all_fragments[x3]), all_fragments[y3])↪→

84 available_fragment_index.add(x2)
85 elif x3 in available_fragment_index and x4 in

available_fragment_index and y4 in available_fragment_index:↪→

86 all_fragments[x2] = sxor(sxor(all_fragments[x3],
all_fragments[x4]), all_fragments[y4])↪→

87 available_fragment_index.add(x2)
88 elif y1 in available_fragment_index and y3 in

available_fragment_index:↪→
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89 all_fragments[x2] = sxor(all_fragments[y1],
all_fragments[y3])↪→

90 available_fragment_index.add(x2)
91 if x3 in missing_data_index:
92 if x1 in available_fragment_index and y1 in

available_fragment_index:↪→

93 all_fragments[x3] = sxor(all_fragments[x1],
all_fragments[y1])↪→

94 available_fragment_index.add(x3)
95 elif x1 in available_fragment_index and x2 in

available_fragment_index and y3 in available_fragment_index:↪→

96 all_fragments[x3] = sxor(sxor(all_fragments[x1],
all_fragments[x2]), all_fragments[y3])↪→

97 available_fragment_index.add(x3)
98 elif x2 in available_fragment_index and x4 in

available_fragment_index and y4 in available_fragment_index:↪→

99 all_fragments[x3] = sxor(sxor(all_fragments[x2],
all_fragments[x4]), all_fragments[y4])↪→

100 available_fragment_index.add(x3)
101 elif y2 in available_fragment_index and y4 in

available_fragment_index:↪→

102 all_fragments[x3] = sxor(all_fragments[y2],
all_fragments[y4])↪→

103 available_fragment_index.add(x3)
104 if x4 in missing_data_index:
105 if x2 in available_fragment_index and y2 in

available_fragment_index:↪→

106 all_fragments[x4] = sxor(all_fragments[x2],
all_fragments[y2])↪→

107 available_fragment_index.add(x4)
108 elif x2 in available_fragment_index and x3 in

available_fragment_index and y4 in available_fragment_index:↪→

109 all_fragments[x4] = sxor(sxor(all_fragments[x2],
all_fragments[x3]), all_fragments[y4])↪→

110 available_fragment_index.add(x4)
111

112

113 def _fix_parity_fragment(self, all_fragments,
available_fragment_index):↪→

114 all_parity_index = set(range(self.k, self.k + self.m))
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115 missing_parity_index = all_parity_index -
available_fragment_index↪→

116

117 if y1 in missing_parity_index:
118 all_fragments[y1] = sxor(all_fragments[x1],

all_fragments[x3])↪→

119 available_fragment_index.add(y1)
120 if y2 in missing_parity_index:
121 all_fragments[y2] = sxor(all_fragments[x2],

all_fragments[x4])↪→

122 available_fragment_index.add(y2)
123 if y3 in missing_parity_index:
124 all_fragments[y3] = sxor(sxor(all_fragments[x1],

all_fragments[x2]), all_fragments[x3])↪→

125 available_fragment_index.add(y3)
126 if y4 in missing_parity_index:
127 all_fragments[y4] = sxor(sxor(all_fragments[x2],

all_fragments[x3]), all_fragments[x4])↪→

128 available_fragment_index.add(y4)
129

130

131 def encode(self, data_bytes):
132 """
133 Encode N bytes of a data object into k (data) + m

(parity) fragments::↪→

134

135 def encode(self, data_bytes)
136

137 input: data_bytes - input data object (bytes)
138 returns: list of fragments (bytes)
139 throws:
140 ECBackendInstanceNotAvailable - if the backend library

cannot be found↪→

141 ECBackendNotSupported - if the backend is not supported
by PyECLib (see ec_types above)↪→

142 ECInvalidParameter - if invalid parameters were
provided↪→

143 ECOutOfMemory - if the process has run out of memory
144 ECDriverError - if an unknown error occurs
145 """
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146

147 # Main fragment size
148 fragment_size = int(math.ceil(len(data_bytes) /

float(self.k)))↪→

149

150 data = []
151 parity = []
152 output_fragments = []
153

154 offset = 0
155

156 for i in range(self.k - 1):
157 fragment = data_bytes[offset : offset +

fragment_size]↪→

158 data.append(fragment)
159 offset += fragment_size
160

161 # Append last fragment
162 last_fragment = data_bytes[offset:]
163 data.append(last_fragment)
164

165 data_x1, data_x2, data_x3, data_x4 = data
166

167 parity_y1 = sxor(data_x1, data_x3)
168 parity_y2 = sxor(data_x2, data_x4)
169

170 parity_y3 = sxor(sxor(data_x1, data_x2), data_x3)
171 parity_y4 = sxor(sxor(data_x2, data_x3), data_x4)
172

173 parity = [parity_y1, parity_y2, parity_y3, parity_y4]
174

175 # Add indexes to fragments as metadata
176 for i in range(len(data)):
177 indexed_fragment = self._add_fragment_index(data[i],

i)↪→

178 output_fragments.append(indexed_fragment)
179

180 for i in range(len(parity)):
181 indexed_fragment = self._add_fragment_index(parity[i],

i+self.k)↪→
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182 output_fragments.append(indexed_fragment)
183

184 return output_fragments
185

186

187 def decode(self, fragment_payloads, ranges=None,
188 force_metadata_checks=False):
189 """
190 Decode between k and k+m fragments into original object::
191

192 def decode(self, fragment_payloads)
193

194 input: list of fragment_payloads (bytes)
195 returns: decoded object (bytes)
196 throws:
197 ECBackendInstanceNotAvailable - if the backend library

cannot be found↪→

198 ECBackendNotSupported - if the backend is not supported
by PyECLib (see ec_types above)↪→

199 ECInvalidParameter - if invalid parameters were
provided↪→

200 ECOutOfMemory - if the process has run out of memory
201 ECInsufficientFragments - if an insufficient set of

fragments has been provided (e.g. not enough)↪→

202 ECInvalidFragmentMetadata - if the fragment headers
appear to be corrupted↪→

203 ECDriverError - if an unknown error occurs
204 """
205 if ranges is not None:
206 raise ECDriverError("Decode does not support range

requests in the NTNU_EC_Driver.")↪→

207

208 if len(fragment_payloads) < self.k:
209 raise ECInsufficientFragments(
210 "Insufficient fragments given to decode.")
211

212 fragments = [None] * (self.k + self.m)
213 available_fragment_index = set()
214 # extract indexes from fragments
215 for indexed_fragment in fragment_payloads:
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216 index, fragment =
self._get_fragment_index(indexed_fragment)↪→

217 fragments[index] = fragment
218 available_fragment_index.add(index)
219

220

221 all_data_index = set(range(self.k))
222

223 # recursively restore data fragments
224 # until all data fragments are available
225 # or no further restoration possible
226 while(len(available_fragment_index & all_data_index) !=

self.k):↪→

227

228 pre_fragments_count = len(available_fragment_index)
229

230 self._fix_data_fragment(fragments,
available_fragment_index)↪→

231

232 post_fragments_count = len(available_fragment_index)
233

234 if post_fragments_count == pre_fragments_count:
235 raise ECInsufficientFragments("Insufficient

fragments given to decode.")↪→

236 return
237

238 # All data fragments are guaranteed to be repaired by now
239 for index in all_data_index:
240 assert fragments[index] is not None
241

242 # decode original data
243 data_bytes = ’’
244

245 for i in all_data_index:
246 data_bytes += fragments[i]
247

248 return data_bytes
249

250

251
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252 def reconstruct(self, available_fragment_payloads,
253 missing_fragment_indexes):
254 """
255 Reconstruct "missing_fragment_indexes" using

"available_fragment_payloads"::↪→

256

257 def reconstruct(self, available_fragment_payloads,
missing_fragment_indexes)↪→

258

259 input: available_fragment_payloads - list of fragment
payloads↪→

260 input: missing_fragment_indexes - list of indexes to
reconstruct↪→

261 output: list of reconstructed fragments corresponding to
missing_fragment_indexes↪→

262 throws:
263 ECBackendInstanceNotAvailable - if the backend library

cannot be found↪→

264 ECBackendNotSupported - if the backend is not supported
by PyECLib (see ec_types above)↪→

265 ECInvalidParameter - if invalid parameters were
provided↪→

266 ECOutOfMemory - if the process has run out of memory
267 ECInsufficientFragments - if an insufficient set of

fragments has been provided (e.g. not enough)↪→

268 ECInvalidFragmentMetadata - if the fragment headers
appear to be corrupted↪→

269 ECDriverError - if an unknown error occurs
270 """
271 with open("/home/swift/log.txt", "a") as fpp:
272 fpp.write("-reconstruct\n")
273 fpp.close()
274

275 fragments = [None] * (self.k + self.m)
276 available_fragment_index = set()
277

278 for indexed_fragment in available_fragment_payloads:
279 index, fragment =

self._get_fragment_index(indexed_fragment)↪→

280 fragments[index] = fragment
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281 available_fragment_index.add(index)
282

283 all_data_index = set(range(self.k))
284 all_parity_index = set(range(self.k, self.k + self.m))
285

286 while(len(available_fragment_index & all_data_index) !=
self.k):↪→

287

288 pre_fragments_count = len(available_fragment_index)
289

290 self._fix_data_fragment(fragments,
available_fragment_index)↪→

291

292 post_fragments_count = len(available_fragment_index)
293

294 if post_fragments_count == pre_fragments_count:
295 raise ECInsufficientFragments("Insufficient

fragments given to decode.")↪→

296 return
297

298 # All data fragments are repaired by now
299 for index in all_data_index:
300 assert fragments[index] is not None
301

302 self._fix_parity_fragment(fragments,
available_fragment_index)↪→

303

304 # All parity fragments are repaired by now
305 for index in all_parity_index:
306 assert fragments[index] is not None
307

308

309 return fragments
310

311 def fragments_needed(self, missing_fragment_indexes):
312 """
313 Return the indexes of fragments needed to reconstruct

"missing_fragment_indexes"::↪→

314

315 def fragments_needed(self, missing_fragment_indexes)
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316

317 input: list of missing_fragment_indexes
318 output: list of fragments needed to reconstruct fragments

listed in missing_fragment_indexes↪→

319 throws:
320 ECBackendInstanceNotAvailable - if the backend library

cannot be found↪→

321 ECBackendNotSupported - if the backend is not supported
by PyECLib (see ec_types above)↪→

322 ECInvalidParameter - if invalid parameters were
provided↪→

323 ECOutOfMemory - if the process has run out of memory
324 ECDriverError - if an unknown error occurs
325 """
326 with open("/home/swift/log.txt", "a") as fpp:
327 fpp.write("-needed\n")
328 fpp.close()
329

330 all_fragments = range(self.k + self.m)
331

332 return list(set(all_fragments) -
set(missing_fragment_indexes))↪→

333

334

335 def min_parity_fragments_needed(self):
336 """
337 Minimum parity fragments needed for durability

gurantees::↪→

338

339 def min_parity_fragments_needed(self)
340

341 # NOTE: Currently hard-coded to 1, so this can only be
trusted for MDS codes, such as Reed-Solomon.↪→

342

343 output: minimum number of additional fragments needed to
be synchronously written to tolerate the loss of any one
fragment (similar guarantees to 2 out of 3 with 3x
replication)

↪→

↪→

↪→

344 throws:



62 A. SOURCE CODE OF NTNU_EC_DRIVER CLASS

345 ECBackendInstanceNotAvailable - if the backend library
cannot be found↪→

346 ECBackendNotSupported - if the backend is not supported
by PyECLib (see ec_types above)↪→

347 ECInvalidParameter - if invalid parameters were
provided↪→

348 ECOutOfMemory - if the process has run out of memory
349 ECDriverError - if an unknown error occurs
350 """
351 with open("/home/swift/log.txt", "a") as fpp:
352 fpp.write("-min parity\n")
353 fpp.close()
354

355 # Hard-coded to 1, as PyECLibDriver (for RS codes & XOR
codes)↪→

356 return 1
357

358 def get_metadata(self, fragment, formatted=0):
359 """
360 Return an opaque header known by the underlying library

or a formatted header (Python dict)::↪→

361

362 def get_metadata(self, fragment, formatted = 0)
363

364 input: raw fragment payload
365 input: boolean specifying if returned header is opaque

buffer or formatted string↪→

366 output: fragment header (opaque or formatted)
367 throws:
368 ECBackendInstanceNotAvailable - if the backend library

cannot be found↪→

369 ECBackendNotSupported - if the backend is not supported
by PyECLib (see ec_types above)↪→

370 ECInvalidParameter - if invalid parameters were
provided↪→

371 ECOutOfMemory - if the process has run out of memory
372 ECDriverError - if an unknown error occurs
373 """
374 with open("/home/swift/log.txt", "a") as fpp:
375 fpp.write("-get meta\n")
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376 fpp.close()
377 return ’’
378

379 def verify_stripe_metadata(self, fragment_metadata_list):
380 """
381 Use opaque buffers from get_metadata() to verify a the

consistency of a stripe::↪→

382

383 def verify_stripe_metadata(self, fragment_metadata_list)
384

385 intput: list of opaque fragment headers
386 output: formatted string containing the ’status’ (0 is

success) and ’reason’ if verification fails↪→

387 throws:
388 ECBackendInstanceNotAvailable - if the backend library

cannot be found↪→

389 ECBackendNotSupported - if the backend is not supported
by PyECLib (see ec_types above)↪→

390 ECInvalidParameter - if invalid parameters were
provided↪→

391 ECOutOfMemory - if the process has run out of memory
392 ECDriverError - if an unknown error occurs
393 """
394 with open("/home/swift/log.txt", "a") as fpp:
395 fpp.write("-verifystripe\n")
396 fpp.close()
397 return True
398

399 def get_segment_info(self, data_len, segment_size):
400 """
401 Return a dict with the keys - segment_size,

last_segment_size, fragment_size, last_fragment_size and
num_segments::

↪→

↪→

402

403 def get_segment_info(self, data_len, segment_size)
404

405 input: total data_len of the object to store
406 input: target segment size used to segment the object

into multiple EC stripes↪→
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407 output: a dict with keys - segment_size,
last_segment_size, fragment_size, last_fragment_size and
num_segments

↪→

↪→

408 throws:
409 ECBackendInstanceNotAvailable - if the backend library

cannot be found↪→

410 ECBackendNotSupported - if the backend is not supported
by PyECLib (see ec_types above)↪→

411 ECInvalidParameter - if invalid parameters were
provided↪→

412 ECOutOfMemory - if the process has run out of memory
413 ECDriverError - if an unknown error occurs
414

415 """
416 with open("/home/swift/log.txt", "a") as fpp:
417 fpp.write("-getsegment\n")
418 fpp.close()
419

420

421

422 num_segments = int(math.ceil(float(data_len) /
segment_size))↪→

423

424 fragment_size = int(math.ceil(float(data_len) / self.k))
425 last_fragment_size = data_len - fragment_size * (self.k -

1)↪→

426

427 if num_segments == 1:
428 segment_size = data_len
429 last_segment_size = data_len
430 else:
431 last_segment_size = data_len - segment_size *

(num_segments - 1)↪→

432

433 #
---------------------------------------------------------↪→

434 # WORKAROUND
435 # Add index in front of each fragment, as metadata
436 # with format: (%d,%s) % (index, data)
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437 # for (4,4) ntnu code the length of index is 1
(one-digit)↪→

438 index_overhead = 2
439 fragment_size += index_overhead
440 last_fragment_size += index_overhead
441 #

---------------------------------------------------------↪→

442

443 results = {
444 "segment_size": segment_size,
445 "last_segment_size": last_segment_size,
446 "fragment_size": fragment_size,
447 "last_fragment_size": last_fragment_size,
448 "num_segments": num_segments
449 }
450

451 return results
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