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Abstract 

Gene regulation has traditionally mainly been viewed as a 1D and possibly 2D process. In the 

1D view the genome is seen as a linear string of nucleotides, where one or more transcription 

factors (TFs) bind to transcription factor binding sites (TFBSs), and thereby regulate the 

expression of genes that are nearby in the linear genomic sequence. The 2D process can be 

described with DNA looping where proteins bind to distal binding sites and bring them in 

close proximity of the transcription start site (TSS).  However, in reality such interactions take 

place in 3D space meaning multiple interactions, possibly also between separate 

chromosomes. The binding of TFs to genomic DNA is experimentally studied using mainly 

the ChIP-Seq protocol. In some cases, the motif for transcription factor binding is found only 

in a subset of peaks. In this project we looked at the phenomenon of motifless (ML) binding 

in Vitamin D Receptor (VDR) ChIP-Seq experiments where interestingly as much as 50% of 

the identified peaks seem to be ML. These motifless binding sites may be caused by 3D 

interactions or DNA looping where the DNA strand folds back and interacts with itself or 

distally with another chromosome. Here we use statistics and computer software to measure 

localization of ML sites in 3D as well as 1D space. This is completed using previously 

generated genomic annotation data from ENCODE and other datasets to measure differences 

between ML peaks and regions containing known TF binding sites.  
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1 Introduction 

In all living cells there is a recipe that describes the building blocks of life called 

deoxyribonucleic acid or DNA. This molecule carries most of the genetic instructions used in 

the development, functioning and reproduction of all known living organisms. The 

nucleotides adenine, thymine, cytosine and guanine are placed on a linear strand of alternating 

2-deoxyribose and phosphate that makes up DNA. Genes are segments of the DNA strand that 

direct the manufacture of specific molecular end products that are essential in growth, 

development and maintenance of all biological processes in living things. The complete set of 

genes and DNA are wrapped around histones and located inside the cell nucleus. The entire 

DNA strand is often referred to as the genome where eukaryotic genomes usually comprise of 

coding and non-coding DNA. Genes consist of introns and exons where exons make up the 

coding and introns the non-coding regions of genes. In between genes are a subset of 

noncoding DNA called intergenic regions as well as regulatory regions that affect genes and 

how they are transcribed. Eukaryotes are made more complex as one gene can be responsible 

for more than one product by posttranscriptional processing where introns are removed which 

result in expression of exons that can be rearranged and can result in different molecular end 

products.  The entire DNA sequence is then organized into 23 chromosome pairs that 

altogether make up the human genome. Genes are then recognized by a set of proteins that 

interpret the genetic code and produce a string of mRNA that is later used as a recipe to create 

long chains of amino acids. These chains are then usually folded by chaperone enzymes into 

proteins that have a specific function in the body. Regulated gene expression is crucial to the 

proper growth and survival of an organism. In general, gene expression is the process by 

which the production of individual, genetically-encoded proteins are uniquely regulated in 

response to specific environmental and developmental signals. Without it, the genetic code of 

a chromosome is the equivalent of a computer data file without the appropriate application to 

run it.  

Because of the large number of applications included in this project all tools and workbenches 

are written in italic. 
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1.1 Gene regulation  

1.1.1 Transcription factors and their role in gene regulation 

A group of proteins called transcription factors act to regulate gene expression either 

positively or negatively. To better achieve this modular functional domains exist in these 

proteins and act in different ways to regulate the activity of the transcription factor itself and 

also the gene they regulate [1]. Regulation of TFs are either by the ligand binding in the 

ligand-binding domain in the TF or by interaction with other TFs through the activation 

function domain. Other regulatory factors of TFs include posttranslational modifications like 

phosphorylation, ubiquitination and a host of others which activates or suppresses or even 

marks them for destruction. Another important part of the TF is the DNA binding domain 

(DBD) which interacts with DNA. A specific string of nucleotides which serves as 

template/motif for DNA, called response element serves as a template for DNA by the DBD 

and forms the basis for most sequence specific TF activity. TFs work either alone or with 

others as mono- or hetero- dimers in binding DNA. 

The DBD in the TF contains amino acids that allow for some specificity regarding nucleotide 

binding. The TFs bind proximally or distally to regulated regions and will through several 

mechanisms exert their effects. In cases where TFs bind regions that are distal to the genes 

being regulated, DNA looping has been suggested to be a mechanism with which these 

distally located TFs are able to interact with their target genes. Also in cases where they are 

located proximally, co-activators or co-repressors interact with the transcription machinery 

and act as a bridge between them to initiate transcription [2].  

Other distal regulatory factors are silencers, insulators and other DNA regions that are distal 

to the TSS, but in some aspect influence transcription initiation. The immediate function of 

regulatory regions on transcription are dependent on the type of TFs that bind and can act as 

either activators or repressors of transcription. Regulatory DNA regions together with 

regulatory proteins make up the expression and repression of genes. Regulatory factors 

achieve their interaction with DNA by hydrogen bonds and Van der Waals forces.  

Transcription factors work in a combinatorial manner where the control of single genes falls 

under the influence of several TFs acting together. This allows for a small number of TFs to 

regulate a large number of genes. To be able to regulate gene transcription, TFs bind to 

regions that are usually located at the start of genes called response elements [3]. The 

response element is a small part of a larger core promotor which is the minimal portion of the 
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promoter required to properly initiate transcription. Core promotors may consist of TATA-

binding region (TATA-box) and or an initiator region (INR) located proximal to the 

translation start site (TSS). More regulatory regions are found in introns, exons and non-

coding regions of DNA. These are usually termed enhancers and can influence gene 

expression from many thousand base pairs away [4]. Enhancer genes and activator proteins 

promote transcription by bending the DNA strand bringing them in close proximity of the 

promotor site that in a complex with other TFs allow for RNA polymerase to bind and initiate 

transcription of RNA. Bending the DNA strand putting enhancer genes and activator proteins 

in close proximity of the promotor site is called DNA looping and is an important DNA 

regulatory function. This feature makes it possible for distally located genes to control gene 

expression directly through close interaction [5].  

1.1.2 TFs and cis regulatory modules 

Cis regulatory modules (CRMs) are stretches of DNA usually 100-1000 DNA base pairs in 

length where different TFs can bind to the CRM binding domains [6]. TFs with binding sites 

within CRM allow for combinatorial control over target genes dependent on the cofactors and 

concentration of specific TFs at a specific time and place. Control is also exerted through 

different CRMs acting together on single genes. The functional role of CRMs on gene 

regulation are believed to work by three known mechanisms. One mechanism is called the 

DNA scanning model and involves the assembly of TFs and its cofactors at the CRM and 

subsequent scanning of DNA until the general transcription machinery complex is found. The 

second mechanism is believed to be a combination of the two first mechanisms termed the 

facilitated tracking model [5]. The assembly of the TFs and their cofactors takes place in the 

CRM. Although, this complex scans for intervening DNA sequence for the promotor, this is 

done in small steps with the complex still bound to the CRM. The initial step creates a small 

loop which increases in size as scanning continues until the target promotor is found. The 

third mechanism is the previously mentioned DNA looping where the promotor, after TF 

binding, interacts with DNA in the CRM and this is usually referred to as the DNA looping 

model. While the underlying chemistry of DNA looping is common to all systems, the precise 

biochemical mechanism of DNA looping in different systems can vary [2]. 

1.1.3 The role of genomic 3D interactions in gene regulation 

1.1.3.1 DNA looping and cohesin 

DNA looping appears to have been chosen by nature in such a variety because it solves 

problems both of binding and of geometry because this enables binding of a protein to 
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multiple sites on the DNA strand that again enables high occupancy of DNA sites by a low 

number of proteins [2]. 

DNA looping is facilitated by the cohesion complex which is known to influence the genomic 

3D structure [7, 8]. Cohesin consists of four core subunits being SMC1A, SMC3, RAD21 and 

STAG1 or STAG2 [9]. One emerging aspect of cohesin is its ability to regulate gene 

transcription by binding to CTCF regions, rearranging the genome 3D structure to regulate 

transcription [10]. More specifically it has been confirmed that CTCF and cohesion facilitates 

inter domain looping, based on actively transcribed DNA sites, at the immunoglobulin, HoxA, 

β-globin, and interferon gamma loci [11, 12]. In contrast CTCF has been linked with local 

intra domain interactions in B-cells [13]. To make this even more complex Carbon-Copy 

Chromosome Conformation Capture (5C) analysis revealed that long range interactions 

frequently span CTCF binding sites suggesting that CTCF could be working as a barrier or 

insulator in repressed regions as well as in a positive manner in active regions looping 

enhancers and promotors together [14]. Despite being commonly linked to CTCF, cohesin has 

recently been given a CTCF-independent role in transcriptional regulation and chromatin 

looping [15].  

1.1.3.2 TADs and HOT regions 

Other features that affect DNA 3D structure are called topologically associating domains or 

TADs. These domains show high local DNA interaction frequencies compared to other DNA 

regions. TADs are conserved across mammalian species and form clusters of insulated 

neighbourhoods that show low interaction frequency between the different domains [16]. 

These neighbourhoods are defined by cohesin-associated CTCF-CTCF loops that make up the 

structural framework for TADs. These structures are rarely affected by human sequence 

variation, but are frequently altered by somatic mutations in cancer [17-19].  
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Figure 1 in this schematic of a chromosome’s 3D structure, the DNA loops (black) are anchored by CTCF proteins 

(purple) at their bases. Regulatory elements, called enhancers (red) only affect the genes (black arrows) that reside in 

the loops with them. The protein cohesin (blue rings) forms the looped structures. The entire structure forms an 

insulated neighbourhood with decreased interaction rates with down or upstream insulated neighbourhoods.  

Adapted by permission from Elsevier: Cell Press [16], copyright (2016).  

However, TADs are not to be confused with high-occupancy target (HOT) regions that are 

compact genome loci that is highly transcribed together in the genome as well as binding 

many different TFs. On the opposite hand there are LOT regions consisting of intergenic 

regions (IGR) that are stretches of DNA sequences located between genes and a subset of 

noncoding DNA [20-22].  Specifically, mammalian HOT regions are regulatory hubs that 

integrate the signals from diverse regulatory pathways to quantitatively tune the promoter for 

RNA polymerase II recruitment. TADs and HOT regions both play an important part in TF 

gene regulation by affecting genome structure as well as being integrating hubs for gene 

regulation.  

1.1.3.3 The role of epigenetic modifications in gene regulation 

Recruitment of TFs to regulatory elements like members of the DNA polymerase family, 

histone modifiers and co-activators form a multi-unit complex responsible for the actual 

transcription process. Aside from this other proteins interact with DNA influencing regulation 

by rearranging the chromatin state and also the three dimensional structure of the genome [23, 

24]. DNA stretches of approximately 150 bp are wrapped around octets of histone proteins to 

form nucleosomes. These and other DNA associated proteins make up chromatin which is a 

complex structure that works as a scaffold that again directs DNA activity [25]. Combinations 

of these DNA associated proteins make up different chromatin formations that is functionally 

linked to the expression state of the DNA they bind. One of these states are heterochromatin 

which is a dense packaging of DNA and histones into nucleosomes restricting access to DNA 
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and regulatory regions that also contributes to the regulation process. A different form of 

chromatin is euchromatin which is a more open and accessible form of chromatin usually 

associated with active genes. Epigenetic modifications such DNA methylation and histone 

modifications regulate the chromatin state by altering the combination of proteins binding to 

DNA. These chromatin factors regulate the chromatin structure by altering histone 

modifications by adding single to multiple methyl (methylation) groups to lysine and arginine 

(H3K27 and H3K9ac) on histones. These histone proteins tend to have positive charge and 

DNA have negative charge and therefore electrostatic forces of attraction tends to wrap DNA 

tightly around the histone core in the nucleosome forming heterochromatin. On the other 

hand, histone modifications like acetylation of lysine by histone acetyltransferases (HATs) 

removes the positive charges on histones resulting in a more open chromatin formation. DNA 

can now be freely accessed by transcription factors and initiation of DNA transcription can 

occur. This is reversed by histone deacetylases (HDACs) which restores the electrostatic force 

and tightening the chromatin structure. Combinations of chromatin proteins define five 

principal chromatin types as are shown in Figure 2. More detailed descriptions of chromatin 

types  exists, but in this project we will limit us to the five main types as described by colour 

in Figure 2 [26].   

 

Figure 2 Systematic protein location mapping reveals five principal chromatin types. Red and yellow chromatin mark 

different types of genes and would in our case represent the euchromatin states. Black chromatin marks a distinct 

type of repressive chromatin where no or little transcriptional activity is present. Blue and green chromatin 

correspond to known types of heterochromatin. Different chromatin types include distinct compositions of chromatin 

proteins defining the different types. Reprinted with permission from Elsevier [26], copyright (2010). 

A well-established method of detecting open and closed states of chromatin are by defining 

DHSs. These sites are specific regions of the genome where chromatin has lost its condensed 
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structure, exposing the DNA and making it accessible for TF binding [27]. Because of the 

open chromatin state of the DNA it will be sensitive to degradation by the DNase I enzyme. 

Since this remodelled state is necessary for the binding of proteins such as transcription 

factors DNase I hypersensitivity sites (DHSs) define in a large way active and inactive DNA 

in regards to gene transcription [28].  

1.2 Experimental approaches 

1.2.1 Identification of TF binding sites by ChIP-seq 

The important role that TFs play in gene regulation dictates the necessity to recognize the 

DNA regulatory regions to which they bind. Both experimental and in silico methods are used 

to achieve this. These methods tend to be complementary to each other where one is used to 

augment and help refine the results of the other. Several methods exist to determine the 

different binding locations of proteins and transcription factors in the laboratory and one of 

them are Chromatin immunoprecipitation sequencing (ChIP-seq).  

Chromatin immunoprecipitation (ChIP) is a type of immunoprecipitation experimental 

technique that allows for large scale analysis of protein interaction with DNA and thus 

provides a good means of identifying transcription factor binding sites. This is achieved by 

TFs binding to DNA by either formaldehyde or other crosslinking compounds. Then the 

crosslinked DNA are fragmented into ~500 bp long segments by sonication or nuclease 

digestion. Crosslinked DNA fragments associated with the protein of interest are collected 

from the cell debris using an appropriate protein-specific antibody. Associated DNA 

fragments are purified and sequenced before they are mapped to a reference genome. The 

amount of reads associated with each DNA segment represents the number of interactions 

between the DNA and that specific protein, in the cell sample, and are usually referred to as 

ChIP-seq peaks. The information obtained from sequencing consists of tens of hundreds of 

millions of short DNA sequence fragments (reads) of the 5‘-ends of both the forward and 

reverse strands of DNA [29, 30]. Comparison of reads with a reference genome yields regions 

of overlap. These regions of overlap are subjected to statistical analysis using a control to 

establish enrichment. Statistically significant regions indicate the regions of the genome 

where the DNA-interacting protein binds. 

1.2.2 Chromosome conformational capture 

In 2002 Job Dekker published an article describing a method that would allow him to detect 

in vivo 3D DNA structure. He called this method chromosome conformation capture or 3C. 

https://en.wikipedia.org/wiki/Transcription_factors
https://en.wikipedia.org/wiki/Transcription_factors
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The 3C method aimed at identifying, locating and mapping physical interactions between 

genetic elements located throughout the human genome. In the years after Dekker published 

his article, new techniques were developed as described in Figure 3. The common goal of all 

the different 3C technologies was the same. Create a library of interacting segments in 

chromosomal DNA and locate the different interactions in the genome [31, 32].  

 

Figure 3 a) Showing the main initial steps of 3C technology being crosslinking of interacting loci, fragmentation, 

ligation, and DNA purification that are similar in 3C, 4C, 5C, ChIA-PET and Hi-C. b) Shows the different 

chromosome conformation capture assays and the main differences between 3C, 4C, 5C, ChIA-PET and Hi-C. Figure 

3 was acquired from Dekker et al, and modified to fit this article. Reprinted by permission from Nature publishing 

group [32], copyright (2013) 

The initial stepwise methods for a 3C analysis are usually similar in 3C, 4C, 5C, ChIA-PET 

and Hi-C. The first step is isolating crosslinking DNA and proteins and this is usually done by 

DNA fragmentation. The DNA fragments are then ligated, purified and sequenced. The 

number of sequence reads for each ligated product can then be correlated to the number DNA-

protein crosslinking occurrences. The sequencing library generated now consists of ligated 

intersecting DNA segments that can be mapped to a reference genome to reveal interacting 

DNA segments. ChIA-PET data are acquired by similar methods where antibodies are created 

that have high affinity to DNA binding proteins and consequently immunoprecipitation. The 

DNA bound by the different proteins can be sequenced and mapped to a reference genome 

where the result is a library containing protein specific genome interactions [33]. This library 

can then be used to explore the genome organization at a few hundred kilo base pair 
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resolution. Because of the large amount of data produced by the 3C methods it is best 

analysed using different computational methods. 

1.3 Computational approaches 

1.3.1 Computational analysis of TF binding sites 

In silico methods for identification of TF binding sites are based on searching for patterns that 

are overly presented in a set of related sequences, for example a ChIP-seq dataset, as opposed 

to unrelated sequences. These sequences make up related and co- regulated genomic regions 

that are believed to partake in the same process. These patterns describe the TF of interest and 

its specificity and can be represented in different ways namely: a consensus sequence, a 

position weight matrix (PWM) or a position specific scoring matrix (PSSM). This pattern can 

be used to detect similar binding sites in other sequences that are believed to be active in the 

same process. Patterns are then stored in large databases such as TRANSFAC_public and 

JASPAR_core for use in motif identification algorithms or by researchers [34, 35].    

By aligning DNA sequences from suspected binding sites it is possible to make a consensus 

sequence based on each base position and its conservation across all the sequences. This 

consensus sequence is derived in the belief that the sequences used are co- regulated as well 

as actual protein DNA interactions. This is verified by statistical overrepresentation of the 

pattern based on background frequencies. The consensus sequence matches closely all 

positions in the sequence, but as the consensus sequence is based on a consensus nucleotide 

all the different nucleotides in that position might not be exact. The consensus sequence can 

have variations dependent on the type of mismatches allowed or even the positions within 

which these variations are specified to be allowed in the representation.   

An alternative to consensus sequences, when representing TF binding sites, are position 

weight matrices (PWM) and position specific scoring matrices (PSSM). These methods 

provide occurrence probabilities for each nucleotide in each position based on occurrence 

frequency in the pattern. This usually yields more information about the pattern than a 

consensus sequence as it allows for inference of how well the TF can bind to such a site based 

on the idea that the strength of a site is dependent on the contribution of each of the positions 

making it up. 

PWMs are constructed much like a consensus pattern by relating a set of sequences. PWMs 

are made by collecting a set of sequences and making a frequency table with each element of 

the table representing the frequency of each nucleotide at any given position in the alignment. 
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The base count for each position is called weights meaning that the higher the count the more 

likely it is for that nucleotide to occur in that specific position. A different representation for 

measuring weight is by log likelihoods ratio where the relative frequency of each base in the 

sequence collection is taken into account [36]. 

A PWM can be used in calculating the likelihood of one suspected TF binding region to be an 

actual binding region. The score of a probable TF is then the sum of the matrix values for 

each nucleotide at each position in the sequence. Higher scores will indicate that the TF is 

likely to bind to the sequence region and lower scores will indicate that it is less likely that 

this is an actual binding site. 

Computational analysis methods use one of two methods to detect TF binding sites. One is to 

seek for patterns without a priori information about the binding patterns often referred to as 

motif discovery.  The second is using known patterns to discover TFs usually referred to as 

motif scanning/ mapping methods. The motif scanning methods use the pattern 

representations described above in the process and this is usually less demanding computer 

memory wise.  

1.3.2 Use additional information to guide binding site prediction and motif 

discovery 

Motif scanning and discovery are not as straight forward as it might seem. The difficulty lies 

in the fact that motifs tend to be short sequences about four to ten bp (base pairs) and the 

DNA library only consists of four nucleotides (ACGT). Because of this the motif will occur 

multiple times throughout the genome by chance resulting in many false positives. Advances 

in technology in the past few years have made technology available that makes it possible to 

distinguish real motifs and identify features that distinguish them from the background. The 

ENCODE project has revealed many features of the genome which helps in understanding the 

gene regulatory process [37]. This information is used to limit the number of false motifs by 

using information such as DHSs, histone marks as well as sequence conservation data 

implemented in motif discovery/scanning algorithms. This will make in silico analysis better 

able to discriminate real binding regions from noise [38].  

1.4 Workbenches for analysing biological data 

As sequence information and annotations are continually updated to the human genome 

project new versions are released sequentially [39]. This has resulted in the release of many 

different versions of the human genome project over the years. This presents problems when 
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doing bioinformatics as datasets will be made using different genome builds. However, a tool 

exist that is called USCS genome lift over and enables the user to take a dataset made using 

one version of the human genome build and converting it.  

Analysing biological data often requires multiple resources from multiple databases that 

contain sequence annotations and collections of transcription factor binding profiles. This data 

is often used in algorithms that enable the processing of raw signals from sequencing 

experiments. Over the last decade many resources have been made available to help solve the 

questions that arise from biological data. One challenge is the use of different data formats by 

different groups, which makes it difficult to incorporate in to computer algorithms without 

first formatting the data. The answer to these challenges has been in large the development of 

workbenches that create a framework which enables the accessibility and localization of data 

in one place. This makes it possible to use multiple applications to analyse one dataset and its 

features. These workbenches are often available in a cloud based service or can be accessed 

from the web interface. Examples of workbenches are MotifLab2 developed at the Norwegian 

university of Science and Technology (NTNU), HiBrowse that is a galaxy based tool made at 

the University of Oslo (UiO) and Bedtools which is freely available online [38, 40, 41]. 

1.4.1 MotifLab2 version 2.0.-2 

MotifLab2 is a workbench that focuses on the integration of tools and data for the analysis of 

regulatory regions. MotifLab2 can be used to detect different binding sites for TFs and uses 

motif scanning and discovery tools as well as integrating different applications and databases. 

All the MotifLab2 processes can be run from a graphical user interface that makes it easy to 

use (Figure 4). MotifLab2 integrates multiple motif discovery tools including AlignAce, 

BioProspector, ChipMunk, MEME, MotifSampler, Priority and Weeder. This coupled with 

different types of data such as phylogenetic conservation, epigenetic marks, DHSs, ChIP-Seq 

data, positional binding preferences of transcription factors, TF-TF interactions, TF-

expression and target gene expression makes this a powerful tool in motif site prediction. 

MotifLab2 is the perfect tool for analysing ChIP-seq datasets for known TF binding sites. 

Another feature in MotifLab2 is the protocol function that lets the user define a list of 

operations to be executed in order. Protocols can be used to document the steps you perform 

during an analysis session, and they can describe workflows that can be automatically 

executed in MotifLab2. If you like, you can specify exactly which sequences to perform the 

analyses on in the protocol itself, and the protocol will then always perform the analysis on 

these sequences. 
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Figure 4 Example screenshot from MotifLab2 showing how predicted motifs on two different DNA segments are 

visualized, their strand orientation as well as each motifs bp position and direction in the genetic segment in question 

[38].  

Motiflab2 comes in different ram versions ranging between 256 MB to 4 GB and is optimized 

for UNIX systems. Another version of Motiflab2 exists that runs on a minimal GUI platform 

that enables the user to run more demanding computer tasks regarding RAM usage. However, 

to use the Minimal GUI platform the user need to provide a protocol as mentioned earlier.  

1.4.2 HiBrowse version 1.6 

Previously described 3C technology coupled with next generation sequencing has allowed for 

characterization of genome- wide chromatin 3D structure. To better understand gene 

regulation and how genome 3D structure can affect this, methods for analysing such data is 

needed. One method is HiBrowse that uses hypothesis-testing and realistic assumptions in 

null models. HiBrowse uses tracks to refer to a series of data units positioned on a line-based 

coordinate system. Another similar tool is called the Genomic Hyper Browser and it is built 

on the same platform as HiBrowse and the two will probably be merged in the future [42]. 

Some of the tools that are used in this project was originally published as tools in the Genomic 

Hyperbrowser, but has also been implemented in the newer HiBrowse version. In this project, 
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only the HiBrowse version has been used. 

 

Figure 5 Example screenshot from HiBrowse showing the output of a statistical analysis measuring closeness using the 

located nearby tool for ML and MB ChIP-seq datasets for the MAX TF, including the estimated p- value and a 

simplistic answer, for the hypothesis tested [40]. 

The genomic track represents genome features as track elements or set of track elements 

comprising a biological feature for example CTCF binding sites from a ChIP-seq experiment 

[43]. Next generation sequencing and ChIP-seq experiments creates high-resolution data 

along the genome. This large amount of data can be interpreted by tools like HiBrowse and to 

predict the significance of the outputs produced HiBrowse uses a Monte Carlo False 

Discovery Rate (MCFDR). This is done by randomizing the assignment of regions multiple 

times and then measure if the initial score is significant or not based on the score distribution. 

This MCFDR algorithm iterates between adding MC samples across tests and calculating 

intermediate FDR values for the collection of tests. Monte Carlo sampling in HiBrowse is 

stopped either by the number of Monte Carlo values or by the FDR threshold. The output of a 

statistical test in HiBrowse is often a simplistic answer including a p- value for the statement 

given. This p-value is the highest possible detected p-value based on the MCFDR resampling 

depth [44]. 

HiBrowse also offers a 3D colocalization tool that based on a reference model predicts the 

spatial closeness between segments of two different datasets. The user can ask whether all the 

genomic elements in the BED-file are more/less co-localized in 3D, in an all-versus-all 

fashion, than what would be expected by chance. In this case, the mean of the observed 
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standardized interaction frequencies is compared to the expected value estimated from the 

permuted positions in representative regions in the rest of the Hi-C (3D) track [40]. 

1.4.3 Bedtools version 2.25.0. 

Bedtools is a UNIX based command line tool that enables the user to a wide range of different 

genomic analyses. In this project the tools Intersect and Closest was used. The intersect tool 

lets the user find overlapping intervals using many different parameters. The tool Closest lets 

the user find the closest intervals among multiple datasets. In Bedtools the user specifies –a 

files that works as a query and potentially multiple –b files that work as databases for the 

query.  

 

Figure 6 (A) shows a visual presentation of the intersect tool from Bedtools and how it estimates overlapping segments 

between A and B files. The options –wa can be used if the user wants to write the original entry in A for each overlap 

and –v can be used if the user wants to only report those entries in A that have no overlap in B. (B) shows a visual 

representation of how the closest tool measures intersegment distance for multiple –b files and the different -mdb 

settings can be used to specify how multiple databases should be resolved. -each reports the closest records for each 

database and - all reports the closest records among all databases [41]. 

Different tools in Bedtools version 2.25.0 can be assigned different options to affect the 

analysis and how the output is formatted as described in Figure 6. 

1.5 Gene regulation by the vitamin D receptor - an interesting biological 

system 

When UV-B radiation hits the skin a two-step transformation reaction occurs that converts 7-

dehydo-cholesterol ultimately into the active form of vitamin D or calcidol (1α,25(OH)2D3). 

In the first step 7-dehydrocholesterol is reduced by ultraviolet light in a ring-opening reaction 

where the product is previtamin D3 (Pre-D3). Second, previtamin D3 spontaneously 

isomerizes to cholecalciferol or vitamin D3 which are the same form that is obtained through 

nutrients. Cholecalciferol then travels through the bloodstream all the way to the liver where it 

is converted to calcidol (25-hydroxyvitamin-D3) and later in the kidneys to the active form, 

Calcitriol or 1α,25(OH)2D3 [45].  

(A) (B) 
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Vitamin D receptor (VDR) is a transcription factor belonging to the family of nuclear 

receptors and are composed of 5 functional domains. The localization domain guides 

transportation of VDR to the nucleus after translation, the DNA binding domain recognize 

and bind to the response elements, the dimerization domain and the ligand binding domain 

where calcidol binds. When this happens the VDR changes its conformation and forms a 

heterodimer with retinoid X receptor (RXR) through its dimerization domain.  

The VDR can bind DNA as monomers or even dimers, but these interactions are not stable. 

Activation by calcidol and heterodimerization with RXR however stabilize this interaction. 

VDR binds to DNA as described earlier by recognizing the vitamin D response element 

(VDRE), a heptad repeat sequence with a spacer element between two half sites. The spacer 

region usually consists of three nucleotides, but this varies to some degree. This is known as 

the DR3-type VDRE where D3 indicates that the element is a direct repeat and the value 3 

indicates a spacing between the repeats.   

After DNA binding by the VDR-RXR heterodimer a wide variety of other proteins are 

recruited to the complex as well as initiating the translation machinery. One of the activated 

genes are 24-hydroxylase (CYP24A1) which are responsible for catalysing the degradation of 

1,25-dihydroxy Vitamin D3 and its precursor. To achieve transactivation, the VDR 

heterodimer acts as an initiator which recruits factors responsible for chromatin remodelling 

such as histone acetyl transferases (HATs) in the form of SRC-1 (steroid receptor coactivator) 

or CBP/p300. In addition, TATA binding protein associated factors (TAFs) and the basal 

transcription machinery are recruited further down in the process. Other factors involved in 

the transactivation function of the VDR heterodimer include the Vitamin D receptor-

interacting protein 205 (DRIP205) which upon binding to the AF2 of VDR, recruits the 

mediator complex comprising other DRIPs that link the VDR to transcription factor 2B and 

the RNA polymerase II for transcription initiation. Negative regulation by VDR involves 

interactions with VDR interacting repressor and recruitment of histone deacetylases (HDACs) 

[45]. Genes in the vitamin D signalling system, such as those coding for vitamin D receptor 

(VDR) and the enzymes 25-hydroxylase (CYP2R1), 1α-hydroxylase (CYP27B1), and 24-

hydroxylase (CYP24A1) have large CpG islands in their promoter regions and therefore can 

be silenced by DNA methylation. Additionally, VDR protein physically interacts with 

coactivator and corepressor proteins, which in turn are in contact with chromatin modifiers, 

such as HATs, HDACs, HMTs, and also with chromatin remodelers. Further, a number of 
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genes encoding for chromatin modifiers and remodelers, are primary targets of VDR and its 

ligands [46]. 

1.6 Aims of the study 

In a ChIP-seq experiment, it would in principle be expected to find a known TF binding site 

in all resulting ChIP-seq peaks. In practice some sequences will lack this TF binding site due 

to experimental noise. However, it is expected to appear in most of the peaks from the ChIP-

seq analysis. Interestingly, in VDR ChIP-seq experiments, as much as 50% of the identified 

peaks seem to lack known TF binding sites. In other words, they are motifless. These ML 

peaks seem to be real binding sites even though they have no clear explanation for their 

binding capacity. One possible explanation is 3D interactions, including DNA looping where 

two DNA segments are in closer physical proximity to each other than to intervening 

sequences. This may lead to a TF being crosslinked not only to the genomic region it actually 

is recognizing, but also to additional regions that are close to the TF, but without actually 

binding to it through a TFBS. This may then lead to false positive or “ML” binding sites. This 

hypothesis can be investigated by testing statistically for association between false binding 

sites (without motif) and short physical 3D distance to real binding sites (with motif). A figure 

representing the workflow in this project can be found in Figure 7. 
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Figure 7 TF ChIP-seq datasets were uploaded to MotifLab2 and appropriate motifs were selected according to the TF 

in question, described in Table 9. Then they were scanned for known binding sites using simple scanner at indicated 

thresholds Table 11. Sequences containing one or more motifs were determined as MB and the rest as ML. Sequences 

were then analysed using different tools from Bedtools version 2.25.0. Then datasets were uploaded to HiBrowse 

where different hypothesis and descriptive analyses were completed to describe the different properties of ML and 

MB segments.  
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2 Materials and methods 

2.1 VDR 

Table 1 VDR ChIP-seq data from Ramagopalan used in this project and relevant sources. 

Data Type PMID Lab Reference Url Dataset 

VDR 

ChIP-

seq* 

ChIP-

seq 

peaks 

207362

30 

Sreeram 

V. 

Ramago

palan, 

[47] http://genome.csh

lp.org/content/20/

10/1352.full  

 

http://genome.cshlp.

org/content/suppl/20

10/08/24/gr.107920.

110.DC1/Supplemen

tary_Table_1.xls  

*Using the Liftover tool from UCSC 0.95 was set as the minimum ration of bases that must 

remap. 

2.2 Cohesin 

ChIP-seq data given in Table 2 was analysed by Encode consortiums participating labs using 

the ENCODE and modENCODE Guidelines For Experiments Generating ChIP, DNase, 

FAIRE, and DNA Methylation Genome Wide Location Data protocol, Version 2.0, July 20, 

2011.  

Table 2 Optimal IDR threshold ChIP-seq data for the cohesin subunits and CTCF from ENCODE in cell type 

GM12878 as well as relevant sources. 

Data Type Accession Lab Reference Url Dataset 

RAD

21 

ChIP-

seq, 

Encod

e 

optima

l idr 

thresh

olded 

peaks 

ENCSR00

0BMY 

Rich

ard 

Mye

rs, 

HAI

B 

[48] https://www.

encodeprojec

t.org/experim

ents/ENCSR

000BMY/  

https://www.encodeproject

.org/files/ENCFF002CHR/

@@download/ENCFF002

CHR.bed.gz  

SMC

3 

ChIP-

seq, 

Encod

e 

optima

l idr 

thresh

olded 

peaks 

ENCSR00

0DZP 

 

 

 

Mic

hael 

Sny

der, 

Stan

ford 

[48] https://www.

encodeprojec

t.org/experim

ents/ENCSR

000DZP/  

https://www.encodeproject

.org/files/ENCFF002CPN/

@@download/ENCFF002

CPN.bed.gz  

CTCF optima

l idr 

thresh

ENCSR00

0DZN 

Mic

hael 

Sny

der, 

[48] https://www.

encodeprojec

t.org/experim

https://www.encodeproject

.org/files/ENCFF002COQ/

@@download/ENCFF002

COQ.bed.gz  

http://genome.cshlp.org/content/20/10/1352.full
http://genome.cshlp.org/content/20/10/1352.full
http://genome.cshlp.org/content/20/10/1352.full
http://genome.cshlp.org/content/suppl/2010/08/24/gr.107920.110.DC1/Supplementary_Table_1.xls
http://genome.cshlp.org/content/suppl/2010/08/24/gr.107920.110.DC1/Supplementary_Table_1.xls
http://genome.cshlp.org/content/suppl/2010/08/24/gr.107920.110.DC1/Supplementary_Table_1.xls
http://genome.cshlp.org/content/suppl/2010/08/24/gr.107920.110.DC1/Supplementary_Table_1.xls
http://genome.cshlp.org/content/suppl/2010/08/24/gr.107920.110.DC1/Supplementary_Table_1.xls
https://www.encodeproject.org/experiments/ENCSR000BMY/
https://www.encodeproject.org/experiments/ENCSR000BMY/
https://www.encodeproject.org/experiments/ENCSR000BMY/
https://www.encodeproject.org/experiments/ENCSR000BMY/
https://www.encodeproject.org/experiments/ENCSR000BMY/
https://www.encodeproject.org/files/ENCFF002CHR/@@download/ENCFF002CHR.bed.gz
https://www.encodeproject.org/files/ENCFF002CHR/@@download/ENCFF002CHR.bed.gz
https://www.encodeproject.org/files/ENCFF002CHR/@@download/ENCFF002CHR.bed.gz
https://www.encodeproject.org/files/ENCFF002CHR/@@download/ENCFF002CHR.bed.gz
https://www.encodeproject.org/experiments/ENCSR000DZP/
https://www.encodeproject.org/experiments/ENCSR000DZP/
https://www.encodeproject.org/experiments/ENCSR000DZP/
https://www.encodeproject.org/experiments/ENCSR000DZP/
https://www.encodeproject.org/experiments/ENCSR000DZP/
https://www.encodeproject.org/files/ENCFF002CPN/@@download/ENCFF002CPN.bed.gz
https://www.encodeproject.org/files/ENCFF002CPN/@@download/ENCFF002CPN.bed.gz
https://www.encodeproject.org/files/ENCFF002CPN/@@download/ENCFF002CPN.bed.gz
https://www.encodeproject.org/files/ENCFF002CPN/@@download/ENCFF002CPN.bed.gz
https://www.encodeproject.org/experiments/ENCSR000DZN/
https://www.encodeproject.org/experiments/ENCSR000DZN/
https://www.encodeproject.org/experiments/ENCSR000DZN/
https://www.encodeproject.org/files/ENCFF002COQ/@@download/ENCFF002COQ.bed.gz
https://www.encodeproject.org/files/ENCFF002COQ/@@download/ENCFF002COQ.bed.gz
https://www.encodeproject.org/files/ENCFF002COQ/@@download/ENCFF002COQ.bed.gz
https://www.encodeproject.org/files/ENCFF002COQ/@@download/ENCFF002COQ.bed.gz
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olded 

peaks 

Stan

ford 

ents/ENCSR

000DZN/  
 

2.3 ChIA-PET 

ChIA-PET dataset made using RAD21 as target given in Table 3 were produced using the 

ENCODE and modENCODE Guidelines For Experiments Generating Data using RNA-

Binding Proteins (RBPs): ENCODE and modENCODE Standards for RIP-Chip and RIP-Seq 

Experiments Version 2.0, 9 January 2012. 

Table 3 ChIA-PET data from ENCODE for cell type GM12878 used in this project and relevant sources.  

Data Type Accession Lab Reference Url Dataset 

ChIA

-PET 

 

peak

s 

ENCSR75

2QCX 

Mich

ael 

Snyd

er, 

Stanf

ord 

[48] https://www.en

codeproject.or

g/experiments/

ENCSR752QC

X/  

https://www.encodeproject

.org/files/ENCFF002EMR

/@@download/ENCFF00

2EMR.bed.gz  

 

2.4 HOT and LOT 

Table 4 HOT and LOT datasets from ENCODE for cell type GM12878 used in this project and relevant sources. 

Data PMID Lab Reference Url Datasets 

HOT Whole 

genome 

HOT 

intergenic 

LOT whole 

genome 

LOT 

intergenic 

2295094

5 

Yale  [21] http://encodene

ts.gersteinlab.o

rg/metatracks/

HOT_Gm1287

8_merged.bed.

gz  

http://encodenets.gersteinl

ab.org/metatracks/  

2.5 DNase 

Table 5 DHSs dataset from ENCODE for cell type GM12878 used in this project and relevant sources. 

Data Type PMID/ 

Accession 

Lab Reference Url Dataset 

DNas

e 

DNa

se-

seq 

22955617/  

ENCSR00

0EMT 

John 

Stam

atoy

anno

poul

os, 

UW 

[27] https://www.

encodeprojec

t.org/experim

ents/ENCSR

000EMT/  

https://www.encodeproject

.org/files/ENCFF001WFU

/@@download/ENCFF00

1WFU.bed.gz  

https://www.encodeproject.org/experiments/ENCSR000DZN/
https://www.encodeproject.org/experiments/ENCSR000DZN/
https://www.encodeproject.org/experiments/ENCSR752QCX/
https://www.encodeproject.org/experiments/ENCSR752QCX/
https://www.encodeproject.org/experiments/ENCSR752QCX/
https://www.encodeproject.org/experiments/ENCSR752QCX/
https://www.encodeproject.org/experiments/ENCSR752QCX/
https://www.encodeproject.org/files/ENCFF002EMR/@@download/ENCFF002EMR.bed.gz
https://www.encodeproject.org/files/ENCFF002EMR/@@download/ENCFF002EMR.bed.gz
https://www.encodeproject.org/files/ENCFF002EMR/@@download/ENCFF002EMR.bed.gz
https://www.encodeproject.org/files/ENCFF002EMR/@@download/ENCFF002EMR.bed.gz
http://encodenets.gersteinlab.org/metatracks/HOT_Gm12878_merged.bed.gz
http://encodenets.gersteinlab.org/metatracks/HOT_Gm12878_merged.bed.gz
http://encodenets.gersteinlab.org/metatracks/HOT_Gm12878_merged.bed.gz
http://encodenets.gersteinlab.org/metatracks/HOT_Gm12878_merged.bed.gz
http://encodenets.gersteinlab.org/metatracks/HOT_Gm12878_merged.bed.gz
http://encodenets.gersteinlab.org/metatracks/HOT_Gm12878_merged.bed.gz
http://encodenets.gersteinlab.org/metatracks/
http://encodenets.gersteinlab.org/metatracks/
https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/files/ENCFF001WFU/@@download/ENCFF001WFU.bed.gz
https://www.encodeproject.org/files/ENCFF001WFU/@@download/ENCFF001WFU.bed.gz
https://www.encodeproject.org/files/ENCFF001WFU/@@download/ENCFF001WFU.bed.gz
https://www.encodeproject.org/files/ENCFF001WFU/@@download/ENCFF001WFU.bed.gz
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2.6 TAD 

Table 6 TAD dataset from Ji et al 2016 for embryonic stem cells (hESCs) used in this project and relevant sources. 

Data Type PMID Reference Url Dataset 

TADs Mango-Called 

High-

Confidence 

SMC1 ChIA-

PET 

266864

65 
[16]  
  

http://www.cel

l.com/action/sh

owImagesData

?pii=S1934-

5909%2815%2

900505-6  

http://www.cell.com/cms/a

ttachment/2045959822/20

57172164/mmc7.xlsx  

2.7 Other transcription factors 

ChIP-seq data in Table 7 was analysed by Encode consortiums participating labs using the 

ENCODE and modENCODE Guidelines For Experiments Generating ChIP, DNase, FAIRE, 

and DNA Methylation Genome Wide Location Data protocol, Version 2.0, July 20, 2011.  

Table 7 Optimal IDR threshold GM12878 ChIP-seq data for AFT2, ETS1, IRF3, TAF1, POU2F2, MYC, SRF, 

BCLAF1, CHD2 and MAX from ENCODE used in this project and relevant sources. 

Data Type Accession Lab Ref Url Dataset 

AFT

2 

ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR000BQ

K 

Richard 

Myers, 

HAIB 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR000BQ

K/  

https://www.enc

odeproject.org/fi

les/ENCFF002C

GO/@@downlo

ad/ENCFF002C

GO.bed.gz  

ETS

1 

ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR000BK

A 

Richard 

Myers, 

HAIB 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR000BK

A/  

https://www.enc

odeproject.org/fi

les/ENCFF002C

GY/@@downlo

ad/ENCFF002C

GY.bed.gz  

IRF3 ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR408JQ

O 

Michael 

Snyder, 

Stanford 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR408JQ

O/  

https://www.enc

odeproject.org/fi

les/ENCFF103B

PB/@@downlo

ad/ENCFF103B

PB.bed.gz  

http://www.cell.com/action/showImagesData?pii=S1934-5909%2815%2900505-6
http://www.cell.com/action/showImagesData?pii=S1934-5909%2815%2900505-6
http://www.cell.com/action/showImagesData?pii=S1934-5909%2815%2900505-6
http://www.cell.com/action/showImagesData?pii=S1934-5909%2815%2900505-6
http://www.cell.com/action/showImagesData?pii=S1934-5909%2815%2900505-6
http://www.cell.com/action/showImagesData?pii=S1934-5909%2815%2900505-6
http://www.cell.com/cms/attachment/2045959822/2057172164/mmc7.xlsx
http://www.cell.com/cms/attachment/2045959822/2057172164/mmc7.xlsx
http://www.cell.com/cms/attachment/2045959822/2057172164/mmc7.xlsx
https://www.encodeproject.org/experiments/ENCSR000BQK/
https://www.encodeproject.org/experiments/ENCSR000BQK/
https://www.encodeproject.org/experiments/ENCSR000BQK/
https://www.encodeproject.org/experiments/ENCSR000BQK/
https://www.encodeproject.org/experiments/ENCSR000BQK/
https://www.encodeproject.org/experiments/ENCSR000BQK/
https://www.encodeproject.org/files/ENCFF002CGO/@@download/ENCFF002CGO.bed.gz
https://www.encodeproject.org/files/ENCFF002CGO/@@download/ENCFF002CGO.bed.gz
https://www.encodeproject.org/files/ENCFF002CGO/@@download/ENCFF002CGO.bed.gz
https://www.encodeproject.org/files/ENCFF002CGO/@@download/ENCFF002CGO.bed.gz
https://www.encodeproject.org/files/ENCFF002CGO/@@download/ENCFF002CGO.bed.gz
https://www.encodeproject.org/files/ENCFF002CGO/@@download/ENCFF002CGO.bed.gz
https://www.encodeproject.org/experiments/ENCSR000BKA/
https://www.encodeproject.org/experiments/ENCSR000BKA/
https://www.encodeproject.org/experiments/ENCSR000BKA/
https://www.encodeproject.org/experiments/ENCSR000BKA/
https://www.encodeproject.org/experiments/ENCSR000BKA/
https://www.encodeproject.org/experiments/ENCSR000BKA/
https://www.encodeproject.org/files/ENCFF002CGY/@@download/ENCFF002CGY.bed.gz
https://www.encodeproject.org/files/ENCFF002CGY/@@download/ENCFF002CGY.bed.gz
https://www.encodeproject.org/files/ENCFF002CGY/@@download/ENCFF002CGY.bed.gz
https://www.encodeproject.org/files/ENCFF002CGY/@@download/ENCFF002CGY.bed.gz
https://www.encodeproject.org/files/ENCFF002CGY/@@download/ENCFF002CGY.bed.gz
https://www.encodeproject.org/files/ENCFF002CGY/@@download/ENCFF002CGY.bed.gz
https://www.encodeproject.org/experiments/ENCSR408JQO/
https://www.encodeproject.org/experiments/ENCSR408JQO/
https://www.encodeproject.org/experiments/ENCSR408JQO/
https://www.encodeproject.org/experiments/ENCSR408JQO/
https://www.encodeproject.org/experiments/ENCSR408JQO/
https://www.encodeproject.org/experiments/ENCSR408JQO/
https://www.encodeproject.org/files/ENCFF103BPB/@@download/ENCFF103BPB.bed.gz
https://www.encodeproject.org/files/ENCFF103BPB/@@download/ENCFF103BPB.bed.gz
https://www.encodeproject.org/files/ENCFF103BPB/@@download/ENCFF103BPB.bed.gz
https://www.encodeproject.org/files/ENCFF103BPB/@@download/ENCFF103BPB.bed.gz
https://www.encodeproject.org/files/ENCFF103BPB/@@download/ENCFF103BPB.bed.gz
https://www.encodeproject.org/files/ENCFF103BPB/@@download/ENCFF103BPB.bed.gz
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TAF

1 

ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR000BG

S 

Richard 

Myers, 

HAIB 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR000BG

S/  

https://www.enc

odeproject.org/fi

les/ENCFF002C

HY/@@downlo

ad/ENCFF002C

HY.bed.gz  

POU

2F2 

ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR000BG

P 

Richard 

Myers, 

HAIB 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR000BG

P/  

https://www.enc

odeproject.org/fi

les/ENCFF002C

HP/@@downlo

ad/ENCFF002C

HP.bed.gz  

MY

C 

ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR000DK

U 

Vishwanat

h Iyer, 

UTA 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR000DK

U/  

https://www.enc

odeproject.org/fi

les/ENCFF002

DAI/@@downl

oad/ENCFF002

DAI.bed.gz  

SRF ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR000BG

E 

Richard 

Myers, 

HAIB 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR000BG

E/  

https://www.enc

odeproject.org/fi

les/ENCFF002C

HW/@@downl

oad/ENCFF002

CHW.bed.gz  

BCL

AF1 

ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR000BJ

Z 

Richard 

Myers, 

HAIB 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR000BJ

Z/   

https://www.enc

odeproject.org/fi

les/ENCFF002C

GT/@@downlo

ad/ENCFF002C

GT.bed.gz  

CHD

2 

ChIP-seq, 

Encode 

optimal idr 

ENCSR000DZ

R 

Michael 

Snyder, 

Stanford 

[48] https://www

.encodeproj

ect.org/expe

https://www.enc

odeproject.org/fi

les/ENCFF002C

https://www.encodeproject.org/experiments/ENCSR000BGS/
https://www.encodeproject.org/experiments/ENCSR000BGS/
https://www.encodeproject.org/experiments/ENCSR000BGS/
https://www.encodeproject.org/experiments/ENCSR000BGS/
https://www.encodeproject.org/experiments/ENCSR000BGS/
https://www.encodeproject.org/experiments/ENCSR000BGS/
https://www.encodeproject.org/files/ENCFF002CHY/@@download/ENCFF002CHY.bed.gz
https://www.encodeproject.org/files/ENCFF002CHY/@@download/ENCFF002CHY.bed.gz
https://www.encodeproject.org/files/ENCFF002CHY/@@download/ENCFF002CHY.bed.gz
https://www.encodeproject.org/files/ENCFF002CHY/@@download/ENCFF002CHY.bed.gz
https://www.encodeproject.org/files/ENCFF002CHY/@@download/ENCFF002CHY.bed.gz
https://www.encodeproject.org/files/ENCFF002CHY/@@download/ENCFF002CHY.bed.gz
https://www.encodeproject.org/experiments/ENCSR000BGP/
https://www.encodeproject.org/experiments/ENCSR000BGP/
https://www.encodeproject.org/experiments/ENCSR000BGP/
https://www.encodeproject.org/experiments/ENCSR000BGP/
https://www.encodeproject.org/experiments/ENCSR000BGP/
https://www.encodeproject.org/experiments/ENCSR000BGP/
https://www.encodeproject.org/files/ENCFF002CHP/@@download/ENCFF002CHP.bed.gz
https://www.encodeproject.org/files/ENCFF002CHP/@@download/ENCFF002CHP.bed.gz
https://www.encodeproject.org/files/ENCFF002CHP/@@download/ENCFF002CHP.bed.gz
https://www.encodeproject.org/files/ENCFF002CHP/@@download/ENCFF002CHP.bed.gz
https://www.encodeproject.org/files/ENCFF002CHP/@@download/ENCFF002CHP.bed.gz
https://www.encodeproject.org/files/ENCFF002CHP/@@download/ENCFF002CHP.bed.gz
https://www.encodeproject.org/experiments/ENCSR000DKU/
https://www.encodeproject.org/experiments/ENCSR000DKU/
https://www.encodeproject.org/experiments/ENCSR000DKU/
https://www.encodeproject.org/experiments/ENCSR000DKU/
https://www.encodeproject.org/experiments/ENCSR000DKU/
https://www.encodeproject.org/experiments/ENCSR000DKU/
https://www.encodeproject.org/files/ENCFF002DAI/@@download/ENCFF002DAI.bed.gz
https://www.encodeproject.org/files/ENCFF002DAI/@@download/ENCFF002DAI.bed.gz
https://www.encodeproject.org/files/ENCFF002DAI/@@download/ENCFF002DAI.bed.gz
https://www.encodeproject.org/files/ENCFF002DAI/@@download/ENCFF002DAI.bed.gz
https://www.encodeproject.org/files/ENCFF002DAI/@@download/ENCFF002DAI.bed.gz
https://www.encodeproject.org/files/ENCFF002DAI/@@download/ENCFF002DAI.bed.gz
https://www.encodeproject.org/experiments/ENCSR000BGE/
https://www.encodeproject.org/experiments/ENCSR000BGE/
https://www.encodeproject.org/experiments/ENCSR000BGE/
https://www.encodeproject.org/experiments/ENCSR000BGE/
https://www.encodeproject.org/experiments/ENCSR000BGE/
https://www.encodeproject.org/experiments/ENCSR000BGE/
https://www.encodeproject.org/files/ENCFF002CHW/@@download/ENCFF002CHW.bed.gz
https://www.encodeproject.org/files/ENCFF002CHW/@@download/ENCFF002CHW.bed.gz
https://www.encodeproject.org/files/ENCFF002CHW/@@download/ENCFF002CHW.bed.gz
https://www.encodeproject.org/files/ENCFF002CHW/@@download/ENCFF002CHW.bed.gz
https://www.encodeproject.org/files/ENCFF002CHW/@@download/ENCFF002CHW.bed.gz
https://www.encodeproject.org/files/ENCFF002CHW/@@download/ENCFF002CHW.bed.gz
https://www.encodeproject.org/experiments/ENCSR000BJZ/
https://www.encodeproject.org/experiments/ENCSR000BJZ/
https://www.encodeproject.org/experiments/ENCSR000BJZ/
https://www.encodeproject.org/experiments/ENCSR000BJZ/
https://www.encodeproject.org/experiments/ENCSR000BJZ/
https://www.encodeproject.org/experiments/ENCSR000BJZ/
https://www.encodeproject.org/files/ENCFF002CGT/@@download/ENCFF002CGT.bed.gz
https://www.encodeproject.org/files/ENCFF002CGT/@@download/ENCFF002CGT.bed.gz
https://www.encodeproject.org/files/ENCFF002CGT/@@download/ENCFF002CGT.bed.gz
https://www.encodeproject.org/files/ENCFF002CGT/@@download/ENCFF002CGT.bed.gz
https://www.encodeproject.org/files/ENCFF002CGT/@@download/ENCFF002CGT.bed.gz
https://www.encodeproject.org/files/ENCFF002CGT/@@download/ENCFF002CGT.bed.gz
https://www.encodeproject.org/experiments/ENCSR000DZR/
https://www.encodeproject.org/experiments/ENCSR000DZR/
https://www.encodeproject.org/experiments/ENCSR000DZR/
https://www.encodeproject.org/files/ENCFF002COO/@@download/ENCFF002COO.bed.gz
https://www.encodeproject.org/files/ENCFF002COO/@@download/ENCFF002COO.bed.gz
https://www.encodeproject.org/files/ENCFF002COO/@@download/ENCFF002COO.bed.gz
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thresholded 

peaks 

riments/EN

CSR000DZ

R/  

OO/@@downlo

ad/ENCFF002C

OO.bed.gz  

MA

X 

ChIP-seq, 

Encode 

optimal idr 

thresholded 

peaks 

ENCSR000DZ

F 

Michael 

Snyder, 

Stanford 

[48] https://www

.encodeproj

ect.org/expe

riments/EN

CSR000DZ

F/  

https://www.enc

odeproject.org/fi

les/ENCFF002C

OW/@@downl

oad/ENCFF002

COW.bed.gz  

 

2.8 Workbenches 

Motiflab2 version 2.0.-2. Was used to find ML peaks for VDR, AFT2, BCLAF1, ETS1, IRF3, 

MAX, MYC, POU2F2, SRF, TAF1, CHD2. Then HiBrowse was used to do different 

statistical tests on the mentioned TFs. Lastly, Bedtools version 2.25.0 was used to find the 

distance between closest pairs of MB and ML. Additionally, Excel was used to do 

computations on the Bedtools outputs. 

Table 8 Different workbenches and associated tools used in this project. 

Applicatio

n 

Version Tools Reference

s 

MotifLab2

* 

2.0.-2. 

 

Simple Scanner [38]  

Simple Scanner is a motif scanning program based on simple PWM matching 

using log-odds ratios and a zero-order background model and was used to 

determine ML sequences. 

HiBrowse 1.6 Descriptive statistics: Avg. segment length, Avg. 

segment distance 

Hypothesis testing: Overlap, Located inside, Located 

nearby (S-S) 3D analysis: Colocalization between two 

point tracks tool 

[40]  

Avg. segment distance measures the average distance between elements in 

track. 

Avg. segment length measures the average length of segments in track 

Segment distance measures the distribution of distances from each element in 

track 1 to the nearest element in track 2 

Overlap (S-S), Are track 1 overlapping track 2 more than expected by chance? 

Located inside (P-P), Are track 1 falling inside track 2 more than expected by 

chance? 

Located nearby (S-S), Are track 1 closer to track 2 more than is expected by 

chance? 

https://www.encodeproject.org/experiments/ENCSR000DZR/
https://www.encodeproject.org/experiments/ENCSR000DZR/
https://www.encodeproject.org/experiments/ENCSR000DZR/
https://www.encodeproject.org/files/ENCFF002COO/@@download/ENCFF002COO.bed.gz
https://www.encodeproject.org/files/ENCFF002COO/@@download/ENCFF002COO.bed.gz
https://www.encodeproject.org/files/ENCFF002COO/@@download/ENCFF002COO.bed.gz
https://www.encodeproject.org/experiments/ENCSR000DZF/
https://www.encodeproject.org/experiments/ENCSR000DZF/
https://www.encodeproject.org/experiments/ENCSR000DZF/
https://www.encodeproject.org/experiments/ENCSR000DZF/
https://www.encodeproject.org/experiments/ENCSR000DZF/
https://www.encodeproject.org/experiments/ENCSR000DZF/
https://www.encodeproject.org/files/ENCFF002COW/@@download/ENCFF002COW.bed.gz
https://www.encodeproject.org/files/ENCFF002COW/@@download/ENCFF002COW.bed.gz
https://www.encodeproject.org/files/ENCFF002COW/@@download/ENCFF002COW.bed.gz
https://www.encodeproject.org/files/ENCFF002COW/@@download/ENCFF002COW.bed.gz
https://www.encodeproject.org/files/ENCFF002COW/@@download/ENCFF002COW.bed.gz
https://www.encodeproject.org/files/ENCFF002COW/@@download/ENCFF002COW.bed.gz
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Colocalization between two point tracks tool measures whether all the 

genomic elements in the BED-file are more/less co-localized in 3D, in an all-

versus-all fashion, than what would be expected by chance. 

Bedtools 2.25.0. Closest, intersect [41] 

  

Closest will return the nearest segment from A to the closest feature in all B files 

where the least genomic distance from the start or end of A to feature in B is 

returned for all segments in A. 

Intersect will return overlapping segments between multiple files. 

* A Unix based system was used to be able to run MotifLab2 in 4GB ram. 

2.9 Matrices used in motifs scanning 

Table 9 shows the different motifs used in ML detection in all TF datasets. 

Table 9 PWMs\ motifs from JASPAR_core, TRANSFAC_public and Wang et al. 2012 used by Simple scanner in 

MotifLab2 [34, 35, 38, 49]. 

TF Motifs used 

VDR M00444 

AFT2 M00040, M00179, M00041, MA0270, MA0269 

BCLAF1 M00341, MA0062, MA0081, MA0098 

ETS1 M00032, M00074, M00339, MA0098 

IRF3 M00118, M00119, M00123, M00322, M00615, MA0055, MA0058, MA0059, 

MA0091, MA0093, MA0104, MA0147, PB0043, PB0147,MA0050, MA0051, 

MA0158, M00453, M00063, M00062 

MAX M00118, M00119, M00123, M00322, M00615, MA0055, MA0058, MA0059, 

MA0091, MA0093, MA0104, MA0147, PB0043, PB0147 

MYC MA0104, MA0147, M00322, M00118, M00491, M00055, MA0059, MA0058, 

MA0055, MA0093, MA0091, M00615, MA0438, M00123, MM0001* 

POU2F2 M00210, MA0142, MA0197, MM0002* 

SRF M00152, M00186, M00215, MA0083, MM0003* 

TAF1 M00369 

CHD2 MA0088, MM0004* 

*Matrices not found in JASPAR_core or TRANSFAC_public, were found in Wang et al 2012 

and uploaded to MotifLab2 see attachments (Table 39, Table 40, Table 41, Table 42) 
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3 Results 

3.1 Summary of the work completed in this project 

In this brief summary, we describe the different procedures and why they were completed. 

For a more detailed description, see the different sections 3.2-3.10.  

Before motif scanning could be done, it was important to have all datasets in the same 

genome build. All but one datasets were already in the hg19 version and the VDR dataset was 

formatted to hg19 from hg 18 using USCS genome lift over. Motif scanning was then 

completed to identify ML and MB peaks for the following TFs VDR, AFT2, BCLAF1, 

CHD2, ETS1, IRF3, MAX, MYC, POU2F2, SRF and TAF1. They were identified as having 

potential for ML peaks, based on motif enrichment in Factorbook www.factorbook.org (F. 

Drabløs, personal communication). MB and ML datasets were then uploaded to HiBrowse. 

The 3D colocalization tool requires datasets to be in a GT track format and datasets were 

formatted using the create GT track tool. After data formatting the physical 3D distance 

between MB and ML segments was measured. Doing this analysis would indicate if the ML 

and MB are located close in 3D space in the genome more than is expected by chance. 

Another way to test for 3D physical distance is to use ChIA-PET data. Finding overlaps 

between MB and ML with ChIA-PET could indicate that the overlapping segment is close to 

or part of a DNA crosslink. ML peaks could occur because of DNA looping, as hypothesized, 

and this was investigated with an overlap analysis using ChIP-seq data from proteins 

associated with the cohesin complex (RAD21, SMC3 and CTCF). Promotors receive a 

multitude of signals that work to activate or repress TFs and many of these promotor binding 

sites can be found inside HOT regions. MB segments contain known binding sites and were 

expected to be located inside HOT regions more often than ML segments. This was because 

ML was believed to overlap with enhancers because of DNA looping. If ML peaks are 

associated to enhancers and MB to promotors it would be expected to find them located inside 

DHSs and this was tested using a located inside analysis for ML and MB inside DHSs. 

Another way that DNA interacts through genome 3D structure is by TADs where one sub 

hypothesis is that MB segments binds to close ML segments in pairs within the same TAD. 

This could be investigated using Bedtools closest and intersect tools. Finding that ML and 

MB form inter TAD pairwise interactions could indicate TAD structure being important 

structural boundaries for ML interactions. 

file:///C:/Users/Kristian/Downloads/www.factorbook.org
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3.2 Motif scanning using MotifLab2 and USCS Genome Lift Over 

The complete VDR dataset of 2776 segments was successfully converted from hg18 to hg19 

using UCSC annotations lift over tool. Sequences were sorted based on Hg18 start sites, 

where the start and end positions from different versions were plotted in Figure 8. This figure 

shows the start and end positions before and after genome lift over. This was completed to 

identify potentially large changes between different genome builds and in what way it could 

have affected the VDR dataset.  

   

Figure 8 Dot plots comparing start (A) and stop (B) sites before and after UCSC genome lift over from hg18 to hg19 in 

the VDR dataset and units(X,Y) are displayed in milions(105) bp. In this figure the chromosome ID was ignored. 

Datasets were uploaded to MotifLab2 on a UNIX based system which was necessary to run 

the 4 GB Ram version of MotifLab2. The application was lunched using the web start 

application from http://tare.medisin.ntnu.no/motiflab/. In MotifLab2 PWMs are called motifs, 

but the two are essentially the same. Motifs for the TFs examined were selected from 

TRANSFAC_public, JASPAR_core and Wang 2012 and used as motif collection in 

MotifLab2 [34, 35, 49]. Motifs originating from TRANSFAC_public are denoted with their 

two first letters as M0, JASPAR_core as MA and the generated motifs made based on Wang 

2012 are denoted as MM (Table 9).  A tool called Simple Scanner was then used to scan all 

the TF datasets for known binding sites. The motif detection threshold was estimated by doing 

comparisons of the number of sequences predicted to be MB and ML for the different 

thresholds and the score was set to absolute. Additional parameters used for motif scanning 

can be found in Table 10. 
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Table 10 Simple Scanner and parameters used for motif scanning using different threshold for different TF datasets 

and PWMs from TRANSFAC_public, JASPAR_core and Wang 2012. Threshold was set to percentage similarity 

needed for sequence to match and the sequence scoring value was set to absolute meaning a log odds ratio. Different 

parameters were set for different datasets and these are presented in italic. 

Motif scanning 

Parameter Value 

Source DNA 

Method Simple Scanner 

Motif collection See Table 9 

Threshold type Percentage 

Threshold 82-95% 

Score Absolute 

In sequence collection All sequences 

Sequences that did not contain any known binding sites for the TF in question were identified 

as ML. The sequences that contained one or more binding sites were identified as MB. The 

motif scanning reviled 109 MB and 2666 ML VDR peaks at threshold 95%, 991 MB and 

1784 ML at threshold 90% and 2309 MB and 466 ML peaks at threshold 85%. For the ten 

other TFs the threshold was chosen based on a random pre scanning using a subset of the 

sequences from the original dataset. The top 1000 sequences in an unsorted dataset was 

picked and scanned using different thresholds to find the optimal threshold for each dataset. 

The optimal threshold was estimated based on two arguments. The first was that the number 

of sequences predicted ML and MB should be close to even. The second was to keep the 

threshold high enough to reduce the amount of false positives. Thresholds, ML and MB 

predicted sequences for the different TFs are shown in Table 11. For some TFs, multiple 

PWMs were used in motif scanning, see Table 9. Some of the TFs mentioned have more than 

one motifs known to be related binding sites so adding these to the motif collection used in 

motif scanning would better predict true ML segments.  

Table 11 Thresholds used to estimated ML and MB for VDR, AFT2, BCLAF1, ETS1, IRF3, MAX, MYC, POU2F2, 

SRF and TAF1 as well as the predicted number of MB and ML segments.  

TF Threshold % ML MB 

VDR 90 991 1784 

AFT2 90 13305 10001 

BCLAF1 90 531 5575 

CHD2 82 9230 6366 

ETS1 95 857 3263 

IRF3 90 956 2586 

MAX 95 7458 5084 

MYC 90 234 3456 

POU2F2 90 14542 8293 

SRF 90 6996 1546 

TAF1 90 13093 1178 
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3.3 GT tracks and formats used by HiBrowse 

After the ML and MB datasets had been predicted they were uploaded to HiBrowse. The 3D 

colocalization tools in HiBrowse requires datasets to be formatted as GT tracks and this was 

done using the Create GT track tool from unstructured tabular data tool. To convert bed files 

into GT tracks in HiBrowse each tabular file was converted individually. All datasets used by 

the 3D colocalization tool were formatted in the same way as described here. No lines were 

skipped and columns were selected individually. Each column was named as indicated in 

Table 12. No dense track type or indexing standard was used. The file was not auto corrected 

or cropped in any way. For all non 3D experiments the original BED files were used. 

Table 12 Parameters used in the Create GT track file from unstructured tabular data tool for formatting data previous 

to 3D colocalization analysis. The input data was all in tabular hg19 bed format and the three first columns of the 

dataset (Chromosome, sequence start and sequence end) were selected to be converted into a GT track.  

Create GT track file from unstructured tabular data 

Select input source Tabular file from history 

Select tubular file VDR ChIP-seq 

Character to use to split lines into columns Tab 

Number of lines to skip (from front) 0 

Column selection method Select individual columns 

Select the name for column #1 Seqid 

Select the name for column #2 Start 

Select the name for column #3 End 

Select a specific genome build Yes 

genome build Human Feb. 2009 (hg19/GRCh37) 

Create dense track type (i.e. function, step function, 

or genome partition) 

No 

Indexing standard used for start and end coordinates 0-indexed, end exclusive 

Auto-correct the sequence id (‘seqid’) column No 

Crop segments crossing sequence ends No 

All segments were converted successfully and no data was lost during formatting. 

3.4 3D genome localization and the cohesin complex 

The GT tracks generated in 3.3 was then used to measure 3D closeness between points on GT 

track 1 and their location on the segments of GT track 2. This analysis was completed using 

the 3D version of the Genomic Hyperbrowser called HiBrowse. Interactions were set to inter- 

and intra-chromosomal interactions and the cell line used was GM12878 with a resolution of 

1 million base pairs. GT Track 1 was randomized and GT track 2 was preserved in the null 

model and the number of resampling’s was set to 1000 and tail was set to more than expected 

by chance. P-value was selected as statistic and the analysis was set to compare in bounding 

regions. The parameters for this analysis is presented in Table 13. 
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Table 13 Parameters used for estimating 3D colocalization between two GT tracks with a resolution of 1 million bp 

and a 1000 numbers of resampling’s estimating if the middle points of track 1 localise in 3D genome space with the 

middle points of track 2 more than is expected by chance.  

3D Colocalization  

Genome build Human Feb. 2009 (hg19/GRCh37) 

Interactions Using inter- and intra-chromosomal interactions 

Cell line GM12878 

Dataset and 

resolution 

GM12878-HiC-HindIII-R1-1 million bp 

Randomization 

options 

Randomize Track 1(conserve consecutive distances), preserve track 2 

Number of 

resampling’s 

1000 

Tail More 

Statistic p-value 

Compare in Bounding regions 

null hypothesis The points of track 1 are localized independently of the segments of 

track 2 in the 3D genome space 

alternative 

hypothesis 

The points of track 1 tend to Localize with the segments of track 2 in 

3D genome space. 

The 3D colocalization analysis described above was initiated for VDRML-VDRML, 

VDRMB-VDRMB and VDRMB-VDRML GT tracks. Then the analysis was completed for 

the VDR GT tracks and RAD21, SMC3 and CTCF GT tracks (Table 14). CTCF, RAD21, and 

SMC3 GT tracks was then compared to AFT2, BCLAF1, CHD2, ETS1, IRF3, MAX, MYC, 

POU2F2, SRF and TAF1 ML and MB GT tracks (Table 30).  

Table 14 3D Colocalization analysis between VDRML, VDRMB, CTCF, RAD21 and SMC3 GT tracks and the p-value 

estimated using HiBrowse for the alternative hypothesis presented in Table 13. 

Analysis Track 1 Track 2 P-value 

3D colocalization between two point tracks  VDRMB VDRMB 0.0009990 

3D colocalization between two point tracks  VDRML VDRML 0.0009990 

3D colocalization between two point tracks  VDRMB VDRML 0.0009990 

3D colocalization between two point tracks  VDRML CTCF 0.0009990 

3D colocalization between two point tracks  VDRML RAD21 0.0009990 

3D colocalization between two point tracks  VDRML SMC3 0.0009990 

3D colocalization between two point tracks VDRMB RAD21 0.0009990 

3D colocalization between two point tracks VDRMB SMC3 0.0009990 

The colocalization analysis showed that the points of GT track 1 are expected by chance to 

more often than not be located nearby in 3D space to segments in GT track 2 for the GT 

tracks presented in Table 14. The VDRMB and VDRML GT track seems to be localized in 

3D genome space with CTCF, RAD21 and SMC3 GT tracks more often than expected by 

chance. However, no difference in p- value was detected for 3D colocalization between 

different analyses presented in Table 14. 
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3.5 Chia PET and MB/ML overlap 

A ChIA-PET dataset from Heidari et al. was uploaded to HiBrowse and the tool overlap was 

used to detect overlapping genetic segments between TF and ChIA-PET datasets. The same 

parameters as described here was used for all the following overlap experiments described in 

this report (Table 15). The null model was set to Preserve segments (track 2), segments 

lengths and inter segment gaps (track 1) randomize positions (track 1). A Monte Carlo model 

was used. The sampling depth Monte Carlo false discovery rate was set to fixed 10 000 

samples. 

Table 15 Parameters for detecting overlap between two datasets with a Monte Carlo model using a Monte Carlo False 

Discovery Rate sampling depth of 10000 samples.  

Overlap 

Genome Build Human Feb. 2009 (hg19/GRCh37) 

Null model Preserve segments (track 2), segments lengths and inter 

segment gaps (track 1) randomize positions (track 1) (MC) 

 MCFDR Sampling depth Fixed 10 000 samples 

null hypothesis The segments of track 1 are located independently of the 

segments of track 2 with respect to overlap 

Alternative hypothesis The segments of track 1 tend to overlap the segments of track 

2. 

The overlap analysis was completed for ChIA-PET, RAD21, SMC3, CTCF against the 

VDRML/MB datasets as well as AFT2, BCLAF1, CHD2, ETS1, IRF3, MAX, MYC, 

POU2F2, SRF and TAF1 ML and MB datasets. The analysis was also completed for 

heterochromatin as control.  

Table 16 Overlap analysis from HiBrowse between CTCF, SMC3, RAD21 and ChIA-PET against VDRML and 

VDRMB datasets with a p-value estimated using HiBrowse for the alternative hypothesis presented in Table 15. 

Analysis Track 1 Track 2 P-value 

Overlap? ChIA-PET  VDRMB 9.999e-05 

Overlap? ChIA-PET  VDRML 9.999e-05 

Overlap? RAD21  VDRML 9.999e-05 

Overlap? RAD21  VDRMB 9.999e-05 

Overlap? SMC3  VDRMB 9.999e-05 

Overlap? SMC3  VDRML 9.999e-05 

Overlap? CTCF  VDRML 9.999e-05 

Overlap? CTCF  VDRMB 9.999e-05 

Overlap? CTCF  RAD21 9.999e-05 

Overlap? CTCF SMC3 9.999e-05 

Overlap? VDRML Heterochromatin 1 

Overlap? VDRMB Heterochromatin 1 

The overlap analysis shows overlap between ChIA-PET, RAD21, SMC3 and CTCF to 

VDRMB and VDRML than would be expected by chance. Significant overlap was also 
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measured between ChIA-PET data and ML, MB datasets AFT2, BCLAF1, CHD2, ETS1, 

IRF3, MAX, MYC, POU2F2, SRF and TAF1 (Table 35). However, there was no difference 

in significance relating to estimated overlap between the measured tracks. 

3.6 Enhancers and promotors association to ML and MB 

To see if the ML DNA segments would be more associated with enhancers and the MB 

segments to the promotors an overlap analysis between VDRMB/VDRML to enhancers and 

promotors was completed. Overlap was also measured for repressed regions as a control. 

Table 17 Overlap analysis from HiBrowse for VDRMB/VDRML, strong/weak enhancer and Active/weak promotor 

and repressed regions as well as the p-value estimated using HiBrowse for the alternative hypothesis represented in 

Table 15. 

Analysis Track 1 Track 2 p-value 

Overlap? VDRML Strong enhancer 9.999e-05 

Overlap? VDRMB Strong enhancer 9.999e-05 

Overlap? VDRML Weak enhancer 9.999e-05 

Overlap? VDRMB Weak enhancer 9.999e-05 

Overlap? VDRML Active promotor 9.999e-05 

Overlap? VDRMB Active promotor 9.999e-05 

Overlap? VDRML Weak promotor 9.999e-05 

Overlap? VDRMB Weak promotor 9.999e-05 

Overlap? VDRML Repressed 1.0 

Overlap? VDRMB Repressed 1.0 

The overlap analysis shows overlap between VDRMB/VDRML and all enhancers and 

promotor datasets, but not for repressed. However, no difference between the measured tracks 

was observed. 

The next analysis that was completed was the hypothesis testing tool located nearby from 

HiBrowse. A Monte Carlo model was used and the MCFDR sampling depth was set to 10 000 

samples. The alternative hypothesis was set to closer to and the null model was set to preserve 

points of T2 and inter-point distances of T1; randomize positions (T1). A Monte Carlo model 

was used and the random seed was set to random. Details are described in Table 18. 

Table 18 Parameters used to detect nearby segments using the located nearby tool from HiBrowse for two tracks that 

estimates if points on track 1 lies closer to points on track 2 more than is expected by chance.  

Located nearby 

Genome build Human Feb. 2009 (hg19/GRCh37) 

MCFDR sampling depth Fixed 10 000 samples 

Alternative hypothesis Closer to 

Test statistic Geometric mean of distances (bp)/ Arithmetic mean of distances 

(log10) 

Null model Preserve points of T2 and inter-point distances of T1; randomize 

positions (T1) (MC) 

Random seed Random 
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null hypothesis The points of track 1 are located independently of the points of track 

2 

alternative hypothesis The points of track 1 are located close to the points of track 2 

The located nearby analysis estimated the localization of VDRML and VDRMB in regards to 

enhancers and promotors and a p-value for the alternative hypothesis presented in Table 18 

was estimated.  

Table 19 Located nearby analysis estimating if the points of track one are located close to points of track 2 more than 

is expected by chance. The results are given as average log distance between neighbours and a p- values based on the 

null and alternative hypothesis presented in Table 18. 

Analysis Track 1 Track 2 Test statistic: 

Average log-

distance 

p- value 

Located nearby VDRML Strong enhancer 5.711 9.999e-05 

Located nearby VDRMB Strong enhancer 5.456 9.999e-05 

Located nearby VDRML Active promotor 6.745 9.999e-05 

Located nearby VDRMB Active promotor 6.635 9.999e-05 

Results presented in Table 19 show that VDRMB and VDRML are both located close to 

enhancers and promotors more often than is expected by chance. Additionally, it could seem 

like VDRMB are closer to enhancers and promotors than VDRML. However, no difference 

between the different experiments was measured.  

3.7 DHSs 

Doing an overlap analysis between DHSs and VDRMB/ML would indicate whether or not 

the VDR datasets are located close to DNA with open chromatin structure. This was estimated 

using the overlap analysis described previously in this thesis. Overlapping regions was 

estimated between VDRMB/ML and DHSs regions.  

Table 20 Overlap analysis from HiBrowse for VDRML, VDRMB and DHSs  as well as the p-value estimated using 

HiBrowse for the alternative hypothesis presented in Table 15. 

Analysis Track 1 Track 2 P-value 

Overlap? VDRMB DHSs 9.999e-05 

Overlap? VDRML DHSs 9.999e-05 

The DNA chromatin states in or around VDRMB and VDRML tracks are based on the 

previous test most likely in an open chromatin state. However, no significant DHSs difference 

was measured in overlap between VDRML and VDRMB. 
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3.8 HOT and LOT regions relating to ML and MB 

Another way to measure the relative positions of TFs inside MB or ML segments are too look 

for HOT regions which are occupied by many TFs. To estimate if ML and MB segments are 

located inside HOT regions more than expected by chance the Located Inside tool from 

HiBrowse was used. The analysis was set to “Do track 1 fall inside track 2, more than 

expected by chance?” and the MCFDR sampling depth to 10 000 samples. The alternative 

hypothesis was set to more than expected by chance. Random seed was set to random and null 

model was set to “Do track 1 fall inside track 2, more than expected by chance?” 

Table 21 The Located Inside tool from HiBrowse was used to measure if the middle points of each VDRML and 

VDRMB was located inside HOT regions more than is expected by chance. 

Located inside 

Genome build Human Feb. 2009 (hg19/GRCh37) 

MCFDR sampling depth Fixed 10 000 samples 

Alternative hypothesis more 

Treat track 1 as The middle point of every segment 

Treat track 2 as Original format 

Test statistic Arithmetic mean of differences 

Null model Preserve points (T1), segment lengths and inter-segment gaps (T2); 

randomize positions (T2) (MC) 

Random seed Random 

null hypothesis The points of track 1 are located independently of the segments of 

track 2 with respect to whether they fall inside or outside 

alternative hypothesis The points of track 1 tend to fall inside the segments of track 2 

The test was completed for VDRML and VDRMB against HOT and LOT datasets for whole 

genome and intergenic datasets. It was also tested with LOT regions as a control 

Table 22 Located inside analysis between VDRML, VDRMB, HOT whole genome, HOT, intergenic, LOT whole 

genome and LOT intergenic datasets using the parameters described in Table 21. 

Analysis Track 1 Track 2 P-value 

Located inside? VDRML HOT Whole Genome 9.999e-05 

Located inside? VDRMB HOT Whole Genome 9.999e-05 

Located inside? VDRML HOT intergenic 9.999e-05 

Located inside? VDRMB HOT intergenic 9.999e-05 

Located inside? VDRML LOT intergenic 1.0 

Located inside? VDRMB LOT intergenic 1.0 

Located inside? VDRML LOT whole genome 1.0 

Located inside? VDRMB LOT whole genome 1.0 

The located inside analysis showed significant results between VDRML and VDRMB inside 

HOT whole genome as well as HOT intergenic, but not for the LOT tracks.  However, it was 

not possible to detect any difference between MB and ML enrichment. 
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3.9 TADs, -a structural framework for gene regulation 

TADs are DNA 3D structures and within TADs there are many DNA loops bound together by 

cohesin that all together creates insulated neighbourhoods. Inside these TADs there are HOT 

regions that contain genes that because of the 3D structure of the TAD can be regulated by 

only a few TFs. Doing a Located Inside analysis with VDRML and VDRMB inside TADs 

would indicate if VDRML or VDRMB are located inside TADs more often than expected by 

chance. 

Table 23 Located Inside analysis for VDRML and VDRMB measuring if they are located inside TADs more often than 

what is expected by chance. 

Analysis Track 1 Track 2 P-value 

Located inside? VDRML TAD 9.999e-05 

Located inside? VDRMB TAD 9.999e-05 

The result presented in Table 23 indicates that VDRML and VDRMB are located within 

TADs more often than is expected by chance. However, no difference was measured for ML-

TAD or MB-TAD. 

To further investigate the matter of ML and MB interacting in pairs inside TADs, The 

Bedtools tool Intersect was used to estimate the number of times each VDRML or VDRMB 

overlaps the same TAD. In this case TADs was used as -a and VDRMB and VDRML were 

used as –b files. This way TAD regions are treated as query and both VDRML and VDRMB 

as input looking for overlapping segments with TADs. The TAD data was clustered into 

chromosomes. The parameters used are described in Table 24. 

Table 24 Options used in the intersect analysis from Bedtools version 2.25.0 and their function. 

Bedtools intersect 

-a TAD 

-b VDRMB, VDRML 

-wa Write the original entry in A for each overlap. 

-wb Write the original entry in B for each overlap. Useful for knowing what A 

overlaps. Restricted by -f and -r. 

-filenames When using multiple databases (-b), show each complete filename instead of 

a field when also printing the DB record. 

The Intersect tool from Bedtools was used to measure how often each VDRMB and VDRML 

intersects with TADs. The result of this analysis is shown below.  
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Figure 9 Showing a histogram that show counts of how often VDRML and VDRMB overlaps TADs in different 

chromosomes. In this figure the number of overlapping ML (orange) and MB (blue) with TADs are given for each 

chromosome. The total number of hits for each chromosome is given in purple. 

Only 280 cases of VRML and VDRMB showed overlap with TADs. There was a total of 

1731 TADs in the original dataset and only 86 of them shows overlap with either VDRMB or 

VDRML. 

3.10 Are ML and MB interacting locally in pairs? 

The next subject that was examined was if there were specific interactions between ML and 

MB segments. It was hypothesized MB and ML could work as stems for loops inside TAD 

structures. The idea was that MB and ML, would inside TADs form loops by interacting 

locally with each other, forming stem like looped structures. As can be seen in Figure 1 the 

idea was that ML and MB could be the binding sites of cohesin and also facilitators of the 

TAD structures. To examine this the length of an average TAD was measured to see if the 

total length of a VDRML segment combined with the intersegment distance between 

VDRML and VDRMB and the length of an VDRMB would exceed the average TAD length. 

This was examined using a descriptive tool from HiBrowse called AVG Segment Length. The 

analysis was set to the average length of the track in question and overlaps was handled as 

clusters and described in Table 25.  

Table 25 Parameters used by the descriptive tool Average Segment Length in HiBrowse to obtain information about 

the average segment length of datasets, TADs, VDRML and VDRMB. 

Avg. segment length 

Genome build Human Feb. 2009 (hg19/GRCh37) 
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Analysis The average length of Track 

Overlap handling Cluster overlaps 

The average segment length was estimated for TADs, VDRML and VDRMB. The sequence 

length frequency distribution was also included in the results. 

Table 26 Average Segment Length analysis for TADs, VDRML and VDRMB including the sequence length frequency 

distribution. 

Analysis Track 1 Avg. 

Length 

Sequence length frequency distribution 

Average 

Segment 

Length 

TADs 1.573e+0

5 bp 

 
Average 

Segment 

Length 

VDRML 694.1 bp 
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Average 

Segment 

Length 

VDRMB 930.8 bp 

 
Table 26 shows that TADs are distributed in units of 40 kilo base pairs (kbp) with an average 

length of 1.573 million bp. VDRML show a peak around 700 bp and VDRMB a peak around 

950 bp. 

After the average segment length was estimated the Segment Distance analysis between the 

closest pairs VDRML and VDRMB datasets was completed in HiBrowse. The analysis was 

made between each VDRML to the nearest VDRMB segment.  

Table 27 The Segment Distances tool from HiBrowse measures the average segment distance between closest pairs of 

segments and returns a frequency distribution of these intersegment distances. 

Segment distances 

Genome build Human Feb. 2009 (hg19/GRCh37) 

Analysis The distribution of distances from each segment of Track 1’ to the 

nearest segment of Track 2 

Overlap handling Cluster overlaps of track 1 

Inter segment distances viewed in Figure 10 are in Log10 values. 

 

Figure 10 Frequency distribution of distances in log10 from each VDRMB to the nearest VDRML made using the 

Segment Distance tool from HiBrowse. 

Then the data for TADs presented in Table 26 was reproduced using Log10 values. Results are 

shown in Figure 11. 
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Figure 11 Showing the frequency distribution of TADs in log10 values. 

Both Figure 10 and Figure 11 show a peak around log 5,5 which could indicate that the 

average intersegment distance between VDRMB and VDRML are located within the 

boundaries of a TAD. However, this is unlikely as the majority of TADs are below log 5,5. 

If MB and ML work in pairs forming local interactions, it would be expected to find them in 

MB-ML pairs located close together on the genome strand. To investigate the distance, the 

tool closest was used on MB and ML pairs from TFs VDR, AFT2, BCLAF1, CHD2, ETS1, 

IRF3, MAX, MYC, POU2F2, SRF and TAF1. The analysis was completed using both MB 

and ML as –a files and both as b- files meaning two runs for each TF. A tool from Bedtools 

version 2.25.0 was used to measure the intersegment distance from each MB to the nearest 

ML segment using the tool closest using option –N, -mdb all, and –filenames and both ML 

and MB as –b files. 

Table 28 Parameters used in the closest analysis from Bedtools version 2.25.0 and a short description of the settings 

used. The test was completed in two runs for the VDR datasets using different a files but, both as b files all times. 

Bedtools closest 

-a [TF]MB/[TF]ML 

-b [TF]MB,[TF]ML 

-d In addition to the closest feature in B, report its distance to A as an extra 

column. The reported distance for overlapping features will be 0. 

-N Require that the query and the closest hit have different names. For BED, the 

4th column is compared. 

-mdb all Specify how multiple databases should be resolved. All reports closest 

records among all databases. 

-filenames When using multiple databases (-b), show each complete filename instead of 

a field when also printing the DB record. 

Excel was used to do calculation on the Bedtools closest dataset and used to calculate the 

average intersegment distance for all non-overlapping segments. To limit the number of false 

positives a cut-off at 200 kbp was used. Figure 12 shows the total amount of VDRMB and 

VDRML pairs estimated using different –a files. 
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Figure 12 Histogram showing  the closest (in bp) VDRML/VDRMB segment for each VDRMB and VDRML across 

both datasets. Each column denoted Hit MB and Hit ML represents the number of times VDRMB (Hit MB) or 

VDRML (Hit ML) are located closer to the query than the other. The columns MB MB,ML and MLMB,ML 

shows the total number of cases found for each situation.  

The same analysis was completed for the ten other TFs described in Figure 13 also using a 

cut-off of 200 kbp and the same parameters. 

 

Figure 13 in the figure above MB MB, ML and MLML,MB is the total number of hits found for sequentially MB 

and ML datasets given parameters described in Table 28 . Hit ML is the number of ML found and Hit MB is the 

number of MB found for both MLML,MB and MBMB,ML.  
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Figure 12 does not indicate that MB and ML are located close to each other in pairs. 

However, there are indications of ML being located close to ML more often than it is located 

to MB. 

Table 29 The tools Average Segment Length, Located Nearby (aritmic and geometric) and Segment Distance from 

HiBrowse was used to estimate the closest located pairs of ML and MB segments for VDR, AFT2, BCLAF1, ETS1, 

IRF3, MAX, MYC, POU2F2, SRF and TAF1 using previously described parameters described in Table 18, Table 26, 

Table 27. 

 Average 

segment 

length – ML 

(bp) 

Average 

segment 

lengths MB 

(bp) 

Located 

nearby 

geometrics (p-

value) 

Avg. arithmetic 

distance 

between MB 

and ML (bp) 

Avg. geometric 

distance between   

MB and ML (log10) 

VDR 694.1 930.8 0.04762 6.002e+05 10.91 

AFT2 430.5 469.2 9.999e-05 7.738e+04 9.896 

BCLAF1 377,9 403,8 9.999e-05 * 13.36. 

CHD2 376,9 379,8 9.999e-05 9.681e+04 10.02 

ETS1 210.9 220.7 9.999e-05 1.573e+06 12.84. 

IRF3 249,3 279,4 9.999e-05 * 12.84 

MAX 445,9 442,5 9.999e-05 1.243e+05 10.17 

MYC 596 617,7 9.999e-05 * 13.85 

POU2F2 280,5 294,8 9.999e-05 9.359e+04 9.958 

SRF 210,2 207,2 9.999e-05 2.195e+05 10.87 

TAF1 303.2 314,6 9.999e-05 5.627e+04 9.154 

*For the located nearby analysis using arithmetic distance HiBrowse was not able to estimate 

a p-value and a collection of FDR-corrected p-values per bin were computed instead. For the 

alternative hypothesis used by HiBrowse these simplistic answers were returned for the 

following TFs. BCLAF1, Yes - the data supports H1 at least in some bins (36 significant bins 

out of 40, at 10% FDR). ETS1 Yes - the data supports H1 this at least in some bins (35 

significant bins out of 41, at 10% FDR). MYC Yes - the data supports H1 at least in some 

bins (25 significant bins out of 37, at 10% FDR). 

The results presented in Table 29 show that ML and MB segments for TFs VDR, AFT2, 

BCLAF1, ETS1, IRF3, MAX, MYC, POU2F2, SRF and TAF1 are more often than expected 

by chance located close to each other.  

The closest tool was then used to find the distance between the closest pairs of MB and ML 

using only MB as –a file and only ML as –b file using –filenames as only parameter. This was 

done to see if there was a favourable intersegment distance between MB and its closest ML 

segments. MB was believed to be the facilitator of the looping and therefore it was used as –a 

file and ML as –b file. Figure 14 below shows the distribution of distances between MB and 

its closest ML neighbour. This analysis was completed for TFs AFT2, BCLAF1 CHD2, 

ETS1, IRF3, MAX, MYC, POU2F2, SRF, TAF1 and VDR. One segment located at the X 
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chromosome in the IRF dataset were excluded, as it had no neighbour on the same 

chromosome. All datasets have a pseudo count of +1 to avoid the problem of log (0). 
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Figure 14 Frequency distributions of intersegment distance, in log10 bp, between closest pairs of ML and MB for TFs 

AFT2(A), BCLAF1(B), CHD2(C), ETS1(D), IRF3(E), MAX(F), MYC(G), POU2F2(H), SRF(I), TAF1(J) and VDR (K) 

with pseudocount +1. The y-axis in figures A-K show a frequency distribution and the x-axis show the intersegment 

distance between MB and ML in log10(bp). 

Results presented in Figure 14 does not indicate a favourable intersegment distance between 

MB and ML for any of the TFs presented in Figure 14.   

Finally the complete set of data regarding the position of VDRMB and VDRML datasets in 

regards to ChIA-PET, HOT regions, DNase hypersensitivity sites, CTCF, Enhancers, 

Promotors, SMC3 and Rad21 were combined in Figure 15 using the estimated p-values for 

the different test completed in this project. 
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Figure 15 shows a visual presentation of some of the overlap experiments completed in this project and how the results 

can be used to visualise the positional relationship between VDRMB/VDRML peaks in relation to HOT, DHSs, 

CTCF, Enhancers, Promotors, SMC3, RAD21. The two peaks presented represents the ChIP-seq results obtained 

from Ramagopalan et al and beneath are the datasets that show significant overlap with VDRML and VDRMB. The 

black line between the separators represents the human DNA strand and the coloured areas in between represents 

genetic features as indicated on the left. Adapted by permission from Elsevier: Cell Press [16], copyright (2016). 

Figure 15 shows, based on the p-values estimated by HiBrowse, how VDRMB and VDRML 

could relate to the other genomic features presented in the figure above.  

4 Discussion 

4.1 USCS Genome Liftover and motif scanning by MotifLab2 

Eleven TFs known to show signs of ML binding was examined in this project and they were 

AFT2, BCLAF1, CHD2, ETS1, IRF3, MAX, MYC, POU2F2, SRF, TAF and VDR. All TF 

datasets were predicted, by MotifLab2, to include ML sequences, see Table 11. However, 

before any motif predictions could be completed, the VDR dataset needed to be changed from 

NCBI36/hg18 to GRCh37/hg19. This was necessary as coordinates of different genome 
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builds can change from one assembly to the next as gaps are closed and duplications are 

reduced. Occasionally, a chunk of sequence may be moved to an entirely different 

chromosome as the genome build is updated. To be able to compare datasets it is therefore 

important to use the same genome build, as coordinates will be different in different builds. 

This was also the case for the VDR dataset where the original dataset was made using hg18. 

Because all other datasets used in this project was already in the hg 19 build the VDR dataset 

needed to be changed to hg19 using the USCSs liftover tool. Figure 8 compares the start and 

stop positions before and after lift over. All segment intervals were conserved during the 

liftover except one. A segment on chromosome 4 with start site 103 967 094 and stop site 103 

969 025 with a length of 1 931bp was changed to chromosome 4 start site 103 747 959 and 

stop site 103 749 887 with a length of 1 928bp.  However, the segment was predicted ML in 

both hg18 and hg19. As Figure 8 shows there is little difference between Ramagopalans VDR 

data before and after USCS liftover and it is also worth mentioning that the same number of 

segments was predicted ML in both VDR-hg18 and VDR-hg19. 

The VDR sequence motif M00444 from the motif collection TRANSFAC_public was used to 

predict the VDRML genetic segments from the VDR dataset. Simple scanner requires a 

percentage threshold of similarity for identifying positive matches along the DNA. By 

lowering this threshold, more segments are likely to be predicted MB so finding a threshold 

with high enough stringency and still predicting both ML and MB segments was necessary. 

VDR ChIP-seq peaks scanning in MotifLab2 returned an uneven number of VDRML and 

VDRMB sequences where 1784 peaks were predicted to be ML and 992 were predicted to be 

MB at 90% similarity threshold. Different scans using the same motifs were completed but, 

with different percentages to find the optimal threshold for each TF, see Table 11. The 

VDRML and VDRMB DNA segments predicted at 90% were selected as this threshold 

predicted a high number of sequences in each VDRML and VDRMB dataset without losing 

much stringency. Ten other TFs were also examined for ML binding and these were AFT2, 

BCLAF1, CHD2, ETS1, IRF3, MAX, MYC, POU2F2, SRF and TAF1. 

Here we assume that there are ML cases in all the TFs above without knowing that this is 

actually the case. In this project, a trial and error method was used to find thresholds for motif 

scanning. By doing comparisons of results from motif scans using different thresholds a 

number was selected to use, see section 3.2. However, a more advanced method could have 

been applied. It is possible to use a more objective basis for motif discovery by using for 

example, Find Individual Motif Occurrences (FIMO) that measures the significance of the 
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motifs found in the sequence dataset. Additionally, this would enable us to use a p- value as 

threshold for finding significant motifs ensuring that only significant motifs are included. This 

means that the MB dataset would include only segments that have significant motifs and the 

ML dataset would not.  

Another way to do motif discovery could have been to use a saturation approach. Then the 

numbers of segments included would have been plotted as the threshold was gradually 

lowered. By sequentially lowering the threshold and plot the number of motifs against the 

current threshold we could identify the real ML segments. A curve would appear that initially 

grew slowly until there were motifs in for example 50% of the segments before it would 

almost stop changing and then start again at a lower threshold. At this point there would be 

mostly noise. However, this curve will only appear in TF ChIP-seq dataset that include true 

ML segments. Using one of these approaches would have given a better prediction of actual 

ML cases in the ten TF examined. The VDR dataset however, have been tested for significant 

ML segments using FIMO [50, 51]. 

In a paper published in 2012 by Foley, ML binding is described as indirect recruitment by 

another TF whose motif is present [22]. This implies that the ML peaks are in fact MB peaks 

that contain a binding site for another TF. However, it would be likely that this TFs motif 

would show up in de novo motif discovery of the ML peaks. This was done by Handel in 

2013 where he used MEME and de novo motif detection to find TF binding sites in a VDR 

dataset. After completing this Handel et. al. identified cases of ML peaks in a VDR ChIP-seq 

dataset [52]. Handel further argues that VDRML ChIP-seq peaks are caused by gene-

environment interactions, which supports the 3D colocalization results presented in this thesis 

(Table 14).  

4.2 ML-MB distance in 3D genome space and cohesin 

After the TF datasets had been scanned by MotifLab2, ML and MB datasets were uploaded to 

HiBrowse for further analysis. The results from section 3.4 indicates that ML and MB 

sequences are located closely together in 3D genome space. HiBrowse measures physical 

distance in 3D between two DNA points and returns whether or not these two points are 

localised in 3D. However, it does not measure actual interactions between two segments. The 

results from Table 16 shows that the analysis done in HiBrowse predicts ML and MB to be 

localised in 3D genome space more often than is expected by chance. On the other hand, the 

interactions might not be MB-ML as initially expected, but rather ML-ML or MB-MB. Table 
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14 shows that there is significant colocalization between ML-ML, MB-MB and MB-ML 

which indicates that there could be a point in X,Y,Z dimensions inside the cell nucleus where 

these DNA segments localize. 

Another dataset used in this project that contains information about 3D genome structure was 

a ChIA-PET dataset for cell line GM12878 using RAD21 as target. Hi-C or 5C was expected 

to best represent 3D genome structure, but no such dataset was found for cell line GM12878 

at the time of the project. However in an article published by Li et al in 2012, Li argues that 

ChIA-PET data are more detailed and with a higher resolution in regards to specific protein 

factor-mediated chromatin interactions than the 3C assays [33]. Li argues that when looking 

for TF specific interactions, ChIA-PET datasets are more detailed and gives a better 

resolution than 3C assays. On the other hand, it was necessary to use an all to all approach to 

look for 3D genomic interactions and not only RAD21 specific chromatin interactions. 

Additionally, RAD21 is a subunit in the cohesion complex and is known to be an important 

player in facilitating 3D genome structure through the cohesion complex. Therefore, the fact 

that the ChIA-PET dataset used in this project contained RAD21 specific chromatin 

interactions was expected not to influence the results of this project. However, using a Hi-C 

dataset for GM12878 would have been favourable.  

Both VDRMB and VDRML were estimated to overlap with the ChIA-PET dataset more than 

expected by chance (Table 16). This indicates that ChIA-PET DNA crosslinks are close in bp 

distance to both VDRML and VDRMB. This again could mean that VDRML and VDRMB 

are close enough in space to form interactions. However, both VDRML and VDRMB show 

significant overlap with the ChIA-PET dataset and therefore the interactions could also be 

VDRML-VDRML or VDRMB-VDRMB. It is also important to consider that even though 

ChIA-PET data contains a library of interacting segments this does not mean that VDRML 

and VDRMB are active in DNA interactions just because they show significant overlap with 

ChIA-PET. It could however be the case that they happen to be located close to the interacting 

segments, in bp distance, without actually taking part in the interaction.  

The results presented in Table 14 predicts VDRML and VDRMB to be localised in 3D with 

CTCF, RAD21, SMC3 and each other more than is expected by chance. These results could 

imply that cohesin works to create interactions between segments in the VDR datasets. 

Another 3D colocalization experiment that is presented in the same table involves the 

different proteins in the cohesin complex as well as CTCF that all show significant 3D 

colocalization with the VDR datasets. The hypothesis presented in the introduction of this 
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thesis is that DNA looping can cause the DNA strand to bend and interact with itself, or 

distally to another chromosome, resulting in ML peaks. Cohesin has been shown to affect the 

genome 3D structure and this is also believed to affect gene regulation [7, 10]. Tang Z. writes 

in an article published in 2015 “We find that CTCF/cohesin-mediated interaction anchors 

serve as structural foci for spatial organization of constitutive genes concordant with CTCF-

motif orientation, whereas RNAPII interacts within these structures by selectively drawing 

cell-type-specific genes toward CTCF foci for coordinated transcription”[53]. Here TANG et 

al. describes a 3D genome model that by CTCF motif orientation creates open and closed 

compartments of chromatin. This compartmentalization of genetic regions using CTCF as 

boundaries are similar to TAD structures. These findings correlate well with the results 

presented in Ji X. article from 2015 presenting TADs and how they form insulated 

neighbourhoods [16]. In this project HiBrowse predicted significant 3D colocalization and 

overlap between the cohesin subunits, CTCF, and ChIA-PET datasets with MB and ML 

datasets for AFT2, BCLAF1, CHD2, ETS1, IRF3, MAX, MYC, POU2F2, SRF and TAF1, 

see Table 30 in attachments. The results from the 3D colocalization analysis supports the 

hypothesis of 3D interactions between segments in the TF datasets and cohesin. However, the 

fact that there was not measured any differences in p-values for MB-MB, ML-ML and MB-

ML, for any of the previously mentioned TFs makes these results inconclusive in regards to 

the main hypothesis in this report.  

4.3 TADs, possible inter domain position of MB and ML 

The results presented in section 3.9 show that VDRML and VDRMB are located within TAD 

regions more often than is expected by chance. The TAD data used in this project was created 

by looking for long range interactions between 40 kbp bins from a ChIA-PET experiment 

using SMC1 as target. This is why the TADs presented in Table 26 show peaks around 

multiplications of 40 kbp [16]. Additionally, the TADs were predicted for embryonic stem 

cells (hESCs) and not lymphoblastoid cells (GM12878) which have been used in this project. 

Even though TADs are conserved throughout mammals the fact that they are described for a 

different cell line could affect the results predicted by HiBrowse. Therefore, a dataset focusing 

on TADs in GM12878, and using better resolution, is needed before an in depth analysis of 

the TADs and ML relationship can be determined. 

In an article written by Ji X et al 2016 he describes TADs as important factors for making up 

the 3D regulatory genome landscape [16]. Finding significantly overlapping DNA regions 

between TADs, VDRMB and VDRML could indicate that VDRML and VDRMB are both 
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located inside TADs. HiBrowse predicts, as showed in Table 23, that VDRML and VDRMB 

both locate inside TADs more often than is expected by chance. However, it does not indicate 

that they overlap TADs in pairs. This was further investigated using the intersect tool from 

Bedtools identifying overlapping VDRML and VDRMB with TADs. In this analysis 486 

cases of overlapping TADs were found from a total of 1731 initial TADs. 155 of these 

overlaps was with VDRMB and 330 with VDRML and the results can be seen in Figure 9. 

This result does not indicate that MB and ML are located inside TADs in pairs. This is 

because the overall overlap frequency is low. However, the results could be affected by the 

lack of a detailed TAD dataset as mentioned earlier. On the other hand, the results show 

multiple ML overlaps with each MB segment inside each TAD. This could indicate possibly 

multiple ML interactions with each MB inside the same TADs. This would, if true, correlate 

well with the idea of functional chromatin topological domains described as open chromatin 

regions by Tang Z. and TADs presented by Ji X. [16, 53]. However, this could also be 

explained by false positives from the initial motif scanning where these appear as ML while 

they are really just noise making the total ML count to high. 

Another way to test for MB-ML pairs located closely in bp distance is by using the Segment 

Distance tool from HiBrowse. If ML and MB form locally interacting pairs one possible 

explanation could be interactions inside TAD complexes between pairs of MB and ML 

segments. One hypothesis was that MB and ML could be working as binding sites for cohesin 

in creating the CTCF loops as shown in Figure 1. This was based on the results from Table 23 

that shows that VDRML and VDRMB both overlap TADs as well as the overlap measured 

between VDRML and VDRMB with CTCF in Table 16. If true, the closest pairs of VDRML 

and VDRMB including intersegment distance should be within the boundaries of an average 

length of a TAD. The tools Average Segment Length, Located nearby and Intersegment 

Distance from HiBrowse was used to measure the length of the ML and MB segments for all 

the eleven TFs used in this project. The results from these experiments are shown in Table 29. 

Additionally, the average length of each segment as well as providing a frequency distribution 

of sequence length and intersegment distance between the closest pairs of VDRML and 

VDRMB is shown in Figure 10, Figure 11, and Table 26. The average intersegment distance 

between the closest pairs of VDRML and VDRMB, as predicted in HiBrowse suggests that 

this could be possible. However, this is unlikely as most TADs seem to be shorter than the 

average intersegment VDRML-VDRMB distance. The same analysis was completed for MB 
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and ML datasets for AFT2, BCLAF1, CHD2, ETS1, IRF3, MAX, MYC, POU2F2, SRF and 

TAF1 and they all showed similar results as the VDR datasets.  

4.4 HOT, LOT, promotor and enhancers position to MB/ML 

Another sub hypothesis that was examined during this project was that MB would associate 

with promotors and MLs would associate with enhancers. Therefore, it was expected to find 

MB inside HOT regions more often than ML segments. This was because HOT regions are 

associated with a high number of promotor binding sites. This was expected because MB 

segments contain binding sites for the TF. Additionally, multiple tests estimating MB and 

MLs relative bp distance to promotors and enhancer was completed and can be found in the 

attachments (Table 31 and Table 32). The results from Table 17 was predicted using 

HiBrowse and the results indicate that both ML an MB show overlap with HOT regions more 

than is expected by chance.  

Enhancers are located far away from the promotor that they regulate and one sub hypothesis 

that was tested during this project was that ML binding sites could be enhancer related, 

meaning that they would together with the enhancer loop back to the promotor. Therefore, 

MB sites are expected to be located nearby the promotor more often than ML. This was tested 

by measuring how often VDRML overlapped enhancers and VDRMB overlapped promotors 

(Table 17). These results showed statistically significant results for overlapping regions 

between enhancers and ML as well as for promotors and MB. Additionally, significant 

overlap was measured for ML and promotors as well as for MB and enhancers. Next the 

average distance between ML and enhancers as well as MB and promotes was measured with 

the located nearby tool, and the results can be seen in Table 19. Further, descriptive statistics 

from HiBrowse was used to see if enhancers more often than not would fall inside VDRML 

and promotors inside VDRMB. A test from HiBrowse called counts measured this and the 

results are presented in attachments (Table 32). Finally, the tool point distance was used to 

measure the frequency distribution of distances to nearest promotor or enhancer from the 

closest MB or promotor (attachments Table 31). However, no supporting evidence of 

enhancers being associated more with ML or promotors with MB segments was found during 

this project. On the other hand, there was an indication of VDRMB being located closer to 

enhancers and promotors than VDRML as can be seen in Table 19. However, this could be 

the results of there being more ML than MB segments. 
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Given that VDRML and VDRMB more often than not are found inside HOT regions, it was 

expected that they would also be located inside DHSs more often than was expected by 

chance. This was done because these accessible chromatin regions are functionally related to 

transcriptional activity, as this remodelled state is necessary for the binding of the 

transcriptional machinery. The results presented in Table 20 indicates that both VDRML and 

VDRMB more often than is expected by chance locates inside DHSs. These results indicate 

that if there are interactions between ML and MB these interactions are most likely 

interactions that occur close to actively transcribed DNA. Further, ML and MB segments are 

localized in 3D. Additionally, the intersegment distance results show no support for close 

local interactions. Both these results can be used to support the hypothesis of long range DNA 

interactions between segments in the TF ChIP-seq datasets. Also possibly even interactions 

between different chromosomes.  

The significant overlap between ML and HOT regions were also discovered by Yip K. 2012 

et al [20]. They found using, 100 TFs and whole sets of binding peaks of all TRFs in each cell 

line as background, that ML binding peaks have very significant overlaps with HOT regions. 

This was true no matter whether they consider all TRF peaks in the whole genome, or only 

those in intergenic regions. In all cases, their estimated z-score was more than 25, which 

corresponds to a P-value < 3 × 10-138. These results are similar to what was found in this 

project and indicates that VDRML segments do overlap with HOT regions. On the other 

hand, we also found that VDRMB significantly overlaps HOT regions as can be seen in Table 

22. 

To summarise the overlap experiments a visual presentation was made  and can be seen in 

Figure 15. Here we show some of the different overlap experiments and how they were 

predicted to overlap the VDRMB and VDRML datasets. This figure is an interpretation of 

these results and are based on the simplistic answer returned by HiBrowse. As Figure 15 

shows both VDRML and VDRMB datasets overlaps ChIA-PET, HOT, DHS, CTCF, 

Enhancers, Promotors, SMC3 and RAD21 more than expected by chance. 

4.5 ML and MB relationship 

Continuing to pursue possible local MB-ML interactions the closest tool from Bedtools was 

used to detect the closest neighbours in bp distance for either VDRML or VDRMB from 

either dataset. This was completed two times, first for VDRMB and then for VDRML were 

both was used as –a files detecting the closest segment from both datasets. If there were close 
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local interactions between VDRML and VDRMB this test would reveal that more often than 

not each VDRML would have a VDRMB as its closest neighbour and vice versa. The same 

analysis was completed for the closest MB and ML segments from TFs AFT2, BCLAF1, 

CHD2, ETS1, IRF3, MAX, MYC, POU2F2, SRF and TAF1. The results presented in Figure 

12 and Figure 13 on the other hand gives no support for this hypothesis. On the other hand, 

there seem to be the case that ML are located close to ML more often than MB segments. This 

could indicate that there are local ML-ML interactions. However, it could also be a result of 

there being significantly more ML than there are MB segments. Additionally, it is possible for 

a loop to form with for example two MLs on one side and two MBs on the other. Then the 

analysis would indicate that ML is closest to ML and MB is closest to MB, even if they 

actually could interact as MB-ML pairs. 

For the same TFs the bp distance between all MB and their closest ML segments where 

measured using the Closest tool and showed in Figure 14. A pseudo count was used to correct 

for overlapping segments that affected the results by increasing all intersegment distances 

with +1. This was done to prevent log (0) as overlapping segments returned a bp distance of 

zero. Because all the figures (a-k) seem to show a peak around 1 000 000 bp the pseudo count 

was expected to have little or no effect on the visual presentation. The results from Figure 14 

does not indicate that there is a favourable intersegment distance between MB- ML for the 

TFs, VDR, AFT2, BCLAF1, CHD2, ETS1, IRF3, MAX, MYC, POU2F2, SRF and TAF1 as 

was initially thought. 

It is important to mention that we have not been able to measure any differences for ML or 

MB segments in regards to 3D colocalization, overlap to cohesin related proteins, overlap 

with DHSs, overlap with TADs or overlaps with HOT regions. This makes the results from 

these experiments somewhat inconclusive in regards to what we can infer about the main 

hypothesis. Another strategy than used here needs to be applied in further investigations in 

this subject. The tools used in this project are proven suboptimal for finding differences 

between MB and ML peaks. 

5 Conclusion 

We have not been able to either prove or reject the original hypothesis. No strong basis was 

found for the fact that ML cases are the result of non-DBD interactions caused by DNA 

looping. However, we have identified differences between MB and ML peaks, but what these 
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differences are we do not know. A more detailed approach using more advanced methods is 

needed to accurately describe the differences between MB and ML peaks.  

6 Practical uses and suggestions for future work 

The results found could be relevant in future treatment of chronic vitamin D deficiency. ML 

3D interactions could be important in vitamin D related gene regulation. The ML peaks seems 

to also be common in the other TFs examined in this project meaning that ML interactions 

could be an until now neglected aspect of gene regulation.  

For future work I would suggest using FIMO or another method that estimates motif 

significance for motif detection. Then I would suggest using a Hi-C dataset for estimating 

possible ML 3D interactions. Additionally, it would be interesting to see if the new tool that is 

currently under development at UIO called GSuite Hyper Browser could better identify 

features of ML peaks than HiBrowse. 

References 

1. Latchman, D.S., Transcription factors: an overview. Int J Biochem Cell Biol, 1997. 29(12): p. 
1305-12. 

2. Schleif, R., DNA looping. Annu Rev Biochem, 1992. 61: p. 199-223. 
3. Smale, S.T. and J.T. Kadonaga, The RNA polymerase II core promoter. Annu Rev Biochem, 

2003. 72: p. 449-79. 
4. Walhout, A.J., Unraveling transcription regulatory networks by protein-DNA and protein-

protein interaction mapping. Genome Res, 2006. 16(12): p. 1445-54. 
5. Saiz, L. and J.M. Vilar, DNA looping: the consequences and its control. Curr Opin Struct Biol, 

2006. 16(3): p. 344-50. 
6. Jeziorska, D.M., K.W. Jordan, and K.W. Vance, A systems biology approach to understanding 

cis-regulatory module function. Semin Cell Dev Biol, 2009. 20(7): p. 856-62. 
7. Sofueva, S. and S. Hadjur, Cohesin-mediated chromatin interactions--into the third dimension 

of gene regulation. Brief Funct Genomics, 2012. 11(3): p. 205-16. 
8. Jin, F., et al., A high-resolution map of the three-dimensional chromatin interactome in 

human cells. Nature, 2013. 503(7475): p. 290-4. 
9. Schmidt, D., et al., A CTCF-independent role for cohesin in tissue-specific transcription. 

Genome Res, 2010. 20(5): p. 578-88. 
10. Panigrahi, A.K., et al., A cohesin-RAD21 interactome. Biochem J, 2012. 442(3): p. 661-70. 
11. Ong, C.T. and V.G. Corces, Enhancer function: new insights into the regulation of tissue-

specific gene expression. Nat Rev Genet, 2011. 12(4): p. 283-93. 
12. Holwerda, S. and W. de Laat, Chromatin loops, gene positioning, and gene expression. Front 

Genet, 2012. 3(217). 
13. Lin, Y.C., et al., Global changes in the nuclear positioning of genes and intra- and interdomain 

genomic interactions that orchestrate B cell fate. Nat Immunol, 2012. 13(12): p. 1196-204. 
14. Sanyal, A., et al., The long-range interaction landscape of gene promoters. Nature, 2012. 

489(7414): p. 109-13. 



52 

 

15. Smallwood, A. and B. Ren, Genome organization and long-range regulation of gene 
expression by enhancers. Curr Opin Cell Biol, 2013. 25(3): p. 387-94. 

16. Ji, X., et al., 3D Chromosome Regulatory Landscape of Human Pluripotent Cells. Cell Stem Cell, 
2016. 18(2): p. 262-75. 

17. Dixon, J.R., et al., Topological domains in mammalian genomes identified by analysis of 
chromatin interactions. Nature, 2012. 485(7398): p. 376-80. 

18. Dixon, J.R., et al., Chromatin architecture reorganization during stem cell differentiation. 
Nature, 2015. 518(7539): p. 331-6. 

19. Phillips-Cremins, J.E., et al., Architectural protein subclasses shape 3D organization of 
genomes during lineage commitment. Cell, 2013. 153(6): p. 1281-95. 

20. Yip, K.Y., et al., Classification of human genomic regions based on experimentally determined 
binding sites of more than 100 transcription-related factors. Genome Biol, 2012. 13(9): p. 
2012-13. 

21. Kvon, E.Z., et al., HOT regions function as patterned developmental enhancers and have a 
distinct cis-regulatory signature. Genes Dev, 2012. 26(9): p. 908-13. 

22. Foley, J.W. and A. Sidow, Transcription-factor occupancy at HOT regions quantitatively 
predicts RNA polymerase recruitment in five human cell lines. BMC Genomics, 2013. 14(720): 
p. 1471-2164. 

23. de Graaf, C.A. and B. van Steensel, Chromatin organization: form to function. Curr Opin 
Genet Dev, 2013. 23(2): p. 185-90. 

24. de Laat, W. and D. Duboule, Topology of mammalian developmental enhancers and their 
regulatory landscapes. Nature, 2013. 502(7472): p. 499-506. 

25. Baker, M., Making sense of chromatin states. Nat Methods, 2011. 8(9): p. 717-22. 
26. Filion, G.J., et al., Systematic protein location mapping reveals five principal chromatin types 

in Drosophila cells. Cell, 2010. 143(2): p. 212-24. 
27. Thurman, R.E., et al., The accessible chromatin landscape of the human genome. Nature, 

2012. 489(7414): p. 75-82. 
28. John, S., et al., Genome-scale mapping of DNase I hypersensitivity. Curr Protoc Mol Biol, 

2013. Chapter 27: p. Unit 21.27. 
29. Johnson, D.S., et al., Genome-wide mapping of in vivo protein-DNA interactions. Science, 

2007. 316(5830): p. 1497-502. 
30. Jothi, R., et al., Genome-wide identification of in vivo protein-DNA binding sites from ChIP-Seq 

data. Nucleic Acids Res, 2008. 36(16): p. 5221-31. 
31. Dekker, J., et al., Capturing chromosome conformation. Science, 2002. 295(5558): p. 1306-11. 
32. Dekker, J., M.A. Marti-Renom, and L.A. Mirny, Exploring the three-dimensional organization 

of genomes: interpreting chromatin interaction data. Nat Rev Genet, 2013. 14(6): p. 390-403. 
33. Li, G., et al., Extensive promoter-centered chromatin interactions provide a topological basis 

for transcription regulation. Cell, 2012. 148(1-2): p. 84-98. 
34. Matys, V., et al., TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic 

Acids Res, 2003. 31(1): p. 374-8. 
35. Portales-Casamar, E., et al., JASPAR 2010: the greatly expanded open-access database of 

transcription factor binding profiles. Nucleic Acids Res, 2010. 38(Database issue): p. D105-10. 
36. Stormo, G.D., DNA binding sites: representation and discovery. Bioinformatics, 2000. 16(1): p. 

16-23. 
37. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012. 489(7414): 

p. 57-74. 
38. Klepper, K. and F. Drablos, MotifLab: a tools and data integration workbench for motif 

discovery and regulatory sequence analysis. BMC Bioinformatics, 2013. 14(9): p. 1471-2105. 
39. Lander, E.S., et al., Initial sequencing and analysis of the human genome. Nature, 2001. 

409(6822): p. 860-921. 
40. Paulsen, J., et al., HiBrowse: multi-purpose statistical analysis of genome-wide chromatin 3D 

organization. Bioinformatics, 2014. 30(11): p. 1620-2. 



53 

 

41. Quinlan, A.R. and I.M. Hall, BEDTools: a flexible suite of utilities for comparing genomic 
features. Bioinformatics, 2010. 26(6): p. 841-2. 

42. Sandve, G.K., et al., The Genomic HyperBrowser: inferential genomics at the sequence level. 
Genome Biol, 2010. 11(12): p. 2010-11. 

43. Gundersen, S., et al., Identifying elemental genomic track types and representing them 
uniformly. BMC Bioinformatics, 2011. 12(494): p. 1471-2105. 

44. Sandve, G.K., E. Ferkingstad, and S. Nygard, Sequential Monte Carlo multiple testing. 
Bioinformatics, 2011. 27(23): p. 3235-41. 

45. Norman, A.W., From vitamin D to hormone D: fundamentals of the vitamin D endocrine 
system essential for good health. Am J Clin Nutr, 2008. 88(2): p. 491S-499S. 

46. Fetahu, I.S., J. Hobaus, and E. Kallay, Vitamin D and the epigenome. Front Physiol, 2014. 5: p. 
164. 

47. Ramagopalan, S.V., et al., A ChIP-seq defined genome-wide map of vitamin D receptor 
binding: associations with disease and evolution. Genome Res, 2010. 20. 

48. A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol, 2011. 9(4): p. 
e1001046. 

49. Wang, J., et al., Sequence features and chromatin structure around the genomic regions 
bound by 119 human transcription factors. Genome Res, 2012. 22(9): p. 1798-812. 

50. Handel, A.E., et al., Vitamin D receptor ChIP-seq in primary CD4+ cells: relationship to serum 
25-hydroxyvitamin D levels and autoimmune disease. BMC Med, 2013. 11: p. 163. 

51. Grant, C.E., T.L. Bailey, and W.S. Noble, FIMO: scanning for occurrences of a given motif. 
Bioinformatics, 2011. 27(7): p. 1017-8. 

52. Handel, A.E., et al., Vitamin D receptor ChIP-seq in primary CD4+ cells: relationship to serum 
25-hydroxyvitamin D levels and autoimmune disease. BMC Medicine, 2013. 11: p. 163-163. 

53. Tang, Z., et al., CTCF-Mediated Human 3D Genome Architecture Reveals Chromatin Topology 
for Transcription. Cell, 2015. 163(7): p. 1611-27. 

 

Attachments 

Multiple tests for overlap as well as colocalization in 3D for MB and ML, ChIP-seq peaks for 

transcription factors AFT2, BCLAF1, CHD2, ETS1, IRF3, MAX, MYC, POU2F2, SRF and 

TAF1. 

Table 30 Overlap and Colocalization analysis for MB and ML datasets, AFT2 BCLAF1, ETS1, IRF3, MAX, MYC, 

POU2F2, SRF and TAF1. 

 Overlap? 

 

Colocalization?  

ML MB ML MB 

ChIA-PET 9.999e-05 9.999e-05 9.999e-04 9.999e-04 AFT2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 BCLAF1 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 ETS1 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 IRF3 
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9.999e-05 9.999e-05 9.999e-04 9.999e-04 MAX 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 MYC 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 CHD2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 POU2F2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 SRF 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 TAF1 

RAD21 

 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 AFT2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 BCLA 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 ETS1 

9.999e-05 0.001998 0.001998 9.999e-04 IRF3 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 MAX 

9.999e-05 0.003996 0.003996 9.999e-04 MYC 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 CHD2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 POU2F2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 SRF 

9.999e-05 9.999e-05 9.999e-04 0.002997 TAF1 

SMC3 9.999e-05 9.999e-05 9.999e-04 9.999e-04 AFT2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 BCLA 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 ETS1 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 IRF3 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 MAX 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 MYC 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 CHD2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 POU2F2 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 SRF 

9.999e-05 9.999e-05 9.999e-04 9.999e-04 TAF1 

CTCF 9.999e-05 9.999e-05 9.999e-04 0.001998 AFT2 

9.999e-05 9.999e-05 0.01399 0.003996 BCLAF1 

9.999e-05 9.999e-05 0.01598 0.008991 ETS1 

9.999e-05 9.999e-05 0.01798 0.008991 IRF3 

9.999e-05 9.999e-05 0.003996 0.004995 MAX 

9.999e-05 9.999e-05 0.01698 0.01099 MYC 

9.999e-05 9.999e-05 0.001998 0.001998 CHD2 
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9.999e-05 9.999e-05 0.002997 9.999e-04 POU2F2 

9.999e-05 9.999e-05 0.002997 0.004995 SRF 

9.999e-05 9.999e-05 9.999e-04 0.006993 TAF1 

 

Point distances test for VDR ML and VDR MB to enhancers and promotors.  

Table 31 output from the HiBrowse test Point Distances between VDRML/ VDRMB and enhancers/promotors 

Analysis Track 1 Track 2  

Point 

Distances 

ML Strong 

enhancer 

 
Point 

Distances 

MB Strong 

enhancer 
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Point 

Distances 

ML Active 

promotor 

 
Point 

Distances 

MB Active 

promotor 

 
 

Counts test showing elements of promotor and enhancer tracks falling inside and outside 

VDR MB and ML. 

Table 32 Counts inside/outside analysis from HiBrowse detecting association between promotors and enhancers 

against VDR motifbound/less tracks. 

Analysis Track 

1 

Track 2 Number 

of track 

1 

Number 

of track 

2 

Number of 

track  2 

elements 

falling inside 

track 1 

Proportion of 

Track 2 

falling inside 

track 1 

Counts, 

inside/outside 

ML Weak 

promotor 

1783 35 060 113 0.003223 

Counts, 

inside/outside 

MB Weak 

promotor 

989 35 060 59 0.001683 

Count, 

inside/outside 

ML Active 

promotor 

1783 15 276 253 0.01656 

Count, 

inside/outside 

MB Active 

promotor 

989 15 276 174 0,01139 

Counts, 

inside/outside 

ML Weak 

enhancer 

1783 69 103 171 0.002475 
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Counts, 

inside/outside 

MB Weak 

enhancer 

989 69 103 78 0.001129 

Count, 

inside/outside 

ML Strong 

enhancer 

1783 25 486 385 0.01511 

Count, 

inside/outside 

MB Strong 

enhancer 

989 25 486 244 0.009574 

 

Protocol used in MotifLab2 for ML detection in TFs. 

DNA = new DNA Sequence Dataset(DataTrack:DNA) 

TRANSFAC_Public = new Motif Collection(Collection:TRANSFAC Public) 

UseMotifs = new Motif Collection(insert motif codes) 

prompt UseMotifs 

Cutoff=new Numeric Variable(insert cuttof treshold) 

prompt Cutoff 

BindingSites = motifScanning in DNA with SimpleScanner [Motif 

Collection=UseMotifs,Threshold type=”Percentage”,Threshold=Cutoff,Score=”Absolute”] 

Motifbound = new Sequence Collection(Statistic:(“region count” in BindingSites)>=1) 

Motifless = new Sequence Collection(Statistic:(“region count” in BindingSites)<1) 

Output1_motifbound = output Motifbound in BED format [Add CHR prefix=”yes”] 

Output2_motifless = output Motifless in BED format 

 

 

Beneath are some outputs from HiBrowse obtained in this project that was not included in the 

project report. 
Table 33 Output of Overlap analysis from HiBrowse between VDRMB and ChIA-PET datasets. 

Results Global analysis 

P-value 0.0009990 

FDR-adjusted p-values None 

Test statistic: Observed base pair overlap 52 066 

Mean of null distribution 3 584. 

Median of null distribution 3 524. 

Standard deviation of null distribution 1 091. 

Difference from mean 4.848e+04 

Number of Monte Carlo samples 1 000 

Number of Monte Carlo samples  1 000 

Number of Monte Carlo samples with 

extreme test statistic 

0 

Number of elements in ‘ChIA-PET ‘ 30 711 

Number of elements in ‘ChIP-Seq, 

motifbound’  

989 

Assembly gap coverage  0.006139 

 

Table 34 Overlap analysis from HiBrowse between ML and ChIA-PET datasets. 

Results Global analysis 

P-value 0.0009990 
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FDR-adjusted p-values None 

Test statistic: Observed base pair overlap 102 189 

Mean of null distribution 4 563. 

Median of null distribution 4 538. 

Standard deviation of null distribution 1 166. 

Difference from mean 9.763e+04 

Number of Monte Carlo samples 1 000 

Number of Monte Carlo samples  1 000 

Number of Monte Carlo samples with 

extreme test statistic 

0 

 

Table 35 3D colocalization test in HiBrowse of VDRMB with ChIA-PET. 

Results Global analysis 

P-value 0.0009990 

FDR-adjusted p-values None 

Test statistic: Main result 0.2412 

Mean of null distribution 0.08949 

Median of null distribution 0.08963 

Standard deviation of null distribution 0.008158 

Difference from mean 0.1518 

Number of Monte Carlo samples 1 000 

Number of Monte Carlo samples 1 000 

Number of Monte Carlo samples with extreme test 

statistic 

0 

Number of elements in ‘ChIP-Seq Motifless ‘ 1 783 

Number of elements in ‘ChIP-Seq, motifbound’ 989 

Assembly gap coverage 0.006139 

 

Table 36 Output of Located Inside analysis from HiBrowse of ChIP-Seq ML inside CTCF binding regions. 

Results Global analysis 

P-value 9.999e-05 

FDR-adjusted p-values None 

Test statistic: Number of ‘ChIP-Seq Motifless ‘ inside 

‘CTCF_binding sites_seq’ 

216 

Mean of null distribution 11.mai 

Median of null distribution 11.0 

Standard deviation of null distribution 3.329 

Difference from mean 204.9 

Number of Monte Carlo samples 10 000 

Number of Monte Carlo samples 10 000 

Number of Monte Carlo samples with extreme test statistic 0 

Number of elements in ‘ChIP-Seq Motifless ‘ 1 783 

Number of elements in ‘CTCF_binding sites_seq’ 112 386 
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Assembly gap coverage 0.006139 

 

Table 37 Output of Overlap analysis in HiBrowse between RAD21 and VDRML. 

Results Global analysis 

P-value 0.0009990 

FDR-adjusted p-values None 

Test statistic: Observed base pair overlap 141 894 

Mean of null distribution 5 106. 

Median of null distribution 4984.0 

Standard deviation of null distribution 1 398. 

Difference from mean 1.368e+05 

Number of Monte Carlo samples 1 000 

Number of Monte Carlo samples 1 000 

Number of Monte Carlo samples with 

extreme test statistic 

0 

Number of elements in ‘ChIP-Seq, RAD21’ 23 945 

Number of elements in ‘ChIP-Seq Motifless ‘ 1 783 

Assembly gap coverage 0.006139 

 

Table 38 Output of Overlap analysis in HiBrowse between SMC3 and VDRML. 

Results Global analysis 

P-value 0.0009990 

FDR-adjusted p-values None 

Test statistic: Observed base pair overlap 141 894 

Mean of null distribution 5 106. 

Median of null distribution 4984.0 

Standard deviation of null distribution 1 398. 

Difference from mean 1.368e+05 

Number of Monte Carlo samples 1 000 

Number of Monte Carlo samples 1 000 

Number of Monte Carlo samples with 

extreme test statistic 

0 

Number of elements in ‘ChIP-Seq, RAD21’ 23 945 

Number of elements in ‘ChIP-Seq MotifLess 

‘ 

1 783 

Assembly gap coverage 0.006139 

 

Beneath are the motifs and scoring matrix obtained from Wang et al 2012. 

MYC motif (MM0001) 

Table 39 Matrix from Wang et al used for motif scanning by Simplescanner on the MYC ChIP-seq dataset [49]. 

A C G T 

0.155388  0.295739  0.401003  0.147870  
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0.345865  0.295739  0.135338  0.223058  

0.092732  0.413534  0.448622  0.045113  

0.000000  1.000000  0.000000  0.000000  

0.954887  0.000000  0.045113  0.000000  

0.000000  0.9724 31  0.000000  0.027569  

0.157895  0.000000  0.842105  0.000000  

0.077694  0.055138  0.000000  0.867168  

0.000000  0.000000  1.000000  0.000000  

0.000000  0.057644  0.739348  0.203008  

0.107769  0.471178  0.200501  0.220551  

0.190476  0.273183  0.182957  0.353383  

0.140351  0.305764  0.340852  0.213033  

0.127820  0.436090  0.228070  0.208020  

 

POU2F2 MM0002 

Table 40 Matrix from Wang et al used for motif scanning by Simplescanner on the POU2F2 ChIP-seq dataset [49]. 

A C G T 

0.154450 0.374346 0.183246 0.287958 

0.217277 0.162304 0.253927 0.366492 

0.256545 0.332461 0.206806 0.204188 

0.748691 0.102094 0.073298 0.075916 

0.000000 0.002618 0.000000 0.997382 

0.146597 0.041885 0.000000 0.811518 

0.028796 0.000000 0.000000 0.971204 

0.057592 0.000000 0.903141 0.039267 

0.026178 0.971204 0.000000 0.002618 

0.994764 0.005236 0.000000 0.000000 

0.007853 0.000000 0.000000 0.992147 

0.583770 0.034031 0.264398 0.117801 

0.277487 0.180628 0.120419 0.421466 

 

SRF MM0003 

Table 41 Matrix from Wang et al used for motif scanning by Simplescanner on the SRF ChIP-seq dataset [49]. 

A C G T 

0.256410 0.282051 0.123077 0.338462 

0.074359 0.125641 0.030769 0.769231 

0.020513 0.082051 0.256410 0.641026 

0.187179 0.169231 0.364103 0.279487 

0.000000 1.000000 0.000000 0.000000 

0.000000 0.987179 0.000000 0.012821 

0.207692 0.035897 0.000000 0.756410 

0.066667 0.000000 0.000000 0.933333 

0.843590 0.010256 0.038462 0.107692 
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0.030769 0.010256 0.000000 0.958974 

0.579487 0.000000 0.002564 0.417949 

0.202564 0.007692 0.007692 0.782051 

0.025641 0.000000 0.974359 0.000000 

0.000000 0.002564 0.997436 0.000000 

 

CHD2 (UA1) MM0004 

Table 42 Matrix from Wang et al used for motif scanning by Simplescanner on the CHD2 ChIP-seq dataset [49]. 

A C G T 

0.041045 0.078358 0.029851 0.850746 

0.000000 1.000000 0.000000 0.000000 

0.996269 0.003731 0.000000 0.000000 

0.000000 0.291045 0.003731 0.705224 

0.955224 0.003731 0.022388 0.018657 

0.007463 0.962687 0.026119 0.003731 

0.145522 0.044776 0.026119 0.783582 

0.026119 0.003731 0.958955 0.011194 

0.041045 0.026119 0.914179 0.018657 

0.735075 0.022388 0.093284 0.149254 

0.029851 0.014925 0.955224 0.000000 

0.958955 0.007463 0.014925 0.018657 

0.257463 0.026119 0.690299 0.026119 

0.962687 0.014925 0.022388 0.000000 

0.910448 0.011194 0.074627 0.003731 

 

 


