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Abstract

In this thesis the skyrmion velocity in the presence of spin-transfer torques, Rashba spin–
orbit coupling and a constant electric field gradient is derived analytically based on a
collective coordinate approach in the Thiele formalism. This analytical result is also de-
rived in the presence of a phenomenological pinning force. The results show that the
spin–orbit coupling can be effectively considered as a modification of the non-adiabatic
spin-transfer torque. The electric field gradient causes a motion of the skyrmion along
equipotential lines, in addition to a damped motion in the opposite direction of the gradi-
ent to a lower energy state. The analytical calculations are compared to a full numerical
solution of the Landau–Lifshitz–Gilbert equation. We also study the effects of Rashba
spin–orbit coupling on magnetic multilayer spin torque oscillators. It is discovered that
the spin–orbit coupling can be compared to a modification of the Gilbert damping, to the
extent that we can get an anti-damping term in the Landau–Lifshitz–Gilbert–Slonczewski
equation. This anti-damping term can help destabilize collinear states, and increase the
size of the oscillating phase. Moreover, we find an oscillating phase in both ferromagnet-
ically and antiferromagnetically coupled magnetic moments, where the moments are of
equal magnitude, which is a new result. The Rashba spin–orbit coupling also allows for
a wider tunability of frequency spectra of the spin torque oscillators.
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Samandrag

I denne masteroppgåva er skyrmionhastigheita i nærvær av spinnoverførande dreiemo-
ment, Rashba spinn-bane-kopling og ein konstant elektrisk feltgradient utleda analytisk
basert på ein kollektiv koordinattilnærming i Thiele-formalismen. Dette analytiske resul-
tatet er også utleda i nærvær av ein fenomenologisk låsingkraft. Resultata visar at spinn-
bane-koplinga kan effektivt bli sett på som ein modifisering av det ikkje-adiabatiske spin-
noverførande dreiemomentet. Den elektriske feltgradienten førar til ei rørsle av skyrmionet
langs ekvipotensiallinjar, i tillegg til ei dempa rørsle i motsatt retning av gradienten til
ei lågare energitilstand. Dei analytiske utrekningane er samanlikna med ei full numerisk
løysing av Landau–Lifshitz–Gilbert likninga. Vi studerar også effektane av Rashba spinn-
bane-kopling på magnetiske fleirlags spinn-dreiemoment-oscillatorar. Det er oppdaga at
spinn-bane-koplinga kan bli samanlikna med ei modifisering av Gilbert dempinga, i den
grad at vi kan få eit antidempingsledd i Landau–Lifshitz–Gilbert–Slonczewski likninga.
Dette antidempingsleddet kan hjelpe til å destabilisera kollineære tilstandar, og auke
storleiken til den oscillerande fasen. Dessuten finn vi ein oscillerande fase i både fer-
romagnetiske og antiferromagnetiske kobla magnetiske moment, der momenta er av lik
storleik, som er eit nytt resultat. Rashba spinn-bane-koplinga tillatar også ein større
tunbarheit av frekvensspektruma til spinn-dreiemoment-oscillatorane.
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1
Introduction

Most of the technological devices we use in our daily lives today are based on electronics,
where we utilize the charge of the electron to transfer and process information. In recent
decades an alternative to electronics has emerged, and its name is spintronics. Spintronic
devices utilize the spin of the electron instead of its charge. These devices have several
advantages over electronic devices, such as a lower power consumption and that the mate-
rials needed to realize the devices are fairly common metals [1], whereas electronic devices
need rarer semiconductor materials to function. Spintronic devices are widely used in non-
volatile memory applications, such as magnetoresistive random access memory (MRAM)
[2, 3], racetrack memories [4] and spin-transfer torque magnetic random access memory
(STT-MRAM) [5]. Most of these applications are based on the giant magnetoresistance
effect (GMR), which is that the resistance of a spin-polarized electrical current passing
through a magnetic multilayer system is dependent on the orientation of the magnetic
layers. When the magnetic moments of the different layers are anti-aligned the resistance
of the current passing through the layers is much greater than the resistance of a current
passing through magnetic layers with aligned magnetic moments. The discovery of this
effect by Fert [6] and Grünberg [7] in 1988 was awarded by the Nobel prize in physics in
2007. This effect makes it possible to use magnetic multilayers for information storage
in the form of bits, as we have a high-resistance and a low-resistance state, which can
be assigned to the values zero and one. In addition, this information is not necessarily
lost in the absence of an applied electric current or magnetic field, as the magnetic layers
can keep their orientation in an equilibrium state. This makes the spintronic devices
particularly interesting for non-volatile memory applications.

While the prospect of storing information in magnetic systems is interesting in its
own right, we also need to be able to read and write the information effectively. This is
where magnetization dynamics comes into play, a topic that this thesis will mainly revolve
around. While it is known that magnetic moments can be manipulated by magnetic fields,
this method is often impractical for nano-scale devices due to the large fields required to
manipulate the magnetic moments in a very localized region. It has been discovered,
however, that the magnetization in a magnetic material can also be manipulated by
electrical means. An experiment by Johnson and Silsbee in 1985 showed that the spin

1



Chapter 1. Introduction 2

direction of the electrons in a current passing through a magnetic layer was aligned with
the magnetic moment in the layer [8]. The magnetization in the film must therefore have
exerted a torque on the spins of the conduction electrons. It is then reasonable to think
that the spins of the conduction electrons will also exert a torque on the magnetization in
the magnetic layer. This was shown theoretically by Berger [9, 10, 11, 12] and Sloncewski
[13], and later observed experimentally [14]. This torque, known as the spin-transfer
torque, could be used to switch the magnetization direction of one of the magnetic layers
in a multilayer system [15, 16, 17]. It is therefore a very useful mechanism in writing
techniques in spintronic devices.

Spin-transfer torques have also been shown to induce a translational motion of mag-
netic textures, such as domain wall motion [18, 19]. This is very useful in information
processing, as we can move the information encoded in magnetic domains without any
motion of physical components. This is utilized in racetrack memories [4]. This motion of
magnetic textures is not without problems, however. Ideally we would move these mag-
netic textures in a purely translational manner, but above some critical current strength
the motion of magnetic domain walls has been shown to undergo a Walker breakdown
[20]. This Walker breakdown is an excitation of a different type of dynamics of the domain
wall, in the form of rotational motion. In addition, at the current density needed to move
domain walls Joule heating becomes a concern [21], causing energy loss to heat generation
and thermal effects in the domain wall motion. Another magnetic texture known as the
magnetic skyrmion has been of considerable interest lately, however. This is due to the
fact that the critical current necessary to move them has been shown to be as low as 106

A/m2 [22, 23, 24], whereas domain walls have a critical current in the range 1010 − 1012

A/m2 [25, 4]. This makes it possible to move them without considerable effects from Joule
heating. In multiferroic materials it is even possible to create skyrmion based memory
devices without any Joule heating effects at all [26], as they can be controlled by elec-
tric fields via coupling to the electric dipole moment of the skyrmion. The dynamics of
skyrmions has also been shown to be controllable by electric fields even in ferromagnetic
materials [27]. Skyrmions are topologically stable objects, meaning they are also suitable
for non-volatile memory applications. They are also of particular interest due to their
ability for an extremely dense storage of information [28], as a single skyrmion can span
just a few nanometers. In addition, methods that would make it possible to nucleate
skyrmions by injection of a spin-polarized current [29], spin-waves [30] or by applying
mechanical stress [31] have been suggested. This ability to manipulate skyrmions makes
them very attractive in memory applications. The downside of skyrmions with respect
to magnetic domain walls is that the skyrmion velocities obtained so far are well below
what is achievable with magnetic domain walls [28, 32].

A third use of the spin-transfer torque, in addition to magnetization switching and
translation of magnetic textures, is the precession of magnetic moments it can induce in
magnetic multilayer systems [33, 34, 35]. When the magnetic moments in a multilayer
system precess with respect to one another, so the projection of one magnetic moment onto
another varies in time, this will cause an oscillation in the resistance of a current passing
through the system due to the giant magnetoresistance effect. A direct current passing
through the multilayer system will then be transformed into an alternating current. Such
a system with a self-sustained precession in the magnetic layers is known as a spin torque
oscillator [36, 37]. These oscillators are able to generate a wide range of frequencies in the
output signal, spanning the range of 100s of MHz to 100s of GHz [3, 36, 38]. In addition,
the frequency obtained can easily be tuned by the strength of the applied current. This



3

type of self-sustained precession has been shown to occur in both ferromagnetically [39]
and antiferromagnetically [40] coupled magnetic layers, although Ref. [39] was unable to
reproduce the results of Ref. [40].

Both skyrmions and spin torque oscillators appear in systems with a broken inversion
symmetry. Skyrmions appear in chiral magnets, while spin torque oscillators are based
magnetic multilayer systems, which have a broken inversion symmetry at the interfaces
of the different layers. When we have a system with broken inversion symmetry, Rashba
spin–orbit coupling [41, 42] can arise and a current passing perpendicularly to the direction
of the asymmetry will induce spin–orbit torques. This type of spin–orbit coupling has
proven to cause interesting effects in many different areas [43], such as the appearance of an
intrinsic spin Hall effect [44]. The spin–orbit coupling was also an important mechanism
in the implementation of the spin field-effect transistor by Datta and Das [45]. One of the
advantages of Rashba spin–orbit coupling is its ability to be modified by the application
of an electric field via gate voltages [46, 47]. This way the strength of the inversion
asymmetry can be controlled to some extent. A discovery that is of particular interest to
us is that Rashba spin–orbit coupling can also contribute to magnetization switching and
self-sustained oscillations in spin torque oscillators [48, 49].

In this thesis we will study the magnetization dynamics of a single skyrmion (which
is driven by spin-transfer torques and inhomogenous electric fields) and spin torque os-
cillators, both in the presence of Rashba spin–orbit coupling. We first introduce the
micromagnetic model and the Landau–Lifshitz–Gilbert equation as a foundation for our
calculations. Before deriving the equations of motion for the skyrmion from the Thiele
equation, we briefly discuss the structure, symmetries and dynamical properties of the
skyrmion. The analytical solution of the Thiele equation is then compared to a full numer-
ical solution of the Landau–Lifshitz–Gilbert equation. Lastly, we combine analytical and
numerical calculations to find the spin torque oscillator state and its frequency spectrum
based on the Landau–Lifshitz–Gilbert–Slonczewski equation.





2
The micromagnetic model

In this thesis we will base our work on the micromagnetic model. This model is a semi-
classical theory that is conventionally used to describe both the equilibrium and dynamics
of the magnetization in a material on a nanometer to micrometer length scale. This
length scale is large enough to assume a continuum approximation, we can consider the
magnetization as a smooth and continuously varying vector field in space, as it is greater
than the typical atomic length scale. On this length scale it is also not necessary to do
a full quantum mechanical treatment of the system, making it justifiable to primarily
treat quantities as expectation values instead of operators. The length scale is small
enough, however, to be able to successfully describe patterns in the magnetization that
are observed in nature, such as magnetic domain walls and magnetic skyrmions. This
model is also able to describe the motion of such magnetization patterns well, which
makes it a highly attractive model in the field of magnetization dynamics.

2.1 Energy terms in micromagnetics

In conventional micromagnetics there are five contributions to the micromagnetic energy.
These are the exchange energy, the anisotropic energy, the Zeeman energy, the demagne-
tization energy, and the magneto-elastic energy. Of these five energies we will only discuss
the former three. The demagnetization energy is not considered as it is mainly dominant
over larger length scales, and the length scale that we will primarily consider is on the
nanometer length scale. The magneto-elastic energy is also neglected, as we will not con-
sider elastic distortion of the lattice. We will, however, also consider energy contributions
that are not included in conventional micromagnetics, such as the Ruderman–Kittel–
Kasuya–Yosida interaction, Rashba spin–orbit coupling, the Dzyaloshinskii–Moriya in-
teraction and pinning potentials. We will treat these energy contributions in the same
manner, assuming a continuum model of the magnetization if applicable (the Ruderman–
Kittel–Kasuya–Yosida interaction for example is an interaction between discrete magnetic
moments, and a continuum model is therefore not suitable).

5



Chapter 2. The micromagnetic model 6

2.1.1 Exchange energy
Ferromagnetism occurs in materials where the spins tend to align with each other, and
thereby being able to generate an observable magnetic field outside of the material. The
mechanism behind this is the exchange interaction between the spins. In ferromagnetic
materials the system can lower its energy by having parallel neighboring spins. This is
described by the Heisenberg Hamiltonian,

H = −J
∑
〈i,j〉
Si · Sj, (2.1)

with J being the exchange integral which is positive for ferromagnetic materials and S
a dimensionless spin-vector. The spins can be expressed in terms of the magnetization,
which is the average magnetic moment. As the magnetic moment and the spin of an
electron are anti-parallel, this relation becomes

Si = − S

Ms

Mi, (2.2)

with Ms being the saturation magnetization and S the magnitude of the spin. The
magnetization is a classical vector, and in micromagnetism it is treated as a slowly varying
smooth function. One can therefore perform a Taylor expansion of it. By doing that, one
can show [50] that the energy density can be written as

εEX = dEEX

dV = − A

M2
s

M (r)∇2M (r) = A

M2
s

∂iM (r)∂iM (r), (2.3)

with A being the exchange stiffness

A = JS2

2a (2.4)

and a being the lattice constant.

2.1.2 Zeeman energy
When turning on an external magnetic field in a magnetic material, the magnetic moments
in the material tend to align with the magnetic field. This is due to the Zeeman interaction,
which will go to a lower energy state if the magnetic moments and external field are
aligned. The Zeeman interaction energy density is given by

εZ = −µ0M ·HZ, (2.5)

with HZ being the external magnetic field.

2.1.3 Perpendicular magnetic anisotropy
In some magnetic materials we may have something known as magnetic anisotropy. As the
name indicates, there is an anisotropy in the material that makes certain magnetization
directions more energetically favorable than others. This mostly stems from the spin–orbit
coupling. If one considers the rest frame of the electron instead of the proton, the proton
is orbiting the electron and thereby causing a temporally varying electric field. Ampère’s
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circuital law then says that the electron observes a magnetic field proportional to the
orbital motion of the proton. This magnetic field then interacts with the magnetic moment
(proportional to the spin) of the electron like in the Zeeman interaction, except here due
to internal fields, hence the name spin–orbit coupling. Taking this into consideration as
well as the atomic structure in the material, one can see that one could end up with a
material where the magnetic field the electrons experience from the spin–orbit coupling
would allow one direction to be easier magnetized than others.

In some layered ultrathin film structures, such as Pd/Co [51], it has been discovered
that the magnetization has a lower energy when it is perpendicular to the films. This
means that the easy axis of the material is perpendicular to the films, and we then have
something called perpendicular magnetic anisotropy (PMA). The anisotropic energy is
independent of the direction the magnetization has along the easy axis, meaning the
energy is the same if the magnetization points into or out of the films. Letting K be the
anisotropy constant and θ the angle to the normal of the films, the anisotropic energy
density can then be written as

εPMA = K sin2 θ (2.6)

to the lowest order in θ. Here we have normalized the energy density in such a way that
if the magnetization points along the easy axis the energy density is zero.

2.1.4 Voltage induced magnetic anisotropy
One form of perpendicular magnetic anisotropy occurs at the interface between certain
materials. This has been attributed to the exchange interaction between p- and d-oribitals
at material interfaces, such as the 3d orbital in Fe and 2p orbital in O at an Fe/MgO
interface [52]. As this is a magnetic anisotropy that only occurs at the surface of the
material, it will only be of importance in ultra-thin magnetic films where surface effects
are of a greater importance. It has also been discovered that one can modify the strength of
this surface magnetic anisotropy with an external electric field. The reason for the change
of strength in the magnetic anisotropy is the modification of the occupation number in
the 3d orbitals in Fe, thereby affecting the p-d exchange interaction that is the origin of
the magnetic surface anisotropy [53]. It was found that in a thin-film system with an
Fe/MgO interface where the Fe layer consisted of only a few monoatomic layers a change
of approximately 40% could be achieved in the magnetic surface anisotropy by application
of an external electric field. As it is relatively easy to generate a localized electric field,
one can therefore create an energy landscape to influence the dynamics of magnetization
patterns. An example of this was shown by Upadhyaya et al. by guiding dipole-dipole
interaction skyrmions with voltage gates [27].

As the voltage induced magnetic anisotropy behaves as PMA, the energy density
must then have the same form as that of εPMA in (2.6) and be dependent on the electric
field. If one assumes that the modification of the electric field on the PMA is linear in
the electric field, the energy density can be written as

εEF = ηE(r) sin2 θ, (2.7)

where η is a materialistic constant describing the strength of the modification of PMA by
the electric field, and the electric field strength E(r) is the z-component of the electric
field as a function of position in the thin film.
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2.1.5 Ruderman–Kittel–Kasuya–Yosida interaction
In metals, there is also another type of exchange interaction between magnetic moments in
addition to the one described in Section 2.1.1. This interaction between nuclear magnetic
moments is an indirect interaction. First a conduction electron in the atom interacts with
the nuclear magnetic moment (proportional to its spin) through the hyperfine interaction.
The hyperfine interaction is similar to the spin–orbit coupling discussed in Section 2.1.3.
Instead of being in the rest frame of the electron, however, we consider the magnetic field
seen in the rest frame of the nucleus due to the orbital motion of the electron. In addition,
as the electron carries with it an intrinsic magnetic moment, it will generate a magnetic
field that will interact with the spin of the nucleus. In short, the hyperfine interaction
consists of spin–orbit and spin–spin interactions seen from the rest frame of the nucleus.
Going back to the conduction electron that has interacted with the nuclear magnetic mo-
ment through the hyperfine interaction, it can also interact with another nuclear magnetic
moment after interacting with the first. It can therefore act as a mediating particle for
the interaction between the magnetic moments of two different nuclei. This interaction is
known as the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction [54, 55, 56, 57], and
its Hamiltonian is given by

HRKKY = Ii · Ij
4
|∆kmkm|2m∗

(2π)3R4
ij~2 [2kmRij cos (2kmRij)− sin (2kmRij)] . (2.8)

Here Ii and Ij are the nuclear magnetic moments, Rij the distance between the mag-
netic moments, km the wave number of the conduction electrons, m∗ the effective mass of
the electrons and ∆kmkm is a factor describing the strength of the hyperfine interaction.
What is important to note here is that the RKKY Hamiltonian acts similarly to the ex-
change Hamiltonian (2.2) in a manner that it is a symmetric interaction between spins,
and that the coupling strength between the spins is a function of distance. Moreover, un-
like the exchange interaction, this function of distance can either be positive or negative
depending on the value of kmRij. This means that we can alter if two magnetic moments
are ferromagnetically or antiferromagnetically coupled to each other by increasing or de-
creasing the distance between them. The way the interaction is formulated in (2.8) it is
between two nuclear magnetic moments. However, the RKKY interaction can also occur
in a multilayer system such as F1/N/F2 where Fi are thin uniformly magnetized magnetic
metals and N is a non-magnetic metallic spacer, as shown by Parkin and Mauri in [58].
If one lets the magnetization in Fi be Mi, the RKKY interaction energy in Fi can then
be written as

HRKKY = −JRKKY(Rij)
diM2

s

Mi ·Mj, (2.9)

with JRKKY(Rij) being the distance dependent coupling strength between the magnetic
moments that can be both positive and negative, and di being the thickness of Fi. The
magnetic layers will then have a ferromagnetic coupling when JRKKY > 0 and an antifer-
romagnetic coupling when JRKKY < 0.

2.1.6 The Rashba effect
In materials where the motion of the electrons is confined to a plane, and the inversion
symmetry is broken along the axis perpendicular to that plane, there is a splitting of the



9 2.1. Energy terms in micromagnetics

spin energy levels. Inversion symmetry can for example be broken at the interface between
two materials [42]. The inversion asymmetry causes an electric field perpendicular to the
plane of motion, as the gradient of the electrostatic potential becomes non-zero when
inversion symmetry is broken (V (r) 6= V (−r)). When particles move in an electric field,
they experience a magnetic field which can be seen by performing a Lorentz transformation
into the particles’ restframe. This magnetic field is proportional to v×E. Because of the
magnetic field the energy levels become spin dependent, as the field couples to the spin.
This is described by the Rashba Hamiltonian [41]

HR = αR

~
σ · (p× n̂) = αR(σ × k) · n̂. (2.10)

Here αR is the Rashba parameter, p = ~k the momentum of the electrons, n̂ a unit vector
perpendicular to the plane of motion (along the direction of broken inversion symmetry)
and σ is a vector of the Pauli matrices. This can be seen as the magnetic field points along
the direction v ×E, and as p ∝ v and E points along the direction of broken inversion
symmetry given by n̂, the magnetic field therefore points along p × n̂. According to
the Zeeman energy the energy should be then proportional to σ · (p × n̂), and this
proportionality constant is given by αR, the value of which contains the physics of the
broken inversion symmetry. This effect is a form of spin–orbit interaction, as the spin of
the electron (∝ σ) interacts with its own motion (v). This effect is therefore also called
Rashba spin–orbit coupling (RSOC).

2.1.7 The Dzyaloshinskii–Moriya interaction
The Dzyaloshinskii–Moriya interaction (DMI) is an antisymmetric exchange coupling be-
tween spins, given by the Hamiltonian

HDM =
∑
〈i,j〉
Dij · (Si × Sj). (2.11)

This interaction only occurs in materials where the inversion symmetry is broken. The
magnitude of Dij depends on the material properties, and the direction of Dij depends
on the symmetry of the atomic structure in the material. Moriya showed [59] that if there
is an n-fold axis (with n ≥ 2) along the axis between the particles with spins Si and Sj,
Dij will be parallel to that axis. Using that in a Taylor expansion of (2.11), it can be
shown [50] that the energy density becomes

ε
(bulk)
DM = D

M2
s

M · (∇×M ). (2.12)

On the other hand, if there is a mirror plane located at the center of the line between
the particles with spins Si and Sj that is perpendicular to the axis intersecting them, the
vector Dij lies in the mirror plane. In a more specific case where the interaction between
the spins Si and Sj is mediated by a third magnetic particle (different from the other
two) located in the mirror plane,Dij is perpendicular to the triangle spanned by the three
particles as illustrated in Figure 2.1. We now assume that the magnetic particles with
spins Si and Sj are located in the xy-plane, and that the mediating magnetic particle of
a different type lies above them. According to symmetry, the vector Dij is then given by
Dij = D/aŷ if i and j are nearest neighbours in the x-direction, and Dij = −D/ax̂ if
i and j are nearest neighbours in the y-direction. Here a is the lattice constant and D
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Si Sj

±Dij

Figure 2.1. An illustration of the geometry of an interfacial DMI. The antisymmetric
interaction between the spins Si and Sj is mediated by a third magnetic particle in blue.
The direction of Dij is then perpendicular to the plane spanned by the three particles.

a constant that can be both positive and negative. We have for simplicity assumed an
equal interaction in all directions in the xy-plane. Using this result, we explicitly derive
the expression for the interfacial DMI energy density for reasons we will see in Section
3.2.2. As the spin can be written in terms of the magnetization as S = −MS/Ms, the
Dzyaloshinskii–Moriya Hamiltonian can be written as

HDM = 1
M2

s

∑
〈i,j〉
Dij · (Mi ×Mj) (2.13)

where the S2 has been included in the magnitude ofDij. As mentioned earlier, we can do
a Taylor expansion of the magnetization as it is a continious function in the micromagnetic
model. To first order this Taylor expansion becomes

Mi+1 ≈Mi + a
∂Mi

∂x
(2.14)

in the x-direction. An entirely equivalent expansion can also be done in the y-direction.
The expansion in the z-direction is ignored as Dij does not have a z-component. The
energy density can then be calculated to be

ε
(interface)
DM = D

M2
s

[
ŷ ·
(
M × ∂M

∂x

)
− x̂ ·

(
M × ∂M

∂y

)]

= D

M2
s

[(
Mz

∂Mx

∂x
−Mx

∂Mz

∂x

)
(ŷ · (ẑ × x̂))

−
(
My

∂Mz

∂y
−Mz

∂My

∂y

)
(x̂ · (ŷ × ẑ))

]
(2.15a)

= D

M2
s

[Mz(∇ ·M )− (M · ∇)Mz] . (2.15b)

The observant reader may have noticed that both the Rashba spin–orbit coupling and
Dzyaloshinskii–Moriya interaction occur in materials with inversion asymmetry. Dzyaloshin-
skii first introduced DMI based on a phenemenological reasoning [60] to describe what had
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been observed experimentally, and Moriya later proposed that the microscopic mechanism
behind this was spin–orbit coupling [59]. In thin-film systems it is then reasonable to as-
sume that Rashba spin–orbit coupling can be the mechanism behind DMI. This was in
fact shown mathematically by Kim et al. [61]. They started with the model Hamiltonian

H = Hkin +HR +HEX = p2

2me

+ αR

~
σ · (p× n̂) + Jσ · M̂ (2.16)

for the conduction electrons that includes the kinetic energy of electrons confined to a
plane, a Rashba spin–orbit coupling and the symmetric exchange energy between the
spins and the local magnetization. A unitary transformation was then performed on the
Hamiltonian to remove the explicit Rashba Hamiltonian from the model, so that the
transformed Hamiltonian could be written as H ′ = U †HU = Hkin + H ′EX +O(α2

R). This
unitary transformation, defined by

U = exp
[
−iαRme

~2 σ · (r × n̂)
]
, (2.17)

does not change the eigenvalues of the system, and the physics in the transformed Hamil-
tonian is therefore the same as the original model Hamiltonian. It was then shown that
the transformation could be written as a rotation of the local magnetization. Plugging
this transformed magnetization into the exchange energy density (2.3) in Section 2.1.1,
an interfacial DMI term appears in addition to the symmetric exchange energy density.
This DMI is characterized by an interaction strength D given by

D = 4αRmeA

~2 . (2.18)

2.1.8 Pinning potentials
With the exception of the RKKY interaction and voltage induced magnetic anisotropy,
the free energy terms discussed so far are not explicitly dependent on position, but rather
dependent on the magnetization profileM (r). If we were then to consider a system where
the RKKY interaction and voltage induced magnetic anisotropy do not contribute to the
free energy, and only the remaining energy terms discussed do, a given magnetization
pattern M (r) will have the same free energy independent of where in the material it is
localized. In other words, M(r) and M (r − r0) have the same energy for any choice
of r0. However, a realistic material will have impurities, and with the impurities local
energy variations that are known as pinning centers appear. These pinning centers can
make a certain position in the material for a magnetization pattern such as a domain wall
or a magnetic skyrmion (which we will discuss in the next chapter) more energetically
favorable to be localized. When considering the dynamics of magnetization patterns that
are pinned in these pinning centers, one will need to supply a certain amount of energy
for the magnetization pattern to move across the energy barrier that keeps the pattern
localized in the pinning center [25, 4, 22]. There are several mechanisms that can cause
these local energy variations to occur. In [62] Liu and Li proposed that by modifying
the local density of itinerant electrons the exchange stiffness A and DMI strength D
could become spatially dependent. When this is done the free energy becomes explicitly
dependent on position, and due to the damping in the system any magnetization pattern
will relax to its local minimum in the free energy. Another way to introduce pinning
centers is to have spatial variations in the perpendicular magnetic anisotropy. This can
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be realized by having notches in the surface of the magnetic material [29]. It is also
possible to have pinning centers in the material by having a hole in the magnetic material
[63], where for example certain atoms in a crystalline magnetic material are removed or
replaced by non-magnetic atoms.

2.2 The Landau–Lifshitz–Gilbert equation
The key equation in the micromagnetic model is the Landau–Lifsthitz–Gilbert equation,
which is based on the behavior of magnetic moments in magnetic fields. Magnetic mo-
ments are known to precess around magnetic fields when they are not perfectly aligned.
This is known as Larmor precession. The magnetization in a magnet will therefore also
perform Larmor precession, as the magnetization is the magnetic moment in a unit vol-
ume. This precession can be described by

dM
dt = −γM ×H , (2.19)

where γ is the gyromagnetic ratio defined by

γ = geµ0µB
~

(2.20)

where ge ≈ 2 is the g-factor, µ0 the vacuum permeability and µB is the Bohr magneton. In
addition to performing a precessing motion around the magnetic field, the magnetization
will eventually relax parallel to the field to minimize the energy of the system. This can be
modeled by introducing a damping term that is perpendicular to the magnetization and
the precession of the magnetization. The precessional and damped precessional motions
are illustrated in Figure 2.2. Originally Landau and Lifshitz proposed [64] a damping
term of the form

dM
dt = −γM × (H + α

Ms

M ×H), (2.21)

but it was discovered that this did not agree well with experiments in systems with a
large damping parameter α. Therefore Gilbert proposed a damping term that included
the time-derivative of the magnetization instead [65], which agreed much better with
experiments [66], of the form

dM
dt = −γM ×H + α

Ms

M × dM
dt . (2.22)

This is known as the Landau–Lifshitz–Gilbert equation, and is the equation that governs
the dynamics in the micromagnetic model. It should be noted that the magnetic field H
that the magnetization precesses around is not only an external magnetic field applied to
the system, but it is the effective magnetic field experienced locally by the magnetization.
The direction of this magnetic field represents the direction in which the magnetization
will have a minimum in the micromagnetic energy, and the effective field can therefore
be written in terms of the micromagnetic energy. The effective field in the absence of an
external field is given by

Heff = − 1
µ0

δε[M ]
δM

= 2A
µ0Ms

∇2m+ 2(K + ηE)
µ0Ms

mzẑ + 2D
µ0Ms

(
∂mz

∂x
x̂+ ∂mz

∂y
ŷ − (∇ ·m)ẑ

)
, (2.23)
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M

−γM ×HH

(a)

M

−γM ×H

αM × ∂tM

H

(b)

Figure 2.2. The precession of the magnetization vector around a magnetic field. In (a)
the precession is undamped and so the magnetization performs counter-clockwise circular
rotations around the magnetic field. In (b) the damping component pointing towards the
magnetic field causes a spiralling motion of the magnetization vector that eventually aligns
the magnetization with the magnetic field.

withm being a unit vector in the direction of the magnetization. Here the symmetric ex-
change interaction, perpendicular and voltage induced magnetic anisotropy and interfacial
DMI have been taken into consideration in the effective field.

Another thing to notice about the LLG equation is that only the direction of the mag-
netizationM and not its magnitude changes with time. This can be seen by multiplying
(2.22) by M from the left:

M · dMdt = 1
2
d
dtM

2 = M ·
(
−γM ×H + α

Ms

M × dM
dt

)
= 0. (2.24)

In other words the LLG equation conserves the magnitude of the magnetization, meaning
dMs

dt = 0.

2.3 Spin-transfer torques
The LLG equation presented in (2.22) describes the dynamics of magnetic moments in
the presence of external magnetic fields and internal effective fields that try to minimize
the energy of the system. However, there are also other means of inducing dynamics of
the magnetization in a material. The LLG equation can be extended to include these
effects by adding torques to the right hand side of the equation (note that these torques
will not have the same units as a mechanical torque, but the effect is well described by the
term torque as it appears as a rotation of the magnetization direction). One method that
has shown promise in inducing magnetization dynamics is the spin-transfer torque. In [9]
Berger noted that when you apply a current through a magnetic domain wall, the main
effect was not a scattering of the electrons, but that the domain wall tended to follow
the motion of the electrons. When a spin-polarized current is passing through a magnetic
material, the conduction electrons will want to align their magnetic moments with the
local magnetization in the material to reduce their energy. The way the electrons reach
a lower energy state is by the torque acting on them from the local magnetization due
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to the fact that they are not aligned (or anti-aligned). Since the conduction electrons
experience a torque when passing through a magnetization not parallel to their own mag-
netic moments, Newton’s third law dictates that there must be an equal and opposite
torque acting on the local magnetization. In other words, through a means of conserving
angular momentum the conduction electrons transfer some of their spin to the local mag-
netization, hence the term spin-transfer torque (STT). Slonczewski introduced this torque
in the LLG equation for the case of STT acting on a magnetic multilayer system [13].
This torque was observed experimentally a few years after the publications by Berger and
Slonczewski [14, 15].

2.3.1 Adiabatic spin-transfer torque
To start the introduction of spin-transfer torques we will first discuss them qualitatively
in what is known as the adiabatic regime. In this regime it is assumed that the magnetic
moments of the conduction electrons passing through the magnetic material relaxes fast
enough to always follow the local magnetization. If we then consider a current passing
through a magnetic layer with a magnetization direction mi = Mi/Ms, the magnetic
moment of the electrons will be parallel to mi. Not long after passing through mi,
the electrons pass through another magnetic material with a magnetization directionmj

which is tilted with respect to mi. Since the electrons have a magnetic moment that is
not aligned with mj, this magnetization will lead to a torque acting on the conduction
electrons to make their magnetic moments relax to be aligned withmj instead ofmi. As
we mentioned earlier, there is then an equal torque acting onmj in the opposite direction,
attempting to align it with the magnetic moment of the electrons, which ismi at the time
of incidence. If we then assume that the magnitude of Mi and Mj are equal, the torque
acting on mj must then be proportional to the component of mi which is perpendicular
to mj. This means that the torque is proportional to mi − (mi ·mj)mj, as illustrated
in Figure 2.3.

mi

mj

mi − (mi ·mj)mj

Figure 2.3. The adiabatic spin-transfer torque acting on a magnetic moment mj from a
spin-polarized current having passed through the magnetic moment mi is proportional to
the component of mi perpendicular to mj .

This discussion was for two discrete magnetic moments. Let us now consider a case
where the magnetization in a material varies slowly in a way that can be described by
a function of position, such as a magnetic domain wall. We can still use the result
from before, but instead of mj being a magnetic moment in a direction independent of
the direction of mi, there is only an infinitesimal change in mj from mi. So when the
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electrons arrive at the magnetization at a position x+dx (here assuming the electrons flow
in the positive x-direction), their magnetic moments are aligned with the magnetization
at the position x. Since the magnetization varies slowly, we can do a Taylor expansion to
approximate the magnetization at position x + dx as a function of the magnetization at
position x:

m(x+ dx) ≈m(x) + dx∂xm(x). (2.25)

Typically dx would be on the length scale of the lattice constant. Using this expansion
we can then find the direction of the torque acting on the magnetization at x + dx from
the current which has a polarization along the magnetization at x:

m(x)− [m(x) ·m(x+ dx)]m(x+ dx)
≈m(x)− [1 + dxm(x) · ∂xm(x)] [m(x) + dx∂xm(x)]
= − dx∂xm(x). (2.26)

Here we have used that m(x) · ∂xm(x) = 0 as the magnitude of M (x) is assumed to be
constant for all positions. As we can see the result is somewhat different than for the two
discrete magnetic moments as we have a differential in the torque, but the physical inter-
pretation of the result is still the same. When the magnetic moments of the conduction
electrons follow the local magnetization, their magnetic moment is adjusted from m(x)
to m(x) + dx∂xm(x). The direction of the torque acting on the magnetization at x+ dx
must then be in the opposite direction of this change, along − dx∂xm(x). Remember
that what we have discussed so far has only been the direction of the torque acting on
the local magnetization, and not its magnitude. A pre-factor must then be included that
reflects how much spin is transferred from each electron to the local magnetization, the
frequency of each electron passing through the magnetization, and how many of these
electrons that are polarized of the magnetization at the previous position. Each electron
has a magnetic moment µ = µBm, with m being a unit vector in the direction of the
magnetization. The frequency of the electrons passing through the magnetization can be
expressed in terms of the current, and since the magnetization is a volume average of
the magnetic moments in the material, we want the current density to describe the rate
of change to the magnetization. Letting the current passing through per cross-sectional
area be j, the current density is j/dj with dj being the thickness of the material with
magnetization Mj. Assuming a portion P of the electrons in the current are polarized,
the frequency of each electron transferring its magnetic moment to the magnetic material
per volume unit is jP/(−ed), where we have divided the current by its charge carrier.
The adiabatic spin-transfer torque acting on a magnetization Mj after a current passing
through a magnetization Mi is then

T
(adiabatic)
STT = −µBjP

edj
(mi − (mi ·mj)mj) = − γ~jP2eµ0d

mj × (mi ×mj) . (2.27)

In a material with a slowly varying magnetization, the thickness of the magnetization
goes from dj to dx. Using the expression found in (2.26) and that the current is moving
in the direction ĵ, the adiabatic STT in this case becomes

T
(adiabatic)
STT = µBjP

eMs

(ĵ · ∇)M (r). (2.28)

These torques can then be included in the right hand side of the LLG equation in (2.22)
to describe the dynamics of adiabatic STTs.
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2.3.2 General spin-transfer torque
So far we have discussed how STT terms would appear in the LLG equation if the magnetic
moments of the conduction electrons follow the local magnetization adiabatically. We will
now derive the STT terms for a slowly varying magnetization more rigidly based on the
spin continuity equation. This will be done for a more general case where the magnetic
moments of the conduction electron can have a small component perpendicular to the
local magnetization. This derivation mainly follows the derivation by Zhang and Li [67].
We start by considering the spin continuity equation. This is based on the continuity
equation for an arbitrary quantity ρ,

∂tρ+∇Ĵρ = 0, (2.29)

with Ĵρ being the current of the quantity ρ. This continuity equation assumes that the
quantity ρ is conserved, but this is not the case for the spins in our system. The spins of
the conduction electrons interact with the local magnetization, and in addition they can
be scattered by the material. To reflect this we introduce sources and sinks on the right
hand side of the continuity equation, so that it is given by

∂ts+∇Ĵ = 1
i~

[s, Hsd]− Γ (s). (2.30)

Here s is the spin operator for the conduction electrons, Ĵ the spin-current operator,
Γ (s) the relaxation rate of the conduction electrons due to scattering, and Hsd the s-d
Hamiltonian

Hsd = −Jexs · S (2.31)

which describes the (anti)ferromagnetic coupling between the itinerant spins s and local
spins S depending on the sign of the coupling strength Jex. In the micromagnetic model
we are in a semi-classical limit, and we will therefore not treat the local spins quantum
mechanically as operators, but as expectation values. The spins of the conduction elec-
trons, however, we will still treat as operators for now. We proceed by calculating the
commutator

[s, Hsd]i = −Jex [si, sjSj] = −Jex [si, sj]Sj. (2.32)

Here we assume the Einstein summation convention. Note that Sj can be pulled out
of the commutators as it is not treated as an operator. The spin operators satisfy the
commutation relation

[si, sj] = i~εijksk, (2.33)

which can be obtained from the Pauli matrix commutation relation as si = ~σi/2. We
then find that

1
i~

[s, Hsd] = −JexS × s. (2.34)

From now on we will also treat the remaining operators as expectation values. We make
the ansatz that the spin density m of the conduction electrons are mainly parallel to the
local magnetization M , but allow a small perpendicular component δm:

m = 〈s〉 = m0

Ms

M + δm. (2.35)
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Note here that the ratio m0/Ms is very small, as the magnetization of the current is far
below saturation. Moving on to the expectation value of the spin-current, we can write
this as a tensor product between the velocity of the electrons, and their spin: 〈Ĵ〉 = v⊗s.
Instead of writing this expectation value in terms of the velocity v and spin s, we want
to write it in terms of the current density and magnetization. Using that s ≈ µBM/Ms

and following a similar approach as in the last section to rewrite the velocity in terms of
the current j per unit area, we find that

〈Ĵ〉 = −µBP
eMs

j ⊗M . (2.36)

Note that here we have assumed the spin current is adiabatic. To be exact one needs to
include a non-adiabatic spin-current term δ〈Ĵ〉, but it is assumed this is negligible. The
product ∇̂〈Ĵ〉 in the spin continuity equation then becomes

∇̂〈Ĵ〉 = −µBP
eMs

(j · ∇)M (2.37)

when one assumes a uniform charge current density j. Lastly, we approximate the relax-
ation rate due to scattering Γ (s) by the expectation value

〈Γ (s)〉 ≈ δm

τsf
, (2.38)

with τsf being the spin-flip relaxation time. The spin continuity equation then becomes

∂tm−
µBP

eMs

(j · ∇)M = −JexS
Ms

m×M − δm

τsf
= − 1

τexMs

δm×M − δm

τsf
(2.39)

where we have introduced the spin relaxation τex = (JexS)−1 time due to the exchange
interaction. This is a time-scale that indicates how fast the spins of the conduction
electrons align with the local spins, and this time-scale becomes smaller the stronger the
exchange interaction (∼ Jex) is. The first term appearing on the right hand side is a torque
acting on the spin of the electrons due to an interaction with the local magnetization. As
we have discussed earlier, Newton’s third law then dictates that there must be an equal
torque acting on M in the opposite direction, leaving us with the spin-transfer torque

TSTT = 1
τexMs

δm×M . (2.40)

To determine this torque we must first find δm. We can do this based on (2.39), but first
we find an expression for δm ×M , which we can obtain by taking the cross product of
(2.39) with M from the right. We then find that

δm×M = τsf

[
m0

Ms

M × ∂tM − µBP

eMs

M × (j · ∇)M + Ms

τex
δm

]
(2.41)

where we have neglected the time derivative of δm. Inserting the expression for δm
from (2.39) into the expression above, we finally find that the total spin-transfer torque
becomes

TSTT = 1
1 + β2

[
βm0

M2
s

M × ∂tM − m0

Ms

∂tM + µBP

eMs

(j · ∇)M − βµBP

eM2
s

M × (j · ∇)M
]
,

(2.42)



Chapter 2. The micromagnetic model 18

where we have introduced the ratio β = τex/τsf. The first two terms on the right hand side
are on a form that already appear in the LLG equation, and introduce no new physics.
In addition, they are proportional to m0/Ms, and are therefore negligible. The third
term we recognize being the adiabatic STT term in (2.28) that we found in the previous
section, with an additional factor (1 + β2)−1. The last term is of particular interest, as it
is on a form that we have not seen before. As we can see, the term is perpendicular to
the adiabatic STT and contains an additional factor β. In the adiabatic regime, which
we considered in the previous section, β → 0 as the spin-flip relaxation time is much
greater than the exchange relaxation time when the conduction electrons follow the local
magnetization adiabatically. The last term therefore only appears when we are not in
the adiabatic regime, and is therefore called the non-adiabatic STT. This torque, which
is caused by the magnetic moments of the itinerant electrons that are not aligned with
the local magnetization, will twist the magnetization out of the plane spanned by the
magnetization in that area.



3
Skyrmions: symmetries and dynamics

The micromagnetic model introduced in the previous chapter is able to describe many
different magnetization patterns that are static solutions of the LLG equation, one of
them being magnetic skyrmions which we will introduce in this chapter. Here we will
discuss their topology, what mechanisms are needed to stabilize them, and symmetry
considerations of both the skyrmion profile and the LLG equation. Moreover, we will
introduce the Thiele equation, which is a simplification of the LLG equation under the
ansatz that the skyrmion moves rigidly. The Thiele equation is an algebraic vector equa-
tion in the velocity components of the skyrmion, making it much easier to solve than the
LLG equation which is a partial differential equation. We also touch upon the subject of
Berry phases and the topological Hall effect to describe some of the dynamical properties
of skyrmions, but save the full analytical and numerical solution of the skyrmion velocity
for Chapter 4.

3.1 Skyrmions
In certain types of materials, such as chiral magnets, an exotic magnetization pattern has
been found to occur. This magnetization pattern, known as a skyrmion, is a vortex-like
magnetization structure with non-trivial topology. The term skyrmion originates from
the physicist Tony Skyrme, who described baryons and mesons as topological solitons
[68]. While Skyrme had nothing to do directly with magnetic skyrmions, which we con-
sider in this thesis, his name was used because the skyrmion has a non-trivial topology
and is therefore also a topological soliton. By a non-trivial topology we mean that the
magnetization of the skyrmion wraps around the unit sphere, so that it has a non-zero
skyrmion number [69]

Nsk = 1
4π

ˆ
M̂ · (∂xM̂ × ∂yM̂) dx dy. (3.1)

Skyrmions have an integer skyrmion number, while vortices have a half-integer skyrmion
number [70]. Skyrmions have been of particular interest in recent time, they were only first
observed experimentally in 2009 [71]. The reason for the interest for magnetic skyrmions

19
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in spintronics is that it has been shown skyrmions can be moved with a current density
several orders of magnitude smaller than the critical current density needed to move
magnetic domain walls [22]. In addition, due to the non-trivial topology of the skyrmion,
which acts as a knot in the magnetization, it will require a significant amount of energy
to untie this knot and destroy the skyrmion, which makes it a stable information carrier.
The information can be encoded by the direction of the magnetization in the skyrmion
core, which can be up or down, and therefore acts as a bit. Skyrmions can also be useful
for a compact data storage in form of skyrmion crystals [28], as the typical length-scale of
skyrmions can be on the nanometer scale, depending on the stabilizing mechanism [72].

The magnetization of the skyrmion can be written in cartesian coordinates as

M(r, φ) = Ms

cosΦ(φ) sin θ(r)
sinΦ(φ) sin θ(r)

cos θ(r)

 . (3.2)

As the out-of-plane component (here the z-component) of the magnetization in the
skyrmion is rotationally symmetric around the skyrmion’s core, the out-of-plane angle
θ can be written as a function of r only, with r being the distance to the skyrmion’s core.
The in-plane magnetization angle Φ is assumed to be a linear function of the azimuthal
angle φ, such that

Φ = mφ+ ψ. (3.3)

An illustration of the angle Φ is shown in Figure 3.1. Due to the periodical nature of the

x

y

φ
Φ

(mx,my)

Figure 3.1. The definitions of the angles Φ and φ. In this case Φ = φ+π/2, in other words
it can be described by Φ = mφ+ ψ with m = 1 and ψ = π/2.

angles, m is constrained to be an integer. The phase difference ψ between Φ and mφ is
a constant called the helicity of the skyrmion. If one plugs in the ansatz (3.2) into (3.1),
one finds that

Nsk = m

4π

ˆ 2π

0
dφ
ˆ ∞

0
dr sin θ(r)∂θ(r)

∂r
= −m2 cos(θ(r))|(r=∞)

(r=0) . (3.4)

Unless m is an even number, one must require that θ(r = 0) = 0 and θ(r = ∞) = π, or
θ(r = 0) = π and θ(r = ∞) = 0 for the skyrmion number to be an integer and not a
half-integer.
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The skyrmion needs a certain type of physical mechanism in the material to be a
stable state. This mechanism will allow a lower energy state by having the neighbouring
spins not be entirely parallel to each other, like the symmetric exchange interaction wants
them to be. One of these mechanisms is the Dzyaloshinskii–Moriya interaction, which is
the stabilizing mechanism of skyrmions we will consider in this thesis. Other mechanisms
that can also cause the magnetic skyrmion to be a stable state are long-ranged magnetic
dipolar interactions [73], frustrated exchange interactions [74] and four-spin exchange
interactions [69]. If we consider the interfacial DMI energy density in (2.15b) and plug in
our ansatz for the magnetization of the skyrmion, one finds that

ε
(interface)
DM = D cos((m− 1)φ+ ψ)

(
∂θ

∂r
+ m

r
sin θ cos θ

)
. (3.5)

For the DMI to have a net energy contribution, we must remove the dependence on φ as
the average of a harmonic function over the plane will be zero. We therefore require that
m = 1, which is not an even number, meaning we must apply the boundary conditions for
θ(r) mentioned earlier. The helicity ψ is then chosen to minimize the energy contribution
from DMI, which leaves us with the two options ψ = 0 and ψ = π, depending on the sign
of D and the θ profile. Due to the boundary conditions for θ, the magnetization in the
core of the skyrmion points in the opposite direction of the magnetization far away from
the skyrmion core. The magnetization direction far away from the core must therefore be
a stable direction in the energy. This can be done in a system with an easy axis parallel to
that direction. If we consider a skyrmion in a thin film, which makes sense with our choice
of interfacial DMI, the easy axis must be perpendicular to that film. In other words, we
need a thin-film system with perpendicular magnetic anisotropy. Finally, as our system
is ferromagnetic, we also need to include the symmetric exchange interaction. This is also
a mechanism that allows us to treat the skyrmion in the micromagnetic model, where we
assume that the magnetization can be estimated by a smooth and slowly varying function.
This assumption was for example used in the Taylor expansion of the DMI Hamiltonian.
Our model then has the energy density given by

ε = εEX + εPMA + ε
(interface)
DM

= A

(∂θ
∂r

)2

+ sin2 θ

r2

+K sin2 θ +D cosψ
(
∂θ

∂r
+ sin θ cos θ

r

)
, (3.6)

assuming a magnetization profile given by (3.2). The energy is independent of φ due to
our choice of m, but it remains a function of θ and r. As the skyrmion is a ground state,
we can find the function θ(r) by minimizing the energy. Using the condition

δε(θ, r)
δθ(r) = ∂ε

∂θ
− d

dr
∂ε

∂(∂θ
∂r

)
= 0 (3.7)

and introducing the dimensionless length r̃ = rD/A, one ends up with the following
differential equation for θ(r):

∂2θ

∂r̃2 + 1
r̃

∂θ

∂r̃
− sin θ cos θ

r̃2 + cosψ sin2 θ

r̃
− AK

D2 sin θ cos θ = 0. (3.8)

Definining the ratio AK/D2 as a parameter C, one can solve this equation numerically for
a given C. Some numerical solutions are shown in Figure 3.2 when the boundary condi-
tions θ(r = 0) = π and θ(r =∞) have been used. It should be noted that this differential
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equation only has a solution when cosψ = 1 for the chosen boundary conditions. The
solutions for the different helicities ψ1 = 0 and ψ2 = π have a simple relation, however.
This relation can be verified to be

θψ1(r) = π − θψ2(r), (3.9)

as cosψ is antisymmetric under a swap in helicities, and ∂2θ
∂r̃2 , ∂θ

∂r̃
, cos θψi

are all antisym-
metric under the relation above. The two different skyrmions for the two different choices

~;
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3(
~;)
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1
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Radial skyrmion pro-lewith interfacial DMI

C = 1
C = 2
C = 3

θ(
r̃)

r̃

Figure 3.2. The solution of the out-of-plane angle θ of the skyrmion profile for different
values of C.

in helicities ψ are illustrated in Figure 3.3. This type of skyrmions is called a hedgehog
skyrmion, due to the magnetization pattern that curves into or away from the core.

The results shown so far are based on a system that is stabilized by the interfacial
form of DMI. Skyrmions can also be stabilized by the bulk form of DMI, however. Using
the ansatz of the skyrmion magnetization profile in (3.2) in the expression for bulk DMI
given by (2.12), we find the same energy density as for the interfacial DMI ε(interface)DM with
the substitution cosψ → sinψ. In other words, the skyrmion stabilized by the bulk DMI
will have helicities ψ = ±π/2, and the θ(r) profile will be the same as for the hedgehog
skyrmions stabilized by the interfacial DMI. These types of skyrmions are called spiral
skyrmions, as the in-plane magnetization either spirals clockwise or counter-clockwise
around the core. From now on we will mostly consider hedgehog skyrmions stabilized by
the interfacial form of DMI, as that is the form of DMI that is found in layered thin-film
systems that we will study.

3.2 Symmetries
Before moving on to the dynamical properties of the skyrmions we will take a brief in-
terlude to discuss the symmetries of the skyrmion and the LLG equation. This will help
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(a) (b)

(c)

Figure 3.3. A hedgehog skyrmion with a helicity (a) ψ = 0 and (b) ψ = π. The in-plane
component of the magnetization is visualized by the vectors, while the z-component is shown
in the background color. A 3D representation of a hedgehog skyrmion with ψ = 0 is shown
in (c), this figure is based on a figure in [75].

us to get further insight into how the different terms in the LLG equation work, and how
the skyrmion solutions are related to each other.

3.2.1 Time reversal
Time reversal (or T-symmetry) is a transformation where one reverses the time (t→ −t)
as the name indicates. Physical laws that are symmetric under time reversal are reversible
processes, while physical laws that break the time reversal symmetry are irreversible
processes. Physical variables are either even or odd during time reversal. If they are even
they are symmetric under time reversal, and if they are odd they are asymmetric during
time reversal. To discuss whether the LLG equation breaks time reversal we need to know
how the magnetizationM and the magnetic field H transform (the constants α, Ms and
γ are all even under time reversal, as they are scalars unrelated to the weak force). It
turns out that both M and H are odd during time reversal [76]. If we then apply the
time reversal transformation to the LLG equation, we end up with

dM
dt = −γM ×H − α

Ms

M × dM
dt . (3.10)

Comparing this to the LLG equation in (2.22) we see that the LLG equation breaks
T-symmetry due to the damping term proportional to α. The damping is a dissipative
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motion, and is therefore an irreversible process. The precession of the magnetization
around the magnetic field on the other hand does not break T-symmetry, and is therefore
a reversible process.

3.2.2 Parity and chirality
Parity is a transformation operation which changes the sign of all three cartesian coordi-
nates simultaneously (r → −r), in other words it is a point reflection through the origin.
To dicuss parity we first introduce the notion of pseudovectors and pseudoscalars. Nor-
mally, vectors are odd under a parity transformation, meaning the transformation changes
the sign of the vector, while scalars are even under a parity transformation. Pseudovectors
and pseudoscalars behave the opposite way, however. A pseudovector will behave as a
vector during a rotation, but during a reflection it behaves differently. An example of a
pseudovector is the antisymmetric cross-product between two vectors, which is illustrated
in Figure 3.4. A pseudoscalar is the symmetric dot-product between a pseudovector and a

x̂

ẑ

ŷ

(a)

ŷ′

ẑ′

x̂′
x̂′ × ŷ′

(b)

Figure 3.4. An illustration of how cross-products do not transform as vectors under parity.
In (a) we see a cartesian coordinate system. Performing a parity transformation on this
right-handed coordinate system gives us the left-handed coordinate system in (b). The
pseudovector x̂× ŷ, which in our right-handed system is equal to ẑ, is even under the parity
transformation, while the vector ẑ is odd.

vector. When studying the parity of an expression, the folowing relations may be useful:

vector× vector = pseudovector, (3.11a)
vector× pseudovector = vector, (3.11b)

pseudovector× pseudovector = pseudovector, (3.11c)
vector · vector = scalar, (3.11d)

vector · pseudovector = pseudoscalar, (3.11e)
pseudovector · pseudovector = scalar. (3.11f)

Now we must consider how the vectors in our equations transform under a parity op-
eration. The relevant vectors are M , H , E, ∇, x̂, ŷ and ẑ. The magnetization and
magnetic field are both pseudovectors, and are even under a parity transformation [76].
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The unit vectors in cartesian coordinates are ordinary vectors, and therefore odd under a
parity transformation. As a consequence, the components of the magnetization Mx, My

and Mz are all pseudoscalars, which can be seen from (3.11e). The electric field is also
odd under a parity transformation [76], which means that the electric field components
behave as scalars, as seen from (3.11d). Lastly the ∇ operator also transforms as a vector,
and is therefore odd under parity.

We now have all the results we need to consider the parity of the LLG equation, the
effective field, the micromagnetic energy and the skyrmion magnetization. Starting off
with the LLG equation (2.22), we see that it does not break parity explicitly as long asH
is even under a parity transformation by using the relation in (3.11c). When considering
the micromagnetic energy terms, all are found to be even under a parity transformation
with the exception of the DMI terms (which holds true for both the bulk form of DMI in
(2.12) and the interfacial form in (2.15b)). At first glance, however, it may seem like the
interfacial form of the DMI energy density in (2.15b) is even under parity. The reason for
this is that while going from the original expression in (2.11) (which is seen to break parity
from (3.11c) as Dij is a vector and S ∝M is a pseudovector) we have eliminated a cross
product. As one can see in (2.15a) we have terms that go as x̂ · (ŷ× ẑ) and ŷ · (ẑ× x̂). In
(2.15b) these vector expressions are simplified to be unity, which is correct, but hides some
of the information when we want to study parity. As ŷ× ẑ and ẑ× x̂ are pseudovectors,
x̂ · (ŷ × ẑ) and ŷ · (ẑ × x̂) are in fact pseudoscalars which we can see from (3.11e). So in
reality there is a unity pseudoscalar lurking in the expression in (2.15b), making it seem
like it is even under parity while in reality it is not. This same pseudoscalar is carried
onwards to the DMI term in the effective field in (2.23), making part of the effective field
odd under parity and thereby violating parity in the LLG equation.

Moving on to the skyrmion magnetization pattern we use that M is even un-
der parity, while its components Mx, My and Mz are not. Remembering that M̂ =
(cosΦ sin θ, sinΦ sin θ, cos θ) we see that all the components are odd under parity if Φ
transforms as Φ→ Φ±π and θ transforms as θ → π−θ. This is reminiscent of something
we have seen earlier. In Section 3.1 we noted that the solutions for the two different
helicities were related by (3.9), which is the same as the way θ transforms under parity.
In addition, the two possible helicities for the individual types of skyrmions (hedgehog
or spiral) are always a phase ±π apart. The term ±π in the transformation of Φ under
parity can then be included in the helicity, meaning the parity transformation changes
the helicity of the skyrmion. The two possible solutions of the skyrmions, such as the
hedgehog skyrmions in Figure 3.3a and 3.3b, are therefore related to each other via parity.
If the skyrmion in 3.3a is the solution in a right-handed coordinate system, the skyrmion
in 3.3b is the same solution in a left-handed coordinate system, and vice versa.

As a final comment on the symmetries of the skyrmions, we want to discuss their
chirality. An object is defined to be chiral if its mirror image or reflection is impossible
to align with the original object. The most common example of chirality is hands. When
holding your right hand in front of a mirror, the image you see in the mirror is that of a
left hand. Obviously, a right hand and a left hand are distinct, and can therefore not be
aligned with each other. Hands are then chiral objects. When we are considering a mirror
image of a skyrmion, we need to be careful regarding what we take the mirror image of.
The mirror image of a skyrmion is not the mirror image of the skyrmion magnetization
vector field. The magnetization of the skyrmion stems from the average magnetic moment
inside a small volume, and the magnetic moment is proportional to the spinning of the
electron. As we see in Figure 3.5, when we mirror the spinning motion of the electron
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(a) (b)

Figure 3.5. An electron that has a spin vector parallel to a mirror plane will have its spin
reversed in its mirror image, as shown in (a). An electron with a spin perpendicular to the
mirror plane, however, will have the same spin as its mirror image as shown in (b).

(a)

(b)

Figure 3.6. The mirror images of (a) a hedgehog skyrmion, and (b) a spiral skyrmion. The
mirror images can not be aligned with the original image, and the skyrmions are therefore
chiral objects. The skyrmion figures are based on the figures in [75].

the spin vector is not its mirror image. The component of the spin vector parallel to
the mirror plane is flipped, while the perpendicular component is the same for both the
original electron and its mirror image. In both cases this is the opposite behavior of
the mirror image of a regular vector, and this behavior is general for pseudovectors (also
known as axial vectors). We also note that this reflection is only in one coordinate,
whereas parity in three dimensions is a reflection in all coordinates. The spin is therefore
still invariant under parity, even if it is not under a reflection parallel to the spin. A
parity transformation would correspond to two reflections parallel to the vector (as in
Figure 3.5a) and one reflection perpendicular to the vector (as in Figure 3.5b). The sum
of these reflections would then be an identity transformation, as we have an even number
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of parallel reflections that invert the direction of the spin. For a regular vector the sum
would be an inversion, as it is the perpendicular reflection (as in Figure 3.5b, but now
with the mirror image of the spin vector itself and not the rotation of the electron) that
inverts the vector, and the number of perpendicular reflections is odd.

The magnetization is a pseudovector, and the mirror images of the skyrmion profiles
will therefore behave in the same manner as in Figure 3.5. The resulting mirror images of
the skyrmion magnetization are then as shown in Figure 3.6. No matter how one rotates
the mirror images of the skyrmion magnetization, one can not align them with the original
skyrmion. The skyrmions are therefore chiral. This is a consequence of the broken parity
of the skyrmion magnetization profile due to the Dzyaloshinskii–Moriya interaction. If
the parity transformation of an object is not an identity transformation, it is a chiral
object.

3.3 The Thiele equation
In the special case of a time-dependent magnetization pattern that can be written as
M (r −R(t)), Thiele recognized [77] that the time derivative can be written as

dM
dt = ∂R

∂t

∂M

∂R
= ∂R

∂t
(−∂M

∂r
) = −(v · ∇)M . (3.12)

The form M (r −R(t)) indicates that the magnetization pattern performs a translation
without deformation of the original magnetization profile. Once the equilibrium profile at
some time t0 is known, the motion of the entire magnetization pattern can be described by
the time-dependent position of some distinct part of the magnetization pattern, like the
skyrmion core. If one replaces all time derivatives with Thiele’s relation as given above
in the LLG equation, one can rewrite the LLG equation to the Thiele equation (as shown
by Krüger in [78]):

F +G× (v + bJ ĵe)−D(αv + βbJ ĵe) = 0. (3.13)

This is a force equation with the definitions

F = −∂E
∂R

= −µ0

ˆ
dV

∑
k

(∇Mk)(Hk), (3.14a)

G = 2πMsµ0d

γ′
[cos θ]θ(r=∞)

θ(r=0) ẑ, (3.14b)

D = πMsµ0d

γ′

ˆ ∞
0

dr
r(∂θ

∂r

)2

+ sin2 θ

r

 , (3.14c)

where d is the thickness of the film. The vector F is a force originating from an inhomoge-
nous energy landscape or a magnetic field that is not parallel to the local magnetization
(in other words a field not aligned with the magnetization). G is a gyrovector that only
depends on the direction of the magnetization in the skyrmion core and far away from the
core. The force in the Thiele equation that is dependent on G is often called the Magnus
force, and is a counter force to the Lorentz forces from emergent electromagnetic fields
around the skyrmion [79], which we will discuss in the next section. Lastly, D denotes
the strength of a dissipative force that moves the skyrmion in the direction of the electron
flow and it is dependent on the radial profile of the out-of-plane angle θ of the skyrmion.
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An illustration of the force balance in the Thiele equation is shown in Figure 3.7. The
Thiele equation is less rigid than the LLG equation due to the ansatz that there is an
absence of deformation of the skyrmion, but in the case of a purely translational motion
of the skyrmion the Thiele and LLG equations are entirely equivalent.

ĵ v

−DβbJ ĵ −Dαv

G× v

G× bJ ĵ

Figure 3.7. An example of the forces in the Thiele equation. In the example shown α = β
and v = −bJ ĵ. The force vectors are only there to show direction, and not magnitude. The
goal of the Thiele equation is finding a velocity v that makes all the forces add up to zero.

3.4 Berry phase, emergent fields, and the topological
Hall effect

When discussing the dynamics of skyrmions, it will be useful to have some knowledge
of Berry phases. The Berry phase [80], also known as a geometric phase, is a rotational
angle gained by a vector when it undergoes parallel transport on a closed path on a curved
surface, as illustrated in Figure 3.8. If the closed path was in a plane, however, the vector
will not gain a rotation along its cycle. Skyrmions are magnetization patterns that can
be located in a plane, so why is then the Berry phase of interest when electrons move
in that plane? When we first started discussing skyrmions, we said that the skyrmion
wraps around the unit sphere. In other words, while the magnetization of the skyrmion is
located in a plane, the topology of the magnetization pattern behaves in a way so that it
can be described as lying on a spherical surface [79]. This is illustrated in Figure 3.9. So
despite the fact that the conduction electrons from an applied current are moving in a two-
dimensional plane, their magnetic moment will still gain a Berry phase when following the
magnetization of the skyrmion adiabatically, as the magnetization of the skyrmion points
in all three spatial directions [81, 82]. When moving through the skyrmion magnetization,
the conduction electrons path is then bent away from the initial direction of the current.
This can be seen as a force acting on the conduction electrons, and then there must
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Figure 3.8. When a vector undergoes a parallel transport along a closed path on a sphere,
it will not be in the same state when arriving back at its starting point. It is rotated in
respect to the initial vector, and this rotational angle is known as the Berry phase.

(a) (b)

Figure 3.9. Skyrmions magnetization patterns mapped onto a spherical surface. The
magnetization at r = 0 is at the bottom of the sphere, while the magnetization at r = ∞
is at the top. In (a) we see a hedgehog skyrmion with ψ = 0, while in (b) we see a spiral
skyrmion with ψ = π/2.

be an equal force acting in the opposite direction on the skyrmion magnetization. This
movement perpendicular to the current direction is known as the topological Hall effect
[83], as it depends entirely on the topology of the magnetization.

In magnetization dynamics the Berry phase is most commonly considered through
the use of emergent electromagnetic fields. The Berry phase can be found by integrating a
quantity known as the Berry vector potential along the closed path in consideration. This
vector potential is similar to the vector potential A in electromagnetism, and the curl
of this vector potential (known as the Berry curvature) will then behave as a magnetic
field [84]. This emergent magnetic field, which is associated with the topology of the
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magnetization and not its magnetic flux, is given by [85, 23]

Be
i = ~

2eεijkM̂ · (∂jM̂ × ∂kM̂ ). (3.15)

This total magnetic flux from this emergent field is quantized by the skyrmion number Nsk
given by (3.1), which can be seen by integrating the expression above over the skyrmion
plane. This emergent magnetic field then causes the conduction electrons to experience a
Lorentz force

FLorentz = q(E + v ×B). (3.16)

If one assumes the skyrmion magnetization to be localized in the xy-plane and to be
isotropic in the z-direction, then the emergent field Be

i points along the z-axis. This
means that the Lorentz force originating from the emergent magnetic field is localized
in the xy-plane, and is perpendicular to the motion of the conduction electrons. This
bending of the electrons’ motion can induce a motion of the skyrmion perpendicular to
the direction of the current. In addition to the emergent magnetic field, there will also
be an emergent electric field once the skyrmion magnetization starts moving, for example
due to spin-transfer torques where the magnetic moment of the conduction electrons is
transferred to the local magnetization. As seen from the Maxwell–Faraday equation,

∇×E = −∂tB, (3.17)

once the magnetization pattern starts moving the emergent magnetic field will become
time dependent, and thereby induce an emergent electric field. This emergent field is
given by

Ee
i = ~

e
M̂ · (∂iM̂ × ∂tM̂ ). (3.18)

This electric field will also cause the electrons to feel a Lorentz force, and as we can
see from the expression above this force is perpendicular to the motion of the skyrmion.
Through these emergent fields we can then get an intuitive explanation of the topological
Hall effect.

We have now discussed qualitatively the dynamics of the skyrmion, and why its
dynamics distinguishes itself from topologically trivial magnetization patterns. Building
upon this discussion, we will in the next chapter start studying the dynamics of the
skyrmion more quantitatively by both analytical and numerical calculations.
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Electric control of skyrmion motion

Since it was shown theoretically by Berger [9, 10, 11, 12] and Slonczewski [13] that a
spin-polarized current could exert a torque on the magnetization in magnetic materials,
there has been a lot of focus on electrical control of magnetization dynamics. Through
the spin-transfer torque mechanism one was able to switch the magnetization direction
in a magnetic layer solely by applying a current through the material [15, 16, 17]. This
magnetization switching could for example be achieved by a current induced motion of
magnetic domain walls [86, 87, 88, 89].

It has been shown that skyrmions can also be moved by applying a current, and
they can be moved by a much weaker current than magnetic domain walls [22, 24], which
is the reason for the new interest in them. The velocity at which they can be moved
is much smaller than what is achievable by magnetic domain walls, however [28, 32].
Recently it has also been shown that the motion of skyrmions can also be guided through
the means of electric fields [27]. It has also been discovered that through the help of
constricted geometries and electrical currents, we can create skyrmions in chiral magnets
[90, 29, 91]. In addition we are able to detect skyrmions with an unpolarized current [92].
Very recently the ability to generate and control the motion of skyrmions in racetracks
has been demonstrated [93]. These new developments will greatly help us in utilizing
magnetic skyrmions in memory applications.

The goal of this chapter is to study the equations of motion for the skyrmion, both
analytically and numerically, so that we can see how we can steer the motion of the
skyrmion in the direction we want. We will consider the motion due to an inhomogeneous
electric field and an electric current, which will cause the magnetization to experience
Rashba fields due to the broken inversion symmetry. An understanding of how we can
control the motion of skyrmions by electrical means will be very useful in regards to how
we can utilize skyrmions in memory applications.

31
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4.1 Skyrmion velocity
The extended LLG equation that includes Rashba spin–orbit coupling and spin-transfer
torques is given by

∂tM = −γ′M × (Heff +HR −
β

Ms

M ×HR)

+ α

Ms

M × ∂tM + bJ(ĵe · ∇)M − βbJ
Ms

M × (ĵe · ∇)M , (4.1)

with the Rashba field HR being given by

HR = αRme

~µ0µB
bJ(ẑ × ĵe) = CRbJ(ẑ × ĵe) (4.2)

and bJ being a characteristic velocity

bJ = 1
1 + β2

µBPj

eMs

. (4.3)

The modified gyromagnetic ratio γ′ is slightly perturbed with respect to γ, but this
perturbation is so small that for all essential purposes we will assume γ′ ≈ γ. This
result was derived by Kim et al. in [94] in a manner similar to the approach in Section
2.3.2, where the Rashba Hamiltonian (2.10) was included in the derivation with the s-d
Hamiltonian. We now want to find this equation in the Thiele formalism, as it then goes
from being a partial differential equation to being an algebraic equation in the velocity
components. The terms involving the Rashba fieldHR act as a magnetic field in the LLG
equation, and we can therefore use the definition of the force from a magnetic field that
is not aligned with the magnetization in the Thiele equation as given by (3.14a):

FR = −µ0

ˆ
dV

∑
k

(∇Mk)
[
HR −

β

Ms

M ×HR

]
k

. (4.4)

This expression is calculated in Appendix A and is found to be

FR = −µ0πβCRbJMsd

ˆ ∞
0

dr
(
∂θ

∂r
r + sin θ cos θ

)
x̂ (4.5)

for a hedgehog skyrmion with ψ = 0 and θ(r = 0) = π, θ(r =∞) = 0. We have assumed
that the direction of the current is ĵe = x̂. We will only consider these choices for the
remainder of this chapter. This is reasonable, as for our particular choice of geometry
with thin films (which is necessary to get a significant contribution from the electric field
control) hedgehog skyrmions have the lowest energy due to interfacial DMI. We are also
free to define the direction along the current to be the x-direction.

We now have the force resulting from Rashba spin–orbit coupling, the next step is
then to find the force from an inhomogenous electric field. If we consider an electric
field with a constant gradient, the field can then be written in cartesian and skyrmion
coordinates as

E(r) = Exx+ Eyy (4.6a)
= Exx0 + Eyy0 + Exr cosφ+ Eyr sinφ, (4.6b)
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with (x0, y0) indicating the location of the skyrmion core. If we integrate this energy
density over the entire film, we then find that the total energy contribution from the
electric field becomes

UEF =
ˆ

dV εEF

= η

ˆ d

0
dz
ˆ 2π

0
dφ
ˆ ∞

0
dr (Exx0 + Eyy0 + Exr cosφ+ Eyr sinφ) r sin2 θ

= 2πηd (Exx0 + Eyy0)
ˆ ∞

0
drr sin2 θ. (4.7)

Remembering that a gradient of the free micromagnetic energy will result in a force in
the Thiele equation, as described by (3.14a), we can write the force resulting from the
inhomogenous electric field as

FE = −∇UEF

= −2πηd (Exx̂+ Eyŷ)
ˆ ∞

0
drr sin2 θ. (4.8)

We note that the ∇ operator does not act on the integral, as this is independent of the
position of the skyrmion core and is therefore just a constant. The final equation in the
Thiele formalism for our model can then be written as

FR + FE +G×
(
v + bJ ĵe

)
−D

(
αv + βbJ ĵe

)
= 0, (4.9)

where we remember the definitions of the gyrovector G and dissipation factor D to be

G = 2πMsµ0d

γ′
[cos θ]θ(r=∞)

θ(r=0) ẑ (4.10a)

D = πMsµ0d

γ′

ˆ ∞
0

dr
r(∂θ

∂r

)2

+ sin2 θ

r

 . (4.10b)

If we divide this equation by the length of G, the non-trivial equations we end up with
are

−RbJ − CEEx − ẏ0 − αC ẋ0 − βCbJ = 0, (4.11a)
−CEEy + ẋ0 + bJ − αC ẏ0 = 0, (4.11b)

where we have made the following definitions:

αC = α

4

ˆ ∞
0

dr
r(∂θ

∂r

)2

+ sin2 θ

r

 , (4.12a)

βC = β

4

ˆ ∞
0

dr
r(∂θ

∂r

)2

+ sin2 θ

r

 , (4.12b)

R = γ′βCR

4

ˆ ∞
0

dr
(
∂θ

∂r
r + sin θ cos θ

)
, (4.12c)

CE = γ′η

2µ0Ms

ˆ ∞
0

drr sin2 θ. (4.12d)
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Solving the equations in (4.11) for ẋ0 and ẏ0 one finally ends up with the velocity com-
ponents of the motion of a skyrmion under the influence of spin-transfer torque, Rashba
spin–orbit coupling and an inhomogenous electric field:

ẋ0 = −1 + αC(βC +R)
α2
C + 1 bJ + CE

α2
C + 1Ey −

αCCE
α2
C + 1Ex, (4.13a)

ẏ0 = αC − (βC +R)
α2
C + 1 bJ −

CE
α2
C + 1Ex −

αCCE
α2
C + 1Ey. (4.13b)

From this result we can see the effects of RSOC and an electric field gradient on the velocity
of the skyrmion center of mass. The RSOC has the same impact on the motion as the
non-adiabatic STT, and appears as a correction to βC in the equations of motion. Note
that only the term proportional to βM ×HR has an impact on the skyrmion dynamics,
as a constant magnetic field likeH can not induce a rigid motion of the skyrmion because
there is no energy gain for it to move elsewhere. The constant field HR can, however,
induce a deformation of the skyrmion. For example, a constant external magnetic field
pointing along the z-direction perpendicular to the skyrmion plane has an effect on the
skyrmion size, much like magnetic anisotropy. If this external field is alternating, the field
can cause the skyrmion size to shrink and increase periodically [95], and in nanodots it can
even be used to switch the magnetization of the core [96]. In our case the magnetic field
experienced due to the Rashba effect lies in the skyrmion plane, and one would therefore
expect it to have other deformation modes than a field pointing perpendicular to the
skyrmion plane. To understand the effect of the non-uniform Rashba field proportional
to βM ×HR we can compare it to the adiabatic STT in (2.27). The term in the LLG
equation can be written as γβM × (M ×HR)/Ms = −(γβCRbJ/Ms)M × (ĤR ×M).
This is very similar to the adiabatic STT acting on a magnetization Mj from a current
that was polarized by passing through a magnetizationMi. This torque was proportional
to −Mj × (Mi ×Mj). With the exception of the different torque magnitudes, the
only difference is that the polarizing magnetic layer Mi is replaced by the Rashba field
HR. This torque then originates from the conduction electrons that are polarized in the
direction of the Rashba field. The direction of this field is given by ĤR = ẑ × ĵe. When
the current is passing in the x-direction as we have considered so far, this field points in
the y-direction. As this is generates a component of the spin polarization of the current
that can be perpendicular to the local magnetization, it would explain why the torque
behaves as the non-adiabatic STT. We now compare the driving torque resulting from
RSOC more closely to the non-adiabatic STT. The driving torque from RSOC can be
written as

γβm× (M ×HR) = γβMs ((m ·HR)m−HR)

= γβMsCRbJ

sin2 θ sinΦ cosΦ
sin2 θ sin2 Φ− 1
sin θ cos θ sinΦ

 , (4.14)

while the non-adiabatic STT can be written as

−βbJm×
(
ĵe · ∇

)
M = −βbJMs

− sinΦ cosφ∂rθ + sin θ cos θ cosΦ sinφ/r
cosΦ cosφ∂rθ + sin θ cos θ sinΦ sinφ/r

− sin2 θ sinφ/r

 , (4.15)

where we have used that ∂xθ = − sinφ/r∂rθ and ∂xΦ = − sinφ/r. If we integrate over
the skyrmion plane, the only non-vanishing components in both torques in the ψ = 0 case
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(Φ = φ) is the y-component. In addition, we see by performing this integration that we
get the integral appearing in the RSOC term in (4.12c).

The electric field gradient introduces new terms to the velocity of the skyrmion. We
can see that the skyrmion tends to move in a direction perpendicular to the electric field
gradient, along ẑ × (−∇E). In addition to the motion perpendicular to the gradient,
the Gilbert damping also causes a damped motion in the opposite direction of the field
gradient, moving the skyrmion to a lower energy state. The damped motion is relatively
easy to understand, as it is nothing else than a relaxation of the magnetization to a lower
energy. The motion of the skyrmion along the equipotential lines is a bit less intuitive,
however. The reason for this motion is the Magnus force, resulting from the topology of
the skyrmion. Initially the skyrmion experiences a force against the electric field gradient.
At this point this is the only force acting on the skyrmion, as the Magnus force is only
existent when the skyrmion moves. The skyrmion therefore drifts down to a lower energy
state to begin with. However, as the the skyrmion starts to move the Magnus force
kicks in, as the motion of the skyrmion induces an emergent electric field perpendicular
to its motion, as described in Section 3.4. This new force changes the direction of the
skyrmion motion, until the motion is such that the Magnus force and the force from the
inhomogeneous energy landscape cancel out, as illustrated in Figure 4.1. The resulting
motion is a Hall-like motion along the equipotential lines. This behaviour that we see
from the electric field is analogous to the motion a skyrmion would have in the presence of
an electric field in multiferroic insulators [97]. The mechanism behind the motion due to
the electric field is different, however. In multiferroic insulators the electric field couples
to the dipole moment of the skyrmion, while in this ferromagnetic metal the motion is
caused by a shift in the energy landscape due to the modification of the anisotropic energy
by the voltage induced magnetic anisotropy.

t = t0 t = t1 t = t2 t = t3

FE FE FE FE

v = 0 v v v

G× v G× v G× v

Figure 4.1. The initial motion due to the force from the spatially varying electric field is
redirected due to the appearance of the Magnus force when the skyrmion starts to move.
In equilibrium we have a Hall-like motion along the equipotential lines in the absence of
Gilbert damping.
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4.2 Numerical integrals
The solution of the skyrmion velocity depends on parameters that are functions of three
different integrals. These integrals depend on the solution of θ(r) that is obtained numer-
ically by solving (3.8). As our solution of θ is a numerical function, the integrals have to
be calculated numerically as well. In (3.8) the only variable parameter is the skyrmion
parameter C = AK/D2, so the integrals can be expressed as functions of C and for some
of the integrals a dimensional scaling factor. The three integrals that we need to evaluate
are

I1 =
ˆ ∞

0
dr̃
r̃(∂θ

∂r̃

)2

+ sin2 θ

r̃

 , (4.16a)

I2 = A

D

ˆ ∞
0

dr̃
(
∂θ

∂r̃
r̃ + sin θ cos θ

)
, (4.16b)

I3 = A2

D2

ˆ ∞
0

dr̃r̃ sin2 θ. (4.16c)

Here the solution of θ inside the integrals is given in the dimensionless length scale r̃ =
r ·D/A. The resulting integrals as functions of C are shown in Figure 4.2.

(a) (b)

(c)

Figure 4.2. Numerical evaluations of the integrals (a) I1, (b) I2 and (c) I3 as a function
of the skyrmion parameter C.
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4.3 Pinning, threshold currents and field gradients
As with domain walls, there is also a threshold current or field that is necessary for
skyrmions to start moving, even though our previous results do not reflect this. In the
case of skyrmions this threshold current is much weaker than the case of domain walls
[22]. The reason for this reluctance to move is pinning centers, but for the motion of
domain walls there is also an intrinsic pinning in the absence of pinning centers [98]. It is
thought that the low threshold current for skyrmion motion can partially be attributed
to the Magnus force [90], which is an additional diving force that is not present for
domain walls. In addition to having a lower pinning force, skyrmions are also reluctant
to be pinned when driven by large enough currents, as the Magnus force and the flexible
deformation of the skyrmion enables it to move around the pinning centers [90]. To model
the effect of pinning centers on skyrmion motions at low current densities or weak electric
fields, one can introduce a pinning force in the Thiele equation (3.13). The equation of
interest then becomes

Fpin + FR + FE +G×
(
v + bJ ĵe

)
−D

(
αv + βbJ ĵe

)
= 0. (4.17)

The phenemenological pinning force Fpin is conventionally written as [99, 100]

Fpin = −4πvpinf( v

vpin
)v
v
, (4.18)

where the function f( v
vpin

) goes towards unity for small skyrmion velocities v. This is to
ensure that the force does not vanish as v → 0, but there is a constant force barrier that
the skyrmion needs to overcome to have a velocity greater than zero. In the low velocity
limit one therefore approximates the pinning force by

Fpin = −vpin
v

v
, (4.19)

where the forces are normalized in a way so that the gyrovector G = (0, 0, 1). The
non-trivial equations we then get from (4.17) are

−ẏ0 − βCbJ − αC ẋ0 − vpin
ẋ0

v
+ Fx = 0, (4.20a)

bJ + ẋ0 − αC ẏ0 − vpin
ẏ0

v
+ Fy = 0, (4.20b)

where Fx and Fy are the x- and y-components of the total force FR + FE resulting from
Rashba spin–orbit coupling and voltage induced magnetic anisotropy respectively. In the
case of Fx = Fy = 0, one can see that if one makes the substitution

αC → αC + vpin
v

(4.21)

the equations of motion are exactly the same as for the case of the motion of a skyrmion
due to a spin-polarized current in (4.11). The solutions of ẋ0 and ẏ0 are known in this
case, and one can therefore make the substitution of αC above into these solutions to get
the solutions in the presence of pinning:

ẋ0 = −
1 + (αC + vpin

v
)βC

(αC + vpin
v

)2 + 1 bJ , (4.22a)

ẏ0 =
(αC + vpin

v
)− βC

(αC + vpin
v

)2 + 1 bJ . (4.22b)
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As one can see, these solutions depend on the total skyrmion velocity v. To determine
this velocity we use the relation v2 = ẋ2

0 + ẏ2
0 and the solutions above, which gives us the

equation

v2 = β2
C + 1

(αC + vpin
v

)2 + 1b
2
J . (4.23)

Rearranging this equation one can get the following second order equation in v:

(α2
C + 1)v2 + (2αCvpin)v + (v2

pin − (β2
C + 1)b2

J) = 0. (4.24)

The solution to this equation is given by

v =

√
(αCvpin)2 + (α2

C + 1)
[
(β2

C + 1)b2
J − v2

pin

]
− αCvpin

α2
C + 1 , (4.25)

where the positive solution has been chosen as that is the only solution that can give a
positive v. This solution in v differs from the solution given by Iwasaki et al. [100] by the
term outside of the square root, but the solutions of ẋ0 and ẏ0 are in agreement. As our
solution of v is consistent with our solutions of ẋ0 and ẏ0, and if one plugs our solutions
into the equations in (4.20) they are satisfied in the case Fx = Fy = 0, it is concluded
that our solutions are correct.

So far we have only discussed pinning of the spin-polarized current driven skyrmion
motion, but it is also of interest to find the same results in the presence of Rashba spin–
orbit coupling and an imhomogenous electric field perpendicular to the film. In other
words, we must solve (4.20) when Fx 6= 0 and Fy 6= 0. We apply the same trick again
where we try to incorporate Fx and Fy into similar variables in the equations we already
have a solution for. Fx and Fy are both independent of ẋ0, ẏ0 and v, we must therefore
try to include them in other terms also independent of these variables. In (4.20a) the
only term independent of these is −βCbJ , and in (4.20b) the term is bJ . If we define new
variables β̃C and b̃J that satisfy

−β̃C b̃J = −βCbJ + Fx, (4.26a)
b̃J = bJ + Fy, (4.26b)

meaning they have the following definitions:

β̃C = βCbJ − Fx
bJ + Fy

, (4.27a)

b̃J = bJ + Fy, (4.27b)

the equations have the same form as before with βC → β̃C and bJ → b̃J . The total force
components resulting from FR + FE are

Fx = −CEEx −RbJ , (4.28a)
Fy = −CEEy. (4.28b)
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If we plug these into β̃C and b̃J and make the substitutions in our previous solutions of
ẋ0, ẏ0 and v from the current driven case, we end up with the solutions

ẋ0 = −
1 + (αC + vpin

v
)(βC +R)

(αC + vpin
v

)2 + 1 bJ + CE
(αC + vpin

v
)2 + 1Ey −

(αC + vpin
v

)CE
(αC + vpin

v
)2 + 1Ex, (4.29a)

ẏ0 =
(αC + vpin

v
)− βC −R

(αC + vpin
v

)2 + 1 bJ −
CE

(αC + vpin
v

)2 + 1Ex −
(αC + vpin

v
)CE

(αC + vpin
v

)2 + 1Ey, (4.29b)

v =

√
(αCvpin)2 + (α2

C + 1)
[
(βCbJ +RbJ + CEEx)2 + (bJ − CEEy)2 − v2

pin

]
− αCvpin

α2
C + 1 .

(4.29c)

It can be seen that in the limit of no pinning (vpin → 0) the results for ẋ0 and ẏ0 are in
agreement with (4.13). From the expression for v in (4.29c) it is also possible to determine
the threshold current or electric field gradient necessary for the solution of v to be greater
than zero. If we first consider the case where the skyrmion motion is solely driven by a
spin-polarized current, one finds that the skyrmion moves when bJ > b

(crit)
J with

b
(crit)
J = 1

1 + β2
µBP

eMs

j(crit)e = vpin√
(βC +R)2 + 1

. (4.30)

To determine the strength of the Rashba parameter αR we use the relation in (2.18),
which gives αR in terms of the strength of the DMI and exchange interaction. In the
field driven case where the skyrmion motion is solely driven by an inhomogenous electric
field applied perpendicular to the film, one finds that the skyrmion moves when the field
gradient magnitude Eg =

√
E2
x + E2

y is greater than some critical value

E(crit)
g = vpin

CE
. (4.31)

The numerical values of b(crit)J and E(crit)
g for different values of the skyrmion parameter

C are shown in Figure 4.3. As one can see, the behavior of the critical current and field
gradient are quite different. The critical current is a strictly decreasing function of C, but
the decrease is only significant for high values of β. The critical field gradient, however, is
a strictly increasing function of C, and increases significantly from C = 0.5 to C = 2.5. If
the unit length A/D is kept constant, the size of the skyrmion decreases with increasing
C (which can be seen from Figure 3.2). Still assuming that A/D is kept constant, one sees
that in the current driven case smaller skyrmions have a lower critical current, while in the
electric field driven case larger skyrmions have a lower critical field gradient. This can be
understood rather intuitively. The non-adiabatic spin-transfer torque acts as a drag force
on the skyrmion in the Thiele equation. This drag force attempts to move the skyrmion in
the direction of the conduction electrons. Normally the total non-adiabatic STT is larger
for larger skyrmions, but with the presence of RSOC we get an effectively reduced non-
adiabatic STT. This reduction is greater for larger skyrmions due to the larger area where
the conduction electrons polarized along the Rashba field can transfer their spin to the
local magnetization. Because of this effective reduction of the non-adiabatic STT larger
skyrmions experience less drag along the motion of the conduction electrons, and smaller
skyrmions then require a smaller current to be moved than large ones. If RSOC was not
present the situation would be reversed, as there is no reduction of the drag resulting from
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non-adiabatic STT, and larger skyrmions would have a lower critical current due to the
larger drag force acting on them. For the electric field driven case the spatial variation of
the free energy has a larger impact on a large skyrmion than a small skyrmion.

(a) (b)

Figure 4.3. (a) The critical current density and (b) the critical field gradient as a function
of the skyrmion parameter C.

4.4 Numerical simulations
In our analytical calculations in the previous sections we have solved the Thiele equation,
which is a simplification of the LLG equation. The Thiele equation assumes that we have
a rigid motion of the skyrmion, so that the motion of the skyrmion can be described by the
motion of a key feature of the magnetization pattern such as the skyrmion core. Because
of this, the Thiele equation can not describe whether the skyrmion becomes deformed
during its motion or not. In some of the cases we have considered so far it is likely that
there will at least be certain deformation of the skyrmion profile. The presence of RSOC
and application of an electric field gradient to the system will cause the magnetization
to experience magnetic fields that are not aligned with the effective field that stabilizes
the skyrmion. To judge if our analytical results have any merit, we therefore solve the
LLG equation numerically where we make no assumptions regarding the rigidness of the
skyrmion motion. We can then compare our analytical results in the Thiele framework
with the numerical results in the LLG framework to see if a rigid motion is a good
approximation or not.

4.4.1 The LLG equation as a parabolic equation
The LLG equation is a partial differential equation that is first order in time, and contains
first and second order spatial derivatives through the effective field from DMI and the
exchange interaction in the skyrmion case. It should then be possible to write the LLG
equation on the following form:

d̄ṁ−∇ · (c̄⊗∇m) + ām = f . (4.32)

Herem and f are vectors of lengthN , d̄ and ā areN×N matrices, and c̄ is aNdim×Ndim×
N × N tensor. For the case of the skyrmion, we have three magnetization components
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we need to solve for in a 2D plane, in other words N = 3 and Ndim = 2. Equations on
the form given by (4.32) are solved by the parabolic function in MATLAB’s PDE Toolbox,
which utilizes a finite element method. We then need to rewrite (4.1) to the form of
(4.32). This was done and provided the following results:

f =

 bJ∂xmx − βbJ(my∂xmz −mz∂xmy) + 2(my∂xmx +my∂ymy +mz∂ymz)γD/(µ0Ms)
bJ∂xmy − βbJ(mz∂xmx −mx∂xmz)− 2(mz∂xmz +mx∂xmx +mx∂ymy)γD/(µ0Ms)− βHR

bJ∂xmz − βbJ(mx∂xmy −my∂xmx)− 2(mx∂ymz −my∂xmz)γD/(µ0Ms)

 ,
(4.33a)

d̄ =

 1 αmz −αmy

−αmz 1 αmx

αmy −αmx 1

 , (4.33b)

ā =

 −γβHRmy 2γ(K + ηE)mz/(µ0Ms) −γHR
−2γ(K + ηE)mz/(µ0Ms) −γβHRmy 0

γHR 0 −γβHRmy

 , (4.33c)

c̄ =

 0̄ 2γAmz Ī/(µ0Ms) −2γAmy Ī/(µ0Ms)
−2γAmz Ī/(µ0Ms) 0̄ 2γAmxĪ/(µ0Ms)
2γAmy Ī/(µ0Ms) −2γAmxĪ/(µ0Ms) 0̄

 , (4.33d)

with 0̄ being a 2× 2 matrix of zeros, and Ī the two-dimensional identity matrix. The i-th
component of ∇ · (c̄⊗∇m) is defined as

[∇ · (c̄⊗∇m)]i =
N∑
j=1

(∂xci,j,1,1∂x + ∂xci,j,1,2∂y + ∂yci,j,2,1∂x + ∂yci,j,2,2∂y)mj. (4.34)

4.4.2 Dimensional analysis
When performing the numerical simulations it is necessary to do this using dimensionless
quantities. We therefore need to define a unit length- and time-scale for the system based
on our parameters. For the unit length-scale we continue to use the one defined in the
numerical solution of the skyrmion profile in Section 3.1, which was r̃ = rD/A. The
unit length scale is therefore r = A/D. For the time-scale of the system we choose one
such that tγK/µ0Ms = 1, in other words t = µ0Ms/γK. We now use these definitions
to find the scalings of the remaining parameters. The parameter bJ is a velocity factor,
and when its dimensionless counterpart is unity it takes on the value r/t = γAK/Dµ0Ms.
Moving on to the effective field terms from the DMI and exchange interaction, we need to
consider spatial derivatives. These derivatives needs to be done in a dimensionless space.
We can then see from the chain rule that ∂x = r−1∂x̃. Each derivative will then carry
with it a factor D/A for the derivative to be done in dimensionless coordinates. We then
note that the effective field originating from DMI has one spatial derivative, while the
effective field originating from the exchange interaction has a double spatial derivative.
As A(D/A)2 = D(D/A) = K/C these fields scale similarly in our dimensionless space.
Since we have defined tγK/µ0Ms = 1, we simply divide these effective fields by the factor
C = AK/D2 to get the right scaling. Lastly we consider the scaling of the Rashba field
HR. Due to the definition of the time-scale we must require that the dimensionless value
of γHR to be unity when HR = K/µ0Ms, which is the measure of field strength chosen in
our simulations. A summary of the dimensional scalings is shown in Table 4.1.
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Table 4.1. List of dimensionless quantities utilized in the numerical simulation and the
scaling factor to get the correct unit and magnitude of the physical quantity.

Dimensionless quantity Proper unit Scaling factor
t s µ0Ms/γK
r m A/D
bJ m/s γKA/µ0MsD
HR A/m K/µ0Ms

D∂x̃ J/m3 D2/A
A∂2

x̃ J/m3 D2/A

In Table 4.2 we list some parameter values for a Ir|Co|Pt multilayer system [101] and
1 nm thick cobalt nanotracks [102]. The value of αR is determined by using the values of
A, D and other physical constants in the relation (2.18).

Table 4.2. Table of physical quantities for a Ir|Co|Pt multilayer system and 1 nm thick
cobalt nanotracks.

Quantity Unit Ir|Co|Pt Cobalt
A pJ/m 10 15
D mJ/m2 1.75 4
K MJ/m3 0.17 0.8
Ms MA/m 0.96 0.58
αR peV·m 3.3 5.1

4.4.3 Static case
As a test case we will first solve the LLG equation without any driving torques or fields
as given by (2.22), where we give in the skyrmion profile solved numerically as an initial
state. As the magnetization of the skyrmion is parallel with the effective field, which is
why the skyrmion is a stable solution, we would expect the solution to be static (M(r, t) =
M (r, t = 0)). The results are shown in Figure 4.4. At a time t = t (which is ∼ 4 ps for
the cobalt nanotracks and ∼ 32 ps for the Ir|Co|Pt multilayer system) there is not much
change in the solution, but there is a slight counterclockwise rotation of the mx and my

values. After a time t = 10t, however, the solution has smeared out significantly from the
initial state. More importantly, the values of the vector components exceed the allowed
interval [−1, 1] by far, thereby breaking the normalizationm2

x+m2
y+m2

z = 1 of the system.
The LLG equation explicitly conserves the magnitude of the magnetization, so this is of
particular interest when considering the stability of the code. Although we have three
equations that we solve numerically, they are not independent of each other, as we can find
the third vector component up to a sign once we have the solution of two. The numerical
simulation does not seem to handle this well enough after a certain time, however. It is
therefore a clear indication that the implemented solution method is not stable enough.
There are several things that could cause this. If the boundary conditions are chosen
incorrectly, this could affect the system. For this simulation Dirichlet boundary conditions
corresponding to the numerical skyrmion solution at each point were chosen, and should
therefore not affect the solution under the assumption that there is no dynamics. Another
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4. Plots of the vector components mx, my and mz in the skyrmion plane for
different times in the numerical simulation. The first row contains the data for mx, the
second for my and the third for mz. The first column shows the initial state, the second at
a time t = t and the third at a time t = 10t.

possible source of the instability is how the initial conditions are handled. The out of plane
angle θ in the skyrmion profile has to be determined numerically from (3.8). This is a
differential equation with a singular point at r̃ = 0, and we therefore settle by solving the
equation down to a value close to zero. The solution of θ will also be needed arbitrarily
close to zero, or at zero itself, when considering the entire skyrmion. A quick fix to this
problem is shifting the r̃-values of the numerical solution of θ so that the θ values start
at r̃ = 0 instead of r̃ = ε (with ε here being set to 10−4). This is not a particularly good
solution to the problem, as it introduces a small off-set to the solution of θ that will make
the skyrmion profile not perfectly aligned with the effective field. However, as this off-set
is so small, it is expected that any dynamics this will induce in the LLG equation will
primarily go towards stabilizing the skyrmion to its proper stable form. What is more
important about this fix is that it makes the function θ(r̃) well defined at all points, so
that m = (sin θ cosΦ, sin θ sinΦ, cos θ) is defined at all points in the skyrmion plane. To
check if this fix is sufficient, we study the first and second derivatives of the magnetization,
which appear in the effective field. The results are shown in Figure 4.5. As one can see, we
still have an issue with discontinuities in the derivatives. For themx = sin θ cosΦ case this
could possibly stem from the cosΦ factor, as Φ is not properly defined at r̃ = 0. As the
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(a) (b)

(c) (d)

Figure 4.5. First and second derivatives of mx and mz in the x-direction. Every derivative
has a discontinuity at x̃ = 0 except for the first derivative of mz. The second derivative of
mx has a singularity at x̃ = 0.

first derivative of mx has a discontinuity while the first derivative of mz does not, and mz

is independent of Φ, it would back up this hypothesis. However, as sin θ(r̃ = 0) = 0 a value
for Φ at this point should not be necessary. But we also see that our fix of the θ solution
can not be without problems, as we also have a discontinuity in the second derivative of
mz, and this must stem from how we handle θ. These discontinuities could therefore be an
explanation for the instability in our numerical simulations. The most likely sinner in this
hypothesis is the second derivative of mx, which appears to have a singularity at r̃ = 0.
This singularity most likely originates from the derivatives of Φ, as the discontinuity in
the second derivative of mz is rather small. A last possible explanation for the instability
is that while the LLG equation should conserve the magnitude of m by default due to
the form of the equation, there is no explicit constriction in the solver that requires that
m2
x +m2

y +m2
z = 1. As the numerical solutions are based on approximations, if there is a

small perturbation that makes m2
x +m2

y +m2
z 6= 1 the solver will not necessarily attempt

to adjust the magnitude of m back to unity, and this perturbation can then increase
until the components of m reach unrealistic values. From this point on the results of the
simulation are of absolutely no interest, as the input to the next time step is outright
wrong.
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4.4.4 Spin-transfer torque driven dynamics
In the previous subsection we saw that the numerical simulation proved to be unstable
even in a case that should involve no dynamics. However, up to the time t = t it was
more or less stable, with some deformations of the initial state that should not be present.
Despite the fact that the results yielded by the simulations can not be relied entirely
upon, even up to this time, we will attempt to introduce some dynamical terms in the
LLG equation and solve this to a time t = t and compare this with our analytical results.
While the quantitative behavior may be too inaccurate for us to judge if the numerical
results agree with our analytical ones, hopefully we can still see if the qualitative behavior
is the same. The first test we do is on a skyrmion with A = 10 pJ/m, K = 0.17 MJ/m3,

(a) (b)

Figure 4.6. Plots of my and mz at a time t = t for a skyrmion driven by spin transfer
torques. The skyrmion considered has C = 0.5551 and the applied current gives a charac-
teristic velocity bJ ≈ 178 m/s (bJ = 1 in dimensionless units). The values of the damping
parameters were set to α = 1.0 and β = 3.0. The geometric center of the skyrmion is found
to be approximately (−2.20,−0.85) from the plot of mz.

D = 1.75 mJ/m2, Ms = 0.96 MA/m. The characteristic velocity bJ due to the spin
transfer torque from the current is set to be unity in dimensionless units. Lastly we
choose large damping parameter values (α = 1.0 and β = 3.0) to make the impact of the
different types of STT clear. The results are shown in Figure 4.6. While there is a clear
deformation of the my component, the mz component has more or less undergone a rigid
motion, and all the magnetization components have reasonable values in the range [−1, 1].
By looking closely at the plot of mz one can find that the location of the skyrmion core is
approximately (−2.20,−0.85). Using our analytical model in (4.13) we would expect the
core to be at (−2.47,−0.88). The numerical result is then rather close to what we would
expect from our analytical model. The discrepancy can perhaps be due to the deformation
of the my component, as our analytical model was made under the assumption of a rigid
motion of the skyrmion. Whether the deformation is something that would actually
occur in the physical case is not something we can say with accuracy, as we have already
determined in the last subsection that the simulations give some deformations in cases
where there should be none. In any case, the result we get agrees very well qualitatively
with our analytical ones. We have a main velocity component along the direction of the
conduction electrons, and also a component perpendicular to the current direction due to
the skyrmion Hall effect as α 6= β. When α = β, however, we expect this perpendicular
component from the skyrmion Hall effect to vanish. To check this we run a simulation with
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similar parameters as before, except now we set α = β = 1. The analytical model would
now expect the skyrmion to have a velocity v = −bJ x̂. The mz component resulting
from this simulation is presented in Figure 4.7, and its center is at (−1, 0), in complete
agreement with our analytical model. In addition, we do not have any deformations of
significant magnitude in any of the magnetization components.

Figure 4.7. Plot mz at a time t = t for a skyrmion driven by spin transfer torques. The
skyrmion considered has C = 0.5551 and the applied current gives a characteristic velocity
bJ ≈ 178 m/s (bJ = 1 in dimensionless units). The values of the damping parameters were
set to α = β = 1.0. The geometric center of the skyrmion is found to be (−1, 0) from the
plot of mz.

4.4.5 The effects of RSOC on the current driven dynamics
We now move on to check the effects of RSOC on the dynamics of the skyrmion. It turns
out that there is no time in the simulation that is large enough to see these effects that does
not break the normalization of the magnetization to a significant degree. These values
outside of the range [−1, 1] are local, however, so we still attempt an analysis. Before we
start the analysis it should be noted that the results shown and discussed in this section
should be taken with a grain of salt, as the code shows clear signs of instability. As this
instability also appears at t = t, and does not increase significantly at t = 2t, we run our
simulation up to t = 2t in this subsection. The dynamical effects of RSOC only appears
when we have an applied current in the material. To see its effects it is therefore best
to compare the current driven dynamics of a skyrmion in a material with and without
RSOC. The strength of DMI is set to be the same in both systems, despite the fact that the
presence of RSOC will influence this. This is done so that we consider skyrmions of equal
size, and the only difference between their dynamics will then be the effects of RSOC. For
this simulation we use the data for the cobalt nanotracks in Table 4.2, and apply a current
in the x-direction corresponding to bJ = 1 in its dimensionless value. We let the damping
constants take on large values α = β = 1 for it to be easier to recognize the effects of
RSOC, as it is expected that the RSOC correction is proportional to β. The simulation
results are shown in Figure 4.8. The first thing we notice is that there is significantly
more deformation in the system with RSOC than the one without. This could again be
due to the instability of the code, having RSOC present in the LLG equation makes the
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equations harder to solve. However, RSOC appears as fields in the LLG equation, and
for large currents these fields can reach an order of magnitude comparable to the effective
field. It is therefore not that unexpected that RSOC causes a deformation of the skyrmion,
as the skyrmion magnetization profile is no longer perfectly aligned with the experienced
magnetic field. The second thing one notices is that the location of the skyrmion core is
not the same in the material with RSOC and the one without. The presence of RSOC
shifts the core in the positive x- and y-direction. This is behavior that is similar to what
is predicted by (4.13) (remember that R is negative for positive αR and bJ). Analytically
the core should be located at (−1.17, 0.29) in the presence of RSOC, while numerically
the core is approximately found to be located at (−0.90, 0.35). The results are not that
different, and can possibly be due to the deformation of the skyrmion or the instability
of the code. What is most important to note is that the qualitative effects of RSOC on
the current driven skyrmion dynamics agree rather well with one another.

4.4.6 Electric field driven dynamics
The last effect to check numerically is then the dynamics induced by an inhomogeneous
electric field applied perpendicular to the skyrmion plane. The problem with simulating
these effects is that for reasonably scaled electric field gradients, such that the overall
change in the free energy in the vicinity of the skyrmion is rather small, the time scale
needed to see the effects is quite large compared to t. At these time scales we have seen
that the simulations become unstable, and this instability renders any output we may get
useless. To get a motion of the skyrmion that we can see at a time scale t we can, however,
use a very steep electric field gradient. The ones used in these simulations were set so that
ηEx/yr = 0.2K. This method is not entirely unproblematic either, not even considering
that this is a much stronger modification of the anisotropic energy than we can accomplish
with an electric field. With a gradient this steep there is a considerable change in the
free energy. If we consider the example with ηExr = 0.2K the total anisotropic energy at
x̃ = −5 is zero, while at x̃ = 5 is twice that of the original anisotropic energy without an
applied electric field. This should cause noticeable deformations in the skyrmion, as the
change in the effective field becomes so great that the magnetization of the skyrmion is
not even close to being the stable solution. For small time scales these deformations will
hopefully not be that dominant, however. There are two effects we would like to check
for the electric field driven motion of the skyrmion; in the undamped limit the skyrmion
should move perpendicular to the electric field gradient, while in the presence of damping
there should also be a velocity component in the opposite direction of the gradient. We
therefore run simulations for two different values of α for each gradient direction. We
choose a value α = 0.01 that should show primarily the motion in the undamped case,
and a value α = 0.7 to introduce the velocity component due to damping. The value of
α = 0.7 is chosen to get the maximum velocity component in the opposite direction of
the field gradient. This happens when αC = 1, which would correspond to α = 0.7 for
a skyrmion with C = 0.75, as we get when using the values for the cobalt nanotracks
in Table 4.2. The simulation results for the mz component at a time t = 2t are shown
in Figure 4.9. As we can see there is some deformation of the skyrmion, primarily an
elongation along the axis where we apply an electric field gradient. If one studies the
plots closer, one can also see that the position of the core has moved slightly, although
this is hard to see directly from the plots as presented here.

We will now compare the analytical and numerical core positions using (4.13) and
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8. αR = 5.1 peV·m, bJ = 1, C = 0.75, α = β = 1. The skyrmion core is located
at (−2, 0) without RSOC, and at approximately (−0.90, 0.35) with RSOC.

Figure 4.9. The analytical core locations are given by (−0.01,−0.86) and (−0.43,−0.43)
for a gradient in the x-direction and a damping parameter α = 0.01 and α = 0.7 respec-
tively. For a gradient in the y-direction the locations are (0.86,−0.01) and (0.43,−0.43)
for α = 0.01 and α = 0.7 respectively. The analytical results are in good agreement with
the velocity component perpendicular to the gradient found numerically, but there is some
discrepancy in the velocity component in the opposite direction of the gradient that is
proportional to α. Qualitatively the damped velocity component behaves correctly, but
quantitatively it is a bit off comparing to the perpendicular velocity component. This
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could possibly stem from the elongation of the skyrmion along the gradient axis, as the
core is chosen to be where the mz component is minimal, but this is no longer the geo-
metric center of the skyrmion.

(a) (b)

(c) (d)

Figure 4.9. The mz component of a skyrmion with C = 0.75 at a time t = 2t after
applying an electric field gradient to the system at t = 0. In (a) and (b) we have applied a
gradient Ex in the x-direction, while in (c) and (d) we have applied a gradient Ey in the
y-direction. The electric field is given by E = (Exx+Eyy)ẑ, and the field strength is given
by ηEx/yr = 0.2K, where we have used the materialistic properties of cobalt nanotracks. In
(a) and (c) the damping parameter is α = 0.01, while in (b) and (d) it is α = 0.7. The
core locations are found to be approximately (a) (0,−0.75), (b) (−0.2,−0.4), (c) (0.75, 0),
(d) (0.4,−0.2).

As a final comment on the electric field control of the skyrmion motion we would like
to discuss what is a realistic size of the electric field gradient, and how this may be utilized
in skyrmion motion. By rewriting (4.13), we can express the electric field gradients as

Ex = − 1
CE

[(βC +R) bJ + αC ẋ0 + ẏ0] , (4.35a)

Ey = 1
CE

[bJ + ẋ0 − αC ẏ0] . (4.35b)

One use of the electric field control of the skyrmion motion is to cancel out the perpen-
dicular velocity component when the skyrmion is dynamically driven by a spin-polarized
current. We can then estimate the size of the gradient necessary to accomplish this based
on the expression above. For simplicity we assume a case with α = 0, so that the ẏ0
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component can be cancelled out by an electric field gradient in the x-direction alone. The
value of β needs to be nonzero for us to have a nonzero ẏ0 to cancel out. In this example
we let β = 0.01 for reference, and we note that the field gradient scales linearly with β.
The magnitude of the electric field gradient in the x-direction necessary to make ẏ0 vanish
then becomes

ηExr = −2µ0Msr

γ′I3
(βC +R) bJ . (4.36)

For a current density je = 1010 A/m2 the size of bJ is approximately 1 m/s. In the
cobalt nanotrack case, we would then require an electric field gradient of the magnitude
ηExr/K = −2.8 · 10−6 to cancel out the perpendicular velocity component, while for the
Ir|Co|Pt multilayer system we would require ηExr/K = −1.2 · 10−5. This is a much more
feasible field gradient than the one used in the numerics to illustrate the dynamics (which
was ηExr/K = 0.2), as it does not require a very considerable change in the perpendicular
magnetic anisotropy. In addition, as the free energy is slowly varying in the vicinity of
the skyrmion, it is unlikely to cause any deformations of significance.



5
Spin torque oscillators

In this chapter we will cover the second topic of this thesis, which is spin torque oscil-
lators. These oscillators are realized by a magnetic multilayer system, where the free
magnetic moments in the system can undergo self-sustained oscillations. Due to the giant
magnetoresistance effect this causes a temporally varying resistance of a current passing
through the multilayer system, allowing us to generate an alternating current by applying
a direct current to the system. Like the magnetization dynamics of the skyrmion, these
self-sustained oscillations can be described by a variation of the LLG equation, known as
the Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equation. Because of the geometry of
the multilayer system, it is possible to induce a Rashba spin–orbit coupling due to the
broken inversion symmetry. The effect of this spin–orbit coupling on the spin torque oscil-
lator in such a multilayer system has to date not yet been explored, and is the purpose of
this chapter. We will in this chapter perform analytical and numerical calculations on the
system when RSOC is present, and find an analogous description of this effect comparing
it to well known effects.

5.1 Giant magnetoresistance
An important effect that is fundamental for the spin torque oscillators is the giant mag-
netoresistance (GMR) effect. This effect was discovered by Albert Fert [6] and Peter
Grünberg [7] in 1988, for which they won the Nobel prize in 2007. They discovered
that when an electrical current passed through a layered magnetic system with differ-
ent magnetic orientations, the resistance changed considerably depending on whether the
magnetic layers were parallel or anti-parallel, as illustrated in Figure 5.1. The reason
for this difference in resistance is that electrons with magnetic moments aligned with the
local magnetization are scattered far more than electrons that have a magnetic moment
anti-parallel with the local magnetization [103]. This can be argued through the fact that
for the parallel magnetic moments there are many states they can scatter into, while for
the anti-parallel magnetic moments there are far less, leading to a lower scattering of the
anti-parallel magnetic moments.

GMR has most noticeably been utilized in non-volatile memory technologies such as
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(a)

(b)

Figure 5.1. The resistance of a current passing through a multilayered magnetic system
depends on the magnetic moment of the electron (proportional to their spin) and the align-
ment of the magnetic layers. Here we consider an anti-parallel configuration in (a) and a
parallel configuration in (b) separated by a non-magnetic material. In (a) the resistance
is high because of the anti-parallel configuration of the magnetic layers the current has to
pass through, leading to considerable scattering of the parallel magnetic moments of the
electrons due to the larger density of states. In (b) the resistance of the electrons with
a magnetic moment anti-parallel to the magnetic layers is lower than the electrons with a
parallel magnetic moment.

magnetoresistive random-access memory (MRAM) [2] and racetrack memories [4]. The
GMR is pivotal in spin torque oscillators, as the resistance is a function of the angle
between two magnetizations. If we were able to make these magnetizations oscillate, such
that the angle between them varies in time, the oscillation in the resistance due to GMR
will cause an oscillation in the current. We would then have an oscillator that converts the
direct current applied to the system into an alternating current. This type of system that
utilizes the precession of magnetic moments to generate an oscillating current is known
as a spin torque oscillator (STO).

5.2 Spin torque oscillators under influence of spin–
orbit coupling

The spin torque oscillators that we will consider in this thesis primarily consist of a fixed
polarizing magnetic layer, and two free magnetic layers that interact with each other
through the RKKY interaction. We will study the effects the Rashba spin–orbit coupling
may have in two different geometries, a bulk geometry and a thin film geometry, as
illustrated in Figure 5.2. Whether the system is in an oscillating state depends on the
system parameters, such as the strength of the magnetic anisotropy (which we assume to
be uniaxial), the current density inducing spin-transfer torques, and the strength of the
RKKY interaction between the free magnetic layers. Spin torque oscillators have been
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found to occur in both ferromagnetic [39] and antiferromagnetic [40] coupling between
the free magnetic layers. By varying some of these parameters we can study when the
system is in an STO phase, or when a collinear state where the free magnetic layers are
aligned or anti-aligned with the easy axis of the material is stable. This would result in a
phase diagram that would give information regarding what state we will find the system
in for a given set of parameters. The goal of this chapter is to study the effects of Rashba
spin–orbit coupling on the STO phase in this phase diagram, and the effects it has on the
oscillation frequency of the current going out of the system.

z
y

x

F0 F1 F2

jx

jy

(a)

z
y

x

F0 F1 F2

jx

(b)

Figure 5.2. Illustrations of (a) the bulk geometry and (b) the thin film geometry. In the
geometries a fixed magnetic layer F0 is separated from two free magnetic layers F1 and F2 by
a non-magnetic metallic material shown here in blue. A material illustrated in black, which
is neighboring to F1 and F2 in (a) and the top film in (b), is present to get a strong Rashba
spin–orbit coupling at the interface of the free ferromagnetic layers. In (b) the bottom
film is a material that will cause little to no RSOC at the interface to the ferromagnetic
materials. To induce dynamics a current is applied in the x-direction which causes m1 and
m2 to experience spin-transfer torques. In (a) a current is also applied in the y-direction
to create significant RSOC effects on m1 and m2 due to the symmetry breaking in the
x-direction. In the film geometry this is caused by the current in the x-direction as the
symmetry breaking is in the z-direction. The free magnetic layers also interact through the
RKKY interaction, while the distance to the fixed magnetic layer is chosen such that an
RKKY interaction with this layer can be neglected. In (a) the material has an easy axis in
the z-direction, while in (b) the material has an easy axis in the y-direction.

The model that we will use to analyze this system is a variation of the Landau–
Lifshitz–Gilbert–Slonczewski (LLGS) equation that includes the Rashba field derived by
Kim et al. [94]. The LLGS equation is an expansion of the LLG equation (2.22) that
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includes spin-transfer torques on uniform magnetic moments. Usually the non-adiabatic
spin-transfer torque is rather small compared to the adiabatic spin-transfer torque, to
an order of magnitude on the size of the Gilbert damping α (which is typically 10−2

for the systems we will consider). This torque still has a significant contribution to the
dynamics of the magnetization even at this order of magnitude, as we have previously
seen in the skyrmion dynamics. In metallic multilayers such as N/F/N/F/N (N being
a non-magnetic metal, and F being a ferromagnetic metal), however, the non-adiabatic
STT is even smaller than usual due to symmetry considerations. The lowest contribution
to the non-adiabatic STT in such a system becomes quadratic in the applied voltage bias
V that generates the current responsible for STT. Since the voltage bias necessary to
generate large current densities for systems at this scale is quite small, a torque that is
proportional to V 2 can be neglected. This symmetry consideration is discussed in more
detail by Ralph and Stiles [104]. We are then content by only including the adiabatic
spin-transfer torque in our model, and the LLGS equation that we consider then becomes

∂tmi = −γmi ×
(
Heff

i +HR
i − βmi ×HR

i

)
+ αmi × ∂tmi + T STT

i , (5.1)

with mi being the magnetization in Fi. We remember that the Rashba field is given by

HR
i = 1

1 + β2
αRmeP (i)j
eMs~µ0

n̂× ĵ. (5.2)

The polarization P (i) is the polarization of the current responsible for the spin–orbit
coupling at the interface between Fi and the material that induces a strong RSOC at
the interface. Note that the non-adiabatic contribution of the Rashba field proportional
to β is still included, as the same symmetry argument that allowed us to neglect the
non-adiabatic STT is not applicable to this torque. The adiabatic STT acting onm1 and
m2 are given by

T STT
1 = − γ~jx

2eMsµ0d
m1 × (P0m0 − P1m2)×m1, (5.3a)

T STT
2 = − γ~jx

2eMsµ0d
P1m2 ×m1 ×m2, (5.3b)

following the derivation in Section 2.3.1. Here Pi is the polarization of the current in
Fi/N/Fi+1. The effective field Heff

i in the free magnetic layer Fi is given by the field
resulting from magnetic anisotropy and the RKKY interaction, which becomes

Heff
i = 2K

µ0Ms

(mi · n̂k) n̂k + JRKKY

µ0Msd
mī. (5.4)

Here n̂k is a unit vector along the easy axis, d is the thickness of the free magnetic layers
F1 and F2 (which are assumed to have an equal thickness), and ī indicates the index of
the free magnetic layer that is not i (̄i = 3 − i). To study the different stable phases of
this system, which we assume to be collinear states along n̂k, we follow the derivation
by Zhou et al. [39]. We first make the ansatz that we have a small perturbation ui from
a collinear state, so that mi ≈ λin̂k + ui, where λi = ±1. The possible collinear states
in question are ↓↓, ↓↑, ↑↓, ↑↑, with the arrows indicating the direction of m1 and m2
respectively, and ↑ being the unit vector n̂k along the easy axis. To decide whether the
collinear state is stable, we must study the time evolution of the perturbation ui. This
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is done by performing a Fourier transform of the LLGS equation using our ansatz of mi,
which is shown in Appendix B. The end result can be written compactly as

(
Âω + V̂

)(ũ1
ũ2

)
= 0. (5.5)

The matrices for the different geometries are given by

Âbulk =
(

1− iαλ1 0
0 1− iαλ2

)
, (5.6a)

Âfilm =
(

1 + iαλ1 0
0 1 + iαλ2

)
, (5.6b)

V̂bulk = ω0

(
λ1 0
0 λ2

)
+ ωJ

(
λ2 −λ1
−λ2 λ1

)
+ iω

(x)
j

[
P0

(
−λ1 0

0 0

)
+ P1

(
λ1λ2 −1

1 −λ1λ2

)]
ω

(y)
R

1 + β2

[(
P

(y)
1 0
0 P

(y)
2

)
− iβ

(
P

(y)
1 λ1 0
0 P

(y)
2 λ2

)]
, (5.6c)

V̂film = −ω0

(
λ1 0
0 λ2

)
− ωJ

(
λ2 −λ1
−λ2 λ1

)
+ iω

(x)
j

[
P0

(
−λ1 0

0 0

)
+ P1

(
λ1λ2 −1

1 −λ1λ2

)]

− ω
(x)
R

1 + β2

[(
P0 0
0 P1

)
+ iβ

(
P0λ1 0

0 P1λ2

)]
. (5.6d)

Here we have defined the frequencies ω0 = 2γK/µ0Ms, ωJ = γJRKKY/µ0Msd, ω(x)
j =

γ~jx/2µ0Msd and ω(x/y)
R = γαRmejx/y/~µ0eMs. ũ1 and ũ2 are the Fourier transforms of

u1 and u2, and are defined as ui(t) =
´
ũi(ω) exp (−iωt) dω/2π. From this definition we

can see that the perturbation is stable when the imaginary part of ω is less than zero,
but when the imaginary part of ω is greater than zero the perturbation is exponentially
increasing. To determine the sign of the imaginary component of ω we use (5.5). By
rearranging the terms and multiplying with the inverse of Â, we see that ω is restricted
to be one of the two possible eigenvalues of the 2× 2 matrix Ŵ = −Â−1V̂ . The collinear
statem1 = λ1n̂k,m2 = λ2n̂k is then stable if both of the eigenvalues of Ŵ have negative
imaginary components. This is of course dependent on the system parameters. We can
then use this matrix to find the phase diagrams for when the collinear states are stable or
not. There will be a region where none of the collinear states are stable for some choice of
parameters, and it is in this region that an STO phase will have to be localized. However,
a lack of a stable collinear state does not indicate that we have an STO phase. Our
analytical model can only describe if a perturbation from a collinear state will increase
or relax back to its original state, and if the perturbation is increasing it is not able to
say whether the perturbation at some point becomes a self-sustained precession in the
magnetization.

Something else that we need to consider is what defines an STO phase. The goal of
the spin torque oscillator is to transform the applied direct current into an alternating
current, utilizing the giant magnetoresistance effect. The resistance of our multilayer
system is dependent on the respective alignment of the magnetic layers, so when we
excite oscillations in the magnetizations we get an oscillating resistance of the system.
The resistance is approximated by

R(t) = R0 +∆R1m0 ·m1 +∆R2m1 ·m2. (5.7)
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To have a spin torque oscillator we must therefore require oscillations in at leastm0 ·m1
or m1 ·m2. Oscillations in m1 in the form of a precession around the axis of m0 will
therefore not cause any change in the resistance of the system, and such oscillations are
hence not considered as an STO phase. We will therefore later establish numerically based
on the time evolution of m1 and m2 when we have an STO phase in our system.

Before moving on to numerics, we want to see if it is possible to find an analogy for
the new terms in the LLGS equation that the Rashba field introduces. We see that the
matrix proportional to ωR in (5.6c) and (5.6d) is very similar to the Â matrix in (5.6a)
and (5.6b) in the case when P0 = P1 and P (y)

1 = P
(y)
2 . For simplicity we consider the case

where all polarizations are equal to P , but is still valid in the case where P0 = P1 = P
and P (y)

1 = P
(y)
2 = P ′, as we can adjust the Rashba parameter so that α′RP ′ = αRP . If we

consider this case, we can incorporate the effects of RSOC into (5.5) so that there is no
explicit dependence on ωR by introducing a new modified eigenfrequency ω∗ and Gilbert
damping α∗. These modified parameters would have to satisfy

ω∗ = ω + ω
(x/y)
R

P

1 + β2 , (5.8a)

ω∗α∗ = ωα + ω
(x/y)
R β

P

1 + β2 . (5.8b)

As we remember, we used the sign of the imaginary component of ω to determine whether
a collinear state is stable or not. As ω(x/y)

R is real, ω and ω∗ have the same imaginary
component, and the modified ω∗ will therefore not have any impact on when a collinear
state is stable or not. We therefore move on to consider the modified α∗. The modified
Gilbert parameter is a complex function, while the original α is entirely real. However, as
α∗ only appears in the product ω∗α∗ in the Fourier transform of the LLGS equation, and
ω∗ and ω∗α∗ only have a modification in their real components, the imaginary component
of α∗ is there to weigh up for the change in the real component. The physical effects of
RSOC on our system can then be seen from the real component of α∗, which is found to
be

<e(α∗) =

(
α<e(ω) + βω

(x/y)
R

P
1+β2

) (
<e(ω) + ω

(x/y)
R

P
1+β2

)
+ α=m(ω)2(

<e(ω) + ω
(x/y)
R

P
1+β2

)2
+ =m(ω)2

. (5.9)

We note that there is no restriction on the sign on either ω or ω(x/y)
R , making it possible for

α∗ to take on a wide range of values. In the special case =m(ω) = 0 there is a singularity
in <e(α∗) at ω(x/y)

R = (1 + β2)<e(ω)/P , so that <e(α∗) can in fact take on any value. It
is then possible for us to get negative values of <e(α∗), which differs from α which can
only be positive. This enables us to get an anti-damping term in the LLGS equation,
which will help destabilize the collinear states along the effective field. If we consider the
case when =m(ω) 6= 0, <e(α∗) is a finite and smooth function with a single minimum and
maximum. These can be found by differentiating <e(α∗) with respect to ωR,

∂

∂ωR
<e(α∗) = −(α− β)

=m(ω)2
(
<e(ω) + 2ωR

P
1+β2

)
+ <e(ω)

(
<e(ω) + ωR

P
1+β2

)2

(
=m(ω)2 +

(
<e(ω) + ωR

P
1+β2

)2
)2 (5.10)

and are found to be

ωR = −
(

1 + β2

P

) =m(ω)2 ±=m(ω)
√
=m(ω)2 + <e(ω)2 + <e(ω)2

<e(ω) . (5.11)
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We see that the sign of the derivative is dependent on whether α > β or α < β, in addition
to the sign of <e(ω) and ωR. If we are in a maximal region of <e(α∗) (a region where
<e(α∗) > α), we can therefore move to a minimal region (<e(α∗) < α) by switching the
sign of ωR, which we can control by the direction of the current responsible for RSOC.
This is easily done in the bulk geometry, as we can switch the direction of the current
in the y-direction which only affects the spin–orbit coupling. In the thin-film geometry
switching the sign of jx may not have the desired effects, as this current is also responsible
for the spin-transfer torques, and a change in jx will therefore also lead to a change in ω.

The minimum value of <e(α∗) can still be negative even when =m(ω) 6= 0, despite
the lack of a singularity. Whether we can get a negative value depends heavily on ω,
however, which is a complex function not only of the system parameters, but also of the
collinear state. So even if RSOC helps to destabilize one collinear state by turning the
Gilbert damping into an anti-damping term, it is not given that this will occur for all
collinear states.

5.3 Numerical simulations

5.3.1 Method
For our numerical solution we need to solve the LLGS equation (5.1) directly. This is
a three dimensional vector equation, but due to the interaction between m1 and m2
through the RKKY-interaction and the spin-transfer torques, we need to solve for both
vectors simultaneously. This makes the LLGS equation for this case six coupled differen-
tial equations that are highly non-linear, due to the cubic terms appearing in the STT.
The advantage with this equation over the LLG equation that we got for the skyrmion
case, however, is that the solution is only temporally varying, making this an ordinary
differential equation (ODE) instead of the partial differential equation (PDE) we got for
the skyrmion. ODEs are in general much easier to solve than PDEs, and software such
as MATLAB has well-implemented solvers for such problems. We will here utilize MATLAB’s
ode45 solver. One problem that was encountered when solving the LLGS equation nu-
merically was one that is familiar to us from the skyrmion case; the modulus of the
magnetization unit vector was not always conserved to unity. For some parameters the
modulus even oscillated between being one and zero, which clearly is a type of behavior
we want to eliminate. For the skyrmion case we narrowed the problem down to either
being a singularity in the spatial derivatives or the fact that conservation of the unit
modulus was not explicitly enforced in the solution (only through the form of the LLG
equation, which should conserve the modulus). In the LLGS equation we have no spa-
tial derivatives, but like the skyrmion case we also have not explicitly enforced the unity
modulus in the solution. One way to implement this is to replace quadratic factors in a
single magnetization component m2

i by 1−m2
j −m2

k to enforce the unity relation

m2
x +m2

y +m2
z = 1. (5.12)

For the solution of the skyrmion motion this method was not feasible, as we had no
quadratic factors in any single magnetization component, and the method does not work
well for linear factors as we get an ambiguity in the sign when taking the square root of
the relation above. For the LLGS equation in the STO case this method is feasible due to
the different type of STT terms. This method is not perfect, we still get a magnetization
modulus that decreases with time, but the magnitude of this decrease is negligible.
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Once the LLGS equation is solved for all six vector components, we need to analyze
the results. This analysis will primarily decide if the solution is in a collinear state, an
STO phase, or none of the former. We will also perform a Fourier transform of m0 ·m1
for some sets of parameters to see the frequency spectrum of a potential STO phase. To
establish if the solution is a collinear state or an STO phase we consider the last 20%
of the time-interval of the calculated solution, and then compare the latter half of that
to the former half. In each half of the interval we first calculate the average value of
m0 ·m1 and m1 ·m2, and how much the solution varies from that average during the
interval. If the variation in the latter interval is above some cutoff factor between zero and
one times the variation in the former interval, and the average variation is above some
minimal value, we classify the solution as an STO phase. This way an oscillation that
decays significantly and very small oscillations will not be classified as an STO phase. In
our calculations we set the cutoff-factor to 0.9, and the minimum variance necessary to
have an STO phase to be 10−6 per time unit in the latter 10% of the solution interval. If
the conclusion is that the solution is not an STO phase, we classify the state based on the
final value of the solution of the vector components. If the final value of the two vector
components along the easy axis is ±1 to some degree of accuracy and the remaining four
are zero, we classify the solution to be in the corresponding collinear state. If that is also
not the case, we classify the system as being in a canted state. A canted state is where
the magnetization has either relaxed to a state that is not parallel to the easy axis, or the
system is oscillating in a manner that keeps m0 ·m1 and m1 ·m2 constant (and thereby
not generating oscillations in the resistance).

Regarding the dimensional treatment of the numerical implementation, the LLGS
equation can be written in terms of the frequency constants ω0, ωJ , ω(x)

j , ω(x/y)
R , some

dimensionless constants and the magnetization unit vectors. We set the value of ω0 to
be unity in our simulations, which defines our unit time step, and scale our remaining
frequencies accordingly.

5.3.2 Phase diagrams
By combining the analytical framework and numerical method described previously, we
can create phase diagrams that show for what parameters the different collinear states
are stable, when we have an STO phase, and when we are in a canted state. We perform
these calculations with the same parameters as Zhou et al. [39] for an easy comparison
between the results with and without RSOC. These parameters are α = 0.01, P = 0.5,
K = 8 ·104 J/m3, d = 3 nm, J ∼ 1 mJ/m2, jx ∼ 108 A/cm2,Ms = 127 kA/m. In the bulk
geometry we also set jy = 109 A/cm2. Regarding the strength of the Rashba parameter
αR we consider the values αR = 0, 1.85 · 10−10 eV·m, 9.26 · 10−10 eV·m. These rather high
values are chosen to get a clear indication of the effects RSOC may have. The values are
also chosen not to be unrealistic, as αR has been found to be ∼ 3.7 · 10−10 eV·m at the
surface of Bi/Ag alloy [43]. In the bulk geometry the strength of the Rashba parameter
is not too important, as we can adjust for a lower αR by increasing jy accordingly. This is
not possible in the thin film geometry, however, as both spin-transfer torques and RSOC
are controlled by the current jx, and so the strength of αR becomes more important in
the thin film geometry.

Performing the calculations, the resulting phase diagrams for the bulk geometry are
shown in Figure 5.3, and the phase diagrams for the thin film geometry are shown in
Figure 5.4. The phase diagram without the effects of RSOC, as found by Zhou et al.,
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Figure 5.3. Phase diagrams for the bulk geometry. For all phase diagrams the values
α = 0.01, P = 0.5, jy = 109 A/cm2, K = 8 · 104 J/m3, d = 3 nm are assumed. The red
regions indicate an STO phase, while the white regions are canted states.

is presented in Figure 5.3a. We see by comparing it to a system with RSOC present, as
shown in Figure 5.3b, that RSOC can increase the size of the STO phase and even extend
it down to the antiferromagnetic regime for compensated magnetic momentsmi. Now to
compare our results to our analogy of RSOC effectively modifying the Gilbert damping
α. According to Zhou et al. the border between the unstable region (STO phase and the
canted state, illustrated in red and white) and the ↑↓ state is approximately given by

ωJ =
√

4ω2
0 +

(
ω

(x)
j

)2
− 2ω0 + α

ω2
0

ω
(x)
j

. (5.13)

For α > 0 we would therefore expect the border to increase as jx → 0+, as in Figure
5.3a. In Figure 5.3b, however, this border decreases as jx → 0+ as if α < 0. As we
remember from our analogy, we found that the effective Gilbert damping <e(α∗) could
become negative in the presence of RSOC for some set of parameters. This seems to be
the case here. We also remember that we could switch from being in a minimal region
in <e(α∗) to a maximal region by letting β > α if we were in a minimal region when
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β < α. The phase diagram in this case is shown in Figure 5.3c. As predicted, the border
between the unstable region and the ↑↓ state is lifted. In addition, the size of the STO
phase localized in that region decreases, which would correspond well with an increase in
the Gilbert damping. This does not mean systems with β > α are of no interest to get
an increase in the size of the STO phase, however. We also noted in our analogy that we
could also go from being in a minimal to a maximal region in <e(α∗) by switching the
direction of the current in the y-direction.
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Figure 5.4. Phase diagrams for the thin film geometry. For all phase diagrams the values
α = 0.01, P = 0.5, K = 8 · 104 J/m3, d = 3 nm are assumed. The red regions indicate an
STO phase, while the white regions are canted states.
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Figure 5.5. The stability of the ↑↑ state in the thin film geometry for β = 0, αR =
9.26 · 10−10 eV·m is found to be very dependent on the initial conditions. In (a) the initial
state is chosen to be close to ↓↓ for JRKKY > 0, while in (b) the initial state is chosen to be
close to ↑↑ in the same region. In both cases the initial state is chosen to be close to ↓↑ for
JRKKY < 0.

Moving on to the thin film geometry, we get a different behavior in the phase di-
agrams. We do not get the same behavior in the border between the unstable region
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and the ↑↓ state due to the fact that the effects of RSOC are proportional to jx, and as
jx → 0 these effects vanish. We can, however, still see a lowering of the border with RSOC
present, as shown in both Figure 5.4a and 5.4b, but we do not have the same effect when
jx → 0+. In the phase diagrams shown here we also have an increase in the STO phase
for the thin film geometry when RSOC is present, though this increase requires a rather
large Rashba parameter αR to become evident. We are also able to find an STO phase
in the antiferromagnetic regime (JRKKY < 0), most noticeably in the case with β = 0,
αR = 9.26 · 10−10 eV·m as illustrated in Figure 5.4a. This STO phase is also more or less
symmetric in jx. Something that should be noted with this set of parameters is that while
we have a region where the ↑↑ state is stable, numerical calculations show that whether
the system relaxes to this state is highly dependent on the initial condition of m1 and
m2. In Figure 5.5 we show all the points in the phase diagram that are found to be in
an oscillating state for different initial conditions. This is in contrast with Figure 5.3 and
5.4 where we only classify a point to be an oscillating state if the numerical calculations
indicate this and the analytical calculations say there are no stable collinear states the
system can relax to. In all figures the stability of the collinear states is determined analyt-
ically, while the STO phase is found numerically. As we can see in Figure 5.5a an initial
condition that is close to ↓↓ or ↓↑ does not relax to the ↑↑ state even if this is stable, and
we can also get an STO phase in the ferromagnetic regime. This can be understood by
looking at the imaginary component of ω belonging to the ↑↑ state for these parameters.
It is found that the imaginary component, while less than zero, only has a magnitude of
10−2. In comparison the other stable regions typically have an order of magnitude up to
101. It is therefore not surprising that if the initial state is far away from being in ↑↑ it
is possible that the system will not relax to that state, and we can get an oscillating or
canted state even though there exists a stable collinear state.

The sensitivity issue concerning the initial state ofm1 andm2 was only of consider-
able significance for the ↑↑ state in the thin-film geometry with β = 0, αR = 9.26 · 10−10

eV·m. There was also some sensitivity for other phase diagrams in the limit jx → 0.
Regarding the cutoff factors utilized for classifying the numerical solution, there was very
little sensitivity in the choice of parameters. The transitional region between an STO
state and a canted or collinear state is found to happen on a typical scale of 106 A/cm2 or
10−3 mJ/m2, both of which being very small compared to the magnitude of the parame-
ters considered. As the cutoff factors would primarily have an effect in this transitional
region, a change in these parameters would not lead to a significant change in the size
of the STO phase. It can also be seen in some of the phase diagrams that there are
found to be some canted states in the middle of the STO region, or a single STO state
separated from the main STO region. This is discovered to be due to the time interval
the system is solved over, as for some parameters it takes longer time for the system to
obtain stable oscillations than for others. The time scale that the system was solved over
was constrained to some degree, due to the run-time of the solver. It is also observed that
the initial state of m1 and m2 has some impact on how fast these oscillations become
stable. When solving the system over a longer time scale the STO regions should become
more or less continuous.

5.3.3 Frequency spectra
We have now shown that with the presence of RSOC we are able to increase the size of
the STO phase. It is also of interest to study what impact RSOC has on the frequency
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Figure 5.6. The one sided spectra of the Fourier transform ofm0 ·m1 in the bulk geometry.
The Fourier transform was taken along the JRKKY = 0.25 mJ/m2 line in the phase diagrams.

spectrum. To study this we take fast Fourier transforms ofm0 ·m1 for selected values of
JRKKY. The Fourier transforms of m1 ·m2 are not presented as they show the same fre-
quency spectra, but with slightly different amplitudes. The results for the bulk geometry
are shown in Figure 5.6, and the results for the thin film geometry are shown in Figure
5.7. First considering the results from the bulk geometry, we see that in the presence of
RSOC we have fewer frequencies for a given jx in comparison to the case without RSOC.
Moreover, we see that the amplitude of the oscillations can also be larger when we have
RSOC in the system, as seen in Figure 5.6b and 5.6d. For some parameters they can also
be smaller, however, as seen in Figure 5.6c. The main frequency in the presence of RSOC
tends to be more slowly varying as a function of jx than the system without RSOC, but
we can obtain slightly higher frequencies with RSOC than without. In addition, the oscil-
lations in the presence of RSOC can also have higher amplitudes than the system without
RSOC, as shown in Figure 5.6b and 5.6d. As the strength of RSOC is controllable by jy,
this allows for a more tunable frequency spectrum in the spin torque oscillator when the
effects of RSOC are included. We now have two parameters we can vary to control the
frequency output without changing the materialistic properties instead of just one.
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Considering the frequency spectra in the thin film geometry we see that for the fer-
romagnetically coupled magnetic moments in Figure 5.7b the behavior is rather similar
to the bulk geometry case in Figure 5.6b. We have higher amplitudes of the oscillations,
and a reduction in the amount of frequencies. The frequency as a function of current is
slightly steeper than in the bulk geometry, however. The result that makes the thin film
geometry stand out from the bulk geometry is the frequency spectrum of the antiferro-
magnetically coupled magnetic moments in Figure 5.7a. As we can see, the frequency
spectrum reflects the same symmetry in jx as the STO phase in the phase diagram. In
addition, we have several more frequencies available in this antiferromagnetic STO than
in the ferromagnetic STO.
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Figure 5.7. The one sided spectra of the Fourier transform of m0 ·m1 in the thin film
geometry. The Fourier transform was taken along the JRKKY = −0.2 mJ/m2 line in (a) and
along JRKKY = 0.25 mJ/m2 in (b).
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Conclusion

6.1 Summary and conclusion
We have derived analytically the velocity of a skyrmion under the effects of a spin-transfer
torque from a spin polarized current, Rashba spin–orbit coupling, a constant electric field
gradient and a phenomenological pinning force. It was found that the effects of the spin–
orbit coupling could be viewed as a modification of the non-adiabatic spin-transfer torque.
The motion of the skyrmion due to a constant electric field gradient could be described
as a motion along the equipotential lines perpendicular to the gradient, and a damped
motion proportional to the Gilbert damping in the opposite direction of the gradient. The
electric field gradient is not able to generate high skyrmion velocities, but can be used
to cancel out the perpendicular velocity component due to the topological Hall effect in
the motion driven by a spin-polarized current. In the presence of pinning forces it was
found that the critical current was smaller for smaller skyrmions when Rashba spin–orbit
coupling was present, but the reduction was only significant for large values of the non-
adiabatic spin-transfer torque. Without the presence of Rashba spin–orbit coupling the
situation is reversed, and larger skyrmions have a smaller critical current. For the motion
driven by electric field gradients larger skyrmions had a lower critical field gradient.

The analytical derivation was based on the micromagnetic model and the Thiele
equation. The Thiele equation is a simplification of the Landau–Lifshitz–Gilbert equation,
and assumes a rigid motion of the skyrmion. To check if the ansatz of a rigid motion holds
true the LLG equation was also solved numerically for comparison to the results from the
Thiele equation, as the LLG equation makes no assumptions regarding the shape of the
skyrmion during its motion. Due to the complexity of the LLG equation, however, stability
problems were encountered when utilizing a standard finite element method solver. After
a certain time step the numerical simulations did not longer conserve the magnitude of the
magnetization, which is explicitly conserved by the form of the LLG equation. To attempt
to get any useful results before this instability rendered any result useless, very strong
currents and electric field gradients were considered to be able to observe the dynamics
of the skyrmion at that time-scale. The results observed agreed qualitatively with the
analytical results derived, but some deformation of the skyrmion was also observed. This
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could potentially be due to the extreme values used in the numerical simulations. To be
able to draw any real conclusions from the numerical data it is therefore recommended
to run new simulations with a solver more specialized for the LLG equation, so that it
is possible to observe the skyrmion dynamics over longer time steps with more realistic
parameters for the current and electric field gradient.

In addition to the electric control of the skyrmion dynamics, we also studied the
electrical control of spin torque oscillators in systems with Rashba spin–orbit coupling in
the free magnetic layers. The strength of this spin–orbit coupling was tunable by a spin
polarized electric current, allowing us to control the magnitude of the resulting effects in
our system. The phase diagrams for two different geometries were calculated analytically
and numerically for varying strengths of the spin–orbit coupling. It was discovered that
by having Rashba spin–orbit coupling in our system we could increase the size of the
resulting spin torque oscillator phase in our phase diagrams, and that it was possible
to get an oscillating phase in both ferromagnetically and antiferromagnetically coupled
compensated magnetic layers, the latter of which being a new discovery. Moreover, the
oscillations in the spin torque oscillator phase were often found to have higher amplitudes
in their oscillations when spin–orbit coupling was present, and the frequencies obtained
often differed slightly from the system without spin–orbit coupling. This is of particular
interest as it allows for a wider tunability of the frequency output by varying the strength
of the current applied to the system.

6.2 Prospects for further studies
In this thesis the focus has been on electrical control of magnetization dynamics. We have
shown how the direction of the skyrmion motion can be adjusted by a constant electric
field gradient, and previously it has also been shown how skyrmions can be guided by
generating unstable regions with electric fields [27]. What can also be of interest to study
is how the motion of skyrmions are affected by more complex spatial variations in the
electric field. If it was possible to create an energy landscape that allowed us to generate
a trajectory for individual skyrmions this would be highly attractive in skyrmion-based
memory applications.

The motion of skyrmions can also be manipulated by other means than electric
currents and fields. In recent years it has been shown that skyrmion motion can be driven
by magnons, both in a translational [105] and rotational [106] manner. The motion is
induced by the scattering of the magnons in the skyrmion. The translational motion can
be generated by a spin-wave source, whereas the rotational motion has been found to occur
due to thermal magnons. How the skyrmion magnon-driven motion can be controlled in
a manner viable for use in memory application is still a topic of interest.

The magnon-driven magnetization dynamics has also been shown to be able to drive
spin torque oscillators in ferromagnetic multilayers [107], but has yet to be studied for an
antiferromagnetic coupling.
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A
Rashba force in the Thiele equation

The Rashba force in the Thiele equation is given by

FR = −µ0

ˆ
dV

∑
k

(∇Mk)
(
HR −

β

Ms

M ×HR

)
k

(A.1)

with HR = CRbJ ŷ for a broken inversion symmetry in the z-direction and an applied
current in the x-direction. We will first consider the force

F
(1)
R = −µ0

ˆ
dV

∑
k

(∇Mk) (HR)k . (A.2)

To do this we must know ∂xmy and ∂ymy. We note for the remainder of this chapter
that ∂zM = 0. To find these derivatives we use the chain rule and the following relations
obtained from the ansatz θ = θ(r) and identity tanφ = x/y:

∂xθ = cosφ∂rθ, (A.3a)
∂yθ = sinφ∂rθ, (A.3b)

∂xΦ = −sinφ
r

, (A.3c)

∂yΦ = cosφ
r

. (A.3d)

We then find that

∂xmy = ∂x(sin θ sinΦ) = cos θ sinΦ cosφ∂rθ −
sin θ
r

cosΦ sinφ, (A.4a)

∂ymy = ∂y(sin θ sinΦ) = cos θ sinΦ sinφ∂rθ + sin θ
r

cosΦ cosφ. (A.4b)

Using these results we end up with the force

F
(1)
R = −µ0CRbJMs

ˆ
dV

 (sinψ + cosΦ sinφ)∂rθ − sin θ
r

cosΦ sinφ
(cosψ − cosΦ cosφ)∂rθ + sin θ

r
cosΦ cosφ

0

 , (A.5)
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where we have used the relations

sinΦ cosφ− cosΦ sinφ = sinψ, (A.6a)
sinΦ sinφ+ cosΦ cosφ = cosψ. (A.6b)

In the case of ψ = 0 or ψ = π, we can easily see that two of the components of F (1)
R are

zero, as sinψ = 0 and
´

dφ cosφ sinφ = 0. The y-component can also be seen to be zero.
As cosΦ cosφ = cos2 φ and (cosψ − cosΦ cosφ) = sin2 φ for ψ = 0, cosΦ cosφ = − cos2 φ
and (cosψ − cosΦ cosφ) = − sin2 φ for ψ = π, after performing the integral over φ we
remain with a constant times the integralˆ ∞

0
dr (r cos θ∂rθ + sin θ) . (A.7)

This integral is zero as well, as one can see by performing a partial integration of sin θ(r):ˆ ∞
0

dr sin θ = r sin θ|r=∞r=0 −
ˆ ∞

0
drr cos θ∂rθ. (A.8)

Rearranging the terms gives usˆ ∞
0

dr (r cos θ∂rθ + sin θ) = r sin θ|r=∞r=0 = 0. (A.9)

This integral is zero because sin θ(r) decays faster than 1/r and is finite at r = 0, which
can be verified numerically. We have then shown that F (1)

R = 0 for ψ = 0, π. It can be
shown in a similar manner that F (1)

R = 0 for ψ = ±π/2 as well. We then proceed to
consider the second part of the force,

F
(2)
R = −µ0

ˆ
dV

∑
k

(∇Mk)
(
− β

Ms

M ×HR

)
k

. (A.10)

The cross-product in the magnetic field can be written out as−βm×HR = βCRbJ(cos θx̂−
sin θ cosΦẑ). The partial derivatives of mx and mz are found to be

∂xmx = ∂x(sin θ cosΦ) = cos θ cosΦ cosφ∂rθ + sin θ
r

sinΦ sinφ, (A.11a)

∂ymx = ∂y(sin θ cosΦ) = cos θ cosΦ sinφ∂rθ −
sin θ
r

sinΦ cosφ, (A.11b)

∂xmz = ∂x cos θ = − sin θ cosφ∂rθ, (A.11c)
∂ymz = ∂x cos θ = − sin θ sinφ∂rθ. (A.11d)

Inserting this into the expression for F (2)
R in (A.10) we find that it can be expressed as

F
(2)
R = −µ0βCRbJMs

ˆ
dV

(cosψ − sinΦ sinφ)∂rθ + sin θ cos θ
r

sinΦ sinφ
(sinΦ cosφ− sinψ)∂rθ − sin θ cos θ

r
sinΦ cosφ

0

 . (A.12)

In the case of ψ = 0 or ψ = π it can be seen that the only non-vanishing component is
the x-component, due to the integration over φ. It can be verified that the resulting force
vector becomes

FR = F
(2)
R = −µ0βCRbJMsπd

ˆ ∞
0

dr (r∂rθ + sin θ cos θ)

 cosψ
− sinψ

0

 , (A.13)
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with d being the thickness in the z-direction. This result is only valid when ψ = 0,±π/2, π,
but it should be noted that for the uni-axial inversion asymmetry along n̂ defining the
Rashba field used here the hedgehog skyrmion with ψ = 0 or ψ = π is the energetically
favored skyrmion profile.





B
Fourier transform of LLGS into an eigenvalue

equation

The LLGS equation that we will consider in this appendix is given by

∂tmi = −γmi ×
(
Heff

i +HR
i − βmi ×HR

i

)
+ αmi × ∂tmi + T STT

i , (B.1)

with the fields and torques being given by

Heff
i = ω0

γ
(mi · n̂k) n̂k + ωJ

γ
mī, (B.2a)

HR
i = ωR

γ(1 + β2)P
(ĵ·r̂)
i n̂× ĵ, (B.2b)

T STT
1 = −

ω
(x)
j

γ
m1 ×

(
P

(x)
0 m0 − P (x)

1 m2
)
×m1, (B.2c)

T STT
2 = −

ω
(x)
j

γ
P

(x)
1 m2 ×m1 ×m2. (B.2d)

B.1 Bulk geometry

We start off by considering the bulk geometry, which has an easy axis in the z-direction,
making n̂k = ẑ. The main inversion asymmetry is in the x-direction, and the current
giving rise to the Rashba field is applied in the y-direction. The direction of the Rashba
fieldHR

i then becomes x̂× ŷ = ẑ. We then make the ansatz thatmi = uxi (t)x̂+uyi (t)ŷ+
λiẑ. In addition, we perform a Fourier transform such that

ui(t) =
ˆ
ũi(ω) exp (−iωt) dω/2π. (B.3)
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Starting from the left of (B.1), the terms to first order in u then become

∂tmi = −iω (ũxi x̂+ ũyi ŷ) , (B.4a)
−γmi ×Heff

i = −ω0λi (ũyi x̂− ũxi ŷ)
− ωJ

[(
λīũ

y
i − λiũ

y
ī

)
x̂− (λīũxi − λiũxī ) ŷ

]
, (B.4b)

−γmi ×HR
i = − ωR

1 + β2P
(y)
i (ũyi x̂− ũxi ŷ) , (B.4c)

γβmi ×mi ×HR
i = βωR

1 + β2P
(y)
i λi (ũxi x̂+ ũyi ŷ) , (B.4d)

αmi × ∂tmi = iαωλi (ũyi x̂− ũxi ŷ) , (B.4e)
T STT

1 = ω
(x)
j λ1P

(x)
0 (ũx1x̂+ ũy1ŷ)

+ ω
(x)
j P

(x)
1 [(−λ1λ2ũ

x
1 + ũx2) x̂+ (−λ1λ2ũ

y
1 + ũy2) ŷ] , (B.4f)

T STT
2 = −ω(x)

j P
(x)
1 [(−λ1λ2ũ

x
1 + ũx2) x̂+ (−λ1λ2ũ

y
1 + ũy2) ŷ] . (B.4g)

We want to express the equations above as a linear combination of ũi, as then it will be
possible to get the LLGS equation on the form of an eigenvalue equation. For some terms,
such as (B.4a) this will be trivial, whereas for other terms, such as (B.4c) it becomes a
little harder. To deal with these terms that result from the cross-products, we utilize the
periodic nature of the Fourier transform. In Figure B.1 we see that the terms in (B.4)
that can not be written directly as a linear combination in ũi are terms that are a phase
π/2 ahead or behind ũi. A rotation of something complex by an angle π/2 is equivalent
to multiplying it with the imaginary number i. Therefore, (−ũyi x̂+ ũxi ŷ) = i (ũxi x̂+ ũyi ŷ)
and (ũyi x̂− ũxi ŷ) = −i (ũxi x̂+ ũyi ŷ). Using this, we find that the LLGS equations can be
written as[

−(i+ αλ1)ω − iω0λ1 − iωJλ2 −
ωR

1 + β2P
(y)
1 (i+ βλ1) + ω

(x)
j λ1(λ2P

(x)
1 − P (x)

0 )
]
ũ1

+
[
iωJλ1 − ω(x)

j P
(x)
1

]
ũ2 = 0, (B.5a)[

iωJλ2 + ω
(x)
j P

(x)
1

]
ũ1

+
[
−(i+ αλ2)ω − iω0λ2 − iωJλ1 −

ωR

1 + β2P
(y)
1 (i+ βλ2)− ω(x)

j λ1λ2P
(x)
1

]
ũ2 = 0. (B.5b)

Multiplying the equations above with i, we can write the equations compactly as

(
Āω + V̄

)(ũ1
ũ2

)
= 0, (B.6)

with

Ā =
(

1− iαλ1 0
0 1− iαλ2

)
, (B.7a)

V̄ = ω0

(
λ1 0
0 λ2

)
+ ωJ

(
λ2 −λ1
−λ2 λ1

)
+ iω

(x)
j

[
P0

(
−λ1 0

0 0

)
+ P1

(
λ1λ2 −1

1 −λ1λ2

)]
ω

(y)
R

1 + β2

[(
P

(y)
1 0
0 P

(y)
2

)
− iβ

(
P

(y)
1 λ1 0
0 P

(y)
2 λ2

)]
. (B.7b)
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Figure B.1. The vector (−v, u) is a phase π/2 ahead of the vector (u, v), while the vector
(v,−u) is a phase π/2 behind the vector (u, v).

B.2 Thin film geometry
When considering the thin film geometry, there are four differences from the bulk ge-
ometry. Firstly, the easy axis is along n̂k = ŷ instead of n̂k = ẑ. Secondly, the main
inversion asymmetry is in the z-direction and there is only an applied current in the x-
direction, so that the direction of the Rashba field becomes ẑ× x̂ = ŷ. For the bulk case
this was also directed along ẑ. Thirdly, as the easy axis is along ŷ, we use the ansatz
mi = uxi x̂ + λiŷ + uzi ẑ. Lastly, the polarizations in the Rashba field are given by the
polarizations of the current in the x-direction, so that HR

i ∝ P
(x)
i−1. With the exception

of the last change, the difference between the thin film geometry and the bulk geometry
is mainly a switch between the y- and z-directions. This makes it easier for us to find
the matrices Ā and V̄ for the thin film geometry. When switching two column vectors in
a determinant you pick up a negative sign. When we switch the y- and z-directions, we
therefore pick up a negative sign for the terms that stem from an odd number of cross
products. Using this in addition to the fact that it is the current in the x-direction that
generates the Rashba field, the equations for the thin film geometry can also be written
in the form of (B.6) with

Ā =
(

1 + iαλ1 0
0 1 + iαλ2

)
, (B.8a)

V̄ = −ω0

(
λ1 0
0 λ2

)
− ωJ

(
λ2 −λ1
−λ2 λ1

)
+ iω

(x)
j

[
P0

(
−λ1 0

0 0

)
+ P1

(
λ1λ2 −1

1 −λ1λ2

)]
ω

(y)
R

1 + β2

[(
−P (x)

0 0
0 P

(x)
1

)
− iβ

(
P

(x)
0 λ1 0
0 P

(x)
1 λ2

)]
. (B.8b)
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Spin torque oscillator research article

Here we enclose the article based on our results regarding spin torque
oscillators, currently undergoing review in Nature Scientific Reports.
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ABSTRACT

We consider theoretically the impact of Rashba spin–orbit coupling on spin torque oscillators (STOs) in synthetic ferromagnets
and antiferromagnets that have either a bulk multilayer or a thin film structure. The synthetic magnets consist of a fixed
polarizing layer and two free magnetic layers that interact through the Ruderman-Kittel-Kasuya-Yosida interaction. We
determine analytically which collinear states along the easy axis that are stable, and establish numerically the phase diagram
for when the system is in the STO mode and when collinear configurations are stable, respectively. It is found that the Rashba
spin–orbit coupling can induce anti-damping in the vicinity of the collinear states, which assists the spin transfer torque in
generating self-sustained oscillations, and that it can substantially increase the STO part of the phase diagram. Moreover, we
find that the STO phase can extend deep into the antiferromagnetic regime in the presence of spin–orbit torques.

Introduction

Twenty years ago, it was theoretically proposed by Slonczewski1 and Berger2 that there could be exerted a torque on the
magnetization in multilayer systems by passing a spin polarized current through the magnetic layers. This was coined the
spin-transfer torque (STT) as the spin of the spin polarized current was transferred to the magnetic layer. This effect was
observed experimentally3, 4 a few years after the publications by Slonczewski and Berger, and spiked a lot of interest in the
field as the magnetization could now be manipulated by electrical means, which is often advantageous practically compared
to manipulation by magnetic fields. This torque could be used to switch the magnetization direction in one of the magnetic
layers above some critical current,4–6 which is of interest for writing techniques in memory technologies such as MRAM7, 8

and racetrack memories.9 The spin-transfer torque was also shown to induce a precession in the free magnetic layers,10–12

which is now known as a spin torque oscillator (STO). The spin torque oscillator takes in a dc spin polarized current, and due
to the precession in the free magnetic layers that causes an oscillation in the resistance through the giant magnetoresistance
effect,13, 14 and the result is an ac current passing out of the multilayers. These alternating currents can have a wide range of
frequencies, spanning the range of 100s of MHz to 100s of GHz,8, 15, 16 and these frequencies are tunable by the magnitude of
the applied current. Spin torque oscillators can exist in both antiferromagnetically17 and feromagnetically18 coupled magnetic
layers, although it was noted in Ref.18 that they were unable to reproduce the antiferromagnetic STO phase predicted in Ref.17

Antiferromagnetic nano-oscillators were also recently considered in Ref.19

Another type of torque that has gained interest in magnetization dynamics in more recent years is the torque resulting from
Rashba spin–orbit coupling (RSOC).20 This type of spin–orbit coupling occurs in materials with broken inversion symmetry,
such as at the interface between two materials.21 This inversion asymmetry causes an in-plane current flowing parallel to the
interface to experience a magnetic field perpendicular to both the direction of the current and inversion asymmetry.22 Rashba
spin–orbit coupling has been shown to introduce interesting effects in many different areas of physics,23 and is of particular
interest due to the fact that the strength of the interaction can be tuned by gate voltages.24, 25 RSOC can, like STT, be utilized in
magnetization switching, although RSOC is not the mechanism solely responsible for it.26 Several works have considered
the influence of spin–orbit torques on magnetic domain wall motion.27–37 It has also been observed experimentally that the
spin–orbit torque from RSOC can contribute to self-oscillations in STOs.38

In this article, we show that RSOC can be used in metallic multilayer systems to substantially increase the size of the STO
phase. Moreover, we discover an STO phase for two compensated antiferromagnetically coupled magnetic layers, which is a
new result compared to e.g. Zhou et al. who could only find an STO phase for a ferromagnetic coupling in Ref.,18 and Klein et
al. could only find an STO phase for uncompensated antiferromagnetically coupled magnetic layers in Ref.17 We begin by
setting up our model by utilizing the Landau-Liftshitz-Gilbert-Slonczewski (LLGS) equation, and then proceed by performing
a Fourier transform of this equation to find when collinear states along the easy axis are stable. By comparing the new terms
introduced by having RSOC present, we find that the spin–orbit torques effectively can be described by a modification of the



Gilbert damping α, to the extent where we can get an anti-damping term in the LLGS equation. To establish when we have an
STO phase we solve the full LLGS equation numerically for different sets of experimentally relevant parameters, considering
two possible geometries, and use the solutions to classify the phases. Lastly, we analyze the frequency spectrum of the STO
phases by performing a Fourier transform of the solutions along different lines in the phase diagrams.

Theory
We will consider two different geometries where spin–orbit torques strongly influence the STO phase, and which display
different behaviors. These geometries will henceforth be called the bulk and thin film geometries, and are illustrated in Figure 1.
Both geometries consist of a polarizing layer F0 and two free magnetic layers F1 an F2, all separated by a non-magnetic metal
in order to reduce the exchange coupling and prevent magnetic locking. The main differences between the geometries is the
direction of which the inversion symmetry is broken, and the current that is required to induce the spin–orbit coupling. In the
bulk geometry the current in the y-direction induces spin–orbit torques from RSOC, while the current in the x-direction induces
the STT. In the thin film geometry, however, both STT and RSOC are caused by the same current in the x-direction, making it
impossible so separate the effects from one another. In contrast, this is possible in the bulk geometry.

Figure 1. Illustrations of (a) the bulk geometry and (b) the thin film geometry. In both geometries, a fixed magnetic layer F0
is separated from two free magnetic layers F1 and F2 by a non-magnetic metallic material shown here in blue. A material
illustrated in black, which is neighboring to F1 and F2 in (a) and the top film in (b), is present to get a strong Rashba spin–orbit
coupling at the interface of the free ferromagnetic layers. A suitable choice for this material could be a heavy normal metal
such as Au or Pt. In (b) the bottom film is a substrate which we assume does not induce any measurable interfacial spin–orbit
coupling effects. To induce dynamics a current is applied in the x-direction which causes m1 and m2 to experience spin-transfer
torques. In (a) a current is also applied in the y-direction to create significant RSOC effects on m1 and m2 due to the symmetry
breaking in the x-direction. In the film geometry this is caused by the current in the x-direction as the symmetry breaking is in
the z-direction. The free magnetic layers also interact through the RKKY interaction, while the distance to the fixed magnetic
layer is chosen such that an RKKY interaction with this layer can be neglected. In (a) the material has an easy axis in the
z-direction, while in (b) the material has an easy axis in the y-direction.

The model for the dynamics of the magnetizations in the two free magnetic layers that we will study in this article is a
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variation of two coupled Landau–Lifshitz–Gilbert–Slonczewski (LLGS) equations. This equation is given by

∂tmi =−γmi×
(

Heff
i +HR

i −βmi×HR
i

)
+αmi×∂tmi +TSTT

i . (1)

Here the Rashba field HR
i is given by27

HR
i =

1
1+β2

αRmeP(i) j
eMsh̄µ0

n̂× ĵ, (2)

with αR being the Rashba parameter, P(i) the polarization of the current j passing through Fi, and n̂ the direction of inversion
asymmetry. The parameter β is the non-adiabatic damping parameter of the itinerant electrons that describes the ratio of the
inverse exchange interaction parameter 1/Jex and the spin-flip relaxation time. Lastly, the spin-transfer torques TSTT

i are acting
on mi are

TSTT
1 =− γh̄ jx

2eMsµ0d
m1× (P0m0−P1m2)×m1, (3a)

TSTT
2 =− γh̄ jx

2eMsµ0d
P1m2×m1×m2, (3b)

with d being the thickness of the regions F1 and F2 in the x-direction, and P0 and P1 being the polarization of the current in
the non-magnetic material in F0/N/F1 and F1/N/F2 respectively. Due to the symmetry of the geometry we can neglect the
non-adiabatic spin transfer torque.39 For the effective field Heff, we consider contributions from the RKKY interaction and
magnetic anisotropy. The effective field then becomes

Heff
i =

2K
µ0Ms

(mi · n̂k) n̂k +
J

µ0Msd
mī. (4)

K is the anisotropy strength, n̂k a direction along the easy axis (n̂k = ẑ for the bulk geometry, and n̂k = ŷ for the thin film
geometry), J is the strength of the RKKY interaction, and the index ī denotes the index of the free magnetization that is not mi
(ī = 3− i).

We now follow the procedure by Zhou et al.18 and consider when the collinear states of m1 and m2 along the easy axis are
stable or not. We start off with the ansatz that there is a slight perturbation ui from the collinear state, such that mi = λin̂k +ui
(λi =±1). Plugging this ansatz into (1) and performing a Fourier transform ui(t) =

∫
ũi(ω)exp(−iωt)dω/2π, we get a result

that is on the form

(
Âω+V̂

)(ũ1
ũ2

)
= 0. (5)

The matrices for the different geometries are given by

Âbulk =

(
1− iαλ1 0

0 1− iαλ2

)
, (6a)

Âfilm =

(
1+ iαλ1 0

0 1+ iαλ2

)
, (6b)

V̂bulk = ω0

(
λ1 0
0 λ2

)
+ωJ

(
λ2 −λ1
−λ2 λ1

)
+ iω(x)

j

[
P0

(
−λ1 0

0 0

)
+P1

(
λ1λ2 −1

1 −λ1λ2

)]
(6c)

ω(y)
R

1+β2

[(
P(y)

1 0
0 P(y)

2

)
− iβ

(
P(y)

1 λ1 0
0 P(y)

2 λ2

)]
,

V̂film =−ω0

(
λ1 0
0 λ2

)
−ωJ

(
λ2 −λ1
−λ2 λ1

)
+ iω(x)

j

[
P0

(
−λ1 0

0 0

)
+P1

(
λ1λ2 −1

1 −λ1λ2

)]
(6d)

− ω(x)
R

1+β2

[(
P0 0
0 P1

)
+ iβ

(
P0λ1 0

0 P1λ2

)]
.

Here, we have defined the frequencies ω0 = 2γK/µ0Ms, ωJ = γJ/µ0Msd, ω(x)
j = γh̄ jx/2µ0Msd and ω(x/y)

R = γαRme jx/y/h̄µ0eMs.
We now want to determine if any of the collinear states are stable when the frequencies and other constants are specified.
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This can be seen from the sign of the imaginary component of ω; when the imaginary component is negative, exp(−iωt) is a
decreasing function in time, while if the imaginary component is positive the function is exponentially increasing. Any small
perturbation away from the collinear state is then unstable if ℑm(ω)> 0. The value of ω can be determined from (5), as it can
be written as an eigenvalue equation where ω is an eigenvalue of the matrix Ŵ =−Â−1V̂ . From this one can then find for what
choice of parameters none of the collinear states are stable. An STO phase will be localized within this region, but the entire
region is not necessarily an STO phase. We here distinguish between the STO phase and a canted phase by considering the
temporal evolution of the magnetoresistance, which is approximated by

R(t) = R0 +∆R1m0 ·m1 +∆R2m1 ·m2. (7)

If the magnetoresistance is oscillating in time, meaning at least m0 ·m1 or m1 ·m2 is oscillating, we have an STO phase.
If m0 ·m1 and m1 ·m2 are both constant, we have a canted phase. Note that if m1 and m2 oscillate in-phase in a plane
perpendicular to m0, such that m0 ·m1 and m1 ·m2 are constant, we still have a canted phase and not an STO phase even though
there are oscillations in the individual magnetization components. To confirm our analytical results, we will also later establish
fully numerically when the STO phase occurs.

We now want to determine the physical effect that the Rashba spin–orbit coupling introduces by comparing it with other
known terms. If we make the simplification of an equal polarization in the current causing the spin–orbit coupling in the free
layers (P0 = P1 = P, P(y)

1 = P(y)
2 = P), this can be done without much effort. Note that for the bulk case it is not necessary to

have the same polarization for both jx and jy, we could still achieve the same results with P(y)
1 = P(y)

2 = P′ by modifying αR

so that αRP = α′RP′. When performing this simplification in the polarization the matrix proportional to ω(x/y)
R becomes very

similar to the Ā matrix. The influence of RSOC is then to renormalize α and ω in the following manner:

ω∗ = ω+ω(x/y)
R

P
1+β2 , (8a)

α∗ =
αω+βω(x/y)

R
P

1+β2

ω+ω(x/y)
R

P
1+β2

. (8b)

We note that the imaginary components of ω∗ and ω are the same, as ω(x/y)
R is entirely real. The stability of a phase was

determined by the imaginary component of its eigenvalue, therefore any effect that RSOC may have on shifting the borders
between a stable and an unstable region must be seen from α∗. As ω is in general complex, so is α∗ (α, however, is real). It is
also noted that the product α∗ω∗ = αω+ω(x/y)

R P(1+β2)−1 only has a shift in its real value. As ω and ω∗ are complex and have
the same imaginary component, the imaginary component of α∗ must be non-zero if Re(α∗) 6= α. This imaginary component of
α∗ ensures that the imaginary component of αω is invariant under the transformation to α∗ω∗, but is otherwise of little interest
as α only appears in the product αω. The effect of RSOC can then be found from the real part of α∗, which is found to be

Re(α∗) =

(
αRe(ω)+βω(x/y)

R
P

1+β2

)(
Re(ω)+ω(x/y)

R
P

1+β2

)
+αℑm(ω)2

(
Re(ω)+ω(x/y)

R
P

1+β2

)2
+ℑm(ω)2

. (9)

There is no restriction on the sign of ω or ω(x/y)
R (ω(y)

R can for example be negative by switching the direction of the current jy),
and Re(α∗) can as a consequence also take on negative values. The effect of RSOC can then be seen as a modification of the
Gilbert damping parameter α, even to the extent where it takes on negative values and becomes an anti-damping term in the
LLGS equation. We note that the modification α∗ depends on the eigenvalues ω, which are complex functions of the system
parameters. As the ansatz is a small perturbation from a collinear state, the modified value α∗ is only valid in this state, and will
change again in a manner that cannot be described by this framework if the perturbation is unstable and we move away from
the collinear state. One special case that should be noted is when α = β, for which Re(α∗) = α. This predicts that when α = β,
RSOC has no impact on whether a collinear state is stable or not. When α 6= β, Re(α∗) has a maximum and a minimum when
ℑm(ω) 6= 0 and a singularity when ℑm(ω) = 0. These extremal points are found from

∂
∂ωR

Re(α∗) =−(α−β)
ℑm(ω)2

(
Re(ω)+2ωR

P
1+β2

)
+Re(ω)

(
Re(ω)+ωR

P
1+β2

)2

(
ℑm(ω)2 +

(
Re(ω)+ωR

P
1+β2

)2
)2 = 0 (10)
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and are

ωR =−
(

1+β2

P

)
ℑm(ω)2±ℑm(ω)

√
ℑm(ω)2 +Re(ω)2 +Re(ω)2

Re(ω)
. (11)

Which value is the maximum and minimum is determined by the sign of Re(ω), and whether β > α or β < α. This means that
if for our set of parameters we have Re(α∗)< α for α > β, we will have Re(α∗)> α for the same set of parameters but with
α < β. Optimally we would like to have Re(α∗)< α to increase the size of the STO phase, and we would also like to be able to
have this for both α < β and α > β. This can be controlled by the direction of the current responsible for the SOC, as we would
then switch the minimum and maximum in Re(α∗). Switching the sign of ωR will have a similar effect to switching between
α < β and α > β.

In the bulk geometry switching the sign of ωR can easily be done by switching the direction of the current in the y-
direction. In the thin film geometry this may not have the desired effect, as the current controlling the strength of RSOC is also
intertwined with the strength of the STT and by switching the direction of jx we will also change the value of ω. The phase
diagrams obtained numerically in the next section, determining when the STO phase occurs, are consistent with these analytical
considerations of the role played by RSOC.

Figure 2. Phase diagrams for the bulk geometry. For all phase diagrams the values α = 0.01, P = 0.5, jy = 109 A/cm2,
K = 8 ·104 J/m3, d = 3 nm are assumed. The red regions indicate an STO phase, while the white regions are canted states.
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Results
Based on the results presented so far, we will now calculate the phase diagrams to determine when the different collinear states
are stable. This is done by solving (5) for all combinations of λ1 and λ2, and checking the sign of the imaginary component of
ω. In addition, to be able to separate the STO and canted phase from one another, we solve the LLGS equation numerically
and analyze the results. We classify the system to be in an STO state if the variance of the latter part of the solution is above
some minimal value (set to be 10−6 per time unit), and that the variance does not decrease faster than a cutoff factor (set to
be 0.9). For an easy comparison to previous results, we use the same set of parameters as Zhou et al.18 for our simulations,
but additionally include the effect of spin–orbit torques. These parameters are α = 0.01, P = 0.5, K = 8 ·104 J/m3, d = 3 nm,
J ∼ 1 mJ/m2, jx ∼ 108 A/cm2, Ms = 127 kA/m. We will also perform fast Fourier transforms of the numerical solution along
given lines in the phase diagram, to analyze the effects of RSOC on the frequency spectrum.

Figure 3. The one sided spectra of the Fourier transform of m0 ·m1 in the bulk geometry. The Fourier transform was taken
along the J = 0.25 mJ/m2 line in the phase diagrams.

Bulk geometry
A combination of the analytical and numerical calculations yield the results shown in Figure 2 for the bulk geometry. We have
here used a current density jy = 109 A/cm2 that is responsible for the SOC. The strength of the Rashba-parameter αR is chosen
large enough to have considerable impact, but kept at a realistic order of magnitude. As an example, αR has been found to be
∼ 3.7 ·10−10 eV·m at the surface of Bi/Ag alloy.23 The value αR = 9.26 ·10−10 eV·m exceeds this value and thus corresponds
to a rather large value of the Rashba-parameter. For the bulk geometry this is of no concern, as we can achieve the same results
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for lower values of αR by increasing the current density jy, but this is not possible in the thin film geometry where spin-transfer
torques and RSOC can not be separated in the same manner.

To benchmark our numerical results, we reproduce the phase diagram found by Zhou et al. in the absence of spin–orbit
interactions in Figure 2a. When Rashba spin–orbit coupling is present, it is seen from Figure 2b that the STO phase becomes
larger. In addition, the STO phase also extends into the antiferromagnetic regime (J < 0), and even occurs in the absence of any
RKKY interaction between m1 and m2 (J = 0). In the article by Zhou et al., the border between the unstable region (STO and
canted phases) and the ↑↓ state was found to be approximately

ωJ =

√
4ω2

0 +
(

ω(x)
j

)2
−2ω0 +α

ω2
0

ω(x)
j

. (12)

The effect of the term proportional to α can be seen by the slight increase of the border between the unstable region and the ↑↓
state as jx→ 0+ in Figure 2a. In Figure 2b, however, the border decreases as jx→ 0+. This is in agreement with what we
have discussed earlier, namely that the effect of RSOC in the present system is equivalent to a modification of the Gilbert
damping, even to the extent where it takes on negative values. This seems to be the case in this phase diagram where Re(α∗)
becomes minimal when β < α. We also predicted above that one could move from Re(α∗)< α to Re(α∗)> α by letting β > α,
assuming Re(α∗)< α for β < α. This is illustrated in Figure 2c and 2d, where the border between the unstable region and the
↑↓ state is lifted with respect to the border in Figure 2a. The size of the STO phase also decreases in this maximal region of
Re(α∗) (Re(α∗)> α), which is not an unexpected consequence from an increase in the Gilbert damping. This does not mean
that cases where β > α are of no interest, however. As noted, we are able to move back to a minimal region of Re(α∗) in the
bulk geometry by switching the direction of the current applied in the y-direction.

Moving on to the frequency spectrum of the STO phase in the presence of RSOC, we consider fast Fourier transforms of the
quantity m0 ·m1 along the J = 0.25 mJ/m2 line in the phase diagrams. These results are presented in Figure 3. The fast Fourier
transforms of m1 ·m2 are not presented as they show the same frequency spectrum as m0 ·m1, but with different amplitudes.
The system with RSOC has fewer frequencies, as can be seen by comparing Figure 3a and 3b. In addition, the oscillations in
the system with RSOC can have a higher amplitude than the system without RSOC, as illustrated in Figure 3b and 3d. It is also
seen that the presence of RSOC allows us to achieve slightly different frequency outputs than a system without RSOC. This
will increase the tunability of the spin torque oscillator, as we can also adjust the strength of the RSOC via jy, in addition to the
modulation of the frequency via jx and the anisotropy strength K as done in Ref.18

Thin film geometry

Figure 4. Phase diagrams for the thin film geometry. For all phase diagrams the values α = 0.01, P = 0.5, K = 8 ·104 J/m3,
d = 3 nm are assumed. The red regions indicate an STO phase, while the white regions are canted states.

In the thin film geometry, both the spin-transfer torques and spin–orbit coupling are controlled by the same current jx.
This gives us a different behavior than the one in the bulk geometry, as seen in Figure 4. For low values of αR the behavior
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is quite similar to a system without RSOC, but as we increase αR interesting effects appear. When we let αR = 9.26 ·10−10

eV·m and β = 0, we get the phase diagram shown in Figure 4a. In this phase diagram the STO phase is symmetric in jx, and
the STO phase is located in the antiferromagnetic regime (J < 0). When we let β = α/2 = 0.005 the phase diagram becomes
similar to the case without any RSOC again, but there is still a significant increase in the STO phase which extends into the
antiferromagnetic regime. The decrease in the border between the unstable region and the ↑↓ state as jx → 0+ is also not
existent in the thin film geometry, as the effects of RSOC are proportional to jx.

The STO phase in Figure 4 (and Figure 2) is only registered where there are no stable collinear states according to the
analytical calculations, as we only want to classify a state as being STO if there is not a possibility of the system stabilizing in
a collinear state. The stability of the collinear states are determined analytically, while the STO phase is found numerically.
If we include all the points the numerical calculations registered as being an STO phase, even at points where the analytical
calculations show one or more collinear states to be stable, the phase diagrams become like the ones shown in Figure 5

We see that the STO phase also extends into the region where ↑↑ is a stable state when the initial state is not close to this
state. It is therefore also possible to get an STO phase in the ferromagnetic regime for this case, depending on the initial state of
m1 and m2. The reason why the initial state does not relax to the ↑↑ state even if this is a stable solution can be seen from the
size of the imaginary component of ω in this region. While the imaginary component of ω belonging to ↑↑ in this region is
negative, its magnitude is only 10−2. In comparison the other collinear states have an imaginary component ranging up to a
magnitude of 101. If m1 and m2 are not close to being in the ↑↑ state initially, it is therefore not given that they will relax to
this state, and can end up in an oscillating or canted state.

This sensitivity issue concerning the initial state of m1 and m2 was only of considerable significance for the ↑↑ state in the
thin-film geometry with β = 0, αR = 9.26 ·10−10 eV·m. There was also some sensitivity for other phase diagrams in the limit
jx→ 0. Regarding the cutoff factors utilized for classifying the numerical solution, there was very little sensitivity with regard
to the choice of parameters. The transitional region between an STO state and a canted or collinear state is found to happen on
a typical scale of 106 A/cm2 or 10−3 mJ/m2, both of which being very small compared to the magnitude of the parameters
considered. As the cutoff factors would primarily have an effect in this transitional region, a change in these parameters would
not lead to a significant change in the size of the STO phase. It can also be seen in some of the phase diagrams that there are
found to be some canted states in the middle of the STO region, or a single STO state separated from the main STO region.
This is discovered to be due to the time interval the system is solved over, as for some parameters it takes longer time for the
system to obtain stable oscillations than for others. The time scale that the system was solved over was constrained to some
degree, due to the run-time of the solver. It is also observed that the initial state of m1 and m2 has some impact on how fast
these oscillations become stable. When solving the system over a longer time scale the STO regions should become more or
less continuous.

Figure 5. The stability of the ↑↑ state in the thin film geometry for β = 0, αR = 9.26 ·10−10 eV·m is found to be very
dependent on the initial conditions. In (a) the initial state is chosen to be close to ↓↓ for J > 0, while in (b) the initial state is
chosen to be close to ↑↑ in the same region. In both cases the initial state is chosen to be close to ↓↑ for J < 0.

When considering the frequency spectrum of the STO phase in the thin film geometry in Figure 6 we see that the spectrum of
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Figure 6. The one sided spectra of the Fourier transform of m0 ·m1 in the thin film geometry. The Fourier transform was
taken along the J =−0.2 mJ/m2 line in (a) and along J = 0.25 mJ/m2 in (b).

the αR = 9.26 ·10−10 eV·m, β = 0 case shows the same symmetry in jx as the phase diagram. Moreover, the antiferromagnetic
STO phase has a larger set of frequencies than what has been found in the ferromagnetic STO phase and is also, unlike the
other plots, symmetric in jx. When increasing β to 0.005 and considering the frequency spectrum in the ferromagnetic regime,
the result is more similar to the bulk geometry case, as seen in Figure 6b. We have fewer and more slowly varying frequencies
as a function of jx, but the amplitude of the oscillations are higher.

Conclusion
We have shown how Rashba spin–orbit coupling can be used to substantially increase the size of the spin torque oscillator
phase in both ferromagnetically and antiferromagnetically coupled compensated magnetic moments in a bilayer system. This
presumably allows for a better tunability of the frequency output of the oscillator, as the spin–orbit coupling torques can be
controlled electrically.
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